Merge tag 'sparc-for-6.9-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git/alars...
[sfrench/cifs-2.6.git] / arch / arm64 / include / asm / kvm_arm.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #ifndef __ARM64_KVM_ARM_H__
8 #define __ARM64_KVM_ARM_H__
9
10 #include <asm/esr.h>
11 #include <asm/memory.h>
12 #include <asm/sysreg.h>
13 #include <asm/types.h>
14
15 /* Hyp Configuration Register (HCR) bits */
16
17 #define HCR_TID5        (UL(1) << 58)
18 #define HCR_DCT         (UL(1) << 57)
19 #define HCR_ATA_SHIFT   56
20 #define HCR_ATA         (UL(1) << HCR_ATA_SHIFT)
21 #define HCR_TTLBOS      (UL(1) << 55)
22 #define HCR_TTLBIS      (UL(1) << 54)
23 #define HCR_ENSCXT      (UL(1) << 53)
24 #define HCR_TOCU        (UL(1) << 52)
25 #define HCR_AMVOFFEN    (UL(1) << 51)
26 #define HCR_TICAB       (UL(1) << 50)
27 #define HCR_TID4        (UL(1) << 49)
28 #define HCR_FIEN        (UL(1) << 47)
29 #define HCR_FWB         (UL(1) << 46)
30 #define HCR_NV2         (UL(1) << 45)
31 #define HCR_AT          (UL(1) << 44)
32 #define HCR_NV1         (UL(1) << 43)
33 #define HCR_NV          (UL(1) << 42)
34 #define HCR_API         (UL(1) << 41)
35 #define HCR_APK         (UL(1) << 40)
36 #define HCR_TEA         (UL(1) << 37)
37 #define HCR_TERR        (UL(1) << 36)
38 #define HCR_TLOR        (UL(1) << 35)
39 #define HCR_E2H         (UL(1) << 34)
40 #define HCR_ID          (UL(1) << 33)
41 #define HCR_CD          (UL(1) << 32)
42 #define HCR_RW_SHIFT    31
43 #define HCR_RW          (UL(1) << HCR_RW_SHIFT)
44 #define HCR_TRVM        (UL(1) << 30)
45 #define HCR_HCD         (UL(1) << 29)
46 #define HCR_TDZ         (UL(1) << 28)
47 #define HCR_TGE         (UL(1) << 27)
48 #define HCR_TVM         (UL(1) << 26)
49 #define HCR_TTLB        (UL(1) << 25)
50 #define HCR_TPU         (UL(1) << 24)
51 #define HCR_TPC         (UL(1) << 23) /* HCR_TPCP if FEAT_DPB */
52 #define HCR_TSW         (UL(1) << 22)
53 #define HCR_TACR        (UL(1) << 21)
54 #define HCR_TIDCP       (UL(1) << 20)
55 #define HCR_TSC         (UL(1) << 19)
56 #define HCR_TID3        (UL(1) << 18)
57 #define HCR_TID2        (UL(1) << 17)
58 #define HCR_TID1        (UL(1) << 16)
59 #define HCR_TID0        (UL(1) << 15)
60 #define HCR_TWE         (UL(1) << 14)
61 #define HCR_TWI         (UL(1) << 13)
62 #define HCR_DC          (UL(1) << 12)
63 #define HCR_BSU         (3 << 10)
64 #define HCR_BSU_IS      (UL(1) << 10)
65 #define HCR_FB          (UL(1) << 9)
66 #define HCR_VSE         (UL(1) << 8)
67 #define HCR_VI          (UL(1) << 7)
68 #define HCR_VF          (UL(1) << 6)
69 #define HCR_AMO         (UL(1) << 5)
70 #define HCR_IMO         (UL(1) << 4)
71 #define HCR_FMO         (UL(1) << 3)
72 #define HCR_PTW         (UL(1) << 2)
73 #define HCR_SWIO        (UL(1) << 1)
74 #define HCR_VM          (UL(1) << 0)
75 #define HCR_RES0        ((UL(1) << 48) | (UL(1) << 39))
76
77 /*
78  * The bits we set in HCR:
79  * TLOR:        Trap LORegion register accesses
80  * RW:          64bit by default, can be overridden for 32bit VMs
81  * TACR:        Trap ACTLR
82  * TSC:         Trap SMC
83  * TSW:         Trap cache operations by set/way
84  * TWE:         Trap WFE
85  * TWI:         Trap WFI
86  * TIDCP:       Trap L2CTLR/L2ECTLR
87  * BSU_IS:      Upgrade barriers to the inner shareable domain
88  * FB:          Force broadcast of all maintenance operations
89  * AMO:         Override CPSR.A and enable signaling with VA
90  * IMO:         Override CPSR.I and enable signaling with VI
91  * FMO:         Override CPSR.F and enable signaling with VF
92  * SWIO:        Turn set/way invalidates into set/way clean+invalidate
93  * PTW:         Take a stage2 fault if a stage1 walk steps in device memory
94  * TID3:        Trap EL1 reads of group 3 ID registers
95  * TID2:        Trap CTR_EL0, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1
96  */
97 #define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \
98                          HCR_BSU_IS | HCR_FB | HCR_TACR | \
99                          HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \
100                          HCR_FMO | HCR_IMO | HCR_PTW | HCR_TID3)
101 #define HCR_HOST_NVHE_FLAGS (HCR_RW | HCR_API | HCR_APK | HCR_ATA)
102 #define HCR_HOST_NVHE_PROTECTED_FLAGS (HCR_HOST_NVHE_FLAGS | HCR_TSC)
103 #define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H)
104
105 #define HCRX_GUEST_FLAGS \
106         (HCRX_EL2_SMPME | HCRX_EL2_TCR2En | \
107          (cpus_have_final_cap(ARM64_HAS_MOPS) ? (HCRX_EL2_MSCEn | HCRX_EL2_MCE2) : 0))
108 #define HCRX_HOST_FLAGS (HCRX_EL2_MSCEn | HCRX_EL2_TCR2En | HCRX_EL2_EnFPM)
109
110 /* TCR_EL2 Registers bits */
111 #define TCR_EL2_DS              (1UL << 32)
112 #define TCR_EL2_RES1            ((1U << 31) | (1 << 23))
113 #define TCR_EL2_TBI             (1 << 20)
114 #define TCR_EL2_PS_SHIFT        16
115 #define TCR_EL2_PS_MASK         (7 << TCR_EL2_PS_SHIFT)
116 #define TCR_EL2_PS_40B          (2 << TCR_EL2_PS_SHIFT)
117 #define TCR_EL2_TG0_MASK        TCR_TG0_MASK
118 #define TCR_EL2_SH0_MASK        TCR_SH0_MASK
119 #define TCR_EL2_ORGN0_MASK      TCR_ORGN0_MASK
120 #define TCR_EL2_IRGN0_MASK      TCR_IRGN0_MASK
121 #define TCR_EL2_T0SZ_MASK       0x3f
122 #define TCR_EL2_MASK    (TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \
123                          TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK | TCR_EL2_T0SZ_MASK)
124
125 /* VTCR_EL2 Registers bits */
126 #define VTCR_EL2_DS             TCR_EL2_DS
127 #define VTCR_EL2_RES1           (1U << 31)
128 #define VTCR_EL2_HD             (1 << 22)
129 #define VTCR_EL2_HA             (1 << 21)
130 #define VTCR_EL2_PS_SHIFT       TCR_EL2_PS_SHIFT
131 #define VTCR_EL2_PS_MASK        TCR_EL2_PS_MASK
132 #define VTCR_EL2_TG0_MASK       TCR_TG0_MASK
133 #define VTCR_EL2_TG0_4K         TCR_TG0_4K
134 #define VTCR_EL2_TG0_16K        TCR_TG0_16K
135 #define VTCR_EL2_TG0_64K        TCR_TG0_64K
136 #define VTCR_EL2_SH0_MASK       TCR_SH0_MASK
137 #define VTCR_EL2_SH0_INNER      TCR_SH0_INNER
138 #define VTCR_EL2_ORGN0_MASK     TCR_ORGN0_MASK
139 #define VTCR_EL2_ORGN0_WBWA     TCR_ORGN0_WBWA
140 #define VTCR_EL2_IRGN0_MASK     TCR_IRGN0_MASK
141 #define VTCR_EL2_IRGN0_WBWA     TCR_IRGN0_WBWA
142 #define VTCR_EL2_SL0_SHIFT      6
143 #define VTCR_EL2_SL0_MASK       (3 << VTCR_EL2_SL0_SHIFT)
144 #define VTCR_EL2_T0SZ_MASK      0x3f
145 #define VTCR_EL2_VS_SHIFT       19
146 #define VTCR_EL2_VS_8BIT        (0 << VTCR_EL2_VS_SHIFT)
147 #define VTCR_EL2_VS_16BIT       (1 << VTCR_EL2_VS_SHIFT)
148
149 #define VTCR_EL2_T0SZ(x)        TCR_T0SZ(x)
150
151 /*
152  * We configure the Stage-2 page tables to always restrict the IPA space to be
153  * 40 bits wide (T0SZ = 24).  Systems with a PARange smaller than 40 bits are
154  * not known to exist and will break with this configuration.
155  *
156  * The VTCR_EL2 is configured per VM and is initialised in kvm_init_stage2_mmu.
157  *
158  * Note that when using 4K pages, we concatenate two first level page tables
159  * together. With 16K pages, we concatenate 16 first level page tables.
160  *
161  */
162
163 #define VTCR_EL2_COMMON_BITS    (VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
164                                  VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
165
166 /*
167  * VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
168  * Interestingly, it depends on the page size.
169  * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
170  *
171  *      -----------------------------------------
172  *      | Entry level           |  4K  | 16K/64K |
173  *      ------------------------------------------
174  *      | Level: 0              |  2   |   -     |
175  *      ------------------------------------------
176  *      | Level: 1              |  1   |   2     |
177  *      ------------------------------------------
178  *      | Level: 2              |  0   |   1     |
179  *      ------------------------------------------
180  *      | Level: 3              |  -   |   0     |
181  *      ------------------------------------------
182  *
183  * The table roughly translates to :
184  *
185  *      SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
186  *
187  * Where TGRAN_SL0_BASE is a magic number depending on the page size:
188  *      TGRAN_SL0_BASE(4K) = 2
189  *      TGRAN_SL0_BASE(16K) = 3
190  *      TGRAN_SL0_BASE(64K) = 3
191  * provided we take care of ruling out the unsupported cases and
192  * Entry_Level = 4 - Number_of_levels.
193  *
194  */
195 #ifdef CONFIG_ARM64_64K_PAGES
196
197 #define VTCR_EL2_TGRAN                  VTCR_EL2_TG0_64K
198 #define VTCR_EL2_TGRAN_SL0_BASE         3UL
199
200 #elif defined(CONFIG_ARM64_16K_PAGES)
201
202 #define VTCR_EL2_TGRAN                  VTCR_EL2_TG0_16K
203 #define VTCR_EL2_TGRAN_SL0_BASE         3UL
204
205 #else   /* 4K */
206
207 #define VTCR_EL2_TGRAN                  VTCR_EL2_TG0_4K
208 #define VTCR_EL2_TGRAN_SL0_BASE         2UL
209
210 #endif
211
212 #define VTCR_EL2_LVLS_TO_SL0(levels)    \
213         ((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT)
214 #define VTCR_EL2_SL0_TO_LVLS(sl0)       \
215         ((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
216 #define VTCR_EL2_LVLS(vtcr)             \
217         VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT)
218
219 #define VTCR_EL2_FLAGS                  (VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN)
220 #define VTCR_EL2_IPA(vtcr)              (64 - ((vtcr) & VTCR_EL2_T0SZ_MASK))
221
222 /*
223  * ARM VMSAv8-64 defines an algorithm for finding the translation table
224  * descriptors in section D4.2.8 in ARM DDI 0487C.a.
225  *
226  * The algorithm defines the expectations on the translation table
227  * addresses for each level, based on PAGE_SIZE, entry level
228  * and the translation table size (T0SZ). The variable "x" in the
229  * algorithm determines the alignment of a table base address at a given
230  * level and thus determines the alignment of VTTBR:BADDR for stage2
231  * page table entry level.
232  * Since the number of bits resolved at the entry level could vary
233  * depending on the T0SZ, the value of "x" is defined based on a
234  * Magic constant for a given PAGE_SIZE and Entry Level. The
235  * intermediate levels must be always aligned to the PAGE_SIZE (i.e,
236  * x = PAGE_SHIFT).
237  *
238  * The value of "x" for entry level is calculated as :
239  *    x = Magic_N - T0SZ
240  *
241  * where Magic_N is an integer depending on the page size and the entry
242  * level of the page table as below:
243  *
244  *      --------------------------------------------
245  *      | Entry level           |  4K    16K   64K |
246  *      --------------------------------------------
247  *      | Level: 0 (4 levels)   | 28   |  -  |  -  |
248  *      --------------------------------------------
249  *      | Level: 1 (3 levels)   | 37   | 31  | 25  |
250  *      --------------------------------------------
251  *      | Level: 2 (2 levels)   | 46   | 42  | 38  |
252  *      --------------------------------------------
253  *      | Level: 3 (1 level)    | -    | 53  | 51  |
254  *      --------------------------------------------
255  *
256  * We have a magic formula for the Magic_N below:
257  *
258  *  Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
259  *
260  * where Number_of_levels = (4 - Level). We are only interested in the
261  * value for Entry_Level for the stage2 page table.
262  *
263  * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
264  *
265  *      x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
266  *        = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
267  *
268  * Here is one way to explain the Magic Formula:
269  *
270  *  x = log2(Size_of_Entry_Level_Table)
271  *
272  * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
273  * PAGE_SHIFT bits in the PTE, we have :
274  *
275  *  Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
276  *                   = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
277  *  where n = number of levels, and since each pointer is 8bytes, we have:
278  *
279  *  x = Bits_Entry_Level + 3
280  *    = IPA_SHIFT - (PAGE_SHIFT - 3) * n
281  *
282  * The only constraint here is that, we have to find the number of page table
283  * levels for a given IPA size (which we do, see stage2_pt_levels())
284  */
285 #define ARM64_VTTBR_X(ipa, levels)      ((ipa) - ((levels) * (PAGE_SHIFT - 3)))
286
287 #define VTTBR_CNP_BIT     (UL(1))
288 #define VTTBR_VMID_SHIFT  (UL(48))
289 #define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
290
291 /* Hyp System Trap Register */
292 #define HSTR_EL2_T(x)   (1 << x)
293
294 /* Hyp Coprocessor Trap Register Shifts */
295 #define CPTR_EL2_TFP_SHIFT 10
296
297 /* Hyp Coprocessor Trap Register */
298 #define CPTR_EL2_TCPAC  (1U << 31)
299 #define CPTR_EL2_TAM    (1 << 30)
300 #define CPTR_EL2_TTA    (1 << 20)
301 #define CPTR_EL2_TSM    (1 << 12)
302 #define CPTR_EL2_TFP    (1 << CPTR_EL2_TFP_SHIFT)
303 #define CPTR_EL2_TZ     (1 << 8)
304 #define CPTR_NVHE_EL2_RES1      0x000032ff /* known RES1 bits in CPTR_EL2 (nVHE) */
305 #define CPTR_NVHE_EL2_RES0      (GENMASK(63, 32) |      \
306                                  GENMASK(29, 21) |      \
307                                  GENMASK(19, 14) |      \
308                                  BIT(11))
309
310 /* Hyp Debug Configuration Register bits */
311 #define MDCR_EL2_E2TB_MASK      (UL(0x3))
312 #define MDCR_EL2_E2TB_SHIFT     (UL(24))
313 #define MDCR_EL2_HPMFZS         (UL(1) << 36)
314 #define MDCR_EL2_HPMFZO         (UL(1) << 29)
315 #define MDCR_EL2_MTPME          (UL(1) << 28)
316 #define MDCR_EL2_TDCC           (UL(1) << 27)
317 #define MDCR_EL2_HLP            (UL(1) << 26)
318 #define MDCR_EL2_HCCD           (UL(1) << 23)
319 #define MDCR_EL2_TTRF           (UL(1) << 19)
320 #define MDCR_EL2_HPMD           (UL(1) << 17)
321 #define MDCR_EL2_TPMS           (UL(1) << 14)
322 #define MDCR_EL2_E2PB_MASK      (UL(0x3))
323 #define MDCR_EL2_E2PB_SHIFT     (UL(12))
324 #define MDCR_EL2_TDRA           (UL(1) << 11)
325 #define MDCR_EL2_TDOSA          (UL(1) << 10)
326 #define MDCR_EL2_TDA            (UL(1) << 9)
327 #define MDCR_EL2_TDE            (UL(1) << 8)
328 #define MDCR_EL2_HPME           (UL(1) << 7)
329 #define MDCR_EL2_TPM            (UL(1) << 6)
330 #define MDCR_EL2_TPMCR          (UL(1) << 5)
331 #define MDCR_EL2_HPMN_MASK      (UL(0x1F))
332 #define MDCR_EL2_RES0           (GENMASK(63, 37) |      \
333                                  GENMASK(35, 30) |      \
334                                  GENMASK(25, 24) |      \
335                                  GENMASK(22, 20) |      \
336                                  BIT(18) |              \
337                                  GENMASK(16, 15))
338
339 /*
340  * FGT register definitions
341  *
342  * RES0 and polarity masks as of DDI0487J.a, to be updated as needed.
343  * We're not using the generated masks as they are usually ahead of
344  * the published ARM ARM, which we use as a reference.
345  *
346  * Once we get to a point where the two describe the same thing, we'll
347  * merge the definitions. One day.
348  */
349 #define __HFGRTR_EL2_RES0       HFGxTR_EL2_RES0
350 #define __HFGRTR_EL2_MASK       GENMASK(49, 0)
351 #define __HFGRTR_EL2_nMASK      ~(__HFGRTR_EL2_RES0 | __HFGRTR_EL2_MASK)
352
353 /*
354  * The HFGWTR bits are a subset of HFGRTR bits. To ensure we don't miss any
355  * future additions, define __HFGWTR* macros relative to __HFGRTR* ones.
356  */
357 #define __HFGRTR_ONLY_MASK      (BIT(46) | BIT(42) | BIT(40) | BIT(28) | \
358                                  GENMASK(26, 25) | BIT(21) | BIT(18) | \
359                                  GENMASK(15, 14) | GENMASK(10, 9) | BIT(2))
360 #define __HFGWTR_EL2_RES0       (__HFGRTR_EL2_RES0 | __HFGRTR_ONLY_MASK)
361 #define __HFGWTR_EL2_MASK       (__HFGRTR_EL2_MASK & ~__HFGRTR_ONLY_MASK)
362 #define __HFGWTR_EL2_nMASK      ~(__HFGWTR_EL2_RES0 | __HFGWTR_EL2_MASK)
363
364 #define __HFGITR_EL2_RES0       HFGITR_EL2_RES0
365 #define __HFGITR_EL2_MASK       (BIT(62) | BIT(60) | GENMASK(54, 0))
366 #define __HFGITR_EL2_nMASK      ~(__HFGITR_EL2_RES0 | __HFGITR_EL2_MASK)
367
368 #define __HDFGRTR_EL2_RES0      HDFGRTR_EL2_RES0
369 #define __HDFGRTR_EL2_MASK      (BIT(63) | GENMASK(58, 50) | GENMASK(48, 43) | \
370                                  GENMASK(41, 40) | GENMASK(37, 22) | \
371                                  GENMASK(19, 9) | GENMASK(7, 0))
372 #define __HDFGRTR_EL2_nMASK     ~(__HDFGRTR_EL2_RES0 | __HDFGRTR_EL2_MASK)
373
374 #define __HDFGWTR_EL2_RES0      HDFGWTR_EL2_RES0
375 #define __HDFGWTR_EL2_MASK      (GENMASK(57, 52) | GENMASK(50, 48) | \
376                                  GENMASK(46, 44) | GENMASK(42, 41) | \
377                                  GENMASK(37, 35) | GENMASK(33, 31) | \
378                                  GENMASK(29, 23) | GENMASK(21, 10) | \
379                                  GENMASK(8, 7) | GENMASK(5, 0))
380 #define __HDFGWTR_EL2_nMASK     ~(__HDFGWTR_EL2_RES0 | __HDFGWTR_EL2_MASK)
381
382 #define __HAFGRTR_EL2_RES0      HAFGRTR_EL2_RES0
383 #define __HAFGRTR_EL2_MASK      (GENMASK(49, 17) | GENMASK(4, 0))
384 #define __HAFGRTR_EL2_nMASK     ~(__HAFGRTR_EL2_RES0 | __HAFGRTR_EL2_MASK)
385
386 /* Similar definitions for HCRX_EL2 */
387 #define __HCRX_EL2_RES0         HCRX_EL2_RES0
388 #define __HCRX_EL2_MASK         (BIT(6))
389 #define __HCRX_EL2_nMASK        ~(__HCRX_EL2_RES0 | __HCRX_EL2_MASK)
390
391 /* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
392 #define HPFAR_MASK      (~UL(0xf))
393 /*
394  * We have
395  *      PAR     [PA_Shift - 1   : 12] = PA      [PA_Shift - 1 : 12]
396  *      HPFAR   [PA_Shift - 9   : 4]  = FIPA    [PA_Shift - 1 : 12]
397  *
398  * Always assume 52 bit PA since at this point, we don't know how many PA bits
399  * the page table has been set up for. This should be safe since unused address
400  * bits in PAR are res0.
401  */
402 #define PAR_TO_HPFAR(par)               \
403         (((par) & GENMASK_ULL(52 - 1, 12)) >> 8)
404
405 #define ECN(x) { ESR_ELx_EC_##x, #x }
406
407 #define kvm_arm_exception_class \
408         ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \
409         ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(PAC), ECN(CP14_64), \
410         ECN(SVC64), ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(SVE), \
411         ECN(IMP_DEF), ECN(IABT_LOW), ECN(IABT_CUR), \
412         ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \
413         ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \
414         ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \
415         ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \
416         ECN(BKPT32), ECN(VECTOR32), ECN(BRK64), ECN(ERET)
417
418 #define CPACR_EL1_TTA           (1 << 28)
419
420 #define kvm_mode_names                          \
421         { PSR_MODE_EL0t,        "EL0t" },       \
422         { PSR_MODE_EL1t,        "EL1t" },       \
423         { PSR_MODE_EL1h,        "EL1h" },       \
424         { PSR_MODE_EL2t,        "EL2t" },       \
425         { PSR_MODE_EL2h,        "EL2h" },       \
426         { PSR_MODE_EL3t,        "EL3t" },       \
427         { PSR_MODE_EL3h,        "EL3h" },       \
428         { PSR_AA32_MODE_USR,    "32-bit USR" }, \
429         { PSR_AA32_MODE_FIQ,    "32-bit FIQ" }, \
430         { PSR_AA32_MODE_IRQ,    "32-bit IRQ" }, \
431         { PSR_AA32_MODE_SVC,    "32-bit SVC" }, \
432         { PSR_AA32_MODE_ABT,    "32-bit ABT" }, \
433         { PSR_AA32_MODE_HYP,    "32-bit HYP" }, \
434         { PSR_AA32_MODE_UND,    "32-bit UND" }, \
435         { PSR_AA32_MODE_SYS,    "32-bit SYS" }
436
437 #endif /* __ARM64_KVM_ARM_H__ */