ACPI: APEI: Fix integer overflow in ghes_estatus_pool_init()
[sfrench/cifs-2.6.git] / tools / perf / util / auxtrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "evsel_config.h"
35 #include "symbol.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "thread_map.h"
39 #include "asm/bug.h"
40 #include "auxtrace.h"
41
42 #include <linux/hash.h>
43
44 #include "event.h"
45 #include "record.h"
46 #include "session.h"
47 #include "debug.h"
48 #include <subcmd/parse-options.h>
49
50 #include "cs-etm.h"
51 #include "intel-pt.h"
52 #include "intel-bts.h"
53 #include "arm-spe.h"
54 #include "s390-cpumsf.h"
55 #include "util/mmap.h"
56
57 #include <linux/ctype.h>
58 #include "symbol/kallsyms.h"
59 #include <internal/lib.h>
60
61 /*
62  * Make a group from 'leader' to 'last', requiring that the events were not
63  * already grouped to a different leader.
64  */
65 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
66 {
67         struct evsel *evsel;
68         bool grp;
69
70         if (!evsel__is_group_leader(leader))
71                 return -EINVAL;
72
73         grp = false;
74         evlist__for_each_entry(evlist, evsel) {
75                 if (grp) {
76                         if (!(evsel__leader(evsel) == leader ||
77                              (evsel__leader(evsel) == evsel &&
78                               evsel->core.nr_members <= 1)))
79                                 return -EINVAL;
80                 } else if (evsel == leader) {
81                         grp = true;
82                 }
83                 if (evsel == last)
84                         break;
85         }
86
87         grp = false;
88         evlist__for_each_entry(evlist, evsel) {
89                 if (grp) {
90                         if (!evsel__has_leader(evsel, leader)) {
91                                 evsel__set_leader(evsel, leader);
92                                 if (leader->core.nr_members < 1)
93                                         leader->core.nr_members = 1;
94                                 leader->core.nr_members += 1;
95                         }
96                 } else if (evsel == leader) {
97                         grp = true;
98                 }
99                 if (evsel == last)
100                         break;
101         }
102
103         return 0;
104 }
105
106 static bool auxtrace__dont_decode(struct perf_session *session)
107 {
108         return !session->itrace_synth_opts ||
109                session->itrace_synth_opts->dont_decode;
110 }
111
112 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
113                         struct auxtrace_mmap_params *mp,
114                         void *userpg, int fd)
115 {
116         struct perf_event_mmap_page *pc = userpg;
117
118         WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
119
120         mm->userpg = userpg;
121         mm->mask = mp->mask;
122         mm->len = mp->len;
123         mm->prev = 0;
124         mm->idx = mp->idx;
125         mm->tid = mp->tid;
126         mm->cpu = mp->cpu.cpu;
127
128         if (!mp->len || !mp->mmap_needed) {
129                 mm->base = NULL;
130                 return 0;
131         }
132
133         pc->aux_offset = mp->offset;
134         pc->aux_size = mp->len;
135
136         mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
137         if (mm->base == MAP_FAILED) {
138                 pr_debug2("failed to mmap AUX area\n");
139                 mm->base = NULL;
140                 return -1;
141         }
142
143         return 0;
144 }
145
146 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
147 {
148         if (mm->base) {
149                 munmap(mm->base, mm->len);
150                 mm->base = NULL;
151         }
152 }
153
154 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
155                                 off_t auxtrace_offset,
156                                 unsigned int auxtrace_pages,
157                                 bool auxtrace_overwrite)
158 {
159         if (auxtrace_pages) {
160                 mp->offset = auxtrace_offset;
161                 mp->len = auxtrace_pages * (size_t)page_size;
162                 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
163                 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
164                 pr_debug2("AUX area mmap length %zu\n", mp->len);
165         } else {
166                 mp->len = 0;
167         }
168 }
169
170 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
171                                    struct evlist *evlist,
172                                    struct evsel *evsel, int idx)
173 {
174         bool per_cpu = !perf_cpu_map__empty(evlist->core.user_requested_cpus);
175
176         mp->mmap_needed = evsel->needs_auxtrace_mmap;
177
178         if (!mp->mmap_needed)
179                 return;
180
181         mp->idx = idx;
182
183         if (per_cpu) {
184                 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
185                 if (evlist->core.threads)
186                         mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
187                 else
188                         mp->tid = -1;
189         } else {
190                 mp->cpu.cpu = -1;
191                 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
192         }
193 }
194
195 #define AUXTRACE_INIT_NR_QUEUES 32
196
197 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
198 {
199         struct auxtrace_queue *queue_array;
200         unsigned int max_nr_queues, i;
201
202         max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
203         if (nr_queues > max_nr_queues)
204                 return NULL;
205
206         queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
207         if (!queue_array)
208                 return NULL;
209
210         for (i = 0; i < nr_queues; i++) {
211                 INIT_LIST_HEAD(&queue_array[i].head);
212                 queue_array[i].priv = NULL;
213         }
214
215         return queue_array;
216 }
217
218 int auxtrace_queues__init(struct auxtrace_queues *queues)
219 {
220         queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
221         queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
222         if (!queues->queue_array)
223                 return -ENOMEM;
224         return 0;
225 }
226
227 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
228                                  unsigned int new_nr_queues)
229 {
230         unsigned int nr_queues = queues->nr_queues;
231         struct auxtrace_queue *queue_array;
232         unsigned int i;
233
234         if (!nr_queues)
235                 nr_queues = AUXTRACE_INIT_NR_QUEUES;
236
237         while (nr_queues && nr_queues < new_nr_queues)
238                 nr_queues <<= 1;
239
240         if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
241                 return -EINVAL;
242
243         queue_array = auxtrace_alloc_queue_array(nr_queues);
244         if (!queue_array)
245                 return -ENOMEM;
246
247         for (i = 0; i < queues->nr_queues; i++) {
248                 list_splice_tail(&queues->queue_array[i].head,
249                                  &queue_array[i].head);
250                 queue_array[i].tid = queues->queue_array[i].tid;
251                 queue_array[i].cpu = queues->queue_array[i].cpu;
252                 queue_array[i].set = queues->queue_array[i].set;
253                 queue_array[i].priv = queues->queue_array[i].priv;
254         }
255
256         queues->nr_queues = nr_queues;
257         queues->queue_array = queue_array;
258
259         return 0;
260 }
261
262 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
263 {
264         int fd = perf_data__fd(session->data);
265         void *p;
266         ssize_t ret;
267
268         if (size > SSIZE_MAX)
269                 return NULL;
270
271         p = malloc(size);
272         if (!p)
273                 return NULL;
274
275         ret = readn(fd, p, size);
276         if (ret != (ssize_t)size) {
277                 free(p);
278                 return NULL;
279         }
280
281         return p;
282 }
283
284 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
285                                          unsigned int idx,
286                                          struct auxtrace_buffer *buffer)
287 {
288         struct auxtrace_queue *queue;
289         int err;
290
291         if (idx >= queues->nr_queues) {
292                 err = auxtrace_queues__grow(queues, idx + 1);
293                 if (err)
294                         return err;
295         }
296
297         queue = &queues->queue_array[idx];
298
299         if (!queue->set) {
300                 queue->set = true;
301                 queue->tid = buffer->tid;
302                 queue->cpu = buffer->cpu.cpu;
303         }
304
305         buffer->buffer_nr = queues->next_buffer_nr++;
306
307         list_add_tail(&buffer->list, &queue->head);
308
309         queues->new_data = true;
310         queues->populated = true;
311
312         return 0;
313 }
314
315 /* Limit buffers to 32MiB on 32-bit */
316 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
317
318 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
319                                          unsigned int idx,
320                                          struct auxtrace_buffer *buffer)
321 {
322         u64 sz = buffer->size;
323         bool consecutive = false;
324         struct auxtrace_buffer *b;
325         int err;
326
327         while (sz > BUFFER_LIMIT_FOR_32_BIT) {
328                 b = memdup(buffer, sizeof(struct auxtrace_buffer));
329                 if (!b)
330                         return -ENOMEM;
331                 b->size = BUFFER_LIMIT_FOR_32_BIT;
332                 b->consecutive = consecutive;
333                 err = auxtrace_queues__queue_buffer(queues, idx, b);
334                 if (err) {
335                         auxtrace_buffer__free(b);
336                         return err;
337                 }
338                 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
339                 sz -= BUFFER_LIMIT_FOR_32_BIT;
340                 consecutive = true;
341         }
342
343         buffer->size = sz;
344         buffer->consecutive = consecutive;
345
346         return 0;
347 }
348
349 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
350 {
351         unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
352
353         return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
354 }
355
356 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
357                                        struct perf_session *session,
358                                        unsigned int idx,
359                                        struct auxtrace_buffer *buffer,
360                                        struct auxtrace_buffer **buffer_ptr)
361 {
362         int err = -ENOMEM;
363
364         if (filter_cpu(session, buffer->cpu))
365                 return 0;
366
367         buffer = memdup(buffer, sizeof(*buffer));
368         if (!buffer)
369                 return -ENOMEM;
370
371         if (session->one_mmap) {
372                 buffer->data = buffer->data_offset - session->one_mmap_offset +
373                                session->one_mmap_addr;
374         } else if (perf_data__is_pipe(session->data)) {
375                 buffer->data = auxtrace_copy_data(buffer->size, session);
376                 if (!buffer->data)
377                         goto out_free;
378                 buffer->data_needs_freeing = true;
379         } else if (BITS_PER_LONG == 32 &&
380                    buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
381                 err = auxtrace_queues__split_buffer(queues, idx, buffer);
382                 if (err)
383                         goto out_free;
384         }
385
386         err = auxtrace_queues__queue_buffer(queues, idx, buffer);
387         if (err)
388                 goto out_free;
389
390         /* FIXME: Doesn't work for split buffer */
391         if (buffer_ptr)
392                 *buffer_ptr = buffer;
393
394         return 0;
395
396 out_free:
397         auxtrace_buffer__free(buffer);
398         return err;
399 }
400
401 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
402                                struct perf_session *session,
403                                union perf_event *event, off_t data_offset,
404                                struct auxtrace_buffer **buffer_ptr)
405 {
406         struct auxtrace_buffer buffer = {
407                 .pid = -1,
408                 .tid = event->auxtrace.tid,
409                 .cpu = { event->auxtrace.cpu },
410                 .data_offset = data_offset,
411                 .offset = event->auxtrace.offset,
412                 .reference = event->auxtrace.reference,
413                 .size = event->auxtrace.size,
414         };
415         unsigned int idx = event->auxtrace.idx;
416
417         return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
418                                            buffer_ptr);
419 }
420
421 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
422                                               struct perf_session *session,
423                                               off_t file_offset, size_t sz)
424 {
425         union perf_event *event;
426         int err;
427         char buf[PERF_SAMPLE_MAX_SIZE];
428
429         err = perf_session__peek_event(session, file_offset, buf,
430                                        PERF_SAMPLE_MAX_SIZE, &event, NULL);
431         if (err)
432                 return err;
433
434         if (event->header.type == PERF_RECORD_AUXTRACE) {
435                 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
436                     event->header.size != sz) {
437                         err = -EINVAL;
438                         goto out;
439                 }
440                 file_offset += event->header.size;
441                 err = auxtrace_queues__add_event(queues, session, event,
442                                                  file_offset, NULL);
443         }
444 out:
445         return err;
446 }
447
448 void auxtrace_queues__free(struct auxtrace_queues *queues)
449 {
450         unsigned int i;
451
452         for (i = 0; i < queues->nr_queues; i++) {
453                 while (!list_empty(&queues->queue_array[i].head)) {
454                         struct auxtrace_buffer *buffer;
455
456                         buffer = list_entry(queues->queue_array[i].head.next,
457                                             struct auxtrace_buffer, list);
458                         list_del_init(&buffer->list);
459                         auxtrace_buffer__free(buffer);
460                 }
461         }
462
463         zfree(&queues->queue_array);
464         queues->nr_queues = 0;
465 }
466
467 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
468                              unsigned int pos, unsigned int queue_nr,
469                              u64 ordinal)
470 {
471         unsigned int parent;
472
473         while (pos) {
474                 parent = (pos - 1) >> 1;
475                 if (heap_array[parent].ordinal <= ordinal)
476                         break;
477                 heap_array[pos] = heap_array[parent];
478                 pos = parent;
479         }
480         heap_array[pos].queue_nr = queue_nr;
481         heap_array[pos].ordinal = ordinal;
482 }
483
484 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
485                        u64 ordinal)
486 {
487         struct auxtrace_heap_item *heap_array;
488
489         if (queue_nr >= heap->heap_sz) {
490                 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
491
492                 while (heap_sz <= queue_nr)
493                         heap_sz <<= 1;
494                 heap_array = realloc(heap->heap_array,
495                                      heap_sz * sizeof(struct auxtrace_heap_item));
496                 if (!heap_array)
497                         return -ENOMEM;
498                 heap->heap_array = heap_array;
499                 heap->heap_sz = heap_sz;
500         }
501
502         auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
503
504         return 0;
505 }
506
507 void auxtrace_heap__free(struct auxtrace_heap *heap)
508 {
509         zfree(&heap->heap_array);
510         heap->heap_cnt = 0;
511         heap->heap_sz = 0;
512 }
513
514 void auxtrace_heap__pop(struct auxtrace_heap *heap)
515 {
516         unsigned int pos, last, heap_cnt = heap->heap_cnt;
517         struct auxtrace_heap_item *heap_array;
518
519         if (!heap_cnt)
520                 return;
521
522         heap->heap_cnt -= 1;
523
524         heap_array = heap->heap_array;
525
526         pos = 0;
527         while (1) {
528                 unsigned int left, right;
529
530                 left = (pos << 1) + 1;
531                 if (left >= heap_cnt)
532                         break;
533                 right = left + 1;
534                 if (right >= heap_cnt) {
535                         heap_array[pos] = heap_array[left];
536                         return;
537                 }
538                 if (heap_array[left].ordinal < heap_array[right].ordinal) {
539                         heap_array[pos] = heap_array[left];
540                         pos = left;
541                 } else {
542                         heap_array[pos] = heap_array[right];
543                         pos = right;
544                 }
545         }
546
547         last = heap_cnt - 1;
548         auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
549                          heap_array[last].ordinal);
550 }
551
552 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
553                                        struct evlist *evlist)
554 {
555         if (itr)
556                 return itr->info_priv_size(itr, evlist);
557         return 0;
558 }
559
560 static int auxtrace_not_supported(void)
561 {
562         pr_err("AUX area tracing is not supported on this architecture\n");
563         return -EINVAL;
564 }
565
566 int auxtrace_record__info_fill(struct auxtrace_record *itr,
567                                struct perf_session *session,
568                                struct perf_record_auxtrace_info *auxtrace_info,
569                                size_t priv_size)
570 {
571         if (itr)
572                 return itr->info_fill(itr, session, auxtrace_info, priv_size);
573         return auxtrace_not_supported();
574 }
575
576 void auxtrace_record__free(struct auxtrace_record *itr)
577 {
578         if (itr)
579                 itr->free(itr);
580 }
581
582 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
583 {
584         if (itr && itr->snapshot_start)
585                 return itr->snapshot_start(itr);
586         return 0;
587 }
588
589 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
590 {
591         if (!on_exit && itr && itr->snapshot_finish)
592                 return itr->snapshot_finish(itr);
593         return 0;
594 }
595
596 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
597                                    struct auxtrace_mmap *mm,
598                                    unsigned char *data, u64 *head, u64 *old)
599 {
600         if (itr && itr->find_snapshot)
601                 return itr->find_snapshot(itr, idx, mm, data, head, old);
602         return 0;
603 }
604
605 int auxtrace_record__options(struct auxtrace_record *itr,
606                              struct evlist *evlist,
607                              struct record_opts *opts)
608 {
609         if (itr) {
610                 itr->evlist = evlist;
611                 return itr->recording_options(itr, evlist, opts);
612         }
613         return 0;
614 }
615
616 u64 auxtrace_record__reference(struct auxtrace_record *itr)
617 {
618         if (itr)
619                 return itr->reference(itr);
620         return 0;
621 }
622
623 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
624                                     struct record_opts *opts, const char *str)
625 {
626         if (!str)
627                 return 0;
628
629         /* PMU-agnostic options */
630         switch (*str) {
631         case 'e':
632                 opts->auxtrace_snapshot_on_exit = true;
633                 str++;
634                 break;
635         default:
636                 break;
637         }
638
639         if (itr && itr->parse_snapshot_options)
640                 return itr->parse_snapshot_options(itr, opts, str);
641
642         pr_err("No AUX area tracing to snapshot\n");
643         return -EINVAL;
644 }
645
646 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
647 {
648         bool per_cpu_mmaps = !perf_cpu_map__empty(evlist->core.user_requested_cpus);
649
650         if (per_cpu_mmaps) {
651                 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
652                 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
653
654                 if (cpu_map_idx == -1)
655                         return -EINVAL;
656                 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
657         }
658
659         return perf_evsel__enable_thread(&evsel->core, idx);
660 }
661
662 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
663 {
664         struct evsel *evsel;
665
666         if (!itr->evlist || !itr->pmu)
667                 return -EINVAL;
668
669         evlist__for_each_entry(itr->evlist, evsel) {
670                 if (evsel->core.attr.type == itr->pmu->type) {
671                         if (evsel->disabled)
672                                 return 0;
673                         return evlist__enable_event_idx(itr->evlist, evsel, idx);
674                 }
675         }
676         return -EINVAL;
677 }
678
679 /*
680  * Event record size is 16-bit which results in a maximum size of about 64KiB.
681  * Allow about 4KiB for the rest of the sample record, to give a maximum
682  * AUX area sample size of 60KiB.
683  */
684 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
685
686 /* Arbitrary default size if no other default provided */
687 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
688
689 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
690                                              struct record_opts *opts)
691 {
692         struct evsel *evsel;
693         bool has_aux_leader = false;
694         u32 sz;
695
696         evlist__for_each_entry(evlist, evsel) {
697                 sz = evsel->core.attr.aux_sample_size;
698                 if (evsel__is_group_leader(evsel)) {
699                         has_aux_leader = evsel__is_aux_event(evsel);
700                         if (sz) {
701                                 if (has_aux_leader)
702                                         pr_err("Cannot add AUX area sampling to an AUX area event\n");
703                                 else
704                                         pr_err("Cannot add AUX area sampling to a group leader\n");
705                                 return -EINVAL;
706                         }
707                 }
708                 if (sz > MAX_AUX_SAMPLE_SIZE) {
709                         pr_err("AUX area sample size %u too big, max. %d\n",
710                                sz, MAX_AUX_SAMPLE_SIZE);
711                         return -EINVAL;
712                 }
713                 if (sz) {
714                         if (!has_aux_leader) {
715                                 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
716                                 return -EINVAL;
717                         }
718                         evsel__set_sample_bit(evsel, AUX);
719                         opts->auxtrace_sample_mode = true;
720                 } else {
721                         evsel__reset_sample_bit(evsel, AUX);
722                 }
723         }
724
725         if (!opts->auxtrace_sample_mode) {
726                 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
727                 return -EINVAL;
728         }
729
730         if (!perf_can_aux_sample()) {
731                 pr_err("AUX area sampling is not supported by kernel\n");
732                 return -EINVAL;
733         }
734
735         return 0;
736 }
737
738 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
739                                   struct evlist *evlist,
740                                   struct record_opts *opts, const char *str)
741 {
742         struct evsel_config_term *term;
743         struct evsel *aux_evsel;
744         bool has_aux_sample_size = false;
745         bool has_aux_leader = false;
746         struct evsel *evsel;
747         char *endptr;
748         unsigned long sz;
749
750         if (!str)
751                 goto no_opt;
752
753         if (!itr) {
754                 pr_err("No AUX area event to sample\n");
755                 return -EINVAL;
756         }
757
758         sz = strtoul(str, &endptr, 0);
759         if (*endptr || sz > UINT_MAX) {
760                 pr_err("Bad AUX area sampling option: '%s'\n", str);
761                 return -EINVAL;
762         }
763
764         if (!sz)
765                 sz = itr->default_aux_sample_size;
766
767         if (!sz)
768                 sz = DEFAULT_AUX_SAMPLE_SIZE;
769
770         /* Set aux_sample_size based on --aux-sample option */
771         evlist__for_each_entry(evlist, evsel) {
772                 if (evsel__is_group_leader(evsel)) {
773                         has_aux_leader = evsel__is_aux_event(evsel);
774                 } else if (has_aux_leader) {
775                         evsel->core.attr.aux_sample_size = sz;
776                 }
777         }
778 no_opt:
779         aux_evsel = NULL;
780         /* Override with aux_sample_size from config term */
781         evlist__for_each_entry(evlist, evsel) {
782                 if (evsel__is_aux_event(evsel))
783                         aux_evsel = evsel;
784                 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
785                 if (term) {
786                         has_aux_sample_size = true;
787                         evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
788                         /* If possible, group with the AUX event */
789                         if (aux_evsel && evsel->core.attr.aux_sample_size)
790                                 evlist__regroup(evlist, aux_evsel, evsel);
791                 }
792         }
793
794         if (!str && !has_aux_sample_size)
795                 return 0;
796
797         if (!itr) {
798                 pr_err("No AUX area event to sample\n");
799                 return -EINVAL;
800         }
801
802         return auxtrace_validate_aux_sample_size(evlist, opts);
803 }
804
805 void auxtrace_regroup_aux_output(struct evlist *evlist)
806 {
807         struct evsel *evsel, *aux_evsel = NULL;
808         struct evsel_config_term *term;
809
810         evlist__for_each_entry(evlist, evsel) {
811                 if (evsel__is_aux_event(evsel))
812                         aux_evsel = evsel;
813                 term = evsel__get_config_term(evsel, AUX_OUTPUT);
814                 /* If possible, group with the AUX event */
815                 if (term && aux_evsel)
816                         evlist__regroup(evlist, aux_evsel, evsel);
817         }
818 }
819
820 struct auxtrace_record *__weak
821 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
822 {
823         *err = 0;
824         return NULL;
825 }
826
827 static int auxtrace_index__alloc(struct list_head *head)
828 {
829         struct auxtrace_index *auxtrace_index;
830
831         auxtrace_index = malloc(sizeof(struct auxtrace_index));
832         if (!auxtrace_index)
833                 return -ENOMEM;
834
835         auxtrace_index->nr = 0;
836         INIT_LIST_HEAD(&auxtrace_index->list);
837
838         list_add_tail(&auxtrace_index->list, head);
839
840         return 0;
841 }
842
843 void auxtrace_index__free(struct list_head *head)
844 {
845         struct auxtrace_index *auxtrace_index, *n;
846
847         list_for_each_entry_safe(auxtrace_index, n, head, list) {
848                 list_del_init(&auxtrace_index->list);
849                 free(auxtrace_index);
850         }
851 }
852
853 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
854 {
855         struct auxtrace_index *auxtrace_index;
856         int err;
857
858         if (list_empty(head)) {
859                 err = auxtrace_index__alloc(head);
860                 if (err)
861                         return NULL;
862         }
863
864         auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
865
866         if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
867                 err = auxtrace_index__alloc(head);
868                 if (err)
869                         return NULL;
870                 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
871                                             list);
872         }
873
874         return auxtrace_index;
875 }
876
877 int auxtrace_index__auxtrace_event(struct list_head *head,
878                                    union perf_event *event, off_t file_offset)
879 {
880         struct auxtrace_index *auxtrace_index;
881         size_t nr;
882
883         auxtrace_index = auxtrace_index__last(head);
884         if (!auxtrace_index)
885                 return -ENOMEM;
886
887         nr = auxtrace_index->nr;
888         auxtrace_index->entries[nr].file_offset = file_offset;
889         auxtrace_index->entries[nr].sz = event->header.size;
890         auxtrace_index->nr += 1;
891
892         return 0;
893 }
894
895 static int auxtrace_index__do_write(int fd,
896                                     struct auxtrace_index *auxtrace_index)
897 {
898         struct auxtrace_index_entry ent;
899         size_t i;
900
901         for (i = 0; i < auxtrace_index->nr; i++) {
902                 ent.file_offset = auxtrace_index->entries[i].file_offset;
903                 ent.sz = auxtrace_index->entries[i].sz;
904                 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
905                         return -errno;
906         }
907         return 0;
908 }
909
910 int auxtrace_index__write(int fd, struct list_head *head)
911 {
912         struct auxtrace_index *auxtrace_index;
913         u64 total = 0;
914         int err;
915
916         list_for_each_entry(auxtrace_index, head, list)
917                 total += auxtrace_index->nr;
918
919         if (writen(fd, &total, sizeof(total)) != sizeof(total))
920                 return -errno;
921
922         list_for_each_entry(auxtrace_index, head, list) {
923                 err = auxtrace_index__do_write(fd, auxtrace_index);
924                 if (err)
925                         return err;
926         }
927
928         return 0;
929 }
930
931 static int auxtrace_index__process_entry(int fd, struct list_head *head,
932                                          bool needs_swap)
933 {
934         struct auxtrace_index *auxtrace_index;
935         struct auxtrace_index_entry ent;
936         size_t nr;
937
938         if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
939                 return -1;
940
941         auxtrace_index = auxtrace_index__last(head);
942         if (!auxtrace_index)
943                 return -1;
944
945         nr = auxtrace_index->nr;
946         if (needs_swap) {
947                 auxtrace_index->entries[nr].file_offset =
948                                                 bswap_64(ent.file_offset);
949                 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
950         } else {
951                 auxtrace_index->entries[nr].file_offset = ent.file_offset;
952                 auxtrace_index->entries[nr].sz = ent.sz;
953         }
954
955         auxtrace_index->nr = nr + 1;
956
957         return 0;
958 }
959
960 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
961                             bool needs_swap)
962 {
963         struct list_head *head = &session->auxtrace_index;
964         u64 nr;
965
966         if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
967                 return -1;
968
969         if (needs_swap)
970                 nr = bswap_64(nr);
971
972         if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
973                 return -1;
974
975         while (nr--) {
976                 int err;
977
978                 err = auxtrace_index__process_entry(fd, head, needs_swap);
979                 if (err)
980                         return -1;
981         }
982
983         return 0;
984 }
985
986 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
987                                                 struct perf_session *session,
988                                                 struct auxtrace_index_entry *ent)
989 {
990         return auxtrace_queues__add_indexed_event(queues, session,
991                                                   ent->file_offset, ent->sz);
992 }
993
994 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
995                                    struct perf_session *session)
996 {
997         struct auxtrace_index *auxtrace_index;
998         struct auxtrace_index_entry *ent;
999         size_t i;
1000         int err;
1001
1002         if (auxtrace__dont_decode(session))
1003                 return 0;
1004
1005         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1006                 for (i = 0; i < auxtrace_index->nr; i++) {
1007                         ent = &auxtrace_index->entries[i];
1008                         err = auxtrace_queues__process_index_entry(queues,
1009                                                                    session,
1010                                                                    ent);
1011                         if (err)
1012                                 return err;
1013                 }
1014         }
1015         return 0;
1016 }
1017
1018 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1019                                               struct auxtrace_buffer *buffer)
1020 {
1021         if (buffer) {
1022                 if (list_is_last(&buffer->list, &queue->head))
1023                         return NULL;
1024                 return list_entry(buffer->list.next, struct auxtrace_buffer,
1025                                   list);
1026         } else {
1027                 if (list_empty(&queue->head))
1028                         return NULL;
1029                 return list_entry(queue->head.next, struct auxtrace_buffer,
1030                                   list);
1031         }
1032 }
1033
1034 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1035                                                      struct perf_sample *sample,
1036                                                      struct perf_session *session)
1037 {
1038         struct perf_sample_id *sid;
1039         unsigned int idx;
1040         u64 id;
1041
1042         id = sample->id;
1043         if (!id)
1044                 return NULL;
1045
1046         sid = evlist__id2sid(session->evlist, id);
1047         if (!sid)
1048                 return NULL;
1049
1050         idx = sid->idx;
1051
1052         if (idx >= queues->nr_queues)
1053                 return NULL;
1054
1055         return &queues->queue_array[idx];
1056 }
1057
1058 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1059                                 struct perf_session *session,
1060                                 struct perf_sample *sample, u64 data_offset,
1061                                 u64 reference)
1062 {
1063         struct auxtrace_buffer buffer = {
1064                 .pid = -1,
1065                 .data_offset = data_offset,
1066                 .reference = reference,
1067                 .size = sample->aux_sample.size,
1068         };
1069         struct perf_sample_id *sid;
1070         u64 id = sample->id;
1071         unsigned int idx;
1072
1073         if (!id)
1074                 return -EINVAL;
1075
1076         sid = evlist__id2sid(session->evlist, id);
1077         if (!sid)
1078                 return -ENOENT;
1079
1080         idx = sid->idx;
1081         buffer.tid = sid->tid;
1082         buffer.cpu = sid->cpu;
1083
1084         return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1085 }
1086
1087 struct queue_data {
1088         bool samples;
1089         bool events;
1090 };
1091
1092 static int auxtrace_queue_data_cb(struct perf_session *session,
1093                                   union perf_event *event, u64 offset,
1094                                   void *data)
1095 {
1096         struct queue_data *qd = data;
1097         struct perf_sample sample;
1098         int err;
1099
1100         if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1101                 if (event->header.size < sizeof(struct perf_record_auxtrace))
1102                         return -EINVAL;
1103                 offset += event->header.size;
1104                 return session->auxtrace->queue_data(session, NULL, event,
1105                                                      offset);
1106         }
1107
1108         if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1109                 return 0;
1110
1111         err = evlist__parse_sample(session->evlist, event, &sample);
1112         if (err)
1113                 return err;
1114
1115         if (!sample.aux_sample.size)
1116                 return 0;
1117
1118         offset += sample.aux_sample.data - (void *)event;
1119
1120         return session->auxtrace->queue_data(session, &sample, NULL, offset);
1121 }
1122
1123 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1124 {
1125         struct queue_data qd = {
1126                 .samples = samples,
1127                 .events = events,
1128         };
1129
1130         if (auxtrace__dont_decode(session))
1131                 return 0;
1132
1133         if (!session->auxtrace || !session->auxtrace->queue_data)
1134                 return -EINVAL;
1135
1136         return perf_session__peek_events(session, session->header.data_offset,
1137                                          session->header.data_size,
1138                                          auxtrace_queue_data_cb, &qd);
1139 }
1140
1141 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1142 {
1143         int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1144         size_t adj = buffer->data_offset & (page_size - 1);
1145         size_t size = buffer->size + adj;
1146         off_t file_offset = buffer->data_offset - adj;
1147         void *addr;
1148
1149         if (buffer->data)
1150                 return buffer->data;
1151
1152         addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1153         if (addr == MAP_FAILED)
1154                 return NULL;
1155
1156         buffer->mmap_addr = addr;
1157         buffer->mmap_size = size;
1158
1159         buffer->data = addr + adj;
1160
1161         return buffer->data;
1162 }
1163
1164 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1165 {
1166         if (!buffer->data || !buffer->mmap_addr)
1167                 return;
1168         munmap(buffer->mmap_addr, buffer->mmap_size);
1169         buffer->mmap_addr = NULL;
1170         buffer->mmap_size = 0;
1171         buffer->data = NULL;
1172         buffer->use_data = NULL;
1173 }
1174
1175 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1176 {
1177         auxtrace_buffer__put_data(buffer);
1178         if (buffer->data_needs_freeing) {
1179                 buffer->data_needs_freeing = false;
1180                 zfree(&buffer->data);
1181                 buffer->use_data = NULL;
1182                 buffer->size = 0;
1183         }
1184 }
1185
1186 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1187 {
1188         auxtrace_buffer__drop_data(buffer);
1189         free(buffer);
1190 }
1191
1192 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1193                                 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1194                                 const char *msg, u64 timestamp,
1195                                 pid_t machine_pid, int vcpu)
1196 {
1197         size_t size;
1198
1199         memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1200
1201         auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1202         auxtrace_error->type = type;
1203         auxtrace_error->code = code;
1204         auxtrace_error->cpu = cpu;
1205         auxtrace_error->pid = pid;
1206         auxtrace_error->tid = tid;
1207         auxtrace_error->fmt = 1;
1208         auxtrace_error->ip = ip;
1209         auxtrace_error->time = timestamp;
1210         strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1211         if (machine_pid) {
1212                 auxtrace_error->fmt = 2;
1213                 auxtrace_error->machine_pid = machine_pid;
1214                 auxtrace_error->vcpu = vcpu;
1215                 size = sizeof(*auxtrace_error);
1216         } else {
1217                 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1218                        strlen(auxtrace_error->msg) + 1;
1219         }
1220         auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1221 }
1222
1223 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1224                           int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1225                           const char *msg, u64 timestamp)
1226 {
1227         auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1228                                    ip, msg, timestamp, 0, -1);
1229 }
1230
1231 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1232                                          struct perf_tool *tool,
1233                                          struct perf_session *session,
1234                                          perf_event__handler_t process)
1235 {
1236         union perf_event *ev;
1237         size_t priv_size;
1238         int err;
1239
1240         pr_debug2("Synthesizing auxtrace information\n");
1241         priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1242         ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1243         if (!ev)
1244                 return -ENOMEM;
1245
1246         ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1247         ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1248                                         priv_size;
1249         err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1250                                          priv_size);
1251         if (err)
1252                 goto out_free;
1253
1254         err = process(tool, ev, NULL, NULL);
1255 out_free:
1256         free(ev);
1257         return err;
1258 }
1259
1260 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1261 {
1262         struct evsel *new_leader = NULL;
1263         struct evsel *evsel;
1264
1265         /* Find new leader for the group */
1266         evlist__for_each_entry(evlist, evsel) {
1267                 if (!evsel__has_leader(evsel, leader) || evsel == leader)
1268                         continue;
1269                 if (!new_leader)
1270                         new_leader = evsel;
1271                 evsel__set_leader(evsel, new_leader);
1272         }
1273
1274         /* Update group information */
1275         if (new_leader) {
1276                 zfree(&new_leader->group_name);
1277                 new_leader->group_name = leader->group_name;
1278                 leader->group_name = NULL;
1279
1280                 new_leader->core.nr_members = leader->core.nr_members - 1;
1281                 leader->core.nr_members = 1;
1282         }
1283 }
1284
1285 static void unleader_auxtrace(struct perf_session *session)
1286 {
1287         struct evsel *evsel;
1288
1289         evlist__for_each_entry(session->evlist, evsel) {
1290                 if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1291                     evsel__is_group_leader(evsel)) {
1292                         unleader_evsel(session->evlist, evsel);
1293                 }
1294         }
1295 }
1296
1297 int perf_event__process_auxtrace_info(struct perf_session *session,
1298                                       union perf_event *event)
1299 {
1300         enum auxtrace_type type = event->auxtrace_info.type;
1301         int err;
1302
1303         if (dump_trace)
1304                 fprintf(stdout, " type: %u\n", type);
1305
1306         switch (type) {
1307         case PERF_AUXTRACE_INTEL_PT:
1308                 err = intel_pt_process_auxtrace_info(event, session);
1309                 break;
1310         case PERF_AUXTRACE_INTEL_BTS:
1311                 err = intel_bts_process_auxtrace_info(event, session);
1312                 break;
1313         case PERF_AUXTRACE_ARM_SPE:
1314                 err = arm_spe_process_auxtrace_info(event, session);
1315                 break;
1316         case PERF_AUXTRACE_CS_ETM:
1317                 err = cs_etm__process_auxtrace_info(event, session);
1318                 break;
1319         case PERF_AUXTRACE_S390_CPUMSF:
1320                 err = s390_cpumsf_process_auxtrace_info(event, session);
1321                 break;
1322         case PERF_AUXTRACE_UNKNOWN:
1323         default:
1324                 return -EINVAL;
1325         }
1326
1327         if (err)
1328                 return err;
1329
1330         unleader_auxtrace(session);
1331
1332         return 0;
1333 }
1334
1335 s64 perf_event__process_auxtrace(struct perf_session *session,
1336                                  union perf_event *event)
1337 {
1338         s64 err;
1339
1340         if (dump_trace)
1341                 fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1342                         event->auxtrace.size, event->auxtrace.offset,
1343                         event->auxtrace.reference, event->auxtrace.idx,
1344                         event->auxtrace.tid, event->auxtrace.cpu);
1345
1346         if (auxtrace__dont_decode(session))
1347                 return event->auxtrace.size;
1348
1349         if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1350                 return -EINVAL;
1351
1352         err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1353         if (err < 0)
1354                 return err;
1355
1356         return event->auxtrace.size;
1357 }
1358
1359 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE         PERF_ITRACE_PERIOD_NANOSECS
1360 #define PERF_ITRACE_DEFAULT_PERIOD              100000
1361 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ        16
1362 #define PERF_ITRACE_MAX_CALLCHAIN_SZ            1024
1363 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ      64
1364 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ          1024
1365
1366 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1367                                     bool no_sample)
1368 {
1369         synth_opts->branches = true;
1370         synth_opts->transactions = true;
1371         synth_opts->ptwrites = true;
1372         synth_opts->pwr_events = true;
1373         synth_opts->other_events = true;
1374         synth_opts->intr_events = true;
1375         synth_opts->errors = true;
1376         synth_opts->flc = true;
1377         synth_opts->llc = true;
1378         synth_opts->tlb = true;
1379         synth_opts->mem = true;
1380         synth_opts->remote_access = true;
1381
1382         if (no_sample) {
1383                 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1384                 synth_opts->period = 1;
1385                 synth_opts->calls = true;
1386         } else {
1387                 synth_opts->instructions = true;
1388                 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1389                 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1390         }
1391         synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1392         synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1393         synth_opts->initial_skip = 0;
1394 }
1395
1396 static int get_flag(const char **ptr, unsigned int *flags)
1397 {
1398         while (1) {
1399                 char c = **ptr;
1400
1401                 if (c >= 'a' && c <= 'z') {
1402                         *flags |= 1 << (c - 'a');
1403                         ++*ptr;
1404                         return 0;
1405                 } else if (c == ' ') {
1406                         ++*ptr;
1407                         continue;
1408                 } else {
1409                         return -1;
1410                 }
1411         }
1412 }
1413
1414 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1415 {
1416         while (1) {
1417                 switch (**ptr) {
1418                 case '+':
1419                         ++*ptr;
1420                         if (get_flag(ptr, plus_flags))
1421                                 return -1;
1422                         break;
1423                 case '-':
1424                         ++*ptr;
1425                         if (get_flag(ptr, minus_flags))
1426                                 return -1;
1427                         break;
1428                 case ' ':
1429                         ++*ptr;
1430                         break;
1431                 default:
1432                         return 0;
1433                 }
1434         }
1435 }
1436
1437 /*
1438  * Please check tools/perf/Documentation/perf-script.txt for information
1439  * about the options parsed here, which is introduced after this cset,
1440  * when support in 'perf script' for these options is introduced.
1441  */
1442 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1443                                const char *str, int unset)
1444 {
1445         const char *p;
1446         char *endptr;
1447         bool period_type_set = false;
1448         bool period_set = false;
1449
1450         synth_opts->set = true;
1451
1452         if (unset) {
1453                 synth_opts->dont_decode = true;
1454                 return 0;
1455         }
1456
1457         if (!str) {
1458                 itrace_synth_opts__set_default(synth_opts,
1459                                                synth_opts->default_no_sample);
1460                 return 0;
1461         }
1462
1463         for (p = str; *p;) {
1464                 switch (*p++) {
1465                 case 'i':
1466                         synth_opts->instructions = true;
1467                         while (*p == ' ' || *p == ',')
1468                                 p += 1;
1469                         if (isdigit(*p)) {
1470                                 synth_opts->period = strtoull(p, &endptr, 10);
1471                                 period_set = true;
1472                                 p = endptr;
1473                                 while (*p == ' ' || *p == ',')
1474                                         p += 1;
1475                                 switch (*p++) {
1476                                 case 'i':
1477                                         synth_opts->period_type =
1478                                                 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1479                                         period_type_set = true;
1480                                         break;
1481                                 case 't':
1482                                         synth_opts->period_type =
1483                                                 PERF_ITRACE_PERIOD_TICKS;
1484                                         period_type_set = true;
1485                                         break;
1486                                 case 'm':
1487                                         synth_opts->period *= 1000;
1488                                         /* Fall through */
1489                                 case 'u':
1490                                         synth_opts->period *= 1000;
1491                                         /* Fall through */
1492                                 case 'n':
1493                                         if (*p++ != 's')
1494                                                 goto out_err;
1495                                         synth_opts->period_type =
1496                                                 PERF_ITRACE_PERIOD_NANOSECS;
1497                                         period_type_set = true;
1498                                         break;
1499                                 case '\0':
1500                                         goto out;
1501                                 default:
1502                                         goto out_err;
1503                                 }
1504                         }
1505                         break;
1506                 case 'b':
1507                         synth_opts->branches = true;
1508                         break;
1509                 case 'x':
1510                         synth_opts->transactions = true;
1511                         break;
1512                 case 'w':
1513                         synth_opts->ptwrites = true;
1514                         break;
1515                 case 'p':
1516                         synth_opts->pwr_events = true;
1517                         break;
1518                 case 'o':
1519                         synth_opts->other_events = true;
1520                         break;
1521                 case 'I':
1522                         synth_opts->intr_events = true;
1523                         break;
1524                 case 'e':
1525                         synth_opts->errors = true;
1526                         if (get_flags(&p, &synth_opts->error_plus_flags,
1527                                       &synth_opts->error_minus_flags))
1528                                 goto out_err;
1529                         break;
1530                 case 'd':
1531                         synth_opts->log = true;
1532                         if (get_flags(&p, &synth_opts->log_plus_flags,
1533                                       &synth_opts->log_minus_flags))
1534                                 goto out_err;
1535                         break;
1536                 case 'c':
1537                         synth_opts->branches = true;
1538                         synth_opts->calls = true;
1539                         break;
1540                 case 'r':
1541                         synth_opts->branches = true;
1542                         synth_opts->returns = true;
1543                         break;
1544                 case 'G':
1545                 case 'g':
1546                         if (p[-1] == 'G')
1547                                 synth_opts->add_callchain = true;
1548                         else
1549                                 synth_opts->callchain = true;
1550                         synth_opts->callchain_sz =
1551                                         PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1552                         while (*p == ' ' || *p == ',')
1553                                 p += 1;
1554                         if (isdigit(*p)) {
1555                                 unsigned int val;
1556
1557                                 val = strtoul(p, &endptr, 10);
1558                                 p = endptr;
1559                                 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1560                                         goto out_err;
1561                                 synth_opts->callchain_sz = val;
1562                         }
1563                         break;
1564                 case 'L':
1565                 case 'l':
1566                         if (p[-1] == 'L')
1567                                 synth_opts->add_last_branch = true;
1568                         else
1569                                 synth_opts->last_branch = true;
1570                         synth_opts->last_branch_sz =
1571                                         PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1572                         while (*p == ' ' || *p == ',')
1573                                 p += 1;
1574                         if (isdigit(*p)) {
1575                                 unsigned int val;
1576
1577                                 val = strtoul(p, &endptr, 10);
1578                                 p = endptr;
1579                                 if (!val ||
1580                                     val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1581                                         goto out_err;
1582                                 synth_opts->last_branch_sz = val;
1583                         }
1584                         break;
1585                 case 's':
1586                         synth_opts->initial_skip = strtoul(p, &endptr, 10);
1587                         if (p == endptr)
1588                                 goto out_err;
1589                         p = endptr;
1590                         break;
1591                 case 'f':
1592                         synth_opts->flc = true;
1593                         break;
1594                 case 'm':
1595                         synth_opts->llc = true;
1596                         break;
1597                 case 't':
1598                         synth_opts->tlb = true;
1599                         break;
1600                 case 'a':
1601                         synth_opts->remote_access = true;
1602                         break;
1603                 case 'M':
1604                         synth_opts->mem = true;
1605                         break;
1606                 case 'q':
1607                         synth_opts->quick += 1;
1608                         break;
1609                 case 'A':
1610                         synth_opts->approx_ipc = true;
1611                         break;
1612                 case 'Z':
1613                         synth_opts->timeless_decoding = true;
1614                         break;
1615                 case ' ':
1616                 case ',':
1617                         break;
1618                 default:
1619                         goto out_err;
1620                 }
1621         }
1622 out:
1623         if (synth_opts->instructions) {
1624                 if (!period_type_set)
1625                         synth_opts->period_type =
1626                                         PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1627                 if (!period_set)
1628                         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1629         }
1630
1631         return 0;
1632
1633 out_err:
1634         pr_err("Bad Instruction Tracing options '%s'\n", str);
1635         return -EINVAL;
1636 }
1637
1638 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1639 {
1640         return itrace_do_parse_synth_opts(opt->value, str, unset);
1641 }
1642
1643 static const char * const auxtrace_error_type_name[] = {
1644         [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1645 };
1646
1647 static const char *auxtrace_error_name(int type)
1648 {
1649         const char *error_type_name = NULL;
1650
1651         if (type < PERF_AUXTRACE_ERROR_MAX)
1652                 error_type_name = auxtrace_error_type_name[type];
1653         if (!error_type_name)
1654                 error_type_name = "unknown AUX";
1655         return error_type_name;
1656 }
1657
1658 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1659 {
1660         struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1661         unsigned long long nsecs = e->time;
1662         const char *msg = e->msg;
1663         int ret;
1664
1665         ret = fprintf(fp, " %s error type %u",
1666                       auxtrace_error_name(e->type), e->type);
1667
1668         if (e->fmt && nsecs) {
1669                 unsigned long secs = nsecs / NSEC_PER_SEC;
1670
1671                 nsecs -= secs * NSEC_PER_SEC;
1672                 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1673         } else {
1674                 ret += fprintf(fp, " time 0");
1675         }
1676
1677         if (!e->fmt)
1678                 msg = (const char *)&e->time;
1679
1680         if (e->fmt >= 2 && e->machine_pid)
1681                 ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1682
1683         ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1684                        e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1685         return ret;
1686 }
1687
1688 void perf_session__auxtrace_error_inc(struct perf_session *session,
1689                                       union perf_event *event)
1690 {
1691         struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1692
1693         if (e->type < PERF_AUXTRACE_ERROR_MAX)
1694                 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1695 }
1696
1697 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1698 {
1699         int i;
1700
1701         for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1702                 if (!stats->nr_auxtrace_errors[i])
1703                         continue;
1704                 ui__warning("%u %s errors\n",
1705                             stats->nr_auxtrace_errors[i],
1706                             auxtrace_error_name(i));
1707         }
1708 }
1709
1710 int perf_event__process_auxtrace_error(struct perf_session *session,
1711                                        union perf_event *event)
1712 {
1713         if (auxtrace__dont_decode(session))
1714                 return 0;
1715
1716         perf_event__fprintf_auxtrace_error(event, stdout);
1717         return 0;
1718 }
1719
1720 /*
1721  * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1722  * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1723  * the issues caused by the below sequence on multiple CPUs: when perf tool
1724  * accesses either the load operation or the store operation for 64-bit value,
1725  * on some architectures the operation is divided into two instructions, one
1726  * is for accessing the low 32-bit value and another is for the high 32-bit;
1727  * thus these two user operations can give the kernel chances to access the
1728  * 64-bit value, and thus leads to the unexpected load values.
1729  *
1730  *   kernel (64-bit)                        user (32-bit)
1731  *
1732  *   if (LOAD ->aux_tail) { --,             LOAD ->aux_head_lo
1733  *       STORE $aux_data      |       ,--->
1734  *       FLUSH $aux_data      |       |     LOAD ->aux_head_hi
1735  *       STORE ->aux_head   --|-------`     smp_rmb()
1736  *   }                        |             LOAD $data
1737  *                            |             smp_mb()
1738  *                            |             STORE ->aux_tail_lo
1739  *                            `----------->
1740  *                                          STORE ->aux_tail_hi
1741  *
1742  * For this reason, it's impossible for the perf tool to work correctly when
1743  * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1744  * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1745  * the pointers can be increased monotonically, whatever the buffer size it is,
1746  * at the end the head and tail can be bigger than 4GB and carry out to the
1747  * high 32-bit.
1748  *
1749  * To mitigate the issues and improve the user experience, we can allow the
1750  * perf tool working in certain conditions and bail out with error if detect
1751  * any overflow cannot be handled.
1752  *
1753  * For reading the AUX head, it reads out the values for three times, and
1754  * compares the high 4 bytes of the values between the first time and the last
1755  * time, if there has no change for high 4 bytes injected by the kernel during
1756  * the user reading sequence, it's safe for use the second value.
1757  *
1758  * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1759  * 32 bits, it means there have two store operations in user space and it cannot
1760  * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1761  * the caller an overflow error has happened.
1762  */
1763 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1764 {
1765         struct perf_event_mmap_page *pc = mm->userpg;
1766         u64 first, second, last;
1767         u64 mask = (u64)(UINT32_MAX) << 32;
1768
1769         do {
1770                 first = READ_ONCE(pc->aux_head);
1771                 /* Ensure all reads are done after we read the head */
1772                 smp_rmb();
1773                 second = READ_ONCE(pc->aux_head);
1774                 /* Ensure all reads are done after we read the head */
1775                 smp_rmb();
1776                 last = READ_ONCE(pc->aux_head);
1777         } while ((first & mask) != (last & mask));
1778
1779         return second;
1780 }
1781
1782 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1783 {
1784         struct perf_event_mmap_page *pc = mm->userpg;
1785         u64 mask = (u64)(UINT32_MAX) << 32;
1786
1787         if (tail & mask)
1788                 return -1;
1789
1790         /* Ensure all reads are done before we write the tail out */
1791         smp_mb();
1792         WRITE_ONCE(pc->aux_tail, tail);
1793         return 0;
1794 }
1795
1796 static int __auxtrace_mmap__read(struct mmap *map,
1797                                  struct auxtrace_record *itr,
1798                                  struct perf_tool *tool, process_auxtrace_t fn,
1799                                  bool snapshot, size_t snapshot_size)
1800 {
1801         struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1802         u64 head, old = mm->prev, offset, ref;
1803         unsigned char *data = mm->base;
1804         size_t size, head_off, old_off, len1, len2, padding;
1805         union perf_event ev;
1806         void *data1, *data2;
1807         int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1808
1809         head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1810
1811         if (snapshot &&
1812             auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1813                 return -1;
1814
1815         if (old == head)
1816                 return 0;
1817
1818         pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1819                   mm->idx, old, head, head - old);
1820
1821         if (mm->mask) {
1822                 head_off = head & mm->mask;
1823                 old_off = old & mm->mask;
1824         } else {
1825                 head_off = head % mm->len;
1826                 old_off = old % mm->len;
1827         }
1828
1829         if (head_off > old_off)
1830                 size = head_off - old_off;
1831         else
1832                 size = mm->len - (old_off - head_off);
1833
1834         if (snapshot && size > snapshot_size)
1835                 size = snapshot_size;
1836
1837         ref = auxtrace_record__reference(itr);
1838
1839         if (head > old || size <= head || mm->mask) {
1840                 offset = head - size;
1841         } else {
1842                 /*
1843                  * When the buffer size is not a power of 2, 'head' wraps at the
1844                  * highest multiple of the buffer size, so we have to subtract
1845                  * the remainder here.
1846                  */
1847                 u64 rem = (0ULL - mm->len) % mm->len;
1848
1849                 offset = head - size - rem;
1850         }
1851
1852         if (size > head_off) {
1853                 len1 = size - head_off;
1854                 data1 = &data[mm->len - len1];
1855                 len2 = head_off;
1856                 data2 = &data[0];
1857         } else {
1858                 len1 = size;
1859                 data1 = &data[head_off - len1];
1860                 len2 = 0;
1861                 data2 = NULL;
1862         }
1863
1864         if (itr->alignment) {
1865                 unsigned int unwanted = len1 % itr->alignment;
1866
1867                 len1 -= unwanted;
1868                 size -= unwanted;
1869         }
1870
1871         /* padding must be written by fn() e.g. record__process_auxtrace() */
1872         padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1873         if (padding)
1874                 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1875
1876         memset(&ev, 0, sizeof(ev));
1877         ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1878         ev.auxtrace.header.size = sizeof(ev.auxtrace);
1879         ev.auxtrace.size = size + padding;
1880         ev.auxtrace.offset = offset;
1881         ev.auxtrace.reference = ref;
1882         ev.auxtrace.idx = mm->idx;
1883         ev.auxtrace.tid = mm->tid;
1884         ev.auxtrace.cpu = mm->cpu;
1885
1886         if (fn(tool, map, &ev, data1, len1, data2, len2))
1887                 return -1;
1888
1889         mm->prev = head;
1890
1891         if (!snapshot) {
1892                 int err;
1893
1894                 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1895                 if (err < 0)
1896                         return err;
1897
1898                 if (itr->read_finish) {
1899                         err = itr->read_finish(itr, mm->idx);
1900                         if (err < 0)
1901                                 return err;
1902                 }
1903         }
1904
1905         return 1;
1906 }
1907
1908 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1909                         struct perf_tool *tool, process_auxtrace_t fn)
1910 {
1911         return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1912 }
1913
1914 int auxtrace_mmap__read_snapshot(struct mmap *map,
1915                                  struct auxtrace_record *itr,
1916                                  struct perf_tool *tool, process_auxtrace_t fn,
1917                                  size_t snapshot_size)
1918 {
1919         return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1920 }
1921
1922 /**
1923  * struct auxtrace_cache - hash table to implement a cache
1924  * @hashtable: the hashtable
1925  * @sz: hashtable size (number of hlists)
1926  * @entry_size: size of an entry
1927  * @limit: limit the number of entries to this maximum, when reached the cache
1928  *         is dropped and caching begins again with an empty cache
1929  * @cnt: current number of entries
1930  * @bits: hashtable size (@sz = 2^@bits)
1931  */
1932 struct auxtrace_cache {
1933         struct hlist_head *hashtable;
1934         size_t sz;
1935         size_t entry_size;
1936         size_t limit;
1937         size_t cnt;
1938         unsigned int bits;
1939 };
1940
1941 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1942                                            unsigned int limit_percent)
1943 {
1944         struct auxtrace_cache *c;
1945         struct hlist_head *ht;
1946         size_t sz, i;
1947
1948         c = zalloc(sizeof(struct auxtrace_cache));
1949         if (!c)
1950                 return NULL;
1951
1952         sz = 1UL << bits;
1953
1954         ht = calloc(sz, sizeof(struct hlist_head));
1955         if (!ht)
1956                 goto out_free;
1957
1958         for (i = 0; i < sz; i++)
1959                 INIT_HLIST_HEAD(&ht[i]);
1960
1961         c->hashtable = ht;
1962         c->sz = sz;
1963         c->entry_size = entry_size;
1964         c->limit = (c->sz * limit_percent) / 100;
1965         c->bits = bits;
1966
1967         return c;
1968
1969 out_free:
1970         free(c);
1971         return NULL;
1972 }
1973
1974 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1975 {
1976         struct auxtrace_cache_entry *entry;
1977         struct hlist_node *tmp;
1978         size_t i;
1979
1980         if (!c)
1981                 return;
1982
1983         for (i = 0; i < c->sz; i++) {
1984                 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1985                         hlist_del(&entry->hash);
1986                         auxtrace_cache__free_entry(c, entry);
1987                 }
1988         }
1989
1990         c->cnt = 0;
1991 }
1992
1993 void auxtrace_cache__free(struct auxtrace_cache *c)
1994 {
1995         if (!c)
1996                 return;
1997
1998         auxtrace_cache__drop(c);
1999         zfree(&c->hashtable);
2000         free(c);
2001 }
2002
2003 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2004 {
2005         return malloc(c->entry_size);
2006 }
2007
2008 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2009                                 void *entry)
2010 {
2011         free(entry);
2012 }
2013
2014 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2015                         struct auxtrace_cache_entry *entry)
2016 {
2017         if (c->limit && ++c->cnt > c->limit)
2018                 auxtrace_cache__drop(c);
2019
2020         entry->key = key;
2021         hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2022
2023         return 0;
2024 }
2025
2026 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2027                                                        u32 key)
2028 {
2029         struct auxtrace_cache_entry *entry;
2030         struct hlist_head *hlist;
2031         struct hlist_node *n;
2032
2033         if (!c)
2034                 return NULL;
2035
2036         hlist = &c->hashtable[hash_32(key, c->bits)];
2037         hlist_for_each_entry_safe(entry, n, hlist, hash) {
2038                 if (entry->key == key) {
2039                         hlist_del(&entry->hash);
2040                         return entry;
2041                 }
2042         }
2043
2044         return NULL;
2045 }
2046
2047 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2048 {
2049         struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2050
2051         auxtrace_cache__free_entry(c, entry);
2052 }
2053
2054 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2055 {
2056         struct auxtrace_cache_entry *entry;
2057         struct hlist_head *hlist;
2058
2059         if (!c)
2060                 return NULL;
2061
2062         hlist = &c->hashtable[hash_32(key, c->bits)];
2063         hlist_for_each_entry(entry, hlist, hash) {
2064                 if (entry->key == key)
2065                         return entry;
2066         }
2067
2068         return NULL;
2069 }
2070
2071 static void addr_filter__free_str(struct addr_filter *filt)
2072 {
2073         zfree(&filt->str);
2074         filt->action   = NULL;
2075         filt->sym_from = NULL;
2076         filt->sym_to   = NULL;
2077         filt->filename = NULL;
2078 }
2079
2080 static struct addr_filter *addr_filter__new(void)
2081 {
2082         struct addr_filter *filt = zalloc(sizeof(*filt));
2083
2084         if (filt)
2085                 INIT_LIST_HEAD(&filt->list);
2086
2087         return filt;
2088 }
2089
2090 static void addr_filter__free(struct addr_filter *filt)
2091 {
2092         if (filt)
2093                 addr_filter__free_str(filt);
2094         free(filt);
2095 }
2096
2097 static void addr_filters__add(struct addr_filters *filts,
2098                               struct addr_filter *filt)
2099 {
2100         list_add_tail(&filt->list, &filts->head);
2101         filts->cnt += 1;
2102 }
2103
2104 static void addr_filters__del(struct addr_filters *filts,
2105                               struct addr_filter *filt)
2106 {
2107         list_del_init(&filt->list);
2108         filts->cnt -= 1;
2109 }
2110
2111 void addr_filters__init(struct addr_filters *filts)
2112 {
2113         INIT_LIST_HEAD(&filts->head);
2114         filts->cnt = 0;
2115 }
2116
2117 void addr_filters__exit(struct addr_filters *filts)
2118 {
2119         struct addr_filter *filt, *n;
2120
2121         list_for_each_entry_safe(filt, n, &filts->head, list) {
2122                 addr_filters__del(filts, filt);
2123                 addr_filter__free(filt);
2124         }
2125 }
2126
2127 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2128                             const char *str_delim)
2129 {
2130         *inp += strspn(*inp, " ");
2131
2132         if (isdigit(**inp)) {
2133                 char *endptr;
2134
2135                 if (!num)
2136                         return -EINVAL;
2137                 errno = 0;
2138                 *num = strtoull(*inp, &endptr, 0);
2139                 if (errno)
2140                         return -errno;
2141                 if (endptr == *inp)
2142                         return -EINVAL;
2143                 *inp = endptr;
2144         } else {
2145                 size_t n;
2146
2147                 if (!str)
2148                         return -EINVAL;
2149                 *inp += strspn(*inp, " ");
2150                 *str = *inp;
2151                 n = strcspn(*inp, str_delim);
2152                 if (!n)
2153                         return -EINVAL;
2154                 *inp += n;
2155                 if (**inp) {
2156                         **inp = '\0';
2157                         *inp += 1;
2158                 }
2159         }
2160         return 0;
2161 }
2162
2163 static int parse_action(struct addr_filter *filt)
2164 {
2165         if (!strcmp(filt->action, "filter")) {
2166                 filt->start = true;
2167                 filt->range = true;
2168         } else if (!strcmp(filt->action, "start")) {
2169                 filt->start = true;
2170         } else if (!strcmp(filt->action, "stop")) {
2171                 filt->start = false;
2172         } else if (!strcmp(filt->action, "tracestop")) {
2173                 filt->start = false;
2174                 filt->range = true;
2175                 filt->action += 5; /* Change 'tracestop' to 'stop' */
2176         } else {
2177                 return -EINVAL;
2178         }
2179         return 0;
2180 }
2181
2182 static int parse_sym_idx(char **inp, int *idx)
2183 {
2184         *idx = -1;
2185
2186         *inp += strspn(*inp, " ");
2187
2188         if (**inp != '#')
2189                 return 0;
2190
2191         *inp += 1;
2192
2193         if (**inp == 'g' || **inp == 'G') {
2194                 *inp += 1;
2195                 *idx = 0;
2196         } else {
2197                 unsigned long num;
2198                 char *endptr;
2199
2200                 errno = 0;
2201                 num = strtoul(*inp, &endptr, 0);
2202                 if (errno)
2203                         return -errno;
2204                 if (endptr == *inp || num > INT_MAX)
2205                         return -EINVAL;
2206                 *inp = endptr;
2207                 *idx = num;
2208         }
2209
2210         return 0;
2211 }
2212
2213 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2214 {
2215         int err = parse_num_or_str(inp, num, str, " ");
2216
2217         if (!err && *str)
2218                 err = parse_sym_idx(inp, idx);
2219
2220         return err;
2221 }
2222
2223 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2224 {
2225         char *fstr;
2226         int err;
2227
2228         filt->str = fstr = strdup(*filter_inp);
2229         if (!fstr)
2230                 return -ENOMEM;
2231
2232         err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2233         if (err)
2234                 goto out_err;
2235
2236         err = parse_action(filt);
2237         if (err)
2238                 goto out_err;
2239
2240         err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2241                               &filt->sym_from_idx);
2242         if (err)
2243                 goto out_err;
2244
2245         fstr += strspn(fstr, " ");
2246
2247         if (*fstr == '/') {
2248                 fstr += 1;
2249                 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2250                                       &filt->sym_to_idx);
2251                 if (err)
2252                         goto out_err;
2253                 filt->range = true;
2254         }
2255
2256         fstr += strspn(fstr, " ");
2257
2258         if (*fstr == '@') {
2259                 fstr += 1;
2260                 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2261                 if (err)
2262                         goto out_err;
2263         }
2264
2265         fstr += strspn(fstr, " ,");
2266
2267         *filter_inp += fstr - filt->str;
2268
2269         return 0;
2270
2271 out_err:
2272         addr_filter__free_str(filt);
2273
2274         return err;
2275 }
2276
2277 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2278                                     const char *filter)
2279 {
2280         struct addr_filter *filt;
2281         const char *fstr = filter;
2282         int err;
2283
2284         while (*fstr) {
2285                 filt = addr_filter__new();
2286                 err = parse_one_filter(filt, &fstr);
2287                 if (err) {
2288                         addr_filter__free(filt);
2289                         addr_filters__exit(filts);
2290                         return err;
2291                 }
2292                 addr_filters__add(filts, filt);
2293         }
2294
2295         return 0;
2296 }
2297
2298 struct sym_args {
2299         const char      *name;
2300         u64             start;
2301         u64             size;
2302         int             idx;
2303         int             cnt;
2304         bool            started;
2305         bool            global;
2306         bool            selected;
2307         bool            duplicate;
2308         bool            near;
2309 };
2310
2311 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2312 {
2313         /* A function with the same name, and global or the n'th found or any */
2314         return kallsyms__is_function(type) &&
2315                !strcmp(name, args->name) &&
2316                ((args->global && isupper(type)) ||
2317                 (args->selected && ++(args->cnt) == args->idx) ||
2318                 (!args->global && !args->selected));
2319 }
2320
2321 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2322 {
2323         struct sym_args *args = arg;
2324
2325         if (args->started) {
2326                 if (!args->size)
2327                         args->size = start - args->start;
2328                 if (args->selected) {
2329                         if (args->size)
2330                                 return 1;
2331                 } else if (kern_sym_match(args, name, type)) {
2332                         args->duplicate = true;
2333                         return 1;
2334                 }
2335         } else if (kern_sym_match(args, name, type)) {
2336                 args->started = true;
2337                 args->start = start;
2338         }
2339
2340         return 0;
2341 }
2342
2343 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2344 {
2345         struct sym_args *args = arg;
2346
2347         if (kern_sym_match(args, name, type)) {
2348                 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2349                        ++args->cnt, start, type, name);
2350                 args->near = true;
2351         } else if (args->near) {
2352                 args->near = false;
2353                 pr_err("\t\twhich is near\t\t%s\n", name);
2354         }
2355
2356         return 0;
2357 }
2358
2359 static int sym_not_found_error(const char *sym_name, int idx)
2360 {
2361         if (idx > 0) {
2362                 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2363                        idx, sym_name);
2364         } else if (!idx) {
2365                 pr_err("Global symbol '%s' not found.\n", sym_name);
2366         } else {
2367                 pr_err("Symbol '%s' not found.\n", sym_name);
2368         }
2369         pr_err("Note that symbols must be functions.\n");
2370
2371         return -EINVAL;
2372 }
2373
2374 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2375 {
2376         struct sym_args args = {
2377                 .name = sym_name,
2378                 .idx = idx,
2379                 .global = !idx,
2380                 .selected = idx > 0,
2381         };
2382         int err;
2383
2384         *start = 0;
2385         *size = 0;
2386
2387         err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2388         if (err < 0) {
2389                 pr_err("Failed to parse /proc/kallsyms\n");
2390                 return err;
2391         }
2392
2393         if (args.duplicate) {
2394                 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2395                 args.cnt = 0;
2396                 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2397                 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2398                        sym_name);
2399                 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2400                 return -EINVAL;
2401         }
2402
2403         if (!args.started) {
2404                 pr_err("Kernel symbol lookup: ");
2405                 return sym_not_found_error(sym_name, idx);
2406         }
2407
2408         *start = args.start;
2409         *size = args.size;
2410
2411         return 0;
2412 }
2413
2414 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2415                                char type, u64 start)
2416 {
2417         struct sym_args *args = arg;
2418
2419         if (!kallsyms__is_function(type))
2420                 return 0;
2421
2422         if (!args->started) {
2423                 args->started = true;
2424                 args->start = start;
2425         }
2426         /* Don't know exactly where the kernel ends, so we add a page */
2427         args->size = round_up(start, page_size) + page_size - args->start;
2428
2429         return 0;
2430 }
2431
2432 static int addr_filter__entire_kernel(struct addr_filter *filt)
2433 {
2434         struct sym_args args = { .started = false };
2435         int err;
2436
2437         err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2438         if (err < 0 || !args.started) {
2439                 pr_err("Failed to parse /proc/kallsyms\n");
2440                 return err;
2441         }
2442
2443         filt->addr = args.start;
2444         filt->size = args.size;
2445
2446         return 0;
2447 }
2448
2449 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2450 {
2451         if (start + size >= filt->addr)
2452                 return 0;
2453
2454         if (filt->sym_from) {
2455                 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2456                        filt->sym_to, start, filt->sym_from, filt->addr);
2457         } else {
2458                 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2459                        filt->sym_to, start, filt->addr);
2460         }
2461
2462         return -EINVAL;
2463 }
2464
2465 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2466 {
2467         bool no_size = false;
2468         u64 start, size;
2469         int err;
2470
2471         if (symbol_conf.kptr_restrict) {
2472                 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2473                 return -EINVAL;
2474         }
2475
2476         if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2477                 return addr_filter__entire_kernel(filt);
2478
2479         if (filt->sym_from) {
2480                 err = find_kern_sym(filt->sym_from, &start, &size,
2481                                     filt->sym_from_idx);
2482                 if (err)
2483                         return err;
2484                 filt->addr = start;
2485                 if (filt->range && !filt->size && !filt->sym_to) {
2486                         filt->size = size;
2487                         no_size = !size;
2488                 }
2489         }
2490
2491         if (filt->sym_to) {
2492                 err = find_kern_sym(filt->sym_to, &start, &size,
2493                                     filt->sym_to_idx);
2494                 if (err)
2495                         return err;
2496
2497                 err = check_end_after_start(filt, start, size);
2498                 if (err)
2499                         return err;
2500                 filt->size = start + size - filt->addr;
2501                 no_size = !size;
2502         }
2503
2504         /* The very last symbol in kallsyms does not imply a particular size */
2505         if (no_size) {
2506                 pr_err("Cannot determine size of symbol '%s'\n",
2507                        filt->sym_to ? filt->sym_to : filt->sym_from);
2508                 return -EINVAL;
2509         }
2510
2511         return 0;
2512 }
2513
2514 static struct dso *load_dso(const char *name)
2515 {
2516         struct map *map;
2517         struct dso *dso;
2518
2519         map = dso__new_map(name);
2520         if (!map)
2521                 return NULL;
2522
2523         if (map__load(map) < 0)
2524                 pr_err("File '%s' not found or has no symbols.\n", name);
2525
2526         dso = dso__get(map->dso);
2527
2528         map__put(map);
2529
2530         return dso;
2531 }
2532
2533 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2534                           int idx)
2535 {
2536         /* Same name, and global or the n'th found or any */
2537         return !arch__compare_symbol_names(name, sym->name) &&
2538                ((!idx && sym->binding == STB_GLOBAL) ||
2539                 (idx > 0 && ++*cnt == idx) ||
2540                 idx < 0);
2541 }
2542
2543 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2544 {
2545         struct symbol *sym;
2546         bool near = false;
2547         int cnt = 0;
2548
2549         pr_err("Multiple symbols with name '%s'\n", sym_name);
2550
2551         sym = dso__first_symbol(dso);
2552         while (sym) {
2553                 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2554                         pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2555                                ++cnt, sym->start,
2556                                sym->binding == STB_GLOBAL ? 'g' :
2557                                sym->binding == STB_LOCAL  ? 'l' : 'w',
2558                                sym->name);
2559                         near = true;
2560                 } else if (near) {
2561                         near = false;
2562                         pr_err("\t\twhich is near\t\t%s\n", sym->name);
2563                 }
2564                 sym = dso__next_symbol(sym);
2565         }
2566
2567         pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2568                sym_name);
2569         pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2570 }
2571
2572 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2573                         u64 *size, int idx)
2574 {
2575         struct symbol *sym;
2576         int cnt = 0;
2577
2578         *start = 0;
2579         *size = 0;
2580
2581         sym = dso__first_symbol(dso);
2582         while (sym) {
2583                 if (*start) {
2584                         if (!*size)
2585                                 *size = sym->start - *start;
2586                         if (idx > 0) {
2587                                 if (*size)
2588                                         return 1;
2589                         } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2590                                 print_duplicate_syms(dso, sym_name);
2591                                 return -EINVAL;
2592                         }
2593                 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2594                         *start = sym->start;
2595                         *size = sym->end - sym->start;
2596                 }
2597                 sym = dso__next_symbol(sym);
2598         }
2599
2600         if (!*start)
2601                 return sym_not_found_error(sym_name, idx);
2602
2603         return 0;
2604 }
2605
2606 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2607 {
2608         if (dso__data_file_size(dso, NULL)) {
2609                 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2610                        filt->filename);
2611                 return -EINVAL;
2612         }
2613
2614         filt->addr = 0;
2615         filt->size = dso->data.file_size;
2616
2617         return 0;
2618 }
2619
2620 static int addr_filter__resolve_syms(struct addr_filter *filt)
2621 {
2622         u64 start, size;
2623         struct dso *dso;
2624         int err = 0;
2625
2626         if (!filt->sym_from && !filt->sym_to)
2627                 return 0;
2628
2629         if (!filt->filename)
2630                 return addr_filter__resolve_kernel_syms(filt);
2631
2632         dso = load_dso(filt->filename);
2633         if (!dso) {
2634                 pr_err("Failed to load symbols from: %s\n", filt->filename);
2635                 return -EINVAL;
2636         }
2637
2638         if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2639                 err = addr_filter__entire_dso(filt, dso);
2640                 goto put_dso;
2641         }
2642
2643         if (filt->sym_from) {
2644                 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2645                                    filt->sym_from_idx);
2646                 if (err)
2647                         goto put_dso;
2648                 filt->addr = start;
2649                 if (filt->range && !filt->size && !filt->sym_to)
2650                         filt->size = size;
2651         }
2652
2653         if (filt->sym_to) {
2654                 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2655                                    filt->sym_to_idx);
2656                 if (err)
2657                         goto put_dso;
2658
2659                 err = check_end_after_start(filt, start, size);
2660                 if (err)
2661                         return err;
2662
2663                 filt->size = start + size - filt->addr;
2664         }
2665
2666 put_dso:
2667         dso__put(dso);
2668
2669         return err;
2670 }
2671
2672 static char *addr_filter__to_str(struct addr_filter *filt)
2673 {
2674         char filename_buf[PATH_MAX];
2675         const char *at = "";
2676         const char *fn = "";
2677         char *filter;
2678         int err;
2679
2680         if (filt->filename) {
2681                 at = "@";
2682                 fn = realpath(filt->filename, filename_buf);
2683                 if (!fn)
2684                         return NULL;
2685         }
2686
2687         if (filt->range) {
2688                 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2689                                filt->action, filt->addr, filt->size, at, fn);
2690         } else {
2691                 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2692                                filt->action, filt->addr, at, fn);
2693         }
2694
2695         return err < 0 ? NULL : filter;
2696 }
2697
2698 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2699                              int max_nr)
2700 {
2701         struct addr_filters filts;
2702         struct addr_filter *filt;
2703         int err;
2704
2705         addr_filters__init(&filts);
2706
2707         err = addr_filters__parse_bare_filter(&filts, filter);
2708         if (err)
2709                 goto out_exit;
2710
2711         if (filts.cnt > max_nr) {
2712                 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2713                        filts.cnt, max_nr);
2714                 err = -EINVAL;
2715                 goto out_exit;
2716         }
2717
2718         list_for_each_entry(filt, &filts.head, list) {
2719                 char *new_filter;
2720
2721                 err = addr_filter__resolve_syms(filt);
2722                 if (err)
2723                         goto out_exit;
2724
2725                 new_filter = addr_filter__to_str(filt);
2726                 if (!new_filter) {
2727                         err = -ENOMEM;
2728                         goto out_exit;
2729                 }
2730
2731                 if (evsel__append_addr_filter(evsel, new_filter)) {
2732                         err = -ENOMEM;
2733                         goto out_exit;
2734                 }
2735         }
2736
2737 out_exit:
2738         addr_filters__exit(&filts);
2739
2740         if (err) {
2741                 pr_err("Failed to parse address filter: '%s'\n", filter);
2742                 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2743                 pr_err("Where multiple filters are separated by space or comma.\n");
2744         }
2745
2746         return err;
2747 }
2748
2749 static int evsel__nr_addr_filter(struct evsel *evsel)
2750 {
2751         struct perf_pmu *pmu = evsel__find_pmu(evsel);
2752         int nr_addr_filters = 0;
2753
2754         if (!pmu)
2755                 return 0;
2756
2757         perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2758
2759         return nr_addr_filters;
2760 }
2761
2762 int auxtrace_parse_filters(struct evlist *evlist)
2763 {
2764         struct evsel *evsel;
2765         char *filter;
2766         int err, max_nr;
2767
2768         evlist__for_each_entry(evlist, evsel) {
2769                 filter = evsel->filter;
2770                 max_nr = evsel__nr_addr_filter(evsel);
2771                 if (!filter || !max_nr)
2772                         continue;
2773                 evsel->filter = NULL;
2774                 err = parse_addr_filter(evsel, filter, max_nr);
2775                 free(filter);
2776                 if (err)
2777                         return err;
2778                 pr_debug("Address filter: %s\n", evsel->filter);
2779         }
2780
2781         return 0;
2782 }
2783
2784 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2785                             struct perf_sample *sample, struct perf_tool *tool)
2786 {
2787         if (!session->auxtrace)
2788                 return 0;
2789
2790         return session->auxtrace->process_event(session, event, sample, tool);
2791 }
2792
2793 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2794                                     struct perf_sample *sample)
2795 {
2796         if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2797             auxtrace__dont_decode(session))
2798                 return;
2799
2800         session->auxtrace->dump_auxtrace_sample(session, sample);
2801 }
2802
2803 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2804 {
2805         if (!session->auxtrace)
2806                 return 0;
2807
2808         return session->auxtrace->flush_events(session, tool);
2809 }
2810
2811 void auxtrace__free_events(struct perf_session *session)
2812 {
2813         if (!session->auxtrace)
2814                 return;
2815
2816         return session->auxtrace->free_events(session);
2817 }
2818
2819 void auxtrace__free(struct perf_session *session)
2820 {
2821         if (!session->auxtrace)
2822                 return;
2823
2824         return session->auxtrace->free(session);
2825 }
2826
2827 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2828                                  struct evsel *evsel)
2829 {
2830         if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2831                 return false;
2832
2833         return session->auxtrace->evsel_is_auxtrace(session, evsel);
2834 }