Merge branches 'acpi-scan', 'acpi-resource', 'acpi-apei', 'acpi-extlog' and 'acpi...
[sfrench/cifs-2.6.git] / drivers / irqchip / irq-gic-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #define pr_fmt(fmt)     "GICv3: " fmt
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/percpu.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21
22 #include <linux/irqchip.h>
23 #include <linux/irqchip/arm-gic-common.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/irqchip/irq-partition-percpu.h>
26
27 #include <asm/cputype.h>
28 #include <asm/exception.h>
29 #include <asm/smp_plat.h>
30 #include <asm/virt.h>
31
32 #include "irq-gic-common.h"
33
34 #define GICD_INT_NMI_PRI        (GICD_INT_DEF_PRI & ~0x80)
35
36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996     (1ULL << 0)
37 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539   (1ULL << 1)
38
39 #define GIC_IRQ_TYPE_PARTITION  (GIC_IRQ_TYPE_LPI + 1)
40
41 struct redist_region {
42         void __iomem            *redist_base;
43         phys_addr_t             phys_base;
44         bool                    single_redist;
45 };
46
47 struct gic_chip_data {
48         struct fwnode_handle    *fwnode;
49         void __iomem            *dist_base;
50         struct redist_region    *redist_regions;
51         struct rdists           rdists;
52         struct irq_domain       *domain;
53         u64                     redist_stride;
54         u32                     nr_redist_regions;
55         u64                     flags;
56         bool                    has_rss;
57         unsigned int            ppi_nr;
58         struct partition_desc   **ppi_descs;
59 };
60
61 static struct gic_chip_data gic_data __read_mostly;
62 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
63
64 #define GIC_ID_NR       (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
65 #define GIC_LINE_NR     min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
66 #define GIC_ESPI_NR     GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
67
68 /*
69  * The behaviours of RPR and PMR registers differ depending on the value of
70  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
71  * distributor and redistributors depends on whether security is enabled in the
72  * GIC.
73  *
74  * When security is enabled, non-secure priority values from the (re)distributor
75  * are presented to the GIC CPUIF as follow:
76  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
77  *
78  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
79  * EL1 are subject to a similar operation thus matching the priorities presented
80  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
81  * these values are unchanged by the GIC.
82  *
83  * see GICv3/GICv4 Architecture Specification (IHI0069D):
84  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
85  *   priorities.
86  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
87  *   interrupt.
88  */
89 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
90
91 /*
92  * Global static key controlling whether an update to PMR allowing more
93  * interrupts requires to be propagated to the redistributor (DSB SY).
94  * And this needs to be exported for modules to be able to enable
95  * interrupts...
96  */
97 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
98 EXPORT_SYMBOL(gic_pmr_sync);
99
100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
101 EXPORT_SYMBOL(gic_nonsecure_priorities);
102
103 /*
104  * When the Non-secure world has access to group 0 interrupts (as a
105  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
106  * return the Distributor's view of the interrupt priority.
107  *
108  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
109  * written by software is moved to the Non-secure range by the Distributor.
110  *
111  * If both are true (which is when gic_nonsecure_priorities gets enabled),
112  * we need to shift down the priority programmed by software to match it
113  * against the value returned by ICC_RPR_EL1.
114  */
115 #define GICD_INT_RPR_PRI(priority)                                      \
116         ({                                                              \
117                 u32 __priority = (priority);                            \
118                 if (static_branch_unlikely(&gic_nonsecure_priorities))  \
119                         __priority = 0x80 | (__priority >> 1);          \
120                                                                         \
121                 __priority;                                             \
122         })
123
124 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
125 static refcount_t *ppi_nmi_refs;
126
127 static struct gic_kvm_info gic_v3_kvm_info __initdata;
128 static DEFINE_PER_CPU(bool, has_rss);
129
130 #define MPIDR_RS(mpidr)                 (((mpidr) & 0xF0UL) >> 4)
131 #define gic_data_rdist()                (this_cpu_ptr(gic_data.rdists.rdist))
132 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
133 #define gic_data_rdist_sgi_base()       (gic_data_rdist_rd_base() + SZ_64K)
134
135 /* Our default, arbitrary priority value. Linux only uses one anyway. */
136 #define DEFAULT_PMR_VALUE       0xf0
137
138 enum gic_intid_range {
139         SGI_RANGE,
140         PPI_RANGE,
141         SPI_RANGE,
142         EPPI_RANGE,
143         ESPI_RANGE,
144         LPI_RANGE,
145         __INVALID_RANGE__
146 };
147
148 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
149 {
150         switch (hwirq) {
151         case 0 ... 15:
152                 return SGI_RANGE;
153         case 16 ... 31:
154                 return PPI_RANGE;
155         case 32 ... 1019:
156                 return SPI_RANGE;
157         case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
158                 return EPPI_RANGE;
159         case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
160                 return ESPI_RANGE;
161         case 8192 ... GENMASK(23, 0):
162                 return LPI_RANGE;
163         default:
164                 return __INVALID_RANGE__;
165         }
166 }
167
168 static enum gic_intid_range get_intid_range(struct irq_data *d)
169 {
170         return __get_intid_range(d->hwirq);
171 }
172
173 static inline unsigned int gic_irq(struct irq_data *d)
174 {
175         return d->hwirq;
176 }
177
178 static inline bool gic_irq_in_rdist(struct irq_data *d)
179 {
180         switch (get_intid_range(d)) {
181         case SGI_RANGE:
182         case PPI_RANGE:
183         case EPPI_RANGE:
184                 return true;
185         default:
186                 return false;
187         }
188 }
189
190 static inline void __iomem *gic_dist_base(struct irq_data *d)
191 {
192         switch (get_intid_range(d)) {
193         case SGI_RANGE:
194         case PPI_RANGE:
195         case EPPI_RANGE:
196                 /* SGI+PPI -> SGI_base for this CPU */
197                 return gic_data_rdist_sgi_base();
198
199         case SPI_RANGE:
200         case ESPI_RANGE:
201                 /* SPI -> dist_base */
202                 return gic_data.dist_base;
203
204         default:
205                 return NULL;
206         }
207 }
208
209 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
210 {
211         u32 count = 1000000;    /* 1s! */
212
213         while (readl_relaxed(base + GICD_CTLR) & bit) {
214                 count--;
215                 if (!count) {
216                         pr_err_ratelimited("RWP timeout, gone fishing\n");
217                         return;
218                 }
219                 cpu_relax();
220                 udelay(1);
221         }
222 }
223
224 /* Wait for completion of a distributor change */
225 static void gic_dist_wait_for_rwp(void)
226 {
227         gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
228 }
229
230 /* Wait for completion of a redistributor change */
231 static void gic_redist_wait_for_rwp(void)
232 {
233         gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
234 }
235
236 #ifdef CONFIG_ARM64
237
238 static u64 __maybe_unused gic_read_iar(void)
239 {
240         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
241                 return gic_read_iar_cavium_thunderx();
242         else
243                 return gic_read_iar_common();
244 }
245 #endif
246
247 static void gic_enable_redist(bool enable)
248 {
249         void __iomem *rbase;
250         u32 count = 1000000;    /* 1s! */
251         u32 val;
252
253         if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
254                 return;
255
256         rbase = gic_data_rdist_rd_base();
257
258         val = readl_relaxed(rbase + GICR_WAKER);
259         if (enable)
260                 /* Wake up this CPU redistributor */
261                 val &= ~GICR_WAKER_ProcessorSleep;
262         else
263                 val |= GICR_WAKER_ProcessorSleep;
264         writel_relaxed(val, rbase + GICR_WAKER);
265
266         if (!enable) {          /* Check that GICR_WAKER is writeable */
267                 val = readl_relaxed(rbase + GICR_WAKER);
268                 if (!(val & GICR_WAKER_ProcessorSleep))
269                         return; /* No PM support in this redistributor */
270         }
271
272         while (--count) {
273                 val = readl_relaxed(rbase + GICR_WAKER);
274                 if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
275                         break;
276                 cpu_relax();
277                 udelay(1);
278         }
279         if (!count)
280                 pr_err_ratelimited("redistributor failed to %s...\n",
281                                    enable ? "wakeup" : "sleep");
282 }
283
284 /*
285  * Routines to disable, enable, EOI and route interrupts
286  */
287 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
288 {
289         switch (get_intid_range(d)) {
290         case SGI_RANGE:
291         case PPI_RANGE:
292         case SPI_RANGE:
293                 *index = d->hwirq;
294                 return offset;
295         case EPPI_RANGE:
296                 /*
297                  * Contrary to the ESPI range, the EPPI range is contiguous
298                  * to the PPI range in the registers, so let's adjust the
299                  * displacement accordingly. Consistency is overrated.
300                  */
301                 *index = d->hwirq - EPPI_BASE_INTID + 32;
302                 return offset;
303         case ESPI_RANGE:
304                 *index = d->hwirq - ESPI_BASE_INTID;
305                 switch (offset) {
306                 case GICD_ISENABLER:
307                         return GICD_ISENABLERnE;
308                 case GICD_ICENABLER:
309                         return GICD_ICENABLERnE;
310                 case GICD_ISPENDR:
311                         return GICD_ISPENDRnE;
312                 case GICD_ICPENDR:
313                         return GICD_ICPENDRnE;
314                 case GICD_ISACTIVER:
315                         return GICD_ISACTIVERnE;
316                 case GICD_ICACTIVER:
317                         return GICD_ICACTIVERnE;
318                 case GICD_IPRIORITYR:
319                         return GICD_IPRIORITYRnE;
320                 case GICD_ICFGR:
321                         return GICD_ICFGRnE;
322                 case GICD_IROUTER:
323                         return GICD_IROUTERnE;
324                 default:
325                         break;
326                 }
327                 break;
328         default:
329                 break;
330         }
331
332         WARN_ON(1);
333         *index = d->hwirq;
334         return offset;
335 }
336
337 static int gic_peek_irq(struct irq_data *d, u32 offset)
338 {
339         void __iomem *base;
340         u32 index, mask;
341
342         offset = convert_offset_index(d, offset, &index);
343         mask = 1 << (index % 32);
344
345         if (gic_irq_in_rdist(d))
346                 base = gic_data_rdist_sgi_base();
347         else
348                 base = gic_data.dist_base;
349
350         return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
351 }
352
353 static void gic_poke_irq(struct irq_data *d, u32 offset)
354 {
355         void __iomem *base;
356         u32 index, mask;
357
358         offset = convert_offset_index(d, offset, &index);
359         mask = 1 << (index % 32);
360
361         if (gic_irq_in_rdist(d))
362                 base = gic_data_rdist_sgi_base();
363         else
364                 base = gic_data.dist_base;
365
366         writel_relaxed(mask, base + offset + (index / 32) * 4);
367 }
368
369 static void gic_mask_irq(struct irq_data *d)
370 {
371         gic_poke_irq(d, GICD_ICENABLER);
372         if (gic_irq_in_rdist(d))
373                 gic_redist_wait_for_rwp();
374         else
375                 gic_dist_wait_for_rwp();
376 }
377
378 static void gic_eoimode1_mask_irq(struct irq_data *d)
379 {
380         gic_mask_irq(d);
381         /*
382          * When masking a forwarded interrupt, make sure it is
383          * deactivated as well.
384          *
385          * This ensures that an interrupt that is getting
386          * disabled/masked will not get "stuck", because there is
387          * noone to deactivate it (guest is being terminated).
388          */
389         if (irqd_is_forwarded_to_vcpu(d))
390                 gic_poke_irq(d, GICD_ICACTIVER);
391 }
392
393 static void gic_unmask_irq(struct irq_data *d)
394 {
395         gic_poke_irq(d, GICD_ISENABLER);
396 }
397
398 static inline bool gic_supports_nmi(void)
399 {
400         return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
401                static_branch_likely(&supports_pseudo_nmis);
402 }
403
404 static int gic_irq_set_irqchip_state(struct irq_data *d,
405                                      enum irqchip_irq_state which, bool val)
406 {
407         u32 reg;
408
409         if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
410                 return -EINVAL;
411
412         switch (which) {
413         case IRQCHIP_STATE_PENDING:
414                 reg = val ? GICD_ISPENDR : GICD_ICPENDR;
415                 break;
416
417         case IRQCHIP_STATE_ACTIVE:
418                 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
419                 break;
420
421         case IRQCHIP_STATE_MASKED:
422                 if (val) {
423                         gic_mask_irq(d);
424                         return 0;
425                 }
426                 reg = GICD_ISENABLER;
427                 break;
428
429         default:
430                 return -EINVAL;
431         }
432
433         gic_poke_irq(d, reg);
434         return 0;
435 }
436
437 static int gic_irq_get_irqchip_state(struct irq_data *d,
438                                      enum irqchip_irq_state which, bool *val)
439 {
440         if (d->hwirq >= 8192) /* PPI/SPI only */
441                 return -EINVAL;
442
443         switch (which) {
444         case IRQCHIP_STATE_PENDING:
445                 *val = gic_peek_irq(d, GICD_ISPENDR);
446                 break;
447
448         case IRQCHIP_STATE_ACTIVE:
449                 *val = gic_peek_irq(d, GICD_ISACTIVER);
450                 break;
451
452         case IRQCHIP_STATE_MASKED:
453                 *val = !gic_peek_irq(d, GICD_ISENABLER);
454                 break;
455
456         default:
457                 return -EINVAL;
458         }
459
460         return 0;
461 }
462
463 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
464 {
465         void __iomem *base = gic_dist_base(d);
466         u32 offset, index;
467
468         offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
469
470         writeb_relaxed(prio, base + offset + index);
471 }
472
473 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
474 {
475         switch (__get_intid_range(hwirq)) {
476         case PPI_RANGE:
477                 return hwirq - 16;
478         case EPPI_RANGE:
479                 return hwirq - EPPI_BASE_INTID + 16;
480         default:
481                 unreachable();
482         }
483 }
484
485 static u32 gic_get_ppi_index(struct irq_data *d)
486 {
487         return __gic_get_ppi_index(d->hwirq);
488 }
489
490 static int gic_irq_nmi_setup(struct irq_data *d)
491 {
492         struct irq_desc *desc = irq_to_desc(d->irq);
493
494         if (!gic_supports_nmi())
495                 return -EINVAL;
496
497         if (gic_peek_irq(d, GICD_ISENABLER)) {
498                 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
499                 return -EINVAL;
500         }
501
502         /*
503          * A secondary irq_chip should be in charge of LPI request,
504          * it should not be possible to get there
505          */
506         if (WARN_ON(gic_irq(d) >= 8192))
507                 return -EINVAL;
508
509         /* desc lock should already be held */
510         if (gic_irq_in_rdist(d)) {
511                 u32 idx = gic_get_ppi_index(d);
512
513                 /* Setting up PPI as NMI, only switch handler for first NMI */
514                 if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
515                         refcount_set(&ppi_nmi_refs[idx], 1);
516                         desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
517                 }
518         } else {
519                 desc->handle_irq = handle_fasteoi_nmi;
520         }
521
522         gic_irq_set_prio(d, GICD_INT_NMI_PRI);
523
524         return 0;
525 }
526
527 static void gic_irq_nmi_teardown(struct irq_data *d)
528 {
529         struct irq_desc *desc = irq_to_desc(d->irq);
530
531         if (WARN_ON(!gic_supports_nmi()))
532                 return;
533
534         if (gic_peek_irq(d, GICD_ISENABLER)) {
535                 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
536                 return;
537         }
538
539         /*
540          * A secondary irq_chip should be in charge of LPI request,
541          * it should not be possible to get there
542          */
543         if (WARN_ON(gic_irq(d) >= 8192))
544                 return;
545
546         /* desc lock should already be held */
547         if (gic_irq_in_rdist(d)) {
548                 u32 idx = gic_get_ppi_index(d);
549
550                 /* Tearing down NMI, only switch handler for last NMI */
551                 if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
552                         desc->handle_irq = handle_percpu_devid_irq;
553         } else {
554                 desc->handle_irq = handle_fasteoi_irq;
555         }
556
557         gic_irq_set_prio(d, GICD_INT_DEF_PRI);
558 }
559
560 static void gic_eoi_irq(struct irq_data *d)
561 {
562         write_gicreg(gic_irq(d), ICC_EOIR1_EL1);
563         isb();
564 }
565
566 static void gic_eoimode1_eoi_irq(struct irq_data *d)
567 {
568         /*
569          * No need to deactivate an LPI, or an interrupt that
570          * is is getting forwarded to a vcpu.
571          */
572         if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
573                 return;
574         gic_write_dir(gic_irq(d));
575 }
576
577 static int gic_set_type(struct irq_data *d, unsigned int type)
578 {
579         enum gic_intid_range range;
580         unsigned int irq = gic_irq(d);
581         void __iomem *base;
582         u32 offset, index;
583         int ret;
584
585         range = get_intid_range(d);
586
587         /* Interrupt configuration for SGIs can't be changed */
588         if (range == SGI_RANGE)
589                 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
590
591         /* SPIs have restrictions on the supported types */
592         if ((range == SPI_RANGE || range == ESPI_RANGE) &&
593             type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
594                 return -EINVAL;
595
596         if (gic_irq_in_rdist(d))
597                 base = gic_data_rdist_sgi_base();
598         else
599                 base = gic_data.dist_base;
600
601         offset = convert_offset_index(d, GICD_ICFGR, &index);
602
603         ret = gic_configure_irq(index, type, base + offset, NULL);
604         if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
605                 /* Misconfigured PPIs are usually not fatal */
606                 pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
607                 ret = 0;
608         }
609
610         return ret;
611 }
612
613 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
614 {
615         if (get_intid_range(d) == SGI_RANGE)
616                 return -EINVAL;
617
618         if (vcpu)
619                 irqd_set_forwarded_to_vcpu(d);
620         else
621                 irqd_clr_forwarded_to_vcpu(d);
622         return 0;
623 }
624
625 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
626 {
627         u64 aff;
628
629         aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
630                MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
631                MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
632                MPIDR_AFFINITY_LEVEL(mpidr, 0));
633
634         return aff;
635 }
636
637 static void gic_deactivate_unhandled(u32 irqnr)
638 {
639         if (static_branch_likely(&supports_deactivate_key)) {
640                 if (irqnr < 8192)
641                         gic_write_dir(irqnr);
642         } else {
643                 write_gicreg(irqnr, ICC_EOIR1_EL1);
644                 isb();
645         }
646 }
647
648 /*
649  * Follow a read of the IAR with any HW maintenance that needs to happen prior
650  * to invoking the relevant IRQ handler. We must do two things:
651  *
652  * (1) Ensure instruction ordering between a read of IAR and subsequent
653  *     instructions in the IRQ handler using an ISB.
654  *
655  *     It is possible for the IAR to report an IRQ which was signalled *after*
656  *     the CPU took an IRQ exception as multiple interrupts can race to be
657  *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
658  *     later interrupts could be prioritized by the GIC.
659  *
660  *     For devices which are tightly coupled to the CPU, such as PMUs, a
661  *     context synchronization event is necessary to ensure that system
662  *     register state is not stale, as these may have been indirectly written
663  *     *after* exception entry.
664  *
665  * (2) Deactivate the interrupt when EOI mode 1 is in use.
666  */
667 static inline void gic_complete_ack(u32 irqnr)
668 {
669         if (static_branch_likely(&supports_deactivate_key))
670                 write_gicreg(irqnr, ICC_EOIR1_EL1);
671
672         isb();
673 }
674
675 static bool gic_rpr_is_nmi_prio(void)
676 {
677         if (!gic_supports_nmi())
678                 return false;
679
680         return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
681 }
682
683 static bool gic_irqnr_is_special(u32 irqnr)
684 {
685         return irqnr >= 1020 && irqnr <= 1023;
686 }
687
688 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
689 {
690         if (gic_irqnr_is_special(irqnr))
691                 return;
692
693         gic_complete_ack(irqnr);
694
695         if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
696                 WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
697                 gic_deactivate_unhandled(irqnr);
698         }
699 }
700
701 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
702 {
703         if (gic_irqnr_is_special(irqnr))
704                 return;
705
706         gic_complete_ack(irqnr);
707
708         if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
709                 WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
710                 gic_deactivate_unhandled(irqnr);
711         }
712 }
713
714 /*
715  * An exception has been taken from a context with IRQs enabled, and this could
716  * be an IRQ or an NMI.
717  *
718  * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
719  * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
720  * after handling any NMI but before handling any IRQ.
721  *
722  * The entry code has performed IRQ entry, and if an NMI is detected we must
723  * perform NMI entry/exit around invoking the handler.
724  */
725 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
726 {
727         bool is_nmi;
728         u32 irqnr;
729
730         irqnr = gic_read_iar();
731
732         is_nmi = gic_rpr_is_nmi_prio();
733
734         if (is_nmi) {
735                 nmi_enter();
736                 __gic_handle_nmi(irqnr, regs);
737                 nmi_exit();
738         }
739
740         if (gic_prio_masking_enabled()) {
741                 gic_pmr_mask_irqs();
742                 gic_arch_enable_irqs();
743         }
744
745         if (!is_nmi)
746                 __gic_handle_irq(irqnr, regs);
747 }
748
749 /*
750  * An exception has been taken from a context with IRQs disabled, which can only
751  * be an NMI.
752  *
753  * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
754  * DAIF.IF (and ICC_PMR_EL1) unchanged.
755  *
756  * The entry code has performed NMI entry.
757  */
758 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
759 {
760         u64 pmr;
761         u32 irqnr;
762
763         /*
764          * We were in a context with IRQs disabled. However, the
765          * entry code has set PMR to a value that allows any
766          * interrupt to be acknowledged, and not just NMIs. This can
767          * lead to surprising effects if the NMI has been retired in
768          * the meantime, and that there is an IRQ pending. The IRQ
769          * would then be taken in NMI context, something that nobody
770          * wants to debug twice.
771          *
772          * Until we sort this, drop PMR again to a level that will
773          * actually only allow NMIs before reading IAR, and then
774          * restore it to what it was.
775          */
776         pmr = gic_read_pmr();
777         gic_pmr_mask_irqs();
778         isb();
779         irqnr = gic_read_iar();
780         gic_write_pmr(pmr);
781
782         __gic_handle_nmi(irqnr, regs);
783 }
784
785 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
786 {
787         if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
788                 __gic_handle_irq_from_irqsoff(regs);
789         else
790                 __gic_handle_irq_from_irqson(regs);
791 }
792
793 static u32 gic_get_pribits(void)
794 {
795         u32 pribits;
796
797         pribits = gic_read_ctlr();
798         pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
799         pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
800         pribits++;
801
802         return pribits;
803 }
804
805 static bool gic_has_group0(void)
806 {
807         u32 val;
808         u32 old_pmr;
809
810         old_pmr = gic_read_pmr();
811
812         /*
813          * Let's find out if Group0 is under control of EL3 or not by
814          * setting the highest possible, non-zero priority in PMR.
815          *
816          * If SCR_EL3.FIQ is set, the priority gets shifted down in
817          * order for the CPU interface to set bit 7, and keep the
818          * actual priority in the non-secure range. In the process, it
819          * looses the least significant bit and the actual priority
820          * becomes 0x80. Reading it back returns 0, indicating that
821          * we're don't have access to Group0.
822          */
823         gic_write_pmr(BIT(8 - gic_get_pribits()));
824         val = gic_read_pmr();
825
826         gic_write_pmr(old_pmr);
827
828         return val != 0;
829 }
830
831 static void __init gic_dist_init(void)
832 {
833         unsigned int i;
834         u64 affinity;
835         void __iomem *base = gic_data.dist_base;
836         u32 val;
837
838         /* Disable the distributor */
839         writel_relaxed(0, base + GICD_CTLR);
840         gic_dist_wait_for_rwp();
841
842         /*
843          * Configure SPIs as non-secure Group-1. This will only matter
844          * if the GIC only has a single security state. This will not
845          * do the right thing if the kernel is running in secure mode,
846          * but that's not the intended use case anyway.
847          */
848         for (i = 32; i < GIC_LINE_NR; i += 32)
849                 writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
850
851         /* Extended SPI range, not handled by the GICv2/GICv3 common code */
852         for (i = 0; i < GIC_ESPI_NR; i += 32) {
853                 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
854                 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
855         }
856
857         for (i = 0; i < GIC_ESPI_NR; i += 32)
858                 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
859
860         for (i = 0; i < GIC_ESPI_NR; i += 16)
861                 writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
862
863         for (i = 0; i < GIC_ESPI_NR; i += 4)
864                 writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
865
866         /* Now do the common stuff */
867         gic_dist_config(base, GIC_LINE_NR, NULL);
868
869         val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
870         if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
871                 pr_info("Enabling SGIs without active state\n");
872                 val |= GICD_CTLR_nASSGIreq;
873         }
874
875         /* Enable distributor with ARE, Group1, and wait for it to drain */
876         writel_relaxed(val, base + GICD_CTLR);
877         gic_dist_wait_for_rwp();
878
879         /*
880          * Set all global interrupts to the boot CPU only. ARE must be
881          * enabled.
882          */
883         affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
884         for (i = 32; i < GIC_LINE_NR; i++)
885                 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
886
887         for (i = 0; i < GIC_ESPI_NR; i++)
888                 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
889 }
890
891 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
892 {
893         int ret = -ENODEV;
894         int i;
895
896         for (i = 0; i < gic_data.nr_redist_regions; i++) {
897                 void __iomem *ptr = gic_data.redist_regions[i].redist_base;
898                 u64 typer;
899                 u32 reg;
900
901                 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
902                 if (reg != GIC_PIDR2_ARCH_GICv3 &&
903                     reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
904                         pr_warn("No redistributor present @%p\n", ptr);
905                         break;
906                 }
907
908                 do {
909                         typer = gic_read_typer(ptr + GICR_TYPER);
910                         ret = fn(gic_data.redist_regions + i, ptr);
911                         if (!ret)
912                                 return 0;
913
914                         if (gic_data.redist_regions[i].single_redist)
915                                 break;
916
917                         if (gic_data.redist_stride) {
918                                 ptr += gic_data.redist_stride;
919                         } else {
920                                 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
921                                 if (typer & GICR_TYPER_VLPIS)
922                                         ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
923                         }
924                 } while (!(typer & GICR_TYPER_LAST));
925         }
926
927         return ret ? -ENODEV : 0;
928 }
929
930 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
931 {
932         unsigned long mpidr = cpu_logical_map(smp_processor_id());
933         u64 typer;
934         u32 aff;
935
936         /*
937          * Convert affinity to a 32bit value that can be matched to
938          * GICR_TYPER bits [63:32].
939          */
940         aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
941                MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
942                MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
943                MPIDR_AFFINITY_LEVEL(mpidr, 0));
944
945         typer = gic_read_typer(ptr + GICR_TYPER);
946         if ((typer >> 32) == aff) {
947                 u64 offset = ptr - region->redist_base;
948                 raw_spin_lock_init(&gic_data_rdist()->rd_lock);
949                 gic_data_rdist_rd_base() = ptr;
950                 gic_data_rdist()->phys_base = region->phys_base + offset;
951
952                 pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
953                         smp_processor_id(), mpidr,
954                         (int)(region - gic_data.redist_regions),
955                         &gic_data_rdist()->phys_base);
956                 return 0;
957         }
958
959         /* Try next one */
960         return 1;
961 }
962
963 static int gic_populate_rdist(void)
964 {
965         if (gic_iterate_rdists(__gic_populate_rdist) == 0)
966                 return 0;
967
968         /* We couldn't even deal with ourselves... */
969         WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
970              smp_processor_id(),
971              (unsigned long)cpu_logical_map(smp_processor_id()));
972         return -ENODEV;
973 }
974
975 static int __gic_update_rdist_properties(struct redist_region *region,
976                                          void __iomem *ptr)
977 {
978         u64 typer = gic_read_typer(ptr + GICR_TYPER);
979         u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
980
981         /* Boot-time cleanup */
982         if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
983                 u64 val;
984
985                 /* Deactivate any present vPE */
986                 val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
987                 if (val & GICR_VPENDBASER_Valid)
988                         gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
989                                               ptr + SZ_128K + GICR_VPENDBASER);
990
991                 /* Mark the VPE table as invalid */
992                 val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
993                 val &= ~GICR_VPROPBASER_4_1_VALID;
994                 gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
995         }
996
997         gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
998
999         /*
1000          * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1001          * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1002          * that the ITS driver can make use of for LPIs (and not VLPIs).
1003          *
1004          * These are 3 different ways to express the same thing, depending
1005          * on the revision of the architecture and its relaxations over
1006          * time. Just group them under the 'direct_lpi' banner.
1007          */
1008         gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1009         gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1010                                            !!(ctlr & GICR_CTLR_IR) |
1011                                            gic_data.rdists.has_rvpeid);
1012         gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1013
1014         /* Detect non-sensical configurations */
1015         if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1016                 gic_data.rdists.has_direct_lpi = false;
1017                 gic_data.rdists.has_vlpis = false;
1018                 gic_data.rdists.has_rvpeid = false;
1019         }
1020
1021         gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1022
1023         return 1;
1024 }
1025
1026 static void gic_update_rdist_properties(void)
1027 {
1028         gic_data.ppi_nr = UINT_MAX;
1029         gic_iterate_rdists(__gic_update_rdist_properties);
1030         if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1031                 gic_data.ppi_nr = 0;
1032         pr_info("GICv3 features: %d PPIs%s%s\n",
1033                 gic_data.ppi_nr,
1034                 gic_data.has_rss ? ", RSS" : "",
1035                 gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1036
1037         if (gic_data.rdists.has_vlpis)
1038                 pr_info("GICv4 features: %s%s%s\n",
1039                         gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1040                         gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1041                         gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1042 }
1043
1044 /* Check whether it's single security state view */
1045 static inline bool gic_dist_security_disabled(void)
1046 {
1047         return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
1048 }
1049
1050 static void gic_cpu_sys_reg_init(void)
1051 {
1052         int i, cpu = smp_processor_id();
1053         u64 mpidr = cpu_logical_map(cpu);
1054         u64 need_rss = MPIDR_RS(mpidr);
1055         bool group0;
1056         u32 pribits;
1057
1058         /*
1059          * Need to check that the SRE bit has actually been set. If
1060          * not, it means that SRE is disabled at EL2. We're going to
1061          * die painfully, and there is nothing we can do about it.
1062          *
1063          * Kindly inform the luser.
1064          */
1065         if (!gic_enable_sre())
1066                 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1067
1068         pribits = gic_get_pribits();
1069
1070         group0 = gic_has_group0();
1071
1072         /* Set priority mask register */
1073         if (!gic_prio_masking_enabled()) {
1074                 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1075         } else if (gic_supports_nmi()) {
1076                 /*
1077                  * Mismatch configuration with boot CPU, the system is likely
1078                  * to die as interrupt masking will not work properly on all
1079                  * CPUs
1080                  *
1081                  * The boot CPU calls this function before enabling NMI support,
1082                  * and as a result we'll never see this warning in the boot path
1083                  * for that CPU.
1084                  */
1085                 if (static_branch_unlikely(&gic_nonsecure_priorities))
1086                         WARN_ON(!group0 || gic_dist_security_disabled());
1087                 else
1088                         WARN_ON(group0 && !gic_dist_security_disabled());
1089         }
1090
1091         /*
1092          * Some firmwares hand over to the kernel with the BPR changed from
1093          * its reset value (and with a value large enough to prevent
1094          * any pre-emptive interrupts from working at all). Writing a zero
1095          * to BPR restores is reset value.
1096          */
1097         gic_write_bpr1(0);
1098
1099         if (static_branch_likely(&supports_deactivate_key)) {
1100                 /* EOI drops priority only (mode 1) */
1101                 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1102         } else {
1103                 /* EOI deactivates interrupt too (mode 0) */
1104                 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1105         }
1106
1107         /* Always whack Group0 before Group1 */
1108         if (group0) {
1109                 switch(pribits) {
1110                 case 8:
1111                 case 7:
1112                         write_gicreg(0, ICC_AP0R3_EL1);
1113                         write_gicreg(0, ICC_AP0R2_EL1);
1114                         fallthrough;
1115                 case 6:
1116                         write_gicreg(0, ICC_AP0R1_EL1);
1117                         fallthrough;
1118                 case 5:
1119                 case 4:
1120                         write_gicreg(0, ICC_AP0R0_EL1);
1121                 }
1122
1123                 isb();
1124         }
1125
1126         switch(pribits) {
1127         case 8:
1128         case 7:
1129                 write_gicreg(0, ICC_AP1R3_EL1);
1130                 write_gicreg(0, ICC_AP1R2_EL1);
1131                 fallthrough;
1132         case 6:
1133                 write_gicreg(0, ICC_AP1R1_EL1);
1134                 fallthrough;
1135         case 5:
1136         case 4:
1137                 write_gicreg(0, ICC_AP1R0_EL1);
1138         }
1139
1140         isb();
1141
1142         /* ... and let's hit the road... */
1143         gic_write_grpen1(1);
1144
1145         /* Keep the RSS capability status in per_cpu variable */
1146         per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1147
1148         /* Check all the CPUs have capable of sending SGIs to other CPUs */
1149         for_each_online_cpu(i) {
1150                 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1151
1152                 need_rss |= MPIDR_RS(cpu_logical_map(i));
1153                 if (need_rss && (!have_rss))
1154                         pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1155                                 cpu, (unsigned long)mpidr,
1156                                 i, (unsigned long)cpu_logical_map(i));
1157         }
1158
1159         /**
1160          * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1161          * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1162          * UNPREDICTABLE choice of :
1163          *   - The write is ignored.
1164          *   - The RS field is treated as 0.
1165          */
1166         if (need_rss && (!gic_data.has_rss))
1167                 pr_crit_once("RSS is required but GICD doesn't support it\n");
1168 }
1169
1170 static bool gicv3_nolpi;
1171
1172 static int __init gicv3_nolpi_cfg(char *buf)
1173 {
1174         return strtobool(buf, &gicv3_nolpi);
1175 }
1176 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1177
1178 static int gic_dist_supports_lpis(void)
1179 {
1180         return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1181                 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1182                 !gicv3_nolpi);
1183 }
1184
1185 static void gic_cpu_init(void)
1186 {
1187         void __iomem *rbase;
1188         int i;
1189
1190         /* Register ourselves with the rest of the world */
1191         if (gic_populate_rdist())
1192                 return;
1193
1194         gic_enable_redist(true);
1195
1196         WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1197              !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1198              "Distributor has extended ranges, but CPU%d doesn't\n",
1199              smp_processor_id());
1200
1201         rbase = gic_data_rdist_sgi_base();
1202
1203         /* Configure SGIs/PPIs as non-secure Group-1 */
1204         for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1205                 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1206
1207         gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1208
1209         /* initialise system registers */
1210         gic_cpu_sys_reg_init();
1211 }
1212
1213 #ifdef CONFIG_SMP
1214
1215 #define MPIDR_TO_SGI_RS(mpidr)  (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1216 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)  ((mpidr) & ~0xFUL)
1217
1218 static int gic_starting_cpu(unsigned int cpu)
1219 {
1220         gic_cpu_init();
1221
1222         if (gic_dist_supports_lpis())
1223                 its_cpu_init();
1224
1225         return 0;
1226 }
1227
1228 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1229                                    unsigned long cluster_id)
1230 {
1231         int next_cpu, cpu = *base_cpu;
1232         unsigned long mpidr = cpu_logical_map(cpu);
1233         u16 tlist = 0;
1234
1235         while (cpu < nr_cpu_ids) {
1236                 tlist |= 1 << (mpidr & 0xf);
1237
1238                 next_cpu = cpumask_next(cpu, mask);
1239                 if (next_cpu >= nr_cpu_ids)
1240                         goto out;
1241                 cpu = next_cpu;
1242
1243                 mpidr = cpu_logical_map(cpu);
1244
1245                 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1246                         cpu--;
1247                         goto out;
1248                 }
1249         }
1250 out:
1251         *base_cpu = cpu;
1252         return tlist;
1253 }
1254
1255 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1256         (MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1257                 << ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1258
1259 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1260 {
1261         u64 val;
1262
1263         val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)     |
1264                MPIDR_TO_SGI_AFFINITY(cluster_id, 2)     |
1265                irq << ICC_SGI1R_SGI_ID_SHIFT            |
1266                MPIDR_TO_SGI_AFFINITY(cluster_id, 1)     |
1267                MPIDR_TO_SGI_RS(cluster_id)              |
1268                tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1269
1270         pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1271         gic_write_sgi1r(val);
1272 }
1273
1274 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1275 {
1276         int cpu;
1277
1278         if (WARN_ON(d->hwirq >= 16))
1279                 return;
1280
1281         /*
1282          * Ensure that stores to Normal memory are visible to the
1283          * other CPUs before issuing the IPI.
1284          */
1285         dsb(ishst);
1286
1287         for_each_cpu(cpu, mask) {
1288                 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1289                 u16 tlist;
1290
1291                 tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1292                 gic_send_sgi(cluster_id, tlist, d->hwirq);
1293         }
1294
1295         /* Force the above writes to ICC_SGI1R_EL1 to be executed */
1296         isb();
1297 }
1298
1299 static void __init gic_smp_init(void)
1300 {
1301         struct irq_fwspec sgi_fwspec = {
1302                 .fwnode         = gic_data.fwnode,
1303                 .param_count    = 1,
1304         };
1305         int base_sgi;
1306
1307         cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1308                                   "irqchip/arm/gicv3:starting",
1309                                   gic_starting_cpu, NULL);
1310
1311         /* Register all 8 non-secure SGIs */
1312         base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1313                                            NUMA_NO_NODE, &sgi_fwspec,
1314                                            false, NULL);
1315         if (WARN_ON(base_sgi <= 0))
1316                 return;
1317
1318         set_smp_ipi_range(base_sgi, 8);
1319 }
1320
1321 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1322                             bool force)
1323 {
1324         unsigned int cpu;
1325         u32 offset, index;
1326         void __iomem *reg;
1327         int enabled;
1328         u64 val;
1329
1330         if (force)
1331                 cpu = cpumask_first(mask_val);
1332         else
1333                 cpu = cpumask_any_and(mask_val, cpu_online_mask);
1334
1335         if (cpu >= nr_cpu_ids)
1336                 return -EINVAL;
1337
1338         if (gic_irq_in_rdist(d))
1339                 return -EINVAL;
1340
1341         /* If interrupt was enabled, disable it first */
1342         enabled = gic_peek_irq(d, GICD_ISENABLER);
1343         if (enabled)
1344                 gic_mask_irq(d);
1345
1346         offset = convert_offset_index(d, GICD_IROUTER, &index);
1347         reg = gic_dist_base(d) + offset + (index * 8);
1348         val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1349
1350         gic_write_irouter(val, reg);
1351
1352         /*
1353          * If the interrupt was enabled, enabled it again. Otherwise,
1354          * just wait for the distributor to have digested our changes.
1355          */
1356         if (enabled)
1357                 gic_unmask_irq(d);
1358
1359         irq_data_update_effective_affinity(d, cpumask_of(cpu));
1360
1361         return IRQ_SET_MASK_OK_DONE;
1362 }
1363 #else
1364 #define gic_set_affinity        NULL
1365 #define gic_ipi_send_mask       NULL
1366 #define gic_smp_init()          do { } while(0)
1367 #endif
1368
1369 static int gic_retrigger(struct irq_data *data)
1370 {
1371         return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1372 }
1373
1374 #ifdef CONFIG_CPU_PM
1375 static int gic_cpu_pm_notifier(struct notifier_block *self,
1376                                unsigned long cmd, void *v)
1377 {
1378         if (cmd == CPU_PM_EXIT) {
1379                 if (gic_dist_security_disabled())
1380                         gic_enable_redist(true);
1381                 gic_cpu_sys_reg_init();
1382         } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1383                 gic_write_grpen1(0);
1384                 gic_enable_redist(false);
1385         }
1386         return NOTIFY_OK;
1387 }
1388
1389 static struct notifier_block gic_cpu_pm_notifier_block = {
1390         .notifier_call = gic_cpu_pm_notifier,
1391 };
1392
1393 static void gic_cpu_pm_init(void)
1394 {
1395         cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1396 }
1397
1398 #else
1399 static inline void gic_cpu_pm_init(void) { }
1400 #endif /* CONFIG_CPU_PM */
1401
1402 static struct irq_chip gic_chip = {
1403         .name                   = "GICv3",
1404         .irq_mask               = gic_mask_irq,
1405         .irq_unmask             = gic_unmask_irq,
1406         .irq_eoi                = gic_eoi_irq,
1407         .irq_set_type           = gic_set_type,
1408         .irq_set_affinity       = gic_set_affinity,
1409         .irq_retrigger          = gic_retrigger,
1410         .irq_get_irqchip_state  = gic_irq_get_irqchip_state,
1411         .irq_set_irqchip_state  = gic_irq_set_irqchip_state,
1412         .irq_nmi_setup          = gic_irq_nmi_setup,
1413         .irq_nmi_teardown       = gic_irq_nmi_teardown,
1414         .ipi_send_mask          = gic_ipi_send_mask,
1415         .flags                  = IRQCHIP_SET_TYPE_MASKED |
1416                                   IRQCHIP_SKIP_SET_WAKE |
1417                                   IRQCHIP_MASK_ON_SUSPEND,
1418 };
1419
1420 static struct irq_chip gic_eoimode1_chip = {
1421         .name                   = "GICv3",
1422         .irq_mask               = gic_eoimode1_mask_irq,
1423         .irq_unmask             = gic_unmask_irq,
1424         .irq_eoi                = gic_eoimode1_eoi_irq,
1425         .irq_set_type           = gic_set_type,
1426         .irq_set_affinity       = gic_set_affinity,
1427         .irq_retrigger          = gic_retrigger,
1428         .irq_get_irqchip_state  = gic_irq_get_irqchip_state,
1429         .irq_set_irqchip_state  = gic_irq_set_irqchip_state,
1430         .irq_set_vcpu_affinity  = gic_irq_set_vcpu_affinity,
1431         .irq_nmi_setup          = gic_irq_nmi_setup,
1432         .irq_nmi_teardown       = gic_irq_nmi_teardown,
1433         .ipi_send_mask          = gic_ipi_send_mask,
1434         .flags                  = IRQCHIP_SET_TYPE_MASKED |
1435                                   IRQCHIP_SKIP_SET_WAKE |
1436                                   IRQCHIP_MASK_ON_SUSPEND,
1437 };
1438
1439 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1440                               irq_hw_number_t hw)
1441 {
1442         struct irq_chip *chip = &gic_chip;
1443         struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1444
1445         if (static_branch_likely(&supports_deactivate_key))
1446                 chip = &gic_eoimode1_chip;
1447
1448         switch (__get_intid_range(hw)) {
1449         case SGI_RANGE:
1450         case PPI_RANGE:
1451         case EPPI_RANGE:
1452                 irq_set_percpu_devid(irq);
1453                 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1454                                     handle_percpu_devid_irq, NULL, NULL);
1455                 break;
1456
1457         case SPI_RANGE:
1458         case ESPI_RANGE:
1459                 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1460                                     handle_fasteoi_irq, NULL, NULL);
1461                 irq_set_probe(irq);
1462                 irqd_set_single_target(irqd);
1463                 break;
1464
1465         case LPI_RANGE:
1466                 if (!gic_dist_supports_lpis())
1467                         return -EPERM;
1468                 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1469                                     handle_fasteoi_irq, NULL, NULL);
1470                 break;
1471
1472         default:
1473                 return -EPERM;
1474         }
1475
1476         /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1477         irqd_set_handle_enforce_irqctx(irqd);
1478         return 0;
1479 }
1480
1481 static int gic_irq_domain_translate(struct irq_domain *d,
1482                                     struct irq_fwspec *fwspec,
1483                                     unsigned long *hwirq,
1484                                     unsigned int *type)
1485 {
1486         if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1487                 *hwirq = fwspec->param[0];
1488                 *type = IRQ_TYPE_EDGE_RISING;
1489                 return 0;
1490         }
1491
1492         if (is_of_node(fwspec->fwnode)) {
1493                 if (fwspec->param_count < 3)
1494                         return -EINVAL;
1495
1496                 switch (fwspec->param[0]) {
1497                 case 0:                 /* SPI */
1498                         *hwirq = fwspec->param[1] + 32;
1499                         break;
1500                 case 1:                 /* PPI */
1501                         *hwirq = fwspec->param[1] + 16;
1502                         break;
1503                 case 2:                 /* ESPI */
1504                         *hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1505                         break;
1506                 case 3:                 /* EPPI */
1507                         *hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1508                         break;
1509                 case GIC_IRQ_TYPE_LPI:  /* LPI */
1510                         *hwirq = fwspec->param[1];
1511                         break;
1512                 case GIC_IRQ_TYPE_PARTITION:
1513                         *hwirq = fwspec->param[1];
1514                         if (fwspec->param[1] >= 16)
1515                                 *hwirq += EPPI_BASE_INTID - 16;
1516                         else
1517                                 *hwirq += 16;
1518                         break;
1519                 default:
1520                         return -EINVAL;
1521                 }
1522
1523                 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1524
1525                 /*
1526                  * Make it clear that broken DTs are... broken.
1527                  * Partitioned PPIs are an unfortunate exception.
1528                  */
1529                 WARN_ON(*type == IRQ_TYPE_NONE &&
1530                         fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1531                 return 0;
1532         }
1533
1534         if (is_fwnode_irqchip(fwspec->fwnode)) {
1535                 if(fwspec->param_count != 2)
1536                         return -EINVAL;
1537
1538                 if (fwspec->param[0] < 16) {
1539                         pr_err(FW_BUG "Illegal GSI%d translation request\n",
1540                                fwspec->param[0]);
1541                         return -EINVAL;
1542                 }
1543
1544                 *hwirq = fwspec->param[0];
1545                 *type = fwspec->param[1];
1546
1547                 WARN_ON(*type == IRQ_TYPE_NONE);
1548                 return 0;
1549         }
1550
1551         return -EINVAL;
1552 }
1553
1554 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1555                                 unsigned int nr_irqs, void *arg)
1556 {
1557         int i, ret;
1558         irq_hw_number_t hwirq;
1559         unsigned int type = IRQ_TYPE_NONE;
1560         struct irq_fwspec *fwspec = arg;
1561
1562         ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1563         if (ret)
1564                 return ret;
1565
1566         for (i = 0; i < nr_irqs; i++) {
1567                 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1568                 if (ret)
1569                         return ret;
1570         }
1571
1572         return 0;
1573 }
1574
1575 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1576                                 unsigned int nr_irqs)
1577 {
1578         int i;
1579
1580         for (i = 0; i < nr_irqs; i++) {
1581                 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1582                 irq_set_handler(virq + i, NULL);
1583                 irq_domain_reset_irq_data(d);
1584         }
1585 }
1586
1587 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1588                                       irq_hw_number_t hwirq)
1589 {
1590         enum gic_intid_range range;
1591
1592         if (!gic_data.ppi_descs)
1593                 return false;
1594
1595         if (!is_of_node(fwspec->fwnode))
1596                 return false;
1597
1598         if (fwspec->param_count < 4 || !fwspec->param[3])
1599                 return false;
1600
1601         range = __get_intid_range(hwirq);
1602         if (range != PPI_RANGE && range != EPPI_RANGE)
1603                 return false;
1604
1605         return true;
1606 }
1607
1608 static int gic_irq_domain_select(struct irq_domain *d,
1609                                  struct irq_fwspec *fwspec,
1610                                  enum irq_domain_bus_token bus_token)
1611 {
1612         unsigned int type, ret, ppi_idx;
1613         irq_hw_number_t hwirq;
1614
1615         /* Not for us */
1616         if (fwspec->fwnode != d->fwnode)
1617                 return 0;
1618
1619         /* If this is not DT, then we have a single domain */
1620         if (!is_of_node(fwspec->fwnode))
1621                 return 1;
1622
1623         ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1624         if (WARN_ON_ONCE(ret))
1625                 return 0;
1626
1627         if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1628                 return d == gic_data.domain;
1629
1630         /*
1631          * If this is a PPI and we have a 4th (non-null) parameter,
1632          * then we need to match the partition domain.
1633          */
1634         ppi_idx = __gic_get_ppi_index(hwirq);
1635         return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1636 }
1637
1638 static const struct irq_domain_ops gic_irq_domain_ops = {
1639         .translate = gic_irq_domain_translate,
1640         .alloc = gic_irq_domain_alloc,
1641         .free = gic_irq_domain_free,
1642         .select = gic_irq_domain_select,
1643 };
1644
1645 static int partition_domain_translate(struct irq_domain *d,
1646                                       struct irq_fwspec *fwspec,
1647                                       unsigned long *hwirq,
1648                                       unsigned int *type)
1649 {
1650         unsigned long ppi_intid;
1651         struct device_node *np;
1652         unsigned int ppi_idx;
1653         int ret;
1654
1655         if (!gic_data.ppi_descs)
1656                 return -ENOMEM;
1657
1658         np = of_find_node_by_phandle(fwspec->param[3]);
1659         if (WARN_ON(!np))
1660                 return -EINVAL;
1661
1662         ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1663         if (WARN_ON_ONCE(ret))
1664                 return 0;
1665
1666         ppi_idx = __gic_get_ppi_index(ppi_intid);
1667         ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1668                                      of_node_to_fwnode(np));
1669         if (ret < 0)
1670                 return ret;
1671
1672         *hwirq = ret;
1673         *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1674
1675         return 0;
1676 }
1677
1678 static const struct irq_domain_ops partition_domain_ops = {
1679         .translate = partition_domain_translate,
1680         .select = gic_irq_domain_select,
1681 };
1682
1683 static bool gic_enable_quirk_msm8996(void *data)
1684 {
1685         struct gic_chip_data *d = data;
1686
1687         d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1688
1689         return true;
1690 }
1691
1692 static bool gic_enable_quirk_cavium_38539(void *data)
1693 {
1694         struct gic_chip_data *d = data;
1695
1696         d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1697
1698         return true;
1699 }
1700
1701 static bool gic_enable_quirk_hip06_07(void *data)
1702 {
1703         struct gic_chip_data *d = data;
1704
1705         /*
1706          * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1707          * not being an actual ARM implementation). The saving grace is
1708          * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1709          * HIP07 doesn't even have a proper IIDR, and still pretends to
1710          * have ESPI. In both cases, put them right.
1711          */
1712         if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1713                 /* Zero both ESPI and the RES0 field next to it... */
1714                 d->rdists.gicd_typer &= ~GENMASK(9, 8);
1715                 return true;
1716         }
1717
1718         return false;
1719 }
1720
1721 static const struct gic_quirk gic_quirks[] = {
1722         {
1723                 .desc   = "GICv3: Qualcomm MSM8996 broken firmware",
1724                 .compatible = "qcom,msm8996-gic-v3",
1725                 .init   = gic_enable_quirk_msm8996,
1726         },
1727         {
1728                 .desc   = "GICv3: HIP06 erratum 161010803",
1729                 .iidr   = 0x0204043b,
1730                 .mask   = 0xffffffff,
1731                 .init   = gic_enable_quirk_hip06_07,
1732         },
1733         {
1734                 .desc   = "GICv3: HIP07 erratum 161010803",
1735                 .iidr   = 0x00000000,
1736                 .mask   = 0xffffffff,
1737                 .init   = gic_enable_quirk_hip06_07,
1738         },
1739         {
1740                 /*
1741                  * Reserved register accesses generate a Synchronous
1742                  * External Abort. This erratum applies to:
1743                  * - ThunderX: CN88xx
1744                  * - OCTEON TX: CN83xx, CN81xx
1745                  * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1746                  */
1747                 .desc   = "GICv3: Cavium erratum 38539",
1748                 .iidr   = 0xa000034c,
1749                 .mask   = 0xe8f00fff,
1750                 .init   = gic_enable_quirk_cavium_38539,
1751         },
1752         {
1753         }
1754 };
1755
1756 static void gic_enable_nmi_support(void)
1757 {
1758         int i;
1759
1760         if (!gic_prio_masking_enabled())
1761                 return;
1762
1763         ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1764         if (!ppi_nmi_refs)
1765                 return;
1766
1767         for (i = 0; i < gic_data.ppi_nr; i++)
1768                 refcount_set(&ppi_nmi_refs[i], 0);
1769
1770         /*
1771          * Linux itself doesn't use 1:N distribution, so has no need to
1772          * set PMHE. The only reason to have it set is if EL3 requires it
1773          * (and we can't change it).
1774          */
1775         if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1776                 static_branch_enable(&gic_pmr_sync);
1777
1778         pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1779                 static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1780
1781         /*
1782          * How priority values are used by the GIC depends on two things:
1783          * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1784          * and if Group 0 interrupts can be delivered to Linux in the non-secure
1785          * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1786          * ICC_PMR_EL1 register and the priority that software assigns to
1787          * interrupts:
1788          *
1789          * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1790          * -----------------------------------------------------------
1791          *      1       |      -      |  unchanged  |    unchanged
1792          * -----------------------------------------------------------
1793          *      0       |      1      |  non-secure |    non-secure
1794          * -----------------------------------------------------------
1795          *      0       |      0      |  unchanged  |    non-secure
1796          *
1797          * where non-secure means that the value is right-shifted by one and the
1798          * MSB bit set, to make it fit in the non-secure priority range.
1799          *
1800          * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1801          * are both either modified or unchanged, we can use the same set of
1802          * priorities.
1803          *
1804          * In the last case, where only the interrupt priorities are modified to
1805          * be in the non-secure range, we use a different PMR value to mask IRQs
1806          * and the rest of the values that we use remain unchanged.
1807          */
1808         if (gic_has_group0() && !gic_dist_security_disabled())
1809                 static_branch_enable(&gic_nonsecure_priorities);
1810
1811         static_branch_enable(&supports_pseudo_nmis);
1812
1813         if (static_branch_likely(&supports_deactivate_key))
1814                 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1815         else
1816                 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1817 }
1818
1819 static int __init gic_init_bases(void __iomem *dist_base,
1820                                  struct redist_region *rdist_regs,
1821                                  u32 nr_redist_regions,
1822                                  u64 redist_stride,
1823                                  struct fwnode_handle *handle)
1824 {
1825         u32 typer;
1826         int err;
1827
1828         if (!is_hyp_mode_available())
1829                 static_branch_disable(&supports_deactivate_key);
1830
1831         if (static_branch_likely(&supports_deactivate_key))
1832                 pr_info("GIC: Using split EOI/Deactivate mode\n");
1833
1834         gic_data.fwnode = handle;
1835         gic_data.dist_base = dist_base;
1836         gic_data.redist_regions = rdist_regs;
1837         gic_data.nr_redist_regions = nr_redist_regions;
1838         gic_data.redist_stride = redist_stride;
1839
1840         /*
1841          * Find out how many interrupts are supported.
1842          */
1843         typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1844         gic_data.rdists.gicd_typer = typer;
1845
1846         gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1847                           gic_quirks, &gic_data);
1848
1849         pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1850         pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1851
1852         /*
1853          * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1854          * architecture spec (which says that reserved registers are RES0).
1855          */
1856         if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1857                 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1858
1859         gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1860                                                  &gic_data);
1861         gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1862         gic_data.rdists.has_rvpeid = true;
1863         gic_data.rdists.has_vlpis = true;
1864         gic_data.rdists.has_direct_lpi = true;
1865         gic_data.rdists.has_vpend_valid_dirty = true;
1866
1867         if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1868                 err = -ENOMEM;
1869                 goto out_free;
1870         }
1871
1872         irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1873
1874         gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1875
1876         if (typer & GICD_TYPER_MBIS) {
1877                 err = mbi_init(handle, gic_data.domain);
1878                 if (err)
1879                         pr_err("Failed to initialize MBIs\n");
1880         }
1881
1882         set_handle_irq(gic_handle_irq);
1883
1884         gic_update_rdist_properties();
1885
1886         gic_dist_init();
1887         gic_cpu_init();
1888         gic_smp_init();
1889         gic_cpu_pm_init();
1890
1891         if (gic_dist_supports_lpis()) {
1892                 its_init(handle, &gic_data.rdists, gic_data.domain);
1893                 its_cpu_init();
1894                 its_lpi_memreserve_init();
1895         } else {
1896                 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1897                         gicv2m_init(handle, gic_data.domain);
1898         }
1899
1900         gic_enable_nmi_support();
1901
1902         return 0;
1903
1904 out_free:
1905         if (gic_data.domain)
1906                 irq_domain_remove(gic_data.domain);
1907         free_percpu(gic_data.rdists.rdist);
1908         return err;
1909 }
1910
1911 static int __init gic_validate_dist_version(void __iomem *dist_base)
1912 {
1913         u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1914
1915         if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1916                 return -ENODEV;
1917
1918         return 0;
1919 }
1920
1921 /* Create all possible partitions at boot time */
1922 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1923 {
1924         struct device_node *parts_node, *child_part;
1925         int part_idx = 0, i;
1926         int nr_parts;
1927         struct partition_affinity *parts;
1928
1929         parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1930         if (!parts_node)
1931                 return;
1932
1933         gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1934         if (!gic_data.ppi_descs)
1935                 goto out_put_node;
1936
1937         nr_parts = of_get_child_count(parts_node);
1938
1939         if (!nr_parts)
1940                 goto out_put_node;
1941
1942         parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1943         if (WARN_ON(!parts))
1944                 goto out_put_node;
1945
1946         for_each_child_of_node(parts_node, child_part) {
1947                 struct partition_affinity *part;
1948                 int n;
1949
1950                 part = &parts[part_idx];
1951
1952                 part->partition_id = of_node_to_fwnode(child_part);
1953
1954                 pr_info("GIC: PPI partition %pOFn[%d] { ",
1955                         child_part, part_idx);
1956
1957                 n = of_property_count_elems_of_size(child_part, "affinity",
1958                                                     sizeof(u32));
1959                 WARN_ON(n <= 0);
1960
1961                 for (i = 0; i < n; i++) {
1962                         int err, cpu;
1963                         u32 cpu_phandle;
1964                         struct device_node *cpu_node;
1965
1966                         err = of_property_read_u32_index(child_part, "affinity",
1967                                                          i, &cpu_phandle);
1968                         if (WARN_ON(err))
1969                                 continue;
1970
1971                         cpu_node = of_find_node_by_phandle(cpu_phandle);
1972                         if (WARN_ON(!cpu_node))
1973                                 continue;
1974
1975                         cpu = of_cpu_node_to_id(cpu_node);
1976                         if (WARN_ON(cpu < 0)) {
1977                                 of_node_put(cpu_node);
1978                                 continue;
1979                         }
1980
1981                         pr_cont("%pOF[%d] ", cpu_node, cpu);
1982
1983                         cpumask_set_cpu(cpu, &part->mask);
1984                         of_node_put(cpu_node);
1985                 }
1986
1987                 pr_cont("}\n");
1988                 part_idx++;
1989         }
1990
1991         for (i = 0; i < gic_data.ppi_nr; i++) {
1992                 unsigned int irq;
1993                 struct partition_desc *desc;
1994                 struct irq_fwspec ppi_fwspec = {
1995                         .fwnode         = gic_data.fwnode,
1996                         .param_count    = 3,
1997                         .param          = {
1998                                 [0]     = GIC_IRQ_TYPE_PARTITION,
1999                                 [1]     = i,
2000                                 [2]     = IRQ_TYPE_NONE,
2001                         },
2002                 };
2003
2004                 irq = irq_create_fwspec_mapping(&ppi_fwspec);
2005                 if (WARN_ON(!irq))
2006                         continue;
2007                 desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2008                                              irq, &partition_domain_ops);
2009                 if (WARN_ON(!desc))
2010                         continue;
2011
2012                 gic_data.ppi_descs[i] = desc;
2013         }
2014
2015 out_put_node:
2016         of_node_put(parts_node);
2017 }
2018
2019 static void __init gic_of_setup_kvm_info(struct device_node *node)
2020 {
2021         int ret;
2022         struct resource r;
2023         u32 gicv_idx;
2024
2025         gic_v3_kvm_info.type = GIC_V3;
2026
2027         gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2028         if (!gic_v3_kvm_info.maint_irq)
2029                 return;
2030
2031         if (of_property_read_u32(node, "#redistributor-regions",
2032                                  &gicv_idx))
2033                 gicv_idx = 1;
2034
2035         gicv_idx += 3;  /* Also skip GICD, GICC, GICH */
2036         ret = of_address_to_resource(node, gicv_idx, &r);
2037         if (!ret)
2038                 gic_v3_kvm_info.vcpu = r;
2039
2040         gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2041         gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2042         vgic_set_kvm_info(&gic_v3_kvm_info);
2043 }
2044
2045 static void gic_request_region(resource_size_t base, resource_size_t size,
2046                                const char *name)
2047 {
2048         if (!request_mem_region(base, size, name))
2049                 pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2050                              name, &base);
2051 }
2052
2053 static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2054                                   const char *name, struct resource *res)
2055 {
2056         void __iomem *base;
2057         int ret;
2058
2059         ret = of_address_to_resource(node, idx, res);
2060         if (ret)
2061                 return IOMEM_ERR_PTR(ret);
2062
2063         gic_request_region(res->start, resource_size(res), name);
2064         base = of_iomap(node, idx);
2065
2066         return base ?: IOMEM_ERR_PTR(-ENOMEM);
2067 }
2068
2069 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2070 {
2071         void __iomem *dist_base;
2072         struct redist_region *rdist_regs;
2073         struct resource res;
2074         u64 redist_stride;
2075         u32 nr_redist_regions;
2076         int err, i;
2077
2078         dist_base = gic_of_iomap(node, 0, "GICD", &res);
2079         if (IS_ERR(dist_base)) {
2080                 pr_err("%pOF: unable to map gic dist registers\n", node);
2081                 return PTR_ERR(dist_base);
2082         }
2083
2084         err = gic_validate_dist_version(dist_base);
2085         if (err) {
2086                 pr_err("%pOF: no distributor detected, giving up\n", node);
2087                 goto out_unmap_dist;
2088         }
2089
2090         if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2091                 nr_redist_regions = 1;
2092
2093         rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2094                              GFP_KERNEL);
2095         if (!rdist_regs) {
2096                 err = -ENOMEM;
2097                 goto out_unmap_dist;
2098         }
2099
2100         for (i = 0; i < nr_redist_regions; i++) {
2101                 rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2102                 if (IS_ERR(rdist_regs[i].redist_base)) {
2103                         pr_err("%pOF: couldn't map region %d\n", node, i);
2104                         err = -ENODEV;
2105                         goto out_unmap_rdist;
2106                 }
2107                 rdist_regs[i].phys_base = res.start;
2108         }
2109
2110         if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2111                 redist_stride = 0;
2112
2113         gic_enable_of_quirks(node, gic_quirks, &gic_data);
2114
2115         err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
2116                              redist_stride, &node->fwnode);
2117         if (err)
2118                 goto out_unmap_rdist;
2119
2120         gic_populate_ppi_partitions(node);
2121
2122         if (static_branch_likely(&supports_deactivate_key))
2123                 gic_of_setup_kvm_info(node);
2124         return 0;
2125
2126 out_unmap_rdist:
2127         for (i = 0; i < nr_redist_regions; i++)
2128                 if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2129                         iounmap(rdist_regs[i].redist_base);
2130         kfree(rdist_regs);
2131 out_unmap_dist:
2132         iounmap(dist_base);
2133         return err;
2134 }
2135
2136 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2137
2138 #ifdef CONFIG_ACPI
2139 static struct
2140 {
2141         void __iomem *dist_base;
2142         struct redist_region *redist_regs;
2143         u32 nr_redist_regions;
2144         bool single_redist;
2145         int enabled_rdists;
2146         u32 maint_irq;
2147         int maint_irq_mode;
2148         phys_addr_t vcpu_base;
2149 } acpi_data __initdata;
2150
2151 static void __init
2152 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2153 {
2154         static int count = 0;
2155
2156         acpi_data.redist_regs[count].phys_base = phys_base;
2157         acpi_data.redist_regs[count].redist_base = redist_base;
2158         acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2159         count++;
2160 }
2161
2162 static int __init
2163 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2164                            const unsigned long end)
2165 {
2166         struct acpi_madt_generic_redistributor *redist =
2167                         (struct acpi_madt_generic_redistributor *)header;
2168         void __iomem *redist_base;
2169
2170         redist_base = ioremap(redist->base_address, redist->length);
2171         if (!redist_base) {
2172                 pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2173                 return -ENOMEM;
2174         }
2175         gic_request_region(redist->base_address, redist->length, "GICR");
2176
2177         gic_acpi_register_redist(redist->base_address, redist_base);
2178         return 0;
2179 }
2180
2181 static int __init
2182 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2183                          const unsigned long end)
2184 {
2185         struct acpi_madt_generic_interrupt *gicc =
2186                                 (struct acpi_madt_generic_interrupt *)header;
2187         u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2188         u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2189         void __iomem *redist_base;
2190
2191         /* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2192         if (!(gicc->flags & ACPI_MADT_ENABLED))
2193                 return 0;
2194
2195         redist_base = ioremap(gicc->gicr_base_address, size);
2196         if (!redist_base)
2197                 return -ENOMEM;
2198         gic_request_region(gicc->gicr_base_address, size, "GICR");
2199
2200         gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2201         return 0;
2202 }
2203
2204 static int __init gic_acpi_collect_gicr_base(void)
2205 {
2206         acpi_tbl_entry_handler redist_parser;
2207         enum acpi_madt_type type;
2208
2209         if (acpi_data.single_redist) {
2210                 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2211                 redist_parser = gic_acpi_parse_madt_gicc;
2212         } else {
2213                 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2214                 redist_parser = gic_acpi_parse_madt_redist;
2215         }
2216
2217         /* Collect redistributor base addresses in GICR entries */
2218         if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2219                 return 0;
2220
2221         pr_info("No valid GICR entries exist\n");
2222         return -ENODEV;
2223 }
2224
2225 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2226                                   const unsigned long end)
2227 {
2228         /* Subtable presence means that redist exists, that's it */
2229         return 0;
2230 }
2231
2232 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2233                                       const unsigned long end)
2234 {
2235         struct acpi_madt_generic_interrupt *gicc =
2236                                 (struct acpi_madt_generic_interrupt *)header;
2237
2238         /*
2239          * If GICC is enabled and has valid gicr base address, then it means
2240          * GICR base is presented via GICC
2241          */
2242         if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2243                 acpi_data.enabled_rdists++;
2244                 return 0;
2245         }
2246
2247         /*
2248          * It's perfectly valid firmware can pass disabled GICC entry, driver
2249          * should not treat as errors, skip the entry instead of probe fail.
2250          */
2251         if (!(gicc->flags & ACPI_MADT_ENABLED))
2252                 return 0;
2253
2254         return -ENODEV;
2255 }
2256
2257 static int __init gic_acpi_count_gicr_regions(void)
2258 {
2259         int count;
2260
2261         /*
2262          * Count how many redistributor regions we have. It is not allowed
2263          * to mix redistributor description, GICR and GICC subtables have to be
2264          * mutually exclusive.
2265          */
2266         count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2267                                       gic_acpi_match_gicr, 0);
2268         if (count > 0) {
2269                 acpi_data.single_redist = false;
2270                 return count;
2271         }
2272
2273         count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2274                                       gic_acpi_match_gicc, 0);
2275         if (count > 0) {
2276                 acpi_data.single_redist = true;
2277                 count = acpi_data.enabled_rdists;
2278         }
2279
2280         return count;
2281 }
2282
2283 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2284                                            struct acpi_probe_entry *ape)
2285 {
2286         struct acpi_madt_generic_distributor *dist;
2287         int count;
2288
2289         dist = (struct acpi_madt_generic_distributor *)header;
2290         if (dist->version != ape->driver_data)
2291                 return false;
2292
2293         /* We need to do that exercise anyway, the sooner the better */
2294         count = gic_acpi_count_gicr_regions();
2295         if (count <= 0)
2296                 return false;
2297
2298         acpi_data.nr_redist_regions = count;
2299         return true;
2300 }
2301
2302 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2303                                                 const unsigned long end)
2304 {
2305         struct acpi_madt_generic_interrupt *gicc =
2306                 (struct acpi_madt_generic_interrupt *)header;
2307         int maint_irq_mode;
2308         static int first_madt = true;
2309
2310         /* Skip unusable CPUs */
2311         if (!(gicc->flags & ACPI_MADT_ENABLED))
2312                 return 0;
2313
2314         maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2315                 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2316
2317         if (first_madt) {
2318                 first_madt = false;
2319
2320                 acpi_data.maint_irq = gicc->vgic_interrupt;
2321                 acpi_data.maint_irq_mode = maint_irq_mode;
2322                 acpi_data.vcpu_base = gicc->gicv_base_address;
2323
2324                 return 0;
2325         }
2326
2327         /*
2328          * The maintenance interrupt and GICV should be the same for every CPU
2329          */
2330         if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2331             (acpi_data.maint_irq_mode != maint_irq_mode) ||
2332             (acpi_data.vcpu_base != gicc->gicv_base_address))
2333                 return -EINVAL;
2334
2335         return 0;
2336 }
2337
2338 static bool __init gic_acpi_collect_virt_info(void)
2339 {
2340         int count;
2341
2342         count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2343                                       gic_acpi_parse_virt_madt_gicc, 0);
2344
2345         return (count > 0);
2346 }
2347
2348 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2349 #define ACPI_GICV2_VCTRL_MEM_SIZE       (SZ_4K)
2350 #define ACPI_GICV2_VCPU_MEM_SIZE        (SZ_8K)
2351
2352 static void __init gic_acpi_setup_kvm_info(void)
2353 {
2354         int irq;
2355
2356         if (!gic_acpi_collect_virt_info()) {
2357                 pr_warn("Unable to get hardware information used for virtualization\n");
2358                 return;
2359         }
2360
2361         gic_v3_kvm_info.type = GIC_V3;
2362
2363         irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2364                                 acpi_data.maint_irq_mode,
2365                                 ACPI_ACTIVE_HIGH);
2366         if (irq <= 0)
2367                 return;
2368
2369         gic_v3_kvm_info.maint_irq = irq;
2370
2371         if (acpi_data.vcpu_base) {
2372                 struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2373
2374                 vcpu->flags = IORESOURCE_MEM;
2375                 vcpu->start = acpi_data.vcpu_base;
2376                 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2377         }
2378
2379         gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2380         gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2381         vgic_set_kvm_info(&gic_v3_kvm_info);
2382 }
2383
2384 static struct fwnode_handle *gsi_domain_handle;
2385
2386 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2387 {
2388         return gsi_domain_handle;
2389 }
2390
2391 static int __init
2392 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2393 {
2394         struct acpi_madt_generic_distributor *dist;
2395         size_t size;
2396         int i, err;
2397
2398         /* Get distributor base address */
2399         dist = (struct acpi_madt_generic_distributor *)header;
2400         acpi_data.dist_base = ioremap(dist->base_address,
2401                                       ACPI_GICV3_DIST_MEM_SIZE);
2402         if (!acpi_data.dist_base) {
2403                 pr_err("Unable to map GICD registers\n");
2404                 return -ENOMEM;
2405         }
2406         gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2407
2408         err = gic_validate_dist_version(acpi_data.dist_base);
2409         if (err) {
2410                 pr_err("No distributor detected at @%p, giving up\n",
2411                        acpi_data.dist_base);
2412                 goto out_dist_unmap;
2413         }
2414
2415         size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2416         acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2417         if (!acpi_data.redist_regs) {
2418                 err = -ENOMEM;
2419                 goto out_dist_unmap;
2420         }
2421
2422         err = gic_acpi_collect_gicr_base();
2423         if (err)
2424                 goto out_redist_unmap;
2425
2426         gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2427         if (!gsi_domain_handle) {
2428                 err = -ENOMEM;
2429                 goto out_redist_unmap;
2430         }
2431
2432         err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2433                              acpi_data.nr_redist_regions, 0, gsi_domain_handle);
2434         if (err)
2435                 goto out_fwhandle_free;
2436
2437         acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2438
2439         if (static_branch_likely(&supports_deactivate_key))
2440                 gic_acpi_setup_kvm_info();
2441
2442         return 0;
2443
2444 out_fwhandle_free:
2445         irq_domain_free_fwnode(gsi_domain_handle);
2446 out_redist_unmap:
2447         for (i = 0; i < acpi_data.nr_redist_regions; i++)
2448                 if (acpi_data.redist_regs[i].redist_base)
2449                         iounmap(acpi_data.redist_regs[i].redist_base);
2450         kfree(acpi_data.redist_regs);
2451 out_dist_unmap:
2452         iounmap(acpi_data.dist_base);
2453         return err;
2454 }
2455 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2456                      acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2457                      gic_acpi_init);
2458 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2459                      acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2460                      gic_acpi_init);
2461 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2462                      acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2463                      gic_acpi_init);
2464 #endif