Merge branches 'acpi-scan', 'acpi-resource', 'acpi-apei', 'acpi-extlog' and 'acpi...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / nouveau / nouveau_dmem.c
1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "nouveau_dmem.h"
23 #include "nouveau_drv.h"
24 #include "nouveau_chan.h"
25 #include "nouveau_dma.h"
26 #include "nouveau_mem.h"
27 #include "nouveau_bo.h"
28 #include "nouveau_svm.h"
29
30 #include <nvif/class.h>
31 #include <nvif/object.h>
32 #include <nvif/push906f.h>
33 #include <nvif/if000c.h>
34 #include <nvif/if500b.h>
35 #include <nvif/if900b.h>
36 #include <nvif/if000c.h>
37
38 #include <nvhw/class/cla0b5.h>
39
40 #include <linux/sched/mm.h>
41 #include <linux/hmm.h>
42 #include <linux/memremap.h>
43 #include <linux/migrate.h>
44
45 /*
46  * FIXME: this is ugly right now we are using TTM to allocate vram and we pin
47  * it in vram while in use. We likely want to overhaul memory management for
48  * nouveau to be more page like (not necessarily with system page size but a
49  * bigger page size) at lowest level and have some shim layer on top that would
50  * provide the same functionality as TTM.
51  */
52 #define DMEM_CHUNK_SIZE (2UL << 20)
53 #define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT)
54
55 enum nouveau_aper {
56         NOUVEAU_APER_VIRT,
57         NOUVEAU_APER_VRAM,
58         NOUVEAU_APER_HOST,
59 };
60
61 typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages,
62                                       enum nouveau_aper, u64 dst_addr,
63                                       enum nouveau_aper, u64 src_addr);
64 typedef int (*nouveau_clear_page_t)(struct nouveau_drm *drm, u32 length,
65                                       enum nouveau_aper, u64 dst_addr);
66
67 struct nouveau_dmem_chunk {
68         struct list_head list;
69         struct nouveau_bo *bo;
70         struct nouveau_drm *drm;
71         unsigned long callocated;
72         struct dev_pagemap pagemap;
73 };
74
75 struct nouveau_dmem_migrate {
76         nouveau_migrate_copy_t copy_func;
77         nouveau_clear_page_t clear_func;
78         struct nouveau_channel *chan;
79 };
80
81 struct nouveau_dmem {
82         struct nouveau_drm *drm;
83         struct nouveau_dmem_migrate migrate;
84         struct list_head chunks;
85         struct mutex mutex;
86         struct page *free_pages;
87         spinlock_t lock;
88 };
89
90 static struct nouveau_dmem_chunk *nouveau_page_to_chunk(struct page *page)
91 {
92         return container_of(page->pgmap, struct nouveau_dmem_chunk, pagemap);
93 }
94
95 static struct nouveau_drm *page_to_drm(struct page *page)
96 {
97         struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
98
99         return chunk->drm;
100 }
101
102 unsigned long nouveau_dmem_page_addr(struct page *page)
103 {
104         struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
105         unsigned long off = (page_to_pfn(page) << PAGE_SHIFT) -
106                                 chunk->pagemap.range.start;
107
108         return chunk->bo->offset + off;
109 }
110
111 static void nouveau_dmem_page_free(struct page *page)
112 {
113         struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
114         struct nouveau_dmem *dmem = chunk->drm->dmem;
115
116         spin_lock(&dmem->lock);
117         page->zone_device_data = dmem->free_pages;
118         dmem->free_pages = page;
119
120         WARN_ON(!chunk->callocated);
121         chunk->callocated--;
122         /*
123          * FIXME when chunk->callocated reach 0 we should add the chunk to
124          * a reclaim list so that it can be freed in case of memory pressure.
125          */
126         spin_unlock(&dmem->lock);
127 }
128
129 static void nouveau_dmem_fence_done(struct nouveau_fence **fence)
130 {
131         if (fence) {
132                 nouveau_fence_wait(*fence, true, false);
133                 nouveau_fence_unref(fence);
134         } else {
135                 /*
136                  * FIXME wait for channel to be IDLE before calling finalizing
137                  * the hmem object.
138                  */
139         }
140 }
141
142 static int nouveau_dmem_copy_one(struct nouveau_drm *drm, struct page *spage,
143                                 struct page *dpage, dma_addr_t *dma_addr)
144 {
145         struct device *dev = drm->dev->dev;
146
147         lock_page(dpage);
148
149         *dma_addr = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
150         if (dma_mapping_error(dev, *dma_addr))
151                 return -EIO;
152
153         if (drm->dmem->migrate.copy_func(drm, 1, NOUVEAU_APER_HOST, *dma_addr,
154                                          NOUVEAU_APER_VRAM, nouveau_dmem_page_addr(spage))) {
155                 dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
156                 return -EIO;
157         }
158
159         return 0;
160 }
161
162 static vm_fault_t nouveau_dmem_migrate_to_ram(struct vm_fault *vmf)
163 {
164         struct nouveau_drm *drm = page_to_drm(vmf->page);
165         struct nouveau_dmem *dmem = drm->dmem;
166         struct nouveau_fence *fence;
167         struct nouveau_svmm *svmm;
168         struct page *spage, *dpage;
169         unsigned long src = 0, dst = 0;
170         dma_addr_t dma_addr = 0;
171         vm_fault_t ret = 0;
172         struct migrate_vma args = {
173                 .vma            = vmf->vma,
174                 .start          = vmf->address,
175                 .end            = vmf->address + PAGE_SIZE,
176                 .src            = &src,
177                 .dst            = &dst,
178                 .pgmap_owner    = drm->dev,
179                 .flags          = MIGRATE_VMA_SELECT_DEVICE_PRIVATE,
180         };
181
182         /*
183          * FIXME what we really want is to find some heuristic to migrate more
184          * than just one page on CPU fault. When such fault happens it is very
185          * likely that more surrounding page will CPU fault too.
186          */
187         if (migrate_vma_setup(&args) < 0)
188                 return VM_FAULT_SIGBUS;
189         if (!args.cpages)
190                 return 0;
191
192         spage = migrate_pfn_to_page(src);
193         if (!spage || !(src & MIGRATE_PFN_MIGRATE))
194                 goto done;
195
196         dpage = alloc_page_vma(GFP_HIGHUSER, vmf->vma, vmf->address);
197         if (!dpage)
198                 goto done;
199
200         dst = migrate_pfn(page_to_pfn(dpage));
201
202         svmm = spage->zone_device_data;
203         mutex_lock(&svmm->mutex);
204         nouveau_svmm_invalidate(svmm, args.start, args.end);
205         ret = nouveau_dmem_copy_one(drm, spage, dpage, &dma_addr);
206         mutex_unlock(&svmm->mutex);
207         if (ret) {
208                 ret = VM_FAULT_SIGBUS;
209                 goto done;
210         }
211
212         nouveau_fence_new(dmem->migrate.chan, false, &fence);
213         migrate_vma_pages(&args);
214         nouveau_dmem_fence_done(&fence);
215         dma_unmap_page(drm->dev->dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
216 done:
217         migrate_vma_finalize(&args);
218         return ret;
219 }
220
221 static const struct dev_pagemap_ops nouveau_dmem_pagemap_ops = {
222         .page_free              = nouveau_dmem_page_free,
223         .migrate_to_ram         = nouveau_dmem_migrate_to_ram,
224 };
225
226 static int
227 nouveau_dmem_chunk_alloc(struct nouveau_drm *drm, struct page **ppage)
228 {
229         struct nouveau_dmem_chunk *chunk;
230         struct resource *res;
231         struct page *page;
232         void *ptr;
233         unsigned long i, pfn_first;
234         int ret;
235
236         chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
237         if (chunk == NULL) {
238                 ret = -ENOMEM;
239                 goto out;
240         }
241
242         /* Allocate unused physical address space for device private pages. */
243         res = request_free_mem_region(&iomem_resource, DMEM_CHUNK_SIZE,
244                                       "nouveau_dmem");
245         if (IS_ERR(res)) {
246                 ret = PTR_ERR(res);
247                 goto out_free;
248         }
249
250         chunk->drm = drm;
251         chunk->pagemap.type = MEMORY_DEVICE_PRIVATE;
252         chunk->pagemap.range.start = res->start;
253         chunk->pagemap.range.end = res->end;
254         chunk->pagemap.nr_range = 1;
255         chunk->pagemap.ops = &nouveau_dmem_pagemap_ops;
256         chunk->pagemap.owner = drm->dev;
257
258         ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0,
259                              NOUVEAU_GEM_DOMAIN_VRAM, 0, 0, NULL, NULL,
260                              &chunk->bo);
261         if (ret)
262                 goto out_release;
263
264         ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false);
265         if (ret)
266                 goto out_bo_free;
267
268         ptr = memremap_pages(&chunk->pagemap, numa_node_id());
269         if (IS_ERR(ptr)) {
270                 ret = PTR_ERR(ptr);
271                 goto out_bo_unpin;
272         }
273
274         mutex_lock(&drm->dmem->mutex);
275         list_add(&chunk->list, &drm->dmem->chunks);
276         mutex_unlock(&drm->dmem->mutex);
277
278         pfn_first = chunk->pagemap.range.start >> PAGE_SHIFT;
279         page = pfn_to_page(pfn_first);
280         spin_lock(&drm->dmem->lock);
281         for (i = 0; i < DMEM_CHUNK_NPAGES - 1; ++i, ++page) {
282                 page->zone_device_data = drm->dmem->free_pages;
283                 drm->dmem->free_pages = page;
284         }
285         *ppage = page;
286         chunk->callocated++;
287         spin_unlock(&drm->dmem->lock);
288
289         NV_INFO(drm, "DMEM: registered %ldMB of device memory\n",
290                 DMEM_CHUNK_SIZE >> 20);
291
292         return 0;
293
294 out_bo_unpin:
295         nouveau_bo_unpin(chunk->bo);
296 out_bo_free:
297         nouveau_bo_ref(NULL, &chunk->bo);
298 out_release:
299         release_mem_region(chunk->pagemap.range.start, range_len(&chunk->pagemap.range));
300 out_free:
301         kfree(chunk);
302 out:
303         return ret;
304 }
305
306 static struct page *
307 nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm)
308 {
309         struct nouveau_dmem_chunk *chunk;
310         struct page *page = NULL;
311         int ret;
312
313         spin_lock(&drm->dmem->lock);
314         if (drm->dmem->free_pages) {
315                 page = drm->dmem->free_pages;
316                 drm->dmem->free_pages = page->zone_device_data;
317                 chunk = nouveau_page_to_chunk(page);
318                 chunk->callocated++;
319                 spin_unlock(&drm->dmem->lock);
320         } else {
321                 spin_unlock(&drm->dmem->lock);
322                 ret = nouveau_dmem_chunk_alloc(drm, &page);
323                 if (ret)
324                         return NULL;
325         }
326
327         zone_device_page_init(page);
328         return page;
329 }
330
331 static void
332 nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page)
333 {
334         unlock_page(page);
335         put_page(page);
336 }
337
338 void
339 nouveau_dmem_resume(struct nouveau_drm *drm)
340 {
341         struct nouveau_dmem_chunk *chunk;
342         int ret;
343
344         if (drm->dmem == NULL)
345                 return;
346
347         mutex_lock(&drm->dmem->mutex);
348         list_for_each_entry(chunk, &drm->dmem->chunks, list) {
349                 ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false);
350                 /* FIXME handle pin failure */
351                 WARN_ON(ret);
352         }
353         mutex_unlock(&drm->dmem->mutex);
354 }
355
356 void
357 nouveau_dmem_suspend(struct nouveau_drm *drm)
358 {
359         struct nouveau_dmem_chunk *chunk;
360
361         if (drm->dmem == NULL)
362                 return;
363
364         mutex_lock(&drm->dmem->mutex);
365         list_for_each_entry(chunk, &drm->dmem->chunks, list)
366                 nouveau_bo_unpin(chunk->bo);
367         mutex_unlock(&drm->dmem->mutex);
368 }
369
370 /*
371  * Evict all pages mapping a chunk.
372  */
373 static void
374 nouveau_dmem_evict_chunk(struct nouveau_dmem_chunk *chunk)
375 {
376         unsigned long i, npages = range_len(&chunk->pagemap.range) >> PAGE_SHIFT;
377         unsigned long *src_pfns, *dst_pfns;
378         dma_addr_t *dma_addrs;
379         struct nouveau_fence *fence;
380
381         src_pfns = kcalloc(npages, sizeof(*src_pfns), GFP_KERNEL);
382         dst_pfns = kcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL);
383         dma_addrs = kcalloc(npages, sizeof(*dma_addrs), GFP_KERNEL);
384
385         migrate_device_range(src_pfns, chunk->pagemap.range.start >> PAGE_SHIFT,
386                         npages);
387
388         for (i = 0; i < npages; i++) {
389                 if (src_pfns[i] & MIGRATE_PFN_MIGRATE) {
390                         struct page *dpage;
391
392                         /*
393                          * _GFP_NOFAIL because the GPU is going away and there
394                          * is nothing sensible we can do if we can't copy the
395                          * data back.
396                          */
397                         dpage = alloc_page(GFP_HIGHUSER | __GFP_NOFAIL);
398                         dst_pfns[i] = migrate_pfn(page_to_pfn(dpage));
399                         nouveau_dmem_copy_one(chunk->drm,
400                                         migrate_pfn_to_page(src_pfns[i]), dpage,
401                                         &dma_addrs[i]);
402                 }
403         }
404
405         nouveau_fence_new(chunk->drm->dmem->migrate.chan, false, &fence);
406         migrate_device_pages(src_pfns, dst_pfns, npages);
407         nouveau_dmem_fence_done(&fence);
408         migrate_device_finalize(src_pfns, dst_pfns, npages);
409         kfree(src_pfns);
410         kfree(dst_pfns);
411         for (i = 0; i < npages; i++)
412                 dma_unmap_page(chunk->drm->dev->dev, dma_addrs[i], PAGE_SIZE, DMA_BIDIRECTIONAL);
413         kfree(dma_addrs);
414 }
415
416 void
417 nouveau_dmem_fini(struct nouveau_drm *drm)
418 {
419         struct nouveau_dmem_chunk *chunk, *tmp;
420
421         if (drm->dmem == NULL)
422                 return;
423
424         mutex_lock(&drm->dmem->mutex);
425
426         list_for_each_entry_safe(chunk, tmp, &drm->dmem->chunks, list) {
427                 nouveau_dmem_evict_chunk(chunk);
428                 nouveau_bo_unpin(chunk->bo);
429                 nouveau_bo_ref(NULL, &chunk->bo);
430                 WARN_ON(chunk->callocated);
431                 list_del(&chunk->list);
432                 memunmap_pages(&chunk->pagemap);
433                 release_mem_region(chunk->pagemap.range.start,
434                                    range_len(&chunk->pagemap.range));
435                 kfree(chunk);
436         }
437
438         mutex_unlock(&drm->dmem->mutex);
439 }
440
441 static int
442 nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages,
443                     enum nouveau_aper dst_aper, u64 dst_addr,
444                     enum nouveau_aper src_aper, u64 src_addr)
445 {
446         struct nvif_push *push = drm->dmem->migrate.chan->chan.push;
447         u32 launch_dma = 0;
448         int ret;
449
450         ret = PUSH_WAIT(push, 13);
451         if (ret)
452                 return ret;
453
454         if (src_aper != NOUVEAU_APER_VIRT) {
455                 switch (src_aper) {
456                 case NOUVEAU_APER_VRAM:
457                         PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE,
458                                   NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, LOCAL_FB));
459                         break;
460                 case NOUVEAU_APER_HOST:
461                         PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE,
462                                   NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, COHERENT_SYSMEM));
463                         break;
464                 default:
465                         return -EINVAL;
466                 }
467
468                 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, SRC_TYPE, PHYSICAL);
469         }
470
471         if (dst_aper != NOUVEAU_APER_VIRT) {
472                 switch (dst_aper) {
473                 case NOUVEAU_APER_VRAM:
474                         PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
475                                   NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB));
476                         break;
477                 case NOUVEAU_APER_HOST:
478                         PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
479                                   NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM));
480                         break;
481                 default:
482                         return -EINVAL;
483                 }
484
485                 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL);
486         }
487
488         PUSH_MTHD(push, NVA0B5, OFFSET_IN_UPPER,
489                   NVVAL(NVA0B5, OFFSET_IN_UPPER, UPPER, upper_32_bits(src_addr)),
490
491                                 OFFSET_IN_LOWER, lower_32_bits(src_addr),
492
493                                 OFFSET_OUT_UPPER,
494                   NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)),
495
496                                 OFFSET_OUT_LOWER, lower_32_bits(dst_addr),
497                                 PITCH_IN, PAGE_SIZE,
498                                 PITCH_OUT, PAGE_SIZE,
499                                 LINE_LENGTH_IN, PAGE_SIZE,
500                                 LINE_COUNT, npages);
501
502         PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma |
503                   NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) |
504                   NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) |
505                   NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) |
506                   NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) |
507                   NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) |
508                   NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) |
509                   NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, TRUE) |
510                   NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, FALSE) |
511                   NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING));
512         return 0;
513 }
514
515 static int
516 nvc0b5_migrate_clear(struct nouveau_drm *drm, u32 length,
517                      enum nouveau_aper dst_aper, u64 dst_addr)
518 {
519         struct nvif_push *push = drm->dmem->migrate.chan->chan.push;
520         u32 launch_dma = 0;
521         int ret;
522
523         ret = PUSH_WAIT(push, 12);
524         if (ret)
525                 return ret;
526
527         switch (dst_aper) {
528         case NOUVEAU_APER_VRAM:
529                 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
530                           NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB));
531                 break;
532         case NOUVEAU_APER_HOST:
533                 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
534                           NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM));
535                 break;
536         default:
537                 return -EINVAL;
538         }
539
540         launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL);
541
542         PUSH_MTHD(push, NVA0B5, SET_REMAP_CONST_A, 0,
543                                 SET_REMAP_CONST_B, 0,
544
545                                 SET_REMAP_COMPONENTS,
546                   NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_X, CONST_A) |
547                   NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_Y, CONST_B) |
548                   NVDEF(NVA0B5, SET_REMAP_COMPONENTS, COMPONENT_SIZE, FOUR) |
549                   NVDEF(NVA0B5, SET_REMAP_COMPONENTS, NUM_DST_COMPONENTS, TWO));
550
551         PUSH_MTHD(push, NVA0B5, OFFSET_OUT_UPPER,
552                   NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)),
553
554                                 OFFSET_OUT_LOWER, lower_32_bits(dst_addr));
555
556         PUSH_MTHD(push, NVA0B5, LINE_LENGTH_IN, length >> 3);
557
558         PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma |
559                   NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) |
560                   NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) |
561                   NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) |
562                   NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) |
563                   NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) |
564                   NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) |
565                   NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, FALSE) |
566                   NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, TRUE) |
567                   NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING));
568         return 0;
569 }
570
571 static int
572 nouveau_dmem_migrate_init(struct nouveau_drm *drm)
573 {
574         switch (drm->ttm.copy.oclass) {
575         case PASCAL_DMA_COPY_A:
576         case PASCAL_DMA_COPY_B:
577         case  VOLTA_DMA_COPY_A:
578         case TURING_DMA_COPY_A:
579                 drm->dmem->migrate.copy_func = nvc0b5_migrate_copy;
580                 drm->dmem->migrate.clear_func = nvc0b5_migrate_clear;
581                 drm->dmem->migrate.chan = drm->ttm.chan;
582                 return 0;
583         default:
584                 break;
585         }
586         return -ENODEV;
587 }
588
589 void
590 nouveau_dmem_init(struct nouveau_drm *drm)
591 {
592         int ret;
593
594         /* This only make sense on PASCAL or newer */
595         if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL)
596                 return;
597
598         if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL)))
599                 return;
600
601         drm->dmem->drm = drm;
602         mutex_init(&drm->dmem->mutex);
603         INIT_LIST_HEAD(&drm->dmem->chunks);
604         mutex_init(&drm->dmem->mutex);
605         spin_lock_init(&drm->dmem->lock);
606
607         /* Initialize migration dma helpers before registering memory */
608         ret = nouveau_dmem_migrate_init(drm);
609         if (ret) {
610                 kfree(drm->dmem);
611                 drm->dmem = NULL;
612         }
613 }
614
615 static unsigned long nouveau_dmem_migrate_copy_one(struct nouveau_drm *drm,
616                 struct nouveau_svmm *svmm, unsigned long src,
617                 dma_addr_t *dma_addr, u64 *pfn)
618 {
619         struct device *dev = drm->dev->dev;
620         struct page *dpage, *spage;
621         unsigned long paddr;
622
623         spage = migrate_pfn_to_page(src);
624         if (!(src & MIGRATE_PFN_MIGRATE))
625                 goto out;
626
627         dpage = nouveau_dmem_page_alloc_locked(drm);
628         if (!dpage)
629                 goto out;
630
631         paddr = nouveau_dmem_page_addr(dpage);
632         if (spage) {
633                 *dma_addr = dma_map_page(dev, spage, 0, page_size(spage),
634                                          DMA_BIDIRECTIONAL);
635                 if (dma_mapping_error(dev, *dma_addr))
636                         goto out_free_page;
637                 if (drm->dmem->migrate.copy_func(drm, 1,
638                         NOUVEAU_APER_VRAM, paddr, NOUVEAU_APER_HOST, *dma_addr))
639                         goto out_dma_unmap;
640         } else {
641                 *dma_addr = DMA_MAPPING_ERROR;
642                 if (drm->dmem->migrate.clear_func(drm, page_size(dpage),
643                         NOUVEAU_APER_VRAM, paddr))
644                         goto out_free_page;
645         }
646
647         dpage->zone_device_data = svmm;
648         *pfn = NVIF_VMM_PFNMAP_V0_V | NVIF_VMM_PFNMAP_V0_VRAM |
649                 ((paddr >> PAGE_SHIFT) << NVIF_VMM_PFNMAP_V0_ADDR_SHIFT);
650         if (src & MIGRATE_PFN_WRITE)
651                 *pfn |= NVIF_VMM_PFNMAP_V0_W;
652         return migrate_pfn(page_to_pfn(dpage));
653
654 out_dma_unmap:
655         dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
656 out_free_page:
657         nouveau_dmem_page_free_locked(drm, dpage);
658 out:
659         *pfn = NVIF_VMM_PFNMAP_V0_NONE;
660         return 0;
661 }
662
663 static void nouveau_dmem_migrate_chunk(struct nouveau_drm *drm,
664                 struct nouveau_svmm *svmm, struct migrate_vma *args,
665                 dma_addr_t *dma_addrs, u64 *pfns)
666 {
667         struct nouveau_fence *fence;
668         unsigned long addr = args->start, nr_dma = 0, i;
669
670         for (i = 0; addr < args->end; i++) {
671                 args->dst[i] = nouveau_dmem_migrate_copy_one(drm, svmm,
672                                 args->src[i], dma_addrs + nr_dma, pfns + i);
673                 if (!dma_mapping_error(drm->dev->dev, dma_addrs[nr_dma]))
674                         nr_dma++;
675                 addr += PAGE_SIZE;
676         }
677
678         nouveau_fence_new(drm->dmem->migrate.chan, false, &fence);
679         migrate_vma_pages(args);
680         nouveau_dmem_fence_done(&fence);
681         nouveau_pfns_map(svmm, args->vma->vm_mm, args->start, pfns, i);
682
683         while (nr_dma--) {
684                 dma_unmap_page(drm->dev->dev, dma_addrs[nr_dma], PAGE_SIZE,
685                                 DMA_BIDIRECTIONAL);
686         }
687         migrate_vma_finalize(args);
688 }
689
690 int
691 nouveau_dmem_migrate_vma(struct nouveau_drm *drm,
692                          struct nouveau_svmm *svmm,
693                          struct vm_area_struct *vma,
694                          unsigned long start,
695                          unsigned long end)
696 {
697         unsigned long npages = (end - start) >> PAGE_SHIFT;
698         unsigned long max = min(SG_MAX_SINGLE_ALLOC, npages);
699         dma_addr_t *dma_addrs;
700         struct migrate_vma args = {
701                 .vma            = vma,
702                 .start          = start,
703                 .pgmap_owner    = drm->dev,
704                 .flags          = MIGRATE_VMA_SELECT_SYSTEM,
705         };
706         unsigned long i;
707         u64 *pfns;
708         int ret = -ENOMEM;
709
710         if (drm->dmem == NULL)
711                 return -ENODEV;
712
713         args.src = kcalloc(max, sizeof(*args.src), GFP_KERNEL);
714         if (!args.src)
715                 goto out;
716         args.dst = kcalloc(max, sizeof(*args.dst), GFP_KERNEL);
717         if (!args.dst)
718                 goto out_free_src;
719
720         dma_addrs = kmalloc_array(max, sizeof(*dma_addrs), GFP_KERNEL);
721         if (!dma_addrs)
722                 goto out_free_dst;
723
724         pfns = nouveau_pfns_alloc(max);
725         if (!pfns)
726                 goto out_free_dma;
727
728         for (i = 0; i < npages; i += max) {
729                 if (args.start + (max << PAGE_SHIFT) > end)
730                         args.end = end;
731                 else
732                         args.end = args.start + (max << PAGE_SHIFT);
733
734                 ret = migrate_vma_setup(&args);
735                 if (ret)
736                         goto out_free_pfns;
737
738                 if (args.cpages)
739                         nouveau_dmem_migrate_chunk(drm, svmm, &args, dma_addrs,
740                                                    pfns);
741                 args.start = args.end;
742         }
743
744         ret = 0;
745 out_free_pfns:
746         nouveau_pfns_free(pfns);
747 out_free_dma:
748         kfree(dma_addrs);
749 out_free_dst:
750         kfree(args.dst);
751 out_free_src:
752         kfree(args.src);
753 out:
754         return ret;
755 }