Merge tag 'sound-6.2-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo_api.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_placement.h>
50 #include <drm/ttm/ttm_range_manager.h>
51
52 #include <drm/amdgpu_drm.h>
53 #include <drm/drm_drv.h>
54
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_hmm.h"
62 #include "amdgpu_atomfirmware.h"
63 #include "amdgpu_res_cursor.h"
64 #include "bif/bif_4_1_d.h"
65
66 MODULE_IMPORT_NS(DMA_BUF);
67
68 #define AMDGPU_TTM_VRAM_MAX_DW_READ     (size_t)128
69
70 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
71                                    struct ttm_tt *ttm,
72                                    struct ttm_resource *bo_mem);
73 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
74                                       struct ttm_tt *ttm);
75
76 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
77                                     unsigned int type,
78                                     uint64_t size_in_page)
79 {
80         return ttm_range_man_init(&adev->mman.bdev, type,
81                                   false, size_in_page);
82 }
83
84 /**
85  * amdgpu_evict_flags - Compute placement flags
86  *
87  * @bo: The buffer object to evict
88  * @placement: Possible destination(s) for evicted BO
89  *
90  * Fill in placement data when ttm_bo_evict() is called
91  */
92 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
93                                 struct ttm_placement *placement)
94 {
95         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
96         struct amdgpu_bo *abo;
97         static const struct ttm_place placements = {
98                 .fpfn = 0,
99                 .lpfn = 0,
100                 .mem_type = TTM_PL_SYSTEM,
101                 .flags = 0
102         };
103
104         /* Don't handle scatter gather BOs */
105         if (bo->type == ttm_bo_type_sg) {
106                 placement->num_placement = 0;
107                 placement->num_busy_placement = 0;
108                 return;
109         }
110
111         /* Object isn't an AMDGPU object so ignore */
112         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
113                 placement->placement = &placements;
114                 placement->busy_placement = &placements;
115                 placement->num_placement = 1;
116                 placement->num_busy_placement = 1;
117                 return;
118         }
119
120         abo = ttm_to_amdgpu_bo(bo);
121         if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
122                 placement->num_placement = 0;
123                 placement->num_busy_placement = 0;
124                 return;
125         }
126
127         switch (bo->resource->mem_type) {
128         case AMDGPU_PL_GDS:
129         case AMDGPU_PL_GWS:
130         case AMDGPU_PL_OA:
131                 placement->num_placement = 0;
132                 placement->num_busy_placement = 0;
133                 return;
134
135         case TTM_PL_VRAM:
136                 if (!adev->mman.buffer_funcs_enabled) {
137                         /* Move to system memory */
138                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
139                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
140                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
141                            amdgpu_bo_in_cpu_visible_vram(abo)) {
142
143                         /* Try evicting to the CPU inaccessible part of VRAM
144                          * first, but only set GTT as busy placement, so this
145                          * BO will be evicted to GTT rather than causing other
146                          * BOs to be evicted from VRAM
147                          */
148                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
149                                                         AMDGPU_GEM_DOMAIN_GTT |
150                                                         AMDGPU_GEM_DOMAIN_CPU);
151                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
152                         abo->placements[0].lpfn = 0;
153                         abo->placement.busy_placement = &abo->placements[1];
154                         abo->placement.num_busy_placement = 1;
155                 } else {
156                         /* Move to GTT memory */
157                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
158                                                         AMDGPU_GEM_DOMAIN_CPU);
159                 }
160                 break;
161         case TTM_PL_TT:
162         case AMDGPU_PL_PREEMPT:
163         default:
164                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
165                 break;
166         }
167         *placement = abo->placement;
168 }
169
170 /**
171  * amdgpu_ttm_map_buffer - Map memory into the GART windows
172  * @bo: buffer object to map
173  * @mem: memory object to map
174  * @mm_cur: range to map
175  * @window: which GART window to use
176  * @ring: DMA ring to use for the copy
177  * @tmz: if we should setup a TMZ enabled mapping
178  * @size: in number of bytes to map, out number of bytes mapped
179  * @addr: resulting address inside the MC address space
180  *
181  * Setup one of the GART windows to access a specific piece of memory or return
182  * the physical address for local memory.
183  */
184 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
185                                  struct ttm_resource *mem,
186                                  struct amdgpu_res_cursor *mm_cur,
187                                  unsigned window, struct amdgpu_ring *ring,
188                                  bool tmz, uint64_t *size, uint64_t *addr)
189 {
190         struct amdgpu_device *adev = ring->adev;
191         unsigned offset, num_pages, num_dw, num_bytes;
192         uint64_t src_addr, dst_addr;
193         struct amdgpu_job *job;
194         void *cpu_addr;
195         uint64_t flags;
196         unsigned int i;
197         int r;
198
199         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201
202         if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203                 return -EINVAL;
204
205         /* Map only what can't be accessed directly */
206         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207                 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208                         mm_cur->start;
209                 return 0;
210         }
211
212
213         /*
214          * If start begins at an offset inside the page, then adjust the size
215          * and addr accordingly
216          */
217         offset = mm_cur->start & ~PAGE_MASK;
218
219         num_pages = PFN_UP(*size + offset);
220         num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221
222         *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223
224         *addr = adev->gmc.gart_start;
225         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226                 AMDGPU_GPU_PAGE_SIZE;
227         *addr += offset;
228
229         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230         num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231
232         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
233                                      AMDGPU_FENCE_OWNER_UNDEFINED,
234                                      num_dw * 4 + num_bytes,
235                                      AMDGPU_IB_POOL_DELAYED, &job);
236         if (r)
237                 return r;
238
239         src_addr = num_dw * 4;
240         src_addr += job->ibs[0].gpu_addr;
241
242         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
243         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
244         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
245                                 dst_addr, num_bytes, false);
246
247         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
248         WARN_ON(job->ibs[0].length_dw > num_dw);
249
250         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
251         if (tmz)
252                 flags |= AMDGPU_PTE_TMZ;
253
254         cpu_addr = &job->ibs[0].ptr[num_dw];
255
256         if (mem->mem_type == TTM_PL_TT) {
257                 dma_addr_t *dma_addr;
258
259                 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
260                 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
261         } else {
262                 dma_addr_t dma_address;
263
264                 dma_address = mm_cur->start;
265                 dma_address += adev->vm_manager.vram_base_offset;
266
267                 for (i = 0; i < num_pages; ++i) {
268                         amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
269                                         flags, cpu_addr);
270                         dma_address += PAGE_SIZE;
271                 }
272         }
273
274         dma_fence_put(amdgpu_job_submit(job));
275         return 0;
276 }
277
278 /**
279  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
280  * @adev: amdgpu device
281  * @src: buffer/address where to read from
282  * @dst: buffer/address where to write to
283  * @size: number of bytes to copy
284  * @tmz: if a secure copy should be used
285  * @resv: resv object to sync to
286  * @f: Returns the last fence if multiple jobs are submitted.
287  *
288  * The function copies @size bytes from {src->mem + src->offset} to
289  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
290  * move and different for a BO to BO copy.
291  *
292  */
293 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
294                                const struct amdgpu_copy_mem *src,
295                                const struct amdgpu_copy_mem *dst,
296                                uint64_t size, bool tmz,
297                                struct dma_resv *resv,
298                                struct dma_fence **f)
299 {
300         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
301         struct amdgpu_res_cursor src_mm, dst_mm;
302         struct dma_fence *fence = NULL;
303         int r = 0;
304
305         if (!adev->mman.buffer_funcs_enabled) {
306                 DRM_ERROR("Trying to move memory with ring turned off.\n");
307                 return -EINVAL;
308         }
309
310         amdgpu_res_first(src->mem, src->offset, size, &src_mm);
311         amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
312
313         mutex_lock(&adev->mman.gtt_window_lock);
314         while (src_mm.remaining) {
315                 uint64_t from, to, cur_size;
316                 struct dma_fence *next;
317
318                 /* Never copy more than 256MiB at once to avoid a timeout */
319                 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
320
321                 /* Map src to window 0 and dst to window 1. */
322                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
323                                           0, ring, tmz, &cur_size, &from);
324                 if (r)
325                         goto error;
326
327                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
328                                           1, ring, tmz, &cur_size, &to);
329                 if (r)
330                         goto error;
331
332                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
333                                        resv, &next, false, true, tmz);
334                 if (r)
335                         goto error;
336
337                 dma_fence_put(fence);
338                 fence = next;
339
340                 amdgpu_res_next(&src_mm, cur_size);
341                 amdgpu_res_next(&dst_mm, cur_size);
342         }
343 error:
344         mutex_unlock(&adev->mman.gtt_window_lock);
345         if (f)
346                 *f = dma_fence_get(fence);
347         dma_fence_put(fence);
348         return r;
349 }
350
351 /*
352  * amdgpu_move_blit - Copy an entire buffer to another buffer
353  *
354  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
355  * help move buffers to and from VRAM.
356  */
357 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
358                             bool evict,
359                             struct ttm_resource *new_mem,
360                             struct ttm_resource *old_mem)
361 {
362         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
363         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
364         struct amdgpu_copy_mem src, dst;
365         struct dma_fence *fence = NULL;
366         int r;
367
368         src.bo = bo;
369         dst.bo = bo;
370         src.mem = old_mem;
371         dst.mem = new_mem;
372         src.offset = 0;
373         dst.offset = 0;
374
375         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
376                                        new_mem->size,
377                                        amdgpu_bo_encrypted(abo),
378                                        bo->base.resv, &fence);
379         if (r)
380                 goto error;
381
382         /* clear the space being freed */
383         if (old_mem->mem_type == TTM_PL_VRAM &&
384             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
385                 struct dma_fence *wipe_fence = NULL;
386
387                 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
388                 if (r) {
389                         goto error;
390                 } else if (wipe_fence) {
391                         dma_fence_put(fence);
392                         fence = wipe_fence;
393                 }
394         }
395
396         /* Always block for VM page tables before committing the new location */
397         if (bo->type == ttm_bo_type_kernel)
398                 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399         else
400                 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401         dma_fence_put(fence);
402         return r;
403
404 error:
405         if (fence)
406                 dma_fence_wait(fence, false);
407         dma_fence_put(fence);
408         return r;
409 }
410
411 /*
412  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
413  *
414  * Called by amdgpu_bo_move()
415  */
416 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417                                struct ttm_resource *mem)
418 {
419         u64 mem_size = (u64)mem->size;
420         struct amdgpu_res_cursor cursor;
421         u64 end;
422
423         if (mem->mem_type == TTM_PL_SYSTEM ||
424             mem->mem_type == TTM_PL_TT)
425                 return true;
426         if (mem->mem_type != TTM_PL_VRAM)
427                 return false;
428
429         amdgpu_res_first(mem, 0, mem_size, &cursor);
430         end = cursor.start + cursor.size;
431         while (cursor.remaining) {
432                 amdgpu_res_next(&cursor, cursor.size);
433
434                 if (!cursor.remaining)
435                         break;
436
437                 /* ttm_resource_ioremap only supports contiguous memory */
438                 if (end != cursor.start)
439                         return false;
440
441                 end = cursor.start + cursor.size;
442         }
443
444         return end <= adev->gmc.visible_vram_size;
445 }
446
447 /*
448  * amdgpu_bo_move - Move a buffer object to a new memory location
449  *
450  * Called by ttm_bo_handle_move_mem()
451  */
452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453                           struct ttm_operation_ctx *ctx,
454                           struct ttm_resource *new_mem,
455                           struct ttm_place *hop)
456 {
457         struct amdgpu_device *adev;
458         struct amdgpu_bo *abo;
459         struct ttm_resource *old_mem = bo->resource;
460         int r;
461
462         if (new_mem->mem_type == TTM_PL_TT ||
463             new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464                 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
465                 if (r)
466                         return r;
467         }
468
469         /* Can't move a pinned BO */
470         abo = ttm_to_amdgpu_bo(bo);
471         if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
472                 return -EINVAL;
473
474         adev = amdgpu_ttm_adev(bo->bdev);
475
476         if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
477                          bo->ttm == NULL)) {
478                 ttm_bo_move_null(bo, new_mem);
479                 goto out;
480         }
481         if (old_mem->mem_type == TTM_PL_SYSTEM &&
482             (new_mem->mem_type == TTM_PL_TT ||
483              new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
484                 ttm_bo_move_null(bo, new_mem);
485                 goto out;
486         }
487         if ((old_mem->mem_type == TTM_PL_TT ||
488              old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
489             new_mem->mem_type == TTM_PL_SYSTEM) {
490                 r = ttm_bo_wait_ctx(bo, ctx);
491                 if (r)
492                         return r;
493
494                 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
495                 ttm_resource_free(bo, &bo->resource);
496                 ttm_bo_assign_mem(bo, new_mem);
497                 goto out;
498         }
499
500         if (old_mem->mem_type == AMDGPU_PL_GDS ||
501             old_mem->mem_type == AMDGPU_PL_GWS ||
502             old_mem->mem_type == AMDGPU_PL_OA ||
503             new_mem->mem_type == AMDGPU_PL_GDS ||
504             new_mem->mem_type == AMDGPU_PL_GWS ||
505             new_mem->mem_type == AMDGPU_PL_OA) {
506                 /* Nothing to save here */
507                 ttm_bo_move_null(bo, new_mem);
508                 goto out;
509         }
510
511         if (bo->type == ttm_bo_type_device &&
512             new_mem->mem_type == TTM_PL_VRAM &&
513             old_mem->mem_type != TTM_PL_VRAM) {
514                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
515                  * accesses the BO after it's moved.
516                  */
517                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
518         }
519
520         if (adev->mman.buffer_funcs_enabled) {
521                 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
522                       new_mem->mem_type == TTM_PL_VRAM) ||
523                      (old_mem->mem_type == TTM_PL_VRAM &&
524                       new_mem->mem_type == TTM_PL_SYSTEM))) {
525                         hop->fpfn = 0;
526                         hop->lpfn = 0;
527                         hop->mem_type = TTM_PL_TT;
528                         hop->flags = TTM_PL_FLAG_TEMPORARY;
529                         return -EMULTIHOP;
530                 }
531
532                 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
533         } else {
534                 r = -ENODEV;
535         }
536
537         if (r) {
538                 /* Check that all memory is CPU accessible */
539                 if (!amdgpu_mem_visible(adev, old_mem) ||
540                     !amdgpu_mem_visible(adev, new_mem)) {
541                         pr_err("Move buffer fallback to memcpy unavailable\n");
542                         return r;
543                 }
544
545                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
546                 if (r)
547                         return r;
548         }
549
550 out:
551         /* update statistics */
552         atomic64_add(bo->base.size, &adev->num_bytes_moved);
553         amdgpu_bo_move_notify(bo, evict, new_mem);
554         return 0;
555 }
556
557 /*
558  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
559  *
560  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
561  */
562 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
563                                      struct ttm_resource *mem)
564 {
565         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
566         size_t bus_size = (size_t)mem->size;
567
568         switch (mem->mem_type) {
569         case TTM_PL_SYSTEM:
570                 /* system memory */
571                 return 0;
572         case TTM_PL_TT:
573         case AMDGPU_PL_PREEMPT:
574                 break;
575         case TTM_PL_VRAM:
576                 mem->bus.offset = mem->start << PAGE_SHIFT;
577                 /* check if it's visible */
578                 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
579                         return -EINVAL;
580
581                 if (adev->mman.aper_base_kaddr &&
582                     mem->placement & TTM_PL_FLAG_CONTIGUOUS)
583                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
584                                         mem->bus.offset;
585
586                 mem->bus.offset += adev->gmc.aper_base;
587                 mem->bus.is_iomem = true;
588                 break;
589         default:
590                 return -EINVAL;
591         }
592         return 0;
593 }
594
595 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
596                                            unsigned long page_offset)
597 {
598         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
599         struct amdgpu_res_cursor cursor;
600
601         amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
602                          &cursor);
603         return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
604 }
605
606 /**
607  * amdgpu_ttm_domain_start - Returns GPU start address
608  * @adev: amdgpu device object
609  * @type: type of the memory
610  *
611  * Returns:
612  * GPU start address of a memory domain
613  */
614
615 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
616 {
617         switch (type) {
618         case TTM_PL_TT:
619                 return adev->gmc.gart_start;
620         case TTM_PL_VRAM:
621                 return adev->gmc.vram_start;
622         }
623
624         return 0;
625 }
626
627 /*
628  * TTM backend functions.
629  */
630 struct amdgpu_ttm_tt {
631         struct ttm_tt   ttm;
632         struct drm_gem_object   *gobj;
633         u64                     offset;
634         uint64_t                userptr;
635         struct task_struct      *usertask;
636         uint32_t                userflags;
637         bool                    bound;
638 };
639
640 #define ttm_to_amdgpu_ttm_tt(ptr)       container_of(ptr, struct amdgpu_ttm_tt, ttm)
641
642 #ifdef CONFIG_DRM_AMDGPU_USERPTR
643 /*
644  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
645  * memory and start HMM tracking CPU page table update
646  *
647  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
648  * once afterwards to stop HMM tracking
649  */
650 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
651                                  struct hmm_range **range)
652 {
653         struct ttm_tt *ttm = bo->tbo.ttm;
654         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
655         unsigned long start = gtt->userptr;
656         struct vm_area_struct *vma;
657         struct mm_struct *mm;
658         bool readonly;
659         int r = 0;
660
661         /* Make sure get_user_pages_done() can cleanup gracefully */
662         *range = NULL;
663
664         mm = bo->notifier.mm;
665         if (unlikely(!mm)) {
666                 DRM_DEBUG_DRIVER("BO is not registered?\n");
667                 return -EFAULT;
668         }
669
670         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
671                 return -ESRCH;
672
673         mmap_read_lock(mm);
674         vma = vma_lookup(mm, start);
675         if (unlikely(!vma)) {
676                 r = -EFAULT;
677                 goto out_unlock;
678         }
679         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
680                 vma->vm_file)) {
681                 r = -EPERM;
682                 goto out_unlock;
683         }
684
685         readonly = amdgpu_ttm_tt_is_readonly(ttm);
686         r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
687                                        readonly, NULL, pages, range);
688 out_unlock:
689         mmap_read_unlock(mm);
690         if (r)
691                 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
692
693         mmput(mm);
694
695         return r;
696 }
697
698 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
699  */
700 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
701                                       struct hmm_range *range)
702 {
703         struct amdgpu_ttm_tt *gtt = (void *)ttm;
704
705         if (gtt && gtt->userptr && range)
706                 amdgpu_hmm_range_get_pages_done(range);
707 }
708
709 /*
710  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
711  * Check if the pages backing this ttm range have been invalidated
712  *
713  * Returns: true if pages are still valid
714  */
715 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
716                                        struct hmm_range *range)
717 {
718         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
719
720         if (!gtt || !gtt->userptr || !range)
721                 return false;
722
723         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
724                 gtt->userptr, ttm->num_pages);
725
726         WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
727
728         return !amdgpu_hmm_range_get_pages_done(range);
729 }
730 #endif
731
732 /*
733  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
734  *
735  * Called by amdgpu_cs_list_validate(). This creates the page list
736  * that backs user memory and will ultimately be mapped into the device
737  * address space.
738  */
739 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
740 {
741         unsigned long i;
742
743         for (i = 0; i < ttm->num_pages; ++i)
744                 ttm->pages[i] = pages ? pages[i] : NULL;
745 }
746
747 /*
748  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
749  *
750  * Called by amdgpu_ttm_backend_bind()
751  **/
752 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
753                                      struct ttm_tt *ttm)
754 {
755         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
756         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
757         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
758         enum dma_data_direction direction = write ?
759                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
760         int r;
761
762         /* Allocate an SG array and squash pages into it */
763         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
764                                       (u64)ttm->num_pages << PAGE_SHIFT,
765                                       GFP_KERNEL);
766         if (r)
767                 goto release_sg;
768
769         /* Map SG to device */
770         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
771         if (r)
772                 goto release_sg;
773
774         /* convert SG to linear array of pages and dma addresses */
775         drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
776                                        ttm->num_pages);
777
778         return 0;
779
780 release_sg:
781         kfree(ttm->sg);
782         ttm->sg = NULL;
783         return r;
784 }
785
786 /*
787  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
788  */
789 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
790                                         struct ttm_tt *ttm)
791 {
792         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
793         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
794         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
795         enum dma_data_direction direction = write ?
796                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
797
798         /* double check that we don't free the table twice */
799         if (!ttm->sg || !ttm->sg->sgl)
800                 return;
801
802         /* unmap the pages mapped to the device */
803         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
804         sg_free_table(ttm->sg);
805 }
806
807 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
808                                  struct ttm_buffer_object *tbo,
809                                  uint64_t flags)
810 {
811         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
812         struct ttm_tt *ttm = tbo->ttm;
813         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
814
815         if (amdgpu_bo_encrypted(abo))
816                 flags |= AMDGPU_PTE_TMZ;
817
818         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
819                 uint64_t page_idx = 1;
820
821                 amdgpu_gart_bind(adev, gtt->offset, page_idx,
822                                  gtt->ttm.dma_address, flags);
823
824                 /* The memory type of the first page defaults to UC. Now
825                  * modify the memory type to NC from the second page of
826                  * the BO onward.
827                  */
828                 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
829                 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
830
831                 amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
832                                  ttm->num_pages - page_idx,
833                                  &(gtt->ttm.dma_address[page_idx]), flags);
834         } else {
835                 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
836                                  gtt->ttm.dma_address, flags);
837         }
838 }
839
840 /*
841  * amdgpu_ttm_backend_bind - Bind GTT memory
842  *
843  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
844  * This handles binding GTT memory to the device address space.
845  */
846 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
847                                    struct ttm_tt *ttm,
848                                    struct ttm_resource *bo_mem)
849 {
850         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
851         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
852         uint64_t flags;
853         int r;
854
855         if (!bo_mem)
856                 return -EINVAL;
857
858         if (gtt->bound)
859                 return 0;
860
861         if (gtt->userptr) {
862                 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
863                 if (r) {
864                         DRM_ERROR("failed to pin userptr\n");
865                         return r;
866                 }
867         } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
868                 if (!ttm->sg) {
869                         struct dma_buf_attachment *attach;
870                         struct sg_table *sgt;
871
872                         attach = gtt->gobj->import_attach;
873                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
874                         if (IS_ERR(sgt))
875                                 return PTR_ERR(sgt);
876
877                         ttm->sg = sgt;
878                 }
879
880                 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
881                                                ttm->num_pages);
882         }
883
884         if (!ttm->num_pages) {
885                 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
886                      ttm->num_pages, bo_mem, ttm);
887         }
888
889         if (bo_mem->mem_type != TTM_PL_TT ||
890             !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
891                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
892                 return 0;
893         }
894
895         /* compute PTE flags relevant to this BO memory */
896         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
897
898         /* bind pages into GART page tables */
899         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
900         amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
901                          gtt->ttm.dma_address, flags);
902         gtt->bound = true;
903         return 0;
904 }
905
906 /*
907  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
908  * through AGP or GART aperture.
909  *
910  * If bo is accessible through AGP aperture, then use AGP aperture
911  * to access bo; otherwise allocate logical space in GART aperture
912  * and map bo to GART aperture.
913  */
914 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
915 {
916         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
917         struct ttm_operation_ctx ctx = { false, false };
918         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
919         struct ttm_placement placement;
920         struct ttm_place placements;
921         struct ttm_resource *tmp;
922         uint64_t addr, flags;
923         int r;
924
925         if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
926                 return 0;
927
928         addr = amdgpu_gmc_agp_addr(bo);
929         if (addr != AMDGPU_BO_INVALID_OFFSET) {
930                 bo->resource->start = addr >> PAGE_SHIFT;
931                 return 0;
932         }
933
934         /* allocate GART space */
935         placement.num_placement = 1;
936         placement.placement = &placements;
937         placement.num_busy_placement = 1;
938         placement.busy_placement = &placements;
939         placements.fpfn = 0;
940         placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
941         placements.mem_type = TTM_PL_TT;
942         placements.flags = bo->resource->placement;
943
944         r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
945         if (unlikely(r))
946                 return r;
947
948         /* compute PTE flags for this buffer object */
949         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
950
951         /* Bind pages */
952         gtt->offset = (u64)tmp->start << PAGE_SHIFT;
953         amdgpu_ttm_gart_bind(adev, bo, flags);
954         amdgpu_gart_invalidate_tlb(adev);
955         ttm_resource_free(bo, &bo->resource);
956         ttm_bo_assign_mem(bo, tmp);
957
958         return 0;
959 }
960
961 /*
962  * amdgpu_ttm_recover_gart - Rebind GTT pages
963  *
964  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
965  * rebind GTT pages during a GPU reset.
966  */
967 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
968 {
969         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
970         uint64_t flags;
971
972         if (!tbo->ttm)
973                 return;
974
975         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
976         amdgpu_ttm_gart_bind(adev, tbo, flags);
977 }
978
979 /*
980  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
981  *
982  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
983  * ttm_tt_destroy().
984  */
985 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
986                                       struct ttm_tt *ttm)
987 {
988         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
989         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
990
991         /* if the pages have userptr pinning then clear that first */
992         if (gtt->userptr) {
993                 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
994         } else if (ttm->sg && gtt->gobj->import_attach) {
995                 struct dma_buf_attachment *attach;
996
997                 attach = gtt->gobj->import_attach;
998                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
999                 ttm->sg = NULL;
1000         }
1001
1002         if (!gtt->bound)
1003                 return;
1004
1005         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1006                 return;
1007
1008         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1009         amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1010         gtt->bound = false;
1011 }
1012
1013 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1014                                        struct ttm_tt *ttm)
1015 {
1016         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1017
1018         if (gtt->usertask)
1019                 put_task_struct(gtt->usertask);
1020
1021         ttm_tt_fini(&gtt->ttm);
1022         kfree(gtt);
1023 }
1024
1025 /**
1026  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1027  *
1028  * @bo: The buffer object to create a GTT ttm_tt object around
1029  * @page_flags: Page flags to be added to the ttm_tt object
1030  *
1031  * Called by ttm_tt_create().
1032  */
1033 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1034                                            uint32_t page_flags)
1035 {
1036         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1037         struct amdgpu_ttm_tt *gtt;
1038         enum ttm_caching caching;
1039
1040         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1041         if (gtt == NULL) {
1042                 return NULL;
1043         }
1044         gtt->gobj = &bo->base;
1045
1046         if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1047                 caching = ttm_write_combined;
1048         else
1049                 caching = ttm_cached;
1050
1051         /* allocate space for the uninitialized page entries */
1052         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1053                 kfree(gtt);
1054                 return NULL;
1055         }
1056         return &gtt->ttm;
1057 }
1058
1059 /*
1060  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1061  *
1062  * Map the pages of a ttm_tt object to an address space visible
1063  * to the underlying device.
1064  */
1065 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1066                                   struct ttm_tt *ttm,
1067                                   struct ttm_operation_ctx *ctx)
1068 {
1069         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1070         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1071         pgoff_t i;
1072         int ret;
1073
1074         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1075         if (gtt->userptr) {
1076                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1077                 if (!ttm->sg)
1078                         return -ENOMEM;
1079                 return 0;
1080         }
1081
1082         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1083                 return 0;
1084
1085         ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1086         if (ret)
1087                 return ret;
1088
1089         for (i = 0; i < ttm->num_pages; ++i)
1090                 ttm->pages[i]->mapping = bdev->dev_mapping;
1091
1092         return 0;
1093 }
1094
1095 /*
1096  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1097  *
1098  * Unmaps pages of a ttm_tt object from the device address space and
1099  * unpopulates the page array backing it.
1100  */
1101 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1102                                      struct ttm_tt *ttm)
1103 {
1104         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1105         struct amdgpu_device *adev;
1106         pgoff_t i;
1107
1108         amdgpu_ttm_backend_unbind(bdev, ttm);
1109
1110         if (gtt->userptr) {
1111                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1112                 kfree(ttm->sg);
1113                 ttm->sg = NULL;
1114                 return;
1115         }
1116
1117         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1118                 return;
1119
1120         for (i = 0; i < ttm->num_pages; ++i)
1121                 ttm->pages[i]->mapping = NULL;
1122
1123         adev = amdgpu_ttm_adev(bdev);
1124         return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1125 }
1126
1127 /**
1128  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1129  * task
1130  *
1131  * @tbo: The ttm_buffer_object that contains the userptr
1132  * @user_addr:  The returned value
1133  */
1134 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1135                               uint64_t *user_addr)
1136 {
1137         struct amdgpu_ttm_tt *gtt;
1138
1139         if (!tbo->ttm)
1140                 return -EINVAL;
1141
1142         gtt = (void *)tbo->ttm;
1143         *user_addr = gtt->userptr;
1144         return 0;
1145 }
1146
1147 /**
1148  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1149  * task
1150  *
1151  * @bo: The ttm_buffer_object to bind this userptr to
1152  * @addr:  The address in the current tasks VM space to use
1153  * @flags: Requirements of userptr object.
1154  *
1155  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1156  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1157  * initialize GPU VM for a KFD process.
1158  */
1159 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1160                               uint64_t addr, uint32_t flags)
1161 {
1162         struct amdgpu_ttm_tt *gtt;
1163
1164         if (!bo->ttm) {
1165                 /* TODO: We want a separate TTM object type for userptrs */
1166                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1167                 if (bo->ttm == NULL)
1168                         return -ENOMEM;
1169         }
1170
1171         /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1172         bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1173
1174         gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1175         gtt->userptr = addr;
1176         gtt->userflags = flags;
1177
1178         if (gtt->usertask)
1179                 put_task_struct(gtt->usertask);
1180         gtt->usertask = current->group_leader;
1181         get_task_struct(gtt->usertask);
1182
1183         return 0;
1184 }
1185
1186 /*
1187  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1188  */
1189 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1190 {
1191         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1192
1193         if (gtt == NULL)
1194                 return NULL;
1195
1196         if (gtt->usertask == NULL)
1197                 return NULL;
1198
1199         return gtt->usertask->mm;
1200 }
1201
1202 /*
1203  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1204  * address range for the current task.
1205  *
1206  */
1207 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1208                                   unsigned long end, unsigned long *userptr)
1209 {
1210         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1211         unsigned long size;
1212
1213         if (gtt == NULL || !gtt->userptr)
1214                 return false;
1215
1216         /* Return false if no part of the ttm_tt object lies within
1217          * the range
1218          */
1219         size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1220         if (gtt->userptr > end || gtt->userptr + size <= start)
1221                 return false;
1222
1223         if (userptr)
1224                 *userptr = gtt->userptr;
1225         return true;
1226 }
1227
1228 /*
1229  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1230  */
1231 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1232 {
1233         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1234
1235         if (gtt == NULL || !gtt->userptr)
1236                 return false;
1237
1238         return true;
1239 }
1240
1241 /*
1242  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1243  */
1244 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1245 {
1246         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1247
1248         if (gtt == NULL)
1249                 return false;
1250
1251         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1252 }
1253
1254 /**
1255  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1256  *
1257  * @ttm: The ttm_tt object to compute the flags for
1258  * @mem: The memory registry backing this ttm_tt object
1259  *
1260  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1261  */
1262 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1263 {
1264         uint64_t flags = 0;
1265
1266         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1267                 flags |= AMDGPU_PTE_VALID;
1268
1269         if (mem && (mem->mem_type == TTM_PL_TT ||
1270                     mem->mem_type == AMDGPU_PL_PREEMPT)) {
1271                 flags |= AMDGPU_PTE_SYSTEM;
1272
1273                 if (ttm->caching == ttm_cached)
1274                         flags |= AMDGPU_PTE_SNOOPED;
1275         }
1276
1277         if (mem && mem->mem_type == TTM_PL_VRAM &&
1278                         mem->bus.caching == ttm_cached)
1279                 flags |= AMDGPU_PTE_SNOOPED;
1280
1281         return flags;
1282 }
1283
1284 /**
1285  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1286  *
1287  * @adev: amdgpu_device pointer
1288  * @ttm: The ttm_tt object to compute the flags for
1289  * @mem: The memory registry backing this ttm_tt object
1290  *
1291  * Figure out the flags to use for a VM PTE (Page Table Entry).
1292  */
1293 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1294                                  struct ttm_resource *mem)
1295 {
1296         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1297
1298         flags |= adev->gart.gart_pte_flags;
1299         flags |= AMDGPU_PTE_READABLE;
1300
1301         if (!amdgpu_ttm_tt_is_readonly(ttm))
1302                 flags |= AMDGPU_PTE_WRITEABLE;
1303
1304         return flags;
1305 }
1306
1307 /*
1308  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1309  * object.
1310  *
1311  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1312  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1313  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1314  * used to clean out a memory space.
1315  */
1316 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1317                                             const struct ttm_place *place)
1318 {
1319         struct dma_resv_iter resv_cursor;
1320         struct dma_fence *f;
1321
1322         if (!amdgpu_bo_is_amdgpu_bo(bo))
1323                 return ttm_bo_eviction_valuable(bo, place);
1324
1325         /* Swapout? */
1326         if (bo->resource->mem_type == TTM_PL_SYSTEM)
1327                 return true;
1328
1329         if (bo->type == ttm_bo_type_kernel &&
1330             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1331                 return false;
1332
1333         /* If bo is a KFD BO, check if the bo belongs to the current process.
1334          * If true, then return false as any KFD process needs all its BOs to
1335          * be resident to run successfully
1336          */
1337         dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1338                                 DMA_RESV_USAGE_BOOKKEEP, f) {
1339                 if (amdkfd_fence_check_mm(f, current->mm))
1340                         return false;
1341         }
1342
1343         /* Preemptible BOs don't own system resources managed by the
1344          * driver (pages, VRAM, GART space). They point to resources
1345          * owned by someone else (e.g. pageable memory in user mode
1346          * or a DMABuf). They are used in a preemptible context so we
1347          * can guarantee no deadlocks and good QoS in case of MMU
1348          * notifiers or DMABuf move notifiers from the resource owner.
1349          */
1350         if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1351                 return false;
1352
1353         if (bo->resource->mem_type == TTM_PL_TT &&
1354             amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1355                 return false;
1356
1357         return ttm_bo_eviction_valuable(bo, place);
1358 }
1359
1360 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1361                                       void *buf, size_t size, bool write)
1362 {
1363         while (size) {
1364                 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1365                 uint64_t bytes = 4 - (pos & 0x3);
1366                 uint32_t shift = (pos & 0x3) * 8;
1367                 uint32_t mask = 0xffffffff << shift;
1368                 uint32_t value = 0;
1369
1370                 if (size < bytes) {
1371                         mask &= 0xffffffff >> (bytes - size) * 8;
1372                         bytes = size;
1373                 }
1374
1375                 if (mask != 0xffffffff) {
1376                         amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1377                         if (write) {
1378                                 value &= ~mask;
1379                                 value |= (*(uint32_t *)buf << shift) & mask;
1380                                 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1381                         } else {
1382                                 value = (value & mask) >> shift;
1383                                 memcpy(buf, &value, bytes);
1384                         }
1385                 } else {
1386                         amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1387                 }
1388
1389                 pos += bytes;
1390                 buf += bytes;
1391                 size -= bytes;
1392         }
1393 }
1394
1395 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1396                                         unsigned long offset, void *buf,
1397                                         int len, int write)
1398 {
1399         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1400         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1401         struct amdgpu_res_cursor src_mm;
1402         struct amdgpu_job *job;
1403         struct dma_fence *fence;
1404         uint64_t src_addr, dst_addr;
1405         unsigned int num_dw;
1406         int r, idx;
1407
1408         if (len != PAGE_SIZE)
1409                 return -EINVAL;
1410
1411         if (!adev->mman.sdma_access_ptr)
1412                 return -EACCES;
1413
1414         if (!drm_dev_enter(adev_to_drm(adev), &idx))
1415                 return -ENODEV;
1416
1417         if (write)
1418                 memcpy(adev->mman.sdma_access_ptr, buf, len);
1419
1420         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1421         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
1422                                      AMDGPU_FENCE_OWNER_UNDEFINED,
1423                                      num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1424                                      &job);
1425         if (r)
1426                 goto out;
1427
1428         amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1429         src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1430                 src_mm.start;
1431         dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1432         if (write)
1433                 swap(src_addr, dst_addr);
1434
1435         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1436                                 PAGE_SIZE, false);
1437
1438         amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1439         WARN_ON(job->ibs[0].length_dw > num_dw);
1440
1441         fence = amdgpu_job_submit(job);
1442
1443         if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1444                 r = -ETIMEDOUT;
1445         dma_fence_put(fence);
1446
1447         if (!(r || write))
1448                 memcpy(buf, adev->mman.sdma_access_ptr, len);
1449 out:
1450         drm_dev_exit(idx);
1451         return r;
1452 }
1453
1454 /**
1455  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1456  *
1457  * @bo:  The buffer object to read/write
1458  * @offset:  Offset into buffer object
1459  * @buf:  Secondary buffer to write/read from
1460  * @len: Length in bytes of access
1461  * @write:  true if writing
1462  *
1463  * This is used to access VRAM that backs a buffer object via MMIO
1464  * access for debugging purposes.
1465  */
1466 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1467                                     unsigned long offset, void *buf, int len,
1468                                     int write)
1469 {
1470         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1471         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1472         struct amdgpu_res_cursor cursor;
1473         int ret = 0;
1474
1475         if (bo->resource->mem_type != TTM_PL_VRAM)
1476                 return -EIO;
1477
1478         if (amdgpu_device_has_timeouts_enabled(adev) &&
1479                         !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1480                 return len;
1481
1482         amdgpu_res_first(bo->resource, offset, len, &cursor);
1483         while (cursor.remaining) {
1484                 size_t count, size = cursor.size;
1485                 loff_t pos = cursor.start;
1486
1487                 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1488                 size -= count;
1489                 if (size) {
1490                         /* using MM to access rest vram and handle un-aligned address */
1491                         pos += count;
1492                         buf += count;
1493                         amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1494                 }
1495
1496                 ret += cursor.size;
1497                 buf += cursor.size;
1498                 amdgpu_res_next(&cursor, cursor.size);
1499         }
1500
1501         return ret;
1502 }
1503
1504 static void
1505 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1506 {
1507         amdgpu_bo_move_notify(bo, false, NULL);
1508 }
1509
1510 static struct ttm_device_funcs amdgpu_bo_driver = {
1511         .ttm_tt_create = &amdgpu_ttm_tt_create,
1512         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1513         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1514         .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1515         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1516         .evict_flags = &amdgpu_evict_flags,
1517         .move = &amdgpu_bo_move,
1518         .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1519         .release_notify = &amdgpu_bo_release_notify,
1520         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1521         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1522         .access_memory = &amdgpu_ttm_access_memory,
1523 };
1524
1525 /*
1526  * Firmware Reservation functions
1527  */
1528 /**
1529  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1530  *
1531  * @adev: amdgpu_device pointer
1532  *
1533  * free fw reserved vram if it has been reserved.
1534  */
1535 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1536 {
1537         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1538                 NULL, &adev->mman.fw_vram_usage_va);
1539 }
1540
1541 /*
1542  * Driver Reservation functions
1543  */
1544 /**
1545  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1546  *
1547  * @adev: amdgpu_device pointer
1548  *
1549  * free drv reserved vram if it has been reserved.
1550  */
1551 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1552 {
1553         amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1554                                                   NULL,
1555                                                   &adev->mman.drv_vram_usage_va);
1556 }
1557
1558 /**
1559  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1560  *
1561  * @adev: amdgpu_device pointer
1562  *
1563  * create bo vram reservation from fw.
1564  */
1565 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1566 {
1567         uint64_t vram_size = adev->gmc.visible_vram_size;
1568
1569         adev->mman.fw_vram_usage_va = NULL;
1570         adev->mman.fw_vram_usage_reserved_bo = NULL;
1571
1572         if (adev->mman.fw_vram_usage_size == 0 ||
1573             adev->mman.fw_vram_usage_size > vram_size)
1574                 return 0;
1575
1576         return amdgpu_bo_create_kernel_at(adev,
1577                                           adev->mman.fw_vram_usage_start_offset,
1578                                           adev->mman.fw_vram_usage_size,
1579                                           &adev->mman.fw_vram_usage_reserved_bo,
1580                                           &adev->mman.fw_vram_usage_va);
1581 }
1582
1583 /**
1584  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1585  *
1586  * @adev: amdgpu_device pointer
1587  *
1588  * create bo vram reservation from drv.
1589  */
1590 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1591 {
1592         u64 vram_size = adev->gmc.visible_vram_size;
1593
1594         adev->mman.drv_vram_usage_va = NULL;
1595         adev->mman.drv_vram_usage_reserved_bo = NULL;
1596
1597         if (adev->mman.drv_vram_usage_size == 0 ||
1598             adev->mman.drv_vram_usage_size > vram_size)
1599                 return 0;
1600
1601         return amdgpu_bo_create_kernel_at(adev,
1602                                           adev->mman.drv_vram_usage_start_offset,
1603                                           adev->mman.drv_vram_usage_size,
1604                                           &adev->mman.drv_vram_usage_reserved_bo,
1605                                           &adev->mman.drv_vram_usage_va);
1606 }
1607
1608 /*
1609  * Memoy training reservation functions
1610  */
1611
1612 /**
1613  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1614  *
1615  * @adev: amdgpu_device pointer
1616  *
1617  * free memory training reserved vram if it has been reserved.
1618  */
1619 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1620 {
1621         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1622
1623         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1624         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1625         ctx->c2p_bo = NULL;
1626
1627         return 0;
1628 }
1629
1630 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1631 {
1632         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1633
1634         memset(ctx, 0, sizeof(*ctx));
1635
1636         ctx->c2p_train_data_offset =
1637                 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1638         ctx->p2c_train_data_offset =
1639                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1640         ctx->train_data_size =
1641                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1642
1643         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1644                         ctx->train_data_size,
1645                         ctx->p2c_train_data_offset,
1646                         ctx->c2p_train_data_offset);
1647 }
1648
1649 /*
1650  * reserve TMR memory at the top of VRAM which holds
1651  * IP Discovery data and is protected by PSP.
1652  */
1653 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1654 {
1655         int ret;
1656         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1657         bool mem_train_support = false;
1658
1659         if (!amdgpu_sriov_vf(adev)) {
1660                 if (amdgpu_atomfirmware_mem_training_supported(adev))
1661                         mem_train_support = true;
1662                 else
1663                         DRM_DEBUG("memory training does not support!\n");
1664         }
1665
1666         /*
1667          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1668          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1669          *
1670          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1671          * discovery data and G6 memory training data respectively
1672          */
1673         adev->mman.discovery_tmr_size =
1674                 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1675         if (!adev->mman.discovery_tmr_size)
1676                 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1677
1678         if (mem_train_support) {
1679                 /* reserve vram for mem train according to TMR location */
1680                 amdgpu_ttm_training_data_block_init(adev);
1681                 ret = amdgpu_bo_create_kernel_at(adev,
1682                                          ctx->c2p_train_data_offset,
1683                                          ctx->train_data_size,
1684                                          &ctx->c2p_bo,
1685                                          NULL);
1686                 if (ret) {
1687                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1688                         amdgpu_ttm_training_reserve_vram_fini(adev);
1689                         return ret;
1690                 }
1691                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1692         }
1693
1694         ret = amdgpu_bo_create_kernel_at(adev,
1695                                 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1696                                 adev->mman.discovery_tmr_size,
1697                                 &adev->mman.discovery_memory,
1698                                 NULL);
1699         if (ret) {
1700                 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1701                 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1702                 return ret;
1703         }
1704
1705         return 0;
1706 }
1707
1708 /*
1709  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1710  * gtt/vram related fields.
1711  *
1712  * This initializes all of the memory space pools that the TTM layer
1713  * will need such as the GTT space (system memory mapped to the device),
1714  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1715  * can be mapped per VMID.
1716  */
1717 int amdgpu_ttm_init(struct amdgpu_device *adev)
1718 {
1719         uint64_t gtt_size;
1720         int r;
1721         u64 vis_vram_limit;
1722
1723         mutex_init(&adev->mman.gtt_window_lock);
1724
1725         /* No others user of address space so set it to 0 */
1726         r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1727                                adev_to_drm(adev)->anon_inode->i_mapping,
1728                                adev_to_drm(adev)->vma_offset_manager,
1729                                adev->need_swiotlb,
1730                                dma_addressing_limited(adev->dev));
1731         if (r) {
1732                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1733                 return r;
1734         }
1735         adev->mman.initialized = true;
1736
1737         /* Initialize VRAM pool with all of VRAM divided into pages */
1738         r = amdgpu_vram_mgr_init(adev);
1739         if (r) {
1740                 DRM_ERROR("Failed initializing VRAM heap.\n");
1741                 return r;
1742         }
1743
1744         /* Reduce size of CPU-visible VRAM if requested */
1745         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1746         if (amdgpu_vis_vram_limit > 0 &&
1747             vis_vram_limit <= adev->gmc.visible_vram_size)
1748                 adev->gmc.visible_vram_size = vis_vram_limit;
1749
1750         /* Change the size here instead of the init above so only lpfn is affected */
1751         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1752 #ifdef CONFIG_64BIT
1753 #ifdef CONFIG_X86
1754         if (adev->gmc.xgmi.connected_to_cpu)
1755                 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1756                                 adev->gmc.visible_vram_size);
1757
1758         else
1759 #endif
1760                 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1761                                 adev->gmc.visible_vram_size);
1762 #endif
1763
1764         /*
1765          *The reserved vram for firmware must be pinned to the specified
1766          *place on the VRAM, so reserve it early.
1767          */
1768         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1769         if (r) {
1770                 return r;
1771         }
1772
1773         /*
1774          *The reserved vram for driver must be pinned to the specified
1775          *place on the VRAM, so reserve it early.
1776          */
1777         r = amdgpu_ttm_drv_reserve_vram_init(adev);
1778         if (r)
1779                 return r;
1780
1781         /*
1782          * only NAVI10 and onwards ASIC support for IP discovery.
1783          * If IP discovery enabled, a block of memory should be
1784          * reserved for IP discovey.
1785          */
1786         if (adev->mman.discovery_bin) {
1787                 r = amdgpu_ttm_reserve_tmr(adev);
1788                 if (r)
1789                         return r;
1790         }
1791
1792         /* allocate memory as required for VGA
1793          * This is used for VGA emulation and pre-OS scanout buffers to
1794          * avoid display artifacts while transitioning between pre-OS
1795          * and driver.  */
1796         r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1797                                        &adev->mman.stolen_vga_memory,
1798                                        NULL);
1799         if (r)
1800                 return r;
1801         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1802                                        adev->mman.stolen_extended_size,
1803                                        &adev->mman.stolen_extended_memory,
1804                                        NULL);
1805         if (r)
1806                 return r;
1807         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1808                                        adev->mman.stolen_reserved_size,
1809                                        &adev->mman.stolen_reserved_memory,
1810                                        NULL);
1811         if (r)
1812                 return r;
1813
1814         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1815                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1816
1817         /* Compute GTT size, either based on 1/2 the size of RAM size
1818          * or whatever the user passed on module init */
1819         if (amdgpu_gtt_size == -1) {
1820                 struct sysinfo si;
1821
1822                 si_meminfo(&si);
1823                 /* Certain GL unit tests for large textures can cause problems
1824                  * with the OOM killer since there is no way to link this memory
1825                  * to a process.  This was originally mitigated (but not necessarily
1826                  * eliminated) by limiting the GTT size.  The problem is this limit
1827                  * is often too low for many modern games so just make the limit 1/2
1828                  * of system memory which aligns with TTM. The OOM accounting needs
1829                  * to be addressed, but we shouldn't prevent common 3D applications
1830                  * from being usable just to potentially mitigate that corner case.
1831                  */
1832                 gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1833                                (u64)si.totalram * si.mem_unit / 2);
1834         } else {
1835                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1836         }
1837
1838         /* Initialize GTT memory pool */
1839         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1840         if (r) {
1841                 DRM_ERROR("Failed initializing GTT heap.\n");
1842                 return r;
1843         }
1844         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1845                  (unsigned)(gtt_size / (1024 * 1024)));
1846
1847         /* Initialize preemptible memory pool */
1848         r = amdgpu_preempt_mgr_init(adev);
1849         if (r) {
1850                 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1851                 return r;
1852         }
1853
1854         /* Initialize various on-chip memory pools */
1855         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1856         if (r) {
1857                 DRM_ERROR("Failed initializing GDS heap.\n");
1858                 return r;
1859         }
1860
1861         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1862         if (r) {
1863                 DRM_ERROR("Failed initializing gws heap.\n");
1864                 return r;
1865         }
1866
1867         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1868         if (r) {
1869                 DRM_ERROR("Failed initializing oa heap.\n");
1870                 return r;
1871         }
1872
1873         if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1874                                 AMDGPU_GEM_DOMAIN_GTT,
1875                                 &adev->mman.sdma_access_bo, NULL,
1876                                 &adev->mman.sdma_access_ptr))
1877                 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1878
1879         return 0;
1880 }
1881
1882 /*
1883  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1884  */
1885 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1886 {
1887         int idx;
1888         if (!adev->mman.initialized)
1889                 return;
1890
1891         amdgpu_ttm_training_reserve_vram_fini(adev);
1892         /* return the stolen vga memory back to VRAM */
1893         amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1894         amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1895         /* return the IP Discovery TMR memory back to VRAM */
1896         amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1897         if (adev->mman.stolen_reserved_size)
1898                 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1899                                       NULL, NULL);
1900         amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1901                                         &adev->mman.sdma_access_ptr);
1902         amdgpu_ttm_fw_reserve_vram_fini(adev);
1903         amdgpu_ttm_drv_reserve_vram_fini(adev);
1904
1905         if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1906
1907                 if (adev->mman.aper_base_kaddr)
1908                         iounmap(adev->mman.aper_base_kaddr);
1909                 adev->mman.aper_base_kaddr = NULL;
1910
1911                 drm_dev_exit(idx);
1912         }
1913
1914         amdgpu_vram_mgr_fini(adev);
1915         amdgpu_gtt_mgr_fini(adev);
1916         amdgpu_preempt_mgr_fini(adev);
1917         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1918         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1919         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1920         ttm_device_fini(&adev->mman.bdev);
1921         adev->mman.initialized = false;
1922         DRM_INFO("amdgpu: ttm finalized\n");
1923 }
1924
1925 /**
1926  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1927  *
1928  * @adev: amdgpu_device pointer
1929  * @enable: true when we can use buffer functions.
1930  *
1931  * Enable/disable use of buffer functions during suspend/resume. This should
1932  * only be called at bootup or when userspace isn't running.
1933  */
1934 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1935 {
1936         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1937         uint64_t size;
1938         int r;
1939
1940         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1941             adev->mman.buffer_funcs_enabled == enable)
1942                 return;
1943
1944         if (enable) {
1945                 struct amdgpu_ring *ring;
1946                 struct drm_gpu_scheduler *sched;
1947
1948                 ring = adev->mman.buffer_funcs_ring;
1949                 sched = &ring->sched;
1950                 r = drm_sched_entity_init(&adev->mman.entity,
1951                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
1952                                           1, NULL);
1953                 if (r) {
1954                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1955                                   r);
1956                         return;
1957                 }
1958         } else {
1959                 drm_sched_entity_destroy(&adev->mman.entity);
1960                 dma_fence_put(man->move);
1961                 man->move = NULL;
1962         }
1963
1964         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1965         if (enable)
1966                 size = adev->gmc.real_vram_size;
1967         else
1968                 size = adev->gmc.visible_vram_size;
1969         man->size = size;
1970         adev->mman.buffer_funcs_enabled = enable;
1971 }
1972
1973 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
1974                                   bool direct_submit,
1975                                   unsigned int num_dw,
1976                                   struct dma_resv *resv,
1977                                   bool vm_needs_flush,
1978                                   struct amdgpu_job **job)
1979 {
1980         enum amdgpu_ib_pool_type pool = direct_submit ?
1981                 AMDGPU_IB_POOL_DIRECT :
1982                 AMDGPU_IB_POOL_DELAYED;
1983         int r;
1984
1985         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
1986                                      AMDGPU_FENCE_OWNER_UNDEFINED,
1987                                      num_dw * 4, pool, job);
1988         if (r)
1989                 return r;
1990
1991         if (vm_needs_flush) {
1992                 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1993                                                         adev->gmc.pdb0_bo :
1994                                                         adev->gart.bo);
1995                 (*job)->vm_needs_flush = true;
1996         }
1997         if (!resv)
1998                 return 0;
1999
2000         return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2001                                                    DMA_RESV_USAGE_BOOKKEEP);
2002 }
2003
2004 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2005                        uint64_t dst_offset, uint32_t byte_count,
2006                        struct dma_resv *resv,
2007                        struct dma_fence **fence, bool direct_submit,
2008                        bool vm_needs_flush, bool tmz)
2009 {
2010         struct amdgpu_device *adev = ring->adev;
2011         unsigned num_loops, num_dw;
2012         struct amdgpu_job *job;
2013         uint32_t max_bytes;
2014         unsigned i;
2015         int r;
2016
2017         if (!direct_submit && !ring->sched.ready) {
2018                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2019                 return -EINVAL;
2020         }
2021
2022         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2023         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2024         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2025         r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2026                                    resv, vm_needs_flush, &job);
2027         if (r)
2028                 return r;
2029
2030         for (i = 0; i < num_loops; i++) {
2031                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2032
2033                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2034                                         dst_offset, cur_size_in_bytes, tmz);
2035
2036                 src_offset += cur_size_in_bytes;
2037                 dst_offset += cur_size_in_bytes;
2038                 byte_count -= cur_size_in_bytes;
2039         }
2040
2041         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2042         WARN_ON(job->ibs[0].length_dw > num_dw);
2043         if (direct_submit)
2044                 r = amdgpu_job_submit_direct(job, ring, fence);
2045         else
2046                 *fence = amdgpu_job_submit(job);
2047         if (r)
2048                 goto error_free;
2049
2050         return r;
2051
2052 error_free:
2053         amdgpu_job_free(job);
2054         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2055         return r;
2056 }
2057
2058 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2059                                uint64_t dst_addr, uint32_t byte_count,
2060                                struct dma_resv *resv,
2061                                struct dma_fence **fence,
2062                                bool vm_needs_flush)
2063 {
2064         struct amdgpu_device *adev = ring->adev;
2065         unsigned int num_loops, num_dw;
2066         struct amdgpu_job *job;
2067         uint32_t max_bytes;
2068         unsigned int i;
2069         int r;
2070
2071         max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2072         num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2073         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2074         r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2075                                    &job);
2076         if (r)
2077                 return r;
2078
2079         for (i = 0; i < num_loops; i++) {
2080                 uint32_t cur_size = min(byte_count, max_bytes);
2081
2082                 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2083                                         cur_size);
2084
2085                 dst_addr += cur_size;
2086                 byte_count -= cur_size;
2087         }
2088
2089         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2090         WARN_ON(job->ibs[0].length_dw > num_dw);
2091         *fence = amdgpu_job_submit(job);
2092         return 0;
2093 }
2094
2095 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2096                         uint32_t src_data,
2097                         struct dma_resv *resv,
2098                         struct dma_fence **f)
2099 {
2100         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2101         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2102         struct dma_fence *fence = NULL;
2103         struct amdgpu_res_cursor dst;
2104         int r;
2105
2106         if (!adev->mman.buffer_funcs_enabled) {
2107                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2108                 return -EINVAL;
2109         }
2110
2111         amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2112
2113         mutex_lock(&adev->mman.gtt_window_lock);
2114         while (dst.remaining) {
2115                 struct dma_fence *next;
2116                 uint64_t cur_size, to;
2117
2118                 /* Never fill more than 256MiB at once to avoid timeouts */
2119                 cur_size = min(dst.size, 256ULL << 20);
2120
2121                 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2122                                           1, ring, false, &cur_size, &to);
2123                 if (r)
2124                         goto error;
2125
2126                 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2127                                         &next, true);
2128                 if (r)
2129                         goto error;
2130
2131                 dma_fence_put(fence);
2132                 fence = next;
2133
2134                 amdgpu_res_next(&dst, cur_size);
2135         }
2136 error:
2137         mutex_unlock(&adev->mman.gtt_window_lock);
2138         if (f)
2139                 *f = dma_fence_get(fence);
2140         dma_fence_put(fence);
2141         return r;
2142 }
2143
2144 /**
2145  * amdgpu_ttm_evict_resources - evict memory buffers
2146  * @adev: amdgpu device object
2147  * @mem_type: evicted BO's memory type
2148  *
2149  * Evicts all @mem_type buffers on the lru list of the memory type.
2150  *
2151  * Returns:
2152  * 0 for success or a negative error code on failure.
2153  */
2154 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2155 {
2156         struct ttm_resource_manager *man;
2157
2158         switch (mem_type) {
2159         case TTM_PL_VRAM:
2160         case TTM_PL_TT:
2161         case AMDGPU_PL_GWS:
2162         case AMDGPU_PL_GDS:
2163         case AMDGPU_PL_OA:
2164                 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2165                 break;
2166         default:
2167                 DRM_ERROR("Trying to evict invalid memory type\n");
2168                 return -EINVAL;
2169         }
2170
2171         return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2172 }
2173
2174 #if defined(CONFIG_DEBUG_FS)
2175
2176 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2177 {
2178         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2179
2180         return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2181 }
2182
2183 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2184
2185 /*
2186  * amdgpu_ttm_vram_read - Linear read access to VRAM
2187  *
2188  * Accesses VRAM via MMIO for debugging purposes.
2189  */
2190 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2191                                     size_t size, loff_t *pos)
2192 {
2193         struct amdgpu_device *adev = file_inode(f)->i_private;
2194         ssize_t result = 0;
2195
2196         if (size & 0x3 || *pos & 0x3)
2197                 return -EINVAL;
2198
2199         if (*pos >= adev->gmc.mc_vram_size)
2200                 return -ENXIO;
2201
2202         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2203         while (size) {
2204                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2205                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2206
2207                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2208                 if (copy_to_user(buf, value, bytes))
2209                         return -EFAULT;
2210
2211                 result += bytes;
2212                 buf += bytes;
2213                 *pos += bytes;
2214                 size -= bytes;
2215         }
2216
2217         return result;
2218 }
2219
2220 /*
2221  * amdgpu_ttm_vram_write - Linear write access to VRAM
2222  *
2223  * Accesses VRAM via MMIO for debugging purposes.
2224  */
2225 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2226                                     size_t size, loff_t *pos)
2227 {
2228         struct amdgpu_device *adev = file_inode(f)->i_private;
2229         ssize_t result = 0;
2230         int r;
2231
2232         if (size & 0x3 || *pos & 0x3)
2233                 return -EINVAL;
2234
2235         if (*pos >= adev->gmc.mc_vram_size)
2236                 return -ENXIO;
2237
2238         while (size) {
2239                 uint32_t value;
2240
2241                 if (*pos >= adev->gmc.mc_vram_size)
2242                         return result;
2243
2244                 r = get_user(value, (uint32_t *)buf);
2245                 if (r)
2246                         return r;
2247
2248                 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2249
2250                 result += 4;
2251                 buf += 4;
2252                 *pos += 4;
2253                 size -= 4;
2254         }
2255
2256         return result;
2257 }
2258
2259 static const struct file_operations amdgpu_ttm_vram_fops = {
2260         .owner = THIS_MODULE,
2261         .read = amdgpu_ttm_vram_read,
2262         .write = amdgpu_ttm_vram_write,
2263         .llseek = default_llseek,
2264 };
2265
2266 /*
2267  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2268  *
2269  * This function is used to read memory that has been mapped to the
2270  * GPU and the known addresses are not physical addresses but instead
2271  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2272  */
2273 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2274                                  size_t size, loff_t *pos)
2275 {
2276         struct amdgpu_device *adev = file_inode(f)->i_private;
2277         struct iommu_domain *dom;
2278         ssize_t result = 0;
2279         int r;
2280
2281         /* retrieve the IOMMU domain if any for this device */
2282         dom = iommu_get_domain_for_dev(adev->dev);
2283
2284         while (size) {
2285                 phys_addr_t addr = *pos & PAGE_MASK;
2286                 loff_t off = *pos & ~PAGE_MASK;
2287                 size_t bytes = PAGE_SIZE - off;
2288                 unsigned long pfn;
2289                 struct page *p;
2290                 void *ptr;
2291
2292                 bytes = bytes < size ? bytes : size;
2293
2294                 /* Translate the bus address to a physical address.  If
2295                  * the domain is NULL it means there is no IOMMU active
2296                  * and the address translation is the identity
2297                  */
2298                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2299
2300                 pfn = addr >> PAGE_SHIFT;
2301                 if (!pfn_valid(pfn))
2302                         return -EPERM;
2303
2304                 p = pfn_to_page(pfn);
2305                 if (p->mapping != adev->mman.bdev.dev_mapping)
2306                         return -EPERM;
2307
2308                 ptr = kmap_local_page(p);
2309                 r = copy_to_user(buf, ptr + off, bytes);
2310                 kunmap_local(ptr);
2311                 if (r)
2312                         return -EFAULT;
2313
2314                 size -= bytes;
2315                 *pos += bytes;
2316                 result += bytes;
2317         }
2318
2319         return result;
2320 }
2321
2322 /*
2323  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2324  *
2325  * This function is used to write memory that has been mapped to the
2326  * GPU and the known addresses are not physical addresses but instead
2327  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2328  */
2329 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2330                                  size_t size, loff_t *pos)
2331 {
2332         struct amdgpu_device *adev = file_inode(f)->i_private;
2333         struct iommu_domain *dom;
2334         ssize_t result = 0;
2335         int r;
2336
2337         dom = iommu_get_domain_for_dev(adev->dev);
2338
2339         while (size) {
2340                 phys_addr_t addr = *pos & PAGE_MASK;
2341                 loff_t off = *pos & ~PAGE_MASK;
2342                 size_t bytes = PAGE_SIZE - off;
2343                 unsigned long pfn;
2344                 struct page *p;
2345                 void *ptr;
2346
2347                 bytes = bytes < size ? bytes : size;
2348
2349                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2350
2351                 pfn = addr >> PAGE_SHIFT;
2352                 if (!pfn_valid(pfn))
2353                         return -EPERM;
2354
2355                 p = pfn_to_page(pfn);
2356                 if (p->mapping != adev->mman.bdev.dev_mapping)
2357                         return -EPERM;
2358
2359                 ptr = kmap_local_page(p);
2360                 r = copy_from_user(ptr + off, buf, bytes);
2361                 kunmap_local(ptr);
2362                 if (r)
2363                         return -EFAULT;
2364
2365                 size -= bytes;
2366                 *pos += bytes;
2367                 result += bytes;
2368         }
2369
2370         return result;
2371 }
2372
2373 static const struct file_operations amdgpu_ttm_iomem_fops = {
2374         .owner = THIS_MODULE,
2375         .read = amdgpu_iomem_read,
2376         .write = amdgpu_iomem_write,
2377         .llseek = default_llseek
2378 };
2379
2380 #endif
2381
2382 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2383 {
2384 #if defined(CONFIG_DEBUG_FS)
2385         struct drm_minor *minor = adev_to_drm(adev)->primary;
2386         struct dentry *root = minor->debugfs_root;
2387
2388         debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2389                                  &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2390         debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2391                             &amdgpu_ttm_iomem_fops);
2392         debugfs_create_file("ttm_page_pool", 0444, root, adev,
2393                             &amdgpu_ttm_page_pool_fops);
2394         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2395                                                              TTM_PL_VRAM),
2396                                             root, "amdgpu_vram_mm");
2397         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2398                                                              TTM_PL_TT),
2399                                             root, "amdgpu_gtt_mm");
2400         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2401                                                              AMDGPU_PL_GDS),
2402                                             root, "amdgpu_gds_mm");
2403         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2404                                                              AMDGPU_PL_GWS),
2405                                             root, "amdgpu_gws_mm");
2406         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2407                                                              AMDGPU_PL_OA),
2408                                             root, "amdgpu_oa_mm");
2409
2410 #endif
2411 }