Merge branch 'for-next' into for-linus
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo_api.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_placement.h>
50 #include <drm/ttm/ttm_range_manager.h>
51
52 #include <drm/amdgpu_drm.h>
53 #include <drm/drm_drv.h>
54
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "amdgpu_res_cursor.h"
63 #include "bif/bif_4_1_d.h"
64
65 MODULE_IMPORT_NS(DMA_BUF);
66
67 #define AMDGPU_TTM_VRAM_MAX_DW_READ     (size_t)128
68
69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70                                    struct ttm_tt *ttm,
71                                    struct ttm_resource *bo_mem);
72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
73                                       struct ttm_tt *ttm);
74
75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76                                     unsigned int type,
77                                     uint64_t size_in_page)
78 {
79         return ttm_range_man_init(&adev->mman.bdev, type,
80                                   false, size_in_page);
81 }
82
83 /**
84  * amdgpu_evict_flags - Compute placement flags
85  *
86  * @bo: The buffer object to evict
87  * @placement: Possible destination(s) for evicted BO
88  *
89  * Fill in placement data when ttm_bo_evict() is called
90  */
91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
92                                 struct ttm_placement *placement)
93 {
94         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
95         struct amdgpu_bo *abo;
96         static const struct ttm_place placements = {
97                 .fpfn = 0,
98                 .lpfn = 0,
99                 .mem_type = TTM_PL_SYSTEM,
100                 .flags = 0
101         };
102
103         /* Don't handle scatter gather BOs */
104         if (bo->type == ttm_bo_type_sg) {
105                 placement->num_placement = 0;
106                 placement->num_busy_placement = 0;
107                 return;
108         }
109
110         /* Object isn't an AMDGPU object so ignore */
111         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
112                 placement->placement = &placements;
113                 placement->busy_placement = &placements;
114                 placement->num_placement = 1;
115                 placement->num_busy_placement = 1;
116                 return;
117         }
118
119         abo = ttm_to_amdgpu_bo(bo);
120         if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
121                 placement->num_placement = 0;
122                 placement->num_busy_placement = 0;
123                 return;
124         }
125
126         switch (bo->resource->mem_type) {
127         case AMDGPU_PL_GDS:
128         case AMDGPU_PL_GWS:
129         case AMDGPU_PL_OA:
130                 placement->num_placement = 0;
131                 placement->num_busy_placement = 0;
132                 return;
133
134         case TTM_PL_VRAM:
135                 if (!adev->mman.buffer_funcs_enabled) {
136                         /* Move to system memory */
137                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140                            amdgpu_bo_in_cpu_visible_vram(abo)) {
141
142                         /* Try evicting to the CPU inaccessible part of VRAM
143                          * first, but only set GTT as busy placement, so this
144                          * BO will be evicted to GTT rather than causing other
145                          * BOs to be evicted from VRAM
146                          */
147                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148                                                         AMDGPU_GEM_DOMAIN_GTT |
149                                                         AMDGPU_GEM_DOMAIN_CPU);
150                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151                         abo->placements[0].lpfn = 0;
152                         abo->placement.busy_placement = &abo->placements[1];
153                         abo->placement.num_busy_placement = 1;
154                 } else {
155                         /* Move to GTT memory */
156                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157                                                         AMDGPU_GEM_DOMAIN_CPU);
158                 }
159                 break;
160         case TTM_PL_TT:
161         case AMDGPU_PL_PREEMPT:
162         default:
163                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164                 break;
165         }
166         *placement = abo->placement;
167 }
168
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184                                  struct ttm_resource *mem,
185                                  struct amdgpu_res_cursor *mm_cur,
186                                  unsigned window, struct amdgpu_ring *ring,
187                                  bool tmz, uint64_t *size, uint64_t *addr)
188 {
189         struct amdgpu_device *adev = ring->adev;
190         unsigned offset, num_pages, num_dw, num_bytes;
191         uint64_t src_addr, dst_addr;
192         struct dma_fence *fence;
193         struct amdgpu_job *job;
194         void *cpu_addr;
195         uint64_t flags;
196         unsigned int i;
197         int r;
198
199         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201
202         if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203                 return -EINVAL;
204
205         /* Map only what can't be accessed directly */
206         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207                 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208                         mm_cur->start;
209                 return 0;
210         }
211
212
213         /*
214          * If start begins at an offset inside the page, then adjust the size
215          * and addr accordingly
216          */
217         offset = mm_cur->start & ~PAGE_MASK;
218
219         num_pages = PFN_UP(*size + offset);
220         num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221
222         *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223
224         *addr = adev->gmc.gart_start;
225         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226                 AMDGPU_GPU_PAGE_SIZE;
227         *addr += offset;
228
229         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230         num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231
232         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
233                                      AMDGPU_IB_POOL_DELAYED, &job);
234         if (r)
235                 return r;
236
237         src_addr = num_dw * 4;
238         src_addr += job->ibs[0].gpu_addr;
239
240         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
241         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
242         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
243                                 dst_addr, num_bytes, false);
244
245         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
246         WARN_ON(job->ibs[0].length_dw > num_dw);
247
248         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
249         if (tmz)
250                 flags |= AMDGPU_PTE_TMZ;
251
252         cpu_addr = &job->ibs[0].ptr[num_dw];
253
254         if (mem->mem_type == TTM_PL_TT) {
255                 dma_addr_t *dma_addr;
256
257                 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
258                 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
259         } else {
260                 dma_addr_t dma_address;
261
262                 dma_address = mm_cur->start;
263                 dma_address += adev->vm_manager.vram_base_offset;
264
265                 for (i = 0; i < num_pages; ++i) {
266                         amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
267                                         flags, cpu_addr);
268                         dma_address += PAGE_SIZE;
269                 }
270         }
271
272         r = amdgpu_job_submit(job, &adev->mman.entity,
273                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
274         if (r)
275                 goto error_free;
276
277         dma_fence_put(fence);
278
279         return r;
280
281 error_free:
282         amdgpu_job_free(job);
283         return r;
284 }
285
286 /**
287  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
288  * @adev: amdgpu device
289  * @src: buffer/address where to read from
290  * @dst: buffer/address where to write to
291  * @size: number of bytes to copy
292  * @tmz: if a secure copy should be used
293  * @resv: resv object to sync to
294  * @f: Returns the last fence if multiple jobs are submitted.
295  *
296  * The function copies @size bytes from {src->mem + src->offset} to
297  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298  * move and different for a BO to BO copy.
299  *
300  */
301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
302                                const struct amdgpu_copy_mem *src,
303                                const struct amdgpu_copy_mem *dst,
304                                uint64_t size, bool tmz,
305                                struct dma_resv *resv,
306                                struct dma_fence **f)
307 {
308         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309         struct amdgpu_res_cursor src_mm, dst_mm;
310         struct dma_fence *fence = NULL;
311         int r = 0;
312
313         if (!adev->mman.buffer_funcs_enabled) {
314                 DRM_ERROR("Trying to move memory with ring turned off.\n");
315                 return -EINVAL;
316         }
317
318         amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319         amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320
321         mutex_lock(&adev->mman.gtt_window_lock);
322         while (src_mm.remaining) {
323                 uint64_t from, to, cur_size;
324                 struct dma_fence *next;
325
326                 /* Never copy more than 256MiB at once to avoid a timeout */
327                 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
328
329                 /* Map src to window 0 and dst to window 1. */
330                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
331                                           0, ring, tmz, &cur_size, &from);
332                 if (r)
333                         goto error;
334
335                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
336                                           1, ring, tmz, &cur_size, &to);
337                 if (r)
338                         goto error;
339
340                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
341                                        resv, &next, false, true, tmz);
342                 if (r)
343                         goto error;
344
345                 dma_fence_put(fence);
346                 fence = next;
347
348                 amdgpu_res_next(&src_mm, cur_size);
349                 amdgpu_res_next(&dst_mm, cur_size);
350         }
351 error:
352         mutex_unlock(&adev->mman.gtt_window_lock);
353         if (f)
354                 *f = dma_fence_get(fence);
355         dma_fence_put(fence);
356         return r;
357 }
358
359 /*
360  * amdgpu_move_blit - Copy an entire buffer to another buffer
361  *
362  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
363  * help move buffers to and from VRAM.
364  */
365 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
366                             bool evict,
367                             struct ttm_resource *new_mem,
368                             struct ttm_resource *old_mem)
369 {
370         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
371         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
372         struct amdgpu_copy_mem src, dst;
373         struct dma_fence *fence = NULL;
374         int r;
375
376         src.bo = bo;
377         dst.bo = bo;
378         src.mem = old_mem;
379         dst.mem = new_mem;
380         src.offset = 0;
381         dst.offset = 0;
382
383         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
384                                        new_mem->num_pages << PAGE_SHIFT,
385                                        amdgpu_bo_encrypted(abo),
386                                        bo->base.resv, &fence);
387         if (r)
388                 goto error;
389
390         /* clear the space being freed */
391         if (old_mem->mem_type == TTM_PL_VRAM &&
392             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
393                 struct dma_fence *wipe_fence = NULL;
394
395                 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
396                 if (r) {
397                         goto error;
398                 } else if (wipe_fence) {
399                         dma_fence_put(fence);
400                         fence = wipe_fence;
401                 }
402         }
403
404         /* Always block for VM page tables before committing the new location */
405         if (bo->type == ttm_bo_type_kernel)
406                 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
407         else
408                 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
409         dma_fence_put(fence);
410         return r;
411
412 error:
413         if (fence)
414                 dma_fence_wait(fence, false);
415         dma_fence_put(fence);
416         return r;
417 }
418
419 /*
420  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
421  *
422  * Called by amdgpu_bo_move()
423  */
424 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
425                                struct ttm_resource *mem)
426 {
427         u64 mem_size = (u64)mem->num_pages << PAGE_SHIFT;
428         struct amdgpu_res_cursor cursor;
429         u64 end;
430
431         if (mem->mem_type == TTM_PL_SYSTEM ||
432             mem->mem_type == TTM_PL_TT)
433                 return true;
434         if (mem->mem_type != TTM_PL_VRAM)
435                 return false;
436
437         amdgpu_res_first(mem, 0, mem_size, &cursor);
438         end = cursor.start + cursor.size;
439         while (cursor.remaining) {
440                 amdgpu_res_next(&cursor, cursor.size);
441
442                 if (!cursor.remaining)
443                         break;
444
445                 /* ttm_resource_ioremap only supports contiguous memory */
446                 if (end != cursor.start)
447                         return false;
448
449                 end = cursor.start + cursor.size;
450         }
451
452         return end <= adev->gmc.visible_vram_size;
453 }
454
455 /*
456  * amdgpu_bo_move - Move a buffer object to a new memory location
457  *
458  * Called by ttm_bo_handle_move_mem()
459  */
460 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
461                           struct ttm_operation_ctx *ctx,
462                           struct ttm_resource *new_mem,
463                           struct ttm_place *hop)
464 {
465         struct amdgpu_device *adev;
466         struct amdgpu_bo *abo;
467         struct ttm_resource *old_mem = bo->resource;
468         int r;
469
470         if (new_mem->mem_type == TTM_PL_TT ||
471             new_mem->mem_type == AMDGPU_PL_PREEMPT) {
472                 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
473                 if (r)
474                         return r;
475         }
476
477         /* Can't move a pinned BO */
478         abo = ttm_to_amdgpu_bo(bo);
479         if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
480                 return -EINVAL;
481
482         adev = amdgpu_ttm_adev(bo->bdev);
483
484         if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
485                          bo->ttm == NULL)) {
486                 ttm_bo_move_null(bo, new_mem);
487                 goto out;
488         }
489         if (old_mem->mem_type == TTM_PL_SYSTEM &&
490             (new_mem->mem_type == TTM_PL_TT ||
491              new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
492                 ttm_bo_move_null(bo, new_mem);
493                 goto out;
494         }
495         if ((old_mem->mem_type == TTM_PL_TT ||
496              old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
497             new_mem->mem_type == TTM_PL_SYSTEM) {
498                 r = ttm_bo_wait_ctx(bo, ctx);
499                 if (r)
500                         return r;
501
502                 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
503                 ttm_resource_free(bo, &bo->resource);
504                 ttm_bo_assign_mem(bo, new_mem);
505                 goto out;
506         }
507
508         if (old_mem->mem_type == AMDGPU_PL_GDS ||
509             old_mem->mem_type == AMDGPU_PL_GWS ||
510             old_mem->mem_type == AMDGPU_PL_OA ||
511             new_mem->mem_type == AMDGPU_PL_GDS ||
512             new_mem->mem_type == AMDGPU_PL_GWS ||
513             new_mem->mem_type == AMDGPU_PL_OA) {
514                 /* Nothing to save here */
515                 ttm_bo_move_null(bo, new_mem);
516                 goto out;
517         }
518
519         if (bo->type == ttm_bo_type_device &&
520             new_mem->mem_type == TTM_PL_VRAM &&
521             old_mem->mem_type != TTM_PL_VRAM) {
522                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
523                  * accesses the BO after it's moved.
524                  */
525                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
526         }
527
528         if (adev->mman.buffer_funcs_enabled) {
529                 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
530                       new_mem->mem_type == TTM_PL_VRAM) ||
531                      (old_mem->mem_type == TTM_PL_VRAM &&
532                       new_mem->mem_type == TTM_PL_SYSTEM))) {
533                         hop->fpfn = 0;
534                         hop->lpfn = 0;
535                         hop->mem_type = TTM_PL_TT;
536                         hop->flags = TTM_PL_FLAG_TEMPORARY;
537                         return -EMULTIHOP;
538                 }
539
540                 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
541         } else {
542                 r = -ENODEV;
543         }
544
545         if (r) {
546                 /* Check that all memory is CPU accessible */
547                 if (!amdgpu_mem_visible(adev, old_mem) ||
548                     !amdgpu_mem_visible(adev, new_mem)) {
549                         pr_err("Move buffer fallback to memcpy unavailable\n");
550                         return r;
551                 }
552
553                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
554                 if (r)
555                         return r;
556         }
557
558 out:
559         /* update statistics */
560         atomic64_add(bo->base.size, &adev->num_bytes_moved);
561         amdgpu_bo_move_notify(bo, evict, new_mem);
562         return 0;
563 }
564
565 /*
566  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
567  *
568  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
569  */
570 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
571                                      struct ttm_resource *mem)
572 {
573         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
574         size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
575
576         switch (mem->mem_type) {
577         case TTM_PL_SYSTEM:
578                 /* system memory */
579                 return 0;
580         case TTM_PL_TT:
581         case AMDGPU_PL_PREEMPT:
582                 break;
583         case TTM_PL_VRAM:
584                 mem->bus.offset = mem->start << PAGE_SHIFT;
585                 /* check if it's visible */
586                 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
587                         return -EINVAL;
588
589                 if (adev->mman.aper_base_kaddr &&
590                     mem->placement & TTM_PL_FLAG_CONTIGUOUS)
591                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
592                                         mem->bus.offset;
593
594                 mem->bus.offset += adev->gmc.aper_base;
595                 mem->bus.is_iomem = true;
596                 break;
597         default:
598                 return -EINVAL;
599         }
600         return 0;
601 }
602
603 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
604                                            unsigned long page_offset)
605 {
606         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
607         struct amdgpu_res_cursor cursor;
608
609         amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
610                          &cursor);
611         return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
612 }
613
614 /**
615  * amdgpu_ttm_domain_start - Returns GPU start address
616  * @adev: amdgpu device object
617  * @type: type of the memory
618  *
619  * Returns:
620  * GPU start address of a memory domain
621  */
622
623 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
624 {
625         switch (type) {
626         case TTM_PL_TT:
627                 return adev->gmc.gart_start;
628         case TTM_PL_VRAM:
629                 return adev->gmc.vram_start;
630         }
631
632         return 0;
633 }
634
635 /*
636  * TTM backend functions.
637  */
638 struct amdgpu_ttm_tt {
639         struct ttm_tt   ttm;
640         struct drm_gem_object   *gobj;
641         u64                     offset;
642         uint64_t                userptr;
643         struct task_struct      *usertask;
644         uint32_t                userflags;
645         bool                    bound;
646 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
647         struct hmm_range        *range;
648 #endif
649 };
650
651 #define ttm_to_amdgpu_ttm_tt(ptr)       container_of(ptr, struct amdgpu_ttm_tt, ttm)
652
653 #ifdef CONFIG_DRM_AMDGPU_USERPTR
654 /*
655  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
656  * memory and start HMM tracking CPU page table update
657  *
658  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
659  * once afterwards to stop HMM tracking
660  */
661 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
662 {
663         struct ttm_tt *ttm = bo->tbo.ttm;
664         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
665         unsigned long start = gtt->userptr;
666         struct vm_area_struct *vma;
667         struct mm_struct *mm;
668         bool readonly;
669         int r = 0;
670
671         mm = bo->notifier.mm;
672         if (unlikely(!mm)) {
673                 DRM_DEBUG_DRIVER("BO is not registered?\n");
674                 return -EFAULT;
675         }
676
677         /* Another get_user_pages is running at the same time?? */
678         if (WARN_ON(gtt->range))
679                 return -EFAULT;
680
681         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
682                 return -ESRCH;
683
684         mmap_read_lock(mm);
685         vma = vma_lookup(mm, start);
686         if (unlikely(!vma)) {
687                 r = -EFAULT;
688                 goto out_unlock;
689         }
690         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
691                 vma->vm_file)) {
692                 r = -EPERM;
693                 goto out_unlock;
694         }
695
696         readonly = amdgpu_ttm_tt_is_readonly(ttm);
697         r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
698                                        ttm->num_pages, &gtt->range, readonly,
699                                        true, NULL);
700 out_unlock:
701         mmap_read_unlock(mm);
702         if (r)
703                 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
704
705         mmput(mm);
706
707         return r;
708 }
709
710 /*
711  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
712  * Check if the pages backing this ttm range have been invalidated
713  *
714  * Returns: true if pages are still valid
715  */
716 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
717 {
718         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
719         bool r = false;
720
721         if (!gtt || !gtt->userptr)
722                 return false;
723
724         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
725                 gtt->userptr, ttm->num_pages);
726
727         WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
728                 "No user pages to check\n");
729
730         if (gtt->range) {
731                 /*
732                  * FIXME: Must always hold notifier_lock for this, and must
733                  * not ignore the return code.
734                  */
735                 r = amdgpu_hmm_range_get_pages_done(gtt->range);
736                 gtt->range = NULL;
737         }
738
739         return !r;
740 }
741 #endif
742
743 /*
744  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
745  *
746  * Called by amdgpu_cs_list_validate(). This creates the page list
747  * that backs user memory and will ultimately be mapped into the device
748  * address space.
749  */
750 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
751 {
752         unsigned long i;
753
754         for (i = 0; i < ttm->num_pages; ++i)
755                 ttm->pages[i] = pages ? pages[i] : NULL;
756 }
757
758 /*
759  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
760  *
761  * Called by amdgpu_ttm_backend_bind()
762  **/
763 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
764                                      struct ttm_tt *ttm)
765 {
766         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
767         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
768         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
769         enum dma_data_direction direction = write ?
770                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
771         int r;
772
773         /* Allocate an SG array and squash pages into it */
774         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
775                                       (u64)ttm->num_pages << PAGE_SHIFT,
776                                       GFP_KERNEL);
777         if (r)
778                 goto release_sg;
779
780         /* Map SG to device */
781         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
782         if (r)
783                 goto release_sg;
784
785         /* convert SG to linear array of pages and dma addresses */
786         drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
787                                        ttm->num_pages);
788
789         return 0;
790
791 release_sg:
792         kfree(ttm->sg);
793         ttm->sg = NULL;
794         return r;
795 }
796
797 /*
798  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
799  */
800 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
801                                         struct ttm_tt *ttm)
802 {
803         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
804         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
805         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
806         enum dma_data_direction direction = write ?
807                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
808
809         /* double check that we don't free the table twice */
810         if (!ttm->sg || !ttm->sg->sgl)
811                 return;
812
813         /* unmap the pages mapped to the device */
814         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
815         sg_free_table(ttm->sg);
816
817 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
818         if (gtt->range) {
819                 unsigned long i;
820
821                 for (i = 0; i < ttm->num_pages; i++) {
822                         if (ttm->pages[i] !=
823                             hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
824                                 break;
825                 }
826
827                 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
828         }
829 #endif
830 }
831
832 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
833                                  struct ttm_buffer_object *tbo,
834                                  uint64_t flags)
835 {
836         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
837         struct ttm_tt *ttm = tbo->ttm;
838         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
839
840         if (amdgpu_bo_encrypted(abo))
841                 flags |= AMDGPU_PTE_TMZ;
842
843         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
844                 uint64_t page_idx = 1;
845
846                 amdgpu_gart_bind(adev, gtt->offset, page_idx,
847                                  gtt->ttm.dma_address, flags);
848
849                 /* The memory type of the first page defaults to UC. Now
850                  * modify the memory type to NC from the second page of
851                  * the BO onward.
852                  */
853                 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
854                 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
855
856                 amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
857                                  ttm->num_pages - page_idx,
858                                  &(gtt->ttm.dma_address[page_idx]), flags);
859         } else {
860                 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
861                                  gtt->ttm.dma_address, flags);
862         }
863 }
864
865 /*
866  * amdgpu_ttm_backend_bind - Bind GTT memory
867  *
868  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
869  * This handles binding GTT memory to the device address space.
870  */
871 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
872                                    struct ttm_tt *ttm,
873                                    struct ttm_resource *bo_mem)
874 {
875         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
876         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
877         uint64_t flags;
878         int r;
879
880         if (!bo_mem)
881                 return -EINVAL;
882
883         if (gtt->bound)
884                 return 0;
885
886         if (gtt->userptr) {
887                 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
888                 if (r) {
889                         DRM_ERROR("failed to pin userptr\n");
890                         return r;
891                 }
892         } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
893                 if (!ttm->sg) {
894                         struct dma_buf_attachment *attach;
895                         struct sg_table *sgt;
896
897                         attach = gtt->gobj->import_attach;
898                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
899                         if (IS_ERR(sgt))
900                                 return PTR_ERR(sgt);
901
902                         ttm->sg = sgt;
903                 }
904
905                 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
906                                                ttm->num_pages);
907         }
908
909         if (!ttm->num_pages) {
910                 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
911                      ttm->num_pages, bo_mem, ttm);
912         }
913
914         if (bo_mem->mem_type != TTM_PL_TT ||
915             !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
916                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
917                 return 0;
918         }
919
920         /* compute PTE flags relevant to this BO memory */
921         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
922
923         /* bind pages into GART page tables */
924         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
925         amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
926                          gtt->ttm.dma_address, flags);
927         gtt->bound = true;
928         return 0;
929 }
930
931 /*
932  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
933  * through AGP or GART aperture.
934  *
935  * If bo is accessible through AGP aperture, then use AGP aperture
936  * to access bo; otherwise allocate logical space in GART aperture
937  * and map bo to GART aperture.
938  */
939 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
940 {
941         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
942         struct ttm_operation_ctx ctx = { false, false };
943         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
944         struct ttm_placement placement;
945         struct ttm_place placements;
946         struct ttm_resource *tmp;
947         uint64_t addr, flags;
948         int r;
949
950         if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
951                 return 0;
952
953         addr = amdgpu_gmc_agp_addr(bo);
954         if (addr != AMDGPU_BO_INVALID_OFFSET) {
955                 bo->resource->start = addr >> PAGE_SHIFT;
956                 return 0;
957         }
958
959         /* allocate GART space */
960         placement.num_placement = 1;
961         placement.placement = &placements;
962         placement.num_busy_placement = 1;
963         placement.busy_placement = &placements;
964         placements.fpfn = 0;
965         placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
966         placements.mem_type = TTM_PL_TT;
967         placements.flags = bo->resource->placement;
968
969         r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
970         if (unlikely(r))
971                 return r;
972
973         /* compute PTE flags for this buffer object */
974         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
975
976         /* Bind pages */
977         gtt->offset = (u64)tmp->start << PAGE_SHIFT;
978         amdgpu_ttm_gart_bind(adev, bo, flags);
979         amdgpu_gart_invalidate_tlb(adev);
980         ttm_resource_free(bo, &bo->resource);
981         ttm_bo_assign_mem(bo, tmp);
982
983         return 0;
984 }
985
986 /*
987  * amdgpu_ttm_recover_gart - Rebind GTT pages
988  *
989  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
990  * rebind GTT pages during a GPU reset.
991  */
992 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
993 {
994         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
995         uint64_t flags;
996
997         if (!tbo->ttm)
998                 return;
999
1000         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1001         amdgpu_ttm_gart_bind(adev, tbo, flags);
1002 }
1003
1004 /*
1005  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1006  *
1007  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1008  * ttm_tt_destroy().
1009  */
1010 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1011                                       struct ttm_tt *ttm)
1012 {
1013         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1014         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1015
1016         /* if the pages have userptr pinning then clear that first */
1017         if (gtt->userptr) {
1018                 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1019         } else if (ttm->sg && gtt->gobj->import_attach) {
1020                 struct dma_buf_attachment *attach;
1021
1022                 attach = gtt->gobj->import_attach;
1023                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1024                 ttm->sg = NULL;
1025         }
1026
1027         if (!gtt->bound)
1028                 return;
1029
1030         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1031                 return;
1032
1033         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1034         amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1035         gtt->bound = false;
1036 }
1037
1038 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1039                                        struct ttm_tt *ttm)
1040 {
1041         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1042
1043         if (gtt->usertask)
1044                 put_task_struct(gtt->usertask);
1045
1046         ttm_tt_fini(&gtt->ttm);
1047         kfree(gtt);
1048 }
1049
1050 /**
1051  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1052  *
1053  * @bo: The buffer object to create a GTT ttm_tt object around
1054  * @page_flags: Page flags to be added to the ttm_tt object
1055  *
1056  * Called by ttm_tt_create().
1057  */
1058 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1059                                            uint32_t page_flags)
1060 {
1061         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1062         struct amdgpu_ttm_tt *gtt;
1063         enum ttm_caching caching;
1064
1065         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1066         if (gtt == NULL) {
1067                 return NULL;
1068         }
1069         gtt->gobj = &bo->base;
1070
1071         if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1072                 caching = ttm_write_combined;
1073         else
1074                 caching = ttm_cached;
1075
1076         /* allocate space for the uninitialized page entries */
1077         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1078                 kfree(gtt);
1079                 return NULL;
1080         }
1081         return &gtt->ttm;
1082 }
1083
1084 /*
1085  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1086  *
1087  * Map the pages of a ttm_tt object to an address space visible
1088  * to the underlying device.
1089  */
1090 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1091                                   struct ttm_tt *ttm,
1092                                   struct ttm_operation_ctx *ctx)
1093 {
1094         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1095         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1096         pgoff_t i;
1097         int ret;
1098
1099         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1100         if (gtt->userptr) {
1101                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1102                 if (!ttm->sg)
1103                         return -ENOMEM;
1104                 return 0;
1105         }
1106
1107         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1108                 return 0;
1109
1110         ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1111         if (ret)
1112                 return ret;
1113
1114         for (i = 0; i < ttm->num_pages; ++i)
1115                 ttm->pages[i]->mapping = bdev->dev_mapping;
1116
1117         return 0;
1118 }
1119
1120 /*
1121  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1122  *
1123  * Unmaps pages of a ttm_tt object from the device address space and
1124  * unpopulates the page array backing it.
1125  */
1126 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1127                                      struct ttm_tt *ttm)
1128 {
1129         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1130         struct amdgpu_device *adev;
1131         pgoff_t i;
1132
1133         amdgpu_ttm_backend_unbind(bdev, ttm);
1134
1135         if (gtt->userptr) {
1136                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1137                 kfree(ttm->sg);
1138                 ttm->sg = NULL;
1139                 return;
1140         }
1141
1142         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1143                 return;
1144
1145         for (i = 0; i < ttm->num_pages; ++i)
1146                 ttm->pages[i]->mapping = NULL;
1147
1148         adev = amdgpu_ttm_adev(bdev);
1149         return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1150 }
1151
1152 /**
1153  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1154  * task
1155  *
1156  * @tbo: The ttm_buffer_object that contains the userptr
1157  * @user_addr:  The returned value
1158  */
1159 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1160                               uint64_t *user_addr)
1161 {
1162         struct amdgpu_ttm_tt *gtt;
1163
1164         if (!tbo->ttm)
1165                 return -EINVAL;
1166
1167         gtt = (void *)tbo->ttm;
1168         *user_addr = gtt->userptr;
1169         return 0;
1170 }
1171
1172 /**
1173  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1174  * task
1175  *
1176  * @bo: The ttm_buffer_object to bind this userptr to
1177  * @addr:  The address in the current tasks VM space to use
1178  * @flags: Requirements of userptr object.
1179  *
1180  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1181  * to current task
1182  */
1183 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1184                               uint64_t addr, uint32_t flags)
1185 {
1186         struct amdgpu_ttm_tt *gtt;
1187
1188         if (!bo->ttm) {
1189                 /* TODO: We want a separate TTM object type for userptrs */
1190                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1191                 if (bo->ttm == NULL)
1192                         return -ENOMEM;
1193         }
1194
1195         /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1196         bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1197
1198         gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1199         gtt->userptr = addr;
1200         gtt->userflags = flags;
1201
1202         if (gtt->usertask)
1203                 put_task_struct(gtt->usertask);
1204         gtt->usertask = current->group_leader;
1205         get_task_struct(gtt->usertask);
1206
1207         return 0;
1208 }
1209
1210 /*
1211  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1212  */
1213 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1214 {
1215         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1216
1217         if (gtt == NULL)
1218                 return NULL;
1219
1220         if (gtt->usertask == NULL)
1221                 return NULL;
1222
1223         return gtt->usertask->mm;
1224 }
1225
1226 /*
1227  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1228  * address range for the current task.
1229  *
1230  */
1231 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1232                                   unsigned long end, unsigned long *userptr)
1233 {
1234         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1235         unsigned long size;
1236
1237         if (gtt == NULL || !gtt->userptr)
1238                 return false;
1239
1240         /* Return false if no part of the ttm_tt object lies within
1241          * the range
1242          */
1243         size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1244         if (gtt->userptr > end || gtt->userptr + size <= start)
1245                 return false;
1246
1247         if (userptr)
1248                 *userptr = gtt->userptr;
1249         return true;
1250 }
1251
1252 /*
1253  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1254  */
1255 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1256 {
1257         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1258
1259         if (gtt == NULL || !gtt->userptr)
1260                 return false;
1261
1262         return true;
1263 }
1264
1265 /*
1266  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1267  */
1268 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1269 {
1270         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1271
1272         if (gtt == NULL)
1273                 return false;
1274
1275         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1276 }
1277
1278 /**
1279  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1280  *
1281  * @ttm: The ttm_tt object to compute the flags for
1282  * @mem: The memory registry backing this ttm_tt object
1283  *
1284  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1285  */
1286 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1287 {
1288         uint64_t flags = 0;
1289
1290         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1291                 flags |= AMDGPU_PTE_VALID;
1292
1293         if (mem && (mem->mem_type == TTM_PL_TT ||
1294                     mem->mem_type == AMDGPU_PL_PREEMPT)) {
1295                 flags |= AMDGPU_PTE_SYSTEM;
1296
1297                 if (ttm->caching == ttm_cached)
1298                         flags |= AMDGPU_PTE_SNOOPED;
1299         }
1300
1301         if (mem && mem->mem_type == TTM_PL_VRAM &&
1302                         mem->bus.caching == ttm_cached)
1303                 flags |= AMDGPU_PTE_SNOOPED;
1304
1305         return flags;
1306 }
1307
1308 /**
1309  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1310  *
1311  * @adev: amdgpu_device pointer
1312  * @ttm: The ttm_tt object to compute the flags for
1313  * @mem: The memory registry backing this ttm_tt object
1314  *
1315  * Figure out the flags to use for a VM PTE (Page Table Entry).
1316  */
1317 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1318                                  struct ttm_resource *mem)
1319 {
1320         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1321
1322         flags |= adev->gart.gart_pte_flags;
1323         flags |= AMDGPU_PTE_READABLE;
1324
1325         if (!amdgpu_ttm_tt_is_readonly(ttm))
1326                 flags |= AMDGPU_PTE_WRITEABLE;
1327
1328         return flags;
1329 }
1330
1331 /*
1332  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1333  * object.
1334  *
1335  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1336  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1337  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1338  * used to clean out a memory space.
1339  */
1340 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1341                                             const struct ttm_place *place)
1342 {
1343         struct dma_resv_iter resv_cursor;
1344         struct dma_fence *f;
1345
1346         if (!amdgpu_bo_is_amdgpu_bo(bo))
1347                 return ttm_bo_eviction_valuable(bo, place);
1348
1349         /* Swapout? */
1350         if (bo->resource->mem_type == TTM_PL_SYSTEM)
1351                 return true;
1352
1353         if (bo->type == ttm_bo_type_kernel &&
1354             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1355                 return false;
1356
1357         /* If bo is a KFD BO, check if the bo belongs to the current process.
1358          * If true, then return false as any KFD process needs all its BOs to
1359          * be resident to run successfully
1360          */
1361         dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1362                                 DMA_RESV_USAGE_BOOKKEEP, f) {
1363                 if (amdkfd_fence_check_mm(f, current->mm))
1364                         return false;
1365         }
1366
1367         /* Preemptible BOs don't own system resources managed by the
1368          * driver (pages, VRAM, GART space). They point to resources
1369          * owned by someone else (e.g. pageable memory in user mode
1370          * or a DMABuf). They are used in a preemptible context so we
1371          * can guarantee no deadlocks and good QoS in case of MMU
1372          * notifiers or DMABuf move notifiers from the resource owner.
1373          */
1374         if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1375                 return false;
1376
1377         if (bo->resource->mem_type == TTM_PL_TT &&
1378             amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1379                 return false;
1380
1381         return ttm_bo_eviction_valuable(bo, place);
1382 }
1383
1384 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1385                                       void *buf, size_t size, bool write)
1386 {
1387         while (size) {
1388                 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1389                 uint64_t bytes = 4 - (pos & 0x3);
1390                 uint32_t shift = (pos & 0x3) * 8;
1391                 uint32_t mask = 0xffffffff << shift;
1392                 uint32_t value = 0;
1393
1394                 if (size < bytes) {
1395                         mask &= 0xffffffff >> (bytes - size) * 8;
1396                         bytes = size;
1397                 }
1398
1399                 if (mask != 0xffffffff) {
1400                         amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1401                         if (write) {
1402                                 value &= ~mask;
1403                                 value |= (*(uint32_t *)buf << shift) & mask;
1404                                 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1405                         } else {
1406                                 value = (value & mask) >> shift;
1407                                 memcpy(buf, &value, bytes);
1408                         }
1409                 } else {
1410                         amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1411                 }
1412
1413                 pos += bytes;
1414                 buf += bytes;
1415                 size -= bytes;
1416         }
1417 }
1418
1419 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1420                                         unsigned long offset, void *buf, int len, int write)
1421 {
1422         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1423         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1424         struct amdgpu_res_cursor src_mm;
1425         struct amdgpu_job *job;
1426         struct dma_fence *fence;
1427         uint64_t src_addr, dst_addr;
1428         unsigned int num_dw;
1429         int r, idx;
1430
1431         if (len != PAGE_SIZE)
1432                 return -EINVAL;
1433
1434         if (!adev->mman.sdma_access_ptr)
1435                 return -EACCES;
1436
1437         if (!drm_dev_enter(adev_to_drm(adev), &idx))
1438                 return -ENODEV;
1439
1440         if (write)
1441                 memcpy(adev->mman.sdma_access_ptr, buf, len);
1442
1443         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1444         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job);
1445         if (r)
1446                 goto out;
1447
1448         amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1449         src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start;
1450         dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1451         if (write)
1452                 swap(src_addr, dst_addr);
1453
1454         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false);
1455
1456         amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1457         WARN_ON(job->ibs[0].length_dw > num_dw);
1458
1459         r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1460         if (r) {
1461                 amdgpu_job_free(job);
1462                 goto out;
1463         }
1464
1465         if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1466                 r = -ETIMEDOUT;
1467         dma_fence_put(fence);
1468
1469         if (!(r || write))
1470                 memcpy(buf, adev->mman.sdma_access_ptr, len);
1471 out:
1472         drm_dev_exit(idx);
1473         return r;
1474 }
1475
1476 /**
1477  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1478  *
1479  * @bo:  The buffer object to read/write
1480  * @offset:  Offset into buffer object
1481  * @buf:  Secondary buffer to write/read from
1482  * @len: Length in bytes of access
1483  * @write:  true if writing
1484  *
1485  * This is used to access VRAM that backs a buffer object via MMIO
1486  * access for debugging purposes.
1487  */
1488 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1489                                     unsigned long offset, void *buf, int len,
1490                                     int write)
1491 {
1492         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1493         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1494         struct amdgpu_res_cursor cursor;
1495         int ret = 0;
1496
1497         if (bo->resource->mem_type != TTM_PL_VRAM)
1498                 return -EIO;
1499
1500         if (amdgpu_device_has_timeouts_enabled(adev) &&
1501                         !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1502                 return len;
1503
1504         amdgpu_res_first(bo->resource, offset, len, &cursor);
1505         while (cursor.remaining) {
1506                 size_t count, size = cursor.size;
1507                 loff_t pos = cursor.start;
1508
1509                 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1510                 size -= count;
1511                 if (size) {
1512                         /* using MM to access rest vram and handle un-aligned address */
1513                         pos += count;
1514                         buf += count;
1515                         amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1516                 }
1517
1518                 ret += cursor.size;
1519                 buf += cursor.size;
1520                 amdgpu_res_next(&cursor, cursor.size);
1521         }
1522
1523         return ret;
1524 }
1525
1526 static void
1527 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1528 {
1529         amdgpu_bo_move_notify(bo, false, NULL);
1530 }
1531
1532 static struct ttm_device_funcs amdgpu_bo_driver = {
1533         .ttm_tt_create = &amdgpu_ttm_tt_create,
1534         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1535         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1536         .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1537         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1538         .evict_flags = &amdgpu_evict_flags,
1539         .move = &amdgpu_bo_move,
1540         .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1541         .release_notify = &amdgpu_bo_release_notify,
1542         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1543         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1544         .access_memory = &amdgpu_ttm_access_memory,
1545 };
1546
1547 /*
1548  * Firmware Reservation functions
1549  */
1550 /**
1551  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1552  *
1553  * @adev: amdgpu_device pointer
1554  *
1555  * free fw reserved vram if it has been reserved.
1556  */
1557 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1558 {
1559         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1560                 NULL, &adev->mman.fw_vram_usage_va);
1561 }
1562
1563 /**
1564  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1565  *
1566  * @adev: amdgpu_device pointer
1567  *
1568  * create bo vram reservation from fw.
1569  */
1570 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1571 {
1572         uint64_t vram_size = adev->gmc.visible_vram_size;
1573
1574         adev->mman.fw_vram_usage_va = NULL;
1575         adev->mman.fw_vram_usage_reserved_bo = NULL;
1576
1577         if (adev->mman.fw_vram_usage_size == 0 ||
1578             adev->mman.fw_vram_usage_size > vram_size)
1579                 return 0;
1580
1581         return amdgpu_bo_create_kernel_at(adev,
1582                                           adev->mman.fw_vram_usage_start_offset,
1583                                           adev->mman.fw_vram_usage_size,
1584                                           AMDGPU_GEM_DOMAIN_VRAM,
1585                                           &adev->mman.fw_vram_usage_reserved_bo,
1586                                           &adev->mman.fw_vram_usage_va);
1587 }
1588
1589 /*
1590  * Memoy training reservation functions
1591  */
1592
1593 /**
1594  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1595  *
1596  * @adev: amdgpu_device pointer
1597  *
1598  * free memory training reserved vram if it has been reserved.
1599  */
1600 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1601 {
1602         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1603
1604         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1605         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1606         ctx->c2p_bo = NULL;
1607
1608         return 0;
1609 }
1610
1611 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1612 {
1613         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1614
1615         memset(ctx, 0, sizeof(*ctx));
1616
1617         ctx->c2p_train_data_offset =
1618                 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1619         ctx->p2c_train_data_offset =
1620                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1621         ctx->train_data_size =
1622                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1623
1624         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1625                         ctx->train_data_size,
1626                         ctx->p2c_train_data_offset,
1627                         ctx->c2p_train_data_offset);
1628 }
1629
1630 /*
1631  * reserve TMR memory at the top of VRAM which holds
1632  * IP Discovery data and is protected by PSP.
1633  */
1634 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1635 {
1636         int ret;
1637         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1638         bool mem_train_support = false;
1639
1640         if (!amdgpu_sriov_vf(adev)) {
1641                 if (amdgpu_atomfirmware_mem_training_supported(adev))
1642                         mem_train_support = true;
1643                 else
1644                         DRM_DEBUG("memory training does not support!\n");
1645         }
1646
1647         /*
1648          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1649          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1650          *
1651          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1652          * discovery data and G6 memory training data respectively
1653          */
1654         adev->mman.discovery_tmr_size =
1655                 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1656         if (!adev->mman.discovery_tmr_size)
1657                 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1658
1659         if (mem_train_support) {
1660                 /* reserve vram for mem train according to TMR location */
1661                 amdgpu_ttm_training_data_block_init(adev);
1662                 ret = amdgpu_bo_create_kernel_at(adev,
1663                                          ctx->c2p_train_data_offset,
1664                                          ctx->train_data_size,
1665                                          AMDGPU_GEM_DOMAIN_VRAM,
1666                                          &ctx->c2p_bo,
1667                                          NULL);
1668                 if (ret) {
1669                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1670                         amdgpu_ttm_training_reserve_vram_fini(adev);
1671                         return ret;
1672                 }
1673                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1674         }
1675
1676         ret = amdgpu_bo_create_kernel_at(adev,
1677                                 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1678                                 adev->mman.discovery_tmr_size,
1679                                 AMDGPU_GEM_DOMAIN_VRAM,
1680                                 &adev->mman.discovery_memory,
1681                                 NULL);
1682         if (ret) {
1683                 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1684                 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1685                 return ret;
1686         }
1687
1688         return 0;
1689 }
1690
1691 /*
1692  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1693  * gtt/vram related fields.
1694  *
1695  * This initializes all of the memory space pools that the TTM layer
1696  * will need such as the GTT space (system memory mapped to the device),
1697  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1698  * can be mapped per VMID.
1699  */
1700 int amdgpu_ttm_init(struct amdgpu_device *adev)
1701 {
1702         uint64_t gtt_size;
1703         int r;
1704         u64 vis_vram_limit;
1705
1706         mutex_init(&adev->mman.gtt_window_lock);
1707
1708         /* No others user of address space so set it to 0 */
1709         r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1710                                adev_to_drm(adev)->anon_inode->i_mapping,
1711                                adev_to_drm(adev)->vma_offset_manager,
1712                                adev->need_swiotlb,
1713                                dma_addressing_limited(adev->dev));
1714         if (r) {
1715                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1716                 return r;
1717         }
1718         adev->mman.initialized = true;
1719
1720         /* Initialize VRAM pool with all of VRAM divided into pages */
1721         r = amdgpu_vram_mgr_init(adev);
1722         if (r) {
1723                 DRM_ERROR("Failed initializing VRAM heap.\n");
1724                 return r;
1725         }
1726
1727         /* Reduce size of CPU-visible VRAM if requested */
1728         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1729         if (amdgpu_vis_vram_limit > 0 &&
1730             vis_vram_limit <= adev->gmc.visible_vram_size)
1731                 adev->gmc.visible_vram_size = vis_vram_limit;
1732
1733         /* Change the size here instead of the init above so only lpfn is affected */
1734         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1735 #ifdef CONFIG_64BIT
1736 #ifdef CONFIG_X86
1737         if (adev->gmc.xgmi.connected_to_cpu)
1738                 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1739                                 adev->gmc.visible_vram_size);
1740
1741         else
1742 #endif
1743                 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1744                                 adev->gmc.visible_vram_size);
1745 #endif
1746
1747         /*
1748          *The reserved vram for firmware must be pinned to the specified
1749          *place on the VRAM, so reserve it early.
1750          */
1751         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1752         if (r) {
1753                 return r;
1754         }
1755
1756         /*
1757          * only NAVI10 and onwards ASIC support for IP discovery.
1758          * If IP discovery enabled, a block of memory should be
1759          * reserved for IP discovey.
1760          */
1761         if (adev->mman.discovery_bin) {
1762                 r = amdgpu_ttm_reserve_tmr(adev);
1763                 if (r)
1764                         return r;
1765         }
1766
1767         /* allocate memory as required for VGA
1768          * This is used for VGA emulation and pre-OS scanout buffers to
1769          * avoid display artifacts while transitioning between pre-OS
1770          * and driver.  */
1771         r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1772                                        AMDGPU_GEM_DOMAIN_VRAM,
1773                                        &adev->mman.stolen_vga_memory,
1774                                        NULL);
1775         if (r)
1776                 return r;
1777         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1778                                        adev->mman.stolen_extended_size,
1779                                        AMDGPU_GEM_DOMAIN_VRAM,
1780                                        &adev->mman.stolen_extended_memory,
1781                                        NULL);
1782         if (r)
1783                 return r;
1784         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1785                                        adev->mman.stolen_reserved_size,
1786                                        AMDGPU_GEM_DOMAIN_VRAM,
1787                                        &adev->mman.stolen_reserved_memory,
1788                                        NULL);
1789         if (r)
1790                 return r;
1791
1792         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1793                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1794
1795         /* Compute GTT size, either based on 1/2 the size of RAM size
1796          * or whatever the user passed on module init */
1797         if (amdgpu_gtt_size == -1) {
1798                 struct sysinfo si;
1799
1800                 si_meminfo(&si);
1801                 /* Certain GL unit tests for large textures can cause problems
1802                  * with the OOM killer since there is no way to link this memory
1803                  * to a process.  This was originally mitigated (but not necessarily
1804                  * eliminated) by limiting the GTT size.  The problem is this limit
1805                  * is often too low for many modern games so just make the limit 1/2
1806                  * of system memory which aligns with TTM. The OOM accounting needs
1807                  * to be addressed, but we shouldn't prevent common 3D applications
1808                  * from being usable just to potentially mitigate that corner case.
1809                  */
1810                 gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1811                                (u64)si.totalram * si.mem_unit / 2);
1812         } else {
1813                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1814         }
1815
1816         /* Initialize GTT memory pool */
1817         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1818         if (r) {
1819                 DRM_ERROR("Failed initializing GTT heap.\n");
1820                 return r;
1821         }
1822         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1823                  (unsigned)(gtt_size / (1024 * 1024)));
1824
1825         /* Initialize preemptible memory pool */
1826         r = amdgpu_preempt_mgr_init(adev);
1827         if (r) {
1828                 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1829                 return r;
1830         }
1831
1832         /* Initialize various on-chip memory pools */
1833         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1834         if (r) {
1835                 DRM_ERROR("Failed initializing GDS heap.\n");
1836                 return r;
1837         }
1838
1839         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1840         if (r) {
1841                 DRM_ERROR("Failed initializing gws heap.\n");
1842                 return r;
1843         }
1844
1845         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1846         if (r) {
1847                 DRM_ERROR("Failed initializing oa heap.\n");
1848                 return r;
1849         }
1850
1851         if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1852                                 AMDGPU_GEM_DOMAIN_GTT,
1853                                 &adev->mman.sdma_access_bo, NULL,
1854                                 &adev->mman.sdma_access_ptr))
1855                 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1856
1857         return 0;
1858 }
1859
1860 /*
1861  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1862  */
1863 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1864 {
1865         int idx;
1866         if (!adev->mman.initialized)
1867                 return;
1868
1869         amdgpu_ttm_training_reserve_vram_fini(adev);
1870         /* return the stolen vga memory back to VRAM */
1871         amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1872         amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1873         /* return the IP Discovery TMR memory back to VRAM */
1874         amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1875         if (adev->mman.stolen_reserved_size)
1876                 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1877                                       NULL, NULL);
1878         amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1879                                         &adev->mman.sdma_access_ptr);
1880         amdgpu_ttm_fw_reserve_vram_fini(adev);
1881
1882         if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1883
1884                 if (adev->mman.aper_base_kaddr)
1885                         iounmap(adev->mman.aper_base_kaddr);
1886                 adev->mman.aper_base_kaddr = NULL;
1887
1888                 drm_dev_exit(idx);
1889         }
1890
1891         amdgpu_vram_mgr_fini(adev);
1892         amdgpu_gtt_mgr_fini(adev);
1893         amdgpu_preempt_mgr_fini(adev);
1894         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1895         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1896         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1897         ttm_device_fini(&adev->mman.bdev);
1898         adev->mman.initialized = false;
1899         DRM_INFO("amdgpu: ttm finalized\n");
1900 }
1901
1902 /**
1903  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1904  *
1905  * @adev: amdgpu_device pointer
1906  * @enable: true when we can use buffer functions.
1907  *
1908  * Enable/disable use of buffer functions during suspend/resume. This should
1909  * only be called at bootup or when userspace isn't running.
1910  */
1911 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1912 {
1913         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1914         uint64_t size;
1915         int r;
1916
1917         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1918             adev->mman.buffer_funcs_enabled == enable)
1919                 return;
1920
1921         if (enable) {
1922                 struct amdgpu_ring *ring;
1923                 struct drm_gpu_scheduler *sched;
1924
1925                 ring = adev->mman.buffer_funcs_ring;
1926                 sched = &ring->sched;
1927                 r = drm_sched_entity_init(&adev->mman.entity,
1928                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
1929                                           1, NULL);
1930                 if (r) {
1931                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1932                                   r);
1933                         return;
1934                 }
1935         } else {
1936                 drm_sched_entity_destroy(&adev->mman.entity);
1937                 dma_fence_put(man->move);
1938                 man->move = NULL;
1939         }
1940
1941         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1942         if (enable)
1943                 size = adev->gmc.real_vram_size;
1944         else
1945                 size = adev->gmc.visible_vram_size;
1946         man->size = size;
1947         adev->mman.buffer_funcs_enabled = enable;
1948 }
1949
1950 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
1951                                   bool direct_submit,
1952                                   unsigned int num_dw,
1953                                   struct dma_resv *resv,
1954                                   bool vm_needs_flush,
1955                                   struct amdgpu_job **job)
1956 {
1957         enum amdgpu_ib_pool_type pool = direct_submit ?
1958                 AMDGPU_IB_POOL_DIRECT :
1959                 AMDGPU_IB_POOL_DELAYED;
1960         int r;
1961
1962         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, job);
1963         if (r)
1964                 return r;
1965
1966         if (vm_needs_flush) {
1967                 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1968                                                         adev->gmc.pdb0_bo :
1969                                                         adev->gart.bo);
1970                 (*job)->vm_needs_flush = true;
1971         }
1972         if (resv) {
1973                 r = amdgpu_sync_resv(adev, &(*job)->sync, resv,
1974                                      AMDGPU_SYNC_ALWAYS,
1975                                      AMDGPU_FENCE_OWNER_UNDEFINED);
1976                 if (r) {
1977                         DRM_ERROR("sync failed (%d).\n", r);
1978                         amdgpu_job_free(*job);
1979                         return r;
1980                 }
1981         }
1982         return 0;
1983 }
1984
1985 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1986                        uint64_t dst_offset, uint32_t byte_count,
1987                        struct dma_resv *resv,
1988                        struct dma_fence **fence, bool direct_submit,
1989                        bool vm_needs_flush, bool tmz)
1990 {
1991         struct amdgpu_device *adev = ring->adev;
1992         unsigned num_loops, num_dw;
1993         struct amdgpu_job *job;
1994         uint32_t max_bytes;
1995         unsigned i;
1996         int r;
1997
1998         if (!direct_submit && !ring->sched.ready) {
1999                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2000                 return -EINVAL;
2001         }
2002
2003         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2004         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2005         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2006         r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2007                                    resv, vm_needs_flush, &job);
2008         if (r)
2009                 return r;
2010
2011         for (i = 0; i < num_loops; i++) {
2012                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2013
2014                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2015                                         dst_offset, cur_size_in_bytes, tmz);
2016
2017                 src_offset += cur_size_in_bytes;
2018                 dst_offset += cur_size_in_bytes;
2019                 byte_count -= cur_size_in_bytes;
2020         }
2021
2022         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2023         WARN_ON(job->ibs[0].length_dw > num_dw);
2024         if (direct_submit)
2025                 r = amdgpu_job_submit_direct(job, ring, fence);
2026         else
2027                 r = amdgpu_job_submit(job, &adev->mman.entity,
2028                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2029         if (r)
2030                 goto error_free;
2031
2032         return r;
2033
2034 error_free:
2035         amdgpu_job_free(job);
2036         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2037         return r;
2038 }
2039
2040 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2041                                uint64_t dst_addr, uint32_t byte_count,
2042                                struct dma_resv *resv,
2043                                struct dma_fence **fence,
2044                                bool vm_needs_flush)
2045 {
2046         struct amdgpu_device *adev = ring->adev;
2047         unsigned int num_loops, num_dw;
2048         struct amdgpu_job *job;
2049         uint32_t max_bytes;
2050         unsigned int i;
2051         int r;
2052
2053         max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2054         num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2055         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2056         r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2057                                    &job);
2058         if (r)
2059                 return r;
2060
2061         for (i = 0; i < num_loops; i++) {
2062                 uint32_t cur_size = min(byte_count, max_bytes);
2063
2064                 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2065                                         cur_size);
2066
2067                 dst_addr += cur_size;
2068                 byte_count -= cur_size;
2069         }
2070
2071         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2072         WARN_ON(job->ibs[0].length_dw > num_dw);
2073         r = amdgpu_job_submit(job, &adev->mman.entity,
2074                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2075         if (r)
2076                 goto error_free;
2077
2078         return 0;
2079
2080 error_free:
2081         amdgpu_job_free(job);
2082         return r;
2083 }
2084
2085 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2086                         uint32_t src_data,
2087                         struct dma_resv *resv,
2088                         struct dma_fence **f)
2089 {
2090         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2091         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2092         struct dma_fence *fence = NULL;
2093         struct amdgpu_res_cursor dst;
2094         int r;
2095
2096         if (!adev->mman.buffer_funcs_enabled) {
2097                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2098                 return -EINVAL;
2099         }
2100
2101         amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2102
2103         mutex_lock(&adev->mman.gtt_window_lock);
2104         while (dst.remaining) {
2105                 struct dma_fence *next;
2106                 uint64_t cur_size, to;
2107
2108                 /* Never fill more than 256MiB at once to avoid timeouts */
2109                 cur_size = min(dst.size, 256ULL << 20);
2110
2111                 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2112                                           1, ring, false, &cur_size, &to);
2113                 if (r)
2114                         goto error;
2115
2116                 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2117                                         &next, true);
2118                 if (r)
2119                         goto error;
2120
2121                 dma_fence_put(fence);
2122                 fence = next;
2123
2124                 amdgpu_res_next(&dst, cur_size);
2125         }
2126 error:
2127         mutex_unlock(&adev->mman.gtt_window_lock);
2128         if (f)
2129                 *f = dma_fence_get(fence);
2130         dma_fence_put(fence);
2131         return r;
2132 }
2133
2134 /**
2135  * amdgpu_ttm_evict_resources - evict memory buffers
2136  * @adev: amdgpu device object
2137  * @mem_type: evicted BO's memory type
2138  *
2139  * Evicts all @mem_type buffers on the lru list of the memory type.
2140  *
2141  * Returns:
2142  * 0 for success or a negative error code on failure.
2143  */
2144 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2145 {
2146         struct ttm_resource_manager *man;
2147
2148         switch (mem_type) {
2149         case TTM_PL_VRAM:
2150         case TTM_PL_TT:
2151         case AMDGPU_PL_GWS:
2152         case AMDGPU_PL_GDS:
2153         case AMDGPU_PL_OA:
2154                 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2155                 break;
2156         default:
2157                 DRM_ERROR("Trying to evict invalid memory type\n");
2158                 return -EINVAL;
2159         }
2160
2161         return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2162 }
2163
2164 #if defined(CONFIG_DEBUG_FS)
2165
2166 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2167 {
2168         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2169
2170         return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2171 }
2172
2173 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2174
2175 /*
2176  * amdgpu_ttm_vram_read - Linear read access to VRAM
2177  *
2178  * Accesses VRAM via MMIO for debugging purposes.
2179  */
2180 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2181                                     size_t size, loff_t *pos)
2182 {
2183         struct amdgpu_device *adev = file_inode(f)->i_private;
2184         ssize_t result = 0;
2185
2186         if (size & 0x3 || *pos & 0x3)
2187                 return -EINVAL;
2188
2189         if (*pos >= adev->gmc.mc_vram_size)
2190                 return -ENXIO;
2191
2192         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2193         while (size) {
2194                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2195                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2196
2197                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2198                 if (copy_to_user(buf, value, bytes))
2199                         return -EFAULT;
2200
2201                 result += bytes;
2202                 buf += bytes;
2203                 *pos += bytes;
2204                 size -= bytes;
2205         }
2206
2207         return result;
2208 }
2209
2210 /*
2211  * amdgpu_ttm_vram_write - Linear write access to VRAM
2212  *
2213  * Accesses VRAM via MMIO for debugging purposes.
2214  */
2215 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2216                                     size_t size, loff_t *pos)
2217 {
2218         struct amdgpu_device *adev = file_inode(f)->i_private;
2219         ssize_t result = 0;
2220         int r;
2221
2222         if (size & 0x3 || *pos & 0x3)
2223                 return -EINVAL;
2224
2225         if (*pos >= adev->gmc.mc_vram_size)
2226                 return -ENXIO;
2227
2228         while (size) {
2229                 uint32_t value;
2230
2231                 if (*pos >= adev->gmc.mc_vram_size)
2232                         return result;
2233
2234                 r = get_user(value, (uint32_t *)buf);
2235                 if (r)
2236                         return r;
2237
2238                 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2239
2240                 result += 4;
2241                 buf += 4;
2242                 *pos += 4;
2243                 size -= 4;
2244         }
2245
2246         return result;
2247 }
2248
2249 static const struct file_operations amdgpu_ttm_vram_fops = {
2250         .owner = THIS_MODULE,
2251         .read = amdgpu_ttm_vram_read,
2252         .write = amdgpu_ttm_vram_write,
2253         .llseek = default_llseek,
2254 };
2255
2256 /*
2257  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2258  *
2259  * This function is used to read memory that has been mapped to the
2260  * GPU and the known addresses are not physical addresses but instead
2261  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2262  */
2263 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2264                                  size_t size, loff_t *pos)
2265 {
2266         struct amdgpu_device *adev = file_inode(f)->i_private;
2267         struct iommu_domain *dom;
2268         ssize_t result = 0;
2269         int r;
2270
2271         /* retrieve the IOMMU domain if any for this device */
2272         dom = iommu_get_domain_for_dev(adev->dev);
2273
2274         while (size) {
2275                 phys_addr_t addr = *pos & PAGE_MASK;
2276                 loff_t off = *pos & ~PAGE_MASK;
2277                 size_t bytes = PAGE_SIZE - off;
2278                 unsigned long pfn;
2279                 struct page *p;
2280                 void *ptr;
2281
2282                 bytes = bytes < size ? bytes : size;
2283
2284                 /* Translate the bus address to a physical address.  If
2285                  * the domain is NULL it means there is no IOMMU active
2286                  * and the address translation is the identity
2287                  */
2288                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2289
2290                 pfn = addr >> PAGE_SHIFT;
2291                 if (!pfn_valid(pfn))
2292                         return -EPERM;
2293
2294                 p = pfn_to_page(pfn);
2295                 if (p->mapping != adev->mman.bdev.dev_mapping)
2296                         return -EPERM;
2297
2298                 ptr = kmap(p);
2299                 r = copy_to_user(buf, ptr + off, bytes);
2300                 kunmap(p);
2301                 if (r)
2302                         return -EFAULT;
2303
2304                 size -= bytes;
2305                 *pos += bytes;
2306                 result += bytes;
2307         }
2308
2309         return result;
2310 }
2311
2312 /*
2313  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2314  *
2315  * This function is used to write memory that has been mapped to the
2316  * GPU and the known addresses are not physical addresses but instead
2317  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2318  */
2319 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2320                                  size_t size, loff_t *pos)
2321 {
2322         struct amdgpu_device *adev = file_inode(f)->i_private;
2323         struct iommu_domain *dom;
2324         ssize_t result = 0;
2325         int r;
2326
2327         dom = iommu_get_domain_for_dev(adev->dev);
2328
2329         while (size) {
2330                 phys_addr_t addr = *pos & PAGE_MASK;
2331                 loff_t off = *pos & ~PAGE_MASK;
2332                 size_t bytes = PAGE_SIZE - off;
2333                 unsigned long pfn;
2334                 struct page *p;
2335                 void *ptr;
2336
2337                 bytes = bytes < size ? bytes : size;
2338
2339                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2340
2341                 pfn = addr >> PAGE_SHIFT;
2342                 if (!pfn_valid(pfn))
2343                         return -EPERM;
2344
2345                 p = pfn_to_page(pfn);
2346                 if (p->mapping != adev->mman.bdev.dev_mapping)
2347                         return -EPERM;
2348
2349                 ptr = kmap(p);
2350                 r = copy_from_user(ptr + off, buf, bytes);
2351                 kunmap(p);
2352                 if (r)
2353                         return -EFAULT;
2354
2355                 size -= bytes;
2356                 *pos += bytes;
2357                 result += bytes;
2358         }
2359
2360         return result;
2361 }
2362
2363 static const struct file_operations amdgpu_ttm_iomem_fops = {
2364         .owner = THIS_MODULE,
2365         .read = amdgpu_iomem_read,
2366         .write = amdgpu_iomem_write,
2367         .llseek = default_llseek
2368 };
2369
2370 #endif
2371
2372 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2373 {
2374 #if defined(CONFIG_DEBUG_FS)
2375         struct drm_minor *minor = adev_to_drm(adev)->primary;
2376         struct dentry *root = minor->debugfs_root;
2377
2378         debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2379                                  &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2380         debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2381                             &amdgpu_ttm_iomem_fops);
2382         debugfs_create_file("ttm_page_pool", 0444, root, adev,
2383                             &amdgpu_ttm_page_pool_fops);
2384         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2385                                                              TTM_PL_VRAM),
2386                                             root, "amdgpu_vram_mm");
2387         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2388                                                              TTM_PL_TT),
2389                                             root, "amdgpu_gtt_mm");
2390         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2391                                                              AMDGPU_PL_GDS),
2392                                             root, "amdgpu_gds_mm");
2393         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2394                                                              AMDGPU_PL_GWS),
2395                                             root, "amdgpu_gws_mm");
2396         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2397                                                              AMDGPU_PL_OA),
2398                                             root, "amdgpu_oa_mm");
2399
2400 #endif
2401 }