Merge branches 'acpi-scan', 'acpi-resource', 'acpi-apei', 'acpi-extlog' and 'acpi...
[sfrench/cifs-2.6.git] / Documentation / trace / ftrace.rst
1 ========================
2 ftrace - Function Tracer
3 ========================
4
5 Copyright 2008 Red Hat Inc.
6
7 :Author:   Steven Rostedt <srostedt@redhat.com>
8 :License:  The GNU Free Documentation License, Version 1.2
9           (dual licensed under the GPL v2)
10 :Original Reviewers:  Elias Oltmanns, Randy Dunlap, Andrew Morton,
11                       John Kacur, and David Teigland.
12
13 - Written for: 2.6.28-rc2
14 - Updated for: 3.10
15 - Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
16 - Converted to rst format - Changbin Du <changbin.du@intel.com>
17
18 Introduction
19 ------------
20
21 Ftrace is an internal tracer designed to help out developers and
22 designers of systems to find what is going on inside the kernel.
23 It can be used for debugging or analyzing latencies and
24 performance issues that take place outside of user-space.
25
26 Although ftrace is typically considered the function tracer, it
27 is really a framework of several assorted tracing utilities.
28 There's latency tracing to examine what occurs between interrupts
29 disabled and enabled, as well as for preemption and from a time
30 a task is woken to the task is actually scheduled in.
31
32 One of the most common uses of ftrace is the event tracing.
33 Throughout the kernel is hundreds of static event points that
34 can be enabled via the tracefs file system to see what is
35 going on in certain parts of the kernel.
36
37 See events.rst for more information.
38
39
40 Implementation Details
41 ----------------------
42
43 See Documentation/trace/ftrace-design.rst for details for arch porters and such.
44
45
46 The File System
47 ---------------
48
49 Ftrace uses the tracefs file system to hold the control files as
50 well as the files to display output.
51
52 When tracefs is configured into the kernel (which selecting any ftrace
53 option will do) the directory /sys/kernel/tracing will be created. To mount
54 this directory, you can add to your /etc/fstab file::
55
56  tracefs       /sys/kernel/tracing       tracefs defaults        0       0
57
58 Or you can mount it at run time with::
59
60  mount -t tracefs nodev /sys/kernel/tracing
61
62 For quicker access to that directory you may want to make a soft link to
63 it::
64
65  ln -s /sys/kernel/tracing /tracing
66
67 .. attention::
68
69   Before 4.1, all ftrace tracing control files were within the debugfs
70   file system, which is typically located at /sys/kernel/debug/tracing.
71   For backward compatibility, when mounting the debugfs file system,
72   the tracefs file system will be automatically mounted at:
73
74   /sys/kernel/debug/tracing
75
76   All files located in the tracefs file system will be located in that
77   debugfs file system directory as well.
78
79 .. attention::
80
81   Any selected ftrace option will also create the tracefs file system.
82   The rest of the document will assume that you are in the ftrace directory
83   (cd /sys/kernel/tracing) and will only concentrate on the files within that
84   directory and not distract from the content with the extended
85   "/sys/kernel/tracing" path name.
86
87 That's it! (assuming that you have ftrace configured into your kernel)
88
89 After mounting tracefs you will have access to the control and output files
90 of ftrace. Here is a list of some of the key files:
91
92
93  Note: all time values are in microseconds.
94
95   current_tracer:
96
97         This is used to set or display the current tracer
98         that is configured. Changing the current tracer clears
99         the ring buffer content as well as the "snapshot" buffer.
100
101   available_tracers:
102
103         This holds the different types of tracers that
104         have been compiled into the kernel. The
105         tracers listed here can be configured by
106         echoing their name into current_tracer.
107
108   tracing_on:
109
110         This sets or displays whether writing to the trace
111         ring buffer is enabled. Echo 0 into this file to disable
112         the tracer or 1 to enable it. Note, this only disables
113         writing to the ring buffer, the tracing overhead may
114         still be occurring.
115
116         The kernel function tracing_off() can be used within the
117         kernel to disable writing to the ring buffer, which will
118         set this file to "0". User space can re-enable tracing by
119         echoing "1" into the file.
120
121         Note, the function and event trigger "traceoff" will also
122         set this file to zero and stop tracing. Which can also
123         be re-enabled by user space using this file.
124
125   trace:
126
127         This file holds the output of the trace in a human
128         readable format (described below). Opening this file for
129         writing with the O_TRUNC flag clears the ring buffer content.
130         Note, this file is not a consumer. If tracing is off
131         (no tracer running, or tracing_on is zero), it will produce
132         the same output each time it is read. When tracing is on,
133         it may produce inconsistent results as it tries to read
134         the entire buffer without consuming it.
135
136   trace_pipe:
137
138         The output is the same as the "trace" file but this
139         file is meant to be streamed with live tracing.
140         Reads from this file will block until new data is
141         retrieved.  Unlike the "trace" file, this file is a
142         consumer. This means reading from this file causes
143         sequential reads to display more current data. Once
144         data is read from this file, it is consumed, and
145         will not be read again with a sequential read. The
146         "trace" file is static, and if the tracer is not
147         adding more data, it will display the same
148         information every time it is read.
149
150   trace_options:
151
152         This file lets the user control the amount of data
153         that is displayed in one of the above output
154         files. Options also exist to modify how a tracer
155         or events work (stack traces, timestamps, etc).
156
157   options:
158
159         This is a directory that has a file for every available
160         trace option (also in trace_options). Options may also be set
161         or cleared by writing a "1" or "0" respectively into the
162         corresponding file with the option name.
163
164   tracing_max_latency:
165
166         Some of the tracers record the max latency.
167         For example, the maximum time that interrupts are disabled.
168         The maximum time is saved in this file. The max trace will also be
169         stored, and displayed by "trace". A new max trace will only be
170         recorded if the latency is greater than the value in this file
171         (in microseconds).
172
173         By echoing in a time into this file, no latency will be recorded
174         unless it is greater than the time in this file.
175
176   tracing_thresh:
177
178         Some latency tracers will record a trace whenever the
179         latency is greater than the number in this file.
180         Only active when the file contains a number greater than 0.
181         (in microseconds)
182
183   buffer_size_kb:
184
185         This sets or displays the number of kilobytes each CPU
186         buffer holds. By default, the trace buffers are the same size
187         for each CPU. The displayed number is the size of the
188         CPU buffer and not total size of all buffers. The
189         trace buffers are allocated in pages (blocks of memory
190         that the kernel uses for allocation, usually 4 KB in size).
191         A few extra pages may be allocated to accommodate buffer management
192         meta-data. If the last page allocated has room for more bytes
193         than requested, the rest of the page will be used,
194         making the actual allocation bigger than requested or shown.
195         ( Note, the size may not be a multiple of the page size
196         due to buffer management meta-data. )
197
198         Buffer sizes for individual CPUs may vary
199         (see "per_cpu/cpu0/buffer_size_kb" below), and if they do
200         this file will show "X".
201
202   buffer_total_size_kb:
203
204         This displays the total combined size of all the trace buffers.
205
206   free_buffer:
207
208         If a process is performing tracing, and the ring buffer should be
209         shrunk "freed" when the process is finished, even if it were to be
210         killed by a signal, this file can be used for that purpose. On close
211         of this file, the ring buffer will be resized to its minimum size.
212         Having a process that is tracing also open this file, when the process
213         exits its file descriptor for this file will be closed, and in doing so,
214         the ring buffer will be "freed".
215
216         It may also stop tracing if disable_on_free option is set.
217
218   tracing_cpumask:
219
220         This is a mask that lets the user only trace on specified CPUs.
221         The format is a hex string representing the CPUs.
222
223   set_ftrace_filter:
224
225         When dynamic ftrace is configured in (see the
226         section below "dynamic ftrace"), the code is dynamically
227         modified (code text rewrite) to disable calling of the
228         function profiler (mcount). This lets tracing be configured
229         in with practically no overhead in performance.  This also
230         has a side effect of enabling or disabling specific functions
231         to be traced. Echoing names of functions into this file
232         will limit the trace to only those functions.
233         This influences the tracers "function" and "function_graph"
234         and thus also function profiling (see "function_profile_enabled").
235
236         The functions listed in "available_filter_functions" are what
237         can be written into this file.
238
239         This interface also allows for commands to be used. See the
240         "Filter commands" section for more details.
241
242         As a speed up, since processing strings can be quite expensive
243         and requires a check of all functions registered to tracing, instead
244         an index can be written into this file. A number (starting with "1")
245         written will instead select the same corresponding at the line position
246         of the "available_filter_functions" file.
247
248   set_ftrace_notrace:
249
250         This has an effect opposite to that of
251         set_ftrace_filter. Any function that is added here will not
252         be traced. If a function exists in both set_ftrace_filter
253         and set_ftrace_notrace, the function will _not_ be traced.
254
255   set_ftrace_pid:
256
257         Have the function tracer only trace the threads whose PID are
258         listed in this file.
259
260         If the "function-fork" option is set, then when a task whose
261         PID is listed in this file forks, the child's PID will
262         automatically be added to this file, and the child will be
263         traced by the function tracer as well. This option will also
264         cause PIDs of tasks that exit to be removed from the file.
265
266   set_ftrace_notrace_pid:
267
268         Have the function tracer ignore threads whose PID are listed in
269         this file.
270
271         If the "function-fork" option is set, then when a task whose
272         PID is listed in this file forks, the child's PID will
273         automatically be added to this file, and the child will not be
274         traced by the function tracer as well. This option will also
275         cause PIDs of tasks that exit to be removed from the file.
276
277         If a PID is in both this file and "set_ftrace_pid", then this
278         file takes precedence, and the thread will not be traced.
279
280   set_event_pid:
281
282         Have the events only trace a task with a PID listed in this file.
283         Note, sched_switch and sched_wake_up will also trace events
284         listed in this file.
285
286         To have the PIDs of children of tasks with their PID in this file
287         added on fork, enable the "event-fork" option. That option will also
288         cause the PIDs of tasks to be removed from this file when the task
289         exits.
290
291   set_event_notrace_pid:
292
293         Have the events not trace a task with a PID listed in this file.
294         Note, sched_switch and sched_wakeup will trace threads not listed
295         in this file, even if a thread's PID is in the file if the
296         sched_switch or sched_wakeup events also trace a thread that should
297         be traced.
298
299         To have the PIDs of children of tasks with their PID in this file
300         added on fork, enable the "event-fork" option. That option will also
301         cause the PIDs of tasks to be removed from this file when the task
302         exits.
303
304   set_graph_function:
305
306         Functions listed in this file will cause the function graph
307         tracer to only trace these functions and the functions that
308         they call. (See the section "dynamic ftrace" for more details).
309         Note, set_ftrace_filter and set_ftrace_notrace still affects
310         what functions are being traced.
311
312   set_graph_notrace:
313
314         Similar to set_graph_function, but will disable function graph
315         tracing when the function is hit until it exits the function.
316         This makes it possible to ignore tracing functions that are called
317         by a specific function.
318
319   available_filter_functions:
320
321         This lists the functions that ftrace has processed and can trace.
322         These are the function names that you can pass to
323         "set_ftrace_filter", "set_ftrace_notrace",
324         "set_graph_function", or "set_graph_notrace".
325         (See the section "dynamic ftrace" below for more details.)
326
327   dyn_ftrace_total_info:
328
329         This file is for debugging purposes. The number of functions that
330         have been converted to nops and are available to be traced.
331
332   enabled_functions:
333
334         This file is more for debugging ftrace, but can also be useful
335         in seeing if any function has a callback attached to it.
336         Not only does the trace infrastructure use ftrace function
337         trace utility, but other subsystems might too. This file
338         displays all functions that have a callback attached to them
339         as well as the number of callbacks that have been attached.
340         Note, a callback may also call multiple functions which will
341         not be listed in this count.
342
343         If the callback registered to be traced by a function with
344         the "save regs" attribute (thus even more overhead), a 'R'
345         will be displayed on the same line as the function that
346         is returning registers.
347
348         If the callback registered to be traced by a function with
349         the "ip modify" attribute (thus the regs->ip can be changed),
350         an 'I' will be displayed on the same line as the function that
351         can be overridden.
352
353         If the architecture supports it, it will also show what callback
354         is being directly called by the function. If the count is greater
355         than 1 it most likely will be ftrace_ops_list_func().
356
357         If the callback of a function jumps to a trampoline that is
358         specific to the callback and which is not the standard trampoline,
359         its address will be printed as well as the function that the
360         trampoline calls.
361
362   function_profile_enabled:
363
364         When set it will enable all functions with either the function
365         tracer, or if configured, the function graph tracer. It will
366         keep a histogram of the number of functions that were called
367         and if the function graph tracer was configured, it will also keep
368         track of the time spent in those functions. The histogram
369         content can be displayed in the files:
370
371         trace_stat/function<cpu> ( function0, function1, etc).
372
373   trace_stat:
374
375         A directory that holds different tracing stats.
376
377   kprobe_events:
378
379         Enable dynamic trace points. See kprobetrace.rst.
380
381   kprobe_profile:
382
383         Dynamic trace points stats. See kprobetrace.rst.
384
385   max_graph_depth:
386
387         Used with the function graph tracer. This is the max depth
388         it will trace into a function. Setting this to a value of
389         one will show only the first kernel function that is called
390         from user space.
391
392   printk_formats:
393
394         This is for tools that read the raw format files. If an event in
395         the ring buffer references a string, only a pointer to the string
396         is recorded into the buffer and not the string itself. This prevents
397         tools from knowing what that string was. This file displays the string
398         and address for the string allowing tools to map the pointers to what
399         the strings were.
400
401   saved_cmdlines:
402
403         Only the pid of the task is recorded in a trace event unless
404         the event specifically saves the task comm as well. Ftrace
405         makes a cache of pid mappings to comms to try to display
406         comms for events. If a pid for a comm is not listed, then
407         "<...>" is displayed in the output.
408
409         If the option "record-cmd" is set to "0", then comms of tasks
410         will not be saved during recording. By default, it is enabled.
411
412   saved_cmdlines_size:
413
414         By default, 128 comms are saved (see "saved_cmdlines" above). To
415         increase or decrease the amount of comms that are cached, echo
416         the number of comms to cache into this file.
417
418   saved_tgids:
419
420         If the option "record-tgid" is set, on each scheduling context switch
421         the Task Group ID of a task is saved in a table mapping the PID of
422         the thread to its TGID. By default, the "record-tgid" option is
423         disabled.
424
425   snapshot:
426
427         This displays the "snapshot" buffer and also lets the user
428         take a snapshot of the current running trace.
429         See the "Snapshot" section below for more details.
430
431   stack_max_size:
432
433         When the stack tracer is activated, this will display the
434         maximum stack size it has encountered.
435         See the "Stack Trace" section below.
436
437   stack_trace:
438
439         This displays the stack back trace of the largest stack
440         that was encountered when the stack tracer is activated.
441         See the "Stack Trace" section below.
442
443   stack_trace_filter:
444
445         This is similar to "set_ftrace_filter" but it limits what
446         functions the stack tracer will check.
447
448   trace_clock:
449
450         Whenever an event is recorded into the ring buffer, a
451         "timestamp" is added. This stamp comes from a specified
452         clock. By default, ftrace uses the "local" clock. This
453         clock is very fast and strictly per cpu, but on some
454         systems it may not be monotonic with respect to other
455         CPUs. In other words, the local clocks may not be in sync
456         with local clocks on other CPUs.
457
458         Usual clocks for tracing::
459
460           # cat trace_clock
461           [local] global counter x86-tsc
462
463         The clock with the square brackets around it is the one in effect.
464
465         local:
466                 Default clock, but may not be in sync across CPUs
467
468         global:
469                 This clock is in sync with all CPUs but may
470                 be a bit slower than the local clock.
471
472         counter:
473                 This is not a clock at all, but literally an atomic
474                 counter. It counts up one by one, but is in sync
475                 with all CPUs. This is useful when you need to
476                 know exactly the order events occurred with respect to
477                 each other on different CPUs.
478
479         uptime:
480                 This uses the jiffies counter and the time stamp
481                 is relative to the time since boot up.
482
483         perf:
484                 This makes ftrace use the same clock that perf uses.
485                 Eventually perf will be able to read ftrace buffers
486                 and this will help out in interleaving the data.
487
488         x86-tsc:
489                 Architectures may define their own clocks. For
490                 example, x86 uses its own TSC cycle clock here.
491
492         ppc-tb:
493                 This uses the powerpc timebase register value.
494                 This is in sync across CPUs and can also be used
495                 to correlate events across hypervisor/guest if
496                 tb_offset is known.
497
498         mono:
499                 This uses the fast monotonic clock (CLOCK_MONOTONIC)
500                 which is monotonic and is subject to NTP rate adjustments.
501
502         mono_raw:
503                 This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
504                 which is monotonic but is not subject to any rate adjustments
505                 and ticks at the same rate as the hardware clocksource.
506
507         boot:
508                 This is the boot clock (CLOCK_BOOTTIME) and is based on the
509                 fast monotonic clock, but also accounts for time spent in
510                 suspend. Since the clock access is designed for use in
511                 tracing in the suspend path, some side effects are possible
512                 if clock is accessed after the suspend time is accounted before
513                 the fast mono clock is updated. In this case, the clock update
514                 appears to happen slightly sooner than it normally would have.
515                 Also on 32-bit systems, it's possible that the 64-bit boot offset
516                 sees a partial update. These effects are rare and post
517                 processing should be able to handle them. See comments in the
518                 ktime_get_boot_fast_ns() function for more information.
519
520         tai:
521                 This is the tai clock (CLOCK_TAI) and is derived from the wall-
522                 clock time. However, this clock does not experience
523                 discontinuities and backwards jumps caused by NTP inserting leap
524                 seconds. Since the clock access is designed for use in tracing,
525                 side effects are possible. The clock access may yield wrong
526                 readouts in case the internal TAI offset is updated e.g., caused
527                 by setting the system time or using adjtimex() with an offset.
528                 These effects are rare and post processing should be able to
529                 handle them. See comments in the ktime_get_tai_fast_ns()
530                 function for more information.
531
532         To set a clock, simply echo the clock name into this file::
533
534           # echo global > trace_clock
535
536         Setting a clock clears the ring buffer content as well as the
537         "snapshot" buffer.
538
539   trace_marker:
540
541         This is a very useful file for synchronizing user space
542         with events happening in the kernel. Writing strings into
543         this file will be written into the ftrace buffer.
544
545         It is useful in applications to open this file at the start
546         of the application and just reference the file descriptor
547         for the file::
548
549                 void trace_write(const char *fmt, ...)
550                 {
551                         va_list ap;
552                         char buf[256];
553                         int n;
554
555                         if (trace_fd < 0)
556                                 return;
557
558                         va_start(ap, fmt);
559                         n = vsnprintf(buf, 256, fmt, ap);
560                         va_end(ap);
561
562                         write(trace_fd, buf, n);
563                 }
564
565         start::
566
567                 trace_fd = open("trace_marker", O_WRONLY);
568
569         Note: Writing into the trace_marker file can also initiate triggers
570               that are written into /sys/kernel/tracing/events/ftrace/print/trigger
571               See "Event triggers" in Documentation/trace/events.rst and an
572               example in Documentation/trace/histogram.rst (Section 3.)
573
574   trace_marker_raw:
575
576         This is similar to trace_marker above, but is meant for binary data
577         to be written to it, where a tool can be used to parse the data
578         from trace_pipe_raw.
579
580   uprobe_events:
581
582         Add dynamic tracepoints in programs.
583         See uprobetracer.rst
584
585   uprobe_profile:
586
587         Uprobe statistics. See uprobetrace.txt
588
589   instances:
590
591         This is a way to make multiple trace buffers where different
592         events can be recorded in different buffers.
593         See "Instances" section below.
594
595   events:
596
597         This is the trace event directory. It holds event tracepoints
598         (also known as static tracepoints) that have been compiled
599         into the kernel. It shows what event tracepoints exist
600         and how they are grouped by system. There are "enable"
601         files at various levels that can enable the tracepoints
602         when a "1" is written to them.
603
604         See events.rst for more information.
605
606   set_event:
607
608         By echoing in the event into this file, will enable that event.
609
610         See events.rst for more information.
611
612   available_events:
613
614         A list of events that can be enabled in tracing.
615
616         See events.rst for more information.
617
618   timestamp_mode:
619
620         Certain tracers may change the timestamp mode used when
621         logging trace events into the event buffer.  Events with
622         different modes can coexist within a buffer but the mode in
623         effect when an event is logged determines which timestamp mode
624         is used for that event.  The default timestamp mode is
625         'delta'.
626
627         Usual timestamp modes for tracing:
628
629           # cat timestamp_mode
630           [delta] absolute
631
632           The timestamp mode with the square brackets around it is the
633           one in effect.
634
635           delta: Default timestamp mode - timestamp is a delta against
636                  a per-buffer timestamp.
637
638           absolute: The timestamp is a full timestamp, not a delta
639                  against some other value.  As such it takes up more
640                  space and is less efficient.
641
642   hwlat_detector:
643
644         Directory for the Hardware Latency Detector.
645         See "Hardware Latency Detector" section below.
646
647   per_cpu:
648
649         This is a directory that contains the trace per_cpu information.
650
651   per_cpu/cpu0/buffer_size_kb:
652
653         The ftrace buffer is defined per_cpu. That is, there's a separate
654         buffer for each CPU to allow writes to be done atomically,
655         and free from cache bouncing. These buffers may have different
656         size buffers. This file is similar to the buffer_size_kb
657         file, but it only displays or sets the buffer size for the
658         specific CPU. (here cpu0).
659
660   per_cpu/cpu0/trace:
661
662         This is similar to the "trace" file, but it will only display
663         the data specific for the CPU. If written to, it only clears
664         the specific CPU buffer.
665
666   per_cpu/cpu0/trace_pipe
667
668         This is similar to the "trace_pipe" file, and is a consuming
669         read, but it will only display (and consume) the data specific
670         for the CPU.
671
672   per_cpu/cpu0/trace_pipe_raw
673
674         For tools that can parse the ftrace ring buffer binary format,
675         the trace_pipe_raw file can be used to extract the data
676         from the ring buffer directly. With the use of the splice()
677         system call, the buffer data can be quickly transferred to
678         a file or to the network where a server is collecting the
679         data.
680
681         Like trace_pipe, this is a consuming reader, where multiple
682         reads will always produce different data.
683
684   per_cpu/cpu0/snapshot:
685
686         This is similar to the main "snapshot" file, but will only
687         snapshot the current CPU (if supported). It only displays
688         the content of the snapshot for a given CPU, and if
689         written to, only clears this CPU buffer.
690
691   per_cpu/cpu0/snapshot_raw:
692
693         Similar to the trace_pipe_raw, but will read the binary format
694         from the snapshot buffer for the given CPU.
695
696   per_cpu/cpu0/stats:
697
698         This displays certain stats about the ring buffer:
699
700         entries:
701                 The number of events that are still in the buffer.
702
703         overrun:
704                 The number of lost events due to overwriting when
705                 the buffer was full.
706
707         commit overrun:
708                 Should always be zero.
709                 This gets set if so many events happened within a nested
710                 event (ring buffer is re-entrant), that it fills the
711                 buffer and starts dropping events.
712
713         bytes:
714                 Bytes actually read (not overwritten).
715
716         oldest event ts:
717                 The oldest timestamp in the buffer
718
719         now ts:
720                 The current timestamp
721
722         dropped events:
723                 Events lost due to overwrite option being off.
724
725         read events:
726                 The number of events read.
727
728 The Tracers
729 -----------
730
731 Here is the list of current tracers that may be configured.
732
733   "function"
734
735         Function call tracer to trace all kernel functions.
736
737   "function_graph"
738
739         Similar to the function tracer except that the
740         function tracer probes the functions on their entry
741         whereas the function graph tracer traces on both entry
742         and exit of the functions. It then provides the ability
743         to draw a graph of function calls similar to C code
744         source.
745
746   "blk"
747
748         The block tracer. The tracer used by the blktrace user
749         application.
750
751   "hwlat"
752
753         The Hardware Latency tracer is used to detect if the hardware
754         produces any latency. See "Hardware Latency Detector" section
755         below.
756
757   "irqsoff"
758
759         Traces the areas that disable interrupts and saves
760         the trace with the longest max latency.
761         See tracing_max_latency. When a new max is recorded,
762         it replaces the old trace. It is best to view this
763         trace with the latency-format option enabled, which
764         happens automatically when the tracer is selected.
765
766   "preemptoff"
767
768         Similar to irqsoff but traces and records the amount of
769         time for which preemption is disabled.
770
771   "preemptirqsoff"
772
773         Similar to irqsoff and preemptoff, but traces and
774         records the largest time for which irqs and/or preemption
775         is disabled.
776
777   "wakeup"
778
779         Traces and records the max latency that it takes for
780         the highest priority task to get scheduled after
781         it has been woken up.
782         Traces all tasks as an average developer would expect.
783
784   "wakeup_rt"
785
786         Traces and records the max latency that it takes for just
787         RT tasks (as the current "wakeup" does). This is useful
788         for those interested in wake up timings of RT tasks.
789
790   "wakeup_dl"
791
792         Traces and records the max latency that it takes for
793         a SCHED_DEADLINE task to be woken (as the "wakeup" and
794         "wakeup_rt" does).
795
796   "mmiotrace"
797
798         A special tracer that is used to trace binary module.
799         It will trace all the calls that a module makes to the
800         hardware. Everything it writes and reads from the I/O
801         as well.
802
803   "branch"
804
805         This tracer can be configured when tracing likely/unlikely
806         calls within the kernel. It will trace when a likely and
807         unlikely branch is hit and if it was correct in its prediction
808         of being correct.
809
810   "nop"
811
812         This is the "trace nothing" tracer. To remove all
813         tracers from tracing simply echo "nop" into
814         current_tracer.
815
816 Error conditions
817 ----------------
818
819   For most ftrace commands, failure modes are obvious and communicated
820   using standard return codes.
821
822   For other more involved commands, extended error information may be
823   available via the tracing/error_log file.  For the commands that
824   support it, reading the tracing/error_log file after an error will
825   display more detailed information about what went wrong, if
826   information is available.  The tracing/error_log file is a circular
827   error log displaying a small number (currently, 8) of ftrace errors
828   for the last (8) failed commands.
829
830   The extended error information and usage takes the form shown in
831   this example::
832
833     # echo xxx > /sys/kernel/debug/tracing/events/sched/sched_wakeup/trigger
834     echo: write error: Invalid argument
835
836     # cat /sys/kernel/debug/tracing/error_log
837     [ 5348.887237] location: error: Couldn't yyy: zzz
838       Command: xxx
839                ^
840     [ 7517.023364] location: error: Bad rrr: sss
841       Command: ppp qqq
842                    ^
843
844   To clear the error log, echo the empty string into it::
845
846     # echo > /sys/kernel/debug/tracing/error_log
847
848 Examples of using the tracer
849 ----------------------------
850
851 Here are typical examples of using the tracers when controlling
852 them only with the tracefs interface (without using any
853 user-land utilities).
854
855 Output format:
856 --------------
857
858 Here is an example of the output format of the file "trace"::
859
860   # tracer: function
861   #
862   # entries-in-buffer/entries-written: 140080/250280   #P:4
863   #
864   #                              _-----=> irqs-off
865   #                             / _----=> need-resched
866   #                            | / _---=> hardirq/softirq
867   #                            || / _--=> preempt-depth
868   #                            ||| /     delay
869   #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
870   #              | |       |   ||||       |         |
871               bash-1977  [000] .... 17284.993652: sys_close <-system_call_fastpath
872               bash-1977  [000] .... 17284.993653: __close_fd <-sys_close
873               bash-1977  [000] .... 17284.993653: _raw_spin_lock <-__close_fd
874               sshd-1974  [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
875               bash-1977  [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
876               bash-1977  [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
877               bash-1977  [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
878               bash-1977  [000] .... 17284.993657: filp_close <-__close_fd
879               bash-1977  [000] .... 17284.993657: dnotify_flush <-filp_close
880               sshd-1974  [003] .... 17284.993658: sys_select <-system_call_fastpath
881               ....
882
883 A header is printed with the tracer name that is represented by
884 the trace. In this case the tracer is "function". Then it shows the
885 number of events in the buffer as well as the total number of entries
886 that were written. The difference is the number of entries that were
887 lost due to the buffer filling up (250280 - 140080 = 110200 events
888 lost).
889
890 The header explains the content of the events. Task name "bash", the task
891 PID "1977", the CPU that it was running on "000", the latency format
892 (explained below), the timestamp in <secs>.<usecs> format, the
893 function name that was traced "sys_close" and the parent function that
894 called this function "system_call_fastpath". The timestamp is the time
895 at which the function was entered.
896
897 Latency trace format
898 --------------------
899
900 When the latency-format option is enabled or when one of the latency
901 tracers is set, the trace file gives somewhat more information to see
902 why a latency happened. Here is a typical trace::
903
904   # tracer: irqsoff
905   #
906   # irqsoff latency trace v1.1.5 on 3.8.0-test+
907   # --------------------------------------------------------------------
908   # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
909   #    -----------------
910   #    | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
911   #    -----------------
912   #  => started at: __lock_task_sighand
913   #  => ended at:   _raw_spin_unlock_irqrestore
914   #
915   #
916   #                  _------=> CPU#            
917   #                 / _-----=> irqs-off        
918   #                | / _----=> need-resched    
919   #                || / _---=> hardirq/softirq 
920   #                ||| / _--=> preempt-depth   
921   #                |||| /     delay             
922   #  cmd     pid   ||||| time  |   caller      
923   #     \   /      |||||  \    |   /           
924         ps-6143    2d...    0us!: trace_hardirqs_off <-__lock_task_sighand
925         ps-6143    2d..1  259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
926         ps-6143    2d..1  263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
927         ps-6143    2d..1  306us : <stack trace>
928    => trace_hardirqs_on_caller
929    => trace_hardirqs_on
930    => _raw_spin_unlock_irqrestore
931    => do_task_stat
932    => proc_tgid_stat
933    => proc_single_show
934    => seq_read
935    => vfs_read
936    => sys_read
937    => system_call_fastpath
938
939
940 This shows that the current tracer is "irqsoff" tracing the time
941 for which interrupts were disabled. It gives the trace version (which
942 never changes) and the version of the kernel upon which this was executed on
943 (3.8). Then it displays the max latency in microseconds (259 us). The number
944 of trace entries displayed and the total number (both are four: #4/4).
945 VP, KP, SP, and HP are always zero and are reserved for later use.
946 #P is the number of online CPUs (#P:4).
947
948 The task is the process that was running when the latency
949 occurred. (ps pid: 6143).
950
951 The start and stop (the functions in which the interrupts were
952 disabled and enabled respectively) that caused the latencies:
953
954   - __lock_task_sighand is where the interrupts were disabled.
955   - _raw_spin_unlock_irqrestore is where they were enabled again.
956
957 The next lines after the header are the trace itself. The header
958 explains which is which.
959
960   cmd: The name of the process in the trace.
961
962   pid: The PID of that process.
963
964   CPU#: The CPU which the process was running on.
965
966   irqs-off: 'd' interrupts are disabled. '.' otherwise.
967         .. caution:: If the architecture does not support a way to
968                 read the irq flags variable, an 'X' will always
969                 be printed here.
970
971   need-resched:
972         - 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
973         - 'n' only TIF_NEED_RESCHED is set,
974         - 'p' only PREEMPT_NEED_RESCHED is set,
975         - '.' otherwise.
976
977   hardirq/softirq:
978         - 'Z' - NMI occurred inside a hardirq
979         - 'z' - NMI is running
980         - 'H' - hard irq occurred inside a softirq.
981         - 'h' - hard irq is running
982         - 's' - soft irq is running
983         - '.' - normal context.
984
985   preempt-depth: The level of preempt_disabled
986
987 The above is mostly meaningful for kernel developers.
988
989   time:
990         When the latency-format option is enabled, the trace file
991         output includes a timestamp relative to the start of the
992         trace. This differs from the output when latency-format
993         is disabled, which includes an absolute timestamp.
994
995   delay:
996         This is just to help catch your eye a bit better. And
997         needs to be fixed to be only relative to the same CPU.
998         The marks are determined by the difference between this
999         current trace and the next trace.
1000
1001           - '$' - greater than 1 second
1002           - '@' - greater than 100 millisecond
1003           - '*' - greater than 10 millisecond
1004           - '#' - greater than 1000 microsecond
1005           - '!' - greater than 100 microsecond
1006           - '+' - greater than 10 microsecond
1007           - ' ' - less than or equal to 10 microsecond.
1008
1009   The rest is the same as the 'trace' file.
1010
1011   Note, the latency tracers will usually end with a back trace
1012   to easily find where the latency occurred.
1013
1014 trace_options
1015 -------------
1016
1017 The trace_options file (or the options directory) is used to control
1018 what gets printed in the trace output, or manipulate the tracers.
1019 To see what is available, simply cat the file::
1020
1021   cat trace_options
1022         print-parent
1023         nosym-offset
1024         nosym-addr
1025         noverbose
1026         noraw
1027         nohex
1028         nobin
1029         noblock
1030         trace_printk
1031         annotate
1032         nouserstacktrace
1033         nosym-userobj
1034         noprintk-msg-only
1035         context-info
1036         nolatency-format
1037         record-cmd
1038         norecord-tgid
1039         overwrite
1040         nodisable_on_free
1041         irq-info
1042         markers
1043         noevent-fork
1044         function-trace
1045         nofunction-fork
1046         nodisplay-graph
1047         nostacktrace
1048         nobranch
1049
1050 To disable one of the options, echo in the option prepended with
1051 "no"::
1052
1053   echo noprint-parent > trace_options
1054
1055 To enable an option, leave off the "no"::
1056
1057   echo sym-offset > trace_options
1058
1059 Here are the available options:
1060
1061   print-parent
1062         On function traces, display the calling (parent)
1063         function as well as the function being traced.
1064         ::
1065
1066           print-parent:
1067            bash-4000  [01]  1477.606694: simple_strtoul <-kstrtoul
1068
1069           noprint-parent:
1070            bash-4000  [01]  1477.606694: simple_strtoul
1071
1072
1073   sym-offset
1074         Display not only the function name, but also the
1075         offset in the function. For example, instead of
1076         seeing just "ktime_get", you will see
1077         "ktime_get+0xb/0x20".
1078         ::
1079
1080           sym-offset:
1081            bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
1082
1083   sym-addr
1084         This will also display the function address as well
1085         as the function name.
1086         ::
1087
1088           sym-addr:
1089            bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
1090
1091   verbose
1092         This deals with the trace file when the
1093         latency-format option is enabled.
1094         ::
1095
1096             bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
1097             (+0.000ms): simple_strtoul (kstrtoul)
1098
1099   raw
1100         This will display raw numbers. This option is best for
1101         use with user applications that can translate the raw
1102         numbers better than having it done in the kernel.
1103
1104   hex
1105         Similar to raw, but the numbers will be in a hexadecimal format.
1106
1107   bin
1108         This will print out the formats in raw binary.
1109
1110   block
1111         When set, reading trace_pipe will not block when polled.
1112
1113   trace_printk
1114         Can disable trace_printk() from writing into the buffer.
1115
1116   annotate
1117         It is sometimes confusing when the CPU buffers are full
1118         and one CPU buffer had a lot of events recently, thus
1119         a shorter time frame, were another CPU may have only had
1120         a few events, which lets it have older events. When
1121         the trace is reported, it shows the oldest events first,
1122         and it may look like only one CPU ran (the one with the
1123         oldest events). When the annotate option is set, it will
1124         display when a new CPU buffer started::
1125
1126                           <idle>-0     [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
1127                           <idle>-0     [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
1128                           <idle>-0     [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
1129                 ##### CPU 2 buffer started ####
1130                           <idle>-0     [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
1131                           <idle>-0     [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
1132                           <idle>-0     [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
1133
1134   userstacktrace
1135         This option changes the trace. It records a
1136         stacktrace of the current user space thread after
1137         each trace event.
1138
1139   sym-userobj
1140         when user stacktrace are enabled, look up which
1141         object the address belongs to, and print a
1142         relative address. This is especially useful when
1143         ASLR is on, otherwise you don't get a chance to
1144         resolve the address to object/file/line after
1145         the app is no longer running
1146
1147         The lookup is performed when you read
1148         trace,trace_pipe. Example::
1149
1150                   a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
1151                   x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
1152
1153
1154   printk-msg-only
1155         When set, trace_printk()s will only show the format
1156         and not their parameters (if trace_bprintk() or
1157         trace_bputs() was used to save the trace_printk()).
1158
1159   context-info
1160         Show only the event data. Hides the comm, PID,
1161         timestamp, CPU, and other useful data.
1162
1163   latency-format
1164         This option changes the trace output. When it is enabled,
1165         the trace displays additional information about the
1166         latency, as described in "Latency trace format".
1167
1168   pause-on-trace
1169         When set, opening the trace file for read, will pause
1170         writing to the ring buffer (as if tracing_on was set to zero).
1171         This simulates the original behavior of the trace file.
1172         When the file is closed, tracing will be enabled again.
1173
1174   hash-ptr
1175         When set, "%p" in the event printk format displays the
1176         hashed pointer value instead of real address.
1177         This will be useful if you want to find out which hashed
1178         value is corresponding to the real value in trace log.
1179
1180   record-cmd
1181         When any event or tracer is enabled, a hook is enabled
1182         in the sched_switch trace point to fill comm cache
1183         with mapped pids and comms. But this may cause some
1184         overhead, and if you only care about pids, and not the
1185         name of the task, disabling this option can lower the
1186         impact of tracing. See "saved_cmdlines".
1187
1188   record-tgid
1189         When any event or tracer is enabled, a hook is enabled
1190         in the sched_switch trace point to fill the cache of
1191         mapped Thread Group IDs (TGID) mapping to pids. See
1192         "saved_tgids".
1193
1194   overwrite
1195         This controls what happens when the trace buffer is
1196         full. If "1" (default), the oldest events are
1197         discarded and overwritten. If "0", then the newest
1198         events are discarded.
1199         (see per_cpu/cpu0/stats for overrun and dropped)
1200
1201   disable_on_free
1202         When the free_buffer is closed, tracing will
1203         stop (tracing_on set to 0).
1204
1205   irq-info
1206         Shows the interrupt, preempt count, need resched data.
1207         When disabled, the trace looks like::
1208
1209                 # tracer: function
1210                 #
1211                 # entries-in-buffer/entries-written: 144405/9452052   #P:4
1212                 #
1213                 #           TASK-PID   CPU#      TIMESTAMP  FUNCTION
1214                 #              | |       |          |         |
1215                           <idle>-0     [002]  23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
1216                           <idle>-0     [002]  23636.756054: activate_task <-ttwu_do_activate.constprop.89
1217                           <idle>-0     [002]  23636.756055: enqueue_task <-activate_task
1218
1219
1220   markers
1221         When set, the trace_marker is writable (only by root).
1222         When disabled, the trace_marker will error with EINVAL
1223         on write.
1224
1225   event-fork
1226         When set, tasks with PIDs listed in set_event_pid will have
1227         the PIDs of their children added to set_event_pid when those
1228         tasks fork. Also, when tasks with PIDs in set_event_pid exit,
1229         their PIDs will be removed from the file.
1230
1231         This affects PIDs listed in set_event_notrace_pid as well.
1232
1233   function-trace
1234         The latency tracers will enable function tracing
1235         if this option is enabled (default it is). When
1236         it is disabled, the latency tracers do not trace
1237         functions. This keeps the overhead of the tracer down
1238         when performing latency tests.
1239
1240   function-fork
1241         When set, tasks with PIDs listed in set_ftrace_pid will
1242         have the PIDs of their children added to set_ftrace_pid
1243         when those tasks fork. Also, when tasks with PIDs in
1244         set_ftrace_pid exit, their PIDs will be removed from the
1245         file.
1246
1247         This affects PIDs in set_ftrace_notrace_pid as well.
1248
1249   display-graph
1250         When set, the latency tracers (irqsoff, wakeup, etc) will
1251         use function graph tracing instead of function tracing.
1252
1253   stacktrace
1254         When set, a stack trace is recorded after any trace event
1255         is recorded.
1256
1257   branch
1258         Enable branch tracing with the tracer. This enables branch
1259         tracer along with the currently set tracer. Enabling this
1260         with the "nop" tracer is the same as just enabling the
1261         "branch" tracer.
1262
1263 .. tip:: Some tracers have their own options. They only appear in this
1264        file when the tracer is active. They always appear in the
1265        options directory.
1266
1267
1268 Here are the per tracer options:
1269
1270 Options for function tracer:
1271
1272   func_stack_trace
1273         When set, a stack trace is recorded after every
1274         function that is recorded. NOTE! Limit the functions
1275         that are recorded before enabling this, with
1276         "set_ftrace_filter" otherwise the system performance
1277         will be critically degraded. Remember to disable
1278         this option before clearing the function filter.
1279
1280 Options for function_graph tracer:
1281
1282  Since the function_graph tracer has a slightly different output
1283  it has its own options to control what is displayed.
1284
1285   funcgraph-overrun
1286         When set, the "overrun" of the graph stack is
1287         displayed after each function traced. The
1288         overrun, is when the stack depth of the calls
1289         is greater than what is reserved for each task.
1290         Each task has a fixed array of functions to
1291         trace in the call graph. If the depth of the
1292         calls exceeds that, the function is not traced.
1293         The overrun is the number of functions missed
1294         due to exceeding this array.
1295
1296   funcgraph-cpu
1297         When set, the CPU number of the CPU where the trace
1298         occurred is displayed.
1299
1300   funcgraph-overhead
1301         When set, if the function takes longer than
1302         A certain amount, then a delay marker is
1303         displayed. See "delay" above, under the
1304         header description.
1305
1306   funcgraph-proc
1307         Unlike other tracers, the process' command line
1308         is not displayed by default, but instead only
1309         when a task is traced in and out during a context
1310         switch. Enabling this options has the command
1311         of each process displayed at every line.
1312
1313   funcgraph-duration
1314         At the end of each function (the return)
1315         the duration of the amount of time in the
1316         function is displayed in microseconds.
1317
1318   funcgraph-abstime
1319         When set, the timestamp is displayed at each line.
1320
1321   funcgraph-irqs
1322         When disabled, functions that happen inside an
1323         interrupt will not be traced.
1324
1325   funcgraph-tail
1326         When set, the return event will include the function
1327         that it represents. By default this is off, and
1328         only a closing curly bracket "}" is displayed for
1329         the return of a function.
1330
1331   sleep-time
1332         When running function graph tracer, to include
1333         the time a task schedules out in its function.
1334         When enabled, it will account time the task has been
1335         scheduled out as part of the function call.
1336
1337   graph-time
1338         When running function profiler with function graph tracer,
1339         to include the time to call nested functions. When this is
1340         not set, the time reported for the function will only
1341         include the time the function itself executed for, not the
1342         time for functions that it called.
1343
1344 Options for blk tracer:
1345
1346   blk_classic
1347         Shows a more minimalistic output.
1348
1349
1350 irqsoff
1351 -------
1352
1353 When interrupts are disabled, the CPU can not react to any other
1354 external event (besides NMIs and SMIs). This prevents the timer
1355 interrupt from triggering or the mouse interrupt from letting
1356 the kernel know of a new mouse event. The result is a latency
1357 with the reaction time.
1358
1359 The irqsoff tracer tracks the time for which interrupts are
1360 disabled. When a new maximum latency is hit, the tracer saves
1361 the trace leading up to that latency point so that every time a
1362 new maximum is reached, the old saved trace is discarded and the
1363 new trace is saved.
1364
1365 To reset the maximum, echo 0 into tracing_max_latency. Here is
1366 an example::
1367
1368   # echo 0 > options/function-trace
1369   # echo irqsoff > current_tracer
1370   # echo 1 > tracing_on
1371   # echo 0 > tracing_max_latency
1372   # ls -ltr
1373   [...]
1374   # echo 0 > tracing_on
1375   # cat trace
1376   # tracer: irqsoff
1377   #
1378   # irqsoff latency trace v1.1.5 on 3.8.0-test+
1379   # --------------------------------------------------------------------
1380   # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1381   #    -----------------
1382   #    | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
1383   #    -----------------
1384   #  => started at: run_timer_softirq
1385   #  => ended at:   run_timer_softirq
1386   #
1387   #
1388   #                  _------=> CPU#            
1389   #                 / _-----=> irqs-off        
1390   #                | / _----=> need-resched    
1391   #                || / _---=> hardirq/softirq 
1392   #                ||| / _--=> preempt-depth   
1393   #                |||| /     delay             
1394   #  cmd     pid   ||||| time  |   caller      
1395   #     \   /      |||||  \    |   /           
1396     <idle>-0       0d.s2    0us+: _raw_spin_lock_irq <-run_timer_softirq
1397     <idle>-0       0dNs3   17us : _raw_spin_unlock_irq <-run_timer_softirq
1398     <idle>-0       0dNs3   17us+: trace_hardirqs_on <-run_timer_softirq
1399     <idle>-0       0dNs3   25us : <stack trace>
1400    => _raw_spin_unlock_irq
1401    => run_timer_softirq
1402    => __do_softirq
1403    => call_softirq
1404    => do_softirq
1405    => irq_exit
1406    => smp_apic_timer_interrupt
1407    => apic_timer_interrupt
1408    => rcu_idle_exit
1409    => cpu_idle
1410    => rest_init
1411    => start_kernel
1412    => x86_64_start_reservations
1413    => x86_64_start_kernel
1414
1415 Here we see that we had a latency of 16 microseconds (which is
1416 very good). The _raw_spin_lock_irq in run_timer_softirq disabled
1417 interrupts. The difference between the 16 and the displayed
1418 timestamp 25us occurred because the clock was incremented
1419 between the time of recording the max latency and the time of
1420 recording the function that had that latency.
1421
1422 Note the above example had function-trace not set. If we set
1423 function-trace, we get a much larger output::
1424
1425  with echo 1 > options/function-trace
1426
1427   # tracer: irqsoff
1428   #
1429   # irqsoff latency trace v1.1.5 on 3.8.0-test+
1430   # --------------------------------------------------------------------
1431   # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1432   #    -----------------
1433   #    | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
1434   #    -----------------
1435   #  => started at: ata_scsi_queuecmd
1436   #  => ended at:   ata_scsi_queuecmd
1437   #
1438   #
1439   #                  _------=> CPU#            
1440   #                 / _-----=> irqs-off        
1441   #                | / _----=> need-resched    
1442   #                || / _---=> hardirq/softirq 
1443   #                ||| / _--=> preempt-depth   
1444   #                |||| /     delay             
1445   #  cmd     pid   ||||| time  |   caller      
1446   #     \   /      |||||  \    |   /           
1447       bash-2042    3d...    0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1448       bash-2042    3d...    0us : add_preempt_count <-_raw_spin_lock_irqsave
1449       bash-2042    3d..1    1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1450       bash-2042    3d..1    1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1451       bash-2042    3d..1    2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1452       bash-2042    3d..1    2us : ata_qc_new_init <-__ata_scsi_queuecmd
1453       bash-2042    3d..1    3us : ata_sg_init <-__ata_scsi_queuecmd
1454       bash-2042    3d..1    4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1455       bash-2042    3d..1    4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1456   [...]
1457       bash-2042    3d..1   67us : delay_tsc <-__delay
1458       bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1459       bash-2042    3d..2   67us : sub_preempt_count <-delay_tsc
1460       bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1461       bash-2042    3d..2   68us : sub_preempt_count <-delay_tsc
1462       bash-2042    3d..1   68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1463       bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1464       bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1465       bash-2042    3d..1   72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1466       bash-2042    3d..1  120us : <stack trace>
1467    => _raw_spin_unlock_irqrestore
1468    => ata_scsi_queuecmd
1469    => scsi_dispatch_cmd
1470    => scsi_request_fn
1471    => __blk_run_queue_uncond
1472    => __blk_run_queue
1473    => blk_queue_bio
1474    => submit_bio_noacct
1475    => submit_bio
1476    => submit_bh
1477    => __ext3_get_inode_loc
1478    => ext3_iget
1479    => ext3_lookup
1480    => lookup_real
1481    => __lookup_hash
1482    => walk_component
1483    => lookup_last
1484    => path_lookupat
1485    => filename_lookup
1486    => user_path_at_empty
1487    => user_path_at
1488    => vfs_fstatat
1489    => vfs_stat
1490    => sys_newstat
1491    => system_call_fastpath
1492
1493
1494 Here we traced a 71 microsecond latency. But we also see all the
1495 functions that were called during that time. Note that by
1496 enabling function tracing, we incur an added overhead. This
1497 overhead may extend the latency times. But nevertheless, this
1498 trace has provided some very helpful debugging information.
1499
1500 If we prefer function graph output instead of function, we can set
1501 display-graph option::
1502
1503  with echo 1 > options/display-graph
1504
1505   # tracer: irqsoff
1506   #
1507   # irqsoff latency trace v1.1.5 on 4.20.0-rc6+
1508   # --------------------------------------------------------------------
1509   # latency: 3751 us, #274/274, CPU#0 | (M:desktop VP:0, KP:0, SP:0 HP:0 #P:4)
1510   #    -----------------
1511   #    | task: bash-1507 (uid:0 nice:0 policy:0 rt_prio:0)
1512   #    -----------------
1513   #  => started at: free_debug_processing
1514   #  => ended at:   return_to_handler
1515   #
1516   #
1517   #                                       _-----=> irqs-off
1518   #                                      / _----=> need-resched
1519   #                                     | / _---=> hardirq/softirq
1520   #                                     || / _--=> preempt-depth
1521   #                                     ||| /
1522   #   REL TIME      CPU  TASK/PID       ||||     DURATION                  FUNCTION CALLS
1523   #      |          |     |    |        ||||      |   |                     |   |   |   |
1524           0 us |   0)   bash-1507    |  d... |   0.000 us    |  _raw_spin_lock_irqsave();
1525           0 us |   0)   bash-1507    |  d..1 |   0.378 us    |    do_raw_spin_trylock();
1526           1 us |   0)   bash-1507    |  d..2 |               |    set_track() {
1527           2 us |   0)   bash-1507    |  d..2 |               |      save_stack_trace() {
1528           2 us |   0)   bash-1507    |  d..2 |               |        __save_stack_trace() {
1529           3 us |   0)   bash-1507    |  d..2 |               |          __unwind_start() {
1530           3 us |   0)   bash-1507    |  d..2 |               |            get_stack_info() {
1531           3 us |   0)   bash-1507    |  d..2 |   0.351 us    |              in_task_stack();
1532           4 us |   0)   bash-1507    |  d..2 |   1.107 us    |            }
1533   [...]
1534        3750 us |   0)   bash-1507    |  d..1 |   0.516 us    |      do_raw_spin_unlock();
1535        3750 us |   0)   bash-1507    |  d..1 |   0.000 us    |  _raw_spin_unlock_irqrestore();
1536        3764 us |   0)   bash-1507    |  d..1 |   0.000 us    |  tracer_hardirqs_on();
1537       bash-1507    0d..1 3792us : <stack trace>
1538    => free_debug_processing
1539    => __slab_free
1540    => kmem_cache_free
1541    => vm_area_free
1542    => remove_vma
1543    => exit_mmap
1544    => mmput
1545    => begin_new_exec
1546    => load_elf_binary
1547    => search_binary_handler
1548    => __do_execve_file.isra.32
1549    => __x64_sys_execve
1550    => do_syscall_64
1551    => entry_SYSCALL_64_after_hwframe
1552
1553 preemptoff
1554 ----------
1555
1556 When preemption is disabled, we may be able to receive
1557 interrupts but the task cannot be preempted and a higher
1558 priority task must wait for preemption to be enabled again
1559 before it can preempt a lower priority task.
1560
1561 The preemptoff tracer traces the places that disable preemption.
1562 Like the irqsoff tracer, it records the maximum latency for
1563 which preemption was disabled. The control of preemptoff tracer
1564 is much like the irqsoff tracer.
1565 ::
1566
1567   # echo 0 > options/function-trace
1568   # echo preemptoff > current_tracer
1569   # echo 1 > tracing_on
1570   # echo 0 > tracing_max_latency
1571   # ls -ltr
1572   [...]
1573   # echo 0 > tracing_on
1574   # cat trace
1575   # tracer: preemptoff
1576   #
1577   # preemptoff latency trace v1.1.5 on 3.8.0-test+
1578   # --------------------------------------------------------------------
1579   # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1580   #    -----------------
1581   #    | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1582   #    -----------------
1583   #  => started at: do_IRQ
1584   #  => ended at:   do_IRQ
1585   #
1586   #
1587   #                  _------=> CPU#            
1588   #                 / _-----=> irqs-off        
1589   #                | / _----=> need-resched    
1590   #                || / _---=> hardirq/softirq 
1591   #                ||| / _--=> preempt-depth   
1592   #                |||| /     delay             
1593   #  cmd     pid   ||||| time  |   caller      
1594   #     \   /      |||||  \    |   /           
1595       sshd-1991    1d.h.    0us+: irq_enter <-do_IRQ
1596       sshd-1991    1d..1   46us : irq_exit <-do_IRQ
1597       sshd-1991    1d..1   47us+: trace_preempt_on <-do_IRQ
1598       sshd-1991    1d..1   52us : <stack trace>
1599    => sub_preempt_count
1600    => irq_exit
1601    => do_IRQ
1602    => ret_from_intr
1603
1604
1605 This has some more changes. Preemption was disabled when an
1606 interrupt came in (notice the 'h'), and was enabled on exit.
1607 But we also see that interrupts have been disabled when entering
1608 the preempt off section and leaving it (the 'd'). We do not know if
1609 interrupts were enabled in the mean time or shortly after this
1610 was over.
1611 ::
1612
1613   # tracer: preemptoff
1614   #
1615   # preemptoff latency trace v1.1.5 on 3.8.0-test+
1616   # --------------------------------------------------------------------
1617   # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1618   #    -----------------
1619   #    | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1620   #    -----------------
1621   #  => started at: wake_up_new_task
1622   #  => ended at:   task_rq_unlock
1623   #
1624   #
1625   #                  _------=> CPU#            
1626   #                 / _-----=> irqs-off        
1627   #                | / _----=> need-resched    
1628   #                || / _---=> hardirq/softirq 
1629   #                ||| / _--=> preempt-depth   
1630   #                |||| /     delay             
1631   #  cmd     pid   ||||| time  |   caller      
1632   #     \   /      |||||  \    |   /           
1633       bash-1994    1d..1    0us : _raw_spin_lock_irqsave <-wake_up_new_task
1634       bash-1994    1d..1    0us : select_task_rq_fair <-select_task_rq
1635       bash-1994    1d..1    1us : __rcu_read_lock <-select_task_rq_fair
1636       bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1637       bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1638   [...]
1639       bash-1994    1d..1   12us : irq_enter <-smp_apic_timer_interrupt
1640       bash-1994    1d..1   12us : rcu_irq_enter <-irq_enter
1641       bash-1994    1d..1   13us : add_preempt_count <-irq_enter
1642       bash-1994    1d.h1   13us : exit_idle <-smp_apic_timer_interrupt
1643       bash-1994    1d.h1   13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1644       bash-1994    1d.h1   13us : _raw_spin_lock <-hrtimer_interrupt
1645       bash-1994    1d.h1   14us : add_preempt_count <-_raw_spin_lock
1646       bash-1994    1d.h2   14us : ktime_get_update_offsets <-hrtimer_interrupt
1647   [...]
1648       bash-1994    1d.h1   35us : lapic_next_event <-clockevents_program_event
1649       bash-1994    1d.h1   35us : irq_exit <-smp_apic_timer_interrupt
1650       bash-1994    1d.h1   36us : sub_preempt_count <-irq_exit
1651       bash-1994    1d..2   36us : do_softirq <-irq_exit
1652       bash-1994    1d..2   36us : __do_softirq <-call_softirq
1653       bash-1994    1d..2   36us : __local_bh_disable <-__do_softirq
1654       bash-1994    1d.s2   37us : add_preempt_count <-_raw_spin_lock_irq
1655       bash-1994    1d.s3   38us : _raw_spin_unlock <-run_timer_softirq
1656       bash-1994    1d.s3   39us : sub_preempt_count <-_raw_spin_unlock
1657       bash-1994    1d.s2   39us : call_timer_fn <-run_timer_softirq
1658   [...]
1659       bash-1994    1dNs2   81us : cpu_needs_another_gp <-rcu_process_callbacks
1660       bash-1994    1dNs2   82us : __local_bh_enable <-__do_softirq
1661       bash-1994    1dNs2   82us : sub_preempt_count <-__local_bh_enable
1662       bash-1994    1dN.2   82us : idle_cpu <-irq_exit
1663       bash-1994    1dN.2   83us : rcu_irq_exit <-irq_exit
1664       bash-1994    1dN.2   83us : sub_preempt_count <-irq_exit
1665       bash-1994    1.N.1   84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1666       bash-1994    1.N.1   84us+: trace_preempt_on <-task_rq_unlock
1667       bash-1994    1.N.1  104us : <stack trace>
1668    => sub_preempt_count
1669    => _raw_spin_unlock_irqrestore
1670    => task_rq_unlock
1671    => wake_up_new_task
1672    => do_fork
1673    => sys_clone
1674    => stub_clone
1675
1676
1677 The above is an example of the preemptoff trace with
1678 function-trace set. Here we see that interrupts were not disabled
1679 the entire time. The irq_enter code lets us know that we entered
1680 an interrupt 'h'. Before that, the functions being traced still
1681 show that it is not in an interrupt, but we can see from the
1682 functions themselves that this is not the case.
1683
1684 preemptirqsoff
1685 --------------
1686
1687 Knowing the locations that have interrupts disabled or
1688 preemption disabled for the longest times is helpful. But
1689 sometimes we would like to know when either preemption and/or
1690 interrupts are disabled.
1691
1692 Consider the following code::
1693
1694     local_irq_disable();
1695     call_function_with_irqs_off();
1696     preempt_disable();
1697     call_function_with_irqs_and_preemption_off();
1698     local_irq_enable();
1699     call_function_with_preemption_off();
1700     preempt_enable();
1701
1702 The irqsoff tracer will record the total length of
1703 call_function_with_irqs_off() and
1704 call_function_with_irqs_and_preemption_off().
1705
1706 The preemptoff tracer will record the total length of
1707 call_function_with_irqs_and_preemption_off() and
1708 call_function_with_preemption_off().
1709
1710 But neither will trace the time that interrupts and/or
1711 preemption is disabled. This total time is the time that we can
1712 not schedule. To record this time, use the preemptirqsoff
1713 tracer.
1714
1715 Again, using this trace is much like the irqsoff and preemptoff
1716 tracers.
1717 ::
1718
1719   # echo 0 > options/function-trace
1720   # echo preemptirqsoff > current_tracer
1721   # echo 1 > tracing_on
1722   # echo 0 > tracing_max_latency
1723   # ls -ltr
1724   [...]
1725   # echo 0 > tracing_on
1726   # cat trace
1727   # tracer: preemptirqsoff
1728   #
1729   # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1730   # --------------------------------------------------------------------
1731   # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1732   #    -----------------
1733   #    | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1734   #    -----------------
1735   #  => started at: ata_scsi_queuecmd
1736   #  => ended at:   ata_scsi_queuecmd
1737   #
1738   #
1739   #                  _------=> CPU#            
1740   #                 / _-----=> irqs-off        
1741   #                | / _----=> need-resched    
1742   #                || / _---=> hardirq/softirq 
1743   #                ||| / _--=> preempt-depth   
1744   #                |||| /     delay             
1745   #  cmd     pid   ||||| time  |   caller      
1746   #     \   /      |||||  \    |   /           
1747         ls-2230    3d...    0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1748         ls-2230    3...1  100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1749         ls-2230    3...1  101us+: trace_preempt_on <-ata_scsi_queuecmd
1750         ls-2230    3...1  111us : <stack trace>
1751    => sub_preempt_count
1752    => _raw_spin_unlock_irqrestore
1753    => ata_scsi_queuecmd
1754    => scsi_dispatch_cmd
1755    => scsi_request_fn
1756    => __blk_run_queue_uncond
1757    => __blk_run_queue
1758    => blk_queue_bio
1759    => submit_bio_noacct
1760    => submit_bio
1761    => submit_bh
1762    => ext3_bread
1763    => ext3_dir_bread
1764    => htree_dirblock_to_tree
1765    => ext3_htree_fill_tree
1766    => ext3_readdir
1767    => vfs_readdir
1768    => sys_getdents
1769    => system_call_fastpath
1770
1771
1772 The trace_hardirqs_off_thunk is called from assembly on x86 when
1773 interrupts are disabled in the assembly code. Without the
1774 function tracing, we do not know if interrupts were enabled
1775 within the preemption points. We do see that it started with
1776 preemption enabled.
1777
1778 Here is a trace with function-trace set::
1779
1780   # tracer: preemptirqsoff
1781   #
1782   # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1783   # --------------------------------------------------------------------
1784   # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1785   #    -----------------
1786   #    | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1787   #    -----------------
1788   #  => started at: schedule
1789   #  => ended at:   mutex_unlock
1790   #
1791   #
1792   #                  _------=> CPU#            
1793   #                 / _-----=> irqs-off        
1794   #                | / _----=> need-resched    
1795   #                || / _---=> hardirq/softirq 
1796   #                ||| / _--=> preempt-depth   
1797   #                |||| /     delay             
1798   #  cmd     pid   ||||| time  |   caller      
1799   #     \   /      |||||  \    |   /           
1800   kworker/-59      3...1    0us : __schedule <-schedule
1801   kworker/-59      3d..1    0us : rcu_preempt_qs <-rcu_note_context_switch
1802   kworker/-59      3d..1    1us : add_preempt_count <-_raw_spin_lock_irq
1803   kworker/-59      3d..2    1us : deactivate_task <-__schedule
1804   kworker/-59      3d..2    1us : dequeue_task <-deactivate_task
1805   kworker/-59      3d..2    2us : update_rq_clock <-dequeue_task
1806   kworker/-59      3d..2    2us : dequeue_task_fair <-dequeue_task
1807   kworker/-59      3d..2    2us : update_curr <-dequeue_task_fair
1808   kworker/-59      3d..2    2us : update_min_vruntime <-update_curr
1809   kworker/-59      3d..2    3us : cpuacct_charge <-update_curr
1810   kworker/-59      3d..2    3us : __rcu_read_lock <-cpuacct_charge
1811   kworker/-59      3d..2    3us : __rcu_read_unlock <-cpuacct_charge
1812   kworker/-59      3d..2    3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1813   kworker/-59      3d..2    4us : clear_buddies <-dequeue_task_fair
1814   kworker/-59      3d..2    4us : account_entity_dequeue <-dequeue_task_fair
1815   kworker/-59      3d..2    4us : update_min_vruntime <-dequeue_task_fair
1816   kworker/-59      3d..2    4us : update_cfs_shares <-dequeue_task_fair
1817   kworker/-59      3d..2    5us : hrtick_update <-dequeue_task_fair
1818   kworker/-59      3d..2    5us : wq_worker_sleeping <-__schedule
1819   kworker/-59      3d..2    5us : kthread_data <-wq_worker_sleeping
1820   kworker/-59      3d..2    5us : put_prev_task_fair <-__schedule
1821   kworker/-59      3d..2    6us : pick_next_task_fair <-pick_next_task
1822   kworker/-59      3d..2    6us : clear_buddies <-pick_next_task_fair
1823   kworker/-59      3d..2    6us : set_next_entity <-pick_next_task_fair
1824   kworker/-59      3d..2    6us : update_stats_wait_end <-set_next_entity
1825         ls-2269    3d..2    7us : finish_task_switch <-__schedule
1826         ls-2269    3d..2    7us : _raw_spin_unlock_irq <-finish_task_switch
1827         ls-2269    3d..2    8us : do_IRQ <-ret_from_intr
1828         ls-2269    3d..2    8us : irq_enter <-do_IRQ
1829         ls-2269    3d..2    8us : rcu_irq_enter <-irq_enter
1830         ls-2269    3d..2    9us : add_preempt_count <-irq_enter
1831         ls-2269    3d.h2    9us : exit_idle <-do_IRQ
1832   [...]
1833         ls-2269    3d.h3   20us : sub_preempt_count <-_raw_spin_unlock
1834         ls-2269    3d.h2   20us : irq_exit <-do_IRQ
1835         ls-2269    3d.h2   21us : sub_preempt_count <-irq_exit
1836         ls-2269    3d..3   21us : do_softirq <-irq_exit
1837         ls-2269    3d..3   21us : __do_softirq <-call_softirq
1838         ls-2269    3d..3   21us+: __local_bh_disable <-__do_softirq
1839         ls-2269    3d.s4   29us : sub_preempt_count <-_local_bh_enable_ip
1840         ls-2269    3d.s5   29us : sub_preempt_count <-_local_bh_enable_ip
1841         ls-2269    3d.s5   31us : do_IRQ <-ret_from_intr
1842         ls-2269    3d.s5   31us : irq_enter <-do_IRQ
1843         ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1844   [...]
1845         ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1846         ls-2269    3d.s5   32us : add_preempt_count <-irq_enter
1847         ls-2269    3d.H5   32us : exit_idle <-do_IRQ
1848         ls-2269    3d.H5   32us : handle_irq <-do_IRQ
1849         ls-2269    3d.H5   32us : irq_to_desc <-handle_irq
1850         ls-2269    3d.H5   33us : handle_fasteoi_irq <-handle_irq
1851   [...]
1852         ls-2269    3d.s5  158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1853         ls-2269    3d.s3  158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1854         ls-2269    3d.s3  159us : __local_bh_enable <-__do_softirq
1855         ls-2269    3d.s3  159us : sub_preempt_count <-__local_bh_enable
1856         ls-2269    3d..3  159us : idle_cpu <-irq_exit
1857         ls-2269    3d..3  159us : rcu_irq_exit <-irq_exit
1858         ls-2269    3d..3  160us : sub_preempt_count <-irq_exit
1859         ls-2269    3d...  161us : __mutex_unlock_slowpath <-mutex_unlock
1860         ls-2269    3d...  162us+: trace_hardirqs_on <-mutex_unlock
1861         ls-2269    3d...  186us : <stack trace>
1862    => __mutex_unlock_slowpath
1863    => mutex_unlock
1864    => process_output
1865    => n_tty_write
1866    => tty_write
1867    => vfs_write
1868    => sys_write
1869    => system_call_fastpath
1870
1871 This is an interesting trace. It started with kworker running and
1872 scheduling out and ls taking over. But as soon as ls released the
1873 rq lock and enabled interrupts (but not preemption) an interrupt
1874 triggered. When the interrupt finished, it started running softirqs.
1875 But while the softirq was running, another interrupt triggered.
1876 When an interrupt is running inside a softirq, the annotation is 'H'.
1877
1878
1879 wakeup
1880 ------
1881
1882 One common case that people are interested in tracing is the
1883 time it takes for a task that is woken to actually wake up.
1884 Now for non Real-Time tasks, this can be arbitrary. But tracing
1885 it none the less can be interesting. 
1886
1887 Without function tracing::
1888
1889   # echo 0 > options/function-trace
1890   # echo wakeup > current_tracer
1891   # echo 1 > tracing_on
1892   # echo 0 > tracing_max_latency
1893   # chrt -f 5 sleep 1
1894   # echo 0 > tracing_on
1895   # cat trace
1896   # tracer: wakeup
1897   #
1898   # wakeup latency trace v1.1.5 on 3.8.0-test+
1899   # --------------------------------------------------------------------
1900   # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1901   #    -----------------
1902   #    | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1903   #    -----------------
1904   #
1905   #                  _------=> CPU#            
1906   #                 / _-----=> irqs-off        
1907   #                | / _----=> need-resched    
1908   #                || / _---=> hardirq/softirq 
1909   #                ||| / _--=> preempt-depth   
1910   #                |||| /     delay             
1911   #  cmd     pid   ||||| time  |   caller      
1912   #     \   /      |||||  \    |   /           
1913     <idle>-0       3dNs7    0us :      0:120:R   + [003]   312:100:R kworker/3:1H
1914     <idle>-0       3dNs7    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1915     <idle>-0       3d..3   15us : __schedule <-schedule
1916     <idle>-0       3d..3   15us :      0:120:R ==> [003]   312:100:R kworker/3:1H
1917
1918 The tracer only traces the highest priority task in the system
1919 to avoid tracing the normal circumstances. Here we see that
1920 the kworker with a nice priority of -20 (not very nice), took
1921 just 15 microseconds from the time it woke up, to the time it
1922 ran.
1923
1924 Non Real-Time tasks are not that interesting. A more interesting
1925 trace is to concentrate only on Real-Time tasks.
1926
1927 wakeup_rt
1928 ---------
1929
1930 In a Real-Time environment it is very important to know the
1931 wakeup time it takes for the highest priority task that is woken
1932 up to the time that it executes. This is also known as "schedule
1933 latency". I stress the point that this is about RT tasks. It is
1934 also important to know the scheduling latency of non-RT tasks,
1935 but the average schedule latency is better for non-RT tasks.
1936 Tools like LatencyTop are more appropriate for such
1937 measurements.
1938
1939 Real-Time environments are interested in the worst case latency.
1940 That is the longest latency it takes for something to happen,
1941 and not the average. We can have a very fast scheduler that may
1942 only have a large latency once in a while, but that would not
1943 work well with Real-Time tasks.  The wakeup_rt tracer was designed
1944 to record the worst case wakeups of RT tasks. Non-RT tasks are
1945 not recorded because the tracer only records one worst case and
1946 tracing non-RT tasks that are unpredictable will overwrite the
1947 worst case latency of RT tasks (just run the normal wakeup
1948 tracer for a while to see that effect).
1949
1950 Since this tracer only deals with RT tasks, we will run this
1951 slightly differently than we did with the previous tracers.
1952 Instead of performing an 'ls', we will run 'sleep 1' under
1953 'chrt' which changes the priority of the task.
1954 ::
1955
1956   # echo 0 > options/function-trace
1957   # echo wakeup_rt > current_tracer
1958   # echo 1 > tracing_on
1959   # echo 0 > tracing_max_latency
1960   # chrt -f 5 sleep 1
1961   # echo 0 > tracing_on
1962   # cat trace
1963   # tracer: wakeup
1964   #
1965   # tracer: wakeup_rt
1966   #
1967   # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1968   # --------------------------------------------------------------------
1969   # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1970   #    -----------------
1971   #    | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1972   #    -----------------
1973   #
1974   #                  _------=> CPU#            
1975   #                 / _-----=> irqs-off        
1976   #                | / _----=> need-resched    
1977   #                || / _---=> hardirq/softirq 
1978   #                ||| / _--=> preempt-depth   
1979   #                |||| /     delay             
1980   #  cmd     pid   ||||| time  |   caller      
1981   #     \   /      |||||  \    |   /           
1982     <idle>-0       3d.h4    0us :      0:120:R   + [003]  2389: 94:R sleep
1983     <idle>-0       3d.h4    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1984     <idle>-0       3d..3    5us : __schedule <-schedule
1985     <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1986
1987
1988 Running this on an idle system, we see that it only took 5 microseconds
1989 to perform the task switch.  Note, since the trace point in the schedule
1990 is before the actual "switch", we stop the tracing when the recorded task
1991 is about to schedule in. This may change if we add a new marker at the
1992 end of the scheduler.
1993
1994 Notice that the recorded task is 'sleep' with the PID of 2389
1995 and it has an rt_prio of 5. This priority is user-space priority
1996 and not the internal kernel priority. The policy is 1 for
1997 SCHED_FIFO and 2 for SCHED_RR.
1998
1999 Note, that the trace data shows the internal priority (99 - rtprio).
2000 ::
2001
2002   <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
2003
2004 The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
2005 and in the running state 'R'. The sleep task was scheduled in with
2006 2389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
2007 and it too is in the running state.
2008
2009 Doing the same with chrt -r 5 and function-trace set.
2010 ::
2011
2012   echo 1 > options/function-trace
2013
2014   # tracer: wakeup_rt
2015   #
2016   # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
2017   # --------------------------------------------------------------------
2018   # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
2019   #    -----------------
2020   #    | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
2021   #    -----------------
2022   #
2023   #                  _------=> CPU#            
2024   #                 / _-----=> irqs-off        
2025   #                | / _----=> need-resched    
2026   #                || / _---=> hardirq/softirq 
2027   #                ||| / _--=> preempt-depth   
2028   #                |||| /     delay             
2029   #  cmd     pid   ||||| time  |   caller      
2030   #     \   /      |||||  \    |   /           
2031     <idle>-0       3d.h4    1us+:      0:120:R   + [003]  2448: 94:R sleep
2032     <idle>-0       3d.h4    2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
2033     <idle>-0       3d.h3    3us : check_preempt_curr <-ttwu_do_wakeup
2034     <idle>-0       3d.h3    3us : resched_curr <-check_preempt_curr
2035     <idle>-0       3dNh3    4us : task_woken_rt <-ttwu_do_wakeup
2036     <idle>-0       3dNh3    4us : _raw_spin_unlock <-try_to_wake_up
2037     <idle>-0       3dNh3    4us : sub_preempt_count <-_raw_spin_unlock
2038     <idle>-0       3dNh2    5us : ttwu_stat <-try_to_wake_up
2039     <idle>-0       3dNh2    5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
2040     <idle>-0       3dNh2    6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2041     <idle>-0       3dNh1    6us : _raw_spin_lock <-__run_hrtimer
2042     <idle>-0       3dNh1    6us : add_preempt_count <-_raw_spin_lock
2043     <idle>-0       3dNh2    7us : _raw_spin_unlock <-hrtimer_interrupt
2044     <idle>-0       3dNh2    7us : sub_preempt_count <-_raw_spin_unlock
2045     <idle>-0       3dNh1    7us : tick_program_event <-hrtimer_interrupt
2046     <idle>-0       3dNh1    7us : clockevents_program_event <-tick_program_event
2047     <idle>-0       3dNh1    8us : ktime_get <-clockevents_program_event
2048     <idle>-0       3dNh1    8us : lapic_next_event <-clockevents_program_event
2049     <idle>-0       3dNh1    8us : irq_exit <-smp_apic_timer_interrupt
2050     <idle>-0       3dNh1    9us : sub_preempt_count <-irq_exit
2051     <idle>-0       3dN.2    9us : idle_cpu <-irq_exit
2052     <idle>-0       3dN.2    9us : rcu_irq_exit <-irq_exit
2053     <idle>-0       3dN.2   10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
2054     <idle>-0       3dN.2   10us : sub_preempt_count <-irq_exit
2055     <idle>-0       3.N.1   11us : rcu_idle_exit <-cpu_idle
2056     <idle>-0       3dN.1   11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
2057     <idle>-0       3.N.1   11us : tick_nohz_idle_exit <-cpu_idle
2058     <idle>-0       3dN.1   12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
2059     <idle>-0       3dN.1   12us : ktime_get <-tick_nohz_idle_exit
2060     <idle>-0       3dN.1   12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
2061     <idle>-0       3dN.1   13us : cpu_load_update_nohz <-tick_nohz_idle_exit
2062     <idle>-0       3dN.1   13us : _raw_spin_lock <-cpu_load_update_nohz
2063     <idle>-0       3dN.1   13us : add_preempt_count <-_raw_spin_lock
2064     <idle>-0       3dN.2   13us : __cpu_load_update <-cpu_load_update_nohz
2065     <idle>-0       3dN.2   14us : sched_avg_update <-__cpu_load_update
2066     <idle>-0       3dN.2   14us : _raw_spin_unlock <-cpu_load_update_nohz
2067     <idle>-0       3dN.2   14us : sub_preempt_count <-_raw_spin_unlock
2068     <idle>-0       3dN.1   15us : calc_load_nohz_stop <-tick_nohz_idle_exit
2069     <idle>-0       3dN.1   15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
2070     <idle>-0       3dN.1   15us : hrtimer_cancel <-tick_nohz_idle_exit
2071     <idle>-0       3dN.1   15us : hrtimer_try_to_cancel <-hrtimer_cancel
2072     <idle>-0       3dN.1   16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
2073     <idle>-0       3dN.1   16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
2074     <idle>-0       3dN.1   16us : add_preempt_count <-_raw_spin_lock_irqsave
2075     <idle>-0       3dN.2   17us : __remove_hrtimer <-remove_hrtimer.part.16
2076     <idle>-0       3dN.2   17us : hrtimer_force_reprogram <-__remove_hrtimer
2077     <idle>-0       3dN.2   17us : tick_program_event <-hrtimer_force_reprogram
2078     <idle>-0       3dN.2   18us : clockevents_program_event <-tick_program_event
2079     <idle>-0       3dN.2   18us : ktime_get <-clockevents_program_event
2080     <idle>-0       3dN.2   18us : lapic_next_event <-clockevents_program_event
2081     <idle>-0       3dN.2   19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
2082     <idle>-0       3dN.2   19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2083     <idle>-0       3dN.1   19us : hrtimer_forward <-tick_nohz_idle_exit
2084     <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
2085     <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
2086     <idle>-0       3dN.1   20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2087     <idle>-0       3dN.1   20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
2088     <idle>-0       3dN.1   21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
2089     <idle>-0       3dN.1   21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
2090     <idle>-0       3dN.1   21us : add_preempt_count <-_raw_spin_lock_irqsave
2091     <idle>-0       3dN.2   22us : ktime_add_safe <-__hrtimer_start_range_ns
2092     <idle>-0       3dN.2   22us : enqueue_hrtimer <-__hrtimer_start_range_ns
2093     <idle>-0       3dN.2   22us : tick_program_event <-__hrtimer_start_range_ns
2094     <idle>-0       3dN.2   23us : clockevents_program_event <-tick_program_event
2095     <idle>-0       3dN.2   23us : ktime_get <-clockevents_program_event
2096     <idle>-0       3dN.2   23us : lapic_next_event <-clockevents_program_event
2097     <idle>-0       3dN.2   24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
2098     <idle>-0       3dN.2   24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2099     <idle>-0       3dN.1   24us : account_idle_ticks <-tick_nohz_idle_exit
2100     <idle>-0       3dN.1   24us : account_idle_time <-account_idle_ticks
2101     <idle>-0       3.N.1   25us : sub_preempt_count <-cpu_idle
2102     <idle>-0       3.N..   25us : schedule <-cpu_idle
2103     <idle>-0       3.N..   25us : __schedule <-preempt_schedule
2104     <idle>-0       3.N..   26us : add_preempt_count <-__schedule
2105     <idle>-0       3.N.1   26us : rcu_note_context_switch <-__schedule
2106     <idle>-0       3.N.1   26us : rcu_sched_qs <-rcu_note_context_switch
2107     <idle>-0       3dN.1   27us : rcu_preempt_qs <-rcu_note_context_switch
2108     <idle>-0       3.N.1   27us : _raw_spin_lock_irq <-__schedule
2109     <idle>-0       3dN.1   27us : add_preempt_count <-_raw_spin_lock_irq
2110     <idle>-0       3dN.2   28us : put_prev_task_idle <-__schedule
2111     <idle>-0       3dN.2   28us : pick_next_task_stop <-pick_next_task
2112     <idle>-0       3dN.2   28us : pick_next_task_rt <-pick_next_task
2113     <idle>-0       3dN.2   29us : dequeue_pushable_task <-pick_next_task_rt
2114     <idle>-0       3d..3   29us : __schedule <-preempt_schedule
2115     <idle>-0       3d..3   30us :      0:120:R ==> [003]  2448: 94:R sleep
2116
2117 This isn't that big of a trace, even with function tracing enabled,
2118 so I included the entire trace.
2119
2120 The interrupt went off while when the system was idle. Somewhere
2121 before task_woken_rt() was called, the NEED_RESCHED flag was set,
2122 this is indicated by the first occurrence of the 'N' flag.
2123
2124 Latency tracing and events
2125 --------------------------
2126 As function tracing can induce a much larger latency, but without
2127 seeing what happens within the latency it is hard to know what
2128 caused it. There is a middle ground, and that is with enabling
2129 events.
2130 ::
2131
2132   # echo 0 > options/function-trace
2133   # echo wakeup_rt > current_tracer
2134   # echo 1 > events/enable
2135   # echo 1 > tracing_on
2136   # echo 0 > tracing_max_latency
2137   # chrt -f 5 sleep 1
2138   # echo 0 > tracing_on
2139   # cat trace
2140   # tracer: wakeup_rt
2141   #
2142   # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
2143   # --------------------------------------------------------------------
2144   # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
2145   #    -----------------
2146   #    | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
2147   #    -----------------
2148   #
2149   #                  _------=> CPU#            
2150   #                 / _-----=> irqs-off        
2151   #                | / _----=> need-resched    
2152   #                || / _---=> hardirq/softirq 
2153   #                ||| / _--=> preempt-depth   
2154   #                |||| /     delay             
2155   #  cmd     pid   ||||| time  |   caller      
2156   #     \   /      |||||  \    |   /           
2157     <idle>-0       2d.h4    0us :      0:120:R   + [002]  5882: 94:R sleep
2158     <idle>-0       2d.h4    0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
2159     <idle>-0       2d.h4    1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
2160     <idle>-0       2dNh2    1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
2161     <idle>-0       2.N.2    2us : power_end: cpu_id=2
2162     <idle>-0       2.N.2    3us : cpu_idle: state=4294967295 cpu_id=2
2163     <idle>-0       2dN.3    4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
2164     <idle>-0       2dN.3    4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
2165     <idle>-0       2.N.2    5us : rcu_utilization: Start context switch
2166     <idle>-0       2.N.2    5us : rcu_utilization: End context switch
2167     <idle>-0       2d..3    6us : __schedule <-schedule
2168     <idle>-0       2d..3    6us :      0:120:R ==> [002]  5882: 94:R sleep
2169
2170
2171 Hardware Latency Detector
2172 -------------------------
2173
2174 The hardware latency detector is executed by enabling the "hwlat" tracer.
2175
2176 NOTE, this tracer will affect the performance of the system as it will
2177 periodically make a CPU constantly busy with interrupts disabled.
2178 ::
2179
2180   # echo hwlat > current_tracer
2181   # sleep 100
2182   # cat trace
2183   # tracer: hwlat
2184   #
2185   # entries-in-buffer/entries-written: 13/13   #P:8
2186   #
2187   #                              _-----=> irqs-off
2188   #                             / _----=> need-resched
2189   #                            | / _---=> hardirq/softirq
2190   #                            || / _--=> preempt-depth
2191   #                            ||| /     delay
2192   #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2193   #              | |       |   ||||       |         |
2194              <...>-1729  [001] d...   678.473449: #1     inner/outer(us):   11/12    ts:1581527483.343962693 count:6
2195              <...>-1729  [004] d...   689.556542: #2     inner/outer(us):   16/9     ts:1581527494.889008092 count:1
2196              <...>-1729  [005] d...   714.756290: #3     inner/outer(us):   16/16    ts:1581527519.678961629 count:5
2197              <...>-1729  [001] d...   718.788247: #4     inner/outer(us):    9/17    ts:1581527523.889012713 count:1
2198              <...>-1729  [002] d...   719.796341: #5     inner/outer(us):   13/9     ts:1581527524.912872606 count:1
2199              <...>-1729  [006] d...   844.787091: #6     inner/outer(us):    9/12    ts:1581527649.889048502 count:2
2200              <...>-1729  [003] d...   849.827033: #7     inner/outer(us):   18/9     ts:1581527654.889013793 count:1
2201              <...>-1729  [007] d...   853.859002: #8     inner/outer(us):    9/12    ts:1581527658.889065736 count:1
2202              <...>-1729  [001] d...   855.874978: #9     inner/outer(us):    9/11    ts:1581527660.861991877 count:1
2203              <...>-1729  [001] d...   863.938932: #10    inner/outer(us):    9/11    ts:1581527668.970010500 count:1 nmi-total:7 nmi-count:1
2204              <...>-1729  [007] d...   878.050780: #11    inner/outer(us):    9/12    ts:1581527683.385002600 count:1 nmi-total:5 nmi-count:1
2205              <...>-1729  [007] d...   886.114702: #12    inner/outer(us):    9/12    ts:1581527691.385001600 count:1
2206
2207
2208 The above output is somewhat the same in the header. All events will have
2209 interrupts disabled 'd'. Under the FUNCTION title there is:
2210
2211  #1
2212         This is the count of events recorded that were greater than the
2213         tracing_threshold (See below).
2214
2215  inner/outer(us):   11/11
2216
2217       This shows two numbers as "inner latency" and "outer latency". The test
2218       runs in a loop checking a timestamp twice. The latency detected within
2219       the two timestamps is the "inner latency" and the latency detected
2220       after the previous timestamp and the next timestamp in the loop is
2221       the "outer latency".
2222
2223  ts:1581527483.343962693
2224
2225       The absolute timestamp that the first latency was recorded in the window.
2226
2227  count:6
2228
2229       The number of times a latency was detected during the window.
2230
2231  nmi-total:7 nmi-count:1
2232
2233       On architectures that support it, if an NMI comes in during the
2234       test, the time spent in NMI is reported in "nmi-total" (in
2235       microseconds).
2236
2237       All architectures that have NMIs will show the "nmi-count" if an
2238       NMI comes in during the test.
2239
2240 hwlat files:
2241
2242   tracing_threshold
2243         This gets automatically set to "10" to represent 10
2244         microseconds. This is the threshold of latency that
2245         needs to be detected before the trace will be recorded.
2246
2247         Note, when hwlat tracer is finished (another tracer is
2248         written into "current_tracer"), the original value for
2249         tracing_threshold is placed back into this file.
2250
2251   hwlat_detector/width
2252         The length of time the test runs with interrupts disabled.
2253
2254   hwlat_detector/window
2255         The length of time of the window which the test
2256         runs. That is, the test will run for "width"
2257         microseconds per "window" microseconds
2258
2259   tracing_cpumask
2260         When the test is started. A kernel thread is created that
2261         runs the test. This thread will alternate between CPUs
2262         listed in the tracing_cpumask between each period
2263         (one "window"). To limit the test to specific CPUs
2264         set the mask in this file to only the CPUs that the test
2265         should run on.
2266
2267 function
2268 --------
2269
2270 This tracer is the function tracer. Enabling the function tracer
2271 can be done from the debug file system. Make sure the
2272 ftrace_enabled is set; otherwise this tracer is a nop.
2273 See the "ftrace_enabled" section below.
2274 ::
2275
2276   # sysctl kernel.ftrace_enabled=1
2277   # echo function > current_tracer
2278   # echo 1 > tracing_on
2279   # usleep 1
2280   # echo 0 > tracing_on
2281   # cat trace
2282   # tracer: function
2283   #
2284   # entries-in-buffer/entries-written: 24799/24799   #P:4
2285   #
2286   #                              _-----=> irqs-off
2287   #                             / _----=> need-resched
2288   #                            | / _---=> hardirq/softirq
2289   #                            || / _--=> preempt-depth
2290   #                            ||| /     delay
2291   #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2292   #              | |       |   ||||       |         |
2293               bash-1994  [002] ....  3082.063030: mutex_unlock <-rb_simple_write
2294               bash-1994  [002] ....  3082.063031: __mutex_unlock_slowpath <-mutex_unlock
2295               bash-1994  [002] ....  3082.063031: __fsnotify_parent <-fsnotify_modify
2296               bash-1994  [002] ....  3082.063032: fsnotify <-fsnotify_modify
2297               bash-1994  [002] ....  3082.063032: __srcu_read_lock <-fsnotify
2298               bash-1994  [002] ....  3082.063032: add_preempt_count <-__srcu_read_lock
2299               bash-1994  [002] ...1  3082.063032: sub_preempt_count <-__srcu_read_lock
2300               bash-1994  [002] ....  3082.063033: __srcu_read_unlock <-fsnotify
2301   [...]
2302
2303
2304 Note: function tracer uses ring buffers to store the above
2305 entries. The newest data may overwrite the oldest data.
2306 Sometimes using echo to stop the trace is not sufficient because
2307 the tracing could have overwritten the data that you wanted to
2308 record. For this reason, it is sometimes better to disable
2309 tracing directly from a program. This allows you to stop the
2310 tracing at the point that you hit the part that you are
2311 interested in. To disable the tracing directly from a C program,
2312 something like following code snippet can be used::
2313
2314         int trace_fd;
2315         [...]
2316         int main(int argc, char *argv[]) {
2317                 [...]
2318                 trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
2319                 [...]
2320                 if (condition_hit()) {
2321                         write(trace_fd, "0", 1);
2322                 }
2323                 [...]
2324         }
2325
2326
2327 Single thread tracing
2328 ---------------------
2329
2330 By writing into set_ftrace_pid you can trace a
2331 single thread. For example::
2332
2333   # cat set_ftrace_pid
2334   no pid
2335   # echo 3111 > set_ftrace_pid
2336   # cat set_ftrace_pid
2337   3111
2338   # echo function > current_tracer
2339   # cat trace | head
2340   # tracer: function
2341   #
2342   #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2343   #              | |       |          |         |
2344       yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
2345       yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
2346       yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
2347       yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
2348       yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
2349       yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
2350   # echo > set_ftrace_pid
2351   # cat trace |head
2352   # tracer: function
2353   #
2354   #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2355   #              | |       |          |         |
2356   ##### CPU 3 buffer started ####
2357       yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
2358       yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
2359       yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
2360       yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
2361       yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit
2362
2363 If you want to trace a function when executing, you could use
2364 something like this simple program.
2365 ::
2366
2367         #include <stdio.h>
2368         #include <stdlib.h>
2369         #include <sys/types.h>
2370         #include <sys/stat.h>
2371         #include <fcntl.h>
2372         #include <unistd.h>
2373         #include <string.h>
2374
2375         #define _STR(x) #x
2376         #define STR(x) _STR(x)
2377         #define MAX_PATH 256
2378
2379         const char *find_tracefs(void)
2380         {
2381                static char tracefs[MAX_PATH+1];
2382                static int tracefs_found;
2383                char type[100];
2384                FILE *fp;
2385
2386                if (tracefs_found)
2387                        return tracefs;
2388
2389                if ((fp = fopen("/proc/mounts","r")) == NULL) {
2390                        perror("/proc/mounts");
2391                        return NULL;
2392                }
2393
2394                while (fscanf(fp, "%*s %"
2395                              STR(MAX_PATH)
2396                              "s %99s %*s %*d %*d\n",
2397                              tracefs, type) == 2) {
2398                        if (strcmp(type, "tracefs") == 0)
2399                                break;
2400                }
2401                fclose(fp);
2402
2403                if (strcmp(type, "tracefs") != 0) {
2404                        fprintf(stderr, "tracefs not mounted");
2405                        return NULL;
2406                }
2407
2408                strcat(tracefs, "/tracing/");
2409                tracefs_found = 1;
2410
2411                return tracefs;
2412         }
2413
2414         const char *tracing_file(const char *file_name)
2415         {
2416                static char trace_file[MAX_PATH+1];
2417                snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
2418                return trace_file;
2419         }
2420
2421         int main (int argc, char **argv)
2422         {
2423                 if (argc < 1)
2424                         exit(-1);
2425
2426                 if (fork() > 0) {
2427                         int fd, ffd;
2428                         char line[64];
2429                         int s;
2430
2431                         ffd = open(tracing_file("current_tracer"), O_WRONLY);
2432                         if (ffd < 0)
2433                                 exit(-1);
2434                         write(ffd, "nop", 3);
2435
2436                         fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
2437                         s = sprintf(line, "%d\n", getpid());
2438                         write(fd, line, s);
2439
2440                         write(ffd, "function", 8);
2441
2442                         close(fd);
2443                         close(ffd);
2444
2445                         execvp(argv[1], argv+1);
2446                 }
2447
2448                 return 0;
2449         }
2450
2451 Or this simple script!
2452 ::
2453
2454   #!/bin/bash
2455
2456   tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
2457   echo 0 > $tracefs/tracing_on
2458   echo $$ > $tracefs/set_ftrace_pid
2459   echo function > $tracefs/current_tracer
2460   echo 1 > $tracefs/tracing_on
2461   exec "$@"
2462
2463
2464 function graph tracer
2465 ---------------------------
2466
2467 This tracer is similar to the function tracer except that it
2468 probes a function on its entry and its exit. This is done by
2469 using a dynamically allocated stack of return addresses in each
2470 task_struct. On function entry the tracer overwrites the return
2471 address of each function traced to set a custom probe. Thus the
2472 original return address is stored on the stack of return address
2473 in the task_struct.
2474
2475 Probing on both ends of a function leads to special features
2476 such as:
2477
2478 - measure of a function's time execution
2479 - having a reliable call stack to draw function calls graph
2480
2481 This tracer is useful in several situations:
2482
2483 - you want to find the reason of a strange kernel behavior and
2484   need to see what happens in detail on any areas (or specific
2485   ones).
2486
2487 - you are experiencing weird latencies but it's difficult to
2488   find its origin.
2489
2490 - you want to find quickly which path is taken by a specific
2491   function
2492
2493 - you just want to peek inside a working kernel and want to see
2494   what happens there.
2495
2496 ::
2497
2498   # tracer: function_graph
2499   #
2500   # CPU  DURATION                  FUNCTION CALLS
2501   # |     |   |                     |   |   |   |
2502
2503    0)               |  sys_open() {
2504    0)               |    do_sys_open() {
2505    0)               |      getname() {
2506    0)               |        kmem_cache_alloc() {
2507    0)   1.382 us    |          __might_sleep();
2508    0)   2.478 us    |        }
2509    0)               |        strncpy_from_user() {
2510    0)               |          might_fault() {
2511    0)   1.389 us    |            __might_sleep();
2512    0)   2.553 us    |          }
2513    0)   3.807 us    |        }
2514    0)   7.876 us    |      }
2515    0)               |      alloc_fd() {
2516    0)   0.668 us    |        _spin_lock();
2517    0)   0.570 us    |        expand_files();
2518    0)   0.586 us    |        _spin_unlock();
2519
2520
2521 There are several columns that can be dynamically
2522 enabled/disabled. You can use every combination of options you
2523 want, depending on your needs.
2524
2525 - The cpu number on which the function executed is default
2526   enabled.  It is sometimes better to only trace one cpu (see
2527   tracing_cpu_mask file) or you might sometimes see unordered
2528   function calls while cpu tracing switch.
2529
2530         - hide: echo nofuncgraph-cpu > trace_options
2531         - show: echo funcgraph-cpu > trace_options
2532
2533 - The duration (function's time of execution) is displayed on
2534   the closing bracket line of a function or on the same line
2535   than the current function in case of a leaf one. It is default
2536   enabled.
2537
2538         - hide: echo nofuncgraph-duration > trace_options
2539         - show: echo funcgraph-duration > trace_options
2540
2541 - The overhead field precedes the duration field in case of
2542   reached duration thresholds.
2543
2544         - hide: echo nofuncgraph-overhead > trace_options
2545         - show: echo funcgraph-overhead > trace_options
2546         - depends on: funcgraph-duration
2547
2548   ie::
2549
2550     3) # 1837.709 us |          } /* __switch_to */
2551     3)               |          finish_task_switch() {
2552     3)   0.313 us    |            _raw_spin_unlock_irq();
2553     3)   3.177 us    |          }
2554     3) # 1889.063 us |        } /* __schedule */
2555     3) ! 140.417 us  |      } /* __schedule */
2556     3) # 2034.948 us |    } /* schedule */
2557     3) * 33998.59 us |  } /* schedule_preempt_disabled */
2558
2559     [...]
2560
2561     1)   0.260 us    |              msecs_to_jiffies();
2562     1)   0.313 us    |              __rcu_read_unlock();
2563     1) + 61.770 us   |            }
2564     1) + 64.479 us   |          }
2565     1)   0.313 us    |          rcu_bh_qs();
2566     1)   0.313 us    |          __local_bh_enable();
2567     1) ! 217.240 us  |        }
2568     1)   0.365 us    |        idle_cpu();
2569     1)               |        rcu_irq_exit() {
2570     1)   0.417 us    |          rcu_eqs_enter_common.isra.47();
2571     1)   3.125 us    |        }
2572     1) ! 227.812 us  |      }
2573     1) ! 457.395 us  |    }
2574     1) @ 119760.2 us |  }
2575
2576     [...]
2577
2578     2)               |    handle_IPI() {
2579     1)   6.979 us    |                  }
2580     2)   0.417 us    |      scheduler_ipi();
2581     1)   9.791 us    |                }
2582     1) + 12.917 us   |              }
2583     2)   3.490 us    |    }
2584     1) + 15.729 us   |            }
2585     1) + 18.542 us   |          }
2586     2) $ 3594274 us  |  }
2587
2588 Flags::
2589
2590   + means that the function exceeded 10 usecs.
2591   ! means that the function exceeded 100 usecs.
2592   # means that the function exceeded 1000 usecs.
2593   * means that the function exceeded 10 msecs.
2594   @ means that the function exceeded 100 msecs.
2595   $ means that the function exceeded 1 sec.
2596
2597
2598 - The task/pid field displays the thread cmdline and pid which
2599   executed the function. It is default disabled.
2600
2601         - hide: echo nofuncgraph-proc > trace_options
2602         - show: echo funcgraph-proc > trace_options
2603
2604   ie::
2605
2606     # tracer: function_graph
2607     #
2608     # CPU  TASK/PID        DURATION                  FUNCTION CALLS
2609     # |    |    |           |   |                     |   |   |   |
2610     0)    sh-4802     |               |                  d_free() {
2611     0)    sh-4802     |               |                    call_rcu() {
2612     0)    sh-4802     |               |                      __call_rcu() {
2613     0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
2614     0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
2615     0)    sh-4802     |   2.899 us    |                      }
2616     0)    sh-4802     |   4.040 us    |                    }
2617     0)    sh-4802     |   5.151 us    |                  }
2618     0)    sh-4802     | + 49.370 us   |                }
2619
2620
2621 - The absolute time field is an absolute timestamp given by the
2622   system clock since it started. A snapshot of this time is
2623   given on each entry/exit of functions
2624
2625         - hide: echo nofuncgraph-abstime > trace_options
2626         - show: echo funcgraph-abstime > trace_options
2627
2628   ie::
2629
2630     #
2631     #      TIME       CPU  DURATION                  FUNCTION CALLS
2632     #       |         |     |   |                     |   |   |   |
2633     360.774522 |   1)   0.541 us    |                                          }
2634     360.774522 |   1)   4.663 us    |                                        }
2635     360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
2636     360.774524 |   1)   6.796 us    |                                      }
2637     360.774524 |   1)   7.952 us    |                                    }
2638     360.774525 |   1)   9.063 us    |                                  }
2639     360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
2640     360.774527 |   1)   0.578 us    |                                  __brelse();
2641     360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
2642     360.774528 |   1)               |                                    unlock_buffer() {
2643     360.774529 |   1)               |                                      wake_up_bit() {
2644     360.774529 |   1)               |                                        bit_waitqueue() {
2645     360.774530 |   1)   0.594 us    |                                          __phys_addr();
2646
2647
2648 The function name is always displayed after the closing bracket
2649 for a function if the start of that function is not in the
2650 trace buffer.
2651
2652 Display of the function name after the closing bracket may be
2653 enabled for functions whose start is in the trace buffer,
2654 allowing easier searching with grep for function durations.
2655 It is default disabled.
2656
2657         - hide: echo nofuncgraph-tail > trace_options
2658         - show: echo funcgraph-tail > trace_options
2659
2660   Example with nofuncgraph-tail (default)::
2661
2662     0)               |      putname() {
2663     0)               |        kmem_cache_free() {
2664     0)   0.518 us    |          __phys_addr();
2665     0)   1.757 us    |        }
2666     0)   2.861 us    |      }
2667
2668   Example with funcgraph-tail::
2669
2670     0)               |      putname() {
2671     0)               |        kmem_cache_free() {
2672     0)   0.518 us    |          __phys_addr();
2673     0)   1.757 us    |        } /* kmem_cache_free() */
2674     0)   2.861 us    |      } /* putname() */
2675
2676 You can put some comments on specific functions by using
2677 trace_printk() For example, if you want to put a comment inside
2678 the __might_sleep() function, you just have to include
2679 <linux/ftrace.h> and call trace_printk() inside __might_sleep()::
2680
2681         trace_printk("I'm a comment!\n")
2682
2683 will produce::
2684
2685    1)               |             __might_sleep() {
2686    1)               |                /* I'm a comment! */
2687    1)   1.449 us    |             }
2688
2689
2690 You might find other useful features for this tracer in the
2691 following "dynamic ftrace" section such as tracing only specific
2692 functions or tasks.
2693
2694 dynamic ftrace
2695 --------------
2696
2697 If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2698 virtually no overhead when function tracing is disabled. The way
2699 this works is the mcount function call (placed at the start of
2700 every kernel function, produced by the -pg switch in gcc),
2701 starts of pointing to a simple return. (Enabling FTRACE will
2702 include the -pg switch in the compiling of the kernel.)
2703
2704 At compile time every C file object is run through the
2705 recordmcount program (located in the scripts directory). This
2706 program will parse the ELF headers in the C object to find all
2707 the locations in the .text section that call mcount. Starting
2708 with gcc version 4.6, the -mfentry has been added for x86, which
2709 calls "__fentry__" instead of "mcount". Which is called before
2710 the creation of the stack frame.
2711
2712 Note, not all sections are traced. They may be prevented by either
2713 a notrace, or blocked another way and all inline functions are not
2714 traced. Check the "available_filter_functions" file to see what functions
2715 can be traced.
2716
2717 A section called "__mcount_loc" is created that holds
2718 references to all the mcount/fentry call sites in the .text section.
2719 The recordmcount program re-links this section back into the
2720 original object. The final linking stage of the kernel will add all these
2721 references into a single table.
2722
2723 On boot up, before SMP is initialized, the dynamic ftrace code
2724 scans this table and updates all the locations into nops. It
2725 also records the locations, which are added to the
2726 available_filter_functions list.  Modules are processed as they
2727 are loaded and before they are executed.  When a module is
2728 unloaded, it also removes its functions from the ftrace function
2729 list. This is automatic in the module unload code, and the
2730 module author does not need to worry about it.
2731
2732 When tracing is enabled, the process of modifying the function
2733 tracepoints is dependent on architecture. The old method is to use
2734 kstop_machine to prevent races with the CPUs executing code being
2735 modified (which can cause the CPU to do undesirable things, especially
2736 if the modified code crosses cache (or page) boundaries), and the nops are
2737 patched back to calls. But this time, they do not call mcount
2738 (which is just a function stub). They now call into the ftrace
2739 infrastructure.
2740
2741 The new method of modifying the function tracepoints is to place
2742 a breakpoint at the location to be modified, sync all CPUs, modify
2743 the rest of the instruction not covered by the breakpoint. Sync
2744 all CPUs again, and then remove the breakpoint with the finished
2745 version to the ftrace call site.
2746
2747 Some archs do not even need to monkey around with the synchronization,
2748 and can just slap the new code on top of the old without any
2749 problems with other CPUs executing it at the same time.
2750
2751 One special side-effect to the recording of the functions being
2752 traced is that we can now selectively choose which functions we
2753 wish to trace and which ones we want the mcount calls to remain
2754 as nops.
2755
2756 Two files are used, one for enabling and one for disabling the
2757 tracing of specified functions. They are:
2758
2759   set_ftrace_filter
2760
2761 and
2762
2763   set_ftrace_notrace
2764
2765 A list of available functions that you can add to these files is
2766 listed in:
2767
2768    available_filter_functions
2769
2770 ::
2771
2772   # cat available_filter_functions
2773   put_prev_task_idle
2774   kmem_cache_create
2775   pick_next_task_rt
2776   cpus_read_lock
2777   pick_next_task_fair
2778   mutex_lock
2779   [...]
2780
2781 If I am only interested in sys_nanosleep and hrtimer_interrupt::
2782
2783   # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2784   # echo function > current_tracer
2785   # echo 1 > tracing_on
2786   # usleep 1
2787   # echo 0 > tracing_on
2788   # cat trace
2789   # tracer: function
2790   #
2791   # entries-in-buffer/entries-written: 5/5   #P:4
2792   #
2793   #                              _-----=> irqs-off
2794   #                             / _----=> need-resched
2795   #                            | / _---=> hardirq/softirq
2796   #                            || / _--=> preempt-depth
2797   #                            ||| /     delay
2798   #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2799   #              | |       |   ||||       |         |
2800             usleep-2665  [001] ....  4186.475355: sys_nanosleep <-system_call_fastpath
2801             <idle>-0     [001] d.h1  4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2802             usleep-2665  [001] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2803             <idle>-0     [003] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2804             <idle>-0     [002] d.h1  4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2805
2806 To see which functions are being traced, you can cat the file:
2807 ::
2808
2809   # cat set_ftrace_filter
2810   hrtimer_interrupt
2811   sys_nanosleep
2812
2813
2814 Perhaps this is not enough. The filters also allow glob(7) matching.
2815
2816   ``<match>*``
2817         will match functions that begin with <match>
2818   ``*<match>``
2819         will match functions that end with <match>
2820   ``*<match>*``
2821         will match functions that have <match> in it
2822   ``<match1>*<match2>``
2823         will match functions that begin with <match1> and end with <match2>
2824
2825 .. note::
2826       It is better to use quotes to enclose the wild cards,
2827       otherwise the shell may expand the parameters into names
2828       of files in the local directory.
2829
2830 ::
2831
2832   # echo 'hrtimer_*' > set_ftrace_filter
2833
2834 Produces::
2835
2836   # tracer: function
2837   #
2838   # entries-in-buffer/entries-written: 897/897   #P:4
2839   #
2840   #                              _-----=> irqs-off
2841   #                             / _----=> need-resched
2842   #                            | / _---=> hardirq/softirq
2843   #                            || / _--=> preempt-depth
2844   #                            ||| /     delay
2845   #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2846   #              | |       |   ||||       |         |
2847             <idle>-0     [003] dN.1  4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2848             <idle>-0     [003] dN.1  4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2849             <idle>-0     [003] dN.2  4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2850             <idle>-0     [003] dN.1  4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2851             <idle>-0     [003] dN.1  4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2852             <idle>-0     [003] d..1  4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2853             <idle>-0     [003] d..1  4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2854             <idle>-0     [003] d..2  4228.547860: hrtimer_force_reprogram <-__rem
2855
2856 Notice that we lost the sys_nanosleep.
2857 ::
2858
2859   # cat set_ftrace_filter
2860   hrtimer_run_queues
2861   hrtimer_run_pending
2862   hrtimer_init
2863   hrtimer_cancel
2864   hrtimer_try_to_cancel
2865   hrtimer_forward
2866   hrtimer_start
2867   hrtimer_reprogram
2868   hrtimer_force_reprogram
2869   hrtimer_get_next_event
2870   hrtimer_interrupt
2871   hrtimer_nanosleep
2872   hrtimer_wakeup
2873   hrtimer_get_remaining
2874   hrtimer_get_res
2875   hrtimer_init_sleeper
2876
2877
2878 This is because the '>' and '>>' act just like they do in bash.
2879 To rewrite the filters, use '>'
2880 To append to the filters, use '>>'
2881
2882 To clear out a filter so that all functions will be recorded
2883 again::
2884
2885  # echo > set_ftrace_filter
2886  # cat set_ftrace_filter
2887  #
2888
2889 Again, now we want to append.
2890
2891 ::
2892
2893   # echo sys_nanosleep > set_ftrace_filter
2894   # cat set_ftrace_filter
2895   sys_nanosleep
2896   # echo 'hrtimer_*' >> set_ftrace_filter
2897   # cat set_ftrace_filter
2898   hrtimer_run_queues
2899   hrtimer_run_pending
2900   hrtimer_init
2901   hrtimer_cancel
2902   hrtimer_try_to_cancel
2903   hrtimer_forward
2904   hrtimer_start
2905   hrtimer_reprogram
2906   hrtimer_force_reprogram
2907   hrtimer_get_next_event
2908   hrtimer_interrupt
2909   sys_nanosleep
2910   hrtimer_nanosleep
2911   hrtimer_wakeup
2912   hrtimer_get_remaining
2913   hrtimer_get_res
2914   hrtimer_init_sleeper
2915
2916
2917 The set_ftrace_notrace prevents those functions from being
2918 traced.
2919 ::
2920
2921   # echo '*preempt*' '*lock*' > set_ftrace_notrace
2922
2923 Produces::
2924
2925   # tracer: function
2926   #
2927   # entries-in-buffer/entries-written: 39608/39608   #P:4
2928   #
2929   #                              _-----=> irqs-off
2930   #                             / _----=> need-resched
2931   #                            | / _---=> hardirq/softirq
2932   #                            || / _--=> preempt-depth
2933   #                            ||| /     delay
2934   #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2935   #              | |       |   ||||       |         |
2936               bash-1994  [000] ....  4342.324896: file_ra_state_init <-do_dentry_open
2937               bash-1994  [000] ....  4342.324897: open_check_o_direct <-do_last
2938               bash-1994  [000] ....  4342.324897: ima_file_check <-do_last
2939               bash-1994  [000] ....  4342.324898: process_measurement <-ima_file_check
2940               bash-1994  [000] ....  4342.324898: ima_get_action <-process_measurement
2941               bash-1994  [000] ....  4342.324898: ima_match_policy <-ima_get_action
2942               bash-1994  [000] ....  4342.324899: do_truncate <-do_last
2943               bash-1994  [000] ....  4342.324899: should_remove_suid <-do_truncate
2944               bash-1994  [000] ....  4342.324899: notify_change <-do_truncate
2945               bash-1994  [000] ....  4342.324900: current_fs_time <-notify_change
2946               bash-1994  [000] ....  4342.324900: current_kernel_time <-current_fs_time
2947               bash-1994  [000] ....  4342.324900: timespec_trunc <-current_fs_time
2948
2949 We can see that there's no more lock or preempt tracing.
2950
2951 Selecting function filters via index
2952 ------------------------------------
2953
2954 Because processing of strings is expensive (the address of the function
2955 needs to be looked up before comparing to the string being passed in),
2956 an index can be used as well to enable functions. This is useful in the
2957 case of setting thousands of specific functions at a time. By passing
2958 in a list of numbers, no string processing will occur. Instead, the function
2959 at the specific location in the internal array (which corresponds to the
2960 functions in the "available_filter_functions" file), is selected.
2961
2962 ::
2963
2964   # echo 1 > set_ftrace_filter
2965
2966 Will select the first function listed in "available_filter_functions"
2967
2968 ::
2969
2970   # head -1 available_filter_functions
2971   trace_initcall_finish_cb
2972
2973   # cat set_ftrace_filter
2974   trace_initcall_finish_cb
2975
2976   # head -50 available_filter_functions | tail -1
2977   x86_pmu_commit_txn
2978
2979   # echo 1 50 > set_ftrace_filter
2980   # cat set_ftrace_filter
2981   trace_initcall_finish_cb
2982   x86_pmu_commit_txn
2983
2984 Dynamic ftrace with the function graph tracer
2985 ---------------------------------------------
2986
2987 Although what has been explained above concerns both the
2988 function tracer and the function-graph-tracer, there are some
2989 special features only available in the function-graph tracer.
2990
2991 If you want to trace only one function and all of its children,
2992 you just have to echo its name into set_graph_function::
2993
2994  echo __do_fault > set_graph_function
2995
2996 will produce the following "expanded" trace of the __do_fault()
2997 function::
2998
2999    0)               |  __do_fault() {
3000    0)               |    filemap_fault() {
3001    0)               |      find_lock_page() {
3002    0)   0.804 us    |        find_get_page();
3003    0)               |        __might_sleep() {
3004    0)   1.329 us    |        }
3005    0)   3.904 us    |      }
3006    0)   4.979 us    |    }
3007    0)   0.653 us    |    _spin_lock();
3008    0)   0.578 us    |    page_add_file_rmap();
3009    0)   0.525 us    |    native_set_pte_at();
3010    0)   0.585 us    |    _spin_unlock();
3011    0)               |    unlock_page() {
3012    0)   0.541 us    |      page_waitqueue();
3013    0)   0.639 us    |      __wake_up_bit();
3014    0)   2.786 us    |    }
3015    0) + 14.237 us   |  }
3016    0)               |  __do_fault() {
3017    0)               |    filemap_fault() {
3018    0)               |      find_lock_page() {
3019    0)   0.698 us    |        find_get_page();
3020    0)               |        __might_sleep() {
3021    0)   1.412 us    |        }
3022    0)   3.950 us    |      }
3023    0)   5.098 us    |    }
3024    0)   0.631 us    |    _spin_lock();
3025    0)   0.571 us    |    page_add_file_rmap();
3026    0)   0.526 us    |    native_set_pte_at();
3027    0)   0.586 us    |    _spin_unlock();
3028    0)               |    unlock_page() {
3029    0)   0.533 us    |      page_waitqueue();
3030    0)   0.638 us    |      __wake_up_bit();
3031    0)   2.793 us    |    }
3032    0) + 14.012 us   |  }
3033
3034 You can also expand several functions at once::
3035
3036  echo sys_open > set_graph_function
3037  echo sys_close >> set_graph_function
3038
3039 Now if you want to go back to trace all functions you can clear
3040 this special filter via::
3041
3042  echo > set_graph_function
3043
3044
3045 ftrace_enabled
3046 --------------
3047
3048 Note, the proc sysctl ftrace_enable is a big on/off switch for the
3049 function tracer. By default it is enabled (when function tracing is
3050 enabled in the kernel). If it is disabled, all function tracing is
3051 disabled. This includes not only the function tracers for ftrace, but
3052 also for any other uses (perf, kprobes, stack tracing, profiling, etc). It
3053 cannot be disabled if there is a callback with FTRACE_OPS_FL_PERMANENT set
3054 registered.
3055
3056 Please disable this with care.
3057
3058 This can be disable (and enabled) with::
3059
3060   sysctl kernel.ftrace_enabled=0
3061   sysctl kernel.ftrace_enabled=1
3062
3063  or
3064
3065   echo 0 > /proc/sys/kernel/ftrace_enabled
3066   echo 1 > /proc/sys/kernel/ftrace_enabled
3067
3068
3069 Filter commands
3070 ---------------
3071
3072 A few commands are supported by the set_ftrace_filter interface.
3073 Trace commands have the following format::
3074
3075   <function>:<command>:<parameter>
3076
3077 The following commands are supported:
3078
3079 - mod:
3080   This command enables function filtering per module. The
3081   parameter defines the module. For example, if only the write*
3082   functions in the ext3 module are desired, run:
3083
3084    echo 'write*:mod:ext3' > set_ftrace_filter
3085
3086   This command interacts with the filter in the same way as
3087   filtering based on function names. Thus, adding more functions
3088   in a different module is accomplished by appending (>>) to the
3089   filter file. Remove specific module functions by prepending
3090   '!'::
3091
3092    echo '!writeback*:mod:ext3' >> set_ftrace_filter
3093
3094   Mod command supports module globbing. Disable tracing for all
3095   functions except a specific module::
3096
3097    echo '!*:mod:!ext3' >> set_ftrace_filter
3098
3099   Disable tracing for all modules, but still trace kernel::
3100
3101    echo '!*:mod:*' >> set_ftrace_filter
3102
3103   Enable filter only for kernel::
3104
3105    echo '*write*:mod:!*' >> set_ftrace_filter
3106
3107   Enable filter for module globbing::
3108
3109    echo '*write*:mod:*snd*' >> set_ftrace_filter
3110
3111 - traceon/traceoff:
3112   These commands turn tracing on and off when the specified
3113   functions are hit. The parameter determines how many times the
3114   tracing system is turned on and off. If unspecified, there is
3115   no limit. For example, to disable tracing when a schedule bug
3116   is hit the first 5 times, run::
3117
3118    echo '__schedule_bug:traceoff:5' > set_ftrace_filter
3119
3120   To always disable tracing when __schedule_bug is hit::
3121
3122    echo '__schedule_bug:traceoff' > set_ftrace_filter
3123
3124   These commands are cumulative whether or not they are appended
3125   to set_ftrace_filter. To remove a command, prepend it by '!'
3126   and drop the parameter::
3127
3128    echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
3129
3130   The above removes the traceoff command for __schedule_bug
3131   that have a counter. To remove commands without counters::
3132
3133    echo '!__schedule_bug:traceoff' > set_ftrace_filter
3134
3135 - snapshot:
3136   Will cause a snapshot to be triggered when the function is hit.
3137   ::
3138
3139    echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
3140
3141   To only snapshot once:
3142   ::
3143
3144    echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
3145
3146   To remove the above commands::
3147
3148    echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
3149    echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
3150
3151 - enable_event/disable_event:
3152   These commands can enable or disable a trace event. Note, because
3153   function tracing callbacks are very sensitive, when these commands
3154   are registered, the trace point is activated, but disabled in
3155   a "soft" mode. That is, the tracepoint will be called, but
3156   just will not be traced. The event tracepoint stays in this mode
3157   as long as there's a command that triggers it.
3158   ::
3159
3160    echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
3161          set_ftrace_filter
3162
3163   The format is::
3164
3165     <function>:enable_event:<system>:<event>[:count]
3166     <function>:disable_event:<system>:<event>[:count]
3167
3168   To remove the events commands::
3169
3170    echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
3171          set_ftrace_filter
3172    echo '!schedule:disable_event:sched:sched_switch' > \
3173          set_ftrace_filter
3174
3175 - dump:
3176   When the function is hit, it will dump the contents of the ftrace
3177   ring buffer to the console. This is useful if you need to debug
3178   something, and want to dump the trace when a certain function
3179   is hit. Perhaps it's a function that is called before a triple
3180   fault happens and does not allow you to get a regular dump.
3181
3182 - cpudump:
3183   When the function is hit, it will dump the contents of the ftrace
3184   ring buffer for the current CPU to the console. Unlike the "dump"
3185   command, it only prints out the contents of the ring buffer for the
3186   CPU that executed the function that triggered the dump.
3187
3188 - stacktrace:
3189   When the function is hit, a stack trace is recorded.
3190
3191 trace_pipe
3192 ----------
3193
3194 The trace_pipe outputs the same content as the trace file, but
3195 the effect on the tracing is different. Every read from
3196 trace_pipe is consumed. This means that subsequent reads will be
3197 different. The trace is live.
3198 ::
3199
3200   # echo function > current_tracer
3201   # cat trace_pipe > /tmp/trace.out &
3202   [1] 4153
3203   # echo 1 > tracing_on
3204   # usleep 1
3205   # echo 0 > tracing_on
3206   # cat trace
3207   # tracer: function
3208   #
3209   # entries-in-buffer/entries-written: 0/0   #P:4
3210   #
3211   #                              _-----=> irqs-off
3212   #                             / _----=> need-resched
3213   #                            | / _---=> hardirq/softirq
3214   #                            || / _--=> preempt-depth
3215   #                            ||| /     delay
3216   #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3217   #              | |       |   ||||       |         |
3218
3219   #
3220   # cat /tmp/trace.out
3221              bash-1994  [000] ....  5281.568961: mutex_unlock <-rb_simple_write
3222              bash-1994  [000] ....  5281.568963: __mutex_unlock_slowpath <-mutex_unlock
3223              bash-1994  [000] ....  5281.568963: __fsnotify_parent <-fsnotify_modify
3224              bash-1994  [000] ....  5281.568964: fsnotify <-fsnotify_modify
3225              bash-1994  [000] ....  5281.568964: __srcu_read_lock <-fsnotify
3226              bash-1994  [000] ....  5281.568964: add_preempt_count <-__srcu_read_lock
3227              bash-1994  [000] ...1  5281.568965: sub_preempt_count <-__srcu_read_lock
3228              bash-1994  [000] ....  5281.568965: __srcu_read_unlock <-fsnotify
3229              bash-1994  [000] ....  5281.568967: sys_dup2 <-system_call_fastpath
3230
3231
3232 Note, reading the trace_pipe file will block until more input is
3233 added. This is contrary to the trace file. If any process opened
3234 the trace file for reading, it will actually disable tracing and
3235 prevent new entries from being added. The trace_pipe file does
3236 not have this limitation.
3237
3238 trace entries
3239 -------------
3240
3241 Having too much or not enough data can be troublesome in
3242 diagnosing an issue in the kernel. The file buffer_size_kb is
3243 used to modify the size of the internal trace buffers. The
3244 number listed is the number of entries that can be recorded per
3245 CPU. To know the full size, multiply the number of possible CPUs
3246 with the number of entries.
3247 ::
3248
3249   # cat buffer_size_kb
3250   1408 (units kilobytes)
3251
3252 Or simply read buffer_total_size_kb
3253 ::
3254
3255   # cat buffer_total_size_kb 
3256   5632
3257
3258 To modify the buffer, simple echo in a number (in 1024 byte segments).
3259 ::
3260
3261   # echo 10000 > buffer_size_kb
3262   # cat buffer_size_kb
3263   10000 (units kilobytes)
3264
3265 It will try to allocate as much as possible. If you allocate too
3266 much, it can cause Out-Of-Memory to trigger.
3267 ::
3268
3269   # echo 1000000000000 > buffer_size_kb
3270   -bash: echo: write error: Cannot allocate memory
3271   # cat buffer_size_kb
3272   85
3273
3274 The per_cpu buffers can be changed individually as well:
3275 ::
3276
3277   # echo 10000 > per_cpu/cpu0/buffer_size_kb
3278   # echo 100 > per_cpu/cpu1/buffer_size_kb
3279
3280 When the per_cpu buffers are not the same, the buffer_size_kb
3281 at the top level will just show an X
3282 ::
3283
3284   # cat buffer_size_kb
3285   X
3286
3287 This is where the buffer_total_size_kb is useful:
3288 ::
3289
3290   # cat buffer_total_size_kb 
3291   12916
3292
3293 Writing to the top level buffer_size_kb will reset all the buffers
3294 to be the same again.
3295
3296 Snapshot
3297 --------
3298 CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
3299 available to all non latency tracers. (Latency tracers which
3300 record max latency, such as "irqsoff" or "wakeup", can't use
3301 this feature, since those are already using the snapshot
3302 mechanism internally.)
3303
3304 Snapshot preserves a current trace buffer at a particular point
3305 in time without stopping tracing. Ftrace swaps the current
3306 buffer with a spare buffer, and tracing continues in the new
3307 current (=previous spare) buffer.
3308
3309 The following tracefs files in "tracing" are related to this
3310 feature:
3311
3312   snapshot:
3313
3314         This is used to take a snapshot and to read the output
3315         of the snapshot. Echo 1 into this file to allocate a
3316         spare buffer and to take a snapshot (swap), then read
3317         the snapshot from this file in the same format as
3318         "trace" (described above in the section "The File
3319         System"). Both reads snapshot and tracing are executable
3320         in parallel. When the spare buffer is allocated, echoing
3321         0 frees it, and echoing else (positive) values clear the
3322         snapshot contents.
3323         More details are shown in the table below.
3324
3325         +--------------+------------+------------+------------+
3326         |status\\input |     0      |     1      |    else    |
3327         +==============+============+============+============+
3328         |not allocated |(do nothing)| alloc+swap |(do nothing)|
3329         +--------------+------------+------------+------------+
3330         |allocated     |    free    |    swap    |   clear    |
3331         +--------------+------------+------------+------------+
3332
3333 Here is an example of using the snapshot feature.
3334 ::
3335
3336   # echo 1 > events/sched/enable
3337   # echo 1 > snapshot
3338   # cat snapshot
3339   # tracer: nop
3340   #
3341   # entries-in-buffer/entries-written: 71/71   #P:8
3342   #
3343   #                              _-----=> irqs-off
3344   #                             / _----=> need-resched
3345   #                            | / _---=> hardirq/softirq
3346   #                            || / _--=> preempt-depth
3347   #                            ||| /     delay
3348   #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3349   #              | |       |   ||||       |         |
3350             <idle>-0     [005] d...  2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120   prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
3351              sleep-2242  [005] d...  2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120   prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
3352   [...]
3353           <idle>-0     [002] d...  2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120  
3354
3355   # cat trace  
3356   # tracer: nop
3357   #
3358   # entries-in-buffer/entries-written: 77/77   #P:8
3359   #
3360   #                              _-----=> irqs-off
3361   #                             / _----=> need-resched
3362   #                            | / _---=> hardirq/softirq
3363   #                            || / _--=> preempt-depth
3364   #                            ||| /     delay
3365   #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3366   #              | |       |   ||||       |         |
3367             <idle>-0     [007] d...  2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
3368    snapshot-test-2-2229  [002] d...  2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
3369   [...]
3370
3371
3372 If you try to use this snapshot feature when current tracer is
3373 one of the latency tracers, you will get the following results.
3374 ::
3375
3376   # echo wakeup > current_tracer
3377   # echo 1 > snapshot
3378   bash: echo: write error: Device or resource busy
3379   # cat snapshot
3380   cat: snapshot: Device or resource busy
3381
3382
3383 Instances
3384 ---------
3385 In the tracefs tracing directory, there is a directory called "instances".
3386 This directory can have new directories created inside of it using
3387 mkdir, and removing directories with rmdir. The directory created
3388 with mkdir in this directory will already contain files and other
3389 directories after it is created.
3390 ::
3391
3392   # mkdir instances/foo
3393   # ls instances/foo
3394   buffer_size_kb  buffer_total_size_kb  events  free_buffer  per_cpu
3395   set_event  snapshot  trace  trace_clock  trace_marker  trace_options
3396   trace_pipe  tracing_on
3397
3398 As you can see, the new directory looks similar to the tracing directory
3399 itself. In fact, it is very similar, except that the buffer and
3400 events are agnostic from the main directory, or from any other
3401 instances that are created.
3402
3403 The files in the new directory work just like the files with the
3404 same name in the tracing directory except the buffer that is used
3405 is a separate and new buffer. The files affect that buffer but do not
3406 affect the main buffer with the exception of trace_options. Currently,
3407 the trace_options affect all instances and the top level buffer
3408 the same, but this may change in future releases. That is, options
3409 may become specific to the instance they reside in.
3410
3411 Notice that none of the function tracer files are there, nor is
3412 current_tracer and available_tracers. This is because the buffers
3413 can currently only have events enabled for them.
3414 ::
3415
3416   # mkdir instances/foo
3417   # mkdir instances/bar
3418   # mkdir instances/zoot
3419   # echo 100000 > buffer_size_kb
3420   # echo 1000 > instances/foo/buffer_size_kb
3421   # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
3422   # echo function > current_trace
3423   # echo 1 > instances/foo/events/sched/sched_wakeup/enable
3424   # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
3425   # echo 1 > instances/foo/events/sched/sched_switch/enable
3426   # echo 1 > instances/bar/events/irq/enable
3427   # echo 1 > instances/zoot/events/syscalls/enable
3428   # cat trace_pipe
3429   CPU:2 [LOST 11745 EVENTS]
3430               bash-2044  [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
3431               bash-2044  [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
3432               bash-2044  [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
3433               bash-2044  [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
3434               bash-2044  [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
3435               bash-2044  [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
3436               bash-2044  [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
3437               bash-2044  [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
3438               bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3439               bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3440               bash-2044  [002] .... 10594.481035: arch_dup_task_struct <-copy_process
3441   [...]
3442
3443   # cat instances/foo/trace_pipe
3444               bash-1998  [000] d..4   136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3445               bash-1998  [000] dN.4   136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3446             <idle>-0     [003] d.h3   136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
3447             <idle>-0     [003] d..3   136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
3448        rcu_preempt-9     [003] d..3   136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
3449               bash-1998  [000] d..4   136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3450               bash-1998  [000] dN.4   136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3451               bash-1998  [000] d..3   136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
3452        kworker/0:1-59    [000] d..4   136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
3453        kworker/0:1-59    [000] d..3   136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
3454   [...]
3455
3456   # cat instances/bar/trace_pipe
3457        migration/1-14    [001] d.h3   138.732674: softirq_raise: vec=3 [action=NET_RX]
3458             <idle>-0     [001] dNh3   138.732725: softirq_raise: vec=3 [action=NET_RX]
3459               bash-1998  [000] d.h1   138.733101: softirq_raise: vec=1 [action=TIMER]
3460               bash-1998  [000] d.h1   138.733102: softirq_raise: vec=9 [action=RCU]
3461               bash-1998  [000] ..s2   138.733105: softirq_entry: vec=1 [action=TIMER]
3462               bash-1998  [000] ..s2   138.733106: softirq_exit: vec=1 [action=TIMER]
3463               bash-1998  [000] ..s2   138.733106: softirq_entry: vec=9 [action=RCU]
3464               bash-1998  [000] ..s2   138.733109: softirq_exit: vec=9 [action=RCU]
3465               sshd-1995  [001] d.h1   138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
3466               sshd-1995  [001] d.h1   138.733280: irq_handler_exit: irq=21 ret=unhandled
3467               sshd-1995  [001] d.h1   138.733281: irq_handler_entry: irq=21 name=eth0
3468               sshd-1995  [001] d.h1   138.733283: irq_handler_exit: irq=21 ret=handled
3469   [...]
3470
3471   # cat instances/zoot/trace
3472   # tracer: nop
3473   #
3474   # entries-in-buffer/entries-written: 18996/18996   #P:4
3475   #
3476   #                              _-----=> irqs-off
3477   #                             / _----=> need-resched
3478   #                            | / _---=> hardirq/softirq
3479   #                            || / _--=> preempt-depth
3480   #                            ||| /     delay
3481   #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3482   #              | |       |   ||||       |         |
3483               bash-1998  [000] d...   140.733501: sys_write -> 0x2
3484               bash-1998  [000] d...   140.733504: sys_dup2(oldfd: a, newfd: 1)
3485               bash-1998  [000] d...   140.733506: sys_dup2 -> 0x1
3486               bash-1998  [000] d...   140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
3487               bash-1998  [000] d...   140.733509: sys_fcntl -> 0x1
3488               bash-1998  [000] d...   140.733510: sys_close(fd: a)
3489               bash-1998  [000] d...   140.733510: sys_close -> 0x0
3490               bash-1998  [000] d...   140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
3491               bash-1998  [000] d...   140.733515: sys_rt_sigprocmask -> 0x0
3492               bash-1998  [000] d...   140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
3493               bash-1998  [000] d...   140.733516: sys_rt_sigaction -> 0x0
3494
3495 You can see that the trace of the top most trace buffer shows only
3496 the function tracing. The foo instance displays wakeups and task
3497 switches.
3498
3499 To remove the instances, simply delete their directories:
3500 ::
3501
3502   # rmdir instances/foo
3503   # rmdir instances/bar
3504   # rmdir instances/zoot
3505
3506 Note, if a process has a trace file open in one of the instance
3507 directories, the rmdir will fail with EBUSY.
3508
3509
3510 Stack trace
3511 -----------
3512 Since the kernel has a fixed sized stack, it is important not to
3513 waste it in functions. A kernel developer must be conscience of
3514 what they allocate on the stack. If they add too much, the system
3515 can be in danger of a stack overflow, and corruption will occur,
3516 usually leading to a system panic.
3517
3518 There are some tools that check this, usually with interrupts
3519 periodically checking usage. But if you can perform a check
3520 at every function call that will become very useful. As ftrace provides
3521 a function tracer, it makes it convenient to check the stack size
3522 at every function call. This is enabled via the stack tracer.
3523
3524 CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
3525 To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
3526 ::
3527
3528  # echo 1 > /proc/sys/kernel/stack_tracer_enabled
3529
3530 You can also enable it from the kernel command line to trace
3531 the stack size of the kernel during boot up, by adding "stacktrace"
3532 to the kernel command line parameter.
3533
3534 After running it for a few minutes, the output looks like:
3535 ::
3536
3537   # cat stack_max_size
3538   2928
3539
3540   # cat stack_trace
3541           Depth    Size   Location    (18 entries)
3542           -----    ----   --------
3543     0)     2928     224   update_sd_lb_stats+0xbc/0x4ac
3544     1)     2704     160   find_busiest_group+0x31/0x1f1
3545     2)     2544     256   load_balance+0xd9/0x662
3546     3)     2288      80   idle_balance+0xbb/0x130
3547     4)     2208     128   __schedule+0x26e/0x5b9
3548     5)     2080      16   schedule+0x64/0x66
3549     6)     2064     128   schedule_timeout+0x34/0xe0
3550     7)     1936     112   wait_for_common+0x97/0xf1
3551     8)     1824      16   wait_for_completion+0x1d/0x1f
3552     9)     1808     128   flush_work+0xfe/0x119
3553    10)     1680      16   tty_flush_to_ldisc+0x1e/0x20
3554    11)     1664      48   input_available_p+0x1d/0x5c
3555    12)     1616      48   n_tty_poll+0x6d/0x134
3556    13)     1568      64   tty_poll+0x64/0x7f
3557    14)     1504     880   do_select+0x31e/0x511
3558    15)      624     400   core_sys_select+0x177/0x216
3559    16)      224      96   sys_select+0x91/0xb9
3560    17)      128     128   system_call_fastpath+0x16/0x1b
3561
3562 Note, if -mfentry is being used by gcc, functions get traced before
3563 they set up the stack frame. This means that leaf level functions
3564 are not tested by the stack tracer when -mfentry is used.
3565
3566 Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
3567
3568 More
3569 ----
3570 More details can be found in the source code, in the `kernel/trace/*.c` files.