mn10300: Remove the architecture
[sfrench/cifs-2.6.git] / arch / mn10300 / include / asm / pgtable.h
diff --git a/arch/mn10300/include/asm/pgtable.h b/arch/mn10300/include/asm/pgtable.h
deleted file mode 100644 (file)
index 96d3f9d..0000000
+++ /dev/null
@@ -1,494 +0,0 @@
-/* MN10300 Page table manipulators and constants
- *
- * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
- * Written by David Howells (dhowells@redhat.com)
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public Licence
- * as published by the Free Software Foundation; either version
- * 2 of the Licence, or (at your option) any later version.
- *
- *
- * The Linux memory management assumes a three-level page table setup. On
- * the i386, we use that, but "fold" the mid level into the top-level page
- * table, so that we physically have the same two-level page table as the
- * i386 mmu expects.
- *
- * This file contains the functions and defines necessary to modify and use
- * the i386 page table tree for the purposes of the MN10300 TLB handler
- * functions.
- */
-#ifndef _ASM_PGTABLE_H
-#define _ASM_PGTABLE_H
-
-#include <asm/cpu-regs.h>
-
-#ifndef __ASSEMBLY__
-#include <asm/processor.h>
-#include <asm/cache.h>
-#include <linux/threads.h>
-
-#include <asm/bitops.h>
-
-#include <linux/slab.h>
-#include <linux/list.h>
-#include <linux/spinlock.h>
-
-/*
- * ZERO_PAGE is a global shared page that is always zero: used
- * for zero-mapped memory areas etc..
- */
-#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
-extern unsigned long empty_zero_page[1024];
-extern spinlock_t pgd_lock;
-extern struct page *pgd_list;
-
-extern void pmd_ctor(void *, struct kmem_cache *, unsigned long);
-extern void pgtable_cache_init(void);
-extern void paging_init(void);
-
-#endif /* !__ASSEMBLY__ */
-
-/*
- * The Linux mn10300 paging architecture only implements both the traditional
- * 2-level page tables
- */
-#define PGDIR_SHIFT    22
-#define PTRS_PER_PGD   1024
-#define PTRS_PER_PUD   1       /* we don't really have any PUD physically */
-#define __PAGETABLE_PUD_FOLDED
-#define PTRS_PER_PMD   1       /* we don't really have any PMD physically */
-#define __PAGETABLE_PMD_FOLDED
-#define PTRS_PER_PTE   1024
-
-#define PGD_SIZE       PAGE_SIZE
-#define PMD_SIZE       (1UL << PMD_SHIFT)
-#define PGDIR_SIZE     (1UL << PGDIR_SHIFT)
-#define PGDIR_MASK     (~(PGDIR_SIZE - 1))
-
-#define USER_PTRS_PER_PGD      (TASK_SIZE / PGDIR_SIZE)
-#define FIRST_USER_ADDRESS     0UL
-
-#define USER_PGD_PTRS          (PAGE_OFFSET >> PGDIR_SHIFT)
-#define KERNEL_PGD_PTRS                (PTRS_PER_PGD - USER_PGD_PTRS)
-
-#define TWOLEVEL_PGDIR_SHIFT   22
-#define BOOT_USER_PGD_PTRS     (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
-#define BOOT_KERNEL_PGD_PTRS   (1024 - BOOT_USER_PGD_PTRS)
-
-#ifndef __ASSEMBLY__
-extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
-#endif
-
-/*
- * Unfortunately, due to the way the MMU works on the MN10300, the vmalloc VM
- * area has to be in the lower half of the virtual address range (the upper
- * half is not translated through the TLB).
- *
- * So in this case, the vmalloc area goes at the bottom of the address map
- * (leaving a hole at the very bottom to catch addressing errors), and
- * userspace starts immediately above.
- *
- * The vmalloc() routines also leaves a hole of 4kB between each vmalloced
- * area to catch addressing errors.
- */
-#ifndef __ASSEMBLY__
-#define VMALLOC_OFFSET (8UL * 1024 * 1024)
-#define VMALLOC_START  (0x70000000UL)
-#define VMALLOC_END    (0x7C000000UL)
-#else
-#define VMALLOC_OFFSET (8 * 1024 * 1024)
-#define VMALLOC_START  (0x70000000)
-#define VMALLOC_END    (0x7C000000)
-#endif
-
-#ifndef __ASSEMBLY__
-extern pte_t kernel_vmalloc_ptes[(VMALLOC_END - VMALLOC_START) / PAGE_SIZE];
-#endif
-
-/* IPTEL2/DPTEL2 bit assignments */
-#define _PAGE_BIT_VALID                xPTEL2_V_BIT
-#define _PAGE_BIT_CACHE                xPTEL2_C_BIT
-#define _PAGE_BIT_PRESENT      xPTEL2_PV_BIT
-#define _PAGE_BIT_DIRTY                xPTEL2_D_BIT
-#define _PAGE_BIT_GLOBAL       xPTEL2_G_BIT
-#define _PAGE_BIT_ACCESSED     xPTEL2_UNUSED1_BIT      /* mustn't be loaded into IPTEL2/DPTEL2 */
-
-#define _PAGE_VALID            xPTEL2_V
-#define _PAGE_CACHE            xPTEL2_C
-#define _PAGE_PRESENT          xPTEL2_PV
-#define _PAGE_DIRTY            xPTEL2_D
-#define _PAGE_PROT             xPTEL2_PR
-#define _PAGE_PROT_RKNU                xPTEL2_PR_ROK
-#define _PAGE_PROT_WKNU                xPTEL2_PR_RWK
-#define _PAGE_PROT_RKRU                xPTEL2_PR_ROK_ROU
-#define _PAGE_PROT_WKRU                xPTEL2_PR_RWK_ROU
-#define _PAGE_PROT_WKWU                xPTEL2_PR_RWK_RWU
-#define _PAGE_GLOBAL           xPTEL2_G
-#define _PAGE_PS_MASK          xPTEL2_PS
-#define _PAGE_PS_4Kb           xPTEL2_PS_4Kb
-#define _PAGE_PS_128Kb         xPTEL2_PS_128Kb
-#define _PAGE_PS_1Kb           xPTEL2_PS_1Kb
-#define _PAGE_PS_4Mb           xPTEL2_PS_4Mb
-#define _PAGE_PSE              xPTEL2_PS_4Mb           /* 4MB page */
-#define _PAGE_CACHE_WT         xPTEL2_CWT
-#define _PAGE_ACCESSED         xPTEL2_UNUSED1
-#define _PAGE_NX               0                       /* no-execute bit */
-
-/* If _PAGE_VALID is clear, we use these: */
-#define _PAGE_PROTNONE         0x000           /* If not present */
-
-#define __PAGE_PROT_UWAUX      0x010
-#define __PAGE_PROT_USER       0x020
-#define __PAGE_PROT_WRITE      0x040
-
-#define _PAGE_PRESENTV         (_PAGE_PRESENT|_PAGE_VALID)
-
-#ifndef __ASSEMBLY__
-
-#define VMALLOC_VMADDR(x) ((unsigned long)(x))
-
-#define _PAGE_TABLE    (_PAGE_PRESENTV | _PAGE_PROT_WKNU | _PAGE_ACCESSED | _PAGE_DIRTY)
-#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
-
-#define __PAGE_NONE    (_PAGE_PRESENTV | _PAGE_PROT_RKNU | _PAGE_ACCESSED | _PAGE_CACHE)
-#define __PAGE_SHARED  (_PAGE_PRESENTV | _PAGE_PROT_WKWU | _PAGE_ACCESSED | _PAGE_CACHE)
-#define __PAGE_COPY    (_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE)
-#define __PAGE_READONLY        (_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE)
-
-#define PAGE_NONE              __pgprot(__PAGE_NONE     | _PAGE_NX)
-#define PAGE_SHARED_NOEXEC     __pgprot(__PAGE_SHARED   | _PAGE_NX)
-#define PAGE_COPY_NOEXEC       __pgprot(__PAGE_COPY     | _PAGE_NX)
-#define PAGE_READONLY_NOEXEC   __pgprot(__PAGE_READONLY | _PAGE_NX)
-#define PAGE_SHARED_EXEC       __pgprot(__PAGE_SHARED)
-#define PAGE_COPY_EXEC         __pgprot(__PAGE_COPY)
-#define PAGE_READONLY_EXEC     __pgprot(__PAGE_READONLY)
-#define PAGE_COPY              PAGE_COPY_NOEXEC
-#define PAGE_READONLY          PAGE_READONLY_NOEXEC
-#define PAGE_SHARED            PAGE_SHARED_EXEC
-
-#define __PAGE_KERNEL_BASE (_PAGE_PRESENTV | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_GLOBAL)
-
-#define __PAGE_KERNEL          (__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_CACHE | _PAGE_NX)
-#define __PAGE_KERNEL_NOCACHE  (__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_NX)
-#define __PAGE_KERNEL_EXEC     (__PAGE_KERNEL & ~_PAGE_NX)
-#define __PAGE_KERNEL_RO       (__PAGE_KERNEL_BASE | _PAGE_PROT_RKNU | _PAGE_CACHE | _PAGE_NX)
-#define __PAGE_KERNEL_LARGE    (__PAGE_KERNEL | _PAGE_PSE)
-#define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
-
-#define PAGE_KERNEL            __pgprot(__PAGE_KERNEL)
-#define PAGE_KERNEL_RO         __pgprot(__PAGE_KERNEL_RO)
-#define PAGE_KERNEL_EXEC       __pgprot(__PAGE_KERNEL_EXEC)
-#define PAGE_KERNEL_NOCACHE    __pgprot(__PAGE_KERNEL_NOCACHE)
-#define PAGE_KERNEL_LARGE      __pgprot(__PAGE_KERNEL_LARGE)
-#define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)
-
-#define __PAGE_USERIO          (__PAGE_KERNEL_BASE | _PAGE_PROT_WKWU | _PAGE_NX)
-#define PAGE_USERIO            __pgprot(__PAGE_USERIO)
-
-/*
- * Whilst the MN10300 can do page protection for execute (given separate data
- * and insn TLBs), we are not supporting it at the moment. Write permission,
- * however, always implies read permission (but not execute permission).
- */
-#define __P000 PAGE_NONE
-#define __P001 PAGE_READONLY_NOEXEC
-#define __P010 PAGE_COPY_NOEXEC
-#define __P011 PAGE_COPY_NOEXEC
-#define __P100 PAGE_READONLY_EXEC
-#define __P101 PAGE_READONLY_EXEC
-#define __P110 PAGE_COPY_EXEC
-#define __P111 PAGE_COPY_EXEC
-
-#define __S000 PAGE_NONE
-#define __S001 PAGE_READONLY_NOEXEC
-#define __S010 PAGE_SHARED_NOEXEC
-#define __S011 PAGE_SHARED_NOEXEC
-#define __S100 PAGE_READONLY_EXEC
-#define __S101 PAGE_READONLY_EXEC
-#define __S110 PAGE_SHARED_EXEC
-#define __S111 PAGE_SHARED_EXEC
-
-/*
- * Define this to warn about kernel memory accesses that are
- * done without a 'verify_area(VERIFY_WRITE,..)'
- */
-#undef TEST_VERIFY_AREA
-
-#define pte_present(x) (pte_val(x) & _PAGE_VALID)
-#define pte_clear(mm, addr, xp)                                \
-do {                                                   \
-       set_pte_at((mm), (addr), (xp), __pte(0));       \
-} while (0)
-
-#define pmd_none(x)    (!pmd_val(x))
-#define pmd_present(x) (!pmd_none(x))
-#define pmd_clear(xp)  do { set_pmd(xp, __pmd(0)); } while (0)
-#define        pmd_bad(x)      0
-
-
-#define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT))
-
-#ifndef __ASSEMBLY__
-
-/*
- * The following only work if pte_present() is true.
- * Undefined behaviour if not..
- */
-static inline int pte_user(pte_t pte)  { return pte_val(pte) & __PAGE_PROT_USER; }
-static inline int pte_read(pte_t pte)  { return pte_val(pte) & __PAGE_PROT_USER; }
-static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
-static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
-static inline int pte_write(pte_t pte) { return pte_val(pte) & __PAGE_PROT_WRITE; }
-static inline int pte_special(pte_t pte){ return 0; }
-
-static inline pte_t pte_rdprotect(pte_t pte)
-{
-       pte_val(pte) &= ~(__PAGE_PROT_USER|__PAGE_PROT_UWAUX); return pte;
-}
-static inline pte_t pte_exprotect(pte_t pte)
-{
-       pte_val(pte) |= _PAGE_NX; return pte;
-}
-
-static inline pte_t pte_wrprotect(pte_t pte)
-{
-       pte_val(pte) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX); return pte;
-}
-
-static inline pte_t pte_mkclean(pte_t pte)     { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
-static inline pte_t pte_mkold(pte_t pte)       { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
-static inline pte_t pte_mkdirty(pte_t pte)     { pte_val(pte) |= _PAGE_DIRTY; return pte; }
-static inline pte_t pte_mkyoung(pte_t pte)     { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
-static inline pte_t pte_mkexec(pte_t pte)      { pte_val(pte) &= ~_PAGE_NX; return pte; }
-
-static inline pte_t pte_mkread(pte_t pte)
-{
-       pte_val(pte) |= __PAGE_PROT_USER;
-       if (pte_write(pte))
-               pte_val(pte) |= __PAGE_PROT_UWAUX;
-       return pte;
-}
-static inline pte_t pte_mkwrite(pte_t pte)
-{
-       pte_val(pte) |= __PAGE_PROT_WRITE;
-       if (pte_val(pte) & __PAGE_PROT_USER)
-               pte_val(pte) |= __PAGE_PROT_UWAUX;
-       return pte;
-}
-
-static inline pte_t pte_mkspecial(pte_t pte)   { return pte; }
-
-#define pte_ERROR(e) \
-       printk(KERN_ERR "%s:%d: bad pte %08lx.\n", \
-              __FILE__, __LINE__, pte_val(e))
-#define pgd_ERROR(e) \
-       printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
-              __FILE__, __LINE__, pgd_val(e))
-
-/*
- * The "pgd_xxx()" functions here are trivial for a folded two-level
- * setup: the pgd is never bad, and a pmd always exists (as it's folded
- * into the pgd entry)
- */
-#define pgd_clear(xp)                          do { } while (0)
-
-/*
- * Certain architectures need to do special things when PTEs
- * within a page table are directly modified.  Thus, the following
- * hook is made available.
- */
-#define set_pte(pteptr, pteval)                        (*(pteptr) = pteval)
-#define set_pte_at(mm, addr, ptep, pteval)     set_pte((ptep), (pteval))
-#define set_pte_atomic(pteptr, pteval)         set_pte((pteptr), (pteval))
-
-/*
- * (pmds are folded into pgds so this doesn't get actually called,
- * but the define is needed for a generic inline function.)
- */
-#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
-
-#define ptep_get_and_clear(mm, addr, ptep) \
-       __pte(xchg(&(ptep)->pte, 0))
-#define pte_same(a, b)         (pte_val(a) == pte_val(b))
-#define pte_page(x)            pfn_to_page(pte_pfn(x))
-#define pte_none(x)            (!pte_val(x))
-#define pte_pfn(x)             ((unsigned long) (pte_val(x) >> PAGE_SHIFT))
-#define __pfn_addr(pfn)                ((pfn) << PAGE_SHIFT)
-#define pfn_pte(pfn, prot)     __pte(__pfn_addr(pfn) | pgprot_val(prot))
-#define pfn_pmd(pfn, prot)     __pmd(__pfn_addr(pfn) | pgprot_val(prot))
-
-/*
- * All present user pages are user-executable:
- */
-static inline int pte_exec(pte_t pte)
-{
-       return pte_user(pte);
-}
-
-/*
- * All present pages are kernel-executable:
- */
-static inline int pte_exec_kernel(pte_t pte)
-{
-       return 1;
-}
-
-/* Encode and de-code a swap entry */
-#define __swp_type(x)                  (((x).val >> 1) & 0x3f)
-#define __swp_offset(x)                        ((x).val >> 7)
-#define __swp_entry(type, offset) \
-       ((swp_entry_t) { ((type) << 1) | ((offset) << 7) })
-#define __pte_to_swp_entry(pte)                ((swp_entry_t) { pte_val(pte) })
-#define __swp_entry_to_pte(x)          __pte((x).val)
-
-static inline
-int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr,
-                             pte_t *ptep)
-{
-       if (!pte_dirty(*ptep))
-               return 0;
-       return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte);
-}
-
-static inline
-int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
-                             pte_t *ptep)
-{
-       if (!pte_young(*ptep))
-               return 0;
-       return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte);
-}
-
-static inline
-void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
-{
-       pte_val(*ptep) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX);
-}
-
-static inline void ptep_mkdirty(pte_t *ptep)
-{
-       set_bit(_PAGE_BIT_DIRTY, &ptep->pte);
-}
-
-/*
- * Macro to mark a page protection value as "uncacheable".  On processors which
- * do not support it, this is a no-op.
- */
-#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHE)
-
-/*
- * Macro to mark a page protection value as "Write-Through".
- * On processors which do not support it, this is a no-op.
- */
-#define pgprot_through(prot)   __pgprot(pgprot_val(prot) | _PAGE_CACHE_WT)
-
-/*
- * Conversion functions: convert a page and protection to a page entry,
- * and a page entry and page directory to the page they refer to.
- */
-
-#define mk_pte(page, pgprot)   pfn_pte(page_to_pfn(page), (pgprot))
-#define mk_pte_huge(entry) \
-       ((entry).pte |= _PAGE_PRESENT | _PAGE_PSE | _PAGE_VALID)
-
-static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
-{
-       pte_val(pte) &= _PAGE_CHG_MASK;
-       pte_val(pte) |= pgprot_val(newprot);
-       return pte;
-}
-
-#define page_pte(page) page_pte_prot((page), __pgprot(0))
-
-#define pmd_page_kernel(pmd) \
-       ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
-
-#define pmd_page(pmd)  pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
-
-#define pmd_large(pmd) \
-       ((pmd_val(pmd) & (_PAGE_PSE | _PAGE_PRESENT)) == \
-        (_PAGE_PSE | _PAGE_PRESENT))
-
-/*
- * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
- *
- * this macro returns the index of the entry in the pgd page which would
- * control the given virtual address
- */
-#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
-
-/*
- * pgd_offset() returns a (pgd_t *)
- * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
- */
-#define pgd_offset(mm, address)        ((mm)->pgd + pgd_index(address))
-
-/*
- * a shortcut which implies the use of the kernel's pgd, instead
- * of a process's
- */
-#define pgd_offset_k(address)  pgd_offset(&init_mm, address)
-
-/*
- * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
- *
- * this macro returns the index of the entry in the pmd page which would
- * control the given virtual address
- */
-#define pmd_index(address) \
-       (((address) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
-
-/*
- * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
- *
- * this macro returns the index of the entry in the pte page which would
- * control the given virtual address
- */
-#define pte_index(address) \
-       (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
-
-#define pte_offset_kernel(dir, address) \
-       ((pte_t *) pmd_page_kernel(*(dir)) +  pte_index(address))
-
-/*
- * Make a given kernel text page executable/non-executable.
- * Returns the previous executability setting of that page (which
- * is used to restore the previous state). Used by the SMP bootup code.
- * NOTE: this is an __init function for security reasons.
- */
-static inline int set_kernel_exec(unsigned long vaddr, int enable)
-{
-       return 0;
-}
-
-#define pte_offset_map(dir, address) \
-       ((pte_t *) page_address(pmd_page(*(dir))) + pte_index(address))
-#define pte_unmap(pte)         do {} while (0)
-
-/*
- * The MN10300 has external MMU info in the form of a TLB: this is adapted from
- * the kernel page tables containing the necessary information by tlb-mn10300.S
- */
-extern void update_mmu_cache(struct vm_area_struct *vma,
-                            unsigned long address, pte_t *ptep);
-
-#endif /* !__ASSEMBLY__ */
-
-#define kern_addr_valid(addr)  (1)
-
-#define MK_IOSPACE_PFN(space, pfn)     (pfn)
-#define GET_IOSPACE(pfn)               0
-#define GET_PFN(pfn)                   (pfn)
-
-#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
-#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
-#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
-#define __HAVE_ARCH_PTEP_SET_WRPROTECT
-#define __HAVE_ARCH_PTEP_MKDIRTY
-#define __HAVE_ARCH_PTE_SAME
-#include <asm-generic/pgtable.h>
-
-#endif /* !__ASSEMBLY__ */
-
-#endif /* _ASM_PGTABLE_H */