Move zlib to top-level root.
[ira/wip.git] / lib / zlib / crc32.c
diff --git a/lib/zlib/crc32.c b/lib/zlib/crc32.c
new file mode 100644 (file)
index 0000000..4d6e699
--- /dev/null
@@ -0,0 +1,423 @@
+/* crc32.c -- compute the CRC-32 of a data stream
+ * Copyright (C) 1995-2005 Mark Adler
+ * For conditions of distribution and use, see copyright notice in zlib.h
+ *
+ * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
+ * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
+ * tables for updating the shift register in one step with three exclusive-ors
+ * instead of four steps with four exclusive-ors.  This results in about a
+ * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
+ */
+
+/* @(#) $Id$ */
+
+#include "zutil.h"      /* for STDC and FAR definitions */
+
+/*
+  Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
+  protection on the static variables used to control the first-use generation
+  of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should
+  first call get_crc_table() to initialize the tables before allowing more than
+  one thread to use crc32().
+ */
+
+#ifdef MAKECRCH
+#  include <stdio.h>
+#  ifndef DYNAMIC_CRC_TABLE
+#    define DYNAMIC_CRC_TABLE
+#  endif /* !DYNAMIC_CRC_TABLE */
+#endif /* MAKECRCH */
+
+#define local static
+
+/* Find a four-byte integer type for crc32_little() and crc32_big(). */
+#ifndef NOBYFOUR
+#  ifdef STDC           /* need ANSI C limits.h to determine sizes */
+#    include <limits.h>
+#    define BYFOUR
+#    if (UINT_MAX == 0xffffffffUL)
+       typedef unsigned int u4;
+#    else
+#      if (ULONG_MAX == 0xffffffffUL)
+         typedef unsigned long u4;
+#      else
+#        if (USHRT_MAX == 0xffffffffUL)
+           typedef unsigned short u4;
+#        else
+#          undef BYFOUR     /* can't find a four-byte integer type! */
+#        endif
+#      endif
+#    endif
+#  endif /* STDC */
+#endif /* !NOBYFOUR */
+
+/* Definitions for doing the crc four data bytes at a time. */
+#ifdef BYFOUR
+#  define REV(w) (((w)>>24)+(((w)>>8)&0xff00)+ \
+                (((w)&0xff00)<<8)+(((w)&0xff)<<24))
+   local unsigned long crc32_little OF((unsigned long,
+                        const unsigned char FAR *, unsigned));
+   local unsigned long crc32_big OF((unsigned long,
+                        const unsigned char FAR *, unsigned));
+#  define TBLS 8
+#else
+#  define TBLS 1
+#endif /* BYFOUR */
+
+/* Local functions for crc concatenation */
+local unsigned long gf2_matrix_times OF((unsigned long *mat,
+                                         unsigned long vec));
+local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
+
+#ifdef DYNAMIC_CRC_TABLE
+
+local volatile int crc_table_empty = 1;
+local unsigned long FAR crc_table[TBLS][256];
+local void make_crc_table OF((void));
+#ifdef MAKECRCH
+   local void write_table OF((FILE *, const unsigned long FAR *));
+#endif /* MAKECRCH */
+/*
+  Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
+  x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
+
+  Polynomials over GF(2) are represented in binary, one bit per coefficient,
+  with the lowest powers in the most significant bit.  Then adding polynomials
+  is just exclusive-or, and multiplying a polynomial by x is a right shift by
+  one.  If we call the above polynomial p, and represent a byte as the
+  polynomial q, also with the lowest power in the most significant bit (so the
+  byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
+  where a mod b means the remainder after dividing a by b.
+
+  This calculation is done using the shift-register method of multiplying and
+  taking the remainder.  The register is initialized to zero, and for each
+  incoming bit, x^32 is added mod p to the register if the bit is a one (where
+  x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
+  x (which is shifting right by one and adding x^32 mod p if the bit shifted
+  out is a one).  We start with the highest power (least significant bit) of
+  q and repeat for all eight bits of q.
+
+  The first table is simply the CRC of all possible eight bit values.  This is
+  all the information needed to generate CRCs on data a byte at a time for all
+  combinations of CRC register values and incoming bytes.  The remaining tables
+  allow for word-at-a-time CRC calculation for both big-endian and little-
+  endian machines, where a word is four bytes.
+*/
+local void make_crc_table()
+{
+    unsigned long c;
+    int n, k;
+    unsigned long poly;                 /* polynomial exclusive-or pattern */
+    /* terms of polynomial defining this crc (except x^32): */
+    static volatile int first = 1;      /* flag to limit concurrent making */
+    static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
+
+    /* See if another task is already doing this (not thread-safe, but better
+       than nothing -- significantly reduces duration of vulnerability in
+       case the advice about DYNAMIC_CRC_TABLE is ignored) */
+    if (first) {
+        first = 0;
+
+        /* make exclusive-or pattern from polynomial (0xedb88320UL) */
+        poly = 0UL;
+        for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++)
+            poly |= 1UL << (31 - p[n]);
+
+        /* generate a crc for every 8-bit value */
+        for (n = 0; n < 256; n++) {
+            c = (unsigned long)n;
+            for (k = 0; k < 8; k++)
+                c = c & 1 ? poly ^ (c >> 1) : c >> 1;
+            crc_table[0][n] = c;
+        }
+
+#ifdef BYFOUR
+        /* generate crc for each value followed by one, two, and three zeros,
+           and then the byte reversal of those as well as the first table */
+        for (n = 0; n < 256; n++) {
+            c = crc_table[0][n];
+            crc_table[4][n] = REV(c);
+            for (k = 1; k < 4; k++) {
+                c = crc_table[0][c & 0xff] ^ (c >> 8);
+                crc_table[k][n] = c;
+                crc_table[k + 4][n] = REV(c);
+            }
+        }
+#endif /* BYFOUR */
+
+        crc_table_empty = 0;
+    }
+    else {      /* not first */
+        /* wait for the other guy to finish (not efficient, but rare) */
+        while (crc_table_empty)
+            ;
+    }
+
+#ifdef MAKECRCH
+    /* write out CRC tables to crc32.h */
+    {
+        FILE *out;
+
+        out = fopen("crc32.h", "w");
+        if (out == NULL) return;
+        fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
+        fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
+        fprintf(out, "local const unsigned long FAR ");
+        fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n");
+        write_table(out, crc_table[0]);
+#  ifdef BYFOUR
+        fprintf(out, "#ifdef BYFOUR\n");
+        for (k = 1; k < 8; k++) {
+            fprintf(out, "  },\n  {\n");
+            write_table(out, crc_table[k]);
+        }
+        fprintf(out, "#endif\n");
+#  endif /* BYFOUR */
+        fprintf(out, "  }\n};\n");
+        fclose(out);
+    }
+#endif /* MAKECRCH */
+}
+
+#ifdef MAKECRCH
+local void write_table(out, table)
+    FILE *out;
+    const unsigned long FAR *table;
+{
+    int n;
+
+    for (n = 0; n < 256; n++)
+        fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ", table[n],
+                n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
+}
+#endif /* MAKECRCH */
+
+#else /* !DYNAMIC_CRC_TABLE */
+/* ========================================================================
+ * Tables of CRC-32s of all single-byte values, made by make_crc_table().
+ */
+#include "crc32.h"
+#endif /* DYNAMIC_CRC_TABLE */
+
+/* =========================================================================
+ * This function can be used by asm versions of crc32()
+ */
+const unsigned long FAR * ZEXPORT get_crc_table()
+{
+#ifdef DYNAMIC_CRC_TABLE
+    if (crc_table_empty)
+        make_crc_table();
+#endif /* DYNAMIC_CRC_TABLE */
+    return (const unsigned long FAR *)crc_table;
+}
+
+/* ========================================================================= */
+#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
+#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
+
+/* ========================================================================= */
+unsigned long ZEXPORT crc32(crc, buf, len)
+    unsigned long crc;
+    const unsigned char FAR *buf;
+    unsigned len;
+{
+    if (buf == Z_NULL) return 0UL;
+
+#ifdef DYNAMIC_CRC_TABLE
+    if (crc_table_empty)
+        make_crc_table();
+#endif /* DYNAMIC_CRC_TABLE */
+
+#ifdef BYFOUR
+    if (sizeof(void *) == sizeof(ptrdiff_t)) {
+        u4 endian;
+
+        endian = 1;
+        if (*((unsigned char *)(&endian)))
+            return crc32_little(crc, buf, len);
+        else
+            return crc32_big(crc, buf, len);
+    }
+#endif /* BYFOUR */
+    crc = crc ^ 0xffffffffUL;
+    while (len >= 8) {
+        DO8;
+        len -= 8;
+    }
+    if (len) do {
+        DO1;
+    } while (--len);
+    return crc ^ 0xffffffffUL;
+}
+
+#ifdef BYFOUR
+
+/* ========================================================================= */
+#define DOLIT4 c ^= *buf4++; \
+        c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
+            crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
+#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
+
+/* ========================================================================= */
+local unsigned long crc32_little(crc, buf, len)
+    unsigned long crc;
+    const unsigned char FAR *buf;
+    unsigned len;
+{
+    register u4 c;
+    register const u4 FAR *buf4;
+
+    c = (u4)crc;
+    c = ~c;
+    while (len && ((ptrdiff_t)buf & 3)) {
+        c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
+        len--;
+    }
+
+    buf4 = (const u4 FAR *)(const void FAR *)buf;
+    while (len >= 32) {
+        DOLIT32;
+        len -= 32;
+    }
+    while (len >= 4) {
+        DOLIT4;
+        len -= 4;
+    }
+    buf = (const unsigned char FAR *)buf4;
+
+    if (len) do {
+        c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
+    } while (--len);
+    c = ~c;
+    return (unsigned long)c;
+}
+
+/* ========================================================================= */
+#define DOBIG4 c ^= *++buf4; \
+        c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
+            crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
+#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
+
+/* ========================================================================= */
+local unsigned long crc32_big(crc, buf, len)
+    unsigned long crc;
+    const unsigned char FAR *buf;
+    unsigned len;
+{
+    register u4 c;
+    register const u4 FAR *buf4;
+
+    c = REV((u4)crc);
+    c = ~c;
+    while (len && ((ptrdiff_t)buf & 3)) {
+        c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
+        len--;
+    }
+
+    buf4 = (const u4 FAR *)(const void FAR *)buf;
+    buf4--;
+    while (len >= 32) {
+        DOBIG32;
+        len -= 32;
+    }
+    while (len >= 4) {
+        DOBIG4;
+        len -= 4;
+    }
+    buf4++;
+    buf = (const unsigned char FAR *)buf4;
+
+    if (len) do {
+        c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
+    } while (--len);
+    c = ~c;
+    return (unsigned long)(REV(c));
+}
+
+#endif /* BYFOUR */
+
+#define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */
+
+/* ========================================================================= */
+local unsigned long gf2_matrix_times(mat, vec)
+    unsigned long *mat;
+    unsigned long vec;
+{
+    unsigned long sum;
+
+    sum = 0;
+    while (vec) {
+        if (vec & 1)
+            sum ^= *mat;
+        vec >>= 1;
+        mat++;
+    }
+    return sum;
+}
+
+/* ========================================================================= */
+local void gf2_matrix_square(square, mat)
+    unsigned long *square;
+    unsigned long *mat;
+{
+    int n;
+
+    for (n = 0; n < GF2_DIM; n++)
+        square[n] = gf2_matrix_times(mat, mat[n]);
+}
+
+/* ========================================================================= */
+uLong ZEXPORT crc32_combine(crc1, crc2, len2)
+    uLong crc1;
+    uLong crc2;
+    z_off_t len2;
+{
+    int n;
+    unsigned long row;
+    unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */
+    unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */
+
+    /* degenerate case */
+    if (len2 == 0)
+        return crc1;
+
+    /* put operator for one zero bit in odd */
+    odd[0] = 0xedb88320L;           /* CRC-32 polynomial */
+    row = 1;
+    for (n = 1; n < GF2_DIM; n++) {
+        odd[n] = row;
+        row <<= 1;
+    }
+
+    /* put operator for two zero bits in even */
+    gf2_matrix_square(even, odd);
+
+    /* put operator for four zero bits in odd */
+    gf2_matrix_square(odd, even);
+
+    /* apply len2 zeros to crc1 (first square will put the operator for one
+       zero byte, eight zero bits, in even) */
+    do {
+        /* apply zeros operator for this bit of len2 */
+        gf2_matrix_square(even, odd);
+        if (len2 & 1)
+            crc1 = gf2_matrix_times(even, crc1);
+        len2 >>= 1;
+
+        /* if no more bits set, then done */
+        if (len2 == 0)
+            break;
+
+        /* another iteration of the loop with odd and even swapped */
+        gf2_matrix_square(odd, even);
+        if (len2 & 1)
+            crc1 = gf2_matrix_times(odd, crc1);
+        len2 >>= 1;
+
+        /* if no more bits set, then done */
+    } while (len2 != 0);
+
+    /* return combined crc */
+    crc1 ^= crc2;
+    return crc1;
+}