Merge tag 'staging-5.11-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[sfrench/cifs-2.6.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 #include <linux/kvm_dirty_ring.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* The start value to grow halt_poll_ns from */
85 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
86 module_param(halt_poll_ns_grow_start, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
88
89 /* Default resets per-vcpu halt_poll_ns . */
90 unsigned int halt_poll_ns_shrink;
91 module_param(halt_poll_ns_shrink, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
93
94 /*
95  * Ordering of locks:
96  *
97  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
98  */
99
100 DEFINE_MUTEX(kvm_lock);
101 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
102 LIST_HEAD(vm_list);
103
104 static cpumask_var_t cpus_hardware_enabled;
105 static int kvm_usage_count;
106 static atomic_t hardware_enable_failed;
107
108 static struct kmem_cache *kvm_vcpu_cache;
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static int kvm_debugfs_num_entries;
117 static const struct file_operations stat_fops_per_vm;
118
119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120                            unsigned long arg);
121 #ifdef CONFIG_KVM_COMPAT
122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123                                   unsigned long arg);
124 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
125 #else
126 /*
127  * For architectures that don't implement a compat infrastructure,
128  * adopt a double line of defense:
129  * - Prevent a compat task from opening /dev/kvm
130  * - If the open has been done by a 64bit task, and the KVM fd
131  *   passed to a compat task, let the ioctls fail.
132  */
133 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
134                                 unsigned long arg) { return -EINVAL; }
135
136 static int kvm_no_compat_open(struct inode *inode, struct file *file)
137 {
138         return is_compat_task() ? -ENODEV : 0;
139 }
140 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
141                         .open           = kvm_no_compat_open
142 #endif
143 static int hardware_enable_all(void);
144 static void hardware_disable_all(void);
145
146 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
147
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158                                                    unsigned long start, unsigned long end)
159 {
160 }
161
162 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
163 {
164         /*
165          * The metadata used by is_zone_device_page() to determine whether or
166          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
167          * the device has been pinned, e.g. by get_user_pages().  WARN if the
168          * page_count() is zero to help detect bad usage of this helper.
169          */
170         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
171                 return false;
172
173         return is_zone_device_page(pfn_to_page(pfn));
174 }
175
176 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
177 {
178         /*
179          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
180          * perspective they are "normal" pages, albeit with slightly different
181          * usage rules.
182          */
183         if (pfn_valid(pfn))
184                 return PageReserved(pfn_to_page(pfn)) &&
185                        !is_zero_pfn(pfn) &&
186                        !kvm_is_zone_device_pfn(pfn);
187
188         return true;
189 }
190
191 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
192 {
193         struct page *page = pfn_to_page(pfn);
194
195         if (!PageTransCompoundMap(page))
196                 return false;
197
198         return is_transparent_hugepage(compound_head(page));
199 }
200
201 /*
202  * Switches to specified vcpu, until a matching vcpu_put()
203  */
204 void vcpu_load(struct kvm_vcpu *vcpu)
205 {
206         int cpu = get_cpu();
207
208         __this_cpu_write(kvm_running_vcpu, vcpu);
209         preempt_notifier_register(&vcpu->preempt_notifier);
210         kvm_arch_vcpu_load(vcpu, cpu);
211         put_cpu();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_load);
214
215 void vcpu_put(struct kvm_vcpu *vcpu)
216 {
217         preempt_disable();
218         kvm_arch_vcpu_put(vcpu);
219         preempt_notifier_unregister(&vcpu->preempt_notifier);
220         __this_cpu_write(kvm_running_vcpu, NULL);
221         preempt_enable();
222 }
223 EXPORT_SYMBOL_GPL(vcpu_put);
224
225 /* TODO: merge with kvm_arch_vcpu_should_kick */
226 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
227 {
228         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
229
230         /*
231          * We need to wait for the VCPU to reenable interrupts and get out of
232          * READING_SHADOW_PAGE_TABLES mode.
233          */
234         if (req & KVM_REQUEST_WAIT)
235                 return mode != OUTSIDE_GUEST_MODE;
236
237         /*
238          * Need to kick a running VCPU, but otherwise there is nothing to do.
239          */
240         return mode == IN_GUEST_MODE;
241 }
242
243 static void ack_flush(void *_completed)
244 {
245 }
246
247 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
248 {
249         if (unlikely(!cpus))
250                 cpus = cpu_online_mask;
251
252         if (cpumask_empty(cpus))
253                 return false;
254
255         smp_call_function_many(cpus, ack_flush, NULL, wait);
256         return true;
257 }
258
259 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
260                                  struct kvm_vcpu *except,
261                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
262 {
263         int i, cpu, me;
264         struct kvm_vcpu *vcpu;
265         bool called;
266
267         me = get_cpu();
268
269         kvm_for_each_vcpu(i, vcpu, kvm) {
270                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
271                     vcpu == except)
272                         continue;
273
274                 kvm_make_request(req, vcpu);
275                 cpu = vcpu->cpu;
276
277                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278                         continue;
279
280                 if (tmp != NULL && cpu != -1 && cpu != me &&
281                     kvm_request_needs_ipi(vcpu, req))
282                         __cpumask_set_cpu(cpu, tmp);
283         }
284
285         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
286         put_cpu();
287
288         return called;
289 }
290
291 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
292                                       struct kvm_vcpu *except)
293 {
294         cpumask_var_t cpus;
295         bool called;
296
297         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
298
299         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
300
301         free_cpumask_var(cpus);
302         return called;
303 }
304
305 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
306 {
307         return kvm_make_all_cpus_request_except(kvm, req, NULL);
308 }
309
310 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
311 void kvm_flush_remote_tlbs(struct kvm *kvm)
312 {
313         /*
314          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
315          * kvm_make_all_cpus_request.
316          */
317         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
318
319         /*
320          * We want to publish modifications to the page tables before reading
321          * mode. Pairs with a memory barrier in arch-specific code.
322          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
323          * and smp_mb in walk_shadow_page_lockless_begin/end.
324          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
325          *
326          * There is already an smp_mb__after_atomic() before
327          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
328          * barrier here.
329          */
330         if (!kvm_arch_flush_remote_tlb(kvm)
331             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
332                 ++kvm->stat.remote_tlb_flush;
333         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
334 }
335 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
336 #endif
337
338 void kvm_reload_remote_mmus(struct kvm *kvm)
339 {
340         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
341 }
342
343 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
344 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
345                                                gfp_t gfp_flags)
346 {
347         gfp_flags |= mc->gfp_zero;
348
349         if (mc->kmem_cache)
350                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
351         else
352                 return (void *)__get_free_page(gfp_flags);
353 }
354
355 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
356 {
357         void *obj;
358
359         if (mc->nobjs >= min)
360                 return 0;
361         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
362                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
363                 if (!obj)
364                         return mc->nobjs >= min ? 0 : -ENOMEM;
365                 mc->objects[mc->nobjs++] = obj;
366         }
367         return 0;
368 }
369
370 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
371 {
372         return mc->nobjs;
373 }
374
375 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
376 {
377         while (mc->nobjs) {
378                 if (mc->kmem_cache)
379                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
380                 else
381                         free_page((unsigned long)mc->objects[--mc->nobjs]);
382         }
383 }
384
385 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
386 {
387         void *p;
388
389         if (WARN_ON(!mc->nobjs))
390                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
391         else
392                 p = mc->objects[--mc->nobjs];
393         BUG_ON(!p);
394         return p;
395 }
396 #endif
397
398 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
399 {
400         mutex_init(&vcpu->mutex);
401         vcpu->cpu = -1;
402         vcpu->kvm = kvm;
403         vcpu->vcpu_id = id;
404         vcpu->pid = NULL;
405         rcuwait_init(&vcpu->wait);
406         kvm_async_pf_vcpu_init(vcpu);
407
408         vcpu->pre_pcpu = -1;
409         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
410
411         kvm_vcpu_set_in_spin_loop(vcpu, false);
412         kvm_vcpu_set_dy_eligible(vcpu, false);
413         vcpu->preempted = false;
414         vcpu->ready = false;
415         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
416 }
417
418 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
419 {
420         kvm_dirty_ring_free(&vcpu->dirty_ring);
421         kvm_arch_vcpu_destroy(vcpu);
422
423         /*
424          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
425          * the vcpu->pid pointer, and at destruction time all file descriptors
426          * are already gone.
427          */
428         put_pid(rcu_dereference_protected(vcpu->pid, 1));
429
430         free_page((unsigned long)vcpu->run);
431         kmem_cache_free(kvm_vcpu_cache, vcpu);
432 }
433 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
434
435 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
436 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
437 {
438         return container_of(mn, struct kvm, mmu_notifier);
439 }
440
441 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
442                                               struct mm_struct *mm,
443                                               unsigned long start, unsigned long end)
444 {
445         struct kvm *kvm = mmu_notifier_to_kvm(mn);
446         int idx;
447
448         idx = srcu_read_lock(&kvm->srcu);
449         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
450         srcu_read_unlock(&kvm->srcu, idx);
451 }
452
453 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
454                                         struct mm_struct *mm,
455                                         unsigned long address,
456                                         pte_t pte)
457 {
458         struct kvm *kvm = mmu_notifier_to_kvm(mn);
459         int idx;
460
461         idx = srcu_read_lock(&kvm->srcu);
462         spin_lock(&kvm->mmu_lock);
463         kvm->mmu_notifier_seq++;
464
465         if (kvm_set_spte_hva(kvm, address, pte))
466                 kvm_flush_remote_tlbs(kvm);
467
468         spin_unlock(&kvm->mmu_lock);
469         srcu_read_unlock(&kvm->srcu, idx);
470 }
471
472 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
473                                         const struct mmu_notifier_range *range)
474 {
475         struct kvm *kvm = mmu_notifier_to_kvm(mn);
476         int need_tlb_flush = 0, idx;
477
478         idx = srcu_read_lock(&kvm->srcu);
479         spin_lock(&kvm->mmu_lock);
480         /*
481          * The count increase must become visible at unlock time as no
482          * spte can be established without taking the mmu_lock and
483          * count is also read inside the mmu_lock critical section.
484          */
485         kvm->mmu_notifier_count++;
486         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
487                                              range->flags);
488         /* we've to flush the tlb before the pages can be freed */
489         if (need_tlb_flush || kvm->tlbs_dirty)
490                 kvm_flush_remote_tlbs(kvm);
491
492         spin_unlock(&kvm->mmu_lock);
493         srcu_read_unlock(&kvm->srcu, idx);
494
495         return 0;
496 }
497
498 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
499                                         const struct mmu_notifier_range *range)
500 {
501         struct kvm *kvm = mmu_notifier_to_kvm(mn);
502
503         spin_lock(&kvm->mmu_lock);
504         /*
505          * This sequence increase will notify the kvm page fault that
506          * the page that is going to be mapped in the spte could have
507          * been freed.
508          */
509         kvm->mmu_notifier_seq++;
510         smp_wmb();
511         /*
512          * The above sequence increase must be visible before the
513          * below count decrease, which is ensured by the smp_wmb above
514          * in conjunction with the smp_rmb in mmu_notifier_retry().
515          */
516         kvm->mmu_notifier_count--;
517         spin_unlock(&kvm->mmu_lock);
518
519         BUG_ON(kvm->mmu_notifier_count < 0);
520 }
521
522 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
523                                               struct mm_struct *mm,
524                                               unsigned long start,
525                                               unsigned long end)
526 {
527         struct kvm *kvm = mmu_notifier_to_kvm(mn);
528         int young, idx;
529
530         idx = srcu_read_lock(&kvm->srcu);
531         spin_lock(&kvm->mmu_lock);
532
533         young = kvm_age_hva(kvm, start, end);
534         if (young)
535                 kvm_flush_remote_tlbs(kvm);
536
537         spin_unlock(&kvm->mmu_lock);
538         srcu_read_unlock(&kvm->srcu, idx);
539
540         return young;
541 }
542
543 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
544                                         struct mm_struct *mm,
545                                         unsigned long start,
546                                         unsigned long end)
547 {
548         struct kvm *kvm = mmu_notifier_to_kvm(mn);
549         int young, idx;
550
551         idx = srcu_read_lock(&kvm->srcu);
552         spin_lock(&kvm->mmu_lock);
553         /*
554          * Even though we do not flush TLB, this will still adversely
555          * affect performance on pre-Haswell Intel EPT, where there is
556          * no EPT Access Bit to clear so that we have to tear down EPT
557          * tables instead. If we find this unacceptable, we can always
558          * add a parameter to kvm_age_hva so that it effectively doesn't
559          * do anything on clear_young.
560          *
561          * Also note that currently we never issue secondary TLB flushes
562          * from clear_young, leaving this job up to the regular system
563          * cadence. If we find this inaccurate, we might come up with a
564          * more sophisticated heuristic later.
565          */
566         young = kvm_age_hva(kvm, start, end);
567         spin_unlock(&kvm->mmu_lock);
568         srcu_read_unlock(&kvm->srcu, idx);
569
570         return young;
571 }
572
573 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
574                                        struct mm_struct *mm,
575                                        unsigned long address)
576 {
577         struct kvm *kvm = mmu_notifier_to_kvm(mn);
578         int young, idx;
579
580         idx = srcu_read_lock(&kvm->srcu);
581         spin_lock(&kvm->mmu_lock);
582         young = kvm_test_age_hva(kvm, address);
583         spin_unlock(&kvm->mmu_lock);
584         srcu_read_unlock(&kvm->srcu, idx);
585
586         return young;
587 }
588
589 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
590                                      struct mm_struct *mm)
591 {
592         struct kvm *kvm = mmu_notifier_to_kvm(mn);
593         int idx;
594
595         idx = srcu_read_lock(&kvm->srcu);
596         kvm_arch_flush_shadow_all(kvm);
597         srcu_read_unlock(&kvm->srcu, idx);
598 }
599
600 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
601         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
602         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
603         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
604         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
605         .clear_young            = kvm_mmu_notifier_clear_young,
606         .test_young             = kvm_mmu_notifier_test_young,
607         .change_pte             = kvm_mmu_notifier_change_pte,
608         .release                = kvm_mmu_notifier_release,
609 };
610
611 static int kvm_init_mmu_notifier(struct kvm *kvm)
612 {
613         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
614         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
615 }
616
617 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
618
619 static int kvm_init_mmu_notifier(struct kvm *kvm)
620 {
621         return 0;
622 }
623
624 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
625
626 static struct kvm_memslots *kvm_alloc_memslots(void)
627 {
628         int i;
629         struct kvm_memslots *slots;
630
631         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
632         if (!slots)
633                 return NULL;
634
635         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
636                 slots->id_to_index[i] = -1;
637
638         return slots;
639 }
640
641 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
642 {
643         if (!memslot->dirty_bitmap)
644                 return;
645
646         kvfree(memslot->dirty_bitmap);
647         memslot->dirty_bitmap = NULL;
648 }
649
650 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
651 {
652         kvm_destroy_dirty_bitmap(slot);
653
654         kvm_arch_free_memslot(kvm, slot);
655
656         slot->flags = 0;
657         slot->npages = 0;
658 }
659
660 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
661 {
662         struct kvm_memory_slot *memslot;
663
664         if (!slots)
665                 return;
666
667         kvm_for_each_memslot(memslot, slots)
668                 kvm_free_memslot(kvm, memslot);
669
670         kvfree(slots);
671 }
672
673 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
674 {
675         int i;
676
677         if (!kvm->debugfs_dentry)
678                 return;
679
680         debugfs_remove_recursive(kvm->debugfs_dentry);
681
682         if (kvm->debugfs_stat_data) {
683                 for (i = 0; i < kvm_debugfs_num_entries; i++)
684                         kfree(kvm->debugfs_stat_data[i]);
685                 kfree(kvm->debugfs_stat_data);
686         }
687 }
688
689 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
690 {
691         char dir_name[ITOA_MAX_LEN * 2];
692         struct kvm_stat_data *stat_data;
693         struct kvm_stats_debugfs_item *p;
694
695         if (!debugfs_initialized())
696                 return 0;
697
698         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
699         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
700
701         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
702                                          sizeof(*kvm->debugfs_stat_data),
703                                          GFP_KERNEL_ACCOUNT);
704         if (!kvm->debugfs_stat_data)
705                 return -ENOMEM;
706
707         for (p = debugfs_entries; p->name; p++) {
708                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
709                 if (!stat_data)
710                         return -ENOMEM;
711
712                 stat_data->kvm = kvm;
713                 stat_data->dbgfs_item = p;
714                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
715                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
716                                     kvm->debugfs_dentry, stat_data,
717                                     &stat_fops_per_vm);
718         }
719         return 0;
720 }
721
722 /*
723  * Called after the VM is otherwise initialized, but just before adding it to
724  * the vm_list.
725  */
726 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
727 {
728         return 0;
729 }
730
731 /*
732  * Called just after removing the VM from the vm_list, but before doing any
733  * other destruction.
734  */
735 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
736 {
737 }
738
739 static struct kvm *kvm_create_vm(unsigned long type)
740 {
741         struct kvm *kvm = kvm_arch_alloc_vm();
742         int r = -ENOMEM;
743         int i;
744
745         if (!kvm)
746                 return ERR_PTR(-ENOMEM);
747
748         spin_lock_init(&kvm->mmu_lock);
749         mmgrab(current->mm);
750         kvm->mm = current->mm;
751         kvm_eventfd_init(kvm);
752         mutex_init(&kvm->lock);
753         mutex_init(&kvm->irq_lock);
754         mutex_init(&kvm->slots_lock);
755         INIT_LIST_HEAD(&kvm->devices);
756
757         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
758
759         if (init_srcu_struct(&kvm->srcu))
760                 goto out_err_no_srcu;
761         if (init_srcu_struct(&kvm->irq_srcu))
762                 goto out_err_no_irq_srcu;
763
764         refcount_set(&kvm->users_count, 1);
765         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
766                 struct kvm_memslots *slots = kvm_alloc_memslots();
767
768                 if (!slots)
769                         goto out_err_no_arch_destroy_vm;
770                 /* Generations must be different for each address space. */
771                 slots->generation = i;
772                 rcu_assign_pointer(kvm->memslots[i], slots);
773         }
774
775         for (i = 0; i < KVM_NR_BUSES; i++) {
776                 rcu_assign_pointer(kvm->buses[i],
777                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
778                 if (!kvm->buses[i])
779                         goto out_err_no_arch_destroy_vm;
780         }
781
782         kvm->max_halt_poll_ns = halt_poll_ns;
783
784         r = kvm_arch_init_vm(kvm, type);
785         if (r)
786                 goto out_err_no_arch_destroy_vm;
787
788         r = hardware_enable_all();
789         if (r)
790                 goto out_err_no_disable;
791
792 #ifdef CONFIG_HAVE_KVM_IRQFD
793         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
794 #endif
795
796         r = kvm_init_mmu_notifier(kvm);
797         if (r)
798                 goto out_err_no_mmu_notifier;
799
800         r = kvm_arch_post_init_vm(kvm);
801         if (r)
802                 goto out_err;
803
804         mutex_lock(&kvm_lock);
805         list_add(&kvm->vm_list, &vm_list);
806         mutex_unlock(&kvm_lock);
807
808         preempt_notifier_inc();
809
810         return kvm;
811
812 out_err:
813 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
814         if (kvm->mmu_notifier.ops)
815                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
816 #endif
817 out_err_no_mmu_notifier:
818         hardware_disable_all();
819 out_err_no_disable:
820         kvm_arch_destroy_vm(kvm);
821 out_err_no_arch_destroy_vm:
822         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
823         for (i = 0; i < KVM_NR_BUSES; i++)
824                 kfree(kvm_get_bus(kvm, i));
825         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
826                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
827         cleanup_srcu_struct(&kvm->irq_srcu);
828 out_err_no_irq_srcu:
829         cleanup_srcu_struct(&kvm->srcu);
830 out_err_no_srcu:
831         kvm_arch_free_vm(kvm);
832         mmdrop(current->mm);
833         return ERR_PTR(r);
834 }
835
836 static void kvm_destroy_devices(struct kvm *kvm)
837 {
838         struct kvm_device *dev, *tmp;
839
840         /*
841          * We do not need to take the kvm->lock here, because nobody else
842          * has a reference to the struct kvm at this point and therefore
843          * cannot access the devices list anyhow.
844          */
845         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
846                 list_del(&dev->vm_node);
847                 dev->ops->destroy(dev);
848         }
849 }
850
851 static void kvm_destroy_vm(struct kvm *kvm)
852 {
853         int i;
854         struct mm_struct *mm = kvm->mm;
855
856         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
857         kvm_destroy_vm_debugfs(kvm);
858         kvm_arch_sync_events(kvm);
859         mutex_lock(&kvm_lock);
860         list_del(&kvm->vm_list);
861         mutex_unlock(&kvm_lock);
862         kvm_arch_pre_destroy_vm(kvm);
863
864         kvm_free_irq_routing(kvm);
865         for (i = 0; i < KVM_NR_BUSES; i++) {
866                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
867
868                 if (bus)
869                         kvm_io_bus_destroy(bus);
870                 kvm->buses[i] = NULL;
871         }
872         kvm_coalesced_mmio_free(kvm);
873 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
874         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
875 #else
876         kvm_arch_flush_shadow_all(kvm);
877 #endif
878         kvm_arch_destroy_vm(kvm);
879         kvm_destroy_devices(kvm);
880         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
881                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
882         cleanup_srcu_struct(&kvm->irq_srcu);
883         cleanup_srcu_struct(&kvm->srcu);
884         kvm_arch_free_vm(kvm);
885         preempt_notifier_dec();
886         hardware_disable_all();
887         mmdrop(mm);
888 }
889
890 void kvm_get_kvm(struct kvm *kvm)
891 {
892         refcount_inc(&kvm->users_count);
893 }
894 EXPORT_SYMBOL_GPL(kvm_get_kvm);
895
896 void kvm_put_kvm(struct kvm *kvm)
897 {
898         if (refcount_dec_and_test(&kvm->users_count))
899                 kvm_destroy_vm(kvm);
900 }
901 EXPORT_SYMBOL_GPL(kvm_put_kvm);
902
903 /*
904  * Used to put a reference that was taken on behalf of an object associated
905  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
906  * of the new file descriptor fails and the reference cannot be transferred to
907  * its final owner.  In such cases, the caller is still actively using @kvm and
908  * will fail miserably if the refcount unexpectedly hits zero.
909  */
910 void kvm_put_kvm_no_destroy(struct kvm *kvm)
911 {
912         WARN_ON(refcount_dec_and_test(&kvm->users_count));
913 }
914 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
915
916 static int kvm_vm_release(struct inode *inode, struct file *filp)
917 {
918         struct kvm *kvm = filp->private_data;
919
920         kvm_irqfd_release(kvm);
921
922         kvm_put_kvm(kvm);
923         return 0;
924 }
925
926 /*
927  * Allocation size is twice as large as the actual dirty bitmap size.
928  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
929  */
930 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
931 {
932         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
933
934         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
935         if (!memslot->dirty_bitmap)
936                 return -ENOMEM;
937
938         return 0;
939 }
940
941 /*
942  * Delete a memslot by decrementing the number of used slots and shifting all
943  * other entries in the array forward one spot.
944  */
945 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
946                                       struct kvm_memory_slot *memslot)
947 {
948         struct kvm_memory_slot *mslots = slots->memslots;
949         int i;
950
951         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
952                 return;
953
954         slots->used_slots--;
955
956         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
957                 atomic_set(&slots->lru_slot, 0);
958
959         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
960                 mslots[i] = mslots[i + 1];
961                 slots->id_to_index[mslots[i].id] = i;
962         }
963         mslots[i] = *memslot;
964         slots->id_to_index[memslot->id] = -1;
965 }
966
967 /*
968  * "Insert" a new memslot by incrementing the number of used slots.  Returns
969  * the new slot's initial index into the memslots array.
970  */
971 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
972 {
973         return slots->used_slots++;
974 }
975
976 /*
977  * Move a changed memslot backwards in the array by shifting existing slots
978  * with a higher GFN toward the front of the array.  Note, the changed memslot
979  * itself is not preserved in the array, i.e. not swapped at this time, only
980  * its new index into the array is tracked.  Returns the changed memslot's
981  * current index into the memslots array.
982  */
983 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
984                                             struct kvm_memory_slot *memslot)
985 {
986         struct kvm_memory_slot *mslots = slots->memslots;
987         int i;
988
989         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
990             WARN_ON_ONCE(!slots->used_slots))
991                 return -1;
992
993         /*
994          * Move the target memslot backward in the array by shifting existing
995          * memslots with a higher GFN (than the target memslot) towards the
996          * front of the array.
997          */
998         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
999                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1000                         break;
1001
1002                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1003
1004                 /* Shift the next memslot forward one and update its index. */
1005                 mslots[i] = mslots[i + 1];
1006                 slots->id_to_index[mslots[i].id] = i;
1007         }
1008         return i;
1009 }
1010
1011 /*
1012  * Move a changed memslot forwards in the array by shifting existing slots with
1013  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1014  * is not preserved in the array, i.e. not swapped at this time, only its new
1015  * index into the array is tracked.  Returns the changed memslot's final index
1016  * into the memslots array.
1017  */
1018 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1019                                            struct kvm_memory_slot *memslot,
1020                                            int start)
1021 {
1022         struct kvm_memory_slot *mslots = slots->memslots;
1023         int i;
1024
1025         for (i = start; i > 0; i--) {
1026                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1027                         break;
1028
1029                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1030
1031                 /* Shift the next memslot back one and update its index. */
1032                 mslots[i] = mslots[i - 1];
1033                 slots->id_to_index[mslots[i].id] = i;
1034         }
1035         return i;
1036 }
1037
1038 /*
1039  * Re-sort memslots based on their GFN to account for an added, deleted, or
1040  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1041  * memslot lookup.
1042  *
1043  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1044  * at memslots[0] has the highest GFN.
1045  *
1046  * The sorting algorithm takes advantage of having initially sorted memslots
1047  * and knowing the position of the changed memslot.  Sorting is also optimized
1048  * by not swapping the updated memslot and instead only shifting other memslots
1049  * and tracking the new index for the update memslot.  Only once its final
1050  * index is known is the updated memslot copied into its position in the array.
1051  *
1052  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1053  *    the end of the array.
1054  *
1055  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1056  *    end of the array and then it forward to its correct location.
1057  *
1058  *  - When moving a memslot, the algorithm first moves the updated memslot
1059  *    backward to handle the scenario where the memslot's GFN was changed to a
1060  *    lower value.  update_memslots() then falls through and runs the same flow
1061  *    as creating a memslot to move the memslot forward to handle the scenario
1062  *    where its GFN was changed to a higher value.
1063  *
1064  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1065  * historical reasons.  Originally, invalid memslots where denoted by having
1066  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1067  * to the end of the array.  The current algorithm uses dedicated logic to
1068  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1069  *
1070  * The other historical motiviation for highest->lowest was to improve the
1071  * performance of memslot lookup.  KVM originally used a linear search starting
1072  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1073  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1074  * single memslot above the 4gb boundary.  As the largest memslot is also the
1075  * most likely to be referenced, sorting it to the front of the array was
1076  * advantageous.  The current binary search starts from the middle of the array
1077  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1078  */
1079 static void update_memslots(struct kvm_memslots *slots,
1080                             struct kvm_memory_slot *memslot,
1081                             enum kvm_mr_change change)
1082 {
1083         int i;
1084
1085         if (change == KVM_MR_DELETE) {
1086                 kvm_memslot_delete(slots, memslot);
1087         } else {
1088                 if (change == KVM_MR_CREATE)
1089                         i = kvm_memslot_insert_back(slots);
1090                 else
1091                         i = kvm_memslot_move_backward(slots, memslot);
1092                 i = kvm_memslot_move_forward(slots, memslot, i);
1093
1094                 /*
1095                  * Copy the memslot to its new position in memslots and update
1096                  * its index accordingly.
1097                  */
1098                 slots->memslots[i] = *memslot;
1099                 slots->id_to_index[memslot->id] = i;
1100         }
1101 }
1102
1103 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1104 {
1105         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1106
1107 #ifdef __KVM_HAVE_READONLY_MEM
1108         valid_flags |= KVM_MEM_READONLY;
1109 #endif
1110
1111         if (mem->flags & ~valid_flags)
1112                 return -EINVAL;
1113
1114         return 0;
1115 }
1116
1117 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1118                 int as_id, struct kvm_memslots *slots)
1119 {
1120         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1121         u64 gen = old_memslots->generation;
1122
1123         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1124         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1125
1126         rcu_assign_pointer(kvm->memslots[as_id], slots);
1127         synchronize_srcu_expedited(&kvm->srcu);
1128
1129         /*
1130          * Increment the new memslot generation a second time, dropping the
1131          * update in-progress flag and incrementing the generation based on
1132          * the number of address spaces.  This provides a unique and easily
1133          * identifiable generation number while the memslots are in flux.
1134          */
1135         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1136
1137         /*
1138          * Generations must be unique even across address spaces.  We do not need
1139          * a global counter for that, instead the generation space is evenly split
1140          * across address spaces.  For example, with two address spaces, address
1141          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1142          * use generations 1, 3, 5, ...
1143          */
1144         gen += KVM_ADDRESS_SPACE_NUM;
1145
1146         kvm_arch_memslots_updated(kvm, gen);
1147
1148         slots->generation = gen;
1149
1150         return old_memslots;
1151 }
1152
1153 /*
1154  * Note, at a minimum, the current number of used slots must be allocated, even
1155  * when deleting a memslot, as we need a complete duplicate of the memslots for
1156  * use when invalidating a memslot prior to deleting/moving the memslot.
1157  */
1158 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1159                                              enum kvm_mr_change change)
1160 {
1161         struct kvm_memslots *slots;
1162         size_t old_size, new_size;
1163
1164         old_size = sizeof(struct kvm_memslots) +
1165                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1166
1167         if (change == KVM_MR_CREATE)
1168                 new_size = old_size + sizeof(struct kvm_memory_slot);
1169         else
1170                 new_size = old_size;
1171
1172         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1173         if (likely(slots))
1174                 memcpy(slots, old, old_size);
1175
1176         return slots;
1177 }
1178
1179 static int kvm_set_memslot(struct kvm *kvm,
1180                            const struct kvm_userspace_memory_region *mem,
1181                            struct kvm_memory_slot *old,
1182                            struct kvm_memory_slot *new, int as_id,
1183                            enum kvm_mr_change change)
1184 {
1185         struct kvm_memory_slot *slot;
1186         struct kvm_memslots *slots;
1187         int r;
1188
1189         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1190         if (!slots)
1191                 return -ENOMEM;
1192
1193         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1194                 /*
1195                  * Note, the INVALID flag needs to be in the appropriate entry
1196                  * in the freshly allocated memslots, not in @old or @new.
1197                  */
1198                 slot = id_to_memslot(slots, old->id);
1199                 slot->flags |= KVM_MEMSLOT_INVALID;
1200
1201                 /*
1202                  * We can re-use the old memslots, the only difference from the
1203                  * newly installed memslots is the invalid flag, which will get
1204                  * dropped by update_memslots anyway.  We'll also revert to the
1205                  * old memslots if preparing the new memory region fails.
1206                  */
1207                 slots = install_new_memslots(kvm, as_id, slots);
1208
1209                 /* From this point no new shadow pages pointing to a deleted,
1210                  * or moved, memslot will be created.
1211                  *
1212                  * validation of sp->gfn happens in:
1213                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1214                  *      - kvm_is_visible_gfn (mmu_check_root)
1215                  */
1216                 kvm_arch_flush_shadow_memslot(kvm, slot);
1217         }
1218
1219         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1220         if (r)
1221                 goto out_slots;
1222
1223         update_memslots(slots, new, change);
1224         slots = install_new_memslots(kvm, as_id, slots);
1225
1226         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1227
1228         kvfree(slots);
1229         return 0;
1230
1231 out_slots:
1232         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1233                 slots = install_new_memslots(kvm, as_id, slots);
1234         kvfree(slots);
1235         return r;
1236 }
1237
1238 static int kvm_delete_memslot(struct kvm *kvm,
1239                               const struct kvm_userspace_memory_region *mem,
1240                               struct kvm_memory_slot *old, int as_id)
1241 {
1242         struct kvm_memory_slot new;
1243         int r;
1244
1245         if (!old->npages)
1246                 return -EINVAL;
1247
1248         memset(&new, 0, sizeof(new));
1249         new.id = old->id;
1250         /*
1251          * This is only for debugging purpose; it should never be referenced
1252          * for a removed memslot.
1253          */
1254         new.as_id = as_id;
1255
1256         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1257         if (r)
1258                 return r;
1259
1260         kvm_free_memslot(kvm, old);
1261         return 0;
1262 }
1263
1264 /*
1265  * Allocate some memory and give it an address in the guest physical address
1266  * space.
1267  *
1268  * Discontiguous memory is allowed, mostly for framebuffers.
1269  *
1270  * Must be called holding kvm->slots_lock for write.
1271  */
1272 int __kvm_set_memory_region(struct kvm *kvm,
1273                             const struct kvm_userspace_memory_region *mem)
1274 {
1275         struct kvm_memory_slot old, new;
1276         struct kvm_memory_slot *tmp;
1277         enum kvm_mr_change change;
1278         int as_id, id;
1279         int r;
1280
1281         r = check_memory_region_flags(mem);
1282         if (r)
1283                 return r;
1284
1285         as_id = mem->slot >> 16;
1286         id = (u16)mem->slot;
1287
1288         /* General sanity checks */
1289         if (mem->memory_size & (PAGE_SIZE - 1))
1290                 return -EINVAL;
1291         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1292                 return -EINVAL;
1293         /* We can read the guest memory with __xxx_user() later on. */
1294         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1295              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1296                         mem->memory_size))
1297                 return -EINVAL;
1298         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1299                 return -EINVAL;
1300         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1301                 return -EINVAL;
1302
1303         /*
1304          * Make a full copy of the old memslot, the pointer will become stale
1305          * when the memslots are re-sorted by update_memslots(), and the old
1306          * memslot needs to be referenced after calling update_memslots(), e.g.
1307          * to free its resources and for arch specific behavior.
1308          */
1309         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1310         if (tmp) {
1311                 old = *tmp;
1312                 tmp = NULL;
1313         } else {
1314                 memset(&old, 0, sizeof(old));
1315                 old.id = id;
1316         }
1317
1318         if (!mem->memory_size)
1319                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1320
1321         new.as_id = as_id;
1322         new.id = id;
1323         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1324         new.npages = mem->memory_size >> PAGE_SHIFT;
1325         new.flags = mem->flags;
1326         new.userspace_addr = mem->userspace_addr;
1327
1328         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1329                 return -EINVAL;
1330
1331         if (!old.npages) {
1332                 change = KVM_MR_CREATE;
1333                 new.dirty_bitmap = NULL;
1334                 memset(&new.arch, 0, sizeof(new.arch));
1335         } else { /* Modify an existing slot. */
1336                 if ((new.userspace_addr != old.userspace_addr) ||
1337                     (new.npages != old.npages) ||
1338                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1339                         return -EINVAL;
1340
1341                 if (new.base_gfn != old.base_gfn)
1342                         change = KVM_MR_MOVE;
1343                 else if (new.flags != old.flags)
1344                         change = KVM_MR_FLAGS_ONLY;
1345                 else /* Nothing to change. */
1346                         return 0;
1347
1348                 /* Copy dirty_bitmap and arch from the current memslot. */
1349                 new.dirty_bitmap = old.dirty_bitmap;
1350                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1351         }
1352
1353         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1354                 /* Check for overlaps */
1355                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1356                         if (tmp->id == id)
1357                                 continue;
1358                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1359                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1360                                 return -EEXIST;
1361                 }
1362         }
1363
1364         /* Allocate/free page dirty bitmap as needed */
1365         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1366                 new.dirty_bitmap = NULL;
1367         else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1368                 r = kvm_alloc_dirty_bitmap(&new);
1369                 if (r)
1370                         return r;
1371
1372                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1373                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1374         }
1375
1376         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1377         if (r)
1378                 goto out_bitmap;
1379
1380         if (old.dirty_bitmap && !new.dirty_bitmap)
1381                 kvm_destroy_dirty_bitmap(&old);
1382         return 0;
1383
1384 out_bitmap:
1385         if (new.dirty_bitmap && !old.dirty_bitmap)
1386                 kvm_destroy_dirty_bitmap(&new);
1387         return r;
1388 }
1389 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1390
1391 int kvm_set_memory_region(struct kvm *kvm,
1392                           const struct kvm_userspace_memory_region *mem)
1393 {
1394         int r;
1395
1396         mutex_lock(&kvm->slots_lock);
1397         r = __kvm_set_memory_region(kvm, mem);
1398         mutex_unlock(&kvm->slots_lock);
1399         return r;
1400 }
1401 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1402
1403 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1404                                           struct kvm_userspace_memory_region *mem)
1405 {
1406         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1407                 return -EINVAL;
1408
1409         return kvm_set_memory_region(kvm, mem);
1410 }
1411
1412 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1413 /**
1414  * kvm_get_dirty_log - get a snapshot of dirty pages
1415  * @kvm:        pointer to kvm instance
1416  * @log:        slot id and address to which we copy the log
1417  * @is_dirty:   set to '1' if any dirty pages were found
1418  * @memslot:    set to the associated memslot, always valid on success
1419  */
1420 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1421                       int *is_dirty, struct kvm_memory_slot **memslot)
1422 {
1423         struct kvm_memslots *slots;
1424         int i, as_id, id;
1425         unsigned long n;
1426         unsigned long any = 0;
1427
1428         /* Dirty ring tracking is exclusive to dirty log tracking */
1429         if (kvm->dirty_ring_size)
1430                 return -ENXIO;
1431
1432         *memslot = NULL;
1433         *is_dirty = 0;
1434
1435         as_id = log->slot >> 16;
1436         id = (u16)log->slot;
1437         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1438                 return -EINVAL;
1439
1440         slots = __kvm_memslots(kvm, as_id);
1441         *memslot = id_to_memslot(slots, id);
1442         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1443                 return -ENOENT;
1444
1445         kvm_arch_sync_dirty_log(kvm, *memslot);
1446
1447         n = kvm_dirty_bitmap_bytes(*memslot);
1448
1449         for (i = 0; !any && i < n/sizeof(long); ++i)
1450                 any = (*memslot)->dirty_bitmap[i];
1451
1452         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1453                 return -EFAULT;
1454
1455         if (any)
1456                 *is_dirty = 1;
1457         return 0;
1458 }
1459 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1460
1461 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1462 /**
1463  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1464  *      and reenable dirty page tracking for the corresponding pages.
1465  * @kvm:        pointer to kvm instance
1466  * @log:        slot id and address to which we copy the log
1467  *
1468  * We need to keep it in mind that VCPU threads can write to the bitmap
1469  * concurrently. So, to avoid losing track of dirty pages we keep the
1470  * following order:
1471  *
1472  *    1. Take a snapshot of the bit and clear it if needed.
1473  *    2. Write protect the corresponding page.
1474  *    3. Copy the snapshot to the userspace.
1475  *    4. Upon return caller flushes TLB's if needed.
1476  *
1477  * Between 2 and 4, the guest may write to the page using the remaining TLB
1478  * entry.  This is not a problem because the page is reported dirty using
1479  * the snapshot taken before and step 4 ensures that writes done after
1480  * exiting to userspace will be logged for the next call.
1481  *
1482  */
1483 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1484 {
1485         struct kvm_memslots *slots;
1486         struct kvm_memory_slot *memslot;
1487         int i, as_id, id;
1488         unsigned long n;
1489         unsigned long *dirty_bitmap;
1490         unsigned long *dirty_bitmap_buffer;
1491         bool flush;
1492
1493         /* Dirty ring tracking is exclusive to dirty log tracking */
1494         if (kvm->dirty_ring_size)
1495                 return -ENXIO;
1496
1497         as_id = log->slot >> 16;
1498         id = (u16)log->slot;
1499         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1500                 return -EINVAL;
1501
1502         slots = __kvm_memslots(kvm, as_id);
1503         memslot = id_to_memslot(slots, id);
1504         if (!memslot || !memslot->dirty_bitmap)
1505                 return -ENOENT;
1506
1507         dirty_bitmap = memslot->dirty_bitmap;
1508
1509         kvm_arch_sync_dirty_log(kvm, memslot);
1510
1511         n = kvm_dirty_bitmap_bytes(memslot);
1512         flush = false;
1513         if (kvm->manual_dirty_log_protect) {
1514                 /*
1515                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1516                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1517                  * is some code duplication between this function and
1518                  * kvm_get_dirty_log, but hopefully all architecture
1519                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1520                  * can be eliminated.
1521                  */
1522                 dirty_bitmap_buffer = dirty_bitmap;
1523         } else {
1524                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1525                 memset(dirty_bitmap_buffer, 0, n);
1526
1527                 spin_lock(&kvm->mmu_lock);
1528                 for (i = 0; i < n / sizeof(long); i++) {
1529                         unsigned long mask;
1530                         gfn_t offset;
1531
1532                         if (!dirty_bitmap[i])
1533                                 continue;
1534
1535                         flush = true;
1536                         mask = xchg(&dirty_bitmap[i], 0);
1537                         dirty_bitmap_buffer[i] = mask;
1538
1539                         offset = i * BITS_PER_LONG;
1540                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1541                                                                 offset, mask);
1542                 }
1543                 spin_unlock(&kvm->mmu_lock);
1544         }
1545
1546         if (flush)
1547                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1548
1549         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1550                 return -EFAULT;
1551         return 0;
1552 }
1553
1554
1555 /**
1556  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1557  * @kvm: kvm instance
1558  * @log: slot id and address to which we copy the log
1559  *
1560  * Steps 1-4 below provide general overview of dirty page logging. See
1561  * kvm_get_dirty_log_protect() function description for additional details.
1562  *
1563  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1564  * always flush the TLB (step 4) even if previous step failed  and the dirty
1565  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1566  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1567  * writes will be marked dirty for next log read.
1568  *
1569  *   1. Take a snapshot of the bit and clear it if needed.
1570  *   2. Write protect the corresponding page.
1571  *   3. Copy the snapshot to the userspace.
1572  *   4. Flush TLB's if needed.
1573  */
1574 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1575                                       struct kvm_dirty_log *log)
1576 {
1577         int r;
1578
1579         mutex_lock(&kvm->slots_lock);
1580
1581         r = kvm_get_dirty_log_protect(kvm, log);
1582
1583         mutex_unlock(&kvm->slots_lock);
1584         return r;
1585 }
1586
1587 /**
1588  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1589  *      and reenable dirty page tracking for the corresponding pages.
1590  * @kvm:        pointer to kvm instance
1591  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1592  */
1593 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1594                                        struct kvm_clear_dirty_log *log)
1595 {
1596         struct kvm_memslots *slots;
1597         struct kvm_memory_slot *memslot;
1598         int as_id, id;
1599         gfn_t offset;
1600         unsigned long i, n;
1601         unsigned long *dirty_bitmap;
1602         unsigned long *dirty_bitmap_buffer;
1603         bool flush;
1604
1605         /* Dirty ring tracking is exclusive to dirty log tracking */
1606         if (kvm->dirty_ring_size)
1607                 return -ENXIO;
1608
1609         as_id = log->slot >> 16;
1610         id = (u16)log->slot;
1611         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1612                 return -EINVAL;
1613
1614         if (log->first_page & 63)
1615                 return -EINVAL;
1616
1617         slots = __kvm_memslots(kvm, as_id);
1618         memslot = id_to_memslot(slots, id);
1619         if (!memslot || !memslot->dirty_bitmap)
1620                 return -ENOENT;
1621
1622         dirty_bitmap = memslot->dirty_bitmap;
1623
1624         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1625
1626         if (log->first_page > memslot->npages ||
1627             log->num_pages > memslot->npages - log->first_page ||
1628             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1629             return -EINVAL;
1630
1631         kvm_arch_sync_dirty_log(kvm, memslot);
1632
1633         flush = false;
1634         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1635         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1636                 return -EFAULT;
1637
1638         spin_lock(&kvm->mmu_lock);
1639         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1640                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1641              i++, offset += BITS_PER_LONG) {
1642                 unsigned long mask = *dirty_bitmap_buffer++;
1643                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1644                 if (!mask)
1645                         continue;
1646
1647                 mask &= atomic_long_fetch_andnot(mask, p);
1648
1649                 /*
1650                  * mask contains the bits that really have been cleared.  This
1651                  * never includes any bits beyond the length of the memslot (if
1652                  * the length is not aligned to 64 pages), therefore it is not
1653                  * a problem if userspace sets them in log->dirty_bitmap.
1654                 */
1655                 if (mask) {
1656                         flush = true;
1657                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1658                                                                 offset, mask);
1659                 }
1660         }
1661         spin_unlock(&kvm->mmu_lock);
1662
1663         if (flush)
1664                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1665
1666         return 0;
1667 }
1668
1669 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1670                                         struct kvm_clear_dirty_log *log)
1671 {
1672         int r;
1673
1674         mutex_lock(&kvm->slots_lock);
1675
1676         r = kvm_clear_dirty_log_protect(kvm, log);
1677
1678         mutex_unlock(&kvm->slots_lock);
1679         return r;
1680 }
1681 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1682
1683 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1684 {
1685         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1686 }
1687 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1688
1689 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1690 {
1691         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1694
1695 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1696 {
1697         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1698
1699         return kvm_is_visible_memslot(memslot);
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1702
1703 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1704 {
1705         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1706
1707         return kvm_is_visible_memslot(memslot);
1708 }
1709 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1710
1711 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1712 {
1713         struct vm_area_struct *vma;
1714         unsigned long addr, size;
1715
1716         size = PAGE_SIZE;
1717
1718         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1719         if (kvm_is_error_hva(addr))
1720                 return PAGE_SIZE;
1721
1722         mmap_read_lock(current->mm);
1723         vma = find_vma(current->mm, addr);
1724         if (!vma)
1725                 goto out;
1726
1727         size = vma_kernel_pagesize(vma);
1728
1729 out:
1730         mmap_read_unlock(current->mm);
1731
1732         return size;
1733 }
1734
1735 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1736 {
1737         return slot->flags & KVM_MEM_READONLY;
1738 }
1739
1740 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1741                                        gfn_t *nr_pages, bool write)
1742 {
1743         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1744                 return KVM_HVA_ERR_BAD;
1745
1746         if (memslot_is_readonly(slot) && write)
1747                 return KVM_HVA_ERR_RO_BAD;
1748
1749         if (nr_pages)
1750                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1751
1752         return __gfn_to_hva_memslot(slot, gfn);
1753 }
1754
1755 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1756                                      gfn_t *nr_pages)
1757 {
1758         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1759 }
1760
1761 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1762                                         gfn_t gfn)
1763 {
1764         return gfn_to_hva_many(slot, gfn, NULL);
1765 }
1766 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1767
1768 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1769 {
1770         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1771 }
1772 EXPORT_SYMBOL_GPL(gfn_to_hva);
1773
1774 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1775 {
1776         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1779
1780 /*
1781  * Return the hva of a @gfn and the R/W attribute if possible.
1782  *
1783  * @slot: the kvm_memory_slot which contains @gfn
1784  * @gfn: the gfn to be translated
1785  * @writable: used to return the read/write attribute of the @slot if the hva
1786  * is valid and @writable is not NULL
1787  */
1788 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1789                                       gfn_t gfn, bool *writable)
1790 {
1791         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1792
1793         if (!kvm_is_error_hva(hva) && writable)
1794                 *writable = !memslot_is_readonly(slot);
1795
1796         return hva;
1797 }
1798
1799 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1800 {
1801         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1802
1803         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1804 }
1805
1806 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1807 {
1808         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1809
1810         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1811 }
1812
1813 static inline int check_user_page_hwpoison(unsigned long addr)
1814 {
1815         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1816
1817         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1818         return rc == -EHWPOISON;
1819 }
1820
1821 /*
1822  * The fast path to get the writable pfn which will be stored in @pfn,
1823  * true indicates success, otherwise false is returned.  It's also the
1824  * only part that runs if we can in atomic context.
1825  */
1826 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1827                             bool *writable, kvm_pfn_t *pfn)
1828 {
1829         struct page *page[1];
1830
1831         /*
1832          * Fast pin a writable pfn only if it is a write fault request
1833          * or the caller allows to map a writable pfn for a read fault
1834          * request.
1835          */
1836         if (!(write_fault || writable))
1837                 return false;
1838
1839         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1840                 *pfn = page_to_pfn(page[0]);
1841
1842                 if (writable)
1843                         *writable = true;
1844                 return true;
1845         }
1846
1847         return false;
1848 }
1849
1850 /*
1851  * The slow path to get the pfn of the specified host virtual address,
1852  * 1 indicates success, -errno is returned if error is detected.
1853  */
1854 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1855                            bool *writable, kvm_pfn_t *pfn)
1856 {
1857         unsigned int flags = FOLL_HWPOISON;
1858         struct page *page;
1859         int npages = 0;
1860
1861         might_sleep();
1862
1863         if (writable)
1864                 *writable = write_fault;
1865
1866         if (write_fault)
1867                 flags |= FOLL_WRITE;
1868         if (async)
1869                 flags |= FOLL_NOWAIT;
1870
1871         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1872         if (npages != 1)
1873                 return npages;
1874
1875         /* map read fault as writable if possible */
1876         if (unlikely(!write_fault) && writable) {
1877                 struct page *wpage;
1878
1879                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1880                         *writable = true;
1881                         put_page(page);
1882                         page = wpage;
1883                 }
1884         }
1885         *pfn = page_to_pfn(page);
1886         return npages;
1887 }
1888
1889 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1890 {
1891         if (unlikely(!(vma->vm_flags & VM_READ)))
1892                 return false;
1893
1894         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1895                 return false;
1896
1897         return true;
1898 }
1899
1900 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1901                                unsigned long addr, bool *async,
1902                                bool write_fault, bool *writable,
1903                                kvm_pfn_t *p_pfn)
1904 {
1905         unsigned long pfn;
1906         int r;
1907
1908         r = follow_pfn(vma, addr, &pfn);
1909         if (r) {
1910                 /*
1911                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1912                  * not call the fault handler, so do it here.
1913                  */
1914                 bool unlocked = false;
1915                 r = fixup_user_fault(current->mm, addr,
1916                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1917                                      &unlocked);
1918                 if (unlocked)
1919                         return -EAGAIN;
1920                 if (r)
1921                         return r;
1922
1923                 r = follow_pfn(vma, addr, &pfn);
1924                 if (r)
1925                         return r;
1926
1927         }
1928
1929         if (writable)
1930                 *writable = true;
1931
1932         /*
1933          * Get a reference here because callers of *hva_to_pfn* and
1934          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1935          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1936          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1937          * simply do nothing for reserved pfns.
1938          *
1939          * Whoever called remap_pfn_range is also going to call e.g.
1940          * unmap_mapping_range before the underlying pages are freed,
1941          * causing a call to our MMU notifier.
1942          */ 
1943         kvm_get_pfn(pfn);
1944
1945         *p_pfn = pfn;
1946         return 0;
1947 }
1948
1949 /*
1950  * Pin guest page in memory and return its pfn.
1951  * @addr: host virtual address which maps memory to the guest
1952  * @atomic: whether this function can sleep
1953  * @async: whether this function need to wait IO complete if the
1954  *         host page is not in the memory
1955  * @write_fault: whether we should get a writable host page
1956  * @writable: whether it allows to map a writable host page for !@write_fault
1957  *
1958  * The function will map a writable host page for these two cases:
1959  * 1): @write_fault = true
1960  * 2): @write_fault = false && @writable, @writable will tell the caller
1961  *     whether the mapping is writable.
1962  */
1963 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1964                         bool write_fault, bool *writable)
1965 {
1966         struct vm_area_struct *vma;
1967         kvm_pfn_t pfn = 0;
1968         int npages, r;
1969
1970         /* we can do it either atomically or asynchronously, not both */
1971         BUG_ON(atomic && async);
1972
1973         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1974                 return pfn;
1975
1976         if (atomic)
1977                 return KVM_PFN_ERR_FAULT;
1978
1979         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1980         if (npages == 1)
1981                 return pfn;
1982
1983         mmap_read_lock(current->mm);
1984         if (npages == -EHWPOISON ||
1985               (!async && check_user_page_hwpoison(addr))) {
1986                 pfn = KVM_PFN_ERR_HWPOISON;
1987                 goto exit;
1988         }
1989
1990 retry:
1991         vma = find_vma_intersection(current->mm, addr, addr + 1);
1992
1993         if (vma == NULL)
1994                 pfn = KVM_PFN_ERR_FAULT;
1995         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1996                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1997                 if (r == -EAGAIN)
1998                         goto retry;
1999                 if (r < 0)
2000                         pfn = KVM_PFN_ERR_FAULT;
2001         } else {
2002                 if (async && vma_is_valid(vma, write_fault))
2003                         *async = true;
2004                 pfn = KVM_PFN_ERR_FAULT;
2005         }
2006 exit:
2007         mmap_read_unlock(current->mm);
2008         return pfn;
2009 }
2010
2011 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2012                                bool atomic, bool *async, bool write_fault,
2013                                bool *writable)
2014 {
2015         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2016
2017         if (addr == KVM_HVA_ERR_RO_BAD) {
2018                 if (writable)
2019                         *writable = false;
2020                 return KVM_PFN_ERR_RO_FAULT;
2021         }
2022
2023         if (kvm_is_error_hva(addr)) {
2024                 if (writable)
2025                         *writable = false;
2026                 return KVM_PFN_NOSLOT;
2027         }
2028
2029         /* Do not map writable pfn in the readonly memslot. */
2030         if (writable && memslot_is_readonly(slot)) {
2031                 *writable = false;
2032                 writable = NULL;
2033         }
2034
2035         return hva_to_pfn(addr, atomic, async, write_fault,
2036                           writable);
2037 }
2038 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2039
2040 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2041                       bool *writable)
2042 {
2043         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2044                                     write_fault, writable);
2045 }
2046 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2047
2048 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2049 {
2050         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2051 }
2052 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2053
2054 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2055 {
2056         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2057 }
2058 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2059
2060 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2061 {
2062         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2063 }
2064 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2065
2066 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2067 {
2068         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2069 }
2070 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2071
2072 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2073 {
2074         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2077
2078 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2079                             struct page **pages, int nr_pages)
2080 {
2081         unsigned long addr;
2082         gfn_t entry = 0;
2083
2084         addr = gfn_to_hva_many(slot, gfn, &entry);
2085         if (kvm_is_error_hva(addr))
2086                 return -1;
2087
2088         if (entry < nr_pages)
2089                 return 0;
2090
2091         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2092 }
2093 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2094
2095 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2096 {
2097         if (is_error_noslot_pfn(pfn))
2098                 return KVM_ERR_PTR_BAD_PAGE;
2099
2100         if (kvm_is_reserved_pfn(pfn)) {
2101                 WARN_ON(1);
2102                 return KVM_ERR_PTR_BAD_PAGE;
2103         }
2104
2105         return pfn_to_page(pfn);
2106 }
2107
2108 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2109 {
2110         kvm_pfn_t pfn;
2111
2112         pfn = gfn_to_pfn(kvm, gfn);
2113
2114         return kvm_pfn_to_page(pfn);
2115 }
2116 EXPORT_SYMBOL_GPL(gfn_to_page);
2117
2118 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2119 {
2120         if (pfn == 0)
2121                 return;
2122
2123         if (cache)
2124                 cache->pfn = cache->gfn = 0;
2125
2126         if (dirty)
2127                 kvm_release_pfn_dirty(pfn);
2128         else
2129                 kvm_release_pfn_clean(pfn);
2130 }
2131
2132 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2133                                  struct gfn_to_pfn_cache *cache, u64 gen)
2134 {
2135         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2136
2137         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2138         cache->gfn = gfn;
2139         cache->dirty = false;
2140         cache->generation = gen;
2141 }
2142
2143 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2144                          struct kvm_host_map *map,
2145                          struct gfn_to_pfn_cache *cache,
2146                          bool atomic)
2147 {
2148         kvm_pfn_t pfn;
2149         void *hva = NULL;
2150         struct page *page = KVM_UNMAPPED_PAGE;
2151         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2152         u64 gen = slots->generation;
2153
2154         if (!map)
2155                 return -EINVAL;
2156
2157         if (cache) {
2158                 if (!cache->pfn || cache->gfn != gfn ||
2159                         cache->generation != gen) {
2160                         if (atomic)
2161                                 return -EAGAIN;
2162                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2163                 }
2164                 pfn = cache->pfn;
2165         } else {
2166                 if (atomic)
2167                         return -EAGAIN;
2168                 pfn = gfn_to_pfn_memslot(slot, gfn);
2169         }
2170         if (is_error_noslot_pfn(pfn))
2171                 return -EINVAL;
2172
2173         if (pfn_valid(pfn)) {
2174                 page = pfn_to_page(pfn);
2175                 if (atomic)
2176                         hva = kmap_atomic(page);
2177                 else
2178                         hva = kmap(page);
2179 #ifdef CONFIG_HAS_IOMEM
2180         } else if (!atomic) {
2181                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2182         } else {
2183                 return -EINVAL;
2184 #endif
2185         }
2186
2187         if (!hva)
2188                 return -EFAULT;
2189
2190         map->page = page;
2191         map->hva = hva;
2192         map->pfn = pfn;
2193         map->gfn = gfn;
2194
2195         return 0;
2196 }
2197
2198 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2199                 struct gfn_to_pfn_cache *cache, bool atomic)
2200 {
2201         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2202                         cache, atomic);
2203 }
2204 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2205
2206 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2207 {
2208         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2209                 NULL, false);
2210 }
2211 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2212
2213 static void __kvm_unmap_gfn(struct kvm *kvm,
2214                         struct kvm_memory_slot *memslot,
2215                         struct kvm_host_map *map,
2216                         struct gfn_to_pfn_cache *cache,
2217                         bool dirty, bool atomic)
2218 {
2219         if (!map)
2220                 return;
2221
2222         if (!map->hva)
2223                 return;
2224
2225         if (map->page != KVM_UNMAPPED_PAGE) {
2226                 if (atomic)
2227                         kunmap_atomic(map->hva);
2228                 else
2229                         kunmap(map->page);
2230         }
2231 #ifdef CONFIG_HAS_IOMEM
2232         else if (!atomic)
2233                 memunmap(map->hva);
2234         else
2235                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2236 #endif
2237
2238         if (dirty)
2239                 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2240
2241         if (cache)
2242                 cache->dirty |= dirty;
2243         else
2244                 kvm_release_pfn(map->pfn, dirty, NULL);
2245
2246         map->hva = NULL;
2247         map->page = NULL;
2248 }
2249
2250 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2251                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2252 {
2253         __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2254                         cache, dirty, atomic);
2255         return 0;
2256 }
2257 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2258
2259 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2260 {
2261         __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2262                         map, NULL, dirty, false);
2263 }
2264 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2265
2266 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2267 {
2268         kvm_pfn_t pfn;
2269
2270         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2271
2272         return kvm_pfn_to_page(pfn);
2273 }
2274 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2275
2276 void kvm_release_page_clean(struct page *page)
2277 {
2278         WARN_ON(is_error_page(page));
2279
2280         kvm_release_pfn_clean(page_to_pfn(page));
2281 }
2282 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2283
2284 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2285 {
2286         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2287                 put_page(pfn_to_page(pfn));
2288 }
2289 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2290
2291 void kvm_release_page_dirty(struct page *page)
2292 {
2293         WARN_ON(is_error_page(page));
2294
2295         kvm_release_pfn_dirty(page_to_pfn(page));
2296 }
2297 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2298
2299 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2300 {
2301         kvm_set_pfn_dirty(pfn);
2302         kvm_release_pfn_clean(pfn);
2303 }
2304 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2305
2306 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2307 {
2308         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2309                 SetPageDirty(pfn_to_page(pfn));
2310 }
2311 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2312
2313 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2314 {
2315         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2316                 mark_page_accessed(pfn_to_page(pfn));
2317 }
2318 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2319
2320 void kvm_get_pfn(kvm_pfn_t pfn)
2321 {
2322         if (!kvm_is_reserved_pfn(pfn))
2323                 get_page(pfn_to_page(pfn));
2324 }
2325 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2326
2327 static int next_segment(unsigned long len, int offset)
2328 {
2329         if (len > PAGE_SIZE - offset)
2330                 return PAGE_SIZE - offset;
2331         else
2332                 return len;
2333 }
2334
2335 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2336                                  void *data, int offset, int len)
2337 {
2338         int r;
2339         unsigned long addr;
2340
2341         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2342         if (kvm_is_error_hva(addr))
2343                 return -EFAULT;
2344         r = __copy_from_user(data, (void __user *)addr + offset, len);
2345         if (r)
2346                 return -EFAULT;
2347         return 0;
2348 }
2349
2350 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2351                         int len)
2352 {
2353         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2354
2355         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2356 }
2357 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2358
2359 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2360                              int offset, int len)
2361 {
2362         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2363
2364         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2365 }
2366 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2367
2368 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2369 {
2370         gfn_t gfn = gpa >> PAGE_SHIFT;
2371         int seg;
2372         int offset = offset_in_page(gpa);
2373         int ret;
2374
2375         while ((seg = next_segment(len, offset)) != 0) {
2376                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2377                 if (ret < 0)
2378                         return ret;
2379                 offset = 0;
2380                 len -= seg;
2381                 data += seg;
2382                 ++gfn;
2383         }
2384         return 0;
2385 }
2386 EXPORT_SYMBOL_GPL(kvm_read_guest);
2387
2388 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2389 {
2390         gfn_t gfn = gpa >> PAGE_SHIFT;
2391         int seg;
2392         int offset = offset_in_page(gpa);
2393         int ret;
2394
2395         while ((seg = next_segment(len, offset)) != 0) {
2396                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2397                 if (ret < 0)
2398                         return ret;
2399                 offset = 0;
2400                 len -= seg;
2401                 data += seg;
2402                 ++gfn;
2403         }
2404         return 0;
2405 }
2406 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2407
2408 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2409                                    void *data, int offset, unsigned long len)
2410 {
2411         int r;
2412         unsigned long addr;
2413
2414         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2415         if (kvm_is_error_hva(addr))
2416                 return -EFAULT;
2417         pagefault_disable();
2418         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2419         pagefault_enable();
2420         if (r)
2421                 return -EFAULT;
2422         return 0;
2423 }
2424
2425 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2426                                void *data, unsigned long len)
2427 {
2428         gfn_t gfn = gpa >> PAGE_SHIFT;
2429         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2430         int offset = offset_in_page(gpa);
2431
2432         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2433 }
2434 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2435
2436 static int __kvm_write_guest_page(struct kvm *kvm,
2437                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2438                                   const void *data, int offset, int len)
2439 {
2440         int r;
2441         unsigned long addr;
2442
2443         addr = gfn_to_hva_memslot(memslot, gfn);
2444         if (kvm_is_error_hva(addr))
2445                 return -EFAULT;
2446         r = __copy_to_user((void __user *)addr + offset, data, len);
2447         if (r)
2448                 return -EFAULT;
2449         mark_page_dirty_in_slot(kvm, memslot, gfn);
2450         return 0;
2451 }
2452
2453 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2454                          const void *data, int offset, int len)
2455 {
2456         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2457
2458         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2459 }
2460 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2461
2462 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2463                               const void *data, int offset, int len)
2464 {
2465         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2466
2467         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2468 }
2469 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2470
2471 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2472                     unsigned long len)
2473 {
2474         gfn_t gfn = gpa >> PAGE_SHIFT;
2475         int seg;
2476         int offset = offset_in_page(gpa);
2477         int ret;
2478
2479         while ((seg = next_segment(len, offset)) != 0) {
2480                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2481                 if (ret < 0)
2482                         return ret;
2483                 offset = 0;
2484                 len -= seg;
2485                 data += seg;
2486                 ++gfn;
2487         }
2488         return 0;
2489 }
2490 EXPORT_SYMBOL_GPL(kvm_write_guest);
2491
2492 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2493                          unsigned long len)
2494 {
2495         gfn_t gfn = gpa >> PAGE_SHIFT;
2496         int seg;
2497         int offset = offset_in_page(gpa);
2498         int ret;
2499
2500         while ((seg = next_segment(len, offset)) != 0) {
2501                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2502                 if (ret < 0)
2503                         return ret;
2504                 offset = 0;
2505                 len -= seg;
2506                 data += seg;
2507                 ++gfn;
2508         }
2509         return 0;
2510 }
2511 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2512
2513 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2514                                        struct gfn_to_hva_cache *ghc,
2515                                        gpa_t gpa, unsigned long len)
2516 {
2517         int offset = offset_in_page(gpa);
2518         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2519         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2520         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2521         gfn_t nr_pages_avail;
2522
2523         /* Update ghc->generation before performing any error checks. */
2524         ghc->generation = slots->generation;
2525
2526         if (start_gfn > end_gfn) {
2527                 ghc->hva = KVM_HVA_ERR_BAD;
2528                 return -EINVAL;
2529         }
2530
2531         /*
2532          * If the requested region crosses two memslots, we still
2533          * verify that the entire region is valid here.
2534          */
2535         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2536                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2537                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2538                                            &nr_pages_avail);
2539                 if (kvm_is_error_hva(ghc->hva))
2540                         return -EFAULT;
2541         }
2542
2543         /* Use the slow path for cross page reads and writes. */
2544         if (nr_pages_needed == 1)
2545                 ghc->hva += offset;
2546         else
2547                 ghc->memslot = NULL;
2548
2549         ghc->gpa = gpa;
2550         ghc->len = len;
2551         return 0;
2552 }
2553
2554 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2555                               gpa_t gpa, unsigned long len)
2556 {
2557         struct kvm_memslots *slots = kvm_memslots(kvm);
2558         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2559 }
2560 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2561
2562 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2563                                   void *data, unsigned int offset,
2564                                   unsigned long len)
2565 {
2566         struct kvm_memslots *slots = kvm_memslots(kvm);
2567         int r;
2568         gpa_t gpa = ghc->gpa + offset;
2569
2570         BUG_ON(len + offset > ghc->len);
2571
2572         if (slots->generation != ghc->generation) {
2573                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2574                         return -EFAULT;
2575         }
2576
2577         if (kvm_is_error_hva(ghc->hva))
2578                 return -EFAULT;
2579
2580         if (unlikely(!ghc->memslot))
2581                 return kvm_write_guest(kvm, gpa, data, len);
2582
2583         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2584         if (r)
2585                 return -EFAULT;
2586         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2587
2588         return 0;
2589 }
2590 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2591
2592 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2593                            void *data, unsigned long len)
2594 {
2595         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2596 }
2597 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2598
2599 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2600                                  void *data, unsigned int offset,
2601                                  unsigned long len)
2602 {
2603         struct kvm_memslots *slots = kvm_memslots(kvm);
2604         int r;
2605         gpa_t gpa = ghc->gpa + offset;
2606
2607         BUG_ON(len + offset > ghc->len);
2608
2609         if (slots->generation != ghc->generation) {
2610                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2611                         return -EFAULT;
2612         }
2613
2614         if (kvm_is_error_hva(ghc->hva))
2615                 return -EFAULT;
2616
2617         if (unlikely(!ghc->memslot))
2618                 return kvm_read_guest(kvm, gpa, data, len);
2619
2620         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2621         if (r)
2622                 return -EFAULT;
2623
2624         return 0;
2625 }
2626 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2627
2628 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2629                           void *data, unsigned long len)
2630 {
2631         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2632 }
2633 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2634
2635 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2636 {
2637         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2638         gfn_t gfn = gpa >> PAGE_SHIFT;
2639         int seg;
2640         int offset = offset_in_page(gpa);
2641         int ret;
2642
2643         while ((seg = next_segment(len, offset)) != 0) {
2644                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2645                 if (ret < 0)
2646                         return ret;
2647                 offset = 0;
2648                 len -= seg;
2649                 ++gfn;
2650         }
2651         return 0;
2652 }
2653 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2654
2655 void mark_page_dirty_in_slot(struct kvm *kvm,
2656                              struct kvm_memory_slot *memslot,
2657                              gfn_t gfn)
2658 {
2659         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2660                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2661                 u32 slot = (memslot->as_id << 16) | memslot->id;
2662
2663                 if (kvm->dirty_ring_size)
2664                         kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2665                                             slot, rel_gfn);
2666                 else
2667                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
2668         }
2669 }
2670 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2671
2672 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2673 {
2674         struct kvm_memory_slot *memslot;
2675
2676         memslot = gfn_to_memslot(kvm, gfn);
2677         mark_page_dirty_in_slot(kvm, memslot, gfn);
2678 }
2679 EXPORT_SYMBOL_GPL(mark_page_dirty);
2680
2681 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2682 {
2683         struct kvm_memory_slot *memslot;
2684
2685         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2686         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
2687 }
2688 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2689
2690 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2691 {
2692         if (!vcpu->sigset_active)
2693                 return;
2694
2695         /*
2696          * This does a lockless modification of ->real_blocked, which is fine
2697          * because, only current can change ->real_blocked and all readers of
2698          * ->real_blocked don't care as long ->real_blocked is always a subset
2699          * of ->blocked.
2700          */
2701         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2702 }
2703
2704 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2705 {
2706         if (!vcpu->sigset_active)
2707                 return;
2708
2709         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2710         sigemptyset(&current->real_blocked);
2711 }
2712
2713 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2714 {
2715         unsigned int old, val, grow, grow_start;
2716
2717         old = val = vcpu->halt_poll_ns;
2718         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2719         grow = READ_ONCE(halt_poll_ns_grow);
2720         if (!grow)
2721                 goto out;
2722
2723         val *= grow;
2724         if (val < grow_start)
2725                 val = grow_start;
2726
2727         if (val > halt_poll_ns)
2728                 val = halt_poll_ns;
2729
2730         vcpu->halt_poll_ns = val;
2731 out:
2732         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2733 }
2734
2735 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2736 {
2737         unsigned int old, val, shrink;
2738
2739         old = val = vcpu->halt_poll_ns;
2740         shrink = READ_ONCE(halt_poll_ns_shrink);
2741         if (shrink == 0)
2742                 val = 0;
2743         else
2744                 val /= shrink;
2745
2746         vcpu->halt_poll_ns = val;
2747         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2748 }
2749
2750 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2751 {
2752         int ret = -EINTR;
2753         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2754
2755         if (kvm_arch_vcpu_runnable(vcpu)) {
2756                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2757                 goto out;
2758         }
2759         if (kvm_cpu_has_pending_timer(vcpu))
2760                 goto out;
2761         if (signal_pending(current))
2762                 goto out;
2763
2764         ret = 0;
2765 out:
2766         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2767         return ret;
2768 }
2769
2770 static inline void
2771 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2772 {
2773         if (waited)
2774                 vcpu->stat.halt_poll_fail_ns += poll_ns;
2775         else
2776                 vcpu->stat.halt_poll_success_ns += poll_ns;
2777 }
2778
2779 /*
2780  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2781  */
2782 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2783 {
2784         ktime_t start, cur, poll_end;
2785         bool waited = false;
2786         u64 block_ns;
2787
2788         kvm_arch_vcpu_blocking(vcpu);
2789
2790         start = cur = poll_end = ktime_get();
2791         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2792                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2793
2794                 ++vcpu->stat.halt_attempted_poll;
2795                 do {
2796                         /*
2797                          * This sets KVM_REQ_UNHALT if an interrupt
2798                          * arrives.
2799                          */
2800                         if (kvm_vcpu_check_block(vcpu) < 0) {
2801                                 ++vcpu->stat.halt_successful_poll;
2802                                 if (!vcpu_valid_wakeup(vcpu))
2803                                         ++vcpu->stat.halt_poll_invalid;
2804                                 goto out;
2805                         }
2806                         poll_end = cur = ktime_get();
2807                 } while (single_task_running() && ktime_before(cur, stop));
2808         }
2809
2810         prepare_to_rcuwait(&vcpu->wait);
2811         for (;;) {
2812                 set_current_state(TASK_INTERRUPTIBLE);
2813
2814                 if (kvm_vcpu_check_block(vcpu) < 0)
2815                         break;
2816
2817                 waited = true;
2818                 schedule();
2819         }
2820         finish_rcuwait(&vcpu->wait);
2821         cur = ktime_get();
2822 out:
2823         kvm_arch_vcpu_unblocking(vcpu);
2824         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2825
2826         update_halt_poll_stats(
2827                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2828
2829         if (!kvm_arch_no_poll(vcpu)) {
2830                 if (!vcpu_valid_wakeup(vcpu)) {
2831                         shrink_halt_poll_ns(vcpu);
2832                 } else if (vcpu->kvm->max_halt_poll_ns) {
2833                         if (block_ns <= vcpu->halt_poll_ns)
2834                                 ;
2835                         /* we had a long block, shrink polling */
2836                         else if (vcpu->halt_poll_ns &&
2837                                         block_ns > vcpu->kvm->max_halt_poll_ns)
2838                                 shrink_halt_poll_ns(vcpu);
2839                         /* we had a short halt and our poll time is too small */
2840                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2841                                         block_ns < vcpu->kvm->max_halt_poll_ns)
2842                                 grow_halt_poll_ns(vcpu);
2843                 } else {
2844                         vcpu->halt_poll_ns = 0;
2845                 }
2846         }
2847
2848         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2849         kvm_arch_vcpu_block_finish(vcpu);
2850 }
2851 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2852
2853 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2854 {
2855         struct rcuwait *waitp;
2856
2857         waitp = kvm_arch_vcpu_get_wait(vcpu);
2858         if (rcuwait_wake_up(waitp)) {
2859                 WRITE_ONCE(vcpu->ready, true);
2860                 ++vcpu->stat.halt_wakeup;
2861                 return true;
2862         }
2863
2864         return false;
2865 }
2866 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2867
2868 #ifndef CONFIG_S390
2869 /*
2870  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2871  */
2872 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2873 {
2874         int me;
2875         int cpu = vcpu->cpu;
2876
2877         if (kvm_vcpu_wake_up(vcpu))
2878                 return;
2879
2880         me = get_cpu();
2881         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2882                 if (kvm_arch_vcpu_should_kick(vcpu))
2883                         smp_send_reschedule(cpu);
2884         put_cpu();
2885 }
2886 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2887 #endif /* !CONFIG_S390 */
2888
2889 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2890 {
2891         struct pid *pid;
2892         struct task_struct *task = NULL;
2893         int ret = 0;
2894
2895         rcu_read_lock();
2896         pid = rcu_dereference(target->pid);
2897         if (pid)
2898                 task = get_pid_task(pid, PIDTYPE_PID);
2899         rcu_read_unlock();
2900         if (!task)
2901                 return ret;
2902         ret = yield_to(task, 1);
2903         put_task_struct(task);
2904
2905         return ret;
2906 }
2907 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2908
2909 /*
2910  * Helper that checks whether a VCPU is eligible for directed yield.
2911  * Most eligible candidate to yield is decided by following heuristics:
2912  *
2913  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2914  *  (preempted lock holder), indicated by @in_spin_loop.
2915  *  Set at the beginning and cleared at the end of interception/PLE handler.
2916  *
2917  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2918  *  chance last time (mostly it has become eligible now since we have probably
2919  *  yielded to lockholder in last iteration. This is done by toggling
2920  *  @dy_eligible each time a VCPU checked for eligibility.)
2921  *
2922  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2923  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2924  *  burning. Giving priority for a potential lock-holder increases lock
2925  *  progress.
2926  *
2927  *  Since algorithm is based on heuristics, accessing another VCPU data without
2928  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2929  *  and continue with next VCPU and so on.
2930  */
2931 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2932 {
2933 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2934         bool eligible;
2935
2936         eligible = !vcpu->spin_loop.in_spin_loop ||
2937                     vcpu->spin_loop.dy_eligible;
2938
2939         if (vcpu->spin_loop.in_spin_loop)
2940                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2941
2942         return eligible;
2943 #else
2944         return true;
2945 #endif
2946 }
2947
2948 /*
2949  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2950  * a vcpu_load/vcpu_put pair.  However, for most architectures
2951  * kvm_arch_vcpu_runnable does not require vcpu_load.
2952  */
2953 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2954 {
2955         return kvm_arch_vcpu_runnable(vcpu);
2956 }
2957
2958 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2959 {
2960         if (kvm_arch_dy_runnable(vcpu))
2961                 return true;
2962
2963 #ifdef CONFIG_KVM_ASYNC_PF
2964         if (!list_empty_careful(&vcpu->async_pf.done))
2965                 return true;
2966 #endif
2967
2968         return false;
2969 }
2970
2971 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2972 {
2973         struct kvm *kvm = me->kvm;
2974         struct kvm_vcpu *vcpu;
2975         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2976         int yielded = 0;
2977         int try = 3;
2978         int pass;
2979         int i;
2980
2981         kvm_vcpu_set_in_spin_loop(me, true);
2982         /*
2983          * We boost the priority of a VCPU that is runnable but not
2984          * currently running, because it got preempted by something
2985          * else and called schedule in __vcpu_run.  Hopefully that
2986          * VCPU is holding the lock that we need and will release it.
2987          * We approximate round-robin by starting at the last boosted VCPU.
2988          */
2989         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2990                 kvm_for_each_vcpu(i, vcpu, kvm) {
2991                         if (!pass && i <= last_boosted_vcpu) {
2992                                 i = last_boosted_vcpu;
2993                                 continue;
2994                         } else if (pass && i > last_boosted_vcpu)
2995                                 break;
2996                         if (!READ_ONCE(vcpu->ready))
2997                                 continue;
2998                         if (vcpu == me)
2999                                 continue;
3000                         if (rcuwait_active(&vcpu->wait) &&
3001                             !vcpu_dy_runnable(vcpu))
3002                                 continue;
3003                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3004                                 !kvm_arch_vcpu_in_kernel(vcpu))
3005                                 continue;
3006                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3007                                 continue;
3008
3009                         yielded = kvm_vcpu_yield_to(vcpu);
3010                         if (yielded > 0) {
3011                                 kvm->last_boosted_vcpu = i;
3012                                 break;
3013                         } else if (yielded < 0) {
3014                                 try--;
3015                                 if (!try)
3016                                         break;
3017                         }
3018                 }
3019         }
3020         kvm_vcpu_set_in_spin_loop(me, false);
3021
3022         /* Ensure vcpu is not eligible during next spinloop */
3023         kvm_vcpu_set_dy_eligible(me, false);
3024 }
3025 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3026
3027 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3028 {
3029 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3030         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3031             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3032              kvm->dirty_ring_size / PAGE_SIZE);
3033 #else
3034         return false;
3035 #endif
3036 }
3037
3038 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3039 {
3040         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3041         struct page *page;
3042
3043         if (vmf->pgoff == 0)
3044                 page = virt_to_page(vcpu->run);
3045 #ifdef CONFIG_X86
3046         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3047                 page = virt_to_page(vcpu->arch.pio_data);
3048 #endif
3049 #ifdef CONFIG_KVM_MMIO
3050         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3051                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3052 #endif
3053         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3054                 page = kvm_dirty_ring_get_page(
3055                     &vcpu->dirty_ring,
3056                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3057         else
3058                 return kvm_arch_vcpu_fault(vcpu, vmf);
3059         get_page(page);
3060         vmf->page = page;
3061         return 0;
3062 }
3063
3064 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3065         .fault = kvm_vcpu_fault,
3066 };
3067
3068 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3069 {
3070         struct kvm_vcpu *vcpu = file->private_data;
3071         unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3072
3073         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3074              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3075             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3076                 return -EINVAL;
3077
3078         vma->vm_ops = &kvm_vcpu_vm_ops;
3079         return 0;
3080 }
3081
3082 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3083 {
3084         struct kvm_vcpu *vcpu = filp->private_data;
3085
3086         kvm_put_kvm(vcpu->kvm);
3087         return 0;
3088 }
3089
3090 static struct file_operations kvm_vcpu_fops = {
3091         .release        = kvm_vcpu_release,
3092         .unlocked_ioctl = kvm_vcpu_ioctl,
3093         .mmap           = kvm_vcpu_mmap,
3094         .llseek         = noop_llseek,
3095         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3096 };
3097
3098 /*
3099  * Allocates an inode for the vcpu.
3100  */
3101 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3102 {
3103         char name[8 + 1 + ITOA_MAX_LEN + 1];
3104
3105         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3106         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3107 }
3108
3109 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3110 {
3111 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3112         struct dentry *debugfs_dentry;
3113         char dir_name[ITOA_MAX_LEN * 2];
3114
3115         if (!debugfs_initialized())
3116                 return;
3117
3118         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3119         debugfs_dentry = debugfs_create_dir(dir_name,
3120                                             vcpu->kvm->debugfs_dentry);
3121
3122         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3123 #endif
3124 }
3125
3126 /*
3127  * Creates some virtual cpus.  Good luck creating more than one.
3128  */
3129 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3130 {
3131         int r;
3132         struct kvm_vcpu *vcpu;
3133         struct page *page;
3134
3135         if (id >= KVM_MAX_VCPU_ID)
3136                 return -EINVAL;
3137
3138         mutex_lock(&kvm->lock);
3139         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3140                 mutex_unlock(&kvm->lock);
3141                 return -EINVAL;
3142         }
3143
3144         kvm->created_vcpus++;
3145         mutex_unlock(&kvm->lock);
3146
3147         r = kvm_arch_vcpu_precreate(kvm, id);
3148         if (r)
3149                 goto vcpu_decrement;
3150
3151         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3152         if (!vcpu) {
3153                 r = -ENOMEM;
3154                 goto vcpu_decrement;
3155         }
3156
3157         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3158         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3159         if (!page) {
3160                 r = -ENOMEM;
3161                 goto vcpu_free;
3162         }
3163         vcpu->run = page_address(page);
3164
3165         kvm_vcpu_init(vcpu, kvm, id);
3166
3167         r = kvm_arch_vcpu_create(vcpu);
3168         if (r)
3169                 goto vcpu_free_run_page;
3170
3171         if (kvm->dirty_ring_size) {
3172                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3173                                          id, kvm->dirty_ring_size);
3174                 if (r)
3175                         goto arch_vcpu_destroy;
3176         }
3177
3178         mutex_lock(&kvm->lock);
3179         if (kvm_get_vcpu_by_id(kvm, id)) {
3180                 r = -EEXIST;
3181                 goto unlock_vcpu_destroy;
3182         }
3183
3184         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3185         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3186
3187         /* Now it's all set up, let userspace reach it */
3188         kvm_get_kvm(kvm);
3189         r = create_vcpu_fd(vcpu);
3190         if (r < 0) {
3191                 kvm_put_kvm_no_destroy(kvm);
3192                 goto unlock_vcpu_destroy;
3193         }
3194
3195         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3196
3197         /*
3198          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3199          * before kvm->online_vcpu's incremented value.
3200          */
3201         smp_wmb();
3202         atomic_inc(&kvm->online_vcpus);
3203
3204         mutex_unlock(&kvm->lock);
3205         kvm_arch_vcpu_postcreate(vcpu);
3206         kvm_create_vcpu_debugfs(vcpu);
3207         return r;
3208
3209 unlock_vcpu_destroy:
3210         mutex_unlock(&kvm->lock);
3211         kvm_dirty_ring_free(&vcpu->dirty_ring);
3212 arch_vcpu_destroy:
3213         kvm_arch_vcpu_destroy(vcpu);
3214 vcpu_free_run_page:
3215         free_page((unsigned long)vcpu->run);
3216 vcpu_free:
3217         kmem_cache_free(kvm_vcpu_cache, vcpu);
3218 vcpu_decrement:
3219         mutex_lock(&kvm->lock);
3220         kvm->created_vcpus--;
3221         mutex_unlock(&kvm->lock);
3222         return r;
3223 }
3224
3225 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3226 {
3227         if (sigset) {
3228                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3229                 vcpu->sigset_active = 1;
3230                 vcpu->sigset = *sigset;
3231         } else
3232                 vcpu->sigset_active = 0;
3233         return 0;
3234 }
3235
3236 static long kvm_vcpu_ioctl(struct file *filp,
3237                            unsigned int ioctl, unsigned long arg)
3238 {
3239         struct kvm_vcpu *vcpu = filp->private_data;
3240         void __user *argp = (void __user *)arg;
3241         int r;
3242         struct kvm_fpu *fpu = NULL;
3243         struct kvm_sregs *kvm_sregs = NULL;
3244
3245         if (vcpu->kvm->mm != current->mm)
3246                 return -EIO;
3247
3248         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3249                 return -EINVAL;
3250
3251         /*
3252          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3253          * execution; mutex_lock() would break them.
3254          */
3255         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3256         if (r != -ENOIOCTLCMD)
3257                 return r;
3258
3259         if (mutex_lock_killable(&vcpu->mutex))
3260                 return -EINTR;
3261         switch (ioctl) {
3262         case KVM_RUN: {
3263                 struct pid *oldpid;
3264                 r = -EINVAL;
3265                 if (arg)
3266                         goto out;
3267                 oldpid = rcu_access_pointer(vcpu->pid);
3268                 if (unlikely(oldpid != task_pid(current))) {
3269                         /* The thread running this VCPU changed. */
3270                         struct pid *newpid;
3271
3272                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3273                         if (r)
3274                                 break;
3275
3276                         newpid = get_task_pid(current, PIDTYPE_PID);
3277                         rcu_assign_pointer(vcpu->pid, newpid);
3278                         if (oldpid)
3279                                 synchronize_rcu();
3280                         put_pid(oldpid);
3281                 }
3282                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3283                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3284                 break;
3285         }
3286         case KVM_GET_REGS: {
3287                 struct kvm_regs *kvm_regs;
3288
3289                 r = -ENOMEM;
3290                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3291                 if (!kvm_regs)
3292                         goto out;
3293                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3294                 if (r)
3295                         goto out_free1;
3296                 r = -EFAULT;
3297                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3298                         goto out_free1;
3299                 r = 0;
3300 out_free1:
3301                 kfree(kvm_regs);
3302                 break;
3303         }
3304         case KVM_SET_REGS: {
3305                 struct kvm_regs *kvm_regs;
3306
3307                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3308                 if (IS_ERR(kvm_regs)) {
3309                         r = PTR_ERR(kvm_regs);
3310                         goto out;
3311                 }
3312                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3313                 kfree(kvm_regs);
3314                 break;
3315         }
3316         case KVM_GET_SREGS: {
3317                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3318                                     GFP_KERNEL_ACCOUNT);
3319                 r = -ENOMEM;
3320                 if (!kvm_sregs)
3321                         goto out;
3322                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3323                 if (r)
3324                         goto out;
3325                 r = -EFAULT;
3326                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3327                         goto out;
3328                 r = 0;
3329                 break;
3330         }
3331         case KVM_SET_SREGS: {
3332                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3333                 if (IS_ERR(kvm_sregs)) {
3334                         r = PTR_ERR(kvm_sregs);
3335                         kvm_sregs = NULL;
3336                         goto out;
3337                 }
3338                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3339                 break;
3340         }
3341         case KVM_GET_MP_STATE: {
3342                 struct kvm_mp_state mp_state;
3343
3344                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3345                 if (r)
3346                         goto out;
3347                 r = -EFAULT;
3348                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3349                         goto out;
3350                 r = 0;
3351                 break;
3352         }
3353         case KVM_SET_MP_STATE: {
3354                 struct kvm_mp_state mp_state;
3355
3356                 r = -EFAULT;
3357                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3358                         goto out;
3359                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3360                 break;
3361         }
3362         case KVM_TRANSLATE: {
3363                 struct kvm_translation tr;
3364
3365                 r = -EFAULT;
3366                 if (copy_from_user(&tr, argp, sizeof(tr)))
3367                         goto out;
3368                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3369                 if (r)
3370                         goto out;
3371                 r = -EFAULT;
3372                 if (copy_to_user(argp, &tr, sizeof(tr)))
3373                         goto out;
3374                 r = 0;
3375                 break;
3376         }
3377         case KVM_SET_GUEST_DEBUG: {
3378                 struct kvm_guest_debug dbg;
3379
3380                 r = -EFAULT;
3381                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3382                         goto out;
3383                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3384                 break;
3385         }
3386         case KVM_SET_SIGNAL_MASK: {
3387                 struct kvm_signal_mask __user *sigmask_arg = argp;
3388                 struct kvm_signal_mask kvm_sigmask;
3389                 sigset_t sigset, *p;
3390
3391                 p = NULL;
3392                 if (argp) {
3393                         r = -EFAULT;
3394                         if (copy_from_user(&kvm_sigmask, argp,
3395                                            sizeof(kvm_sigmask)))
3396                                 goto out;
3397                         r = -EINVAL;
3398                         if (kvm_sigmask.len != sizeof(sigset))
3399                                 goto out;
3400                         r = -EFAULT;
3401                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3402                                            sizeof(sigset)))
3403                                 goto out;
3404                         p = &sigset;
3405                 }
3406                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3407                 break;
3408         }
3409         case KVM_GET_FPU: {
3410                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3411                 r = -ENOMEM;
3412                 if (!fpu)
3413                         goto out;
3414                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3415                 if (r)
3416                         goto out;
3417                 r = -EFAULT;
3418                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3419                         goto out;
3420                 r = 0;
3421                 break;
3422         }
3423         case KVM_SET_FPU: {
3424                 fpu = memdup_user(argp, sizeof(*fpu));
3425                 if (IS_ERR(fpu)) {
3426                         r = PTR_ERR(fpu);
3427                         fpu = NULL;
3428                         goto out;
3429                 }
3430                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3431                 break;
3432         }
3433         default:
3434                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3435         }
3436 out:
3437         mutex_unlock(&vcpu->mutex);
3438         kfree(fpu);
3439         kfree(kvm_sregs);
3440         return r;
3441 }
3442
3443 #ifdef CONFIG_KVM_COMPAT
3444 static long kvm_vcpu_compat_ioctl(struct file *filp,
3445                                   unsigned int ioctl, unsigned long arg)
3446 {
3447         struct kvm_vcpu *vcpu = filp->private_data;
3448         void __user *argp = compat_ptr(arg);
3449         int r;
3450
3451         if (vcpu->kvm->mm != current->mm)
3452                 return -EIO;
3453
3454         switch (ioctl) {
3455         case KVM_SET_SIGNAL_MASK: {
3456                 struct kvm_signal_mask __user *sigmask_arg = argp;
3457                 struct kvm_signal_mask kvm_sigmask;
3458                 sigset_t sigset;
3459
3460                 if (argp) {
3461                         r = -EFAULT;
3462                         if (copy_from_user(&kvm_sigmask, argp,
3463                                            sizeof(kvm_sigmask)))
3464                                 goto out;
3465                         r = -EINVAL;
3466                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3467                                 goto out;
3468                         r = -EFAULT;
3469                         if (get_compat_sigset(&sigset,
3470                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3471                                 goto out;
3472                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3473                 } else
3474                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3475                 break;
3476         }
3477         default:
3478                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3479         }
3480
3481 out:
3482         return r;
3483 }
3484 #endif
3485
3486 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3487 {
3488         struct kvm_device *dev = filp->private_data;
3489
3490         if (dev->ops->mmap)
3491                 return dev->ops->mmap(dev, vma);
3492
3493         return -ENODEV;
3494 }
3495
3496 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3497                                  int (*accessor)(struct kvm_device *dev,
3498                                                  struct kvm_device_attr *attr),
3499                                  unsigned long arg)
3500 {
3501         struct kvm_device_attr attr;
3502
3503         if (!accessor)
3504                 return -EPERM;
3505
3506         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3507                 return -EFAULT;
3508
3509         return accessor(dev, &attr);
3510 }
3511
3512 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3513                              unsigned long arg)
3514 {
3515         struct kvm_device *dev = filp->private_data;
3516
3517         if (dev->kvm->mm != current->mm)
3518                 return -EIO;
3519
3520         switch (ioctl) {
3521         case KVM_SET_DEVICE_ATTR:
3522                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3523         case KVM_GET_DEVICE_ATTR:
3524                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3525         case KVM_HAS_DEVICE_ATTR:
3526                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3527         default:
3528                 if (dev->ops->ioctl)
3529                         return dev->ops->ioctl(dev, ioctl, arg);
3530
3531                 return -ENOTTY;
3532         }
3533 }
3534
3535 static int kvm_device_release(struct inode *inode, struct file *filp)
3536 {
3537         struct kvm_device *dev = filp->private_data;
3538         struct kvm *kvm = dev->kvm;
3539
3540         if (dev->ops->release) {
3541                 mutex_lock(&kvm->lock);
3542                 list_del(&dev->vm_node);
3543                 dev->ops->release(dev);
3544                 mutex_unlock(&kvm->lock);
3545         }
3546
3547         kvm_put_kvm(kvm);
3548         return 0;
3549 }
3550
3551 static const struct file_operations kvm_device_fops = {
3552         .unlocked_ioctl = kvm_device_ioctl,
3553         .release = kvm_device_release,
3554         KVM_COMPAT(kvm_device_ioctl),
3555         .mmap = kvm_device_mmap,
3556 };
3557
3558 struct kvm_device *kvm_device_from_filp(struct file *filp)
3559 {
3560         if (filp->f_op != &kvm_device_fops)
3561                 return NULL;
3562
3563         return filp->private_data;
3564 }
3565
3566 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3567 #ifdef CONFIG_KVM_MPIC
3568         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3569         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3570 #endif
3571 };
3572
3573 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3574 {
3575         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3576                 return -ENOSPC;
3577
3578         if (kvm_device_ops_table[type] != NULL)
3579                 return -EEXIST;
3580
3581         kvm_device_ops_table[type] = ops;
3582         return 0;
3583 }
3584
3585 void kvm_unregister_device_ops(u32 type)
3586 {
3587         if (kvm_device_ops_table[type] != NULL)
3588                 kvm_device_ops_table[type] = NULL;
3589 }
3590
3591 static int kvm_ioctl_create_device(struct kvm *kvm,
3592                                    struct kvm_create_device *cd)
3593 {
3594         const struct kvm_device_ops *ops = NULL;
3595         struct kvm_device *dev;
3596         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3597         int type;
3598         int ret;
3599
3600         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3601                 return -ENODEV;
3602
3603         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3604         ops = kvm_device_ops_table[type];
3605         if (ops == NULL)
3606                 return -ENODEV;
3607
3608         if (test)
3609                 return 0;
3610
3611         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3612         if (!dev)
3613                 return -ENOMEM;
3614
3615         dev->ops = ops;
3616         dev->kvm = kvm;
3617
3618         mutex_lock(&kvm->lock);
3619         ret = ops->create(dev, type);
3620         if (ret < 0) {
3621                 mutex_unlock(&kvm->lock);
3622                 kfree(dev);
3623                 return ret;
3624         }
3625         list_add(&dev->vm_node, &kvm->devices);
3626         mutex_unlock(&kvm->lock);
3627
3628         if (ops->init)
3629                 ops->init(dev);
3630
3631         kvm_get_kvm(kvm);
3632         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3633         if (ret < 0) {
3634                 kvm_put_kvm_no_destroy(kvm);
3635                 mutex_lock(&kvm->lock);
3636                 list_del(&dev->vm_node);
3637                 mutex_unlock(&kvm->lock);
3638                 ops->destroy(dev);
3639                 return ret;
3640         }
3641
3642         cd->fd = ret;
3643         return 0;
3644 }
3645
3646 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3647 {
3648         switch (arg) {
3649         case KVM_CAP_USER_MEMORY:
3650         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3651         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3652         case KVM_CAP_INTERNAL_ERROR_DATA:
3653 #ifdef CONFIG_HAVE_KVM_MSI
3654         case KVM_CAP_SIGNAL_MSI:
3655 #endif
3656 #ifdef CONFIG_HAVE_KVM_IRQFD
3657         case KVM_CAP_IRQFD:
3658         case KVM_CAP_IRQFD_RESAMPLE:
3659 #endif
3660         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3661         case KVM_CAP_CHECK_EXTENSION_VM:
3662         case KVM_CAP_ENABLE_CAP_VM:
3663         case KVM_CAP_HALT_POLL:
3664                 return 1;
3665 #ifdef CONFIG_KVM_MMIO
3666         case KVM_CAP_COALESCED_MMIO:
3667                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3668         case KVM_CAP_COALESCED_PIO:
3669                 return 1;
3670 #endif
3671 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3672         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3673                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3674 #endif
3675 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3676         case KVM_CAP_IRQ_ROUTING:
3677                 return KVM_MAX_IRQ_ROUTES;
3678 #endif
3679 #if KVM_ADDRESS_SPACE_NUM > 1
3680         case KVM_CAP_MULTI_ADDRESS_SPACE:
3681                 return KVM_ADDRESS_SPACE_NUM;
3682 #endif
3683         case KVM_CAP_NR_MEMSLOTS:
3684                 return KVM_USER_MEM_SLOTS;
3685         case KVM_CAP_DIRTY_LOG_RING:
3686 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3687                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
3688 #else
3689                 return 0;
3690 #endif
3691         default:
3692                 break;
3693         }
3694         return kvm_vm_ioctl_check_extension(kvm, arg);
3695 }
3696
3697 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
3698 {
3699         int r;
3700
3701         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
3702                 return -EINVAL;
3703
3704         /* the size should be power of 2 */
3705         if (!size || (size & (size - 1)))
3706                 return -EINVAL;
3707
3708         /* Should be bigger to keep the reserved entries, or a page */
3709         if (size < kvm_dirty_ring_get_rsvd_entries() *
3710             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
3711                 return -EINVAL;
3712
3713         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
3714             sizeof(struct kvm_dirty_gfn))
3715                 return -E2BIG;
3716
3717         /* We only allow it to set once */
3718         if (kvm->dirty_ring_size)
3719                 return -EINVAL;
3720
3721         mutex_lock(&kvm->lock);
3722
3723         if (kvm->created_vcpus) {
3724                 /* We don't allow to change this value after vcpu created */
3725                 r = -EINVAL;
3726         } else {
3727                 kvm->dirty_ring_size = size;
3728                 r = 0;
3729         }
3730
3731         mutex_unlock(&kvm->lock);
3732         return r;
3733 }
3734
3735 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
3736 {
3737         int i;
3738         struct kvm_vcpu *vcpu;
3739         int cleared = 0;
3740
3741         if (!kvm->dirty_ring_size)
3742                 return -EINVAL;
3743
3744         mutex_lock(&kvm->slots_lock);
3745
3746         kvm_for_each_vcpu(i, vcpu, kvm)
3747                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
3748
3749         mutex_unlock(&kvm->slots_lock);
3750
3751         if (cleared)
3752                 kvm_flush_remote_tlbs(kvm);
3753
3754         return cleared;
3755 }
3756
3757 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3758                                                   struct kvm_enable_cap *cap)
3759 {
3760         return -EINVAL;
3761 }
3762
3763 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3764                                            struct kvm_enable_cap *cap)
3765 {
3766         switch (cap->cap) {
3767 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3768         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3769                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3770
3771                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3772                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3773
3774                 if (cap->flags || (cap->args[0] & ~allowed_options))
3775                         return -EINVAL;
3776                 kvm->manual_dirty_log_protect = cap->args[0];
3777                 return 0;
3778         }
3779 #endif
3780         case KVM_CAP_HALT_POLL: {
3781                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3782                         return -EINVAL;
3783
3784                 kvm->max_halt_poll_ns = cap->args[0];
3785                 return 0;
3786         }
3787         case KVM_CAP_DIRTY_LOG_RING:
3788                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
3789         default:
3790                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3791         }
3792 }
3793
3794 static long kvm_vm_ioctl(struct file *filp,
3795                            unsigned int ioctl, unsigned long arg)
3796 {
3797         struct kvm *kvm = filp->private_data;
3798         void __user *argp = (void __user *)arg;
3799         int r;
3800
3801         if (kvm->mm != current->mm)
3802                 return -EIO;
3803         switch (ioctl) {
3804         case KVM_CREATE_VCPU:
3805                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3806                 break;
3807         case KVM_ENABLE_CAP: {
3808                 struct kvm_enable_cap cap;
3809
3810                 r = -EFAULT;
3811                 if (copy_from_user(&cap, argp, sizeof(cap)))
3812                         goto out;
3813                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3814                 break;
3815         }
3816         case KVM_SET_USER_MEMORY_REGION: {
3817                 struct kvm_userspace_memory_region kvm_userspace_mem;
3818
3819                 r = -EFAULT;
3820                 if (copy_from_user(&kvm_userspace_mem, argp,
3821                                                 sizeof(kvm_userspace_mem)))
3822                         goto out;
3823
3824                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3825                 break;
3826         }
3827         case KVM_GET_DIRTY_LOG: {
3828                 struct kvm_dirty_log log;
3829
3830                 r = -EFAULT;
3831                 if (copy_from_user(&log, argp, sizeof(log)))
3832                         goto out;
3833                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3834                 break;
3835         }
3836 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3837         case KVM_CLEAR_DIRTY_LOG: {
3838                 struct kvm_clear_dirty_log log;
3839
3840                 r = -EFAULT;
3841                 if (copy_from_user(&log, argp, sizeof(log)))
3842                         goto out;
3843                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3844                 break;
3845         }
3846 #endif
3847 #ifdef CONFIG_KVM_MMIO
3848         case KVM_REGISTER_COALESCED_MMIO: {
3849                 struct kvm_coalesced_mmio_zone zone;
3850
3851                 r = -EFAULT;
3852                 if (copy_from_user(&zone, argp, sizeof(zone)))
3853                         goto out;
3854                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3855                 break;
3856         }
3857         case KVM_UNREGISTER_COALESCED_MMIO: {
3858                 struct kvm_coalesced_mmio_zone zone;
3859
3860                 r = -EFAULT;
3861                 if (copy_from_user(&zone, argp, sizeof(zone)))
3862                         goto out;
3863                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3864                 break;
3865         }
3866 #endif
3867         case KVM_IRQFD: {
3868                 struct kvm_irqfd data;
3869
3870                 r = -EFAULT;
3871                 if (copy_from_user(&data, argp, sizeof(data)))
3872                         goto out;
3873                 r = kvm_irqfd(kvm, &data);
3874                 break;
3875         }
3876         case KVM_IOEVENTFD: {
3877                 struct kvm_ioeventfd data;
3878
3879                 r = -EFAULT;
3880                 if (copy_from_user(&data, argp, sizeof(data)))
3881                         goto out;
3882                 r = kvm_ioeventfd(kvm, &data);
3883                 break;
3884         }
3885 #ifdef CONFIG_HAVE_KVM_MSI
3886         case KVM_SIGNAL_MSI: {
3887                 struct kvm_msi msi;
3888
3889                 r = -EFAULT;
3890                 if (copy_from_user(&msi, argp, sizeof(msi)))
3891                         goto out;
3892                 r = kvm_send_userspace_msi(kvm, &msi);
3893                 break;
3894         }
3895 #endif
3896 #ifdef __KVM_HAVE_IRQ_LINE
3897         case KVM_IRQ_LINE_STATUS:
3898         case KVM_IRQ_LINE: {
3899                 struct kvm_irq_level irq_event;
3900
3901                 r = -EFAULT;
3902                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3903                         goto out;
3904
3905                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3906                                         ioctl == KVM_IRQ_LINE_STATUS);
3907                 if (r)
3908                         goto out;
3909
3910                 r = -EFAULT;
3911                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3912                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3913                                 goto out;
3914                 }
3915
3916                 r = 0;
3917                 break;
3918         }
3919 #endif
3920 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3921         case KVM_SET_GSI_ROUTING: {
3922                 struct kvm_irq_routing routing;
3923                 struct kvm_irq_routing __user *urouting;
3924                 struct kvm_irq_routing_entry *entries = NULL;
3925
3926                 r = -EFAULT;
3927                 if (copy_from_user(&routing, argp, sizeof(routing)))
3928                         goto out;
3929                 r = -EINVAL;
3930                 if (!kvm_arch_can_set_irq_routing(kvm))
3931                         goto out;
3932                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3933                         goto out;
3934                 if (routing.flags)
3935                         goto out;
3936                 if (routing.nr) {
3937                         urouting = argp;
3938                         entries = vmemdup_user(urouting->entries,
3939                                                array_size(sizeof(*entries),
3940                                                           routing.nr));
3941                         if (IS_ERR(entries)) {
3942                                 r = PTR_ERR(entries);
3943                                 goto out;
3944                         }
3945                 }
3946                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3947                                         routing.flags);
3948                 kvfree(entries);
3949                 break;
3950         }
3951 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3952         case KVM_CREATE_DEVICE: {
3953                 struct kvm_create_device cd;
3954
3955                 r = -EFAULT;
3956                 if (copy_from_user(&cd, argp, sizeof(cd)))
3957                         goto out;
3958
3959                 r = kvm_ioctl_create_device(kvm, &cd);
3960                 if (r)
3961                         goto out;
3962
3963                 r = -EFAULT;
3964                 if (copy_to_user(argp, &cd, sizeof(cd)))
3965                         goto out;
3966
3967                 r = 0;
3968                 break;
3969         }
3970         case KVM_CHECK_EXTENSION:
3971                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3972                 break;
3973         case KVM_RESET_DIRTY_RINGS:
3974                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
3975                 break;
3976         default:
3977                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3978         }
3979 out:
3980         return r;
3981 }
3982
3983 #ifdef CONFIG_KVM_COMPAT
3984 struct compat_kvm_dirty_log {
3985         __u32 slot;
3986         __u32 padding1;
3987         union {
3988                 compat_uptr_t dirty_bitmap; /* one bit per page */
3989                 __u64 padding2;
3990         };
3991 };
3992
3993 static long kvm_vm_compat_ioctl(struct file *filp,
3994                            unsigned int ioctl, unsigned long arg)
3995 {
3996         struct kvm *kvm = filp->private_data;
3997         int r;
3998
3999         if (kvm->mm != current->mm)
4000                 return -EIO;
4001         switch (ioctl) {
4002         case KVM_GET_DIRTY_LOG: {
4003                 struct compat_kvm_dirty_log compat_log;
4004                 struct kvm_dirty_log log;
4005
4006                 if (copy_from_user(&compat_log, (void __user *)arg,
4007                                    sizeof(compat_log)))
4008                         return -EFAULT;
4009                 log.slot         = compat_log.slot;
4010                 log.padding1     = compat_log.padding1;
4011                 log.padding2     = compat_log.padding2;
4012                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4013
4014                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4015                 break;
4016         }
4017         default:
4018                 r = kvm_vm_ioctl(filp, ioctl, arg);
4019         }
4020         return r;
4021 }
4022 #endif
4023
4024 static struct file_operations kvm_vm_fops = {
4025         .release        = kvm_vm_release,
4026         .unlocked_ioctl = kvm_vm_ioctl,
4027         .llseek         = noop_llseek,
4028         KVM_COMPAT(kvm_vm_compat_ioctl),
4029 };
4030
4031 static int kvm_dev_ioctl_create_vm(unsigned long type)
4032 {
4033         int r;
4034         struct kvm *kvm;
4035         struct file *file;
4036
4037         kvm = kvm_create_vm(type);
4038         if (IS_ERR(kvm))
4039                 return PTR_ERR(kvm);
4040 #ifdef CONFIG_KVM_MMIO
4041         r = kvm_coalesced_mmio_init(kvm);
4042         if (r < 0)
4043                 goto put_kvm;
4044 #endif
4045         r = get_unused_fd_flags(O_CLOEXEC);
4046         if (r < 0)
4047                 goto put_kvm;
4048
4049         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4050         if (IS_ERR(file)) {
4051                 put_unused_fd(r);
4052                 r = PTR_ERR(file);
4053                 goto put_kvm;
4054         }
4055
4056         /*
4057          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4058          * already set, with ->release() being kvm_vm_release().  In error
4059          * cases it will be called by the final fput(file) and will take
4060          * care of doing kvm_put_kvm(kvm).
4061          */
4062         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4063                 put_unused_fd(r);
4064                 fput(file);
4065                 return -ENOMEM;
4066         }
4067         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4068
4069         fd_install(r, file);
4070         return r;
4071
4072 put_kvm:
4073         kvm_put_kvm(kvm);
4074         return r;
4075 }
4076
4077 static long kvm_dev_ioctl(struct file *filp,
4078                           unsigned int ioctl, unsigned long arg)
4079 {
4080         long r = -EINVAL;
4081
4082         switch (ioctl) {
4083         case KVM_GET_API_VERSION:
4084                 if (arg)
4085                         goto out;
4086                 r = KVM_API_VERSION;
4087                 break;
4088         case KVM_CREATE_VM:
4089                 r = kvm_dev_ioctl_create_vm(arg);
4090                 break;
4091         case KVM_CHECK_EXTENSION:
4092                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4093                 break;
4094         case KVM_GET_VCPU_MMAP_SIZE:
4095                 if (arg)
4096                         goto out;
4097                 r = PAGE_SIZE;     /* struct kvm_run */
4098 #ifdef CONFIG_X86
4099                 r += PAGE_SIZE;    /* pio data page */
4100 #endif
4101 #ifdef CONFIG_KVM_MMIO
4102                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4103 #endif
4104                 break;
4105         case KVM_TRACE_ENABLE:
4106         case KVM_TRACE_PAUSE:
4107         case KVM_TRACE_DISABLE:
4108                 r = -EOPNOTSUPP;
4109                 break;
4110         default:
4111                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4112         }
4113 out:
4114         return r;
4115 }
4116
4117 static struct file_operations kvm_chardev_ops = {
4118         .unlocked_ioctl = kvm_dev_ioctl,
4119         .llseek         = noop_llseek,
4120         KVM_COMPAT(kvm_dev_ioctl),
4121 };
4122
4123 static struct miscdevice kvm_dev = {
4124         KVM_MINOR,
4125         "kvm",
4126         &kvm_chardev_ops,
4127 };
4128
4129 static void hardware_enable_nolock(void *junk)
4130 {
4131         int cpu = raw_smp_processor_id();
4132         int r;
4133
4134         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4135                 return;
4136
4137         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4138
4139         r = kvm_arch_hardware_enable();
4140
4141         if (r) {
4142                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4143                 atomic_inc(&hardware_enable_failed);
4144                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4145         }
4146 }
4147
4148 static int kvm_starting_cpu(unsigned int cpu)
4149 {
4150         raw_spin_lock(&kvm_count_lock);
4151         if (kvm_usage_count)
4152                 hardware_enable_nolock(NULL);
4153         raw_spin_unlock(&kvm_count_lock);
4154         return 0;
4155 }
4156
4157 static void hardware_disable_nolock(void *junk)
4158 {
4159         int cpu = raw_smp_processor_id();
4160
4161         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4162                 return;
4163         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4164         kvm_arch_hardware_disable();
4165 }
4166
4167 static int kvm_dying_cpu(unsigned int cpu)
4168 {
4169         raw_spin_lock(&kvm_count_lock);
4170         if (kvm_usage_count)
4171                 hardware_disable_nolock(NULL);
4172         raw_spin_unlock(&kvm_count_lock);
4173         return 0;
4174 }
4175
4176 static void hardware_disable_all_nolock(void)
4177 {
4178         BUG_ON(!kvm_usage_count);
4179
4180         kvm_usage_count--;
4181         if (!kvm_usage_count)
4182                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4183 }
4184
4185 static void hardware_disable_all(void)
4186 {
4187         raw_spin_lock(&kvm_count_lock);
4188         hardware_disable_all_nolock();
4189         raw_spin_unlock(&kvm_count_lock);
4190 }
4191
4192 static int hardware_enable_all(void)
4193 {
4194         int r = 0;
4195
4196         raw_spin_lock(&kvm_count_lock);
4197
4198         kvm_usage_count++;
4199         if (kvm_usage_count == 1) {
4200                 atomic_set(&hardware_enable_failed, 0);
4201                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4202
4203                 if (atomic_read(&hardware_enable_failed)) {
4204                         hardware_disable_all_nolock();
4205                         r = -EBUSY;
4206                 }
4207         }
4208
4209         raw_spin_unlock(&kvm_count_lock);
4210
4211         return r;
4212 }
4213
4214 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4215                       void *v)
4216 {
4217         /*
4218          * Some (well, at least mine) BIOSes hang on reboot if
4219          * in vmx root mode.
4220          *
4221          * And Intel TXT required VMX off for all cpu when system shutdown.
4222          */
4223         pr_info("kvm: exiting hardware virtualization\n");
4224         kvm_rebooting = true;
4225         on_each_cpu(hardware_disable_nolock, NULL, 1);
4226         return NOTIFY_OK;
4227 }
4228
4229 static struct notifier_block kvm_reboot_notifier = {
4230         .notifier_call = kvm_reboot,
4231         .priority = 0,
4232 };
4233
4234 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4235 {
4236         int i;
4237
4238         for (i = 0; i < bus->dev_count; i++) {
4239                 struct kvm_io_device *pos = bus->range[i].dev;
4240
4241                 kvm_iodevice_destructor(pos);
4242         }
4243         kfree(bus);
4244 }
4245
4246 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4247                                  const struct kvm_io_range *r2)
4248 {
4249         gpa_t addr1 = r1->addr;
4250         gpa_t addr2 = r2->addr;
4251
4252         if (addr1 < addr2)
4253                 return -1;
4254
4255         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4256          * accept any overlapping write.  Any order is acceptable for
4257          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4258          * we process all of them.
4259          */
4260         if (r2->len) {
4261                 addr1 += r1->len;
4262                 addr2 += r2->len;
4263         }
4264
4265         if (addr1 > addr2)
4266                 return 1;
4267
4268         return 0;
4269 }
4270
4271 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4272 {
4273         return kvm_io_bus_cmp(p1, p2);
4274 }
4275
4276 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4277                              gpa_t addr, int len)
4278 {
4279         struct kvm_io_range *range, key;
4280         int off;
4281
4282         key = (struct kvm_io_range) {
4283                 .addr = addr,
4284                 .len = len,
4285         };
4286
4287         range = bsearch(&key, bus->range, bus->dev_count,
4288                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4289         if (range == NULL)
4290                 return -ENOENT;
4291
4292         off = range - bus->range;
4293
4294         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4295                 off--;
4296
4297         return off;
4298 }
4299
4300 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4301                               struct kvm_io_range *range, const void *val)
4302 {
4303         int idx;
4304
4305         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4306         if (idx < 0)
4307                 return -EOPNOTSUPP;
4308
4309         while (idx < bus->dev_count &&
4310                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4311                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4312                                         range->len, val))
4313                         return idx;
4314                 idx++;
4315         }
4316
4317         return -EOPNOTSUPP;
4318 }
4319
4320 /* kvm_io_bus_write - called under kvm->slots_lock */
4321 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4322                      int len, const void *val)
4323 {
4324         struct kvm_io_bus *bus;
4325         struct kvm_io_range range;
4326         int r;
4327
4328         range = (struct kvm_io_range) {
4329                 .addr = addr,
4330                 .len = len,
4331         };
4332
4333         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4334         if (!bus)
4335                 return -ENOMEM;
4336         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4337         return r < 0 ? r : 0;
4338 }
4339 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4340
4341 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4342 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4343                             gpa_t addr, int len, const void *val, long cookie)
4344 {
4345         struct kvm_io_bus *bus;
4346         struct kvm_io_range range;
4347
4348         range = (struct kvm_io_range) {
4349                 .addr = addr,
4350                 .len = len,
4351         };
4352
4353         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4354         if (!bus)
4355                 return -ENOMEM;
4356
4357         /* First try the device referenced by cookie. */
4358         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4359             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4360                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4361                                         val))
4362                         return cookie;
4363
4364         /*
4365          * cookie contained garbage; fall back to search and return the
4366          * correct cookie value.
4367          */
4368         return __kvm_io_bus_write(vcpu, bus, &range, val);
4369 }
4370
4371 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4372                              struct kvm_io_range *range, void *val)
4373 {
4374         int idx;
4375
4376         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4377         if (idx < 0)
4378                 return -EOPNOTSUPP;
4379
4380         while (idx < bus->dev_count &&
4381                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4382                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4383                                        range->len, val))
4384                         return idx;
4385                 idx++;
4386         }
4387
4388         return -EOPNOTSUPP;
4389 }
4390
4391 /* kvm_io_bus_read - called under kvm->slots_lock */
4392 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4393                     int len, void *val)
4394 {
4395         struct kvm_io_bus *bus;
4396         struct kvm_io_range range;
4397         int r;
4398
4399         range = (struct kvm_io_range) {
4400                 .addr = addr,
4401                 .len = len,
4402         };
4403
4404         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4405         if (!bus)
4406                 return -ENOMEM;
4407         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4408         return r < 0 ? r : 0;
4409 }
4410
4411 /* Caller must hold slots_lock. */
4412 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4413                             int len, struct kvm_io_device *dev)
4414 {
4415         int i;
4416         struct kvm_io_bus *new_bus, *bus;
4417         struct kvm_io_range range;
4418
4419         bus = kvm_get_bus(kvm, bus_idx);
4420         if (!bus)
4421                 return -ENOMEM;
4422
4423         /* exclude ioeventfd which is limited by maximum fd */
4424         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4425                 return -ENOSPC;
4426
4427         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4428                           GFP_KERNEL_ACCOUNT);
4429         if (!new_bus)
4430                 return -ENOMEM;
4431
4432         range = (struct kvm_io_range) {
4433                 .addr = addr,
4434                 .len = len,
4435                 .dev = dev,
4436         };
4437
4438         for (i = 0; i < bus->dev_count; i++)
4439                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4440                         break;
4441
4442         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4443         new_bus->dev_count++;
4444         new_bus->range[i] = range;
4445         memcpy(new_bus->range + i + 1, bus->range + i,
4446                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4447         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4448         synchronize_srcu_expedited(&kvm->srcu);
4449         kfree(bus);
4450
4451         return 0;
4452 }
4453
4454 /* Caller must hold slots_lock. */
4455 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4456                                struct kvm_io_device *dev)
4457 {
4458         int i, j;
4459         struct kvm_io_bus *new_bus, *bus;
4460
4461         bus = kvm_get_bus(kvm, bus_idx);
4462         if (!bus)
4463                 return;
4464
4465         for (i = 0; i < bus->dev_count; i++)
4466                 if (bus->range[i].dev == dev) {
4467                         break;
4468                 }
4469
4470         if (i == bus->dev_count)
4471                 return;
4472
4473         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4474                           GFP_KERNEL_ACCOUNT);
4475         if (new_bus) {
4476                 memcpy(new_bus, bus, struct_size(bus, range, i));
4477                 new_bus->dev_count--;
4478                 memcpy(new_bus->range + i, bus->range + i + 1,
4479                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
4480         } else {
4481                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4482                 for (j = 0; j < bus->dev_count; j++) {
4483                         if (j == i)
4484                                 continue;
4485                         kvm_iodevice_destructor(bus->range[j].dev);
4486                 }
4487         }
4488
4489         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4490         synchronize_srcu_expedited(&kvm->srcu);
4491         kfree(bus);
4492         return;
4493 }
4494
4495 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4496                                          gpa_t addr)
4497 {
4498         struct kvm_io_bus *bus;
4499         int dev_idx, srcu_idx;
4500         struct kvm_io_device *iodev = NULL;
4501
4502         srcu_idx = srcu_read_lock(&kvm->srcu);
4503
4504         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4505         if (!bus)
4506                 goto out_unlock;
4507
4508         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4509         if (dev_idx < 0)
4510                 goto out_unlock;
4511
4512         iodev = bus->range[dev_idx].dev;
4513
4514 out_unlock:
4515         srcu_read_unlock(&kvm->srcu, srcu_idx);
4516
4517         return iodev;
4518 }
4519 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4520
4521 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4522                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4523                            const char *fmt)
4524 {
4525         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4526                                           inode->i_private;
4527
4528         /* The debugfs files are a reference to the kvm struct which
4529          * is still valid when kvm_destroy_vm is called.
4530          * To avoid the race between open and the removal of the debugfs
4531          * directory we test against the users count.
4532          */
4533         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4534                 return -ENOENT;
4535
4536         if (simple_attr_open(inode, file, get,
4537                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4538                     ? set : NULL,
4539                     fmt)) {
4540                 kvm_put_kvm(stat_data->kvm);
4541                 return -ENOMEM;
4542         }
4543
4544         return 0;
4545 }
4546
4547 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4548 {
4549         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4550                                           inode->i_private;
4551
4552         simple_attr_release(inode, file);
4553         kvm_put_kvm(stat_data->kvm);
4554
4555         return 0;
4556 }
4557
4558 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4559 {
4560         *val = *(ulong *)((void *)kvm + offset);
4561
4562         return 0;
4563 }
4564
4565 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4566 {
4567         *(ulong *)((void *)kvm + offset) = 0;
4568
4569         return 0;
4570 }
4571
4572 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4573 {
4574         int i;
4575         struct kvm_vcpu *vcpu;
4576
4577         *val = 0;
4578
4579         kvm_for_each_vcpu(i, vcpu, kvm)
4580                 *val += *(u64 *)((void *)vcpu + offset);
4581
4582         return 0;
4583 }
4584
4585 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4586 {
4587         int i;
4588         struct kvm_vcpu *vcpu;
4589
4590         kvm_for_each_vcpu(i, vcpu, kvm)
4591                 *(u64 *)((void *)vcpu + offset) = 0;
4592
4593         return 0;
4594 }
4595
4596 static int kvm_stat_data_get(void *data, u64 *val)
4597 {
4598         int r = -EFAULT;
4599         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4600
4601         switch (stat_data->dbgfs_item->kind) {
4602         case KVM_STAT_VM:
4603                 r = kvm_get_stat_per_vm(stat_data->kvm,
4604                                         stat_data->dbgfs_item->offset, val);
4605                 break;
4606         case KVM_STAT_VCPU:
4607                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4608                                           stat_data->dbgfs_item->offset, val);
4609                 break;
4610         }
4611
4612         return r;
4613 }
4614
4615 static int kvm_stat_data_clear(void *data, u64 val)
4616 {
4617         int r = -EFAULT;
4618         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4619
4620         if (val)
4621                 return -EINVAL;
4622
4623         switch (stat_data->dbgfs_item->kind) {
4624         case KVM_STAT_VM:
4625                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4626                                           stat_data->dbgfs_item->offset);
4627                 break;
4628         case KVM_STAT_VCPU:
4629                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4630                                             stat_data->dbgfs_item->offset);
4631                 break;
4632         }
4633
4634         return r;
4635 }
4636
4637 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4638 {
4639         __simple_attr_check_format("%llu\n", 0ull);
4640         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4641                                 kvm_stat_data_clear, "%llu\n");
4642 }
4643
4644 static const struct file_operations stat_fops_per_vm = {
4645         .owner = THIS_MODULE,
4646         .open = kvm_stat_data_open,
4647         .release = kvm_debugfs_release,
4648         .read = simple_attr_read,
4649         .write = simple_attr_write,
4650         .llseek = no_llseek,
4651 };
4652
4653 static int vm_stat_get(void *_offset, u64 *val)
4654 {
4655         unsigned offset = (long)_offset;
4656         struct kvm *kvm;
4657         u64 tmp_val;
4658
4659         *val = 0;
4660         mutex_lock(&kvm_lock);
4661         list_for_each_entry(kvm, &vm_list, vm_list) {
4662                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4663                 *val += tmp_val;
4664         }
4665         mutex_unlock(&kvm_lock);
4666         return 0;
4667 }
4668
4669 static int vm_stat_clear(void *_offset, u64 val)
4670 {
4671         unsigned offset = (long)_offset;
4672         struct kvm *kvm;
4673
4674         if (val)
4675                 return -EINVAL;
4676
4677         mutex_lock(&kvm_lock);
4678         list_for_each_entry(kvm, &vm_list, vm_list) {
4679                 kvm_clear_stat_per_vm(kvm, offset);
4680         }
4681         mutex_unlock(&kvm_lock);
4682
4683         return 0;
4684 }
4685
4686 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4687
4688 static int vcpu_stat_get(void *_offset, u64 *val)
4689 {
4690         unsigned offset = (long)_offset;
4691         struct kvm *kvm;
4692         u64 tmp_val;
4693
4694         *val = 0;
4695         mutex_lock(&kvm_lock);
4696         list_for_each_entry(kvm, &vm_list, vm_list) {
4697                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4698                 *val += tmp_val;
4699         }
4700         mutex_unlock(&kvm_lock);
4701         return 0;
4702 }
4703
4704 static int vcpu_stat_clear(void *_offset, u64 val)
4705 {
4706         unsigned offset = (long)_offset;
4707         struct kvm *kvm;
4708
4709         if (val)
4710                 return -EINVAL;
4711
4712         mutex_lock(&kvm_lock);
4713         list_for_each_entry(kvm, &vm_list, vm_list) {
4714                 kvm_clear_stat_per_vcpu(kvm, offset);
4715         }
4716         mutex_unlock(&kvm_lock);
4717
4718         return 0;
4719 }
4720
4721 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4722                         "%llu\n");
4723
4724 static const struct file_operations *stat_fops[] = {
4725         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4726         [KVM_STAT_VM]   = &vm_stat_fops,
4727 };
4728
4729 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4730 {
4731         struct kobj_uevent_env *env;
4732         unsigned long long created, active;
4733
4734         if (!kvm_dev.this_device || !kvm)
4735                 return;
4736
4737         mutex_lock(&kvm_lock);
4738         if (type == KVM_EVENT_CREATE_VM) {
4739                 kvm_createvm_count++;
4740                 kvm_active_vms++;
4741         } else if (type == KVM_EVENT_DESTROY_VM) {
4742                 kvm_active_vms--;
4743         }
4744         created = kvm_createvm_count;
4745         active = kvm_active_vms;
4746         mutex_unlock(&kvm_lock);
4747
4748         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4749         if (!env)
4750                 return;
4751
4752         add_uevent_var(env, "CREATED=%llu", created);
4753         add_uevent_var(env, "COUNT=%llu", active);
4754
4755         if (type == KVM_EVENT_CREATE_VM) {
4756                 add_uevent_var(env, "EVENT=create");
4757                 kvm->userspace_pid = task_pid_nr(current);
4758         } else if (type == KVM_EVENT_DESTROY_VM) {
4759                 add_uevent_var(env, "EVENT=destroy");
4760         }
4761         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4762
4763         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4764                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4765
4766                 if (p) {
4767                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4768                         if (!IS_ERR(tmp))
4769                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4770                         kfree(p);
4771                 }
4772         }
4773         /* no need for checks, since we are adding at most only 5 keys */
4774         env->envp[env->envp_idx++] = NULL;
4775         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4776         kfree(env);
4777 }
4778
4779 static void kvm_init_debug(void)
4780 {
4781         struct kvm_stats_debugfs_item *p;
4782
4783         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4784
4785         kvm_debugfs_num_entries = 0;
4786         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4787                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4788                                     kvm_debugfs_dir, (void *)(long)p->offset,
4789                                     stat_fops[p->kind]);
4790         }
4791 }
4792
4793 static int kvm_suspend(void)
4794 {
4795         if (kvm_usage_count)
4796                 hardware_disable_nolock(NULL);
4797         return 0;
4798 }
4799
4800 static void kvm_resume(void)
4801 {
4802         if (kvm_usage_count) {
4803 #ifdef CONFIG_LOCKDEP
4804                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4805 #endif
4806                 hardware_enable_nolock(NULL);
4807         }
4808 }
4809
4810 static struct syscore_ops kvm_syscore_ops = {
4811         .suspend = kvm_suspend,
4812         .resume = kvm_resume,
4813 };
4814
4815 static inline
4816 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4817 {
4818         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4819 }
4820
4821 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4822 {
4823         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4824
4825         WRITE_ONCE(vcpu->preempted, false);
4826         WRITE_ONCE(vcpu->ready, false);
4827
4828         __this_cpu_write(kvm_running_vcpu, vcpu);
4829         kvm_arch_sched_in(vcpu, cpu);
4830         kvm_arch_vcpu_load(vcpu, cpu);
4831 }
4832
4833 static void kvm_sched_out(struct preempt_notifier *pn,
4834                           struct task_struct *next)
4835 {
4836         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4837
4838         if (current->state == TASK_RUNNING) {
4839                 WRITE_ONCE(vcpu->preempted, true);
4840                 WRITE_ONCE(vcpu->ready, true);
4841         }
4842         kvm_arch_vcpu_put(vcpu);
4843         __this_cpu_write(kvm_running_vcpu, NULL);
4844 }
4845
4846 /**
4847  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4848  *
4849  * We can disable preemption locally around accessing the per-CPU variable,
4850  * and use the resolved vcpu pointer after enabling preemption again,
4851  * because even if the current thread is migrated to another CPU, reading
4852  * the per-CPU value later will give us the same value as we update the
4853  * per-CPU variable in the preempt notifier handlers.
4854  */
4855 struct kvm_vcpu *kvm_get_running_vcpu(void)
4856 {
4857         struct kvm_vcpu *vcpu;
4858
4859         preempt_disable();
4860         vcpu = __this_cpu_read(kvm_running_vcpu);
4861         preempt_enable();
4862
4863         return vcpu;
4864 }
4865 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4866
4867 /**
4868  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4869  */
4870 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4871 {
4872         return &kvm_running_vcpu;
4873 }
4874
4875 struct kvm_cpu_compat_check {
4876         void *opaque;
4877         int *ret;
4878 };
4879
4880 static void check_processor_compat(void *data)
4881 {
4882         struct kvm_cpu_compat_check *c = data;
4883
4884         *c->ret = kvm_arch_check_processor_compat(c->opaque);
4885 }
4886
4887 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4888                   struct module *module)
4889 {
4890         struct kvm_cpu_compat_check c;
4891         int r;
4892         int cpu;
4893
4894         r = kvm_arch_init(opaque);
4895         if (r)
4896                 goto out_fail;
4897
4898         /*
4899          * kvm_arch_init makes sure there's at most one caller
4900          * for architectures that support multiple implementations,
4901          * like intel and amd on x86.
4902          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4903          * conflicts in case kvm is already setup for another implementation.
4904          */
4905         r = kvm_irqfd_init();
4906         if (r)
4907                 goto out_irqfd;
4908
4909         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4910                 r = -ENOMEM;
4911                 goto out_free_0;
4912         }
4913
4914         r = kvm_arch_hardware_setup(opaque);
4915         if (r < 0)
4916                 goto out_free_1;
4917
4918         c.ret = &r;
4919         c.opaque = opaque;
4920         for_each_online_cpu(cpu) {
4921                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4922                 if (r < 0)
4923                         goto out_free_2;
4924         }
4925
4926         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4927                                       kvm_starting_cpu, kvm_dying_cpu);
4928         if (r)
4929                 goto out_free_2;
4930         register_reboot_notifier(&kvm_reboot_notifier);
4931
4932         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4933         if (!vcpu_align)
4934                 vcpu_align = __alignof__(struct kvm_vcpu);
4935         kvm_vcpu_cache =
4936                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4937                                            SLAB_ACCOUNT,
4938                                            offsetof(struct kvm_vcpu, arch),
4939                                            sizeof_field(struct kvm_vcpu, arch),
4940                                            NULL);
4941         if (!kvm_vcpu_cache) {
4942                 r = -ENOMEM;
4943                 goto out_free_3;
4944         }
4945
4946         r = kvm_async_pf_init();
4947         if (r)
4948                 goto out_free;
4949
4950         kvm_chardev_ops.owner = module;
4951         kvm_vm_fops.owner = module;
4952         kvm_vcpu_fops.owner = module;
4953
4954         r = misc_register(&kvm_dev);
4955         if (r) {
4956                 pr_err("kvm: misc device register failed\n");
4957                 goto out_unreg;
4958         }
4959
4960         register_syscore_ops(&kvm_syscore_ops);
4961
4962         kvm_preempt_ops.sched_in = kvm_sched_in;
4963         kvm_preempt_ops.sched_out = kvm_sched_out;
4964
4965         kvm_init_debug();
4966
4967         r = kvm_vfio_ops_init();
4968         WARN_ON(r);
4969
4970         return 0;
4971
4972 out_unreg:
4973         kvm_async_pf_deinit();
4974 out_free:
4975         kmem_cache_destroy(kvm_vcpu_cache);
4976 out_free_3:
4977         unregister_reboot_notifier(&kvm_reboot_notifier);
4978         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4979 out_free_2:
4980         kvm_arch_hardware_unsetup();
4981 out_free_1:
4982         free_cpumask_var(cpus_hardware_enabled);
4983 out_free_0:
4984         kvm_irqfd_exit();
4985 out_irqfd:
4986         kvm_arch_exit();
4987 out_fail:
4988         return r;
4989 }
4990 EXPORT_SYMBOL_GPL(kvm_init);
4991
4992 void kvm_exit(void)
4993 {
4994         debugfs_remove_recursive(kvm_debugfs_dir);
4995         misc_deregister(&kvm_dev);
4996         kmem_cache_destroy(kvm_vcpu_cache);
4997         kvm_async_pf_deinit();
4998         unregister_syscore_ops(&kvm_syscore_ops);
4999         unregister_reboot_notifier(&kvm_reboot_notifier);
5000         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5001         on_each_cpu(hardware_disable_nolock, NULL, 1);
5002         kvm_arch_hardware_unsetup();
5003         kvm_arch_exit();
5004         kvm_irqfd_exit();
5005         free_cpumask_var(cpus_hardware_enabled);
5006         kvm_vfio_ops_exit();
5007 }
5008 EXPORT_SYMBOL_GPL(kvm_exit);
5009
5010 struct kvm_vm_worker_thread_context {
5011         struct kvm *kvm;
5012         struct task_struct *parent;
5013         struct completion init_done;
5014         kvm_vm_thread_fn_t thread_fn;
5015         uintptr_t data;
5016         int err;
5017 };
5018
5019 static int kvm_vm_worker_thread(void *context)
5020 {
5021         /*
5022          * The init_context is allocated on the stack of the parent thread, so
5023          * we have to locally copy anything that is needed beyond initialization
5024          */
5025         struct kvm_vm_worker_thread_context *init_context = context;
5026         struct kvm *kvm = init_context->kvm;
5027         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5028         uintptr_t data = init_context->data;
5029         int err;
5030
5031         err = kthread_park(current);
5032         /* kthread_park(current) is never supposed to return an error */
5033         WARN_ON(err != 0);
5034         if (err)
5035                 goto init_complete;
5036
5037         err = cgroup_attach_task_all(init_context->parent, current);
5038         if (err) {
5039                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5040                         __func__, err);
5041                 goto init_complete;
5042         }
5043
5044         set_user_nice(current, task_nice(init_context->parent));
5045
5046 init_complete:
5047         init_context->err = err;
5048         complete(&init_context->init_done);
5049         init_context = NULL;
5050
5051         if (err)
5052                 return err;
5053
5054         /* Wait to be woken up by the spawner before proceeding. */
5055         kthread_parkme();
5056
5057         if (!kthread_should_stop())
5058                 err = thread_fn(kvm, data);
5059
5060         return err;
5061 }
5062
5063 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5064                                 uintptr_t data, const char *name,
5065                                 struct task_struct **thread_ptr)
5066 {
5067         struct kvm_vm_worker_thread_context init_context = {};
5068         struct task_struct *thread;
5069
5070         *thread_ptr = NULL;
5071         init_context.kvm = kvm;
5072         init_context.parent = current;
5073         init_context.thread_fn = thread_fn;
5074         init_context.data = data;
5075         init_completion(&init_context.init_done);
5076
5077         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5078                              "%s-%d", name, task_pid_nr(current));
5079         if (IS_ERR(thread))
5080                 return PTR_ERR(thread);
5081
5082         /* kthread_run is never supposed to return NULL */
5083         WARN_ON(thread == NULL);
5084
5085         wait_for_completion(&init_context.init_done);
5086
5087         if (!init_context.err)
5088                 *thread_ptr = thread;
5089
5090         return init_context.err;
5091 }