f169ecc4f2e87f44ece32540b8428529aa01ae84
[sfrench/cifs-2.6.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129
130 static bool largepages_enabled = true;
131
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137
138 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
139 {
140         if (pfn_valid(pfn))
141                 return PageReserved(pfn_to_page(pfn));
142
143         return true;
144 }
145
146 /*
147  * Switches to specified vcpu, until a matching vcpu_put()
148  */
149 int vcpu_load(struct kvm_vcpu *vcpu)
150 {
151         int cpu;
152
153         if (mutex_lock_killable(&vcpu->mutex))
154                 return -EINTR;
155         cpu = get_cpu();
156         preempt_notifier_register(&vcpu->preempt_notifier);
157         kvm_arch_vcpu_load(vcpu, cpu);
158         put_cpu();
159         return 0;
160 }
161 EXPORT_SYMBOL_GPL(vcpu_load);
162
163 void vcpu_put(struct kvm_vcpu *vcpu)
164 {
165         preempt_disable();
166         kvm_arch_vcpu_put(vcpu);
167         preempt_notifier_unregister(&vcpu->preempt_notifier);
168         preempt_enable();
169         mutex_unlock(&vcpu->mutex);
170 }
171 EXPORT_SYMBOL_GPL(vcpu_put);
172
173 /* TODO: merge with kvm_arch_vcpu_should_kick */
174 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
175 {
176         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
177
178         /*
179          * We need to wait for the VCPU to reenable interrupts and get out of
180          * READING_SHADOW_PAGE_TABLES mode.
181          */
182         if (req & KVM_REQUEST_WAIT)
183                 return mode != OUTSIDE_GUEST_MODE;
184
185         /*
186          * Need to kick a running VCPU, but otherwise there is nothing to do.
187          */
188         return mode == IN_GUEST_MODE;
189 }
190
191 static void ack_flush(void *_completed)
192 {
193 }
194
195 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
196 {
197         if (unlikely(!cpus))
198                 cpus = cpu_online_mask;
199
200         if (cpumask_empty(cpus))
201                 return false;
202
203         smp_call_function_many(cpus, ack_flush, NULL, wait);
204         return true;
205 }
206
207 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
208 {
209         int i, cpu, me;
210         cpumask_var_t cpus;
211         bool called;
212         struct kvm_vcpu *vcpu;
213
214         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
215
216         me = get_cpu();
217         kvm_for_each_vcpu(i, vcpu, kvm) {
218                 kvm_make_request(req, vcpu);
219                 cpu = vcpu->cpu;
220
221                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
222                         continue;
223
224                 if (cpus != NULL && cpu != -1 && cpu != me &&
225                     kvm_request_needs_ipi(vcpu, req))
226                         __cpumask_set_cpu(cpu, cpus);
227         }
228         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
229         put_cpu();
230         free_cpumask_var(cpus);
231         return called;
232 }
233
234 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
235 void kvm_flush_remote_tlbs(struct kvm *kvm)
236 {
237         /*
238          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
239          * kvm_make_all_cpus_request.
240          */
241         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
242
243         /*
244          * We want to publish modifications to the page tables before reading
245          * mode. Pairs with a memory barrier in arch-specific code.
246          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
247          * and smp_mb in walk_shadow_page_lockless_begin/end.
248          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
249          *
250          * There is already an smp_mb__after_atomic() before
251          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
252          * barrier here.
253          */
254         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
255                 ++kvm->stat.remote_tlb_flush;
256         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
257 }
258 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
259 #endif
260
261 void kvm_reload_remote_mmus(struct kvm *kvm)
262 {
263         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
264 }
265
266 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
267 {
268         struct page *page;
269         int r;
270
271         mutex_init(&vcpu->mutex);
272         vcpu->cpu = -1;
273         vcpu->kvm = kvm;
274         vcpu->vcpu_id = id;
275         vcpu->pid = NULL;
276         init_swait_queue_head(&vcpu->wq);
277         kvm_async_pf_vcpu_init(vcpu);
278
279         vcpu->pre_pcpu = -1;
280         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
281
282         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
283         if (!page) {
284                 r = -ENOMEM;
285                 goto fail;
286         }
287         vcpu->run = page_address(page);
288
289         kvm_vcpu_set_in_spin_loop(vcpu, false);
290         kvm_vcpu_set_dy_eligible(vcpu, false);
291         vcpu->preempted = false;
292
293         r = kvm_arch_vcpu_init(vcpu);
294         if (r < 0)
295                 goto fail_free_run;
296         return 0;
297
298 fail_free_run:
299         free_page((unsigned long)vcpu->run);
300 fail:
301         return r;
302 }
303 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
304
305 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
306 {
307         /*
308          * no need for rcu_read_lock as VCPU_RUN is the only place that
309          * will change the vcpu->pid pointer and on uninit all file
310          * descriptors are already gone.
311          */
312         put_pid(rcu_dereference_protected(vcpu->pid, 1));
313         kvm_arch_vcpu_uninit(vcpu);
314         free_page((unsigned long)vcpu->run);
315 }
316 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
317
318 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
319 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
320 {
321         return container_of(mn, struct kvm, mmu_notifier);
322 }
323
324 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
325                                         struct mm_struct *mm,
326                                         unsigned long address,
327                                         pte_t pte)
328 {
329         struct kvm *kvm = mmu_notifier_to_kvm(mn);
330         int idx;
331
332         idx = srcu_read_lock(&kvm->srcu);
333         spin_lock(&kvm->mmu_lock);
334         kvm->mmu_notifier_seq++;
335         kvm_set_spte_hva(kvm, address, pte);
336         spin_unlock(&kvm->mmu_lock);
337         srcu_read_unlock(&kvm->srcu, idx);
338 }
339
340 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
341                                                     struct mm_struct *mm,
342                                                     unsigned long start,
343                                                     unsigned long end)
344 {
345         struct kvm *kvm = mmu_notifier_to_kvm(mn);
346         int need_tlb_flush = 0, idx;
347
348         idx = srcu_read_lock(&kvm->srcu);
349         spin_lock(&kvm->mmu_lock);
350         /*
351          * The count increase must become visible at unlock time as no
352          * spte can be established without taking the mmu_lock and
353          * count is also read inside the mmu_lock critical section.
354          */
355         kvm->mmu_notifier_count++;
356         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
357         need_tlb_flush |= kvm->tlbs_dirty;
358         /* we've to flush the tlb before the pages can be freed */
359         if (need_tlb_flush)
360                 kvm_flush_remote_tlbs(kvm);
361
362         spin_unlock(&kvm->mmu_lock);
363         srcu_read_unlock(&kvm->srcu, idx);
364 }
365
366 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
367                                                   struct mm_struct *mm,
368                                                   unsigned long start,
369                                                   unsigned long end)
370 {
371         struct kvm *kvm = mmu_notifier_to_kvm(mn);
372
373         spin_lock(&kvm->mmu_lock);
374         /*
375          * This sequence increase will notify the kvm page fault that
376          * the page that is going to be mapped in the spte could have
377          * been freed.
378          */
379         kvm->mmu_notifier_seq++;
380         smp_wmb();
381         /*
382          * The above sequence increase must be visible before the
383          * below count decrease, which is ensured by the smp_wmb above
384          * in conjunction with the smp_rmb in mmu_notifier_retry().
385          */
386         kvm->mmu_notifier_count--;
387         spin_unlock(&kvm->mmu_lock);
388
389         BUG_ON(kvm->mmu_notifier_count < 0);
390 }
391
392 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
393                                               struct mm_struct *mm,
394                                               unsigned long start,
395                                               unsigned long end)
396 {
397         struct kvm *kvm = mmu_notifier_to_kvm(mn);
398         int young, idx;
399
400         idx = srcu_read_lock(&kvm->srcu);
401         spin_lock(&kvm->mmu_lock);
402
403         young = kvm_age_hva(kvm, start, end);
404         if (young)
405                 kvm_flush_remote_tlbs(kvm);
406
407         spin_unlock(&kvm->mmu_lock);
408         srcu_read_unlock(&kvm->srcu, idx);
409
410         return young;
411 }
412
413 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
414                                         struct mm_struct *mm,
415                                         unsigned long start,
416                                         unsigned long end)
417 {
418         struct kvm *kvm = mmu_notifier_to_kvm(mn);
419         int young, idx;
420
421         idx = srcu_read_lock(&kvm->srcu);
422         spin_lock(&kvm->mmu_lock);
423         /*
424          * Even though we do not flush TLB, this will still adversely
425          * affect performance on pre-Haswell Intel EPT, where there is
426          * no EPT Access Bit to clear so that we have to tear down EPT
427          * tables instead. If we find this unacceptable, we can always
428          * add a parameter to kvm_age_hva so that it effectively doesn't
429          * do anything on clear_young.
430          *
431          * Also note that currently we never issue secondary TLB flushes
432          * from clear_young, leaving this job up to the regular system
433          * cadence. If we find this inaccurate, we might come up with a
434          * more sophisticated heuristic later.
435          */
436         young = kvm_age_hva(kvm, start, end);
437         spin_unlock(&kvm->mmu_lock);
438         srcu_read_unlock(&kvm->srcu, idx);
439
440         return young;
441 }
442
443 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
444                                        struct mm_struct *mm,
445                                        unsigned long address)
446 {
447         struct kvm *kvm = mmu_notifier_to_kvm(mn);
448         int young, idx;
449
450         idx = srcu_read_lock(&kvm->srcu);
451         spin_lock(&kvm->mmu_lock);
452         young = kvm_test_age_hva(kvm, address);
453         spin_unlock(&kvm->mmu_lock);
454         srcu_read_unlock(&kvm->srcu, idx);
455
456         return young;
457 }
458
459 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
460                                      struct mm_struct *mm)
461 {
462         struct kvm *kvm = mmu_notifier_to_kvm(mn);
463         int idx;
464
465         idx = srcu_read_lock(&kvm->srcu);
466         kvm_arch_flush_shadow_all(kvm);
467         srcu_read_unlock(&kvm->srcu, idx);
468 }
469
470 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
471         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
472         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
473         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
474         .clear_young            = kvm_mmu_notifier_clear_young,
475         .test_young             = kvm_mmu_notifier_test_young,
476         .change_pte             = kvm_mmu_notifier_change_pte,
477         .release                = kvm_mmu_notifier_release,
478 };
479
480 static int kvm_init_mmu_notifier(struct kvm *kvm)
481 {
482         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
483         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
484 }
485
486 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
487
488 static int kvm_init_mmu_notifier(struct kvm *kvm)
489 {
490         return 0;
491 }
492
493 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
494
495 static struct kvm_memslots *kvm_alloc_memslots(void)
496 {
497         int i;
498         struct kvm_memslots *slots;
499
500         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
501         if (!slots)
502                 return NULL;
503
504         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
505                 slots->id_to_index[i] = slots->memslots[i].id = i;
506
507         return slots;
508 }
509
510 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
511 {
512         if (!memslot->dirty_bitmap)
513                 return;
514
515         kvfree(memslot->dirty_bitmap);
516         memslot->dirty_bitmap = NULL;
517 }
518
519 /*
520  * Free any memory in @free but not in @dont.
521  */
522 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
523                               struct kvm_memory_slot *dont)
524 {
525         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
526                 kvm_destroy_dirty_bitmap(free);
527
528         kvm_arch_free_memslot(kvm, free, dont);
529
530         free->npages = 0;
531 }
532
533 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
534 {
535         struct kvm_memory_slot *memslot;
536
537         if (!slots)
538                 return;
539
540         kvm_for_each_memslot(memslot, slots)
541                 kvm_free_memslot(kvm, memslot, NULL);
542
543         kvfree(slots);
544 }
545
546 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
547 {
548         int i;
549
550         if (!kvm->debugfs_dentry)
551                 return;
552
553         debugfs_remove_recursive(kvm->debugfs_dentry);
554
555         if (kvm->debugfs_stat_data) {
556                 for (i = 0; i < kvm_debugfs_num_entries; i++)
557                         kfree(kvm->debugfs_stat_data[i]);
558                 kfree(kvm->debugfs_stat_data);
559         }
560 }
561
562 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
563 {
564         char dir_name[ITOA_MAX_LEN * 2];
565         struct kvm_stat_data *stat_data;
566         struct kvm_stats_debugfs_item *p;
567
568         if (!debugfs_initialized())
569                 return 0;
570
571         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
572         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
573                                                  kvm_debugfs_dir);
574         if (!kvm->debugfs_dentry)
575                 return -ENOMEM;
576
577         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
578                                          sizeof(*kvm->debugfs_stat_data),
579                                          GFP_KERNEL);
580         if (!kvm->debugfs_stat_data)
581                 return -ENOMEM;
582
583         for (p = debugfs_entries; p->name; p++) {
584                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
585                 if (!stat_data)
586                         return -ENOMEM;
587
588                 stat_data->kvm = kvm;
589                 stat_data->offset = p->offset;
590                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
591                 if (!debugfs_create_file(p->name, 0644,
592                                          kvm->debugfs_dentry,
593                                          stat_data,
594                                          stat_fops_per_vm[p->kind]))
595                         return -ENOMEM;
596         }
597         return 0;
598 }
599
600 static struct kvm *kvm_create_vm(unsigned long type)
601 {
602         int r, i;
603         struct kvm *kvm = kvm_arch_alloc_vm();
604
605         if (!kvm)
606                 return ERR_PTR(-ENOMEM);
607
608         spin_lock_init(&kvm->mmu_lock);
609         mmgrab(current->mm);
610         kvm->mm = current->mm;
611         kvm_eventfd_init(kvm);
612         mutex_init(&kvm->lock);
613         mutex_init(&kvm->irq_lock);
614         mutex_init(&kvm->slots_lock);
615         refcount_set(&kvm->users_count, 1);
616         INIT_LIST_HEAD(&kvm->devices);
617
618         r = kvm_arch_init_vm(kvm, type);
619         if (r)
620                 goto out_err_no_disable;
621
622         r = hardware_enable_all();
623         if (r)
624                 goto out_err_no_disable;
625
626 #ifdef CONFIG_HAVE_KVM_IRQFD
627         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
628 #endif
629
630         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
631
632         r = -ENOMEM;
633         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
634                 struct kvm_memslots *slots = kvm_alloc_memslots();
635                 if (!slots)
636                         goto out_err_no_srcu;
637                 /*
638                  * Generations must be different for each address space.
639                  * Init kvm generation close to the maximum to easily test the
640                  * code of handling generation number wrap-around.
641                  */
642                 slots->generation = i * 2 - 150;
643                 rcu_assign_pointer(kvm->memslots[i], slots);
644         }
645
646         if (init_srcu_struct(&kvm->srcu))
647                 goto out_err_no_srcu;
648         if (init_srcu_struct(&kvm->irq_srcu))
649                 goto out_err_no_irq_srcu;
650         for (i = 0; i < KVM_NR_BUSES; i++) {
651                 rcu_assign_pointer(kvm->buses[i],
652                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
653                 if (!kvm->buses[i])
654                         goto out_err;
655         }
656
657         r = kvm_init_mmu_notifier(kvm);
658         if (r)
659                 goto out_err;
660
661         spin_lock(&kvm_lock);
662         list_add(&kvm->vm_list, &vm_list);
663         spin_unlock(&kvm_lock);
664
665         preempt_notifier_inc();
666
667         return kvm;
668
669 out_err:
670         cleanup_srcu_struct(&kvm->irq_srcu);
671 out_err_no_irq_srcu:
672         cleanup_srcu_struct(&kvm->srcu);
673 out_err_no_srcu:
674         hardware_disable_all();
675 out_err_no_disable:
676         refcount_set(&kvm->users_count, 0);
677         for (i = 0; i < KVM_NR_BUSES; i++)
678                 kfree(kvm_get_bus(kvm, i));
679         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
680                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
681         kvm_arch_free_vm(kvm);
682         mmdrop(current->mm);
683         return ERR_PTR(r);
684 }
685
686 static void kvm_destroy_devices(struct kvm *kvm)
687 {
688         struct kvm_device *dev, *tmp;
689
690         /*
691          * We do not need to take the kvm->lock here, because nobody else
692          * has a reference to the struct kvm at this point and therefore
693          * cannot access the devices list anyhow.
694          */
695         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
696                 list_del(&dev->vm_node);
697                 dev->ops->destroy(dev);
698         }
699 }
700
701 static void kvm_destroy_vm(struct kvm *kvm)
702 {
703         int i;
704         struct mm_struct *mm = kvm->mm;
705
706         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
707         kvm_destroy_vm_debugfs(kvm);
708         kvm_arch_sync_events(kvm);
709         spin_lock(&kvm_lock);
710         list_del(&kvm->vm_list);
711         spin_unlock(&kvm_lock);
712         kvm_free_irq_routing(kvm);
713         for (i = 0; i < KVM_NR_BUSES; i++) {
714                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
715
716                 if (bus)
717                         kvm_io_bus_destroy(bus);
718                 kvm->buses[i] = NULL;
719         }
720         kvm_coalesced_mmio_free(kvm);
721 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
722         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
723 #else
724         kvm_arch_flush_shadow_all(kvm);
725 #endif
726         kvm_arch_destroy_vm(kvm);
727         kvm_destroy_devices(kvm);
728         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
729                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
730         cleanup_srcu_struct(&kvm->irq_srcu);
731         cleanup_srcu_struct(&kvm->srcu);
732         kvm_arch_free_vm(kvm);
733         preempt_notifier_dec();
734         hardware_disable_all();
735         mmdrop(mm);
736 }
737
738 void kvm_get_kvm(struct kvm *kvm)
739 {
740         refcount_inc(&kvm->users_count);
741 }
742 EXPORT_SYMBOL_GPL(kvm_get_kvm);
743
744 void kvm_put_kvm(struct kvm *kvm)
745 {
746         if (refcount_dec_and_test(&kvm->users_count))
747                 kvm_destroy_vm(kvm);
748 }
749 EXPORT_SYMBOL_GPL(kvm_put_kvm);
750
751
752 static int kvm_vm_release(struct inode *inode, struct file *filp)
753 {
754         struct kvm *kvm = filp->private_data;
755
756         kvm_irqfd_release(kvm);
757
758         kvm_put_kvm(kvm);
759         return 0;
760 }
761
762 /*
763  * Allocation size is twice as large as the actual dirty bitmap size.
764  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
765  */
766 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
767 {
768         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
769
770         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
771         if (!memslot->dirty_bitmap)
772                 return -ENOMEM;
773
774         return 0;
775 }
776
777 /*
778  * Insert memslot and re-sort memslots based on their GFN,
779  * so binary search could be used to lookup GFN.
780  * Sorting algorithm takes advantage of having initially
781  * sorted array and known changed memslot position.
782  */
783 static void update_memslots(struct kvm_memslots *slots,
784                             struct kvm_memory_slot *new)
785 {
786         int id = new->id;
787         int i = slots->id_to_index[id];
788         struct kvm_memory_slot *mslots = slots->memslots;
789
790         WARN_ON(mslots[i].id != id);
791         if (!new->npages) {
792                 WARN_ON(!mslots[i].npages);
793                 if (mslots[i].npages)
794                         slots->used_slots--;
795         } else {
796                 if (!mslots[i].npages)
797                         slots->used_slots++;
798         }
799
800         while (i < KVM_MEM_SLOTS_NUM - 1 &&
801                new->base_gfn <= mslots[i + 1].base_gfn) {
802                 if (!mslots[i + 1].npages)
803                         break;
804                 mslots[i] = mslots[i + 1];
805                 slots->id_to_index[mslots[i].id] = i;
806                 i++;
807         }
808
809         /*
810          * The ">=" is needed when creating a slot with base_gfn == 0,
811          * so that it moves before all those with base_gfn == npages == 0.
812          *
813          * On the other hand, if new->npages is zero, the above loop has
814          * already left i pointing to the beginning of the empty part of
815          * mslots, and the ">=" would move the hole backwards in this
816          * case---which is wrong.  So skip the loop when deleting a slot.
817          */
818         if (new->npages) {
819                 while (i > 0 &&
820                        new->base_gfn >= mslots[i - 1].base_gfn) {
821                         mslots[i] = mslots[i - 1];
822                         slots->id_to_index[mslots[i].id] = i;
823                         i--;
824                 }
825         } else
826                 WARN_ON_ONCE(i != slots->used_slots);
827
828         mslots[i] = *new;
829         slots->id_to_index[mslots[i].id] = i;
830 }
831
832 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
833 {
834         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
835
836 #ifdef __KVM_HAVE_READONLY_MEM
837         valid_flags |= KVM_MEM_READONLY;
838 #endif
839
840         if (mem->flags & ~valid_flags)
841                 return -EINVAL;
842
843         return 0;
844 }
845
846 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
847                 int as_id, struct kvm_memslots *slots)
848 {
849         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
850
851         /*
852          * Set the low bit in the generation, which disables SPTE caching
853          * until the end of synchronize_srcu_expedited.
854          */
855         WARN_ON(old_memslots->generation & 1);
856         slots->generation = old_memslots->generation + 1;
857
858         rcu_assign_pointer(kvm->memslots[as_id], slots);
859         synchronize_srcu_expedited(&kvm->srcu);
860
861         /*
862          * Increment the new memslot generation a second time. This prevents
863          * vm exits that race with memslot updates from caching a memslot
864          * generation that will (potentially) be valid forever.
865          *
866          * Generations must be unique even across address spaces.  We do not need
867          * a global counter for that, instead the generation space is evenly split
868          * across address spaces.  For example, with two address spaces, address
869          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
870          * use generations 2, 6, 10, 14, ...
871          */
872         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
873
874         kvm_arch_memslots_updated(kvm, slots);
875
876         return old_memslots;
877 }
878
879 /*
880  * Allocate some memory and give it an address in the guest physical address
881  * space.
882  *
883  * Discontiguous memory is allowed, mostly for framebuffers.
884  *
885  * Must be called holding kvm->slots_lock for write.
886  */
887 int __kvm_set_memory_region(struct kvm *kvm,
888                             const struct kvm_userspace_memory_region *mem)
889 {
890         int r;
891         gfn_t base_gfn;
892         unsigned long npages;
893         struct kvm_memory_slot *slot;
894         struct kvm_memory_slot old, new;
895         struct kvm_memslots *slots = NULL, *old_memslots;
896         int as_id, id;
897         enum kvm_mr_change change;
898
899         r = check_memory_region_flags(mem);
900         if (r)
901                 goto out;
902
903         r = -EINVAL;
904         as_id = mem->slot >> 16;
905         id = (u16)mem->slot;
906
907         /* General sanity checks */
908         if (mem->memory_size & (PAGE_SIZE - 1))
909                 goto out;
910         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
911                 goto out;
912         /* We can read the guest memory with __xxx_user() later on. */
913         if ((id < KVM_USER_MEM_SLOTS) &&
914             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
915              !access_ok(VERIFY_WRITE,
916                         (void __user *)(unsigned long)mem->userspace_addr,
917                         mem->memory_size)))
918                 goto out;
919         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
920                 goto out;
921         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
922                 goto out;
923
924         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
925         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
926         npages = mem->memory_size >> PAGE_SHIFT;
927
928         if (npages > KVM_MEM_MAX_NR_PAGES)
929                 goto out;
930
931         new = old = *slot;
932
933         new.id = id;
934         new.base_gfn = base_gfn;
935         new.npages = npages;
936         new.flags = mem->flags;
937
938         if (npages) {
939                 if (!old.npages)
940                         change = KVM_MR_CREATE;
941                 else { /* Modify an existing slot. */
942                         if ((mem->userspace_addr != old.userspace_addr) ||
943                             (npages != old.npages) ||
944                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
945                                 goto out;
946
947                         if (base_gfn != old.base_gfn)
948                                 change = KVM_MR_MOVE;
949                         else if (new.flags != old.flags)
950                                 change = KVM_MR_FLAGS_ONLY;
951                         else { /* Nothing to change. */
952                                 r = 0;
953                                 goto out;
954                         }
955                 }
956         } else {
957                 if (!old.npages)
958                         goto out;
959
960                 change = KVM_MR_DELETE;
961                 new.base_gfn = 0;
962                 new.flags = 0;
963         }
964
965         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
966                 /* Check for overlaps */
967                 r = -EEXIST;
968                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
969                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
970                             (slot->id == id))
971                                 continue;
972                         if (!((base_gfn + npages <= slot->base_gfn) ||
973                               (base_gfn >= slot->base_gfn + slot->npages)))
974                                 goto out;
975                 }
976         }
977
978         /* Free page dirty bitmap if unneeded */
979         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
980                 new.dirty_bitmap = NULL;
981
982         r = -ENOMEM;
983         if (change == KVM_MR_CREATE) {
984                 new.userspace_addr = mem->userspace_addr;
985
986                 if (kvm_arch_create_memslot(kvm, &new, npages))
987                         goto out_free;
988         }
989
990         /* Allocate page dirty bitmap if needed */
991         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
992                 if (kvm_create_dirty_bitmap(&new) < 0)
993                         goto out_free;
994         }
995
996         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
997         if (!slots)
998                 goto out_free;
999         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1000
1001         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1002                 slot = id_to_memslot(slots, id);
1003                 slot->flags |= KVM_MEMSLOT_INVALID;
1004
1005                 old_memslots = install_new_memslots(kvm, as_id, slots);
1006
1007                 /* From this point no new shadow pages pointing to a deleted,
1008                  * or moved, memslot will be created.
1009                  *
1010                  * validation of sp->gfn happens in:
1011                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1012                  *      - kvm_is_visible_gfn (mmu_check_roots)
1013                  */
1014                 kvm_arch_flush_shadow_memslot(kvm, slot);
1015
1016                 /*
1017                  * We can re-use the old_memslots from above, the only difference
1018                  * from the currently installed memslots is the invalid flag.  This
1019                  * will get overwritten by update_memslots anyway.
1020                  */
1021                 slots = old_memslots;
1022         }
1023
1024         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1025         if (r)
1026                 goto out_slots;
1027
1028         /* actual memory is freed via old in kvm_free_memslot below */
1029         if (change == KVM_MR_DELETE) {
1030                 new.dirty_bitmap = NULL;
1031                 memset(&new.arch, 0, sizeof(new.arch));
1032         }
1033
1034         update_memslots(slots, &new);
1035         old_memslots = install_new_memslots(kvm, as_id, slots);
1036
1037         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1038
1039         kvm_free_memslot(kvm, &old, &new);
1040         kvfree(old_memslots);
1041         return 0;
1042
1043 out_slots:
1044         kvfree(slots);
1045 out_free:
1046         kvm_free_memslot(kvm, &new, &old);
1047 out:
1048         return r;
1049 }
1050 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1051
1052 int kvm_set_memory_region(struct kvm *kvm,
1053                           const struct kvm_userspace_memory_region *mem)
1054 {
1055         int r;
1056
1057         mutex_lock(&kvm->slots_lock);
1058         r = __kvm_set_memory_region(kvm, mem);
1059         mutex_unlock(&kvm->slots_lock);
1060         return r;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1063
1064 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1065                                           struct kvm_userspace_memory_region *mem)
1066 {
1067         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1068                 return -EINVAL;
1069
1070         return kvm_set_memory_region(kvm, mem);
1071 }
1072
1073 int kvm_get_dirty_log(struct kvm *kvm,
1074                         struct kvm_dirty_log *log, int *is_dirty)
1075 {
1076         struct kvm_memslots *slots;
1077         struct kvm_memory_slot *memslot;
1078         int i, as_id, id;
1079         unsigned long n;
1080         unsigned long any = 0;
1081
1082         as_id = log->slot >> 16;
1083         id = (u16)log->slot;
1084         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1085                 return -EINVAL;
1086
1087         slots = __kvm_memslots(kvm, as_id);
1088         memslot = id_to_memslot(slots, id);
1089         if (!memslot->dirty_bitmap)
1090                 return -ENOENT;
1091
1092         n = kvm_dirty_bitmap_bytes(memslot);
1093
1094         for (i = 0; !any && i < n/sizeof(long); ++i)
1095                 any = memslot->dirty_bitmap[i];
1096
1097         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1098                 return -EFAULT;
1099
1100         if (any)
1101                 *is_dirty = 1;
1102         return 0;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1105
1106 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1107 /**
1108  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1109  *      are dirty write protect them for next write.
1110  * @kvm:        pointer to kvm instance
1111  * @log:        slot id and address to which we copy the log
1112  * @is_dirty:   flag set if any page is dirty
1113  *
1114  * We need to keep it in mind that VCPU threads can write to the bitmap
1115  * concurrently. So, to avoid losing track of dirty pages we keep the
1116  * following order:
1117  *
1118  *    1. Take a snapshot of the bit and clear it if needed.
1119  *    2. Write protect the corresponding page.
1120  *    3. Copy the snapshot to the userspace.
1121  *    4. Upon return caller flushes TLB's if needed.
1122  *
1123  * Between 2 and 4, the guest may write to the page using the remaining TLB
1124  * entry.  This is not a problem because the page is reported dirty using
1125  * the snapshot taken before and step 4 ensures that writes done after
1126  * exiting to userspace will be logged for the next call.
1127  *
1128  */
1129 int kvm_get_dirty_log_protect(struct kvm *kvm,
1130                         struct kvm_dirty_log *log, bool *is_dirty)
1131 {
1132         struct kvm_memslots *slots;
1133         struct kvm_memory_slot *memslot;
1134         int i, as_id, id;
1135         unsigned long n;
1136         unsigned long *dirty_bitmap;
1137         unsigned long *dirty_bitmap_buffer;
1138
1139         as_id = log->slot >> 16;
1140         id = (u16)log->slot;
1141         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1142                 return -EINVAL;
1143
1144         slots = __kvm_memslots(kvm, as_id);
1145         memslot = id_to_memslot(slots, id);
1146
1147         dirty_bitmap = memslot->dirty_bitmap;
1148         if (!dirty_bitmap)
1149                 return -ENOENT;
1150
1151         n = kvm_dirty_bitmap_bytes(memslot);
1152
1153         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1154         memset(dirty_bitmap_buffer, 0, n);
1155
1156         spin_lock(&kvm->mmu_lock);
1157         *is_dirty = false;
1158         for (i = 0; i < n / sizeof(long); i++) {
1159                 unsigned long mask;
1160                 gfn_t offset;
1161
1162                 if (!dirty_bitmap[i])
1163                         continue;
1164
1165                 *is_dirty = true;
1166
1167                 mask = xchg(&dirty_bitmap[i], 0);
1168                 dirty_bitmap_buffer[i] = mask;
1169
1170                 if (mask) {
1171                         offset = i * BITS_PER_LONG;
1172                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1173                                                                 offset, mask);
1174                 }
1175         }
1176
1177         spin_unlock(&kvm->mmu_lock);
1178         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1179                 return -EFAULT;
1180         return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1183 #endif
1184
1185 bool kvm_largepages_enabled(void)
1186 {
1187         return largepages_enabled;
1188 }
1189
1190 void kvm_disable_largepages(void)
1191 {
1192         largepages_enabled = false;
1193 }
1194 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1195
1196 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1197 {
1198         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1199 }
1200 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1201
1202 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1203 {
1204         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1205 }
1206
1207 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1208 {
1209         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1210
1211         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1212               memslot->flags & KVM_MEMSLOT_INVALID)
1213                 return false;
1214
1215         return true;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1218
1219 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1220 {
1221         struct vm_area_struct *vma;
1222         unsigned long addr, size;
1223
1224         size = PAGE_SIZE;
1225
1226         addr = gfn_to_hva(kvm, gfn);
1227         if (kvm_is_error_hva(addr))
1228                 return PAGE_SIZE;
1229
1230         down_read(&current->mm->mmap_sem);
1231         vma = find_vma(current->mm, addr);
1232         if (!vma)
1233                 goto out;
1234
1235         size = vma_kernel_pagesize(vma);
1236
1237 out:
1238         up_read(&current->mm->mmap_sem);
1239
1240         return size;
1241 }
1242
1243 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1244 {
1245         return slot->flags & KVM_MEM_READONLY;
1246 }
1247
1248 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1249                                        gfn_t *nr_pages, bool write)
1250 {
1251         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1252                 return KVM_HVA_ERR_BAD;
1253
1254         if (memslot_is_readonly(slot) && write)
1255                 return KVM_HVA_ERR_RO_BAD;
1256
1257         if (nr_pages)
1258                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1259
1260         return __gfn_to_hva_memslot(slot, gfn);
1261 }
1262
1263 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1264                                      gfn_t *nr_pages)
1265 {
1266         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1267 }
1268
1269 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1270                                         gfn_t gfn)
1271 {
1272         return gfn_to_hva_many(slot, gfn, NULL);
1273 }
1274 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1275
1276 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1277 {
1278         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1279 }
1280 EXPORT_SYMBOL_GPL(gfn_to_hva);
1281
1282 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1283 {
1284         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1285 }
1286 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1287
1288 /*
1289  * If writable is set to false, the hva returned by this function is only
1290  * allowed to be read.
1291  */
1292 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1293                                       gfn_t gfn, bool *writable)
1294 {
1295         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1296
1297         if (!kvm_is_error_hva(hva) && writable)
1298                 *writable = !memslot_is_readonly(slot);
1299
1300         return hva;
1301 }
1302
1303 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1304 {
1305         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1306
1307         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1308 }
1309
1310 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1311 {
1312         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1313
1314         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1315 }
1316
1317 static int get_user_page_nowait(unsigned long start, int write,
1318                 struct page **page)
1319 {
1320         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1321
1322         if (write)
1323                 flags |= FOLL_WRITE;
1324
1325         return get_user_pages(start, 1, flags, page, NULL);
1326 }
1327
1328 static inline int check_user_page_hwpoison(unsigned long addr)
1329 {
1330         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1331
1332         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1333         return rc == -EHWPOISON;
1334 }
1335
1336 /*
1337  * The atomic path to get the writable pfn which will be stored in @pfn,
1338  * true indicates success, otherwise false is returned.
1339  */
1340 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1341                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1342 {
1343         struct page *page[1];
1344         int npages;
1345
1346         if (!(async || atomic))
1347                 return false;
1348
1349         /*
1350          * Fast pin a writable pfn only if it is a write fault request
1351          * or the caller allows to map a writable pfn for a read fault
1352          * request.
1353          */
1354         if (!(write_fault || writable))
1355                 return false;
1356
1357         npages = __get_user_pages_fast(addr, 1, 1, page);
1358         if (npages == 1) {
1359                 *pfn = page_to_pfn(page[0]);
1360
1361                 if (writable)
1362                         *writable = true;
1363                 return true;
1364         }
1365
1366         return false;
1367 }
1368
1369 /*
1370  * The slow path to get the pfn of the specified host virtual address,
1371  * 1 indicates success, -errno is returned if error is detected.
1372  */
1373 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1374                            bool *writable, kvm_pfn_t *pfn)
1375 {
1376         struct page *page[1];
1377         int npages = 0;
1378
1379         might_sleep();
1380
1381         if (writable)
1382                 *writable = write_fault;
1383
1384         if (async) {
1385                 down_read(&current->mm->mmap_sem);
1386                 npages = get_user_page_nowait(addr, write_fault, page);
1387                 up_read(&current->mm->mmap_sem);
1388         } else {
1389                 unsigned int flags = FOLL_HWPOISON;
1390
1391                 if (write_fault)
1392                         flags |= FOLL_WRITE;
1393
1394                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1395         }
1396         if (npages != 1)
1397                 return npages;
1398
1399         /* map read fault as writable if possible */
1400         if (unlikely(!write_fault) && writable) {
1401                 struct page *wpage[1];
1402
1403                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1404                 if (npages == 1) {
1405                         *writable = true;
1406                         put_page(page[0]);
1407                         page[0] = wpage[0];
1408                 }
1409
1410                 npages = 1;
1411         }
1412         *pfn = page_to_pfn(page[0]);
1413         return npages;
1414 }
1415
1416 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1417 {
1418         if (unlikely(!(vma->vm_flags & VM_READ)))
1419                 return false;
1420
1421         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1422                 return false;
1423
1424         return true;
1425 }
1426
1427 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1428                                unsigned long addr, bool *async,
1429                                bool write_fault, kvm_pfn_t *p_pfn)
1430 {
1431         unsigned long pfn;
1432         int r;
1433
1434         r = follow_pfn(vma, addr, &pfn);
1435         if (r) {
1436                 /*
1437                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1438                  * not call the fault handler, so do it here.
1439                  */
1440                 bool unlocked = false;
1441                 r = fixup_user_fault(current, current->mm, addr,
1442                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1443                                      &unlocked);
1444                 if (unlocked)
1445                         return -EAGAIN;
1446                 if (r)
1447                         return r;
1448
1449                 r = follow_pfn(vma, addr, &pfn);
1450                 if (r)
1451                         return r;
1452
1453         }
1454
1455
1456         /*
1457          * Get a reference here because callers of *hva_to_pfn* and
1458          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1459          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1460          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1461          * simply do nothing for reserved pfns.
1462          *
1463          * Whoever called remap_pfn_range is also going to call e.g.
1464          * unmap_mapping_range before the underlying pages are freed,
1465          * causing a call to our MMU notifier.
1466          */ 
1467         kvm_get_pfn(pfn);
1468
1469         *p_pfn = pfn;
1470         return 0;
1471 }
1472
1473 /*
1474  * Pin guest page in memory and return its pfn.
1475  * @addr: host virtual address which maps memory to the guest
1476  * @atomic: whether this function can sleep
1477  * @async: whether this function need to wait IO complete if the
1478  *         host page is not in the memory
1479  * @write_fault: whether we should get a writable host page
1480  * @writable: whether it allows to map a writable host page for !@write_fault
1481  *
1482  * The function will map a writable host page for these two cases:
1483  * 1): @write_fault = true
1484  * 2): @write_fault = false && @writable, @writable will tell the caller
1485  *     whether the mapping is writable.
1486  */
1487 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1488                         bool write_fault, bool *writable)
1489 {
1490         struct vm_area_struct *vma;
1491         kvm_pfn_t pfn = 0;
1492         int npages, r;
1493
1494         /* we can do it either atomically or asynchronously, not both */
1495         BUG_ON(atomic && async);
1496
1497         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1498                 return pfn;
1499
1500         if (atomic)
1501                 return KVM_PFN_ERR_FAULT;
1502
1503         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1504         if (npages == 1)
1505                 return pfn;
1506
1507         down_read(&current->mm->mmap_sem);
1508         if (npages == -EHWPOISON ||
1509               (!async && check_user_page_hwpoison(addr))) {
1510                 pfn = KVM_PFN_ERR_HWPOISON;
1511                 goto exit;
1512         }
1513
1514 retry:
1515         vma = find_vma_intersection(current->mm, addr, addr + 1);
1516
1517         if (vma == NULL)
1518                 pfn = KVM_PFN_ERR_FAULT;
1519         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1520                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1521                 if (r == -EAGAIN)
1522                         goto retry;
1523                 if (r < 0)
1524                         pfn = KVM_PFN_ERR_FAULT;
1525         } else {
1526                 if (async && vma_is_valid(vma, write_fault))
1527                         *async = true;
1528                 pfn = KVM_PFN_ERR_FAULT;
1529         }
1530 exit:
1531         up_read(&current->mm->mmap_sem);
1532         return pfn;
1533 }
1534
1535 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1536                                bool atomic, bool *async, bool write_fault,
1537                                bool *writable)
1538 {
1539         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1540
1541         if (addr == KVM_HVA_ERR_RO_BAD) {
1542                 if (writable)
1543                         *writable = false;
1544                 return KVM_PFN_ERR_RO_FAULT;
1545         }
1546
1547         if (kvm_is_error_hva(addr)) {
1548                 if (writable)
1549                         *writable = false;
1550                 return KVM_PFN_NOSLOT;
1551         }
1552
1553         /* Do not map writable pfn in the readonly memslot. */
1554         if (writable && memslot_is_readonly(slot)) {
1555                 *writable = false;
1556                 writable = NULL;
1557         }
1558
1559         return hva_to_pfn(addr, atomic, async, write_fault,
1560                           writable);
1561 }
1562 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1563
1564 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1565                       bool *writable)
1566 {
1567         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1568                                     write_fault, writable);
1569 }
1570 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1571
1572 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1573 {
1574         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1575 }
1576 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1577
1578 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1579 {
1580         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1581 }
1582 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1583
1584 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1585 {
1586         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1587 }
1588 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1589
1590 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1591 {
1592         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1593 }
1594 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1595
1596 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1597 {
1598         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1599 }
1600 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1601
1602 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1603 {
1604         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1607
1608 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1609                             struct page **pages, int nr_pages)
1610 {
1611         unsigned long addr;
1612         gfn_t entry = 0;
1613
1614         addr = gfn_to_hva_many(slot, gfn, &entry);
1615         if (kvm_is_error_hva(addr))
1616                 return -1;
1617
1618         if (entry < nr_pages)
1619                 return 0;
1620
1621         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1622 }
1623 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1624
1625 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1626 {
1627         if (is_error_noslot_pfn(pfn))
1628                 return KVM_ERR_PTR_BAD_PAGE;
1629
1630         if (kvm_is_reserved_pfn(pfn)) {
1631                 WARN_ON(1);
1632                 return KVM_ERR_PTR_BAD_PAGE;
1633         }
1634
1635         return pfn_to_page(pfn);
1636 }
1637
1638 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1639 {
1640         kvm_pfn_t pfn;
1641
1642         pfn = gfn_to_pfn(kvm, gfn);
1643
1644         return kvm_pfn_to_page(pfn);
1645 }
1646 EXPORT_SYMBOL_GPL(gfn_to_page);
1647
1648 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1649 {
1650         kvm_pfn_t pfn;
1651
1652         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1653
1654         return kvm_pfn_to_page(pfn);
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1657
1658 void kvm_release_page_clean(struct page *page)
1659 {
1660         WARN_ON(is_error_page(page));
1661
1662         kvm_release_pfn_clean(page_to_pfn(page));
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1665
1666 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1667 {
1668         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1669                 put_page(pfn_to_page(pfn));
1670 }
1671 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1672
1673 void kvm_release_page_dirty(struct page *page)
1674 {
1675         WARN_ON(is_error_page(page));
1676
1677         kvm_release_pfn_dirty(page_to_pfn(page));
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1680
1681 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1682 {
1683         kvm_set_pfn_dirty(pfn);
1684         kvm_release_pfn_clean(pfn);
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1687
1688 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1689 {
1690         if (!kvm_is_reserved_pfn(pfn)) {
1691                 struct page *page = pfn_to_page(pfn);
1692
1693                 if (!PageReserved(page))
1694                         SetPageDirty(page);
1695         }
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1698
1699 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1700 {
1701         if (!kvm_is_reserved_pfn(pfn))
1702                 mark_page_accessed(pfn_to_page(pfn));
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1705
1706 void kvm_get_pfn(kvm_pfn_t pfn)
1707 {
1708         if (!kvm_is_reserved_pfn(pfn))
1709                 get_page(pfn_to_page(pfn));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1712
1713 static int next_segment(unsigned long len, int offset)
1714 {
1715         if (len > PAGE_SIZE - offset)
1716                 return PAGE_SIZE - offset;
1717         else
1718                 return len;
1719 }
1720
1721 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1722                                  void *data, int offset, int len)
1723 {
1724         int r;
1725         unsigned long addr;
1726
1727         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1728         if (kvm_is_error_hva(addr))
1729                 return -EFAULT;
1730         r = __copy_from_user(data, (void __user *)addr + offset, len);
1731         if (r)
1732                 return -EFAULT;
1733         return 0;
1734 }
1735
1736 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1737                         int len)
1738 {
1739         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1740
1741         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1744
1745 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1746                              int offset, int len)
1747 {
1748         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1749
1750         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1753
1754 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1755 {
1756         gfn_t gfn = gpa >> PAGE_SHIFT;
1757         int seg;
1758         int offset = offset_in_page(gpa);
1759         int ret;
1760
1761         while ((seg = next_segment(len, offset)) != 0) {
1762                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1763                 if (ret < 0)
1764                         return ret;
1765                 offset = 0;
1766                 len -= seg;
1767                 data += seg;
1768                 ++gfn;
1769         }
1770         return 0;
1771 }
1772 EXPORT_SYMBOL_GPL(kvm_read_guest);
1773
1774 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1775 {
1776         gfn_t gfn = gpa >> PAGE_SHIFT;
1777         int seg;
1778         int offset = offset_in_page(gpa);
1779         int ret;
1780
1781         while ((seg = next_segment(len, offset)) != 0) {
1782                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1783                 if (ret < 0)
1784                         return ret;
1785                 offset = 0;
1786                 len -= seg;
1787                 data += seg;
1788                 ++gfn;
1789         }
1790         return 0;
1791 }
1792 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1793
1794 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1795                                    void *data, int offset, unsigned long len)
1796 {
1797         int r;
1798         unsigned long addr;
1799
1800         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1801         if (kvm_is_error_hva(addr))
1802                 return -EFAULT;
1803         pagefault_disable();
1804         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1805         pagefault_enable();
1806         if (r)
1807                 return -EFAULT;
1808         return 0;
1809 }
1810
1811 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1812                           unsigned long len)
1813 {
1814         gfn_t gfn = gpa >> PAGE_SHIFT;
1815         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1816         int offset = offset_in_page(gpa);
1817
1818         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1819 }
1820 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1821
1822 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1823                                void *data, unsigned long len)
1824 {
1825         gfn_t gfn = gpa >> PAGE_SHIFT;
1826         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1827         int offset = offset_in_page(gpa);
1828
1829         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1830 }
1831 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1832
1833 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1834                                   const void *data, int offset, int len)
1835 {
1836         int r;
1837         unsigned long addr;
1838
1839         addr = gfn_to_hva_memslot(memslot, gfn);
1840         if (kvm_is_error_hva(addr))
1841                 return -EFAULT;
1842         r = __copy_to_user((void __user *)addr + offset, data, len);
1843         if (r)
1844                 return -EFAULT;
1845         mark_page_dirty_in_slot(memslot, gfn);
1846         return 0;
1847 }
1848
1849 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1850                          const void *data, int offset, int len)
1851 {
1852         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1853
1854         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1855 }
1856 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1857
1858 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1859                               const void *data, int offset, int len)
1860 {
1861         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1862
1863         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1864 }
1865 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1866
1867 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1868                     unsigned long len)
1869 {
1870         gfn_t gfn = gpa >> PAGE_SHIFT;
1871         int seg;
1872         int offset = offset_in_page(gpa);
1873         int ret;
1874
1875         while ((seg = next_segment(len, offset)) != 0) {
1876                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1877                 if (ret < 0)
1878                         return ret;
1879                 offset = 0;
1880                 len -= seg;
1881                 data += seg;
1882                 ++gfn;
1883         }
1884         return 0;
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_write_guest);
1887
1888 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1889                          unsigned long len)
1890 {
1891         gfn_t gfn = gpa >> PAGE_SHIFT;
1892         int seg;
1893         int offset = offset_in_page(gpa);
1894         int ret;
1895
1896         while ((seg = next_segment(len, offset)) != 0) {
1897                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1898                 if (ret < 0)
1899                         return ret;
1900                 offset = 0;
1901                 len -= seg;
1902                 data += seg;
1903                 ++gfn;
1904         }
1905         return 0;
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1908
1909 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1910                                        struct gfn_to_hva_cache *ghc,
1911                                        gpa_t gpa, unsigned long len)
1912 {
1913         int offset = offset_in_page(gpa);
1914         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1915         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1916         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1917         gfn_t nr_pages_avail;
1918
1919         ghc->gpa = gpa;
1920         ghc->generation = slots->generation;
1921         ghc->len = len;
1922         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1923         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1924         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1925                 ghc->hva += offset;
1926         } else {
1927                 /*
1928                  * If the requested region crosses two memslots, we still
1929                  * verify that the entire region is valid here.
1930                  */
1931                 while (start_gfn <= end_gfn) {
1932                         nr_pages_avail = 0;
1933                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1934                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1935                                                    &nr_pages_avail);
1936                         if (kvm_is_error_hva(ghc->hva))
1937                                 return -EFAULT;
1938                         start_gfn += nr_pages_avail;
1939                 }
1940                 /* Use the slow path for cross page reads and writes. */
1941                 ghc->memslot = NULL;
1942         }
1943         return 0;
1944 }
1945
1946 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1947                               gpa_t gpa, unsigned long len)
1948 {
1949         struct kvm_memslots *slots = kvm_memslots(kvm);
1950         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1951 }
1952 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1953
1954 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1955                            void *data, int offset, unsigned long len)
1956 {
1957         struct kvm_memslots *slots = kvm_memslots(kvm);
1958         int r;
1959         gpa_t gpa = ghc->gpa + offset;
1960
1961         BUG_ON(len + offset > ghc->len);
1962
1963         if (slots->generation != ghc->generation)
1964                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1965
1966         if (unlikely(!ghc->memslot))
1967                 return kvm_write_guest(kvm, gpa, data, len);
1968
1969         if (kvm_is_error_hva(ghc->hva))
1970                 return -EFAULT;
1971
1972         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1973         if (r)
1974                 return -EFAULT;
1975         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1976
1977         return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1980
1981 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1982                            void *data, unsigned long len)
1983 {
1984         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1987
1988 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1989                            void *data, unsigned long len)
1990 {
1991         struct kvm_memslots *slots = kvm_memslots(kvm);
1992         int r;
1993
1994         BUG_ON(len > ghc->len);
1995
1996         if (slots->generation != ghc->generation)
1997                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1998
1999         if (unlikely(!ghc->memslot))
2000                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2001
2002         if (kvm_is_error_hva(ghc->hva))
2003                 return -EFAULT;
2004
2005         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2006         if (r)
2007                 return -EFAULT;
2008
2009         return 0;
2010 }
2011 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2012
2013 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2014 {
2015         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2016
2017         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2020
2021 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2022 {
2023         gfn_t gfn = gpa >> PAGE_SHIFT;
2024         int seg;
2025         int offset = offset_in_page(gpa);
2026         int ret;
2027
2028         while ((seg = next_segment(len, offset)) != 0) {
2029                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2030                 if (ret < 0)
2031                         return ret;
2032                 offset = 0;
2033                 len -= seg;
2034                 ++gfn;
2035         }
2036         return 0;
2037 }
2038 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2039
2040 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2041                                     gfn_t gfn)
2042 {
2043         if (memslot && memslot->dirty_bitmap) {
2044                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2045
2046                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2047         }
2048 }
2049
2050 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2051 {
2052         struct kvm_memory_slot *memslot;
2053
2054         memslot = gfn_to_memslot(kvm, gfn);
2055         mark_page_dirty_in_slot(memslot, gfn);
2056 }
2057 EXPORT_SYMBOL_GPL(mark_page_dirty);
2058
2059 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2060 {
2061         struct kvm_memory_slot *memslot;
2062
2063         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2064         mark_page_dirty_in_slot(memslot, gfn);
2065 }
2066 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2067
2068 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2069 {
2070         unsigned int old, val, grow;
2071
2072         old = val = vcpu->halt_poll_ns;
2073         grow = READ_ONCE(halt_poll_ns_grow);
2074         /* 10us base */
2075         if (val == 0 && grow)
2076                 val = 10000;
2077         else
2078                 val *= grow;
2079
2080         if (val > halt_poll_ns)
2081                 val = halt_poll_ns;
2082
2083         vcpu->halt_poll_ns = val;
2084         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2085 }
2086
2087 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2088 {
2089         unsigned int old, val, shrink;
2090
2091         old = val = vcpu->halt_poll_ns;
2092         shrink = READ_ONCE(halt_poll_ns_shrink);
2093         if (shrink == 0)
2094                 val = 0;
2095         else
2096                 val /= shrink;
2097
2098         vcpu->halt_poll_ns = val;
2099         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2100 }
2101
2102 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2103 {
2104         if (kvm_arch_vcpu_runnable(vcpu)) {
2105                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2106                 return -EINTR;
2107         }
2108         if (kvm_cpu_has_pending_timer(vcpu))
2109                 return -EINTR;
2110         if (signal_pending(current))
2111                 return -EINTR;
2112
2113         return 0;
2114 }
2115
2116 /*
2117  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2118  */
2119 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2120 {
2121         ktime_t start, cur;
2122         DECLARE_SWAITQUEUE(wait);
2123         bool waited = false;
2124         u64 block_ns;
2125
2126         start = cur = ktime_get();
2127         if (vcpu->halt_poll_ns) {
2128                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2129
2130                 ++vcpu->stat.halt_attempted_poll;
2131                 do {
2132                         /*
2133                          * This sets KVM_REQ_UNHALT if an interrupt
2134                          * arrives.
2135                          */
2136                         if (kvm_vcpu_check_block(vcpu) < 0) {
2137                                 ++vcpu->stat.halt_successful_poll;
2138                                 if (!vcpu_valid_wakeup(vcpu))
2139                                         ++vcpu->stat.halt_poll_invalid;
2140                                 goto out;
2141                         }
2142                         cur = ktime_get();
2143                 } while (single_task_running() && ktime_before(cur, stop));
2144         }
2145
2146         kvm_arch_vcpu_blocking(vcpu);
2147
2148         for (;;) {
2149                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2150
2151                 if (kvm_vcpu_check_block(vcpu) < 0)
2152                         break;
2153
2154                 waited = true;
2155                 schedule();
2156         }
2157
2158         finish_swait(&vcpu->wq, &wait);
2159         cur = ktime_get();
2160
2161         kvm_arch_vcpu_unblocking(vcpu);
2162 out:
2163         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2164
2165         if (!vcpu_valid_wakeup(vcpu))
2166                 shrink_halt_poll_ns(vcpu);
2167         else if (halt_poll_ns) {
2168                 if (block_ns <= vcpu->halt_poll_ns)
2169                         ;
2170                 /* we had a long block, shrink polling */
2171                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2172                         shrink_halt_poll_ns(vcpu);
2173                 /* we had a short halt and our poll time is too small */
2174                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2175                         block_ns < halt_poll_ns)
2176                         grow_halt_poll_ns(vcpu);
2177         } else
2178                 vcpu->halt_poll_ns = 0;
2179
2180         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2181         kvm_arch_vcpu_block_finish(vcpu);
2182 }
2183 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2184
2185 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2186 {
2187         struct swait_queue_head *wqp;
2188
2189         wqp = kvm_arch_vcpu_wq(vcpu);
2190         if (swq_has_sleeper(wqp)) {
2191                 swake_up(wqp);
2192                 ++vcpu->stat.halt_wakeup;
2193                 return true;
2194         }
2195
2196         return false;
2197 }
2198 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2199
2200 #ifndef CONFIG_S390
2201 /*
2202  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2203  */
2204 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2205 {
2206         int me;
2207         int cpu = vcpu->cpu;
2208
2209         if (kvm_vcpu_wake_up(vcpu))
2210                 return;
2211
2212         me = get_cpu();
2213         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2214                 if (kvm_arch_vcpu_should_kick(vcpu))
2215                         smp_send_reschedule(cpu);
2216         put_cpu();
2217 }
2218 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2219 #endif /* !CONFIG_S390 */
2220
2221 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2222 {
2223         struct pid *pid;
2224         struct task_struct *task = NULL;
2225         int ret = 0;
2226
2227         rcu_read_lock();
2228         pid = rcu_dereference(target->pid);
2229         if (pid)
2230                 task = get_pid_task(pid, PIDTYPE_PID);
2231         rcu_read_unlock();
2232         if (!task)
2233                 return ret;
2234         ret = yield_to(task, 1);
2235         put_task_struct(task);
2236
2237         return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2240
2241 /*
2242  * Helper that checks whether a VCPU is eligible for directed yield.
2243  * Most eligible candidate to yield is decided by following heuristics:
2244  *
2245  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2246  *  (preempted lock holder), indicated by @in_spin_loop.
2247  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2248  *
2249  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2250  *  chance last time (mostly it has become eligible now since we have probably
2251  *  yielded to lockholder in last iteration. This is done by toggling
2252  *  @dy_eligible each time a VCPU checked for eligibility.)
2253  *
2254  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2255  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2256  *  burning. Giving priority for a potential lock-holder increases lock
2257  *  progress.
2258  *
2259  *  Since algorithm is based on heuristics, accessing another VCPU data without
2260  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2261  *  and continue with next VCPU and so on.
2262  */
2263 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2264 {
2265 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2266         bool eligible;
2267
2268         eligible = !vcpu->spin_loop.in_spin_loop ||
2269                     vcpu->spin_loop.dy_eligible;
2270
2271         if (vcpu->spin_loop.in_spin_loop)
2272                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2273
2274         return eligible;
2275 #else
2276         return true;
2277 #endif
2278 }
2279
2280 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2281 {
2282         struct kvm *kvm = me->kvm;
2283         struct kvm_vcpu *vcpu;
2284         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2285         int yielded = 0;
2286         int try = 3;
2287         int pass;
2288         int i;
2289
2290         kvm_vcpu_set_in_spin_loop(me, true);
2291         /*
2292          * We boost the priority of a VCPU that is runnable but not
2293          * currently running, because it got preempted by something
2294          * else and called schedule in __vcpu_run.  Hopefully that
2295          * VCPU is holding the lock that we need and will release it.
2296          * We approximate round-robin by starting at the last boosted VCPU.
2297          */
2298         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2299                 kvm_for_each_vcpu(i, vcpu, kvm) {
2300                         if (!pass && i <= last_boosted_vcpu) {
2301                                 i = last_boosted_vcpu;
2302                                 continue;
2303                         } else if (pass && i > last_boosted_vcpu)
2304                                 break;
2305                         if (!READ_ONCE(vcpu->preempted))
2306                                 continue;
2307                         if (vcpu == me)
2308                                 continue;
2309                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2310                                 continue;
2311                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2312                                 continue;
2313                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2314                                 continue;
2315
2316                         yielded = kvm_vcpu_yield_to(vcpu);
2317                         if (yielded > 0) {
2318                                 kvm->last_boosted_vcpu = i;
2319                                 break;
2320                         } else if (yielded < 0) {
2321                                 try--;
2322                                 if (!try)
2323                                         break;
2324                         }
2325                 }
2326         }
2327         kvm_vcpu_set_in_spin_loop(me, false);
2328
2329         /* Ensure vcpu is not eligible during next spinloop */
2330         kvm_vcpu_set_dy_eligible(me, false);
2331 }
2332 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2333
2334 static int kvm_vcpu_fault(struct vm_fault *vmf)
2335 {
2336         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2337         struct page *page;
2338
2339         if (vmf->pgoff == 0)
2340                 page = virt_to_page(vcpu->run);
2341 #ifdef CONFIG_X86
2342         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2343                 page = virt_to_page(vcpu->arch.pio_data);
2344 #endif
2345 #ifdef CONFIG_KVM_MMIO
2346         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2347                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2348 #endif
2349         else
2350                 return kvm_arch_vcpu_fault(vcpu, vmf);
2351         get_page(page);
2352         vmf->page = page;
2353         return 0;
2354 }
2355
2356 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2357         .fault = kvm_vcpu_fault,
2358 };
2359
2360 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2361 {
2362         vma->vm_ops = &kvm_vcpu_vm_ops;
2363         return 0;
2364 }
2365
2366 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2367 {
2368         struct kvm_vcpu *vcpu = filp->private_data;
2369
2370         debugfs_remove_recursive(vcpu->debugfs_dentry);
2371         kvm_put_kvm(vcpu->kvm);
2372         return 0;
2373 }
2374
2375 static struct file_operations kvm_vcpu_fops = {
2376         .release        = kvm_vcpu_release,
2377         .unlocked_ioctl = kvm_vcpu_ioctl,
2378 #ifdef CONFIG_KVM_COMPAT
2379         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2380 #endif
2381         .mmap           = kvm_vcpu_mmap,
2382         .llseek         = noop_llseek,
2383 };
2384
2385 /*
2386  * Allocates an inode for the vcpu.
2387  */
2388 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2389 {
2390         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2391 }
2392
2393 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2394 {
2395         char dir_name[ITOA_MAX_LEN * 2];
2396         int ret;
2397
2398         if (!kvm_arch_has_vcpu_debugfs())
2399                 return 0;
2400
2401         if (!debugfs_initialized())
2402                 return 0;
2403
2404         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2405         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2406                                                                 vcpu->kvm->debugfs_dentry);
2407         if (!vcpu->debugfs_dentry)
2408                 return -ENOMEM;
2409
2410         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2411         if (ret < 0) {
2412                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2413                 return ret;
2414         }
2415
2416         return 0;
2417 }
2418
2419 /*
2420  * Creates some virtual cpus.  Good luck creating more than one.
2421  */
2422 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2423 {
2424         int r;
2425         struct kvm_vcpu *vcpu;
2426
2427         if (id >= KVM_MAX_VCPU_ID)
2428                 return -EINVAL;
2429
2430         mutex_lock(&kvm->lock);
2431         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2432                 mutex_unlock(&kvm->lock);
2433                 return -EINVAL;
2434         }
2435
2436         kvm->created_vcpus++;
2437         mutex_unlock(&kvm->lock);
2438
2439         vcpu = kvm_arch_vcpu_create(kvm, id);
2440         if (IS_ERR(vcpu)) {
2441                 r = PTR_ERR(vcpu);
2442                 goto vcpu_decrement;
2443         }
2444
2445         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2446
2447         r = kvm_arch_vcpu_setup(vcpu);
2448         if (r)
2449                 goto vcpu_destroy;
2450
2451         r = kvm_create_vcpu_debugfs(vcpu);
2452         if (r)
2453                 goto vcpu_destroy;
2454
2455         mutex_lock(&kvm->lock);
2456         if (kvm_get_vcpu_by_id(kvm, id)) {
2457                 r = -EEXIST;
2458                 goto unlock_vcpu_destroy;
2459         }
2460
2461         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2462
2463         /* Now it's all set up, let userspace reach it */
2464         kvm_get_kvm(kvm);
2465         r = create_vcpu_fd(vcpu);
2466         if (r < 0) {
2467                 kvm_put_kvm(kvm);
2468                 goto unlock_vcpu_destroy;
2469         }
2470
2471         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2472
2473         /*
2474          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2475          * before kvm->online_vcpu's incremented value.
2476          */
2477         smp_wmb();
2478         atomic_inc(&kvm->online_vcpus);
2479
2480         mutex_unlock(&kvm->lock);
2481         kvm_arch_vcpu_postcreate(vcpu);
2482         return r;
2483
2484 unlock_vcpu_destroy:
2485         mutex_unlock(&kvm->lock);
2486         debugfs_remove_recursive(vcpu->debugfs_dentry);
2487 vcpu_destroy:
2488         kvm_arch_vcpu_destroy(vcpu);
2489 vcpu_decrement:
2490         mutex_lock(&kvm->lock);
2491         kvm->created_vcpus--;
2492         mutex_unlock(&kvm->lock);
2493         return r;
2494 }
2495
2496 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2497 {
2498         if (sigset) {
2499                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2500                 vcpu->sigset_active = 1;
2501                 vcpu->sigset = *sigset;
2502         } else
2503                 vcpu->sigset_active = 0;
2504         return 0;
2505 }
2506
2507 static long kvm_vcpu_ioctl(struct file *filp,
2508                            unsigned int ioctl, unsigned long arg)
2509 {
2510         struct kvm_vcpu *vcpu = filp->private_data;
2511         void __user *argp = (void __user *)arg;
2512         int r;
2513         struct kvm_fpu *fpu = NULL;
2514         struct kvm_sregs *kvm_sregs = NULL;
2515
2516         if (vcpu->kvm->mm != current->mm)
2517                 return -EIO;
2518
2519         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2520                 return -EINVAL;
2521
2522 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2523         /*
2524          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2525          * so vcpu_load() would break it.
2526          */
2527         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2528                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2529 #endif
2530
2531
2532         r = vcpu_load(vcpu);
2533         if (r)
2534                 return r;
2535         switch (ioctl) {
2536         case KVM_RUN: {
2537                 struct pid *oldpid;
2538                 r = -EINVAL;
2539                 if (arg)
2540                         goto out;
2541                 oldpid = rcu_access_pointer(vcpu->pid);
2542                 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2543                         /* The thread running this VCPU changed. */
2544                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2545
2546                         rcu_assign_pointer(vcpu->pid, newpid);
2547                         if (oldpid)
2548                                 synchronize_rcu();
2549                         put_pid(oldpid);
2550                 }
2551                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2552                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2553                 break;
2554         }
2555         case KVM_GET_REGS: {
2556                 struct kvm_regs *kvm_regs;
2557
2558                 r = -ENOMEM;
2559                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2560                 if (!kvm_regs)
2561                         goto out;
2562                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2563                 if (r)
2564                         goto out_free1;
2565                 r = -EFAULT;
2566                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2567                         goto out_free1;
2568                 r = 0;
2569 out_free1:
2570                 kfree(kvm_regs);
2571                 break;
2572         }
2573         case KVM_SET_REGS: {
2574                 struct kvm_regs *kvm_regs;
2575
2576                 r = -ENOMEM;
2577                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2578                 if (IS_ERR(kvm_regs)) {
2579                         r = PTR_ERR(kvm_regs);
2580                         goto out;
2581                 }
2582                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2583                 kfree(kvm_regs);
2584                 break;
2585         }
2586         case KVM_GET_SREGS: {
2587                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2588                 r = -ENOMEM;
2589                 if (!kvm_sregs)
2590                         goto out;
2591                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2592                 if (r)
2593                         goto out;
2594                 r = -EFAULT;
2595                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2596                         goto out;
2597                 r = 0;
2598                 break;
2599         }
2600         case KVM_SET_SREGS: {
2601                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2602                 if (IS_ERR(kvm_sregs)) {
2603                         r = PTR_ERR(kvm_sregs);
2604                         kvm_sregs = NULL;
2605                         goto out;
2606                 }
2607                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2608                 break;
2609         }
2610         case KVM_GET_MP_STATE: {
2611                 struct kvm_mp_state mp_state;
2612
2613                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2614                 if (r)
2615                         goto out;
2616                 r = -EFAULT;
2617                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2618                         goto out;
2619                 r = 0;
2620                 break;
2621         }
2622         case KVM_SET_MP_STATE: {
2623                 struct kvm_mp_state mp_state;
2624
2625                 r = -EFAULT;
2626                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2627                         goto out;
2628                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2629                 break;
2630         }
2631         case KVM_TRANSLATE: {
2632                 struct kvm_translation tr;
2633
2634                 r = -EFAULT;
2635                 if (copy_from_user(&tr, argp, sizeof(tr)))
2636                         goto out;
2637                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2638                 if (r)
2639                         goto out;
2640                 r = -EFAULT;
2641                 if (copy_to_user(argp, &tr, sizeof(tr)))
2642                         goto out;
2643                 r = 0;
2644                 break;
2645         }
2646         case KVM_SET_GUEST_DEBUG: {
2647                 struct kvm_guest_debug dbg;
2648
2649                 r = -EFAULT;
2650                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2651                         goto out;
2652                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2653                 break;
2654         }
2655         case KVM_SET_SIGNAL_MASK: {
2656                 struct kvm_signal_mask __user *sigmask_arg = argp;
2657                 struct kvm_signal_mask kvm_sigmask;
2658                 sigset_t sigset, *p;
2659
2660                 p = NULL;
2661                 if (argp) {
2662                         r = -EFAULT;
2663                         if (copy_from_user(&kvm_sigmask, argp,
2664                                            sizeof(kvm_sigmask)))
2665                                 goto out;
2666                         r = -EINVAL;
2667                         if (kvm_sigmask.len != sizeof(sigset))
2668                                 goto out;
2669                         r = -EFAULT;
2670                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2671                                            sizeof(sigset)))
2672                                 goto out;
2673                         p = &sigset;
2674                 }
2675                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2676                 break;
2677         }
2678         case KVM_GET_FPU: {
2679                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2680                 r = -ENOMEM;
2681                 if (!fpu)
2682                         goto out;
2683                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2684                 if (r)
2685                         goto out;
2686                 r = -EFAULT;
2687                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2688                         goto out;
2689                 r = 0;
2690                 break;
2691         }
2692         case KVM_SET_FPU: {
2693                 fpu = memdup_user(argp, sizeof(*fpu));
2694                 if (IS_ERR(fpu)) {
2695                         r = PTR_ERR(fpu);
2696                         fpu = NULL;
2697                         goto out;
2698                 }
2699                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2700                 break;
2701         }
2702         default:
2703                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2704         }
2705 out:
2706         vcpu_put(vcpu);
2707         kfree(fpu);
2708         kfree(kvm_sregs);
2709         return r;
2710 }
2711
2712 #ifdef CONFIG_KVM_COMPAT
2713 static long kvm_vcpu_compat_ioctl(struct file *filp,
2714                                   unsigned int ioctl, unsigned long arg)
2715 {
2716         struct kvm_vcpu *vcpu = filp->private_data;
2717         void __user *argp = compat_ptr(arg);
2718         int r;
2719
2720         if (vcpu->kvm->mm != current->mm)
2721                 return -EIO;
2722
2723         switch (ioctl) {
2724         case KVM_SET_SIGNAL_MASK: {
2725                 struct kvm_signal_mask __user *sigmask_arg = argp;
2726                 struct kvm_signal_mask kvm_sigmask;
2727                 sigset_t sigset;
2728
2729                 if (argp) {
2730                         r = -EFAULT;
2731                         if (copy_from_user(&kvm_sigmask, argp,
2732                                            sizeof(kvm_sigmask)))
2733                                 goto out;
2734                         r = -EINVAL;
2735                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2736                                 goto out;
2737                         r = -EFAULT;
2738                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2739                                 goto out;
2740                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2741                 } else
2742                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2743                 break;
2744         }
2745         default:
2746                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2747         }
2748
2749 out:
2750         return r;
2751 }
2752 #endif
2753
2754 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2755                                  int (*accessor)(struct kvm_device *dev,
2756                                                  struct kvm_device_attr *attr),
2757                                  unsigned long arg)
2758 {
2759         struct kvm_device_attr attr;
2760
2761         if (!accessor)
2762                 return -EPERM;
2763
2764         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2765                 return -EFAULT;
2766
2767         return accessor(dev, &attr);
2768 }
2769
2770 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2771                              unsigned long arg)
2772 {
2773         struct kvm_device *dev = filp->private_data;
2774
2775         switch (ioctl) {
2776         case KVM_SET_DEVICE_ATTR:
2777                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2778         case KVM_GET_DEVICE_ATTR:
2779                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2780         case KVM_HAS_DEVICE_ATTR:
2781                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2782         default:
2783                 if (dev->ops->ioctl)
2784                         return dev->ops->ioctl(dev, ioctl, arg);
2785
2786                 return -ENOTTY;
2787         }
2788 }
2789
2790 static int kvm_device_release(struct inode *inode, struct file *filp)
2791 {
2792         struct kvm_device *dev = filp->private_data;
2793         struct kvm *kvm = dev->kvm;
2794
2795         kvm_put_kvm(kvm);
2796         return 0;
2797 }
2798
2799 static const struct file_operations kvm_device_fops = {
2800         .unlocked_ioctl = kvm_device_ioctl,
2801 #ifdef CONFIG_KVM_COMPAT
2802         .compat_ioctl = kvm_device_ioctl,
2803 #endif
2804         .release = kvm_device_release,
2805 };
2806
2807 struct kvm_device *kvm_device_from_filp(struct file *filp)
2808 {
2809         if (filp->f_op != &kvm_device_fops)
2810                 return NULL;
2811
2812         return filp->private_data;
2813 }
2814
2815 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2816 #ifdef CONFIG_KVM_MPIC
2817         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2818         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2819 #endif
2820 };
2821
2822 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2823 {
2824         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2825                 return -ENOSPC;
2826
2827         if (kvm_device_ops_table[type] != NULL)
2828                 return -EEXIST;
2829
2830         kvm_device_ops_table[type] = ops;
2831         return 0;
2832 }
2833
2834 void kvm_unregister_device_ops(u32 type)
2835 {
2836         if (kvm_device_ops_table[type] != NULL)
2837                 kvm_device_ops_table[type] = NULL;
2838 }
2839
2840 static int kvm_ioctl_create_device(struct kvm *kvm,
2841                                    struct kvm_create_device *cd)
2842 {
2843         struct kvm_device_ops *ops = NULL;
2844         struct kvm_device *dev;
2845         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2846         int ret;
2847
2848         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2849                 return -ENODEV;
2850
2851         ops = kvm_device_ops_table[cd->type];
2852         if (ops == NULL)
2853                 return -ENODEV;
2854
2855         if (test)
2856                 return 0;
2857
2858         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2859         if (!dev)
2860                 return -ENOMEM;
2861
2862         dev->ops = ops;
2863         dev->kvm = kvm;
2864
2865         mutex_lock(&kvm->lock);
2866         ret = ops->create(dev, cd->type);
2867         if (ret < 0) {
2868                 mutex_unlock(&kvm->lock);
2869                 kfree(dev);
2870                 return ret;
2871         }
2872         list_add(&dev->vm_node, &kvm->devices);
2873         mutex_unlock(&kvm->lock);
2874
2875         if (ops->init)
2876                 ops->init(dev);
2877
2878         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2879         if (ret < 0) {
2880                 mutex_lock(&kvm->lock);
2881                 list_del(&dev->vm_node);
2882                 mutex_unlock(&kvm->lock);
2883                 ops->destroy(dev);
2884                 return ret;
2885         }
2886
2887         kvm_get_kvm(kvm);
2888         cd->fd = ret;
2889         return 0;
2890 }
2891
2892 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2893 {
2894         switch (arg) {
2895         case KVM_CAP_USER_MEMORY:
2896         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2897         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2898         case KVM_CAP_INTERNAL_ERROR_DATA:
2899 #ifdef CONFIG_HAVE_KVM_MSI
2900         case KVM_CAP_SIGNAL_MSI:
2901 #endif
2902 #ifdef CONFIG_HAVE_KVM_IRQFD
2903         case KVM_CAP_IRQFD:
2904         case KVM_CAP_IRQFD_RESAMPLE:
2905 #endif
2906         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2907         case KVM_CAP_CHECK_EXTENSION_VM:
2908                 return 1;
2909 #ifdef CONFIG_KVM_MMIO
2910         case KVM_CAP_COALESCED_MMIO:
2911                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2912 #endif
2913 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2914         case KVM_CAP_IRQ_ROUTING:
2915                 return KVM_MAX_IRQ_ROUTES;
2916 #endif
2917 #if KVM_ADDRESS_SPACE_NUM > 1
2918         case KVM_CAP_MULTI_ADDRESS_SPACE:
2919                 return KVM_ADDRESS_SPACE_NUM;
2920 #endif
2921         case KVM_CAP_MAX_VCPU_ID:
2922                 return KVM_MAX_VCPU_ID;
2923         default:
2924                 break;
2925         }
2926         return kvm_vm_ioctl_check_extension(kvm, arg);
2927 }
2928
2929 static long kvm_vm_ioctl(struct file *filp,
2930                            unsigned int ioctl, unsigned long arg)
2931 {
2932         struct kvm *kvm = filp->private_data;
2933         void __user *argp = (void __user *)arg;
2934         int r;
2935
2936         if (kvm->mm != current->mm)
2937                 return -EIO;
2938         switch (ioctl) {
2939         case KVM_CREATE_VCPU:
2940                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2941                 break;
2942         case KVM_SET_USER_MEMORY_REGION: {
2943                 struct kvm_userspace_memory_region kvm_userspace_mem;
2944
2945                 r = -EFAULT;
2946                 if (copy_from_user(&kvm_userspace_mem, argp,
2947                                                 sizeof(kvm_userspace_mem)))
2948                         goto out;
2949
2950                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2951                 break;
2952         }
2953         case KVM_GET_DIRTY_LOG: {
2954                 struct kvm_dirty_log log;
2955
2956                 r = -EFAULT;
2957                 if (copy_from_user(&log, argp, sizeof(log)))
2958                         goto out;
2959                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2960                 break;
2961         }
2962 #ifdef CONFIG_KVM_MMIO
2963         case KVM_REGISTER_COALESCED_MMIO: {
2964                 struct kvm_coalesced_mmio_zone zone;
2965
2966                 r = -EFAULT;
2967                 if (copy_from_user(&zone, argp, sizeof(zone)))
2968                         goto out;
2969                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2970                 break;
2971         }
2972         case KVM_UNREGISTER_COALESCED_MMIO: {
2973                 struct kvm_coalesced_mmio_zone zone;
2974
2975                 r = -EFAULT;
2976                 if (copy_from_user(&zone, argp, sizeof(zone)))
2977                         goto out;
2978                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2979                 break;
2980         }
2981 #endif
2982         case KVM_IRQFD: {
2983                 struct kvm_irqfd data;
2984
2985                 r = -EFAULT;
2986                 if (copy_from_user(&data, argp, sizeof(data)))
2987                         goto out;
2988                 r = kvm_irqfd(kvm, &data);
2989                 break;
2990         }
2991         case KVM_IOEVENTFD: {
2992                 struct kvm_ioeventfd data;
2993
2994                 r = -EFAULT;
2995                 if (copy_from_user(&data, argp, sizeof(data)))
2996                         goto out;
2997                 r = kvm_ioeventfd(kvm, &data);
2998                 break;
2999         }
3000 #ifdef CONFIG_HAVE_KVM_MSI
3001         case KVM_SIGNAL_MSI: {
3002                 struct kvm_msi msi;
3003
3004                 r = -EFAULT;
3005                 if (copy_from_user(&msi, argp, sizeof(msi)))
3006                         goto out;
3007                 r = kvm_send_userspace_msi(kvm, &msi);
3008                 break;
3009         }
3010 #endif
3011 #ifdef __KVM_HAVE_IRQ_LINE
3012         case KVM_IRQ_LINE_STATUS:
3013         case KVM_IRQ_LINE: {
3014                 struct kvm_irq_level irq_event;
3015
3016                 r = -EFAULT;
3017                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3018                         goto out;
3019
3020                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3021                                         ioctl == KVM_IRQ_LINE_STATUS);
3022                 if (r)
3023                         goto out;
3024
3025                 r = -EFAULT;
3026                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3027                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3028                                 goto out;
3029                 }
3030
3031                 r = 0;
3032                 break;
3033         }
3034 #endif
3035 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3036         case KVM_SET_GSI_ROUTING: {
3037                 struct kvm_irq_routing routing;
3038                 struct kvm_irq_routing __user *urouting;
3039                 struct kvm_irq_routing_entry *entries = NULL;
3040
3041                 r = -EFAULT;
3042                 if (copy_from_user(&routing, argp, sizeof(routing)))
3043                         goto out;
3044                 r = -EINVAL;
3045                 if (!kvm_arch_can_set_irq_routing(kvm))
3046                         goto out;
3047                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3048                         goto out;
3049                 if (routing.flags)
3050                         goto out;
3051                 if (routing.nr) {
3052                         r = -ENOMEM;
3053                         entries = vmalloc(routing.nr * sizeof(*entries));
3054                         if (!entries)
3055                                 goto out;
3056                         r = -EFAULT;
3057                         urouting = argp;
3058                         if (copy_from_user(entries, urouting->entries,
3059                                            routing.nr * sizeof(*entries)))
3060                                 goto out_free_irq_routing;
3061                 }
3062                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3063                                         routing.flags);
3064 out_free_irq_routing:
3065                 vfree(entries);
3066                 break;
3067         }
3068 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3069         case KVM_CREATE_DEVICE: {
3070                 struct kvm_create_device cd;
3071
3072                 r = -EFAULT;
3073                 if (copy_from_user(&cd, argp, sizeof(cd)))
3074                         goto out;
3075
3076                 r = kvm_ioctl_create_device(kvm, &cd);
3077                 if (r)
3078                         goto out;
3079
3080                 r = -EFAULT;
3081                 if (copy_to_user(argp, &cd, sizeof(cd)))
3082                         goto out;
3083
3084                 r = 0;
3085                 break;
3086         }
3087         case KVM_CHECK_EXTENSION:
3088                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3089                 break;
3090         default:
3091                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3092         }
3093 out:
3094         return r;
3095 }
3096
3097 #ifdef CONFIG_KVM_COMPAT
3098 struct compat_kvm_dirty_log {
3099         __u32 slot;
3100         __u32 padding1;
3101         union {
3102                 compat_uptr_t dirty_bitmap; /* one bit per page */
3103                 __u64 padding2;
3104         };
3105 };
3106
3107 static long kvm_vm_compat_ioctl(struct file *filp,
3108                            unsigned int ioctl, unsigned long arg)
3109 {
3110         struct kvm *kvm = filp->private_data;
3111         int r;
3112
3113         if (kvm->mm != current->mm)
3114                 return -EIO;
3115         switch (ioctl) {
3116         case KVM_GET_DIRTY_LOG: {
3117                 struct compat_kvm_dirty_log compat_log;
3118                 struct kvm_dirty_log log;
3119
3120                 if (copy_from_user(&compat_log, (void __user *)arg,
3121                                    sizeof(compat_log)))
3122                         return -EFAULT;
3123                 log.slot         = compat_log.slot;
3124                 log.padding1     = compat_log.padding1;
3125                 log.padding2     = compat_log.padding2;
3126                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3127
3128                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3129                 break;
3130         }
3131         default:
3132                 r = kvm_vm_ioctl(filp, ioctl, arg);
3133         }
3134         return r;
3135 }
3136 #endif
3137
3138 static struct file_operations kvm_vm_fops = {
3139         .release        = kvm_vm_release,
3140         .unlocked_ioctl = kvm_vm_ioctl,
3141 #ifdef CONFIG_KVM_COMPAT
3142         .compat_ioctl   = kvm_vm_compat_ioctl,
3143 #endif
3144         .llseek         = noop_llseek,
3145 };
3146
3147 static int kvm_dev_ioctl_create_vm(unsigned long type)
3148 {
3149         int r;
3150         struct kvm *kvm;
3151         struct file *file;
3152
3153         kvm = kvm_create_vm(type);
3154         if (IS_ERR(kvm))
3155                 return PTR_ERR(kvm);
3156 #ifdef CONFIG_KVM_MMIO
3157         r = kvm_coalesced_mmio_init(kvm);
3158         if (r < 0) {
3159                 kvm_put_kvm(kvm);
3160                 return r;
3161         }
3162 #endif
3163         r = get_unused_fd_flags(O_CLOEXEC);
3164         if (r < 0) {
3165                 kvm_put_kvm(kvm);
3166                 return r;
3167         }
3168         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3169         if (IS_ERR(file)) {
3170                 put_unused_fd(r);
3171                 kvm_put_kvm(kvm);
3172                 return PTR_ERR(file);
3173         }
3174
3175         /*
3176          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3177          * already set, with ->release() being kvm_vm_release().  In error
3178          * cases it will be called by the final fput(file) and will take
3179          * care of doing kvm_put_kvm(kvm).
3180          */
3181         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3182                 put_unused_fd(r);
3183                 fput(file);
3184                 return -ENOMEM;
3185         }
3186         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3187
3188         fd_install(r, file);
3189         return r;
3190 }
3191
3192 static long kvm_dev_ioctl(struct file *filp,
3193                           unsigned int ioctl, unsigned long arg)
3194 {
3195         long r = -EINVAL;
3196
3197         switch (ioctl) {
3198         case KVM_GET_API_VERSION:
3199                 if (arg)
3200                         goto out;
3201                 r = KVM_API_VERSION;
3202                 break;
3203         case KVM_CREATE_VM:
3204                 r = kvm_dev_ioctl_create_vm(arg);
3205                 break;
3206         case KVM_CHECK_EXTENSION:
3207                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3208                 break;
3209         case KVM_GET_VCPU_MMAP_SIZE:
3210                 if (arg)
3211                         goto out;
3212                 r = PAGE_SIZE;     /* struct kvm_run */
3213 #ifdef CONFIG_X86
3214                 r += PAGE_SIZE;    /* pio data page */
3215 #endif
3216 #ifdef CONFIG_KVM_MMIO
3217                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3218 #endif
3219                 break;
3220         case KVM_TRACE_ENABLE:
3221         case KVM_TRACE_PAUSE:
3222         case KVM_TRACE_DISABLE:
3223                 r = -EOPNOTSUPP;
3224                 break;
3225         default:
3226                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3227         }
3228 out:
3229         return r;
3230 }
3231
3232 static struct file_operations kvm_chardev_ops = {
3233         .unlocked_ioctl = kvm_dev_ioctl,
3234         .compat_ioctl   = kvm_dev_ioctl,
3235         .llseek         = noop_llseek,
3236 };
3237
3238 static struct miscdevice kvm_dev = {
3239         KVM_MINOR,
3240         "kvm",
3241         &kvm_chardev_ops,
3242 };
3243
3244 static void hardware_enable_nolock(void *junk)
3245 {
3246         int cpu = raw_smp_processor_id();
3247         int r;
3248
3249         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3250                 return;
3251
3252         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3253
3254         r = kvm_arch_hardware_enable();
3255
3256         if (r) {
3257                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3258                 atomic_inc(&hardware_enable_failed);
3259                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3260         }
3261 }
3262
3263 static int kvm_starting_cpu(unsigned int cpu)
3264 {
3265         raw_spin_lock(&kvm_count_lock);
3266         if (kvm_usage_count)
3267                 hardware_enable_nolock(NULL);
3268         raw_spin_unlock(&kvm_count_lock);
3269         return 0;
3270 }
3271
3272 static void hardware_disable_nolock(void *junk)
3273 {
3274         int cpu = raw_smp_processor_id();
3275
3276         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3277                 return;
3278         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3279         kvm_arch_hardware_disable();
3280 }
3281
3282 static int kvm_dying_cpu(unsigned int cpu)
3283 {
3284         raw_spin_lock(&kvm_count_lock);
3285         if (kvm_usage_count)
3286                 hardware_disable_nolock(NULL);
3287         raw_spin_unlock(&kvm_count_lock);
3288         return 0;
3289 }
3290
3291 static void hardware_disable_all_nolock(void)
3292 {
3293         BUG_ON(!kvm_usage_count);
3294
3295         kvm_usage_count--;
3296         if (!kvm_usage_count)
3297                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3298 }
3299
3300 static void hardware_disable_all(void)
3301 {
3302         raw_spin_lock(&kvm_count_lock);
3303         hardware_disable_all_nolock();
3304         raw_spin_unlock(&kvm_count_lock);
3305 }
3306
3307 static int hardware_enable_all(void)
3308 {
3309         int r = 0;
3310
3311         raw_spin_lock(&kvm_count_lock);
3312
3313         kvm_usage_count++;
3314         if (kvm_usage_count == 1) {
3315                 atomic_set(&hardware_enable_failed, 0);
3316                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3317
3318                 if (atomic_read(&hardware_enable_failed)) {
3319                         hardware_disable_all_nolock();
3320                         r = -EBUSY;
3321                 }
3322         }
3323
3324         raw_spin_unlock(&kvm_count_lock);
3325
3326         return r;
3327 }
3328
3329 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3330                       void *v)
3331 {
3332         /*
3333          * Some (well, at least mine) BIOSes hang on reboot if
3334          * in vmx root mode.
3335          *
3336          * And Intel TXT required VMX off for all cpu when system shutdown.
3337          */
3338         pr_info("kvm: exiting hardware virtualization\n");
3339         kvm_rebooting = true;
3340         on_each_cpu(hardware_disable_nolock, NULL, 1);
3341         return NOTIFY_OK;
3342 }
3343
3344 static struct notifier_block kvm_reboot_notifier = {
3345         .notifier_call = kvm_reboot,
3346         .priority = 0,
3347 };
3348
3349 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3350 {
3351         int i;
3352
3353         for (i = 0; i < bus->dev_count; i++) {
3354                 struct kvm_io_device *pos = bus->range[i].dev;
3355
3356                 kvm_iodevice_destructor(pos);
3357         }
3358         kfree(bus);
3359 }
3360
3361 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3362                                  const struct kvm_io_range *r2)
3363 {
3364         gpa_t addr1 = r1->addr;
3365         gpa_t addr2 = r2->addr;
3366
3367         if (addr1 < addr2)
3368                 return -1;
3369
3370         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3371          * accept any overlapping write.  Any order is acceptable for
3372          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3373          * we process all of them.
3374          */
3375         if (r2->len) {
3376                 addr1 += r1->len;
3377                 addr2 += r2->len;
3378         }
3379
3380         if (addr1 > addr2)
3381                 return 1;
3382
3383         return 0;
3384 }
3385
3386 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3387 {
3388         return kvm_io_bus_cmp(p1, p2);
3389 }
3390
3391 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3392                           gpa_t addr, int len)
3393 {
3394         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3395                 .addr = addr,
3396                 .len = len,
3397                 .dev = dev,
3398         };
3399
3400         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3401                 kvm_io_bus_sort_cmp, NULL);
3402
3403         return 0;
3404 }
3405
3406 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3407                              gpa_t addr, int len)
3408 {
3409         struct kvm_io_range *range, key;
3410         int off;
3411
3412         key = (struct kvm_io_range) {
3413                 .addr = addr,
3414                 .len = len,
3415         };
3416
3417         range = bsearch(&key, bus->range, bus->dev_count,
3418                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3419         if (range == NULL)
3420                 return -ENOENT;
3421
3422         off = range - bus->range;
3423
3424         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3425                 off--;
3426
3427         return off;
3428 }
3429
3430 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3431                               struct kvm_io_range *range, const void *val)
3432 {
3433         int idx;
3434
3435         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3436         if (idx < 0)
3437                 return -EOPNOTSUPP;
3438
3439         while (idx < bus->dev_count &&
3440                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3441                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3442                                         range->len, val))
3443                         return idx;
3444                 idx++;
3445         }
3446
3447         return -EOPNOTSUPP;
3448 }
3449
3450 /* kvm_io_bus_write - called under kvm->slots_lock */
3451 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3452                      int len, const void *val)
3453 {
3454         struct kvm_io_bus *bus;
3455         struct kvm_io_range range;
3456         int r;
3457
3458         range = (struct kvm_io_range) {
3459                 .addr = addr,
3460                 .len = len,
3461         };
3462
3463         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3464         if (!bus)
3465                 return -ENOMEM;
3466         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3467         return r < 0 ? r : 0;
3468 }
3469
3470 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3471 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3472                             gpa_t addr, int len, const void *val, long cookie)
3473 {
3474         struct kvm_io_bus *bus;
3475         struct kvm_io_range range;
3476
3477         range = (struct kvm_io_range) {
3478                 .addr = addr,
3479                 .len = len,
3480         };
3481
3482         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3483         if (!bus)
3484                 return -ENOMEM;
3485
3486         /* First try the device referenced by cookie. */
3487         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3488             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3489                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3490                                         val))
3491                         return cookie;
3492
3493         /*
3494          * cookie contained garbage; fall back to search and return the
3495          * correct cookie value.
3496          */
3497         return __kvm_io_bus_write(vcpu, bus, &range, val);
3498 }
3499
3500 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3501                              struct kvm_io_range *range, void *val)
3502 {
3503         int idx;
3504
3505         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3506         if (idx < 0)
3507                 return -EOPNOTSUPP;
3508
3509         while (idx < bus->dev_count &&
3510                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3511                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3512                                        range->len, val))
3513                         return idx;
3514                 idx++;
3515         }
3516
3517         return -EOPNOTSUPP;
3518 }
3519 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3520
3521 /* kvm_io_bus_read - called under kvm->slots_lock */
3522 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3523                     int len, void *val)
3524 {
3525         struct kvm_io_bus *bus;
3526         struct kvm_io_range range;
3527         int r;
3528
3529         range = (struct kvm_io_range) {
3530                 .addr = addr,
3531                 .len = len,
3532         };
3533
3534         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3535         if (!bus)
3536                 return -ENOMEM;
3537         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3538         return r < 0 ? r : 0;
3539 }
3540
3541
3542 /* Caller must hold slots_lock. */
3543 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3544                             int len, struct kvm_io_device *dev)
3545 {
3546         struct kvm_io_bus *new_bus, *bus;
3547
3548         bus = kvm_get_bus(kvm, bus_idx);
3549         if (!bus)
3550                 return -ENOMEM;
3551
3552         /* exclude ioeventfd which is limited by maximum fd */
3553         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3554                 return -ENOSPC;
3555
3556         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3557                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3558         if (!new_bus)
3559                 return -ENOMEM;
3560         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3561                sizeof(struct kvm_io_range)));
3562         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3563         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3564         synchronize_srcu_expedited(&kvm->srcu);
3565         kfree(bus);
3566
3567         return 0;
3568 }
3569
3570 /* Caller must hold slots_lock. */
3571 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3572                                struct kvm_io_device *dev)
3573 {
3574         int i;
3575         struct kvm_io_bus *new_bus, *bus;
3576
3577         bus = kvm_get_bus(kvm, bus_idx);
3578         if (!bus)
3579                 return;
3580
3581         for (i = 0; i < bus->dev_count; i++)
3582                 if (bus->range[i].dev == dev) {
3583                         break;
3584                 }
3585
3586         if (i == bus->dev_count)
3587                 return;
3588
3589         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3590                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3591         if (!new_bus)  {
3592                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3593                 goto broken;
3594         }
3595
3596         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3597         new_bus->dev_count--;
3598         memcpy(new_bus->range + i, bus->range + i + 1,
3599                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3600
3601 broken:
3602         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3603         synchronize_srcu_expedited(&kvm->srcu);
3604         kfree(bus);
3605         return;
3606 }
3607
3608 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3609                                          gpa_t addr)
3610 {
3611         struct kvm_io_bus *bus;
3612         int dev_idx, srcu_idx;
3613         struct kvm_io_device *iodev = NULL;
3614
3615         srcu_idx = srcu_read_lock(&kvm->srcu);
3616
3617         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3618         if (!bus)
3619                 goto out_unlock;
3620
3621         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3622         if (dev_idx < 0)
3623                 goto out_unlock;
3624
3625         iodev = bus->range[dev_idx].dev;
3626
3627 out_unlock:
3628         srcu_read_unlock(&kvm->srcu, srcu_idx);
3629
3630         return iodev;
3631 }
3632 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3633
3634 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3635                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3636                            const char *fmt)
3637 {
3638         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3639                                           inode->i_private;
3640
3641         /* The debugfs files are a reference to the kvm struct which
3642          * is still valid when kvm_destroy_vm is called.
3643          * To avoid the race between open and the removal of the debugfs
3644          * directory we test against the users count.
3645          */
3646         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3647                 return -ENOENT;
3648
3649         if (simple_attr_open(inode, file, get, set, fmt)) {
3650                 kvm_put_kvm(stat_data->kvm);
3651                 return -ENOMEM;
3652         }
3653
3654         return 0;
3655 }
3656
3657 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3658 {
3659         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3660                                           inode->i_private;
3661
3662         simple_attr_release(inode, file);
3663         kvm_put_kvm(stat_data->kvm);
3664
3665         return 0;
3666 }
3667
3668 static int vm_stat_get_per_vm(void *data, u64 *val)
3669 {
3670         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3671
3672         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3673
3674         return 0;
3675 }
3676
3677 static int vm_stat_clear_per_vm(void *data, u64 val)
3678 {
3679         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3680
3681         if (val)
3682                 return -EINVAL;
3683
3684         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3685
3686         return 0;
3687 }
3688
3689 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3690 {
3691         __simple_attr_check_format("%llu\n", 0ull);
3692         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3693                                 vm_stat_clear_per_vm, "%llu\n");
3694 }
3695
3696 static const struct file_operations vm_stat_get_per_vm_fops = {
3697         .owner   = THIS_MODULE,
3698         .open    = vm_stat_get_per_vm_open,
3699         .release = kvm_debugfs_release,
3700         .read    = simple_attr_read,
3701         .write   = simple_attr_write,
3702         .llseek  = no_llseek,
3703 };
3704
3705 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3706 {
3707         int i;
3708         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3709         struct kvm_vcpu *vcpu;
3710
3711         *val = 0;
3712
3713         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3714                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3715
3716         return 0;
3717 }
3718
3719 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3720 {
3721         int i;
3722         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3723         struct kvm_vcpu *vcpu;
3724
3725         if (val)
3726                 return -EINVAL;
3727
3728         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3729                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3730
3731         return 0;
3732 }
3733
3734 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3735 {
3736         __simple_attr_check_format("%llu\n", 0ull);
3737         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3738                                  vcpu_stat_clear_per_vm, "%llu\n");
3739 }
3740
3741 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3742         .owner   = THIS_MODULE,
3743         .open    = vcpu_stat_get_per_vm_open,
3744         .release = kvm_debugfs_release,
3745         .read    = simple_attr_read,
3746         .write   = simple_attr_write,
3747         .llseek  = no_llseek,
3748 };
3749
3750 static const struct file_operations *stat_fops_per_vm[] = {
3751         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3752         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3753 };
3754
3755 static int vm_stat_get(void *_offset, u64 *val)
3756 {
3757         unsigned offset = (long)_offset;
3758         struct kvm *kvm;
3759         struct kvm_stat_data stat_tmp = {.offset = offset};
3760         u64 tmp_val;
3761
3762         *val = 0;
3763         spin_lock(&kvm_lock);
3764         list_for_each_entry(kvm, &vm_list, vm_list) {
3765                 stat_tmp.kvm = kvm;
3766                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3767                 *val += tmp_val;
3768         }
3769         spin_unlock(&kvm_lock);
3770         return 0;
3771 }
3772
3773 static int vm_stat_clear(void *_offset, u64 val)
3774 {
3775         unsigned offset = (long)_offset;
3776         struct kvm *kvm;
3777         struct kvm_stat_data stat_tmp = {.offset = offset};
3778
3779         if (val)
3780                 return -EINVAL;
3781
3782         spin_lock(&kvm_lock);
3783         list_for_each_entry(kvm, &vm_list, vm_list) {
3784                 stat_tmp.kvm = kvm;
3785                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3786         }
3787         spin_unlock(&kvm_lock);
3788
3789         return 0;
3790 }
3791
3792 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3793
3794 static int vcpu_stat_get(void *_offset, u64 *val)
3795 {
3796         unsigned offset = (long)_offset;
3797         struct kvm *kvm;
3798         struct kvm_stat_data stat_tmp = {.offset = offset};
3799         u64 tmp_val;
3800
3801         *val = 0;
3802         spin_lock(&kvm_lock);
3803         list_for_each_entry(kvm, &vm_list, vm_list) {
3804                 stat_tmp.kvm = kvm;
3805                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3806                 *val += tmp_val;
3807         }
3808         spin_unlock(&kvm_lock);
3809         return 0;
3810 }
3811
3812 static int vcpu_stat_clear(void *_offset, u64 val)
3813 {
3814         unsigned offset = (long)_offset;
3815         struct kvm *kvm;
3816         struct kvm_stat_data stat_tmp = {.offset = offset};
3817
3818         if (val)
3819                 return -EINVAL;
3820
3821         spin_lock(&kvm_lock);
3822         list_for_each_entry(kvm, &vm_list, vm_list) {
3823                 stat_tmp.kvm = kvm;
3824                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3825         }
3826         spin_unlock(&kvm_lock);
3827
3828         return 0;
3829 }
3830
3831 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3832                         "%llu\n");
3833
3834 static const struct file_operations *stat_fops[] = {
3835         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3836         [KVM_STAT_VM]   = &vm_stat_fops,
3837 };
3838
3839 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3840 {
3841         struct kobj_uevent_env *env;
3842         unsigned long long created, active;
3843
3844         if (!kvm_dev.this_device || !kvm)
3845                 return;
3846
3847         spin_lock(&kvm_lock);
3848         if (type == KVM_EVENT_CREATE_VM) {
3849                 kvm_createvm_count++;
3850                 kvm_active_vms++;
3851         } else if (type == KVM_EVENT_DESTROY_VM) {
3852                 kvm_active_vms--;
3853         }
3854         created = kvm_createvm_count;
3855         active = kvm_active_vms;
3856         spin_unlock(&kvm_lock);
3857
3858         env = kzalloc(sizeof(*env), GFP_KERNEL);
3859         if (!env)
3860                 return;
3861
3862         add_uevent_var(env, "CREATED=%llu", created);
3863         add_uevent_var(env, "COUNT=%llu", active);
3864
3865         if (type == KVM_EVENT_CREATE_VM) {
3866                 add_uevent_var(env, "EVENT=create");
3867                 kvm->userspace_pid = task_pid_nr(current);
3868         } else if (type == KVM_EVENT_DESTROY_VM) {
3869                 add_uevent_var(env, "EVENT=destroy");
3870         }
3871         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3872
3873         if (kvm->debugfs_dentry) {
3874                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3875
3876                 if (p) {
3877                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3878                         if (!IS_ERR(tmp))
3879                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3880                         kfree(p);
3881                 }
3882         }
3883         /* no need for checks, since we are adding at most only 5 keys */
3884         env->envp[env->envp_idx++] = NULL;
3885         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3886         kfree(env);
3887 }
3888
3889 static int kvm_init_debug(void)
3890 {
3891         int r = -EEXIST;
3892         struct kvm_stats_debugfs_item *p;
3893
3894         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3895         if (kvm_debugfs_dir == NULL)
3896                 goto out;
3897
3898         kvm_debugfs_num_entries = 0;
3899         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3900                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3901                                          (void *)(long)p->offset,
3902                                          stat_fops[p->kind]))
3903                         goto out_dir;
3904         }
3905
3906         return 0;
3907
3908 out_dir:
3909         debugfs_remove_recursive(kvm_debugfs_dir);
3910 out:
3911         return r;
3912 }
3913
3914 static int kvm_suspend(void)
3915 {
3916         if (kvm_usage_count)
3917                 hardware_disable_nolock(NULL);
3918         return 0;
3919 }
3920
3921 static void kvm_resume(void)
3922 {
3923         if (kvm_usage_count) {
3924                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3925                 hardware_enable_nolock(NULL);
3926         }
3927 }
3928
3929 static struct syscore_ops kvm_syscore_ops = {
3930         .suspend = kvm_suspend,
3931         .resume = kvm_resume,
3932 };
3933
3934 static inline
3935 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3936 {
3937         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3938 }
3939
3940 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3941 {
3942         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3943
3944         if (vcpu->preempted)
3945                 vcpu->preempted = false;
3946
3947         kvm_arch_sched_in(vcpu, cpu);
3948
3949         kvm_arch_vcpu_load(vcpu, cpu);
3950 }
3951
3952 static void kvm_sched_out(struct preempt_notifier *pn,
3953                           struct task_struct *next)
3954 {
3955         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3956
3957         if (current->state == TASK_RUNNING)
3958                 vcpu->preempted = true;
3959         kvm_arch_vcpu_put(vcpu);
3960 }
3961
3962 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3963                   struct module *module)
3964 {
3965         int r;
3966         int cpu;
3967
3968         r = kvm_arch_init(opaque);
3969         if (r)
3970                 goto out_fail;
3971
3972         /*
3973          * kvm_arch_init makes sure there's at most one caller
3974          * for architectures that support multiple implementations,
3975          * like intel and amd on x86.
3976          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3977          * conflicts in case kvm is already setup for another implementation.
3978          */
3979         r = kvm_irqfd_init();
3980         if (r)
3981                 goto out_irqfd;
3982
3983         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3984                 r = -ENOMEM;
3985                 goto out_free_0;
3986         }
3987
3988         r = kvm_arch_hardware_setup();
3989         if (r < 0)
3990                 goto out_free_0a;
3991
3992         for_each_online_cpu(cpu) {
3993                 smp_call_function_single(cpu,
3994                                 kvm_arch_check_processor_compat,
3995                                 &r, 1);
3996                 if (r < 0)
3997                         goto out_free_1;
3998         }
3999
4000         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4001                                       kvm_starting_cpu, kvm_dying_cpu);
4002         if (r)
4003                 goto out_free_2;
4004         register_reboot_notifier(&kvm_reboot_notifier);
4005
4006         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4007         if (!vcpu_align)
4008                 vcpu_align = __alignof__(struct kvm_vcpu);
4009         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4010                                            SLAB_ACCOUNT, NULL);
4011         if (!kvm_vcpu_cache) {
4012                 r = -ENOMEM;
4013                 goto out_free_3;
4014         }
4015
4016         r = kvm_async_pf_init();
4017         if (r)
4018                 goto out_free;
4019
4020         kvm_chardev_ops.owner = module;
4021         kvm_vm_fops.owner = module;
4022         kvm_vcpu_fops.owner = module;
4023
4024         r = misc_register(&kvm_dev);
4025         if (r) {
4026                 pr_err("kvm: misc device register failed\n");
4027                 goto out_unreg;
4028         }
4029
4030         register_syscore_ops(&kvm_syscore_ops);
4031
4032         kvm_preempt_ops.sched_in = kvm_sched_in;
4033         kvm_preempt_ops.sched_out = kvm_sched_out;
4034
4035         r = kvm_init_debug();
4036         if (r) {
4037                 pr_err("kvm: create debugfs files failed\n");
4038                 goto out_undebugfs;
4039         }
4040
4041         r = kvm_vfio_ops_init();
4042         WARN_ON(r);
4043
4044         return 0;
4045
4046 out_undebugfs:
4047         unregister_syscore_ops(&kvm_syscore_ops);
4048         misc_deregister(&kvm_dev);
4049 out_unreg:
4050         kvm_async_pf_deinit();
4051 out_free:
4052         kmem_cache_destroy(kvm_vcpu_cache);
4053 out_free_3:
4054         unregister_reboot_notifier(&kvm_reboot_notifier);
4055         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4056 out_free_2:
4057 out_free_1:
4058         kvm_arch_hardware_unsetup();
4059 out_free_0a:
4060         free_cpumask_var(cpus_hardware_enabled);
4061 out_free_0:
4062         kvm_irqfd_exit();
4063 out_irqfd:
4064         kvm_arch_exit();
4065 out_fail:
4066         return r;
4067 }
4068 EXPORT_SYMBOL_GPL(kvm_init);
4069
4070 void kvm_exit(void)
4071 {
4072         debugfs_remove_recursive(kvm_debugfs_dir);
4073         misc_deregister(&kvm_dev);
4074         kmem_cache_destroy(kvm_vcpu_cache);
4075         kvm_async_pf_deinit();
4076         unregister_syscore_ops(&kvm_syscore_ops);
4077         unregister_reboot_notifier(&kvm_reboot_notifier);
4078         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4079         on_each_cpu(hardware_disable_nolock, NULL, 1);
4080         kvm_arch_hardware_unsetup();
4081         kvm_arch_exit();
4082         kvm_irqfd_exit();
4083         free_cpumask_var(cpus_hardware_enabled);
4084         kvm_vfio_ops_exit();
4085 }
4086 EXPORT_SYMBOL_GPL(kvm_exit);