930aeb8d3c3e2dcaf335de95cc1a9d7eb37476ce
[sfrench/cifs-2.6.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159                                                    unsigned long start, unsigned long end)
160 {
161 }
162
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165         /*
166          * The metadata used by is_zone_device_page() to determine whether or
167          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168          * the device has been pinned, e.g. by get_user_pages().  WARN if the
169          * page_count() is zero to help detect bad usage of this helper.
170          */
171         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172                 return false;
173
174         return is_zone_device_page(pfn_to_page(pfn));
175 }
176
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179         /*
180          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181          * perspective they are "normal" pages, albeit with slightly different
182          * usage rules.
183          */
184         if (pfn_valid(pfn))
185                 return PageReserved(pfn_to_page(pfn)) &&
186                        !is_zero_pfn(pfn) &&
187                        !kvm_is_zone_device_pfn(pfn);
188
189         return true;
190 }
191
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194         struct page *page = pfn_to_page(pfn);
195
196         if (!PageTransCompoundMap(page))
197                 return false;
198
199         return is_transparent_hugepage(compound_head(page));
200 }
201
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207         int cpu = get_cpu();
208
209         __this_cpu_write(kvm_running_vcpu, vcpu);
210         preempt_notifier_register(&vcpu->preempt_notifier);
211         kvm_arch_vcpu_load(vcpu, cpu);
212         put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218         preempt_disable();
219         kvm_arch_vcpu_put(vcpu);
220         preempt_notifier_unregister(&vcpu->preempt_notifier);
221         __this_cpu_write(kvm_running_vcpu, NULL);
222         preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230
231         /*
232          * We need to wait for the VCPU to reenable interrupts and get out of
233          * READING_SHADOW_PAGE_TABLES mode.
234          */
235         if (req & KVM_REQUEST_WAIT)
236                 return mode != OUTSIDE_GUEST_MODE;
237
238         /*
239          * Need to kick a running VCPU, but otherwise there is nothing to do.
240          */
241         return mode == IN_GUEST_MODE;
242 }
243
244 static void ack_flush(void *_completed)
245 {
246 }
247
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250         if (unlikely(!cpus))
251                 cpus = cpu_online_mask;
252
253         if (cpumask_empty(cpus))
254                 return false;
255
256         smp_call_function_many(cpus, ack_flush, NULL, wait);
257         return true;
258 }
259
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261                                  struct kvm_vcpu *except,
262                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264         int i, cpu, me;
265         struct kvm_vcpu *vcpu;
266         bool called;
267
268         me = get_cpu();
269
270         kvm_for_each_vcpu(i, vcpu, kvm) {
271                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272                     vcpu == except)
273                         continue;
274
275                 kvm_make_request(req, vcpu);
276                 cpu = vcpu->cpu;
277
278                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279                         continue;
280
281                 if (tmp != NULL && cpu != -1 && cpu != me &&
282                     kvm_request_needs_ipi(vcpu, req))
283                         __cpumask_set_cpu(cpu, tmp);
284         }
285
286         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287         put_cpu();
288
289         return called;
290 }
291
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293                                       struct kvm_vcpu *except)
294 {
295         cpumask_var_t cpus;
296         bool called;
297
298         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299
300         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301
302         free_cpumask_var(cpus);
303         return called;
304 }
305
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308         return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
311
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 {
315         /*
316          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317          * kvm_make_all_cpus_request.
318          */
319         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320
321         /*
322          * We want to publish modifications to the page tables before reading
323          * mode. Pairs with a memory barrier in arch-specific code.
324          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325          * and smp_mb in walk_shadow_page_lockless_begin/end.
326          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327          *
328          * There is already an smp_mb__after_atomic() before
329          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330          * barrier here.
331          */
332         if (!kvm_arch_flush_remote_tlb(kvm)
333             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
334                 ++kvm->stat.generic.remote_tlb_flush;
335         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
336 }
337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 #endif
339
340 void kvm_reload_remote_mmus(struct kvm *kvm)
341 {
342         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 }
344
345 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
346 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
347                                                gfp_t gfp_flags)
348 {
349         gfp_flags |= mc->gfp_zero;
350
351         if (mc->kmem_cache)
352                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
353         else
354                 return (void *)__get_free_page(gfp_flags);
355 }
356
357 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
358 {
359         void *obj;
360
361         if (mc->nobjs >= min)
362                 return 0;
363         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
364                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
365                 if (!obj)
366                         return mc->nobjs >= min ? 0 : -ENOMEM;
367                 mc->objects[mc->nobjs++] = obj;
368         }
369         return 0;
370 }
371
372 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
373 {
374         return mc->nobjs;
375 }
376
377 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
378 {
379         while (mc->nobjs) {
380                 if (mc->kmem_cache)
381                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
382                 else
383                         free_page((unsigned long)mc->objects[--mc->nobjs]);
384         }
385 }
386
387 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
388 {
389         void *p;
390
391         if (WARN_ON(!mc->nobjs))
392                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
393         else
394                 p = mc->objects[--mc->nobjs];
395         BUG_ON(!p);
396         return p;
397 }
398 #endif
399
400 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
401 {
402         mutex_init(&vcpu->mutex);
403         vcpu->cpu = -1;
404         vcpu->kvm = kvm;
405         vcpu->vcpu_id = id;
406         vcpu->pid = NULL;
407         rcuwait_init(&vcpu->wait);
408         kvm_async_pf_vcpu_init(vcpu);
409
410         vcpu->pre_pcpu = -1;
411         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
412
413         kvm_vcpu_set_in_spin_loop(vcpu, false);
414         kvm_vcpu_set_dy_eligible(vcpu, false);
415         vcpu->preempted = false;
416         vcpu->ready = false;
417         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
418 }
419
420 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
421 {
422         kvm_dirty_ring_free(&vcpu->dirty_ring);
423         kvm_arch_vcpu_destroy(vcpu);
424
425         /*
426          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
427          * the vcpu->pid pointer, and at destruction time all file descriptors
428          * are already gone.
429          */
430         put_pid(rcu_dereference_protected(vcpu->pid, 1));
431
432         free_page((unsigned long)vcpu->run);
433         kmem_cache_free(kvm_vcpu_cache, vcpu);
434 }
435 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
436
437 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
438 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
439 {
440         return container_of(mn, struct kvm, mmu_notifier);
441 }
442
443 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
444                                               struct mm_struct *mm,
445                                               unsigned long start, unsigned long end)
446 {
447         struct kvm *kvm = mmu_notifier_to_kvm(mn);
448         int idx;
449
450         idx = srcu_read_lock(&kvm->srcu);
451         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
452         srcu_read_unlock(&kvm->srcu, idx);
453 }
454
455 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
456
457 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
458                              unsigned long end);
459
460 struct kvm_hva_range {
461         unsigned long start;
462         unsigned long end;
463         pte_t pte;
464         hva_handler_t handler;
465         on_lock_fn_t on_lock;
466         bool flush_on_ret;
467         bool may_block;
468 };
469
470 /*
471  * Use a dedicated stub instead of NULL to indicate that there is no callback
472  * function/handler.  The compiler technically can't guarantee that a real
473  * function will have a non-zero address, and so it will generate code to
474  * check for !NULL, whereas comparing against a stub will be elided at compile
475  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
476  */
477 static void kvm_null_fn(void)
478 {
479
480 }
481 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
482
483 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
484                                                   const struct kvm_hva_range *range)
485 {
486         bool ret = false, locked = false;
487         struct kvm_gfn_range gfn_range;
488         struct kvm_memory_slot *slot;
489         struct kvm_memslots *slots;
490         int i, idx;
491
492         /* A null handler is allowed if and only if on_lock() is provided. */
493         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
494                          IS_KVM_NULL_FN(range->handler)))
495                 return 0;
496
497         idx = srcu_read_lock(&kvm->srcu);
498
499         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
500                 slots = __kvm_memslots(kvm, i);
501                 kvm_for_each_memslot(slot, slots) {
502                         unsigned long hva_start, hva_end;
503
504                         hva_start = max(range->start, slot->userspace_addr);
505                         hva_end = min(range->end, slot->userspace_addr +
506                                                   (slot->npages << PAGE_SHIFT));
507                         if (hva_start >= hva_end)
508                                 continue;
509
510                         /*
511                          * To optimize for the likely case where the address
512                          * range is covered by zero or one memslots, don't
513                          * bother making these conditional (to avoid writes on
514                          * the second or later invocation of the handler).
515                          */
516                         gfn_range.pte = range->pte;
517                         gfn_range.may_block = range->may_block;
518
519                         /*
520                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
521                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
522                          */
523                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
524                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
525                         gfn_range.slot = slot;
526
527                         if (!locked) {
528                                 locked = true;
529                                 KVM_MMU_LOCK(kvm);
530                                 if (!IS_KVM_NULL_FN(range->on_lock))
531                                         range->on_lock(kvm, range->start, range->end);
532                                 if (IS_KVM_NULL_FN(range->handler))
533                                         break;
534                         }
535                         ret |= range->handler(kvm, &gfn_range);
536                 }
537         }
538
539         if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
540                 kvm_flush_remote_tlbs(kvm);
541
542         if (locked)
543                 KVM_MMU_UNLOCK(kvm);
544
545         srcu_read_unlock(&kvm->srcu, idx);
546
547         /* The notifiers are averse to booleans. :-( */
548         return (int)ret;
549 }
550
551 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
552                                                 unsigned long start,
553                                                 unsigned long end,
554                                                 pte_t pte,
555                                                 hva_handler_t handler)
556 {
557         struct kvm *kvm = mmu_notifier_to_kvm(mn);
558         const struct kvm_hva_range range = {
559                 .start          = start,
560                 .end            = end,
561                 .pte            = pte,
562                 .handler        = handler,
563                 .on_lock        = (void *)kvm_null_fn,
564                 .flush_on_ret   = true,
565                 .may_block      = false,
566         };
567
568         return __kvm_handle_hva_range(kvm, &range);
569 }
570
571 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
572                                                          unsigned long start,
573                                                          unsigned long end,
574                                                          hva_handler_t handler)
575 {
576         struct kvm *kvm = mmu_notifier_to_kvm(mn);
577         const struct kvm_hva_range range = {
578                 .start          = start,
579                 .end            = end,
580                 .pte            = __pte(0),
581                 .handler        = handler,
582                 .on_lock        = (void *)kvm_null_fn,
583                 .flush_on_ret   = false,
584                 .may_block      = false,
585         };
586
587         return __kvm_handle_hva_range(kvm, &range);
588 }
589 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
590                                         struct mm_struct *mm,
591                                         unsigned long address,
592                                         pte_t pte)
593 {
594         struct kvm *kvm = mmu_notifier_to_kvm(mn);
595
596         trace_kvm_set_spte_hva(address);
597
598         /*
599          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
600          * If mmu_notifier_count is zero, then no in-progress invalidations,
601          * including this one, found a relevant memslot at start(); rechecking
602          * memslots here is unnecessary.  Note, a false positive (count elevated
603          * by a different invalidation) is sub-optimal but functionally ok.
604          */
605         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
606         if (!READ_ONCE(kvm->mmu_notifier_count))
607                 return;
608
609         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
610 }
611
612 static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
613                                    unsigned long end)
614 {
615         /*
616          * The count increase must become visible at unlock time as no
617          * spte can be established without taking the mmu_lock and
618          * count is also read inside the mmu_lock critical section.
619          */
620         kvm->mmu_notifier_count++;
621         if (likely(kvm->mmu_notifier_count == 1)) {
622                 kvm->mmu_notifier_range_start = start;
623                 kvm->mmu_notifier_range_end = end;
624         } else {
625                 /*
626                  * Fully tracking multiple concurrent ranges has dimishing
627                  * returns. Keep things simple and just find the minimal range
628                  * which includes the current and new ranges. As there won't be
629                  * enough information to subtract a range after its invalidate
630                  * completes, any ranges invalidated concurrently will
631                  * accumulate and persist until all outstanding invalidates
632                  * complete.
633                  */
634                 kvm->mmu_notifier_range_start =
635                         min(kvm->mmu_notifier_range_start, start);
636                 kvm->mmu_notifier_range_end =
637                         max(kvm->mmu_notifier_range_end, end);
638         }
639 }
640
641 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
642                                         const struct mmu_notifier_range *range)
643 {
644         struct kvm *kvm = mmu_notifier_to_kvm(mn);
645         const struct kvm_hva_range hva_range = {
646                 .start          = range->start,
647                 .end            = range->end,
648                 .pte            = __pte(0),
649                 .handler        = kvm_unmap_gfn_range,
650                 .on_lock        = kvm_inc_notifier_count,
651                 .flush_on_ret   = true,
652                 .may_block      = mmu_notifier_range_blockable(range),
653         };
654
655         trace_kvm_unmap_hva_range(range->start, range->end);
656
657         /*
658          * Prevent memslot modification between range_start() and range_end()
659          * so that conditionally locking provides the same result in both
660          * functions.  Without that guarantee, the mmu_notifier_count
661          * adjustments will be imbalanced.
662          *
663          * Pairs with the decrement in range_end().
664          */
665         spin_lock(&kvm->mn_invalidate_lock);
666         kvm->mn_active_invalidate_count++;
667         spin_unlock(&kvm->mn_invalidate_lock);
668
669         __kvm_handle_hva_range(kvm, &hva_range);
670
671         return 0;
672 }
673
674 static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
675                                    unsigned long end)
676 {
677         /*
678          * This sequence increase will notify the kvm page fault that
679          * the page that is going to be mapped in the spte could have
680          * been freed.
681          */
682         kvm->mmu_notifier_seq++;
683         smp_wmb();
684         /*
685          * The above sequence increase must be visible before the
686          * below count decrease, which is ensured by the smp_wmb above
687          * in conjunction with the smp_rmb in mmu_notifier_retry().
688          */
689         kvm->mmu_notifier_count--;
690 }
691
692 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
693                                         const struct mmu_notifier_range *range)
694 {
695         struct kvm *kvm = mmu_notifier_to_kvm(mn);
696         const struct kvm_hva_range hva_range = {
697                 .start          = range->start,
698                 .end            = range->end,
699                 .pte            = __pte(0),
700                 .handler        = (void *)kvm_null_fn,
701                 .on_lock        = kvm_dec_notifier_count,
702                 .flush_on_ret   = false,
703                 .may_block      = mmu_notifier_range_blockable(range),
704         };
705         bool wake;
706
707         __kvm_handle_hva_range(kvm, &hva_range);
708
709         /* Pairs with the increment in range_start(). */
710         spin_lock(&kvm->mn_invalidate_lock);
711         wake = (--kvm->mn_active_invalidate_count == 0);
712         spin_unlock(&kvm->mn_invalidate_lock);
713
714         /*
715          * There can only be one waiter, since the wait happens under
716          * slots_lock.
717          */
718         if (wake)
719                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
720
721         BUG_ON(kvm->mmu_notifier_count < 0);
722 }
723
724 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
725                                               struct mm_struct *mm,
726                                               unsigned long start,
727                                               unsigned long end)
728 {
729         trace_kvm_age_hva(start, end);
730
731         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
732 }
733
734 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
735                                         struct mm_struct *mm,
736                                         unsigned long start,
737                                         unsigned long end)
738 {
739         trace_kvm_age_hva(start, end);
740
741         /*
742          * Even though we do not flush TLB, this will still adversely
743          * affect performance on pre-Haswell Intel EPT, where there is
744          * no EPT Access Bit to clear so that we have to tear down EPT
745          * tables instead. If we find this unacceptable, we can always
746          * add a parameter to kvm_age_hva so that it effectively doesn't
747          * do anything on clear_young.
748          *
749          * Also note that currently we never issue secondary TLB flushes
750          * from clear_young, leaving this job up to the regular system
751          * cadence. If we find this inaccurate, we might come up with a
752          * more sophisticated heuristic later.
753          */
754         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
755 }
756
757 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
758                                        struct mm_struct *mm,
759                                        unsigned long address)
760 {
761         trace_kvm_test_age_hva(address);
762
763         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
764                                              kvm_test_age_gfn);
765 }
766
767 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
768                                      struct mm_struct *mm)
769 {
770         struct kvm *kvm = mmu_notifier_to_kvm(mn);
771         int idx;
772
773         idx = srcu_read_lock(&kvm->srcu);
774         kvm_arch_flush_shadow_all(kvm);
775         srcu_read_unlock(&kvm->srcu, idx);
776 }
777
778 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
779         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
780         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
781         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
782         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
783         .clear_young            = kvm_mmu_notifier_clear_young,
784         .test_young             = kvm_mmu_notifier_test_young,
785         .change_pte             = kvm_mmu_notifier_change_pte,
786         .release                = kvm_mmu_notifier_release,
787 };
788
789 static int kvm_init_mmu_notifier(struct kvm *kvm)
790 {
791         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
792         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
793 }
794
795 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
796
797 static int kvm_init_mmu_notifier(struct kvm *kvm)
798 {
799         return 0;
800 }
801
802 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
803
804 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
805 static int kvm_pm_notifier_call(struct notifier_block *bl,
806                                 unsigned long state,
807                                 void *unused)
808 {
809         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
810
811         return kvm_arch_pm_notifier(kvm, state);
812 }
813
814 static void kvm_init_pm_notifier(struct kvm *kvm)
815 {
816         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
817         /* Suspend KVM before we suspend ftrace, RCU, etc. */
818         kvm->pm_notifier.priority = INT_MAX;
819         register_pm_notifier(&kvm->pm_notifier);
820 }
821
822 static void kvm_destroy_pm_notifier(struct kvm *kvm)
823 {
824         unregister_pm_notifier(&kvm->pm_notifier);
825 }
826 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
827 static void kvm_init_pm_notifier(struct kvm *kvm)
828 {
829 }
830
831 static void kvm_destroy_pm_notifier(struct kvm *kvm)
832 {
833 }
834 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
835
836 static struct kvm_memslots *kvm_alloc_memslots(void)
837 {
838         int i;
839         struct kvm_memslots *slots;
840
841         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
842         if (!slots)
843                 return NULL;
844
845         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
846                 slots->id_to_index[i] = -1;
847
848         return slots;
849 }
850
851 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
852 {
853         if (!memslot->dirty_bitmap)
854                 return;
855
856         kvfree(memslot->dirty_bitmap);
857         memslot->dirty_bitmap = NULL;
858 }
859
860 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
861 {
862         kvm_destroy_dirty_bitmap(slot);
863
864         kvm_arch_free_memslot(kvm, slot);
865
866         slot->flags = 0;
867         slot->npages = 0;
868 }
869
870 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
871 {
872         struct kvm_memory_slot *memslot;
873
874         if (!slots)
875                 return;
876
877         kvm_for_each_memslot(memslot, slots)
878                 kvm_free_memslot(kvm, memslot);
879
880         kvfree(slots);
881 }
882
883 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
884 {
885         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
886         case KVM_STATS_TYPE_INSTANT:
887                 return 0444;
888         case KVM_STATS_TYPE_CUMULATIVE:
889         case KVM_STATS_TYPE_PEAK:
890         default:
891                 return 0644;
892         }
893 }
894
895
896 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
897 {
898         int i;
899         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
900                                       kvm_vcpu_stats_header.num_desc;
901
902         if (!kvm->debugfs_dentry)
903                 return;
904
905         debugfs_remove_recursive(kvm->debugfs_dentry);
906
907         if (kvm->debugfs_stat_data) {
908                 for (i = 0; i < kvm_debugfs_num_entries; i++)
909                         kfree(kvm->debugfs_stat_data[i]);
910                 kfree(kvm->debugfs_stat_data);
911         }
912 }
913
914 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
915 {
916         char dir_name[ITOA_MAX_LEN * 2];
917         struct kvm_stat_data *stat_data;
918         const struct _kvm_stats_desc *pdesc;
919         int i;
920         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
921                                       kvm_vcpu_stats_header.num_desc;
922
923         if (!debugfs_initialized())
924                 return 0;
925
926         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
927         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
928
929         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
930                                          sizeof(*kvm->debugfs_stat_data),
931                                          GFP_KERNEL_ACCOUNT);
932         if (!kvm->debugfs_stat_data)
933                 return -ENOMEM;
934
935         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
936                 pdesc = &kvm_vm_stats_desc[i];
937                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
938                 if (!stat_data)
939                         return -ENOMEM;
940
941                 stat_data->kvm = kvm;
942                 stat_data->desc = pdesc;
943                 stat_data->kind = KVM_STAT_VM;
944                 kvm->debugfs_stat_data[i] = stat_data;
945                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
946                                     kvm->debugfs_dentry, stat_data,
947                                     &stat_fops_per_vm);
948         }
949
950         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
951                 pdesc = &kvm_vcpu_stats_desc[i];
952                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
953                 if (!stat_data)
954                         return -ENOMEM;
955
956                 stat_data->kvm = kvm;
957                 stat_data->desc = pdesc;
958                 stat_data->kind = KVM_STAT_VCPU;
959                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
960                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
961                                     kvm->debugfs_dentry, stat_data,
962                                     &stat_fops_per_vm);
963         }
964         return 0;
965 }
966
967 /*
968  * Called after the VM is otherwise initialized, but just before adding it to
969  * the vm_list.
970  */
971 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
972 {
973         return 0;
974 }
975
976 /*
977  * Called just after removing the VM from the vm_list, but before doing any
978  * other destruction.
979  */
980 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
981 {
982 }
983
984 static struct kvm *kvm_create_vm(unsigned long type)
985 {
986         struct kvm *kvm = kvm_arch_alloc_vm();
987         int r = -ENOMEM;
988         int i;
989
990         if (!kvm)
991                 return ERR_PTR(-ENOMEM);
992
993         KVM_MMU_LOCK_INIT(kvm);
994         mmgrab(current->mm);
995         kvm->mm = current->mm;
996         kvm_eventfd_init(kvm);
997         mutex_init(&kvm->lock);
998         mutex_init(&kvm->irq_lock);
999         mutex_init(&kvm->slots_lock);
1000         mutex_init(&kvm->slots_arch_lock);
1001         spin_lock_init(&kvm->mn_invalidate_lock);
1002         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1003
1004         INIT_LIST_HEAD(&kvm->devices);
1005
1006         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1007
1008         if (init_srcu_struct(&kvm->srcu))
1009                 goto out_err_no_srcu;
1010         if (init_srcu_struct(&kvm->irq_srcu))
1011                 goto out_err_no_irq_srcu;
1012
1013         refcount_set(&kvm->users_count, 1);
1014         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1015                 struct kvm_memslots *slots = kvm_alloc_memslots();
1016
1017                 if (!slots)
1018                         goto out_err_no_arch_destroy_vm;
1019                 /* Generations must be different for each address space. */
1020                 slots->generation = i;
1021                 rcu_assign_pointer(kvm->memslots[i], slots);
1022         }
1023
1024         for (i = 0; i < KVM_NR_BUSES; i++) {
1025                 rcu_assign_pointer(kvm->buses[i],
1026                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1027                 if (!kvm->buses[i])
1028                         goto out_err_no_arch_destroy_vm;
1029         }
1030
1031         kvm->max_halt_poll_ns = halt_poll_ns;
1032
1033         r = kvm_arch_init_vm(kvm, type);
1034         if (r)
1035                 goto out_err_no_arch_destroy_vm;
1036
1037         r = hardware_enable_all();
1038         if (r)
1039                 goto out_err_no_disable;
1040
1041 #ifdef CONFIG_HAVE_KVM_IRQFD
1042         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1043 #endif
1044
1045         r = kvm_init_mmu_notifier(kvm);
1046         if (r)
1047                 goto out_err_no_mmu_notifier;
1048
1049         r = kvm_arch_post_init_vm(kvm);
1050         if (r)
1051                 goto out_err;
1052
1053         mutex_lock(&kvm_lock);
1054         list_add(&kvm->vm_list, &vm_list);
1055         mutex_unlock(&kvm_lock);
1056
1057         preempt_notifier_inc();
1058         kvm_init_pm_notifier(kvm);
1059
1060         return kvm;
1061
1062 out_err:
1063 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1064         if (kvm->mmu_notifier.ops)
1065                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1066 #endif
1067 out_err_no_mmu_notifier:
1068         hardware_disable_all();
1069 out_err_no_disable:
1070         kvm_arch_destroy_vm(kvm);
1071 out_err_no_arch_destroy_vm:
1072         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1073         for (i = 0; i < KVM_NR_BUSES; i++)
1074                 kfree(kvm_get_bus(kvm, i));
1075         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1076                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1077         cleanup_srcu_struct(&kvm->irq_srcu);
1078 out_err_no_irq_srcu:
1079         cleanup_srcu_struct(&kvm->srcu);
1080 out_err_no_srcu:
1081         kvm_arch_free_vm(kvm);
1082         mmdrop(current->mm);
1083         return ERR_PTR(r);
1084 }
1085
1086 static void kvm_destroy_devices(struct kvm *kvm)
1087 {
1088         struct kvm_device *dev, *tmp;
1089
1090         /*
1091          * We do not need to take the kvm->lock here, because nobody else
1092          * has a reference to the struct kvm at this point and therefore
1093          * cannot access the devices list anyhow.
1094          */
1095         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1096                 list_del(&dev->vm_node);
1097                 dev->ops->destroy(dev);
1098         }
1099 }
1100
1101 static void kvm_destroy_vm(struct kvm *kvm)
1102 {
1103         int i;
1104         struct mm_struct *mm = kvm->mm;
1105
1106         kvm_destroy_pm_notifier(kvm);
1107         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1108         kvm_destroy_vm_debugfs(kvm);
1109         kvm_arch_sync_events(kvm);
1110         mutex_lock(&kvm_lock);
1111         list_del(&kvm->vm_list);
1112         mutex_unlock(&kvm_lock);
1113         kvm_arch_pre_destroy_vm(kvm);
1114
1115         kvm_free_irq_routing(kvm);
1116         for (i = 0; i < KVM_NR_BUSES; i++) {
1117                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1118
1119                 if (bus)
1120                         kvm_io_bus_destroy(bus);
1121                 kvm->buses[i] = NULL;
1122         }
1123         kvm_coalesced_mmio_free(kvm);
1124 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1125         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1126         /*
1127          * At this point, pending calls to invalidate_range_start()
1128          * have completed but no more MMU notifiers will run, so
1129          * mn_active_invalidate_count may remain unbalanced.
1130          * No threads can be waiting in install_new_memslots as the
1131          * last reference on KVM has been dropped, but freeing
1132          * memslots would deadlock without this manual intervention.
1133          */
1134         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1135         kvm->mn_active_invalidate_count = 0;
1136 #else
1137         kvm_arch_flush_shadow_all(kvm);
1138 #endif
1139         kvm_arch_destroy_vm(kvm);
1140         kvm_destroy_devices(kvm);
1141         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1142                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1143         cleanup_srcu_struct(&kvm->irq_srcu);
1144         cleanup_srcu_struct(&kvm->srcu);
1145         kvm_arch_free_vm(kvm);
1146         preempt_notifier_dec();
1147         hardware_disable_all();
1148         mmdrop(mm);
1149 }
1150
1151 void kvm_get_kvm(struct kvm *kvm)
1152 {
1153         refcount_inc(&kvm->users_count);
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1156
1157 /*
1158  * Make sure the vm is not during destruction, which is a safe version of
1159  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1160  */
1161 bool kvm_get_kvm_safe(struct kvm *kvm)
1162 {
1163         return refcount_inc_not_zero(&kvm->users_count);
1164 }
1165 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1166
1167 void kvm_put_kvm(struct kvm *kvm)
1168 {
1169         if (refcount_dec_and_test(&kvm->users_count))
1170                 kvm_destroy_vm(kvm);
1171 }
1172 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1173
1174 /*
1175  * Used to put a reference that was taken on behalf of an object associated
1176  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1177  * of the new file descriptor fails and the reference cannot be transferred to
1178  * its final owner.  In such cases, the caller is still actively using @kvm and
1179  * will fail miserably if the refcount unexpectedly hits zero.
1180  */
1181 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1182 {
1183         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1184 }
1185 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1186
1187 static int kvm_vm_release(struct inode *inode, struct file *filp)
1188 {
1189         struct kvm *kvm = filp->private_data;
1190
1191         kvm_irqfd_release(kvm);
1192
1193         kvm_put_kvm(kvm);
1194         return 0;
1195 }
1196
1197 /*
1198  * Allocation size is twice as large as the actual dirty bitmap size.
1199  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1200  */
1201 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1202 {
1203         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1204
1205         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1206         if (!memslot->dirty_bitmap)
1207                 return -ENOMEM;
1208
1209         return 0;
1210 }
1211
1212 /*
1213  * Delete a memslot by decrementing the number of used slots and shifting all
1214  * other entries in the array forward one spot.
1215  */
1216 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1217                                       struct kvm_memory_slot *memslot)
1218 {
1219         struct kvm_memory_slot *mslots = slots->memslots;
1220         int i;
1221
1222         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1223                 return;
1224
1225         slots->used_slots--;
1226
1227         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1228                 atomic_set(&slots->lru_slot, 0);
1229
1230         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1231                 mslots[i] = mslots[i + 1];
1232                 slots->id_to_index[mslots[i].id] = i;
1233         }
1234         mslots[i] = *memslot;
1235         slots->id_to_index[memslot->id] = -1;
1236 }
1237
1238 /*
1239  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1240  * the new slot's initial index into the memslots array.
1241  */
1242 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1243 {
1244         return slots->used_slots++;
1245 }
1246
1247 /*
1248  * Move a changed memslot backwards in the array by shifting existing slots
1249  * with a higher GFN toward the front of the array.  Note, the changed memslot
1250  * itself is not preserved in the array, i.e. not swapped at this time, only
1251  * its new index into the array is tracked.  Returns the changed memslot's
1252  * current index into the memslots array.
1253  */
1254 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1255                                             struct kvm_memory_slot *memslot)
1256 {
1257         struct kvm_memory_slot *mslots = slots->memslots;
1258         int i;
1259
1260         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1261             WARN_ON_ONCE(!slots->used_slots))
1262                 return -1;
1263
1264         /*
1265          * Move the target memslot backward in the array by shifting existing
1266          * memslots with a higher GFN (than the target memslot) towards the
1267          * front of the array.
1268          */
1269         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1270                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1271                         break;
1272
1273                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1274
1275                 /* Shift the next memslot forward one and update its index. */
1276                 mslots[i] = mslots[i + 1];
1277                 slots->id_to_index[mslots[i].id] = i;
1278         }
1279         return i;
1280 }
1281
1282 /*
1283  * Move a changed memslot forwards in the array by shifting existing slots with
1284  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1285  * is not preserved in the array, i.e. not swapped at this time, only its new
1286  * index into the array is tracked.  Returns the changed memslot's final index
1287  * into the memslots array.
1288  */
1289 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1290                                            struct kvm_memory_slot *memslot,
1291                                            int start)
1292 {
1293         struct kvm_memory_slot *mslots = slots->memslots;
1294         int i;
1295
1296         for (i = start; i > 0; i--) {
1297                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1298                         break;
1299
1300                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1301
1302                 /* Shift the next memslot back one and update its index. */
1303                 mslots[i] = mslots[i - 1];
1304                 slots->id_to_index[mslots[i].id] = i;
1305         }
1306         return i;
1307 }
1308
1309 /*
1310  * Re-sort memslots based on their GFN to account for an added, deleted, or
1311  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1312  * memslot lookup.
1313  *
1314  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1315  * at memslots[0] has the highest GFN.
1316  *
1317  * The sorting algorithm takes advantage of having initially sorted memslots
1318  * and knowing the position of the changed memslot.  Sorting is also optimized
1319  * by not swapping the updated memslot and instead only shifting other memslots
1320  * and tracking the new index for the update memslot.  Only once its final
1321  * index is known is the updated memslot copied into its position in the array.
1322  *
1323  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1324  *    the end of the array.
1325  *
1326  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1327  *    end of the array and then it forward to its correct location.
1328  *
1329  *  - When moving a memslot, the algorithm first moves the updated memslot
1330  *    backward to handle the scenario where the memslot's GFN was changed to a
1331  *    lower value.  update_memslots() then falls through and runs the same flow
1332  *    as creating a memslot to move the memslot forward to handle the scenario
1333  *    where its GFN was changed to a higher value.
1334  *
1335  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1336  * historical reasons.  Originally, invalid memslots where denoted by having
1337  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1338  * to the end of the array.  The current algorithm uses dedicated logic to
1339  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1340  *
1341  * The other historical motiviation for highest->lowest was to improve the
1342  * performance of memslot lookup.  KVM originally used a linear search starting
1343  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1344  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1345  * single memslot above the 4gb boundary.  As the largest memslot is also the
1346  * most likely to be referenced, sorting it to the front of the array was
1347  * advantageous.  The current binary search starts from the middle of the array
1348  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1349  */
1350 static void update_memslots(struct kvm_memslots *slots,
1351                             struct kvm_memory_slot *memslot,
1352                             enum kvm_mr_change change)
1353 {
1354         int i;
1355
1356         if (change == KVM_MR_DELETE) {
1357                 kvm_memslot_delete(slots, memslot);
1358         } else {
1359                 if (change == KVM_MR_CREATE)
1360                         i = kvm_memslot_insert_back(slots);
1361                 else
1362                         i = kvm_memslot_move_backward(slots, memslot);
1363                 i = kvm_memslot_move_forward(slots, memslot, i);
1364
1365                 /*
1366                  * Copy the memslot to its new position in memslots and update
1367                  * its index accordingly.
1368                  */
1369                 slots->memslots[i] = *memslot;
1370                 slots->id_to_index[memslot->id] = i;
1371         }
1372 }
1373
1374 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1375 {
1376         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1377
1378 #ifdef __KVM_HAVE_READONLY_MEM
1379         valid_flags |= KVM_MEM_READONLY;
1380 #endif
1381
1382         if (mem->flags & ~valid_flags)
1383                 return -EINVAL;
1384
1385         return 0;
1386 }
1387
1388 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1389                 int as_id, struct kvm_memslots *slots)
1390 {
1391         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1392         u64 gen = old_memslots->generation;
1393
1394         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1395         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1396
1397         /*
1398          * Do not store the new memslots while there are invalidations in
1399          * progress, otherwise the locking in invalidate_range_start and
1400          * invalidate_range_end will be unbalanced.
1401          */
1402         spin_lock(&kvm->mn_invalidate_lock);
1403         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1404         while (kvm->mn_active_invalidate_count) {
1405                 set_current_state(TASK_UNINTERRUPTIBLE);
1406                 spin_unlock(&kvm->mn_invalidate_lock);
1407                 schedule();
1408                 spin_lock(&kvm->mn_invalidate_lock);
1409         }
1410         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1411         rcu_assign_pointer(kvm->memslots[as_id], slots);
1412         spin_unlock(&kvm->mn_invalidate_lock);
1413
1414         /*
1415          * Acquired in kvm_set_memslot. Must be released before synchronize
1416          * SRCU below in order to avoid deadlock with another thread
1417          * acquiring the slots_arch_lock in an srcu critical section.
1418          */
1419         mutex_unlock(&kvm->slots_arch_lock);
1420
1421         synchronize_srcu_expedited(&kvm->srcu);
1422
1423         /*
1424          * Increment the new memslot generation a second time, dropping the
1425          * update in-progress flag and incrementing the generation based on
1426          * the number of address spaces.  This provides a unique and easily
1427          * identifiable generation number while the memslots are in flux.
1428          */
1429         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1430
1431         /*
1432          * Generations must be unique even across address spaces.  We do not need
1433          * a global counter for that, instead the generation space is evenly split
1434          * across address spaces.  For example, with two address spaces, address
1435          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1436          * use generations 1, 3, 5, ...
1437          */
1438         gen += KVM_ADDRESS_SPACE_NUM;
1439
1440         kvm_arch_memslots_updated(kvm, gen);
1441
1442         slots->generation = gen;
1443
1444         return old_memslots;
1445 }
1446
1447 static size_t kvm_memslots_size(int slots)
1448 {
1449         return sizeof(struct kvm_memslots) +
1450                (sizeof(struct kvm_memory_slot) * slots);
1451 }
1452
1453 static void kvm_copy_memslots(struct kvm_memslots *to,
1454                               struct kvm_memslots *from)
1455 {
1456         memcpy(to, from, kvm_memslots_size(from->used_slots));
1457 }
1458
1459 /*
1460  * Note, at a minimum, the current number of used slots must be allocated, even
1461  * when deleting a memslot, as we need a complete duplicate of the memslots for
1462  * use when invalidating a memslot prior to deleting/moving the memslot.
1463  */
1464 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1465                                              enum kvm_mr_change change)
1466 {
1467         struct kvm_memslots *slots;
1468         size_t new_size;
1469
1470         if (change == KVM_MR_CREATE)
1471                 new_size = kvm_memslots_size(old->used_slots + 1);
1472         else
1473                 new_size = kvm_memslots_size(old->used_slots);
1474
1475         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1476         if (likely(slots))
1477                 kvm_copy_memslots(slots, old);
1478
1479         return slots;
1480 }
1481
1482 static int kvm_set_memslot(struct kvm *kvm,
1483                            const struct kvm_userspace_memory_region *mem,
1484                            struct kvm_memory_slot *old,
1485                            struct kvm_memory_slot *new, int as_id,
1486                            enum kvm_mr_change change)
1487 {
1488         struct kvm_memory_slot *slot;
1489         struct kvm_memslots *slots;
1490         int r;
1491
1492         /*
1493          * Released in install_new_memslots.
1494          *
1495          * Must be held from before the current memslots are copied until
1496          * after the new memslots are installed with rcu_assign_pointer,
1497          * then released before the synchronize srcu in install_new_memslots.
1498          *
1499          * When modifying memslots outside of the slots_lock, must be held
1500          * before reading the pointer to the current memslots until after all
1501          * changes to those memslots are complete.
1502          *
1503          * These rules ensure that installing new memslots does not lose
1504          * changes made to the previous memslots.
1505          */
1506         mutex_lock(&kvm->slots_arch_lock);
1507
1508         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1509         if (!slots) {
1510                 mutex_unlock(&kvm->slots_arch_lock);
1511                 return -ENOMEM;
1512         }
1513
1514         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1515                 /*
1516                  * Note, the INVALID flag needs to be in the appropriate entry
1517                  * in the freshly allocated memslots, not in @old or @new.
1518                  */
1519                 slot = id_to_memslot(slots, old->id);
1520                 slot->flags |= KVM_MEMSLOT_INVALID;
1521
1522                 /*
1523                  * We can re-use the memory from the old memslots.
1524                  * It will be overwritten with a copy of the new memslots
1525                  * after reacquiring the slots_arch_lock below.
1526                  */
1527                 slots = install_new_memslots(kvm, as_id, slots);
1528
1529                 /* From this point no new shadow pages pointing to a deleted,
1530                  * or moved, memslot will be created.
1531                  *
1532                  * validation of sp->gfn happens in:
1533                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1534                  *      - kvm_is_visible_gfn (mmu_check_root)
1535                  */
1536                 kvm_arch_flush_shadow_memslot(kvm, slot);
1537
1538                 /* Released in install_new_memslots. */
1539                 mutex_lock(&kvm->slots_arch_lock);
1540
1541                 /*
1542                  * The arch-specific fields of the memslots could have changed
1543                  * between releasing the slots_arch_lock in
1544                  * install_new_memslots and here, so get a fresh copy of the
1545                  * slots.
1546                  */
1547                 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1548         }
1549
1550         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1551         if (r)
1552                 goto out_slots;
1553
1554         update_memslots(slots, new, change);
1555         slots = install_new_memslots(kvm, as_id, slots);
1556
1557         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1558
1559         kvfree(slots);
1560         return 0;
1561
1562 out_slots:
1563         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1564                 slot = id_to_memslot(slots, old->id);
1565                 slot->flags &= ~KVM_MEMSLOT_INVALID;
1566                 slots = install_new_memslots(kvm, as_id, slots);
1567         } else {
1568                 mutex_unlock(&kvm->slots_arch_lock);
1569         }
1570         kvfree(slots);
1571         return r;
1572 }
1573
1574 static int kvm_delete_memslot(struct kvm *kvm,
1575                               const struct kvm_userspace_memory_region *mem,
1576                               struct kvm_memory_slot *old, int as_id)
1577 {
1578         struct kvm_memory_slot new;
1579         int r;
1580
1581         if (!old->npages)
1582                 return -EINVAL;
1583
1584         memset(&new, 0, sizeof(new));
1585         new.id = old->id;
1586         /*
1587          * This is only for debugging purpose; it should never be referenced
1588          * for a removed memslot.
1589          */
1590         new.as_id = as_id;
1591
1592         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1593         if (r)
1594                 return r;
1595
1596         kvm_free_memslot(kvm, old);
1597         return 0;
1598 }
1599
1600 /*
1601  * Allocate some memory and give it an address in the guest physical address
1602  * space.
1603  *
1604  * Discontiguous memory is allowed, mostly for framebuffers.
1605  *
1606  * Must be called holding kvm->slots_lock for write.
1607  */
1608 int __kvm_set_memory_region(struct kvm *kvm,
1609                             const struct kvm_userspace_memory_region *mem)
1610 {
1611         struct kvm_memory_slot old, new;
1612         struct kvm_memory_slot *tmp;
1613         enum kvm_mr_change change;
1614         int as_id, id;
1615         int r;
1616
1617         r = check_memory_region_flags(mem);
1618         if (r)
1619                 return r;
1620
1621         as_id = mem->slot >> 16;
1622         id = (u16)mem->slot;
1623
1624         /* General sanity checks */
1625         if (mem->memory_size & (PAGE_SIZE - 1))
1626                 return -EINVAL;
1627         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1628                 return -EINVAL;
1629         /* We can read the guest memory with __xxx_user() later on. */
1630         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1631             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1632              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1633                         mem->memory_size))
1634                 return -EINVAL;
1635         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1636                 return -EINVAL;
1637         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1638                 return -EINVAL;
1639
1640         /*
1641          * Make a full copy of the old memslot, the pointer will become stale
1642          * when the memslots are re-sorted by update_memslots(), and the old
1643          * memslot needs to be referenced after calling update_memslots(), e.g.
1644          * to free its resources and for arch specific behavior.
1645          */
1646         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1647         if (tmp) {
1648                 old = *tmp;
1649                 tmp = NULL;
1650         } else {
1651                 memset(&old, 0, sizeof(old));
1652                 old.id = id;
1653         }
1654
1655         if (!mem->memory_size)
1656                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1657
1658         new.as_id = as_id;
1659         new.id = id;
1660         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1661         new.npages = mem->memory_size >> PAGE_SHIFT;
1662         new.flags = mem->flags;
1663         new.userspace_addr = mem->userspace_addr;
1664
1665         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1666                 return -EINVAL;
1667
1668         if (!old.npages) {
1669                 change = KVM_MR_CREATE;
1670                 new.dirty_bitmap = NULL;
1671                 memset(&new.arch, 0, sizeof(new.arch));
1672         } else { /* Modify an existing slot. */
1673                 if ((new.userspace_addr != old.userspace_addr) ||
1674                     (new.npages != old.npages) ||
1675                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1676                         return -EINVAL;
1677
1678                 if (new.base_gfn != old.base_gfn)
1679                         change = KVM_MR_MOVE;
1680                 else if (new.flags != old.flags)
1681                         change = KVM_MR_FLAGS_ONLY;
1682                 else /* Nothing to change. */
1683                         return 0;
1684
1685                 /* Copy dirty_bitmap and arch from the current memslot. */
1686                 new.dirty_bitmap = old.dirty_bitmap;
1687                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1688         }
1689
1690         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1691                 /* Check for overlaps */
1692                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1693                         if (tmp->id == id)
1694                                 continue;
1695                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1696                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1697                                 return -EEXIST;
1698                 }
1699         }
1700
1701         /* Allocate/free page dirty bitmap as needed */
1702         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1703                 new.dirty_bitmap = NULL;
1704         else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1705                 r = kvm_alloc_dirty_bitmap(&new);
1706                 if (r)
1707                         return r;
1708
1709                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1710                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1711         }
1712
1713         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1714         if (r)
1715                 goto out_bitmap;
1716
1717         if (old.dirty_bitmap && !new.dirty_bitmap)
1718                 kvm_destroy_dirty_bitmap(&old);
1719         return 0;
1720
1721 out_bitmap:
1722         if (new.dirty_bitmap && !old.dirty_bitmap)
1723                 kvm_destroy_dirty_bitmap(&new);
1724         return r;
1725 }
1726 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1727
1728 int kvm_set_memory_region(struct kvm *kvm,
1729                           const struct kvm_userspace_memory_region *mem)
1730 {
1731         int r;
1732
1733         mutex_lock(&kvm->slots_lock);
1734         r = __kvm_set_memory_region(kvm, mem);
1735         mutex_unlock(&kvm->slots_lock);
1736         return r;
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1739
1740 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1741                                           struct kvm_userspace_memory_region *mem)
1742 {
1743         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1744                 return -EINVAL;
1745
1746         return kvm_set_memory_region(kvm, mem);
1747 }
1748
1749 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1750 /**
1751  * kvm_get_dirty_log - get a snapshot of dirty pages
1752  * @kvm:        pointer to kvm instance
1753  * @log:        slot id and address to which we copy the log
1754  * @is_dirty:   set to '1' if any dirty pages were found
1755  * @memslot:    set to the associated memslot, always valid on success
1756  */
1757 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1758                       int *is_dirty, struct kvm_memory_slot **memslot)
1759 {
1760         struct kvm_memslots *slots;
1761         int i, as_id, id;
1762         unsigned long n;
1763         unsigned long any = 0;
1764
1765         /* Dirty ring tracking is exclusive to dirty log tracking */
1766         if (kvm->dirty_ring_size)
1767                 return -ENXIO;
1768
1769         *memslot = NULL;
1770         *is_dirty = 0;
1771
1772         as_id = log->slot >> 16;
1773         id = (u16)log->slot;
1774         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1775                 return -EINVAL;
1776
1777         slots = __kvm_memslots(kvm, as_id);
1778         *memslot = id_to_memslot(slots, id);
1779         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1780                 return -ENOENT;
1781
1782         kvm_arch_sync_dirty_log(kvm, *memslot);
1783
1784         n = kvm_dirty_bitmap_bytes(*memslot);
1785
1786         for (i = 0; !any && i < n/sizeof(long); ++i)
1787                 any = (*memslot)->dirty_bitmap[i];
1788
1789         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1790                 return -EFAULT;
1791
1792         if (any)
1793                 *is_dirty = 1;
1794         return 0;
1795 }
1796 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1797
1798 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1799 /**
1800  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1801  *      and reenable dirty page tracking for the corresponding pages.
1802  * @kvm:        pointer to kvm instance
1803  * @log:        slot id and address to which we copy the log
1804  *
1805  * We need to keep it in mind that VCPU threads can write to the bitmap
1806  * concurrently. So, to avoid losing track of dirty pages we keep the
1807  * following order:
1808  *
1809  *    1. Take a snapshot of the bit and clear it if needed.
1810  *    2. Write protect the corresponding page.
1811  *    3. Copy the snapshot to the userspace.
1812  *    4. Upon return caller flushes TLB's if needed.
1813  *
1814  * Between 2 and 4, the guest may write to the page using the remaining TLB
1815  * entry.  This is not a problem because the page is reported dirty using
1816  * the snapshot taken before and step 4 ensures that writes done after
1817  * exiting to userspace will be logged for the next call.
1818  *
1819  */
1820 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1821 {
1822         struct kvm_memslots *slots;
1823         struct kvm_memory_slot *memslot;
1824         int i, as_id, id;
1825         unsigned long n;
1826         unsigned long *dirty_bitmap;
1827         unsigned long *dirty_bitmap_buffer;
1828         bool flush;
1829
1830         /* Dirty ring tracking is exclusive to dirty log tracking */
1831         if (kvm->dirty_ring_size)
1832                 return -ENXIO;
1833
1834         as_id = log->slot >> 16;
1835         id = (u16)log->slot;
1836         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1837                 return -EINVAL;
1838
1839         slots = __kvm_memslots(kvm, as_id);
1840         memslot = id_to_memslot(slots, id);
1841         if (!memslot || !memslot->dirty_bitmap)
1842                 return -ENOENT;
1843
1844         dirty_bitmap = memslot->dirty_bitmap;
1845
1846         kvm_arch_sync_dirty_log(kvm, memslot);
1847
1848         n = kvm_dirty_bitmap_bytes(memslot);
1849         flush = false;
1850         if (kvm->manual_dirty_log_protect) {
1851                 /*
1852                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1853                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1854                  * is some code duplication between this function and
1855                  * kvm_get_dirty_log, but hopefully all architecture
1856                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1857                  * can be eliminated.
1858                  */
1859                 dirty_bitmap_buffer = dirty_bitmap;
1860         } else {
1861                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1862                 memset(dirty_bitmap_buffer, 0, n);
1863
1864                 KVM_MMU_LOCK(kvm);
1865                 for (i = 0; i < n / sizeof(long); i++) {
1866                         unsigned long mask;
1867                         gfn_t offset;
1868
1869                         if (!dirty_bitmap[i])
1870                                 continue;
1871
1872                         flush = true;
1873                         mask = xchg(&dirty_bitmap[i], 0);
1874                         dirty_bitmap_buffer[i] = mask;
1875
1876                         offset = i * BITS_PER_LONG;
1877                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1878                                                                 offset, mask);
1879                 }
1880                 KVM_MMU_UNLOCK(kvm);
1881         }
1882
1883         if (flush)
1884                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1885
1886         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1887                 return -EFAULT;
1888         return 0;
1889 }
1890
1891
1892 /**
1893  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1894  * @kvm: kvm instance
1895  * @log: slot id and address to which we copy the log
1896  *
1897  * Steps 1-4 below provide general overview of dirty page logging. See
1898  * kvm_get_dirty_log_protect() function description for additional details.
1899  *
1900  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1901  * always flush the TLB (step 4) even if previous step failed  and the dirty
1902  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1903  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1904  * writes will be marked dirty for next log read.
1905  *
1906  *   1. Take a snapshot of the bit and clear it if needed.
1907  *   2. Write protect the corresponding page.
1908  *   3. Copy the snapshot to the userspace.
1909  *   4. Flush TLB's if needed.
1910  */
1911 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1912                                       struct kvm_dirty_log *log)
1913 {
1914         int r;
1915
1916         mutex_lock(&kvm->slots_lock);
1917
1918         r = kvm_get_dirty_log_protect(kvm, log);
1919
1920         mutex_unlock(&kvm->slots_lock);
1921         return r;
1922 }
1923
1924 /**
1925  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1926  *      and reenable dirty page tracking for the corresponding pages.
1927  * @kvm:        pointer to kvm instance
1928  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1929  */
1930 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1931                                        struct kvm_clear_dirty_log *log)
1932 {
1933         struct kvm_memslots *slots;
1934         struct kvm_memory_slot *memslot;
1935         int as_id, id;
1936         gfn_t offset;
1937         unsigned long i, n;
1938         unsigned long *dirty_bitmap;
1939         unsigned long *dirty_bitmap_buffer;
1940         bool flush;
1941
1942         /* Dirty ring tracking is exclusive to dirty log tracking */
1943         if (kvm->dirty_ring_size)
1944                 return -ENXIO;
1945
1946         as_id = log->slot >> 16;
1947         id = (u16)log->slot;
1948         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1949                 return -EINVAL;
1950
1951         if (log->first_page & 63)
1952                 return -EINVAL;
1953
1954         slots = __kvm_memslots(kvm, as_id);
1955         memslot = id_to_memslot(slots, id);
1956         if (!memslot || !memslot->dirty_bitmap)
1957                 return -ENOENT;
1958
1959         dirty_bitmap = memslot->dirty_bitmap;
1960
1961         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1962
1963         if (log->first_page > memslot->npages ||
1964             log->num_pages > memslot->npages - log->first_page ||
1965             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1966             return -EINVAL;
1967
1968         kvm_arch_sync_dirty_log(kvm, memslot);
1969
1970         flush = false;
1971         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1972         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1973                 return -EFAULT;
1974
1975         KVM_MMU_LOCK(kvm);
1976         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1977                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1978              i++, offset += BITS_PER_LONG) {
1979                 unsigned long mask = *dirty_bitmap_buffer++;
1980                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1981                 if (!mask)
1982                         continue;
1983
1984                 mask &= atomic_long_fetch_andnot(mask, p);
1985
1986                 /*
1987                  * mask contains the bits that really have been cleared.  This
1988                  * never includes any bits beyond the length of the memslot (if
1989                  * the length is not aligned to 64 pages), therefore it is not
1990                  * a problem if userspace sets them in log->dirty_bitmap.
1991                 */
1992                 if (mask) {
1993                         flush = true;
1994                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1995                                                                 offset, mask);
1996                 }
1997         }
1998         KVM_MMU_UNLOCK(kvm);
1999
2000         if (flush)
2001                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2002
2003         return 0;
2004 }
2005
2006 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2007                                         struct kvm_clear_dirty_log *log)
2008 {
2009         int r;
2010
2011         mutex_lock(&kvm->slots_lock);
2012
2013         r = kvm_clear_dirty_log_protect(kvm, log);
2014
2015         mutex_unlock(&kvm->slots_lock);
2016         return r;
2017 }
2018 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2019
2020 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2021 {
2022         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2023 }
2024 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2025
2026 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2027 {
2028         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
2029 }
2030 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
2031
2032 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2033 {
2034         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2035
2036         return kvm_is_visible_memslot(memslot);
2037 }
2038 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2039
2040 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2041 {
2042         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2043
2044         return kvm_is_visible_memslot(memslot);
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2047
2048 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2049 {
2050         struct vm_area_struct *vma;
2051         unsigned long addr, size;
2052
2053         size = PAGE_SIZE;
2054
2055         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2056         if (kvm_is_error_hva(addr))
2057                 return PAGE_SIZE;
2058
2059         mmap_read_lock(current->mm);
2060         vma = find_vma(current->mm, addr);
2061         if (!vma)
2062                 goto out;
2063
2064         size = vma_kernel_pagesize(vma);
2065
2066 out:
2067         mmap_read_unlock(current->mm);
2068
2069         return size;
2070 }
2071
2072 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2073 {
2074         return slot->flags & KVM_MEM_READONLY;
2075 }
2076
2077 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2078                                        gfn_t *nr_pages, bool write)
2079 {
2080         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2081                 return KVM_HVA_ERR_BAD;
2082
2083         if (memslot_is_readonly(slot) && write)
2084                 return KVM_HVA_ERR_RO_BAD;
2085
2086         if (nr_pages)
2087                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2088
2089         return __gfn_to_hva_memslot(slot, gfn);
2090 }
2091
2092 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2093                                      gfn_t *nr_pages)
2094 {
2095         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2096 }
2097
2098 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2099                                         gfn_t gfn)
2100 {
2101         return gfn_to_hva_many(slot, gfn, NULL);
2102 }
2103 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2104
2105 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2106 {
2107         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2108 }
2109 EXPORT_SYMBOL_GPL(gfn_to_hva);
2110
2111 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2112 {
2113         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2116
2117 /*
2118  * Return the hva of a @gfn and the R/W attribute if possible.
2119  *
2120  * @slot: the kvm_memory_slot which contains @gfn
2121  * @gfn: the gfn to be translated
2122  * @writable: used to return the read/write attribute of the @slot if the hva
2123  * is valid and @writable is not NULL
2124  */
2125 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2126                                       gfn_t gfn, bool *writable)
2127 {
2128         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2129
2130         if (!kvm_is_error_hva(hva) && writable)
2131                 *writable = !memslot_is_readonly(slot);
2132
2133         return hva;
2134 }
2135
2136 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2137 {
2138         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2139
2140         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2141 }
2142
2143 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2144 {
2145         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2146
2147         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2148 }
2149
2150 static inline int check_user_page_hwpoison(unsigned long addr)
2151 {
2152         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2153
2154         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2155         return rc == -EHWPOISON;
2156 }
2157
2158 /*
2159  * The fast path to get the writable pfn which will be stored in @pfn,
2160  * true indicates success, otherwise false is returned.  It's also the
2161  * only part that runs if we can in atomic context.
2162  */
2163 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2164                             bool *writable, kvm_pfn_t *pfn)
2165 {
2166         struct page *page[1];
2167
2168         /*
2169          * Fast pin a writable pfn only if it is a write fault request
2170          * or the caller allows to map a writable pfn for a read fault
2171          * request.
2172          */
2173         if (!(write_fault || writable))
2174                 return false;
2175
2176         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2177                 *pfn = page_to_pfn(page[0]);
2178
2179                 if (writable)
2180                         *writable = true;
2181                 return true;
2182         }
2183
2184         return false;
2185 }
2186
2187 /*
2188  * The slow path to get the pfn of the specified host virtual address,
2189  * 1 indicates success, -errno is returned if error is detected.
2190  */
2191 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2192                            bool *writable, kvm_pfn_t *pfn)
2193 {
2194         unsigned int flags = FOLL_HWPOISON;
2195         struct page *page;
2196         int npages = 0;
2197
2198         might_sleep();
2199
2200         if (writable)
2201                 *writable = write_fault;
2202
2203         if (write_fault)
2204                 flags |= FOLL_WRITE;
2205         if (async)
2206                 flags |= FOLL_NOWAIT;
2207
2208         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2209         if (npages != 1)
2210                 return npages;
2211
2212         /* map read fault as writable if possible */
2213         if (unlikely(!write_fault) && writable) {
2214                 struct page *wpage;
2215
2216                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2217                         *writable = true;
2218                         put_page(page);
2219                         page = wpage;
2220                 }
2221         }
2222         *pfn = page_to_pfn(page);
2223         return npages;
2224 }
2225
2226 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2227 {
2228         if (unlikely(!(vma->vm_flags & VM_READ)))
2229                 return false;
2230
2231         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2232                 return false;
2233
2234         return true;
2235 }
2236
2237 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2238 {
2239         if (kvm_is_reserved_pfn(pfn))
2240                 return 1;
2241         return get_page_unless_zero(pfn_to_page(pfn));
2242 }
2243
2244 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2245                                unsigned long addr, bool *async,
2246                                bool write_fault, bool *writable,
2247                                kvm_pfn_t *p_pfn)
2248 {
2249         kvm_pfn_t pfn;
2250         pte_t *ptep;
2251         spinlock_t *ptl;
2252         int r;
2253
2254         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2255         if (r) {
2256                 /*
2257                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2258                  * not call the fault handler, so do it here.
2259                  */
2260                 bool unlocked = false;
2261                 r = fixup_user_fault(current->mm, addr,
2262                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2263                                      &unlocked);
2264                 if (unlocked)
2265                         return -EAGAIN;
2266                 if (r)
2267                         return r;
2268
2269                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2270                 if (r)
2271                         return r;
2272         }
2273
2274         if (write_fault && !pte_write(*ptep)) {
2275                 pfn = KVM_PFN_ERR_RO_FAULT;
2276                 goto out;
2277         }
2278
2279         if (writable)
2280                 *writable = pte_write(*ptep);
2281         pfn = pte_pfn(*ptep);
2282
2283         /*
2284          * Get a reference here because callers of *hva_to_pfn* and
2285          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2286          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2287          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2288          * simply do nothing for reserved pfns.
2289          *
2290          * Whoever called remap_pfn_range is also going to call e.g.
2291          * unmap_mapping_range before the underlying pages are freed,
2292          * causing a call to our MMU notifier.
2293          *
2294          * Certain IO or PFNMAP mappings can be backed with valid
2295          * struct pages, but be allocated without refcounting e.g.,
2296          * tail pages of non-compound higher order allocations, which
2297          * would then underflow the refcount when the caller does the
2298          * required put_page. Don't allow those pages here.
2299          */ 
2300         if (!kvm_try_get_pfn(pfn))
2301                 r = -EFAULT;
2302
2303 out:
2304         pte_unmap_unlock(ptep, ptl);
2305         *p_pfn = pfn;
2306
2307         return r;
2308 }
2309
2310 /*
2311  * Pin guest page in memory and return its pfn.
2312  * @addr: host virtual address which maps memory to the guest
2313  * @atomic: whether this function can sleep
2314  * @async: whether this function need to wait IO complete if the
2315  *         host page is not in the memory
2316  * @write_fault: whether we should get a writable host page
2317  * @writable: whether it allows to map a writable host page for !@write_fault
2318  *
2319  * The function will map a writable host page for these two cases:
2320  * 1): @write_fault = true
2321  * 2): @write_fault = false && @writable, @writable will tell the caller
2322  *     whether the mapping is writable.
2323  */
2324 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2325                         bool write_fault, bool *writable)
2326 {
2327         struct vm_area_struct *vma;
2328         kvm_pfn_t pfn = 0;
2329         int npages, r;
2330
2331         /* we can do it either atomically or asynchronously, not both */
2332         BUG_ON(atomic && async);
2333
2334         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2335                 return pfn;
2336
2337         if (atomic)
2338                 return KVM_PFN_ERR_FAULT;
2339
2340         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2341         if (npages == 1)
2342                 return pfn;
2343
2344         mmap_read_lock(current->mm);
2345         if (npages == -EHWPOISON ||
2346               (!async && check_user_page_hwpoison(addr))) {
2347                 pfn = KVM_PFN_ERR_HWPOISON;
2348                 goto exit;
2349         }
2350
2351 retry:
2352         vma = vma_lookup(current->mm, addr);
2353
2354         if (vma == NULL)
2355                 pfn = KVM_PFN_ERR_FAULT;
2356         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2357                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2358                 if (r == -EAGAIN)
2359                         goto retry;
2360                 if (r < 0)
2361                         pfn = KVM_PFN_ERR_FAULT;
2362         } else {
2363                 if (async && vma_is_valid(vma, write_fault))
2364                         *async = true;
2365                 pfn = KVM_PFN_ERR_FAULT;
2366         }
2367 exit:
2368         mmap_read_unlock(current->mm);
2369         return pfn;
2370 }
2371
2372 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2373                                bool atomic, bool *async, bool write_fault,
2374                                bool *writable, hva_t *hva)
2375 {
2376         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2377
2378         if (hva)
2379                 *hva = addr;
2380
2381         if (addr == KVM_HVA_ERR_RO_BAD) {
2382                 if (writable)
2383                         *writable = false;
2384                 return KVM_PFN_ERR_RO_FAULT;
2385         }
2386
2387         if (kvm_is_error_hva(addr)) {
2388                 if (writable)
2389                         *writable = false;
2390                 return KVM_PFN_NOSLOT;
2391         }
2392
2393         /* Do not map writable pfn in the readonly memslot. */
2394         if (writable && memslot_is_readonly(slot)) {
2395                 *writable = false;
2396                 writable = NULL;
2397         }
2398
2399         return hva_to_pfn(addr, atomic, async, write_fault,
2400                           writable);
2401 }
2402 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2403
2404 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2405                       bool *writable)
2406 {
2407         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2408                                     write_fault, writable, NULL);
2409 }
2410 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2411
2412 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2413 {
2414         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2415 }
2416 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2417
2418 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2419 {
2420         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2421 }
2422 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2423
2424 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2425 {
2426         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2427 }
2428 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2429
2430 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2431 {
2432         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2433 }
2434 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2435
2436 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2437 {
2438         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2439 }
2440 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2441
2442 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2443                             struct page **pages, int nr_pages)
2444 {
2445         unsigned long addr;
2446         gfn_t entry = 0;
2447
2448         addr = gfn_to_hva_many(slot, gfn, &entry);
2449         if (kvm_is_error_hva(addr))
2450                 return -1;
2451
2452         if (entry < nr_pages)
2453                 return 0;
2454
2455         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2456 }
2457 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2458
2459 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2460 {
2461         if (is_error_noslot_pfn(pfn))
2462                 return KVM_ERR_PTR_BAD_PAGE;
2463
2464         if (kvm_is_reserved_pfn(pfn)) {
2465                 WARN_ON(1);
2466                 return KVM_ERR_PTR_BAD_PAGE;
2467         }
2468
2469         return pfn_to_page(pfn);
2470 }
2471
2472 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2473 {
2474         kvm_pfn_t pfn;
2475
2476         pfn = gfn_to_pfn(kvm, gfn);
2477
2478         return kvm_pfn_to_page(pfn);
2479 }
2480 EXPORT_SYMBOL_GPL(gfn_to_page);
2481
2482 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2483 {
2484         if (pfn == 0)
2485                 return;
2486
2487         if (cache)
2488                 cache->pfn = cache->gfn = 0;
2489
2490         if (dirty)
2491                 kvm_release_pfn_dirty(pfn);
2492         else
2493                 kvm_release_pfn_clean(pfn);
2494 }
2495
2496 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2497                                  struct gfn_to_pfn_cache *cache, u64 gen)
2498 {
2499         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2500
2501         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2502         cache->gfn = gfn;
2503         cache->dirty = false;
2504         cache->generation = gen;
2505 }
2506
2507 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2508                          struct kvm_host_map *map,
2509                          struct gfn_to_pfn_cache *cache,
2510                          bool atomic)
2511 {
2512         kvm_pfn_t pfn;
2513         void *hva = NULL;
2514         struct page *page = KVM_UNMAPPED_PAGE;
2515         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2516         u64 gen = slots->generation;
2517
2518         if (!map)
2519                 return -EINVAL;
2520
2521         if (cache) {
2522                 if (!cache->pfn || cache->gfn != gfn ||
2523                         cache->generation != gen) {
2524                         if (atomic)
2525                                 return -EAGAIN;
2526                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2527                 }
2528                 pfn = cache->pfn;
2529         } else {
2530                 if (atomic)
2531                         return -EAGAIN;
2532                 pfn = gfn_to_pfn_memslot(slot, gfn);
2533         }
2534         if (is_error_noslot_pfn(pfn))
2535                 return -EINVAL;
2536
2537         if (pfn_valid(pfn)) {
2538                 page = pfn_to_page(pfn);
2539                 if (atomic)
2540                         hva = kmap_atomic(page);
2541                 else
2542                         hva = kmap(page);
2543 #ifdef CONFIG_HAS_IOMEM
2544         } else if (!atomic) {
2545                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2546         } else {
2547                 return -EINVAL;
2548 #endif
2549         }
2550
2551         if (!hva)
2552                 return -EFAULT;
2553
2554         map->page = page;
2555         map->hva = hva;
2556         map->pfn = pfn;
2557         map->gfn = gfn;
2558
2559         return 0;
2560 }
2561
2562 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2563                 struct gfn_to_pfn_cache *cache, bool atomic)
2564 {
2565         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2566                         cache, atomic);
2567 }
2568 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2569
2570 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2571 {
2572         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2573                 NULL, false);
2574 }
2575 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2576
2577 static void __kvm_unmap_gfn(struct kvm *kvm,
2578                         struct kvm_memory_slot *memslot,
2579                         struct kvm_host_map *map,
2580                         struct gfn_to_pfn_cache *cache,
2581                         bool dirty, bool atomic)
2582 {
2583         if (!map)
2584                 return;
2585
2586         if (!map->hva)
2587                 return;
2588
2589         if (map->page != KVM_UNMAPPED_PAGE) {
2590                 if (atomic)
2591                         kunmap_atomic(map->hva);
2592                 else
2593                         kunmap(map->page);
2594         }
2595 #ifdef CONFIG_HAS_IOMEM
2596         else if (!atomic)
2597                 memunmap(map->hva);
2598         else
2599                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2600 #endif
2601
2602         if (dirty)
2603                 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2604
2605         if (cache)
2606                 cache->dirty |= dirty;
2607         else
2608                 kvm_release_pfn(map->pfn, dirty, NULL);
2609
2610         map->hva = NULL;
2611         map->page = NULL;
2612 }
2613
2614 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2615                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2616 {
2617         __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2618                         cache, dirty, atomic);
2619         return 0;
2620 }
2621 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2622
2623 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2624 {
2625         __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2626                         map, NULL, dirty, false);
2627 }
2628 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2629
2630 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2631 {
2632         kvm_pfn_t pfn;
2633
2634         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2635
2636         return kvm_pfn_to_page(pfn);
2637 }
2638 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2639
2640 void kvm_release_page_clean(struct page *page)
2641 {
2642         WARN_ON(is_error_page(page));
2643
2644         kvm_release_pfn_clean(page_to_pfn(page));
2645 }
2646 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2647
2648 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2649 {
2650         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2651                 put_page(pfn_to_page(pfn));
2652 }
2653 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2654
2655 void kvm_release_page_dirty(struct page *page)
2656 {
2657         WARN_ON(is_error_page(page));
2658
2659         kvm_release_pfn_dirty(page_to_pfn(page));
2660 }
2661 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2662
2663 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2664 {
2665         kvm_set_pfn_dirty(pfn);
2666         kvm_release_pfn_clean(pfn);
2667 }
2668 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2669
2670 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2671 {
2672         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2673                 SetPageDirty(pfn_to_page(pfn));
2674 }
2675 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2676
2677 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2678 {
2679         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2680                 mark_page_accessed(pfn_to_page(pfn));
2681 }
2682 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2683
2684 void kvm_get_pfn(kvm_pfn_t pfn)
2685 {
2686         if (!kvm_is_reserved_pfn(pfn))
2687                 get_page(pfn_to_page(pfn));
2688 }
2689 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2690
2691 static int next_segment(unsigned long len, int offset)
2692 {
2693         if (len > PAGE_SIZE - offset)
2694                 return PAGE_SIZE - offset;
2695         else
2696                 return len;
2697 }
2698
2699 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2700                                  void *data, int offset, int len)
2701 {
2702         int r;
2703         unsigned long addr;
2704
2705         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2706         if (kvm_is_error_hva(addr))
2707                 return -EFAULT;
2708         r = __copy_from_user(data, (void __user *)addr + offset, len);
2709         if (r)
2710                 return -EFAULT;
2711         return 0;
2712 }
2713
2714 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2715                         int len)
2716 {
2717         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2718
2719         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2720 }
2721 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2722
2723 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2724                              int offset, int len)
2725 {
2726         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2727
2728         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2729 }
2730 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2731
2732 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2733 {
2734         gfn_t gfn = gpa >> PAGE_SHIFT;
2735         int seg;
2736         int offset = offset_in_page(gpa);
2737         int ret;
2738
2739         while ((seg = next_segment(len, offset)) != 0) {
2740                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2741                 if (ret < 0)
2742                         return ret;
2743                 offset = 0;
2744                 len -= seg;
2745                 data += seg;
2746                 ++gfn;
2747         }
2748         return 0;
2749 }
2750 EXPORT_SYMBOL_GPL(kvm_read_guest);
2751
2752 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2753 {
2754         gfn_t gfn = gpa >> PAGE_SHIFT;
2755         int seg;
2756         int offset = offset_in_page(gpa);
2757         int ret;
2758
2759         while ((seg = next_segment(len, offset)) != 0) {
2760                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2761                 if (ret < 0)
2762                         return ret;
2763                 offset = 0;
2764                 len -= seg;
2765                 data += seg;
2766                 ++gfn;
2767         }
2768         return 0;
2769 }
2770 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2771
2772 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2773                                    void *data, int offset, unsigned long len)
2774 {
2775         int r;
2776         unsigned long addr;
2777
2778         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2779         if (kvm_is_error_hva(addr))
2780                 return -EFAULT;
2781         pagefault_disable();
2782         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2783         pagefault_enable();
2784         if (r)
2785                 return -EFAULT;
2786         return 0;
2787 }
2788
2789 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2790                                void *data, unsigned long len)
2791 {
2792         gfn_t gfn = gpa >> PAGE_SHIFT;
2793         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2794         int offset = offset_in_page(gpa);
2795
2796         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2797 }
2798 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2799
2800 static int __kvm_write_guest_page(struct kvm *kvm,
2801                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2802                                   const void *data, int offset, int len)
2803 {
2804         int r;
2805         unsigned long addr;
2806
2807         addr = gfn_to_hva_memslot(memslot, gfn);
2808         if (kvm_is_error_hva(addr))
2809                 return -EFAULT;
2810         r = __copy_to_user((void __user *)addr + offset, data, len);
2811         if (r)
2812                 return -EFAULT;
2813         mark_page_dirty_in_slot(kvm, memslot, gfn);
2814         return 0;
2815 }
2816
2817 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2818                          const void *data, int offset, int len)
2819 {
2820         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2821
2822         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2823 }
2824 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2825
2826 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2827                               const void *data, int offset, int len)
2828 {
2829         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2830
2831         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2832 }
2833 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2834
2835 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2836                     unsigned long len)
2837 {
2838         gfn_t gfn = gpa >> PAGE_SHIFT;
2839         int seg;
2840         int offset = offset_in_page(gpa);
2841         int ret;
2842
2843         while ((seg = next_segment(len, offset)) != 0) {
2844                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2845                 if (ret < 0)
2846                         return ret;
2847                 offset = 0;
2848                 len -= seg;
2849                 data += seg;
2850                 ++gfn;
2851         }
2852         return 0;
2853 }
2854 EXPORT_SYMBOL_GPL(kvm_write_guest);
2855
2856 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2857                          unsigned long len)
2858 {
2859         gfn_t gfn = gpa >> PAGE_SHIFT;
2860         int seg;
2861         int offset = offset_in_page(gpa);
2862         int ret;
2863
2864         while ((seg = next_segment(len, offset)) != 0) {
2865                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2866                 if (ret < 0)
2867                         return ret;
2868                 offset = 0;
2869                 len -= seg;
2870                 data += seg;
2871                 ++gfn;
2872         }
2873         return 0;
2874 }
2875 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2876
2877 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2878                                        struct gfn_to_hva_cache *ghc,
2879                                        gpa_t gpa, unsigned long len)
2880 {
2881         int offset = offset_in_page(gpa);
2882         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2883         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2884         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2885         gfn_t nr_pages_avail;
2886
2887         /* Update ghc->generation before performing any error checks. */
2888         ghc->generation = slots->generation;
2889
2890         if (start_gfn > end_gfn) {
2891                 ghc->hva = KVM_HVA_ERR_BAD;
2892                 return -EINVAL;
2893         }
2894
2895         /*
2896          * If the requested region crosses two memslots, we still
2897          * verify that the entire region is valid here.
2898          */
2899         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2900                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2901                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2902                                            &nr_pages_avail);
2903                 if (kvm_is_error_hva(ghc->hva))
2904                         return -EFAULT;
2905         }
2906
2907         /* Use the slow path for cross page reads and writes. */
2908         if (nr_pages_needed == 1)
2909                 ghc->hva += offset;
2910         else
2911                 ghc->memslot = NULL;
2912
2913         ghc->gpa = gpa;
2914         ghc->len = len;
2915         return 0;
2916 }
2917
2918 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2919                               gpa_t gpa, unsigned long len)
2920 {
2921         struct kvm_memslots *slots = kvm_memslots(kvm);
2922         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2923 }
2924 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2925
2926 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2927                                   void *data, unsigned int offset,
2928                                   unsigned long len)
2929 {
2930         struct kvm_memslots *slots = kvm_memslots(kvm);
2931         int r;
2932         gpa_t gpa = ghc->gpa + offset;
2933
2934         BUG_ON(len + offset > ghc->len);
2935
2936         if (slots->generation != ghc->generation) {
2937                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2938                         return -EFAULT;
2939         }
2940
2941         if (kvm_is_error_hva(ghc->hva))
2942                 return -EFAULT;
2943
2944         if (unlikely(!ghc->memslot))
2945                 return kvm_write_guest(kvm, gpa, data, len);
2946
2947         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2948         if (r)
2949                 return -EFAULT;
2950         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2951
2952         return 0;
2953 }
2954 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2955
2956 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2957                            void *data, unsigned long len)
2958 {
2959         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2960 }
2961 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2962
2963 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2964                                  void *data, unsigned int offset,
2965                                  unsigned long len)
2966 {
2967         struct kvm_memslots *slots = kvm_memslots(kvm);
2968         int r;
2969         gpa_t gpa = ghc->gpa + offset;
2970
2971         BUG_ON(len + offset > ghc->len);
2972
2973         if (slots->generation != ghc->generation) {
2974                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2975                         return -EFAULT;
2976         }
2977
2978         if (kvm_is_error_hva(ghc->hva))
2979                 return -EFAULT;
2980
2981         if (unlikely(!ghc->memslot))
2982                 return kvm_read_guest(kvm, gpa, data, len);
2983
2984         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2985         if (r)
2986                 return -EFAULT;
2987
2988         return 0;
2989 }
2990 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2991
2992 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2993                           void *data, unsigned long len)
2994 {
2995         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2996 }
2997 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2998
2999 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3000 {
3001         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3002         gfn_t gfn = gpa >> PAGE_SHIFT;
3003         int seg;
3004         int offset = offset_in_page(gpa);
3005         int ret;
3006
3007         while ((seg = next_segment(len, offset)) != 0) {
3008                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3009                 if (ret < 0)
3010                         return ret;
3011                 offset = 0;
3012                 len -= seg;
3013                 ++gfn;
3014         }
3015         return 0;
3016 }
3017 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3018
3019 void mark_page_dirty_in_slot(struct kvm *kvm,
3020                              struct kvm_memory_slot *memslot,
3021                              gfn_t gfn)
3022 {
3023         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3024                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3025                 u32 slot = (memslot->as_id << 16) | memslot->id;
3026
3027                 if (kvm->dirty_ring_size)
3028                         kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3029                                             slot, rel_gfn);
3030                 else
3031                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3032         }
3033 }
3034 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3035
3036 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3037 {
3038         struct kvm_memory_slot *memslot;
3039
3040         memslot = gfn_to_memslot(kvm, gfn);
3041         mark_page_dirty_in_slot(kvm, memslot, gfn);
3042 }
3043 EXPORT_SYMBOL_GPL(mark_page_dirty);
3044
3045 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3046 {
3047         struct kvm_memory_slot *memslot;
3048
3049         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3050         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3051 }
3052 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3053
3054 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3055 {
3056         if (!vcpu->sigset_active)
3057                 return;
3058
3059         /*
3060          * This does a lockless modification of ->real_blocked, which is fine
3061          * because, only current can change ->real_blocked and all readers of
3062          * ->real_blocked don't care as long ->real_blocked is always a subset
3063          * of ->blocked.
3064          */
3065         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3066 }
3067
3068 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3069 {
3070         if (!vcpu->sigset_active)
3071                 return;
3072
3073         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3074         sigemptyset(&current->real_blocked);
3075 }
3076
3077 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3078 {
3079         unsigned int old, val, grow, grow_start;
3080
3081         old = val = vcpu->halt_poll_ns;
3082         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3083         grow = READ_ONCE(halt_poll_ns_grow);
3084         if (!grow)
3085                 goto out;
3086
3087         val *= grow;
3088         if (val < grow_start)
3089                 val = grow_start;
3090
3091         if (val > vcpu->kvm->max_halt_poll_ns)
3092                 val = vcpu->kvm->max_halt_poll_ns;
3093
3094         vcpu->halt_poll_ns = val;
3095 out:
3096         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3097 }
3098
3099 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3100 {
3101         unsigned int old, val, shrink;
3102
3103         old = val = vcpu->halt_poll_ns;
3104         shrink = READ_ONCE(halt_poll_ns_shrink);
3105         if (shrink == 0)
3106                 val = 0;
3107         else
3108                 val /= shrink;
3109
3110         vcpu->halt_poll_ns = val;
3111         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3112 }
3113
3114 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3115 {
3116         int ret = -EINTR;
3117         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3118
3119         if (kvm_arch_vcpu_runnable(vcpu)) {
3120                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3121                 goto out;
3122         }
3123         if (kvm_cpu_has_pending_timer(vcpu))
3124                 goto out;
3125         if (signal_pending(current))
3126                 goto out;
3127         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3128                 goto out;
3129
3130         ret = 0;
3131 out:
3132         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3133         return ret;
3134 }
3135
3136 static inline void
3137 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3138 {
3139         if (waited)
3140                 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3141         else
3142                 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3143 }
3144
3145 /*
3146  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3147  */
3148 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3149 {
3150         ktime_t start, cur, poll_end;
3151         bool waited = false;
3152         u64 block_ns;
3153
3154         kvm_arch_vcpu_blocking(vcpu);
3155
3156         start = cur = poll_end = ktime_get();
3157         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3158                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3159
3160                 ++vcpu->stat.generic.halt_attempted_poll;
3161                 do {
3162                         /*
3163                          * This sets KVM_REQ_UNHALT if an interrupt
3164                          * arrives.
3165                          */
3166                         if (kvm_vcpu_check_block(vcpu) < 0) {
3167                                 ++vcpu->stat.generic.halt_successful_poll;
3168                                 if (!vcpu_valid_wakeup(vcpu))
3169                                         ++vcpu->stat.generic.halt_poll_invalid;
3170                                 goto out;
3171                         }
3172                         cpu_relax();
3173                         poll_end = cur = ktime_get();
3174                 } while (kvm_vcpu_can_poll(cur, stop));
3175         }
3176
3177         prepare_to_rcuwait(&vcpu->wait);
3178         for (;;) {
3179                 set_current_state(TASK_INTERRUPTIBLE);
3180
3181                 if (kvm_vcpu_check_block(vcpu) < 0)
3182                         break;
3183
3184                 waited = true;
3185                 schedule();
3186         }
3187         finish_rcuwait(&vcpu->wait);
3188         cur = ktime_get();
3189 out:
3190         kvm_arch_vcpu_unblocking(vcpu);
3191         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3192
3193         update_halt_poll_stats(
3194                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3195
3196         if (!kvm_arch_no_poll(vcpu)) {
3197                 if (!vcpu_valid_wakeup(vcpu)) {
3198                         shrink_halt_poll_ns(vcpu);
3199                 } else if (vcpu->kvm->max_halt_poll_ns) {
3200                         if (block_ns <= vcpu->halt_poll_ns)
3201                                 ;
3202                         /* we had a long block, shrink polling */
3203                         else if (vcpu->halt_poll_ns &&
3204                                         block_ns > vcpu->kvm->max_halt_poll_ns)
3205                                 shrink_halt_poll_ns(vcpu);
3206                         /* we had a short halt and our poll time is too small */
3207                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3208                                         block_ns < vcpu->kvm->max_halt_poll_ns)
3209                                 grow_halt_poll_ns(vcpu);
3210                 } else {
3211                         vcpu->halt_poll_ns = 0;
3212                 }
3213         }
3214
3215         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3216         kvm_arch_vcpu_block_finish(vcpu);
3217 }
3218 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3219
3220 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3221 {
3222         struct rcuwait *waitp;
3223
3224         waitp = kvm_arch_vcpu_get_wait(vcpu);
3225         if (rcuwait_wake_up(waitp)) {
3226                 WRITE_ONCE(vcpu->ready, true);
3227                 ++vcpu->stat.generic.halt_wakeup;
3228                 return true;
3229         }
3230
3231         return false;
3232 }
3233 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3234
3235 #ifndef CONFIG_S390
3236 /*
3237  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3238  */
3239 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3240 {
3241         int me;
3242         int cpu = vcpu->cpu;
3243
3244         if (kvm_vcpu_wake_up(vcpu))
3245                 return;
3246
3247         me = get_cpu();
3248         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3249                 if (kvm_arch_vcpu_should_kick(vcpu))
3250                         smp_send_reschedule(cpu);
3251         put_cpu();
3252 }
3253 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3254 #endif /* !CONFIG_S390 */
3255
3256 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3257 {
3258         struct pid *pid;
3259         struct task_struct *task = NULL;
3260         int ret = 0;
3261
3262         rcu_read_lock();
3263         pid = rcu_dereference(target->pid);
3264         if (pid)
3265                 task = get_pid_task(pid, PIDTYPE_PID);
3266         rcu_read_unlock();
3267         if (!task)
3268                 return ret;
3269         ret = yield_to(task, 1);
3270         put_task_struct(task);
3271
3272         return ret;
3273 }
3274 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3275
3276 /*
3277  * Helper that checks whether a VCPU is eligible for directed yield.
3278  * Most eligible candidate to yield is decided by following heuristics:
3279  *
3280  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3281  *  (preempted lock holder), indicated by @in_spin_loop.
3282  *  Set at the beginning and cleared at the end of interception/PLE handler.
3283  *
3284  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3285  *  chance last time (mostly it has become eligible now since we have probably
3286  *  yielded to lockholder in last iteration. This is done by toggling
3287  *  @dy_eligible each time a VCPU checked for eligibility.)
3288  *
3289  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3290  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3291  *  burning. Giving priority for a potential lock-holder increases lock
3292  *  progress.
3293  *
3294  *  Since algorithm is based on heuristics, accessing another VCPU data without
3295  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3296  *  and continue with next VCPU and so on.
3297  */
3298 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3299 {
3300 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3301         bool eligible;
3302
3303         eligible = !vcpu->spin_loop.in_spin_loop ||
3304                     vcpu->spin_loop.dy_eligible;
3305
3306         if (vcpu->spin_loop.in_spin_loop)
3307                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3308
3309         return eligible;
3310 #else
3311         return true;
3312 #endif
3313 }
3314
3315 /*
3316  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3317  * a vcpu_load/vcpu_put pair.  However, for most architectures
3318  * kvm_arch_vcpu_runnable does not require vcpu_load.
3319  */
3320 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3321 {
3322         return kvm_arch_vcpu_runnable(vcpu);
3323 }
3324
3325 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3326 {
3327         if (kvm_arch_dy_runnable(vcpu))
3328                 return true;
3329
3330 #ifdef CONFIG_KVM_ASYNC_PF
3331         if (!list_empty_careful(&vcpu->async_pf.done))
3332                 return true;
3333 #endif
3334
3335         return false;
3336 }
3337
3338 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3339 {
3340         return false;
3341 }
3342
3343 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3344 {
3345         struct kvm *kvm = me->kvm;
3346         struct kvm_vcpu *vcpu;
3347         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3348         int yielded = 0;
3349         int try = 3;
3350         int pass;
3351         int i;
3352
3353         kvm_vcpu_set_in_spin_loop(me, true);
3354         /*
3355          * We boost the priority of a VCPU that is runnable but not
3356          * currently running, because it got preempted by something
3357          * else and called schedule in __vcpu_run.  Hopefully that
3358          * VCPU is holding the lock that we need and will release it.
3359          * We approximate round-robin by starting at the last boosted VCPU.
3360          */
3361         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3362                 kvm_for_each_vcpu(i, vcpu, kvm) {
3363                         if (!pass && i <= last_boosted_vcpu) {
3364                                 i = last_boosted_vcpu;
3365                                 continue;
3366                         } else if (pass && i > last_boosted_vcpu)
3367                                 break;
3368                         if (!READ_ONCE(vcpu->ready))
3369                                 continue;
3370                         if (vcpu == me)
3371                                 continue;
3372                         if (rcuwait_active(&vcpu->wait) &&
3373                             !vcpu_dy_runnable(vcpu))
3374                                 continue;
3375                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3376                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3377                             !kvm_arch_vcpu_in_kernel(vcpu))
3378                                 continue;
3379                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3380                                 continue;
3381
3382                         yielded = kvm_vcpu_yield_to(vcpu);
3383                         if (yielded > 0) {
3384                                 kvm->last_boosted_vcpu = i;
3385                                 break;
3386                         } else if (yielded < 0) {
3387                                 try--;
3388                                 if (!try)
3389                                         break;
3390                         }
3391                 }
3392         }
3393         kvm_vcpu_set_in_spin_loop(me, false);
3394
3395         /* Ensure vcpu is not eligible during next spinloop */
3396         kvm_vcpu_set_dy_eligible(me, false);
3397 }
3398 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3399
3400 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3401 {
3402 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3403         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3404             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3405              kvm->dirty_ring_size / PAGE_SIZE);
3406 #else
3407         return false;
3408 #endif
3409 }
3410
3411 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3412 {
3413         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3414         struct page *page;
3415
3416         if (vmf->pgoff == 0)
3417                 page = virt_to_page(vcpu->run);
3418 #ifdef CONFIG_X86
3419         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3420                 page = virt_to_page(vcpu->arch.pio_data);
3421 #endif
3422 #ifdef CONFIG_KVM_MMIO
3423         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3424                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3425 #endif
3426         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3427                 page = kvm_dirty_ring_get_page(
3428                     &vcpu->dirty_ring,
3429                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3430         else
3431                 return kvm_arch_vcpu_fault(vcpu, vmf);
3432         get_page(page);
3433         vmf->page = page;
3434         return 0;
3435 }
3436
3437 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3438         .fault = kvm_vcpu_fault,
3439 };
3440
3441 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3442 {
3443         struct kvm_vcpu *vcpu = file->private_data;
3444         unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3445
3446         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3447              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3448             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3449                 return -EINVAL;
3450
3451         vma->vm_ops = &kvm_vcpu_vm_ops;
3452         return 0;
3453 }
3454
3455 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3456 {
3457         struct kvm_vcpu *vcpu = filp->private_data;
3458
3459         kvm_put_kvm(vcpu->kvm);
3460         return 0;
3461 }
3462
3463 static struct file_operations kvm_vcpu_fops = {
3464         .release        = kvm_vcpu_release,
3465         .unlocked_ioctl = kvm_vcpu_ioctl,
3466         .mmap           = kvm_vcpu_mmap,
3467         .llseek         = noop_llseek,
3468         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3469 };
3470
3471 /*
3472  * Allocates an inode for the vcpu.
3473  */
3474 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3475 {
3476         char name[8 + 1 + ITOA_MAX_LEN + 1];
3477
3478         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3479         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3480 }
3481
3482 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3483 {
3484 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3485         struct dentry *debugfs_dentry;
3486         char dir_name[ITOA_MAX_LEN * 2];
3487
3488         if (!debugfs_initialized())
3489                 return;
3490
3491         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3492         debugfs_dentry = debugfs_create_dir(dir_name,
3493                                             vcpu->kvm->debugfs_dentry);
3494
3495         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3496 #endif
3497 }
3498
3499 /*
3500  * Creates some virtual cpus.  Good luck creating more than one.
3501  */
3502 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3503 {
3504         int r;
3505         struct kvm_vcpu *vcpu;
3506         struct page *page;
3507
3508         if (id >= KVM_MAX_VCPU_ID)
3509                 return -EINVAL;
3510
3511         mutex_lock(&kvm->lock);
3512         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3513                 mutex_unlock(&kvm->lock);
3514                 return -EINVAL;
3515         }
3516
3517         kvm->created_vcpus++;
3518         mutex_unlock(&kvm->lock);
3519
3520         r = kvm_arch_vcpu_precreate(kvm, id);
3521         if (r)
3522                 goto vcpu_decrement;
3523
3524         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3525         if (!vcpu) {
3526                 r = -ENOMEM;
3527                 goto vcpu_decrement;
3528         }
3529
3530         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3531         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3532         if (!page) {
3533                 r = -ENOMEM;
3534                 goto vcpu_free;
3535         }
3536         vcpu->run = page_address(page);
3537
3538         kvm_vcpu_init(vcpu, kvm, id);
3539
3540         r = kvm_arch_vcpu_create(vcpu);
3541         if (r)
3542                 goto vcpu_free_run_page;
3543
3544         if (kvm->dirty_ring_size) {
3545                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3546                                          id, kvm->dirty_ring_size);
3547                 if (r)
3548                         goto arch_vcpu_destroy;
3549         }
3550
3551         mutex_lock(&kvm->lock);
3552         if (kvm_get_vcpu_by_id(kvm, id)) {
3553                 r = -EEXIST;
3554                 goto unlock_vcpu_destroy;
3555         }
3556
3557         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3558         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3559
3560         /* Fill the stats id string for the vcpu */
3561         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3562                  task_pid_nr(current), id);
3563
3564         /* Now it's all set up, let userspace reach it */
3565         kvm_get_kvm(kvm);
3566         r = create_vcpu_fd(vcpu);
3567         if (r < 0) {
3568                 kvm_put_kvm_no_destroy(kvm);
3569                 goto unlock_vcpu_destroy;
3570         }
3571
3572         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3573
3574         /*
3575          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3576          * before kvm->online_vcpu's incremented value.
3577          */
3578         smp_wmb();
3579         atomic_inc(&kvm->online_vcpus);
3580
3581         mutex_unlock(&kvm->lock);
3582         kvm_arch_vcpu_postcreate(vcpu);
3583         kvm_create_vcpu_debugfs(vcpu);
3584         return r;
3585
3586 unlock_vcpu_destroy:
3587         mutex_unlock(&kvm->lock);
3588         kvm_dirty_ring_free(&vcpu->dirty_ring);
3589 arch_vcpu_destroy:
3590         kvm_arch_vcpu_destroy(vcpu);
3591 vcpu_free_run_page:
3592         free_page((unsigned long)vcpu->run);
3593 vcpu_free:
3594         kmem_cache_free(kvm_vcpu_cache, vcpu);
3595 vcpu_decrement:
3596         mutex_lock(&kvm->lock);
3597         kvm->created_vcpus--;
3598         mutex_unlock(&kvm->lock);
3599         return r;
3600 }
3601
3602 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3603 {
3604         if (sigset) {
3605                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3606                 vcpu->sigset_active = 1;
3607                 vcpu->sigset = *sigset;
3608         } else
3609                 vcpu->sigset_active = 0;
3610         return 0;
3611 }
3612
3613 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3614                               size_t size, loff_t *offset)
3615 {
3616         struct kvm_vcpu *vcpu = file->private_data;
3617
3618         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3619                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3620                         sizeof(vcpu->stat), user_buffer, size, offset);
3621 }
3622
3623 static const struct file_operations kvm_vcpu_stats_fops = {
3624         .read = kvm_vcpu_stats_read,
3625         .llseek = noop_llseek,
3626 };
3627
3628 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3629 {
3630         int fd;
3631         struct file *file;
3632         char name[15 + ITOA_MAX_LEN + 1];
3633
3634         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3635
3636         fd = get_unused_fd_flags(O_CLOEXEC);
3637         if (fd < 0)
3638                 return fd;
3639
3640         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3641         if (IS_ERR(file)) {
3642                 put_unused_fd(fd);
3643                 return PTR_ERR(file);
3644         }
3645         file->f_mode |= FMODE_PREAD;
3646         fd_install(fd, file);
3647
3648         return fd;
3649 }
3650
3651 static long kvm_vcpu_ioctl(struct file *filp,
3652                            unsigned int ioctl, unsigned long arg)
3653 {
3654         struct kvm_vcpu *vcpu = filp->private_data;
3655         void __user *argp = (void __user *)arg;
3656         int r;
3657         struct kvm_fpu *fpu = NULL;
3658         struct kvm_sregs *kvm_sregs = NULL;
3659
3660         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3661                 return -EIO;
3662
3663         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3664                 return -EINVAL;
3665
3666         /*
3667          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3668          * execution; mutex_lock() would break them.
3669          */
3670         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3671         if (r != -ENOIOCTLCMD)
3672                 return r;
3673
3674         if (mutex_lock_killable(&vcpu->mutex))
3675                 return -EINTR;
3676         switch (ioctl) {
3677         case KVM_RUN: {
3678                 struct pid *oldpid;
3679                 r = -EINVAL;
3680                 if (arg)
3681                         goto out;
3682                 oldpid = rcu_access_pointer(vcpu->pid);
3683                 if (unlikely(oldpid != task_pid(current))) {
3684                         /* The thread running this VCPU changed. */
3685                         struct pid *newpid;
3686
3687                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3688                         if (r)
3689                                 break;
3690
3691                         newpid = get_task_pid(current, PIDTYPE_PID);
3692                         rcu_assign_pointer(vcpu->pid, newpid);
3693                         if (oldpid)
3694                                 synchronize_rcu();
3695                         put_pid(oldpid);
3696                 }
3697                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3698                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3699                 break;
3700         }
3701         case KVM_GET_REGS: {
3702                 struct kvm_regs *kvm_regs;
3703
3704                 r = -ENOMEM;
3705                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3706                 if (!kvm_regs)
3707                         goto out;
3708                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3709                 if (r)
3710                         goto out_free1;
3711                 r = -EFAULT;
3712                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3713                         goto out_free1;
3714                 r = 0;
3715 out_free1:
3716                 kfree(kvm_regs);
3717                 break;
3718         }
3719         case KVM_SET_REGS: {
3720                 struct kvm_regs *kvm_regs;
3721
3722                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3723                 if (IS_ERR(kvm_regs)) {
3724                         r = PTR_ERR(kvm_regs);
3725                         goto out;
3726                 }
3727                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3728                 kfree(kvm_regs);
3729                 break;
3730         }
3731         case KVM_GET_SREGS: {
3732                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3733                                     GFP_KERNEL_ACCOUNT);
3734                 r = -ENOMEM;
3735                 if (!kvm_sregs)
3736                         goto out;
3737                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3738                 if (r)
3739                         goto out;
3740                 r = -EFAULT;
3741                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3742                         goto out;
3743                 r = 0;
3744                 break;
3745         }
3746         case KVM_SET_SREGS: {
3747                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3748                 if (IS_ERR(kvm_sregs)) {
3749                         r = PTR_ERR(kvm_sregs);
3750                         kvm_sregs = NULL;
3751                         goto out;
3752                 }
3753                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3754                 break;
3755         }
3756         case KVM_GET_MP_STATE: {
3757                 struct kvm_mp_state mp_state;
3758
3759                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3760                 if (r)
3761                         goto out;
3762                 r = -EFAULT;
3763                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3764                         goto out;
3765                 r = 0;
3766                 break;
3767         }
3768         case KVM_SET_MP_STATE: {
3769                 struct kvm_mp_state mp_state;
3770
3771                 r = -EFAULT;
3772                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3773                         goto out;
3774                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3775                 break;
3776         }
3777         case KVM_TRANSLATE: {
3778                 struct kvm_translation tr;
3779
3780                 r = -EFAULT;
3781                 if (copy_from_user(&tr, argp, sizeof(tr)))
3782                         goto out;
3783                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3784                 if (r)
3785                         goto out;
3786                 r = -EFAULT;
3787                 if (copy_to_user(argp, &tr, sizeof(tr)))
3788                         goto out;
3789                 r = 0;
3790                 break;
3791         }
3792         case KVM_SET_GUEST_DEBUG: {
3793                 struct kvm_guest_debug dbg;
3794
3795                 r = -EFAULT;
3796                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3797                         goto out;
3798                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3799                 break;
3800         }
3801         case KVM_SET_SIGNAL_MASK: {
3802                 struct kvm_signal_mask __user *sigmask_arg = argp;
3803                 struct kvm_signal_mask kvm_sigmask;
3804                 sigset_t sigset, *p;
3805
3806                 p = NULL;
3807                 if (argp) {
3808                         r = -EFAULT;
3809                         if (copy_from_user(&kvm_sigmask, argp,
3810                                            sizeof(kvm_sigmask)))
3811                                 goto out;
3812                         r = -EINVAL;
3813                         if (kvm_sigmask.len != sizeof(sigset))
3814                                 goto out;
3815                         r = -EFAULT;
3816                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3817                                            sizeof(sigset)))
3818                                 goto out;
3819                         p = &sigset;
3820                 }
3821                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3822                 break;
3823         }
3824         case KVM_GET_FPU: {
3825                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3826                 r = -ENOMEM;
3827                 if (!fpu)
3828                         goto out;
3829                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3830                 if (r)
3831                         goto out;
3832                 r = -EFAULT;
3833                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3834                         goto out;
3835                 r = 0;
3836                 break;
3837         }
3838         case KVM_SET_FPU: {
3839                 fpu = memdup_user(argp, sizeof(*fpu));
3840                 if (IS_ERR(fpu)) {
3841                         r = PTR_ERR(fpu);
3842                         fpu = NULL;
3843                         goto out;
3844                 }
3845                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3846                 break;
3847         }
3848         case KVM_GET_STATS_FD: {
3849                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3850                 break;
3851         }
3852         default:
3853                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3854         }
3855 out:
3856         mutex_unlock(&vcpu->mutex);
3857         kfree(fpu);
3858         kfree(kvm_sregs);
3859         return r;
3860 }
3861
3862 #ifdef CONFIG_KVM_COMPAT
3863 static long kvm_vcpu_compat_ioctl(struct file *filp,
3864                                   unsigned int ioctl, unsigned long arg)
3865 {
3866         struct kvm_vcpu *vcpu = filp->private_data;
3867         void __user *argp = compat_ptr(arg);
3868         int r;
3869
3870         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3871                 return -EIO;
3872
3873         switch (ioctl) {
3874         case KVM_SET_SIGNAL_MASK: {
3875                 struct kvm_signal_mask __user *sigmask_arg = argp;
3876                 struct kvm_signal_mask kvm_sigmask;
3877                 sigset_t sigset;
3878
3879                 if (argp) {
3880                         r = -EFAULT;
3881                         if (copy_from_user(&kvm_sigmask, argp,
3882                                            sizeof(kvm_sigmask)))
3883                                 goto out;
3884                         r = -EINVAL;
3885                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3886                                 goto out;
3887                         r = -EFAULT;
3888                         if (get_compat_sigset(&sigset,
3889                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3890                                 goto out;
3891                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3892                 } else
3893                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3894                 break;
3895         }
3896         default:
3897                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3898         }
3899
3900 out:
3901         return r;
3902 }
3903 #endif
3904
3905 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3906 {
3907         struct kvm_device *dev = filp->private_data;
3908
3909         if (dev->ops->mmap)
3910                 return dev->ops->mmap(dev, vma);
3911
3912         return -ENODEV;
3913 }
3914
3915 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3916                                  int (*accessor)(struct kvm_device *dev,
3917                                                  struct kvm_device_attr *attr),
3918                                  unsigned long arg)
3919 {
3920         struct kvm_device_attr attr;
3921
3922         if (!accessor)
3923                 return -EPERM;
3924
3925         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3926                 return -EFAULT;
3927
3928         return accessor(dev, &attr);
3929 }
3930
3931 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3932                              unsigned long arg)
3933 {
3934         struct kvm_device *dev = filp->private_data;
3935
3936         if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
3937                 return -EIO;
3938
3939         switch (ioctl) {
3940         case KVM_SET_DEVICE_ATTR:
3941                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3942         case KVM_GET_DEVICE_ATTR:
3943                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3944         case KVM_HAS_DEVICE_ATTR:
3945                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3946         default:
3947                 if (dev->ops->ioctl)
3948                         return dev->ops->ioctl(dev, ioctl, arg);
3949
3950                 return -ENOTTY;
3951         }
3952 }
3953
3954 static int kvm_device_release(struct inode *inode, struct file *filp)
3955 {
3956         struct kvm_device *dev = filp->private_data;
3957         struct kvm *kvm = dev->kvm;
3958
3959         if (dev->ops->release) {
3960                 mutex_lock(&kvm->lock);
3961                 list_del(&dev->vm_node);
3962                 dev->ops->release(dev);
3963                 mutex_unlock(&kvm->lock);
3964         }
3965
3966         kvm_put_kvm(kvm);
3967         return 0;
3968 }
3969
3970 static const struct file_operations kvm_device_fops = {
3971         .unlocked_ioctl = kvm_device_ioctl,
3972         .release = kvm_device_release,
3973         KVM_COMPAT(kvm_device_ioctl),
3974         .mmap = kvm_device_mmap,
3975 };
3976
3977 struct kvm_device *kvm_device_from_filp(struct file *filp)
3978 {
3979         if (filp->f_op != &kvm_device_fops)
3980                 return NULL;
3981
3982         return filp->private_data;
3983 }
3984
3985 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3986 #ifdef CONFIG_KVM_MPIC
3987         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3988         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3989 #endif
3990 };
3991
3992 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3993 {
3994         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3995                 return -ENOSPC;
3996
3997         if (kvm_device_ops_table[type] != NULL)
3998                 return -EEXIST;
3999
4000         kvm_device_ops_table[type] = ops;
4001         return 0;
4002 }
4003
4004 void kvm_unregister_device_ops(u32 type)
4005 {
4006         if (kvm_device_ops_table[type] != NULL)
4007                 kvm_device_ops_table[type] = NULL;
4008 }
4009
4010 static int kvm_ioctl_create_device(struct kvm *kvm,
4011                                    struct kvm_create_device *cd)
4012 {
4013         const struct kvm_device_ops *ops = NULL;
4014         struct kvm_device *dev;
4015         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4016         int type;
4017         int ret;
4018
4019         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4020                 return -ENODEV;
4021
4022         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4023         ops = kvm_device_ops_table[type];
4024         if (ops == NULL)
4025                 return -ENODEV;
4026
4027         if (test)
4028                 return 0;
4029
4030         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4031         if (!dev)
4032                 return -ENOMEM;
4033
4034         dev->ops = ops;
4035         dev->kvm = kvm;
4036
4037         mutex_lock(&kvm->lock);
4038         ret = ops->create(dev, type);
4039         if (ret < 0) {
4040                 mutex_unlock(&kvm->lock);
4041                 kfree(dev);
4042                 return ret;
4043         }
4044         list_add(&dev->vm_node, &kvm->devices);
4045         mutex_unlock(&kvm->lock);
4046
4047         if (ops->init)
4048                 ops->init(dev);
4049
4050         kvm_get_kvm(kvm);
4051         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4052         if (ret < 0) {
4053                 kvm_put_kvm_no_destroy(kvm);
4054                 mutex_lock(&kvm->lock);
4055                 list_del(&dev->vm_node);
4056                 mutex_unlock(&kvm->lock);
4057                 ops->destroy(dev);
4058                 return ret;
4059         }
4060
4061         cd->fd = ret;
4062         return 0;
4063 }
4064
4065 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4066 {
4067         switch (arg) {
4068         case KVM_CAP_USER_MEMORY:
4069         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4070         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4071         case KVM_CAP_INTERNAL_ERROR_DATA:
4072 #ifdef CONFIG_HAVE_KVM_MSI
4073         case KVM_CAP_SIGNAL_MSI:
4074 #endif
4075 #ifdef CONFIG_HAVE_KVM_IRQFD
4076         case KVM_CAP_IRQFD:
4077         case KVM_CAP_IRQFD_RESAMPLE:
4078 #endif
4079         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4080         case KVM_CAP_CHECK_EXTENSION_VM:
4081         case KVM_CAP_ENABLE_CAP_VM:
4082         case KVM_CAP_HALT_POLL:
4083                 return 1;
4084 #ifdef CONFIG_KVM_MMIO
4085         case KVM_CAP_COALESCED_MMIO:
4086                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4087         case KVM_CAP_COALESCED_PIO:
4088                 return 1;
4089 #endif
4090 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4091         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4092                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4093 #endif
4094 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4095         case KVM_CAP_IRQ_ROUTING:
4096                 return KVM_MAX_IRQ_ROUTES;
4097 #endif
4098 #if KVM_ADDRESS_SPACE_NUM > 1
4099         case KVM_CAP_MULTI_ADDRESS_SPACE:
4100                 return KVM_ADDRESS_SPACE_NUM;
4101 #endif
4102         case KVM_CAP_NR_MEMSLOTS:
4103                 return KVM_USER_MEM_SLOTS;
4104         case KVM_CAP_DIRTY_LOG_RING:
4105 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4106                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4107 #else
4108                 return 0;
4109 #endif
4110         case KVM_CAP_BINARY_STATS_FD:
4111                 return 1;
4112         default:
4113                 break;
4114         }
4115         return kvm_vm_ioctl_check_extension(kvm, arg);
4116 }
4117
4118 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4119 {
4120         int r;
4121
4122         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4123                 return -EINVAL;
4124
4125         /* the size should be power of 2 */
4126         if (!size || (size & (size - 1)))
4127                 return -EINVAL;
4128
4129         /* Should be bigger to keep the reserved entries, or a page */
4130         if (size < kvm_dirty_ring_get_rsvd_entries() *
4131             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4132                 return -EINVAL;
4133
4134         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4135             sizeof(struct kvm_dirty_gfn))
4136                 return -E2BIG;
4137
4138         /* We only allow it to set once */
4139         if (kvm->dirty_ring_size)
4140                 return -EINVAL;
4141
4142         mutex_lock(&kvm->lock);
4143
4144         if (kvm->created_vcpus) {
4145                 /* We don't allow to change this value after vcpu created */
4146                 r = -EINVAL;
4147         } else {
4148                 kvm->dirty_ring_size = size;
4149                 r = 0;
4150         }
4151
4152         mutex_unlock(&kvm->lock);
4153         return r;
4154 }
4155
4156 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4157 {
4158         int i;
4159         struct kvm_vcpu *vcpu;
4160         int cleared = 0;
4161
4162         if (!kvm->dirty_ring_size)
4163                 return -EINVAL;
4164
4165         mutex_lock(&kvm->slots_lock);
4166
4167         kvm_for_each_vcpu(i, vcpu, kvm)
4168                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4169
4170         mutex_unlock(&kvm->slots_lock);
4171
4172         if (cleared)
4173                 kvm_flush_remote_tlbs(kvm);
4174
4175         return cleared;
4176 }
4177
4178 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4179                                                   struct kvm_enable_cap *cap)
4180 {
4181         return -EINVAL;
4182 }
4183
4184 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4185                                            struct kvm_enable_cap *cap)
4186 {
4187         switch (cap->cap) {
4188 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4189         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4190                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4191
4192                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4193                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4194
4195                 if (cap->flags || (cap->args[0] & ~allowed_options))
4196                         return -EINVAL;
4197                 kvm->manual_dirty_log_protect = cap->args[0];
4198                 return 0;
4199         }
4200 #endif
4201         case KVM_CAP_HALT_POLL: {
4202                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4203                         return -EINVAL;
4204
4205                 kvm->max_halt_poll_ns = cap->args[0];
4206                 return 0;
4207         }
4208         case KVM_CAP_DIRTY_LOG_RING:
4209                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4210         default:
4211                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4212         }
4213 }
4214
4215 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4216                               size_t size, loff_t *offset)
4217 {
4218         struct kvm *kvm = file->private_data;
4219
4220         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4221                                 &kvm_vm_stats_desc[0], &kvm->stat,
4222                                 sizeof(kvm->stat), user_buffer, size, offset);
4223 }
4224
4225 static const struct file_operations kvm_vm_stats_fops = {
4226         .read = kvm_vm_stats_read,
4227         .llseek = noop_llseek,
4228 };
4229
4230 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4231 {
4232         int fd;
4233         struct file *file;
4234
4235         fd = get_unused_fd_flags(O_CLOEXEC);
4236         if (fd < 0)
4237                 return fd;
4238
4239         file = anon_inode_getfile("kvm-vm-stats",
4240                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4241         if (IS_ERR(file)) {
4242                 put_unused_fd(fd);
4243                 return PTR_ERR(file);
4244         }
4245         file->f_mode |= FMODE_PREAD;
4246         fd_install(fd, file);
4247
4248         return fd;
4249 }
4250
4251 static long kvm_vm_ioctl(struct file *filp,
4252                            unsigned int ioctl, unsigned long arg)
4253 {
4254         struct kvm *kvm = filp->private_data;
4255         void __user *argp = (void __user *)arg;
4256         int r;
4257
4258         if (kvm->mm != current->mm || kvm->vm_bugged)
4259                 return -EIO;
4260         switch (ioctl) {
4261         case KVM_CREATE_VCPU:
4262                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4263                 break;
4264         case KVM_ENABLE_CAP: {
4265                 struct kvm_enable_cap cap;
4266
4267                 r = -EFAULT;
4268                 if (copy_from_user(&cap, argp, sizeof(cap)))
4269                         goto out;
4270                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4271                 break;
4272         }
4273         case KVM_SET_USER_MEMORY_REGION: {
4274                 struct kvm_userspace_memory_region kvm_userspace_mem;
4275
4276                 r = -EFAULT;
4277                 if (copy_from_user(&kvm_userspace_mem, argp,
4278                                                 sizeof(kvm_userspace_mem)))
4279                         goto out;
4280
4281                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4282                 break;
4283         }
4284         case KVM_GET_DIRTY_LOG: {
4285                 struct kvm_dirty_log log;
4286
4287                 r = -EFAULT;
4288                 if (copy_from_user(&log, argp, sizeof(log)))
4289                         goto out;
4290                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4291                 break;
4292         }
4293 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4294         case KVM_CLEAR_DIRTY_LOG: {
4295                 struct kvm_clear_dirty_log log;
4296
4297                 r = -EFAULT;
4298                 if (copy_from_user(&log, argp, sizeof(log)))
4299                         goto out;
4300                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4301                 break;
4302         }
4303 #endif
4304 #ifdef CONFIG_KVM_MMIO
4305         case KVM_REGISTER_COALESCED_MMIO: {
4306                 struct kvm_coalesced_mmio_zone zone;
4307
4308                 r = -EFAULT;
4309                 if (copy_from_user(&zone, argp, sizeof(zone)))
4310                         goto out;
4311                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4312                 break;
4313         }
4314         case KVM_UNREGISTER_COALESCED_MMIO: {
4315                 struct kvm_coalesced_mmio_zone zone;
4316
4317                 r = -EFAULT;
4318                 if (copy_from_user(&zone, argp, sizeof(zone)))
4319                         goto out;
4320                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4321                 break;
4322         }
4323 #endif
4324         case KVM_IRQFD: {
4325                 struct kvm_irqfd data;
4326
4327                 r = -EFAULT;
4328                 if (copy_from_user(&data, argp, sizeof(data)))
4329                         goto out;
4330                 r = kvm_irqfd(kvm, &data);
4331                 break;
4332         }
4333         case KVM_IOEVENTFD: {
4334                 struct kvm_ioeventfd data;
4335
4336                 r = -EFAULT;
4337                 if (copy_from_user(&data, argp, sizeof(data)))
4338                         goto out;
4339                 r = kvm_ioeventfd(kvm, &data);
4340                 break;
4341         }
4342 #ifdef CONFIG_HAVE_KVM_MSI
4343         case KVM_SIGNAL_MSI: {
4344                 struct kvm_msi msi;
4345
4346                 r = -EFAULT;
4347                 if (copy_from_user(&msi, argp, sizeof(msi)))
4348                         goto out;
4349                 r = kvm_send_userspace_msi(kvm, &msi);
4350                 break;
4351         }
4352 #endif
4353 #ifdef __KVM_HAVE_IRQ_LINE
4354         case KVM_IRQ_LINE_STATUS:
4355         case KVM_IRQ_LINE: {
4356                 struct kvm_irq_level irq_event;
4357
4358                 r = -EFAULT;
4359                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4360                         goto out;
4361
4362                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4363                                         ioctl == KVM_IRQ_LINE_STATUS);
4364                 if (r)
4365                         goto out;
4366
4367                 r = -EFAULT;
4368                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4369                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4370                                 goto out;
4371                 }
4372
4373                 r = 0;
4374                 break;
4375         }
4376 #endif
4377 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4378         case KVM_SET_GSI_ROUTING: {
4379                 struct kvm_irq_routing routing;
4380                 struct kvm_irq_routing __user *urouting;
4381                 struct kvm_irq_routing_entry *entries = NULL;
4382
4383                 r = -EFAULT;
4384                 if (copy_from_user(&routing, argp, sizeof(routing)))
4385                         goto out;
4386                 r = -EINVAL;
4387                 if (!kvm_arch_can_set_irq_routing(kvm))
4388                         goto out;
4389                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4390                         goto out;
4391                 if (routing.flags)
4392                         goto out;
4393                 if (routing.nr) {
4394                         urouting = argp;
4395                         entries = vmemdup_user(urouting->entries,
4396                                                array_size(sizeof(*entries),
4397                                                           routing.nr));
4398                         if (IS_ERR(entries)) {
4399                                 r = PTR_ERR(entries);
4400                                 goto out;
4401                         }
4402                 }
4403                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4404                                         routing.flags);
4405                 kvfree(entries);
4406                 break;
4407         }
4408 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4409         case KVM_CREATE_DEVICE: {
4410                 struct kvm_create_device cd;
4411
4412                 r = -EFAULT;
4413                 if (copy_from_user(&cd, argp, sizeof(cd)))
4414                         goto out;
4415
4416                 r = kvm_ioctl_create_device(kvm, &cd);
4417                 if (r)
4418                         goto out;
4419
4420                 r = -EFAULT;
4421                 if (copy_to_user(argp, &cd, sizeof(cd)))
4422                         goto out;
4423
4424                 r = 0;
4425                 break;
4426         }
4427         case KVM_CHECK_EXTENSION:
4428                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4429                 break;
4430         case KVM_RESET_DIRTY_RINGS:
4431                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4432                 break;
4433         case KVM_GET_STATS_FD:
4434                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4435                 break;
4436         default:
4437                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4438         }
4439 out:
4440         return r;
4441 }
4442
4443 #ifdef CONFIG_KVM_COMPAT
4444 struct compat_kvm_dirty_log {
4445         __u32 slot;
4446         __u32 padding1;
4447         union {
4448                 compat_uptr_t dirty_bitmap; /* one bit per page */
4449                 __u64 padding2;
4450         };
4451 };
4452
4453 struct compat_kvm_clear_dirty_log {
4454         __u32 slot;
4455         __u32 num_pages;
4456         __u64 first_page;
4457         union {
4458                 compat_uptr_t dirty_bitmap; /* one bit per page */
4459                 __u64 padding2;
4460         };
4461 };
4462
4463 static long kvm_vm_compat_ioctl(struct file *filp,
4464                            unsigned int ioctl, unsigned long arg)
4465 {
4466         struct kvm *kvm = filp->private_data;
4467         int r;
4468
4469         if (kvm->mm != current->mm || kvm->vm_bugged)
4470                 return -EIO;
4471         switch (ioctl) {
4472 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4473         case KVM_CLEAR_DIRTY_LOG: {
4474                 struct compat_kvm_clear_dirty_log compat_log;
4475                 struct kvm_clear_dirty_log log;
4476
4477                 if (copy_from_user(&compat_log, (void __user *)arg,
4478                                    sizeof(compat_log)))
4479                         return -EFAULT;
4480                 log.slot         = compat_log.slot;
4481                 log.num_pages    = compat_log.num_pages;
4482                 log.first_page   = compat_log.first_page;
4483                 log.padding2     = compat_log.padding2;
4484                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4485
4486                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4487                 break;
4488         }
4489 #endif
4490         case KVM_GET_DIRTY_LOG: {
4491                 struct compat_kvm_dirty_log compat_log;
4492                 struct kvm_dirty_log log;
4493
4494                 if (copy_from_user(&compat_log, (void __user *)arg,
4495                                    sizeof(compat_log)))
4496                         return -EFAULT;
4497                 log.slot         = compat_log.slot;
4498                 log.padding1     = compat_log.padding1;
4499                 log.padding2     = compat_log.padding2;
4500                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4501
4502                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4503                 break;
4504         }
4505         default:
4506                 r = kvm_vm_ioctl(filp, ioctl, arg);
4507         }
4508         return r;
4509 }
4510 #endif
4511
4512 static struct file_operations kvm_vm_fops = {
4513         .release        = kvm_vm_release,
4514         .unlocked_ioctl = kvm_vm_ioctl,
4515         .llseek         = noop_llseek,
4516         KVM_COMPAT(kvm_vm_compat_ioctl),
4517 };
4518
4519 bool file_is_kvm(struct file *file)
4520 {
4521         return file && file->f_op == &kvm_vm_fops;
4522 }
4523 EXPORT_SYMBOL_GPL(file_is_kvm);
4524
4525 static int kvm_dev_ioctl_create_vm(unsigned long type)
4526 {
4527         int r;
4528         struct kvm *kvm;
4529         struct file *file;
4530
4531         kvm = kvm_create_vm(type);
4532         if (IS_ERR(kvm))
4533                 return PTR_ERR(kvm);
4534 #ifdef CONFIG_KVM_MMIO
4535         r = kvm_coalesced_mmio_init(kvm);
4536         if (r < 0)
4537                 goto put_kvm;
4538 #endif
4539         r = get_unused_fd_flags(O_CLOEXEC);
4540         if (r < 0)
4541                 goto put_kvm;
4542
4543         snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4544                         "kvm-%d", task_pid_nr(current));
4545
4546         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4547         if (IS_ERR(file)) {
4548                 put_unused_fd(r);
4549                 r = PTR_ERR(file);
4550                 goto put_kvm;
4551         }
4552
4553         /*
4554          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4555          * already set, with ->release() being kvm_vm_release().  In error
4556          * cases it will be called by the final fput(file) and will take
4557          * care of doing kvm_put_kvm(kvm).
4558          */
4559         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4560                 put_unused_fd(r);
4561                 fput(file);
4562                 return -ENOMEM;
4563         }
4564         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4565
4566         fd_install(r, file);
4567         return r;
4568
4569 put_kvm:
4570         kvm_put_kvm(kvm);
4571         return r;
4572 }
4573
4574 static long kvm_dev_ioctl(struct file *filp,
4575                           unsigned int ioctl, unsigned long arg)
4576 {
4577         long r = -EINVAL;
4578
4579         switch (ioctl) {
4580         case KVM_GET_API_VERSION:
4581                 if (arg)
4582                         goto out;
4583                 r = KVM_API_VERSION;
4584                 break;
4585         case KVM_CREATE_VM:
4586                 r = kvm_dev_ioctl_create_vm(arg);
4587                 break;
4588         case KVM_CHECK_EXTENSION:
4589                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4590                 break;
4591         case KVM_GET_VCPU_MMAP_SIZE:
4592                 if (arg)
4593                         goto out;
4594                 r = PAGE_SIZE;     /* struct kvm_run */
4595 #ifdef CONFIG_X86
4596                 r += PAGE_SIZE;    /* pio data page */
4597 #endif
4598 #ifdef CONFIG_KVM_MMIO
4599                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4600 #endif
4601                 break;
4602         case KVM_TRACE_ENABLE:
4603         case KVM_TRACE_PAUSE:
4604         case KVM_TRACE_DISABLE:
4605                 r = -EOPNOTSUPP;
4606                 break;
4607         default:
4608                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4609         }
4610 out:
4611         return r;
4612 }
4613
4614 static struct file_operations kvm_chardev_ops = {
4615         .unlocked_ioctl = kvm_dev_ioctl,
4616         .llseek         = noop_llseek,
4617         KVM_COMPAT(kvm_dev_ioctl),
4618 };
4619
4620 static struct miscdevice kvm_dev = {
4621         KVM_MINOR,
4622         "kvm",
4623         &kvm_chardev_ops,
4624 };
4625
4626 static void hardware_enable_nolock(void *junk)
4627 {
4628         int cpu = raw_smp_processor_id();
4629         int r;
4630
4631         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4632                 return;
4633
4634         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4635
4636         r = kvm_arch_hardware_enable();
4637
4638         if (r) {
4639                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4640                 atomic_inc(&hardware_enable_failed);
4641                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4642         }
4643 }
4644
4645 static int kvm_starting_cpu(unsigned int cpu)
4646 {
4647         raw_spin_lock(&kvm_count_lock);
4648         if (kvm_usage_count)
4649                 hardware_enable_nolock(NULL);
4650         raw_spin_unlock(&kvm_count_lock);
4651         return 0;
4652 }
4653
4654 static void hardware_disable_nolock(void *junk)
4655 {
4656         int cpu = raw_smp_processor_id();
4657
4658         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4659                 return;
4660         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4661         kvm_arch_hardware_disable();
4662 }
4663
4664 static int kvm_dying_cpu(unsigned int cpu)
4665 {
4666         raw_spin_lock(&kvm_count_lock);
4667         if (kvm_usage_count)
4668                 hardware_disable_nolock(NULL);
4669         raw_spin_unlock(&kvm_count_lock);
4670         return 0;
4671 }
4672
4673 static void hardware_disable_all_nolock(void)
4674 {
4675         BUG_ON(!kvm_usage_count);
4676
4677         kvm_usage_count--;
4678         if (!kvm_usage_count)
4679                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4680 }
4681
4682 static void hardware_disable_all(void)
4683 {
4684         raw_spin_lock(&kvm_count_lock);
4685         hardware_disable_all_nolock();
4686         raw_spin_unlock(&kvm_count_lock);
4687 }
4688
4689 static int hardware_enable_all(void)
4690 {
4691         int r = 0;
4692
4693         raw_spin_lock(&kvm_count_lock);
4694
4695         kvm_usage_count++;
4696         if (kvm_usage_count == 1) {
4697                 atomic_set(&hardware_enable_failed, 0);
4698                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4699
4700                 if (atomic_read(&hardware_enable_failed)) {
4701                         hardware_disable_all_nolock();
4702                         r = -EBUSY;
4703                 }
4704         }
4705
4706         raw_spin_unlock(&kvm_count_lock);
4707
4708         return r;
4709 }
4710
4711 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4712                       void *v)
4713 {
4714         /*
4715          * Some (well, at least mine) BIOSes hang on reboot if
4716          * in vmx root mode.
4717          *
4718          * And Intel TXT required VMX off for all cpu when system shutdown.
4719          */
4720         pr_info("kvm: exiting hardware virtualization\n");
4721         kvm_rebooting = true;
4722         on_each_cpu(hardware_disable_nolock, NULL, 1);
4723         return NOTIFY_OK;
4724 }
4725
4726 static struct notifier_block kvm_reboot_notifier = {
4727         .notifier_call = kvm_reboot,
4728         .priority = 0,
4729 };
4730
4731 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4732 {
4733         int i;
4734
4735         for (i = 0; i < bus->dev_count; i++) {
4736                 struct kvm_io_device *pos = bus->range[i].dev;
4737
4738                 kvm_iodevice_destructor(pos);
4739         }
4740         kfree(bus);
4741 }
4742
4743 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4744                                  const struct kvm_io_range *r2)
4745 {
4746         gpa_t addr1 = r1->addr;
4747         gpa_t addr2 = r2->addr;
4748
4749         if (addr1 < addr2)
4750                 return -1;
4751
4752         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4753          * accept any overlapping write.  Any order is acceptable for
4754          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4755          * we process all of them.
4756          */
4757         if (r2->len) {
4758                 addr1 += r1->len;
4759                 addr2 += r2->len;
4760         }
4761
4762         if (addr1 > addr2)
4763                 return 1;
4764
4765         return 0;
4766 }
4767
4768 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4769 {
4770         return kvm_io_bus_cmp(p1, p2);
4771 }
4772
4773 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4774                              gpa_t addr, int len)
4775 {
4776         struct kvm_io_range *range, key;
4777         int off;
4778
4779         key = (struct kvm_io_range) {
4780                 .addr = addr,
4781                 .len = len,
4782         };
4783
4784         range = bsearch(&key, bus->range, bus->dev_count,
4785                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4786         if (range == NULL)
4787                 return -ENOENT;
4788
4789         off = range - bus->range;
4790
4791         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4792                 off--;
4793
4794         return off;
4795 }
4796
4797 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4798                               struct kvm_io_range *range, const void *val)
4799 {
4800         int idx;
4801
4802         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4803         if (idx < 0)
4804                 return -EOPNOTSUPP;
4805
4806         while (idx < bus->dev_count &&
4807                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4808                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4809                                         range->len, val))
4810                         return idx;
4811                 idx++;
4812         }
4813
4814         return -EOPNOTSUPP;
4815 }
4816
4817 /* kvm_io_bus_write - called under kvm->slots_lock */
4818 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4819                      int len, const void *val)
4820 {
4821         struct kvm_io_bus *bus;
4822         struct kvm_io_range range;
4823         int r;
4824
4825         range = (struct kvm_io_range) {
4826                 .addr = addr,
4827                 .len = len,
4828         };
4829
4830         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4831         if (!bus)
4832                 return -ENOMEM;
4833         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4834         return r < 0 ? r : 0;
4835 }
4836 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4837
4838 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4839 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4840                             gpa_t addr, int len, const void *val, long cookie)
4841 {
4842         struct kvm_io_bus *bus;
4843         struct kvm_io_range range;
4844
4845         range = (struct kvm_io_range) {
4846                 .addr = addr,
4847                 .len = len,
4848         };
4849
4850         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4851         if (!bus)
4852                 return -ENOMEM;
4853
4854         /* First try the device referenced by cookie. */
4855         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4856             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4857                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4858                                         val))
4859                         return cookie;
4860
4861         /*
4862          * cookie contained garbage; fall back to search and return the
4863          * correct cookie value.
4864          */
4865         return __kvm_io_bus_write(vcpu, bus, &range, val);
4866 }
4867
4868 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4869                              struct kvm_io_range *range, void *val)
4870 {
4871         int idx;
4872
4873         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4874         if (idx < 0)
4875                 return -EOPNOTSUPP;
4876
4877         while (idx < bus->dev_count &&
4878                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4879                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4880                                        range->len, val))
4881                         return idx;
4882                 idx++;
4883         }
4884
4885         return -EOPNOTSUPP;
4886 }
4887
4888 /* kvm_io_bus_read - called under kvm->slots_lock */
4889 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4890                     int len, void *val)
4891 {
4892         struct kvm_io_bus *bus;
4893         struct kvm_io_range range;
4894         int r;
4895
4896         range = (struct kvm_io_range) {
4897                 .addr = addr,
4898                 .len = len,
4899         };
4900
4901         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4902         if (!bus)
4903                 return -ENOMEM;
4904         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4905         return r < 0 ? r : 0;
4906 }
4907
4908 /* Caller must hold slots_lock. */
4909 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4910                             int len, struct kvm_io_device *dev)
4911 {
4912         int i;
4913         struct kvm_io_bus *new_bus, *bus;
4914         struct kvm_io_range range;
4915
4916         bus = kvm_get_bus(kvm, bus_idx);
4917         if (!bus)
4918                 return -ENOMEM;
4919
4920         /* exclude ioeventfd which is limited by maximum fd */
4921         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4922                 return -ENOSPC;
4923
4924         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4925                           GFP_KERNEL_ACCOUNT);
4926         if (!new_bus)
4927                 return -ENOMEM;
4928
4929         range = (struct kvm_io_range) {
4930                 .addr = addr,
4931                 .len = len,
4932                 .dev = dev,
4933         };
4934
4935         for (i = 0; i < bus->dev_count; i++)
4936                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4937                         break;
4938
4939         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4940         new_bus->dev_count++;
4941         new_bus->range[i] = range;
4942         memcpy(new_bus->range + i + 1, bus->range + i,
4943                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4944         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4945         synchronize_srcu_expedited(&kvm->srcu);
4946         kfree(bus);
4947
4948         return 0;
4949 }
4950
4951 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4952                               struct kvm_io_device *dev)
4953 {
4954         int i, j;
4955         struct kvm_io_bus *new_bus, *bus;
4956
4957         lockdep_assert_held(&kvm->slots_lock);
4958
4959         bus = kvm_get_bus(kvm, bus_idx);
4960         if (!bus)
4961                 return 0;
4962
4963         for (i = 0; i < bus->dev_count; i++) {
4964                 if (bus->range[i].dev == dev) {
4965                         break;
4966                 }
4967         }
4968
4969         if (i == bus->dev_count)
4970                 return 0;
4971
4972         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4973                           GFP_KERNEL_ACCOUNT);
4974         if (new_bus) {
4975                 memcpy(new_bus, bus, struct_size(bus, range, i));
4976                 new_bus->dev_count--;
4977                 memcpy(new_bus->range + i, bus->range + i + 1,
4978                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
4979         }
4980
4981         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4982         synchronize_srcu_expedited(&kvm->srcu);
4983
4984         /* Destroy the old bus _after_ installing the (null) bus. */
4985         if (!new_bus) {
4986                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4987                 for (j = 0; j < bus->dev_count; j++) {
4988                         if (j == i)
4989                                 continue;
4990                         kvm_iodevice_destructor(bus->range[j].dev);
4991                 }
4992         }
4993
4994         kfree(bus);
4995         return new_bus ? 0 : -ENOMEM;
4996 }
4997
4998 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4999                                          gpa_t addr)
5000 {
5001         struct kvm_io_bus *bus;
5002         int dev_idx, srcu_idx;
5003         struct kvm_io_device *iodev = NULL;
5004
5005         srcu_idx = srcu_read_lock(&kvm->srcu);
5006
5007         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5008         if (!bus)
5009                 goto out_unlock;
5010
5011         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5012         if (dev_idx < 0)
5013                 goto out_unlock;
5014
5015         iodev = bus->range[dev_idx].dev;
5016
5017 out_unlock:
5018         srcu_read_unlock(&kvm->srcu, srcu_idx);
5019
5020         return iodev;
5021 }
5022 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5023
5024 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5025                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5026                            const char *fmt)
5027 {
5028         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5029                                           inode->i_private;
5030
5031         /*
5032          * The debugfs files are a reference to the kvm struct which
5033         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5034         * avoids the race between open and the removal of the debugfs directory.
5035          */
5036         if (!kvm_get_kvm_safe(stat_data->kvm))
5037                 return -ENOENT;
5038
5039         if (simple_attr_open(inode, file, get,
5040                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
5041                     ? set : NULL,
5042                     fmt)) {
5043                 kvm_put_kvm(stat_data->kvm);
5044                 return -ENOMEM;
5045         }
5046
5047         return 0;
5048 }
5049
5050 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5051 {
5052         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5053                                           inode->i_private;
5054
5055         simple_attr_release(inode, file);
5056         kvm_put_kvm(stat_data->kvm);
5057
5058         return 0;
5059 }
5060
5061 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5062 {
5063         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5064
5065         return 0;
5066 }
5067
5068 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5069 {
5070         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5071
5072         return 0;
5073 }
5074
5075 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5076 {
5077         int i;
5078         struct kvm_vcpu *vcpu;
5079
5080         *val = 0;
5081
5082         kvm_for_each_vcpu(i, vcpu, kvm)
5083                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5084
5085         return 0;
5086 }
5087
5088 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5089 {
5090         int i;
5091         struct kvm_vcpu *vcpu;
5092
5093         kvm_for_each_vcpu(i, vcpu, kvm)
5094                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5095
5096         return 0;
5097 }
5098
5099 static int kvm_stat_data_get(void *data, u64 *val)
5100 {
5101         int r = -EFAULT;
5102         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5103
5104         switch (stat_data->kind) {
5105         case KVM_STAT_VM:
5106                 r = kvm_get_stat_per_vm(stat_data->kvm,
5107                                         stat_data->desc->desc.offset, val);
5108                 break;
5109         case KVM_STAT_VCPU:
5110                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5111                                           stat_data->desc->desc.offset, val);
5112                 break;
5113         }
5114
5115         return r;
5116 }
5117
5118 static int kvm_stat_data_clear(void *data, u64 val)
5119 {
5120         int r = -EFAULT;
5121         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5122
5123         if (val)
5124                 return -EINVAL;
5125
5126         switch (stat_data->kind) {
5127         case KVM_STAT_VM:
5128                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5129                                           stat_data->desc->desc.offset);
5130                 break;
5131         case KVM_STAT_VCPU:
5132                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5133                                             stat_data->desc->desc.offset);
5134                 break;
5135         }
5136
5137         return r;
5138 }
5139
5140 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5141 {
5142         __simple_attr_check_format("%llu\n", 0ull);
5143         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5144                                 kvm_stat_data_clear, "%llu\n");
5145 }
5146
5147 static const struct file_operations stat_fops_per_vm = {
5148         .owner = THIS_MODULE,
5149         .open = kvm_stat_data_open,
5150         .release = kvm_debugfs_release,
5151         .read = simple_attr_read,
5152         .write = simple_attr_write,
5153         .llseek = no_llseek,
5154 };
5155
5156 static int vm_stat_get(void *_offset, u64 *val)
5157 {
5158         unsigned offset = (long)_offset;
5159         struct kvm *kvm;
5160         u64 tmp_val;
5161
5162         *val = 0;
5163         mutex_lock(&kvm_lock);
5164         list_for_each_entry(kvm, &vm_list, vm_list) {
5165                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5166                 *val += tmp_val;
5167         }
5168         mutex_unlock(&kvm_lock);
5169         return 0;
5170 }
5171
5172 static int vm_stat_clear(void *_offset, u64 val)
5173 {
5174         unsigned offset = (long)_offset;
5175         struct kvm *kvm;
5176
5177         if (val)
5178                 return -EINVAL;
5179
5180         mutex_lock(&kvm_lock);
5181         list_for_each_entry(kvm, &vm_list, vm_list) {
5182                 kvm_clear_stat_per_vm(kvm, offset);
5183         }
5184         mutex_unlock(&kvm_lock);
5185
5186         return 0;
5187 }
5188
5189 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5190 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5191
5192 static int vcpu_stat_get(void *_offset, u64 *val)
5193 {
5194         unsigned offset = (long)_offset;
5195         struct kvm *kvm;
5196         u64 tmp_val;
5197
5198         *val = 0;
5199         mutex_lock(&kvm_lock);
5200         list_for_each_entry(kvm, &vm_list, vm_list) {
5201                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5202                 *val += tmp_val;
5203         }
5204         mutex_unlock(&kvm_lock);
5205         return 0;
5206 }
5207
5208 static int vcpu_stat_clear(void *_offset, u64 val)
5209 {
5210         unsigned offset = (long)_offset;
5211         struct kvm *kvm;
5212
5213         if (val)
5214                 return -EINVAL;
5215
5216         mutex_lock(&kvm_lock);
5217         list_for_each_entry(kvm, &vm_list, vm_list) {
5218                 kvm_clear_stat_per_vcpu(kvm, offset);
5219         }
5220         mutex_unlock(&kvm_lock);
5221
5222         return 0;
5223 }
5224
5225 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5226                         "%llu\n");
5227 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5228
5229 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5230 {
5231         struct kobj_uevent_env *env;
5232         unsigned long long created, active;
5233
5234         if (!kvm_dev.this_device || !kvm)
5235                 return;
5236
5237         mutex_lock(&kvm_lock);
5238         if (type == KVM_EVENT_CREATE_VM) {
5239                 kvm_createvm_count++;
5240                 kvm_active_vms++;
5241         } else if (type == KVM_EVENT_DESTROY_VM) {
5242                 kvm_active_vms--;
5243         }
5244         created = kvm_createvm_count;
5245         active = kvm_active_vms;
5246         mutex_unlock(&kvm_lock);
5247
5248         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5249         if (!env)
5250                 return;
5251
5252         add_uevent_var(env, "CREATED=%llu", created);
5253         add_uevent_var(env, "COUNT=%llu", active);
5254
5255         if (type == KVM_EVENT_CREATE_VM) {
5256                 add_uevent_var(env, "EVENT=create");
5257                 kvm->userspace_pid = task_pid_nr(current);
5258         } else if (type == KVM_EVENT_DESTROY_VM) {
5259                 add_uevent_var(env, "EVENT=destroy");
5260         }
5261         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5262
5263         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
5264                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5265
5266                 if (p) {
5267                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5268                         if (!IS_ERR(tmp))
5269                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5270                         kfree(p);
5271                 }
5272         }
5273         /* no need for checks, since we are adding at most only 5 keys */
5274         env->envp[env->envp_idx++] = NULL;
5275         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5276         kfree(env);
5277 }
5278
5279 static void kvm_init_debug(void)
5280 {
5281         const struct file_operations *fops;
5282         const struct _kvm_stats_desc *pdesc;
5283         int i;
5284
5285         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5286
5287         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5288                 pdesc = &kvm_vm_stats_desc[i];
5289                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5290                         fops = &vm_stat_fops;
5291                 else
5292                         fops = &vm_stat_readonly_fops;
5293                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5294                                 kvm_debugfs_dir,
5295                                 (void *)(long)pdesc->desc.offset, fops);
5296         }
5297
5298         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5299                 pdesc = &kvm_vcpu_stats_desc[i];
5300                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5301                         fops = &vcpu_stat_fops;
5302                 else
5303                         fops = &vcpu_stat_readonly_fops;
5304                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5305                                 kvm_debugfs_dir,
5306                                 (void *)(long)pdesc->desc.offset, fops);
5307         }
5308 }
5309
5310 static int kvm_suspend(void)
5311 {
5312         if (kvm_usage_count)
5313                 hardware_disable_nolock(NULL);
5314         return 0;
5315 }
5316
5317 static void kvm_resume(void)
5318 {
5319         if (kvm_usage_count) {
5320 #ifdef CONFIG_LOCKDEP
5321                 WARN_ON(lockdep_is_held(&kvm_count_lock));
5322 #endif
5323                 hardware_enable_nolock(NULL);
5324         }
5325 }
5326
5327 static struct syscore_ops kvm_syscore_ops = {
5328         .suspend = kvm_suspend,
5329         .resume = kvm_resume,
5330 };
5331
5332 static inline
5333 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5334 {
5335         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5336 }
5337
5338 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5339 {
5340         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5341
5342         WRITE_ONCE(vcpu->preempted, false);
5343         WRITE_ONCE(vcpu->ready, false);
5344
5345         __this_cpu_write(kvm_running_vcpu, vcpu);
5346         kvm_arch_sched_in(vcpu, cpu);
5347         kvm_arch_vcpu_load(vcpu, cpu);
5348 }
5349
5350 static void kvm_sched_out(struct preempt_notifier *pn,
5351                           struct task_struct *next)
5352 {
5353         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5354
5355         if (current->on_rq) {
5356                 WRITE_ONCE(vcpu->preempted, true);
5357                 WRITE_ONCE(vcpu->ready, true);
5358         }
5359         kvm_arch_vcpu_put(vcpu);
5360         __this_cpu_write(kvm_running_vcpu, NULL);
5361 }
5362
5363 /**
5364  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5365  *
5366  * We can disable preemption locally around accessing the per-CPU variable,
5367  * and use the resolved vcpu pointer after enabling preemption again,
5368  * because even if the current thread is migrated to another CPU, reading
5369  * the per-CPU value later will give us the same value as we update the
5370  * per-CPU variable in the preempt notifier handlers.
5371  */
5372 struct kvm_vcpu *kvm_get_running_vcpu(void)
5373 {
5374         struct kvm_vcpu *vcpu;
5375
5376         preempt_disable();
5377         vcpu = __this_cpu_read(kvm_running_vcpu);
5378         preempt_enable();
5379
5380         return vcpu;
5381 }
5382 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5383
5384 /**
5385  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5386  */
5387 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5388 {
5389         return &kvm_running_vcpu;
5390 }
5391
5392 struct kvm_cpu_compat_check {
5393         void *opaque;
5394         int *ret;
5395 };
5396
5397 static void check_processor_compat(void *data)
5398 {
5399         struct kvm_cpu_compat_check *c = data;
5400
5401         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5402 }
5403
5404 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5405                   struct module *module)
5406 {
5407         struct kvm_cpu_compat_check c;
5408         int r;
5409         int cpu;
5410
5411         r = kvm_arch_init(opaque);
5412         if (r)
5413                 goto out_fail;
5414
5415         /*
5416          * kvm_arch_init makes sure there's at most one caller
5417          * for architectures that support multiple implementations,
5418          * like intel and amd on x86.
5419          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5420          * conflicts in case kvm is already setup for another implementation.
5421          */
5422         r = kvm_irqfd_init();
5423         if (r)
5424                 goto out_irqfd;
5425
5426         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5427                 r = -ENOMEM;
5428                 goto out_free_0;
5429         }
5430
5431         r = kvm_arch_hardware_setup(opaque);
5432         if (r < 0)
5433                 goto out_free_1;
5434
5435         c.ret = &r;
5436         c.opaque = opaque;
5437         for_each_online_cpu(cpu) {
5438                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5439                 if (r < 0)
5440                         goto out_free_2;
5441         }
5442
5443         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5444                                       kvm_starting_cpu, kvm_dying_cpu);
5445         if (r)
5446                 goto out_free_2;
5447         register_reboot_notifier(&kvm_reboot_notifier);
5448
5449         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5450         if (!vcpu_align)
5451                 vcpu_align = __alignof__(struct kvm_vcpu);
5452         kvm_vcpu_cache =
5453                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5454                                            SLAB_ACCOUNT,
5455                                            offsetof(struct kvm_vcpu, arch),
5456                                            offsetofend(struct kvm_vcpu, stats_id)
5457                                            - offsetof(struct kvm_vcpu, arch),
5458                                            NULL);
5459         if (!kvm_vcpu_cache) {
5460                 r = -ENOMEM;
5461                 goto out_free_3;
5462         }
5463
5464         r = kvm_async_pf_init();
5465         if (r)
5466                 goto out_free;
5467
5468         kvm_chardev_ops.owner = module;
5469         kvm_vm_fops.owner = module;
5470         kvm_vcpu_fops.owner = module;
5471
5472         r = misc_register(&kvm_dev);
5473         if (r) {
5474                 pr_err("kvm: misc device register failed\n");
5475                 goto out_unreg;
5476         }
5477
5478         register_syscore_ops(&kvm_syscore_ops);
5479
5480         kvm_preempt_ops.sched_in = kvm_sched_in;
5481         kvm_preempt_ops.sched_out = kvm_sched_out;
5482
5483         kvm_init_debug();
5484
5485         r = kvm_vfio_ops_init();
5486         WARN_ON(r);
5487
5488         return 0;
5489
5490 out_unreg:
5491         kvm_async_pf_deinit();
5492 out_free:
5493         kmem_cache_destroy(kvm_vcpu_cache);
5494 out_free_3:
5495         unregister_reboot_notifier(&kvm_reboot_notifier);
5496         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5497 out_free_2:
5498         kvm_arch_hardware_unsetup();
5499 out_free_1:
5500         free_cpumask_var(cpus_hardware_enabled);
5501 out_free_0:
5502         kvm_irqfd_exit();
5503 out_irqfd:
5504         kvm_arch_exit();
5505 out_fail:
5506         return r;
5507 }
5508 EXPORT_SYMBOL_GPL(kvm_init);
5509
5510 void kvm_exit(void)
5511 {
5512         debugfs_remove_recursive(kvm_debugfs_dir);
5513         misc_deregister(&kvm_dev);
5514         kmem_cache_destroy(kvm_vcpu_cache);
5515         kvm_async_pf_deinit();
5516         unregister_syscore_ops(&kvm_syscore_ops);
5517         unregister_reboot_notifier(&kvm_reboot_notifier);
5518         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5519         on_each_cpu(hardware_disable_nolock, NULL, 1);
5520         kvm_arch_hardware_unsetup();
5521         kvm_arch_exit();
5522         kvm_irqfd_exit();
5523         free_cpumask_var(cpus_hardware_enabled);
5524         kvm_vfio_ops_exit();
5525 }
5526 EXPORT_SYMBOL_GPL(kvm_exit);
5527
5528 struct kvm_vm_worker_thread_context {
5529         struct kvm *kvm;
5530         struct task_struct *parent;
5531         struct completion init_done;
5532         kvm_vm_thread_fn_t thread_fn;
5533         uintptr_t data;
5534         int err;
5535 };
5536
5537 static int kvm_vm_worker_thread(void *context)
5538 {
5539         /*
5540          * The init_context is allocated on the stack of the parent thread, so
5541          * we have to locally copy anything that is needed beyond initialization
5542          */
5543         struct kvm_vm_worker_thread_context *init_context = context;
5544         struct kvm *kvm = init_context->kvm;
5545         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5546         uintptr_t data = init_context->data;
5547         int err;
5548
5549         err = kthread_park(current);
5550         /* kthread_park(current) is never supposed to return an error */
5551         WARN_ON(err != 0);
5552         if (err)
5553                 goto init_complete;
5554
5555         err = cgroup_attach_task_all(init_context->parent, current);
5556         if (err) {
5557                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5558                         __func__, err);
5559                 goto init_complete;
5560         }
5561
5562         set_user_nice(current, task_nice(init_context->parent));
5563
5564 init_complete:
5565         init_context->err = err;
5566         complete(&init_context->init_done);
5567         init_context = NULL;
5568
5569         if (err)
5570                 return err;
5571
5572         /* Wait to be woken up by the spawner before proceeding. */
5573         kthread_parkme();
5574
5575         if (!kthread_should_stop())
5576                 err = thread_fn(kvm, data);
5577
5578         return err;
5579 }
5580
5581 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5582                                 uintptr_t data, const char *name,
5583                                 struct task_struct **thread_ptr)
5584 {
5585         struct kvm_vm_worker_thread_context init_context = {};
5586         struct task_struct *thread;
5587
5588         *thread_ptr = NULL;
5589         init_context.kvm = kvm;
5590         init_context.parent = current;
5591         init_context.thread_fn = thread_fn;
5592         init_context.data = data;
5593         init_completion(&init_context.init_done);
5594
5595         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5596                              "%s-%d", name, task_pid_nr(current));
5597         if (IS_ERR(thread))
5598                 return PTR_ERR(thread);
5599
5600         /* kthread_run is never supposed to return NULL */
5601         WARN_ON(thread == NULL);
5602
5603         wait_for_completion(&init_context.init_done);
5604
5605         if (!init_context.err)
5606                 *thread_ptr = thread;
5607
5608         return init_context.err;
5609 }