Merge branch 'kvm-fixes-for-5.18-rc5' into HEAD
[sfrench/cifs-2.6.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static struct file_operations kvm_chardev_ops;
121
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123                            unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126                                   unsigned long arg);
127 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137                                 unsigned long arg) { return -EINVAL; }
138
139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141         return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
144                         .open           = kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161
162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163                                                    unsigned long start, unsigned long end)
164 {
165 }
166
167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170
171 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
172 {
173         /*
174          * The metadata used by is_zone_device_page() to determine whether or
175          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176          * the device has been pinned, e.g. by get_user_pages().  WARN if the
177          * page_count() is zero to help detect bad usage of this helper.
178          */
179         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
180                 return false;
181
182         return is_zone_device_page(pfn_to_page(pfn));
183 }
184
185 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
186 {
187         /*
188          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
189          * perspective they are "normal" pages, albeit with slightly different
190          * usage rules.
191          */
192         if (pfn_valid(pfn))
193                 return PageReserved(pfn_to_page(pfn)) &&
194                        !is_zero_pfn(pfn) &&
195                        !kvm_is_zone_device_pfn(pfn);
196
197         return true;
198 }
199
200 /*
201  * Switches to specified vcpu, until a matching vcpu_put()
202  */
203 void vcpu_load(struct kvm_vcpu *vcpu)
204 {
205         int cpu = get_cpu();
206
207         __this_cpu_write(kvm_running_vcpu, vcpu);
208         preempt_notifier_register(&vcpu->preempt_notifier);
209         kvm_arch_vcpu_load(vcpu, cpu);
210         put_cpu();
211 }
212 EXPORT_SYMBOL_GPL(vcpu_load);
213
214 void vcpu_put(struct kvm_vcpu *vcpu)
215 {
216         preempt_disable();
217         kvm_arch_vcpu_put(vcpu);
218         preempt_notifier_unregister(&vcpu->preempt_notifier);
219         __this_cpu_write(kvm_running_vcpu, NULL);
220         preempt_enable();
221 }
222 EXPORT_SYMBOL_GPL(vcpu_put);
223
224 /* TODO: merge with kvm_arch_vcpu_should_kick */
225 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
226 {
227         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
228
229         /*
230          * We need to wait for the VCPU to reenable interrupts and get out of
231          * READING_SHADOW_PAGE_TABLES mode.
232          */
233         if (req & KVM_REQUEST_WAIT)
234                 return mode != OUTSIDE_GUEST_MODE;
235
236         /*
237          * Need to kick a running VCPU, but otherwise there is nothing to do.
238          */
239         return mode == IN_GUEST_MODE;
240 }
241
242 static void ack_flush(void *_completed)
243 {
244 }
245
246 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
247 {
248         if (cpumask_empty(cpus))
249                 return false;
250
251         smp_call_function_many(cpus, ack_flush, NULL, wait);
252         return true;
253 }
254
255 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
256                                   struct cpumask *tmp, int current_cpu)
257 {
258         int cpu;
259
260         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
261                 __kvm_make_request(req, vcpu);
262
263         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
264                 return;
265
266         /*
267          * Note, the vCPU could get migrated to a different pCPU at any point
268          * after kvm_request_needs_ipi(), which could result in sending an IPI
269          * to the previous pCPU.  But, that's OK because the purpose of the IPI
270          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
271          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
272          * after this point is also OK, as the requirement is only that KVM wait
273          * for vCPUs that were reading SPTEs _before_ any changes were
274          * finalized. See kvm_vcpu_kick() for more details on handling requests.
275          */
276         if (kvm_request_needs_ipi(vcpu, req)) {
277                 cpu = READ_ONCE(vcpu->cpu);
278                 if (cpu != -1 && cpu != current_cpu)
279                         __cpumask_set_cpu(cpu, tmp);
280         }
281 }
282
283 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
284                                  unsigned long *vcpu_bitmap)
285 {
286         struct kvm_vcpu *vcpu;
287         struct cpumask *cpus;
288         int i, me;
289         bool called;
290
291         me = get_cpu();
292
293         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
294         cpumask_clear(cpus);
295
296         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
297                 vcpu = kvm_get_vcpu(kvm, i);
298                 if (!vcpu)
299                         continue;
300                 kvm_make_vcpu_request(vcpu, req, cpus, me);
301         }
302
303         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
304         put_cpu();
305
306         return called;
307 }
308
309 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
310                                       struct kvm_vcpu *except)
311 {
312         struct kvm_vcpu *vcpu;
313         struct cpumask *cpus;
314         unsigned long i;
315         bool called;
316         int me;
317
318         me = get_cpu();
319
320         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
321         cpumask_clear(cpus);
322
323         kvm_for_each_vcpu(i, vcpu, kvm) {
324                 if (vcpu == except)
325                         continue;
326                 kvm_make_vcpu_request(vcpu, req, cpus, me);
327         }
328
329         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
330         put_cpu();
331
332         return called;
333 }
334
335 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
336 {
337         return kvm_make_all_cpus_request_except(kvm, req, NULL);
338 }
339 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
340
341 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
342 void kvm_flush_remote_tlbs(struct kvm *kvm)
343 {
344         ++kvm->stat.generic.remote_tlb_flush_requests;
345
346         /*
347          * We want to publish modifications to the page tables before reading
348          * mode. Pairs with a memory barrier in arch-specific code.
349          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
350          * and smp_mb in walk_shadow_page_lockless_begin/end.
351          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
352          *
353          * There is already an smp_mb__after_atomic() before
354          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
355          * barrier here.
356          */
357         if (!kvm_arch_flush_remote_tlb(kvm)
358             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
359                 ++kvm->stat.generic.remote_tlb_flush;
360 }
361 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
362 #endif
363
364 static void kvm_flush_shadow_all(struct kvm *kvm)
365 {
366         kvm_arch_flush_shadow_all(kvm);
367         kvm_arch_guest_memory_reclaimed(kvm);
368 }
369
370 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
371 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
372                                                gfp_t gfp_flags)
373 {
374         gfp_flags |= mc->gfp_zero;
375
376         if (mc->kmem_cache)
377                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
378         else
379                 return (void *)__get_free_page(gfp_flags);
380 }
381
382 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
383 {
384         void *obj;
385
386         if (mc->nobjs >= min)
387                 return 0;
388         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
389                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
390                 if (!obj)
391                         return mc->nobjs >= min ? 0 : -ENOMEM;
392                 mc->objects[mc->nobjs++] = obj;
393         }
394         return 0;
395 }
396
397 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
398 {
399         return mc->nobjs;
400 }
401
402 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
403 {
404         while (mc->nobjs) {
405                 if (mc->kmem_cache)
406                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
407                 else
408                         free_page((unsigned long)mc->objects[--mc->nobjs]);
409         }
410 }
411
412 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
413 {
414         void *p;
415
416         if (WARN_ON(!mc->nobjs))
417                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
418         else
419                 p = mc->objects[--mc->nobjs];
420         BUG_ON(!p);
421         return p;
422 }
423 #endif
424
425 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
426 {
427         mutex_init(&vcpu->mutex);
428         vcpu->cpu = -1;
429         vcpu->kvm = kvm;
430         vcpu->vcpu_id = id;
431         vcpu->pid = NULL;
432 #ifndef __KVM_HAVE_ARCH_WQP
433         rcuwait_init(&vcpu->wait);
434 #endif
435         kvm_async_pf_vcpu_init(vcpu);
436
437         kvm_vcpu_set_in_spin_loop(vcpu, false);
438         kvm_vcpu_set_dy_eligible(vcpu, false);
439         vcpu->preempted = false;
440         vcpu->ready = false;
441         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
442         vcpu->last_used_slot = NULL;
443 }
444
445 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
446 {
447         kvm_arch_vcpu_destroy(vcpu);
448         kvm_dirty_ring_free(&vcpu->dirty_ring);
449
450         /*
451          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
452          * the vcpu->pid pointer, and at destruction time all file descriptors
453          * are already gone.
454          */
455         put_pid(rcu_dereference_protected(vcpu->pid, 1));
456
457         free_page((unsigned long)vcpu->run);
458         kmem_cache_free(kvm_vcpu_cache, vcpu);
459 }
460
461 void kvm_destroy_vcpus(struct kvm *kvm)
462 {
463         unsigned long i;
464         struct kvm_vcpu *vcpu;
465
466         kvm_for_each_vcpu(i, vcpu, kvm) {
467                 kvm_vcpu_destroy(vcpu);
468                 xa_erase(&kvm->vcpu_array, i);
469         }
470
471         atomic_set(&kvm->online_vcpus, 0);
472 }
473 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
474
475 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
476 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
477 {
478         return container_of(mn, struct kvm, mmu_notifier);
479 }
480
481 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
482                                               struct mm_struct *mm,
483                                               unsigned long start, unsigned long end)
484 {
485         struct kvm *kvm = mmu_notifier_to_kvm(mn);
486         int idx;
487
488         idx = srcu_read_lock(&kvm->srcu);
489         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
490         srcu_read_unlock(&kvm->srcu, idx);
491 }
492
493 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
494
495 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
496                              unsigned long end);
497
498 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
499
500 struct kvm_hva_range {
501         unsigned long start;
502         unsigned long end;
503         pte_t pte;
504         hva_handler_t handler;
505         on_lock_fn_t on_lock;
506         on_unlock_fn_t on_unlock;
507         bool flush_on_ret;
508         bool may_block;
509 };
510
511 /*
512  * Use a dedicated stub instead of NULL to indicate that there is no callback
513  * function/handler.  The compiler technically can't guarantee that a real
514  * function will have a non-zero address, and so it will generate code to
515  * check for !NULL, whereas comparing against a stub will be elided at compile
516  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
517  */
518 static void kvm_null_fn(void)
519 {
520
521 }
522 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
523
524 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
525 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
526         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
527              node;                                                           \
528              node = interval_tree_iter_next(node, start, last))      \
529
530 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
531                                                   const struct kvm_hva_range *range)
532 {
533         bool ret = false, locked = false;
534         struct kvm_gfn_range gfn_range;
535         struct kvm_memory_slot *slot;
536         struct kvm_memslots *slots;
537         int i, idx;
538
539         if (WARN_ON_ONCE(range->end <= range->start))
540                 return 0;
541
542         /* A null handler is allowed if and only if on_lock() is provided. */
543         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
544                          IS_KVM_NULL_FN(range->handler)))
545                 return 0;
546
547         idx = srcu_read_lock(&kvm->srcu);
548
549         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
550                 struct interval_tree_node *node;
551
552                 slots = __kvm_memslots(kvm, i);
553                 kvm_for_each_memslot_in_hva_range(node, slots,
554                                                   range->start, range->end - 1) {
555                         unsigned long hva_start, hva_end;
556
557                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
558                         hva_start = max(range->start, slot->userspace_addr);
559                         hva_end = min(range->end, slot->userspace_addr +
560                                                   (slot->npages << PAGE_SHIFT));
561
562                         /*
563                          * To optimize for the likely case where the address
564                          * range is covered by zero or one memslots, don't
565                          * bother making these conditional (to avoid writes on
566                          * the second or later invocation of the handler).
567                          */
568                         gfn_range.pte = range->pte;
569                         gfn_range.may_block = range->may_block;
570
571                         /*
572                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
573                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
574                          */
575                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
576                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
577                         gfn_range.slot = slot;
578
579                         if (!locked) {
580                                 locked = true;
581                                 KVM_MMU_LOCK(kvm);
582                                 if (!IS_KVM_NULL_FN(range->on_lock))
583                                         range->on_lock(kvm, range->start, range->end);
584                                 if (IS_KVM_NULL_FN(range->handler))
585                                         break;
586                         }
587                         ret |= range->handler(kvm, &gfn_range);
588                 }
589         }
590
591         if (range->flush_on_ret && ret)
592                 kvm_flush_remote_tlbs(kvm);
593
594         if (locked) {
595                 KVM_MMU_UNLOCK(kvm);
596                 if (!IS_KVM_NULL_FN(range->on_unlock))
597                         range->on_unlock(kvm);
598         }
599
600         srcu_read_unlock(&kvm->srcu, idx);
601
602         /* The notifiers are averse to booleans. :-( */
603         return (int)ret;
604 }
605
606 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
607                                                 unsigned long start,
608                                                 unsigned long end,
609                                                 pte_t pte,
610                                                 hva_handler_t handler)
611 {
612         struct kvm *kvm = mmu_notifier_to_kvm(mn);
613         const struct kvm_hva_range range = {
614                 .start          = start,
615                 .end            = end,
616                 .pte            = pte,
617                 .handler        = handler,
618                 .on_lock        = (void *)kvm_null_fn,
619                 .on_unlock      = (void *)kvm_null_fn,
620                 .flush_on_ret   = true,
621                 .may_block      = false,
622         };
623
624         return __kvm_handle_hva_range(kvm, &range);
625 }
626
627 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
628                                                          unsigned long start,
629                                                          unsigned long end,
630                                                          hva_handler_t handler)
631 {
632         struct kvm *kvm = mmu_notifier_to_kvm(mn);
633         const struct kvm_hva_range range = {
634                 .start          = start,
635                 .end            = end,
636                 .pte            = __pte(0),
637                 .handler        = handler,
638                 .on_lock        = (void *)kvm_null_fn,
639                 .on_unlock      = (void *)kvm_null_fn,
640                 .flush_on_ret   = false,
641                 .may_block      = false,
642         };
643
644         return __kvm_handle_hva_range(kvm, &range);
645 }
646 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
647                                         struct mm_struct *mm,
648                                         unsigned long address,
649                                         pte_t pte)
650 {
651         struct kvm *kvm = mmu_notifier_to_kvm(mn);
652
653         trace_kvm_set_spte_hva(address);
654
655         /*
656          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
657          * If mmu_notifier_count is zero, then no in-progress invalidations,
658          * including this one, found a relevant memslot at start(); rechecking
659          * memslots here is unnecessary.  Note, a false positive (count elevated
660          * by a different invalidation) is sub-optimal but functionally ok.
661          */
662         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
663         if (!READ_ONCE(kvm->mmu_notifier_count))
664                 return;
665
666         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
667 }
668
669 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
670                                    unsigned long end)
671 {
672         /*
673          * The count increase must become visible at unlock time as no
674          * spte can be established without taking the mmu_lock and
675          * count is also read inside the mmu_lock critical section.
676          */
677         kvm->mmu_notifier_count++;
678         if (likely(kvm->mmu_notifier_count == 1)) {
679                 kvm->mmu_notifier_range_start = start;
680                 kvm->mmu_notifier_range_end = end;
681         } else {
682                 /*
683                  * Fully tracking multiple concurrent ranges has diminishing
684                  * returns. Keep things simple and just find the minimal range
685                  * which includes the current and new ranges. As there won't be
686                  * enough information to subtract a range after its invalidate
687                  * completes, any ranges invalidated concurrently will
688                  * accumulate and persist until all outstanding invalidates
689                  * complete.
690                  */
691                 kvm->mmu_notifier_range_start =
692                         min(kvm->mmu_notifier_range_start, start);
693                 kvm->mmu_notifier_range_end =
694                         max(kvm->mmu_notifier_range_end, end);
695         }
696 }
697
698 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
699                                         const struct mmu_notifier_range *range)
700 {
701         struct kvm *kvm = mmu_notifier_to_kvm(mn);
702         const struct kvm_hva_range hva_range = {
703                 .start          = range->start,
704                 .end            = range->end,
705                 .pte            = __pte(0),
706                 .handler        = kvm_unmap_gfn_range,
707                 .on_lock        = kvm_inc_notifier_count,
708                 .on_unlock      = kvm_arch_guest_memory_reclaimed,
709                 .flush_on_ret   = true,
710                 .may_block      = mmu_notifier_range_blockable(range),
711         };
712
713         trace_kvm_unmap_hva_range(range->start, range->end);
714
715         /*
716          * Prevent memslot modification between range_start() and range_end()
717          * so that conditionally locking provides the same result in both
718          * functions.  Without that guarantee, the mmu_notifier_count
719          * adjustments will be imbalanced.
720          *
721          * Pairs with the decrement in range_end().
722          */
723         spin_lock(&kvm->mn_invalidate_lock);
724         kvm->mn_active_invalidate_count++;
725         spin_unlock(&kvm->mn_invalidate_lock);
726
727         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
728                                           hva_range.may_block);
729
730         __kvm_handle_hva_range(kvm, &hva_range);
731
732         return 0;
733 }
734
735 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
736                                    unsigned long end)
737 {
738         /*
739          * This sequence increase will notify the kvm page fault that
740          * the page that is going to be mapped in the spte could have
741          * been freed.
742          */
743         kvm->mmu_notifier_seq++;
744         smp_wmb();
745         /*
746          * The above sequence increase must be visible before the
747          * below count decrease, which is ensured by the smp_wmb above
748          * in conjunction with the smp_rmb in mmu_notifier_retry().
749          */
750         kvm->mmu_notifier_count--;
751 }
752
753 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
754                                         const struct mmu_notifier_range *range)
755 {
756         struct kvm *kvm = mmu_notifier_to_kvm(mn);
757         const struct kvm_hva_range hva_range = {
758                 .start          = range->start,
759                 .end            = range->end,
760                 .pte            = __pte(0),
761                 .handler        = (void *)kvm_null_fn,
762                 .on_lock        = kvm_dec_notifier_count,
763                 .on_unlock      = (void *)kvm_null_fn,
764                 .flush_on_ret   = false,
765                 .may_block      = mmu_notifier_range_blockable(range),
766         };
767         bool wake;
768
769         __kvm_handle_hva_range(kvm, &hva_range);
770
771         /* Pairs with the increment in range_start(). */
772         spin_lock(&kvm->mn_invalidate_lock);
773         wake = (--kvm->mn_active_invalidate_count == 0);
774         spin_unlock(&kvm->mn_invalidate_lock);
775
776         /*
777          * There can only be one waiter, since the wait happens under
778          * slots_lock.
779          */
780         if (wake)
781                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
782
783         BUG_ON(kvm->mmu_notifier_count < 0);
784 }
785
786 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
787                                               struct mm_struct *mm,
788                                               unsigned long start,
789                                               unsigned long end)
790 {
791         trace_kvm_age_hva(start, end);
792
793         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
794 }
795
796 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
797                                         struct mm_struct *mm,
798                                         unsigned long start,
799                                         unsigned long end)
800 {
801         trace_kvm_age_hva(start, end);
802
803         /*
804          * Even though we do not flush TLB, this will still adversely
805          * affect performance on pre-Haswell Intel EPT, where there is
806          * no EPT Access Bit to clear so that we have to tear down EPT
807          * tables instead. If we find this unacceptable, we can always
808          * add a parameter to kvm_age_hva so that it effectively doesn't
809          * do anything on clear_young.
810          *
811          * Also note that currently we never issue secondary TLB flushes
812          * from clear_young, leaving this job up to the regular system
813          * cadence. If we find this inaccurate, we might come up with a
814          * more sophisticated heuristic later.
815          */
816         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
817 }
818
819 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
820                                        struct mm_struct *mm,
821                                        unsigned long address)
822 {
823         trace_kvm_test_age_hva(address);
824
825         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
826                                              kvm_test_age_gfn);
827 }
828
829 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
830                                      struct mm_struct *mm)
831 {
832         struct kvm *kvm = mmu_notifier_to_kvm(mn);
833         int idx;
834
835         idx = srcu_read_lock(&kvm->srcu);
836         kvm_flush_shadow_all(kvm);
837         srcu_read_unlock(&kvm->srcu, idx);
838 }
839
840 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
841         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
842         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
843         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
844         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
845         .clear_young            = kvm_mmu_notifier_clear_young,
846         .test_young             = kvm_mmu_notifier_test_young,
847         .change_pte             = kvm_mmu_notifier_change_pte,
848         .release                = kvm_mmu_notifier_release,
849 };
850
851 static int kvm_init_mmu_notifier(struct kvm *kvm)
852 {
853         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
854         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
855 }
856
857 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
858
859 static int kvm_init_mmu_notifier(struct kvm *kvm)
860 {
861         return 0;
862 }
863
864 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
865
866 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
867 static int kvm_pm_notifier_call(struct notifier_block *bl,
868                                 unsigned long state,
869                                 void *unused)
870 {
871         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
872
873         return kvm_arch_pm_notifier(kvm, state);
874 }
875
876 static void kvm_init_pm_notifier(struct kvm *kvm)
877 {
878         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
879         /* Suspend KVM before we suspend ftrace, RCU, etc. */
880         kvm->pm_notifier.priority = INT_MAX;
881         register_pm_notifier(&kvm->pm_notifier);
882 }
883
884 static void kvm_destroy_pm_notifier(struct kvm *kvm)
885 {
886         unregister_pm_notifier(&kvm->pm_notifier);
887 }
888 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
889 static void kvm_init_pm_notifier(struct kvm *kvm)
890 {
891 }
892
893 static void kvm_destroy_pm_notifier(struct kvm *kvm)
894 {
895 }
896 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
897
898 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
899 {
900         if (!memslot->dirty_bitmap)
901                 return;
902
903         kvfree(memslot->dirty_bitmap);
904         memslot->dirty_bitmap = NULL;
905 }
906
907 /* This does not remove the slot from struct kvm_memslots data structures */
908 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
909 {
910         kvm_destroy_dirty_bitmap(slot);
911
912         kvm_arch_free_memslot(kvm, slot);
913
914         kfree(slot);
915 }
916
917 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
918 {
919         struct hlist_node *idnode;
920         struct kvm_memory_slot *memslot;
921         int bkt;
922
923         /*
924          * The same memslot objects live in both active and inactive sets,
925          * arbitrarily free using index '1' so the second invocation of this
926          * function isn't operating over a structure with dangling pointers
927          * (even though this function isn't actually touching them).
928          */
929         if (!slots->node_idx)
930                 return;
931
932         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
933                 kvm_free_memslot(kvm, memslot);
934 }
935
936 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
937 {
938         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
939         case KVM_STATS_TYPE_INSTANT:
940                 return 0444;
941         case KVM_STATS_TYPE_CUMULATIVE:
942         case KVM_STATS_TYPE_PEAK:
943         default:
944                 return 0644;
945         }
946 }
947
948
949 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
950 {
951         int i;
952         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
953                                       kvm_vcpu_stats_header.num_desc;
954
955         if (IS_ERR(kvm->debugfs_dentry))
956                 return;
957
958         debugfs_remove_recursive(kvm->debugfs_dentry);
959
960         if (kvm->debugfs_stat_data) {
961                 for (i = 0; i < kvm_debugfs_num_entries; i++)
962                         kfree(kvm->debugfs_stat_data[i]);
963                 kfree(kvm->debugfs_stat_data);
964         }
965 }
966
967 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
968 {
969         static DEFINE_MUTEX(kvm_debugfs_lock);
970         struct dentry *dent;
971         char dir_name[ITOA_MAX_LEN * 2];
972         struct kvm_stat_data *stat_data;
973         const struct _kvm_stats_desc *pdesc;
974         int i, ret;
975         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
976                                       kvm_vcpu_stats_header.num_desc;
977
978         if (!debugfs_initialized())
979                 return 0;
980
981         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
982         mutex_lock(&kvm_debugfs_lock);
983         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
984         if (dent) {
985                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
986                 dput(dent);
987                 mutex_unlock(&kvm_debugfs_lock);
988                 return 0;
989         }
990         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
991         mutex_unlock(&kvm_debugfs_lock);
992         if (IS_ERR(dent))
993                 return 0;
994
995         kvm->debugfs_dentry = dent;
996         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
997                                          sizeof(*kvm->debugfs_stat_data),
998                                          GFP_KERNEL_ACCOUNT);
999         if (!kvm->debugfs_stat_data)
1000                 return -ENOMEM;
1001
1002         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1003                 pdesc = &kvm_vm_stats_desc[i];
1004                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1005                 if (!stat_data)
1006                         return -ENOMEM;
1007
1008                 stat_data->kvm = kvm;
1009                 stat_data->desc = pdesc;
1010                 stat_data->kind = KVM_STAT_VM;
1011                 kvm->debugfs_stat_data[i] = stat_data;
1012                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1013                                     kvm->debugfs_dentry, stat_data,
1014                                     &stat_fops_per_vm);
1015         }
1016
1017         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1018                 pdesc = &kvm_vcpu_stats_desc[i];
1019                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1020                 if (!stat_data)
1021                         return -ENOMEM;
1022
1023                 stat_data->kvm = kvm;
1024                 stat_data->desc = pdesc;
1025                 stat_data->kind = KVM_STAT_VCPU;
1026                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1027                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1028                                     kvm->debugfs_dentry, stat_data,
1029                                     &stat_fops_per_vm);
1030         }
1031
1032         ret = kvm_arch_create_vm_debugfs(kvm);
1033         if (ret) {
1034                 kvm_destroy_vm_debugfs(kvm);
1035                 return i;
1036         }
1037
1038         return 0;
1039 }
1040
1041 /*
1042  * Called after the VM is otherwise initialized, but just before adding it to
1043  * the vm_list.
1044  */
1045 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1046 {
1047         return 0;
1048 }
1049
1050 /*
1051  * Called just after removing the VM from the vm_list, but before doing any
1052  * other destruction.
1053  */
1054 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1055 {
1056 }
1057
1058 /*
1059  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1060  * be setup already, so we can create arch-specific debugfs entries under it.
1061  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1062  * a per-arch destroy interface is not needed.
1063  */
1064 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1065 {
1066         return 0;
1067 }
1068
1069 static struct kvm *kvm_create_vm(unsigned long type)
1070 {
1071         struct kvm *kvm = kvm_arch_alloc_vm();
1072         struct kvm_memslots *slots;
1073         int r = -ENOMEM;
1074         int i, j;
1075
1076         if (!kvm)
1077                 return ERR_PTR(-ENOMEM);
1078
1079         KVM_MMU_LOCK_INIT(kvm);
1080         mmgrab(current->mm);
1081         kvm->mm = current->mm;
1082         kvm_eventfd_init(kvm);
1083         mutex_init(&kvm->lock);
1084         mutex_init(&kvm->irq_lock);
1085         mutex_init(&kvm->slots_lock);
1086         mutex_init(&kvm->slots_arch_lock);
1087         spin_lock_init(&kvm->mn_invalidate_lock);
1088         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1089         xa_init(&kvm->vcpu_array);
1090
1091         INIT_LIST_HEAD(&kvm->gpc_list);
1092         spin_lock_init(&kvm->gpc_lock);
1093
1094         INIT_LIST_HEAD(&kvm->devices);
1095
1096         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1097
1098         /*
1099          * Force subsequent debugfs file creations to fail if the VM directory
1100          * is not created (by kvm_create_vm_debugfs()).
1101          */
1102         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1103
1104         if (init_srcu_struct(&kvm->srcu))
1105                 goto out_err_no_srcu;
1106         if (init_srcu_struct(&kvm->irq_srcu))
1107                 goto out_err_no_irq_srcu;
1108
1109         refcount_set(&kvm->users_count, 1);
1110         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1111                 for (j = 0; j < 2; j++) {
1112                         slots = &kvm->__memslots[i][j];
1113
1114                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1115                         slots->hva_tree = RB_ROOT_CACHED;
1116                         slots->gfn_tree = RB_ROOT;
1117                         hash_init(slots->id_hash);
1118                         slots->node_idx = j;
1119
1120                         /* Generations must be different for each address space. */
1121                         slots->generation = i;
1122                 }
1123
1124                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1125         }
1126
1127         for (i = 0; i < KVM_NR_BUSES; i++) {
1128                 rcu_assign_pointer(kvm->buses[i],
1129                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1130                 if (!kvm->buses[i])
1131                         goto out_err_no_arch_destroy_vm;
1132         }
1133
1134         kvm->max_halt_poll_ns = halt_poll_ns;
1135
1136         r = kvm_arch_init_vm(kvm, type);
1137         if (r)
1138                 goto out_err_no_arch_destroy_vm;
1139
1140         r = hardware_enable_all();
1141         if (r)
1142                 goto out_err_no_disable;
1143
1144 #ifdef CONFIG_HAVE_KVM_IRQFD
1145         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1146 #endif
1147
1148         r = kvm_init_mmu_notifier(kvm);
1149         if (r)
1150                 goto out_err_no_mmu_notifier;
1151
1152         r = kvm_arch_post_init_vm(kvm);
1153         if (r)
1154                 goto out_err;
1155
1156         mutex_lock(&kvm_lock);
1157         list_add(&kvm->vm_list, &vm_list);
1158         mutex_unlock(&kvm_lock);
1159
1160         preempt_notifier_inc();
1161         kvm_init_pm_notifier(kvm);
1162
1163         /*
1164          * When the fd passed to this ioctl() is opened it pins the module,
1165          * but try_module_get() also prevents getting a reference if the module
1166          * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait").
1167          */
1168         if (!try_module_get(kvm_chardev_ops.owner)) {
1169                 r = -ENODEV;
1170                 goto out_err;
1171         }
1172
1173         return kvm;
1174
1175 out_err:
1176 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1177         if (kvm->mmu_notifier.ops)
1178                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1179 #endif
1180 out_err_no_mmu_notifier:
1181         hardware_disable_all();
1182 out_err_no_disable:
1183         kvm_arch_destroy_vm(kvm);
1184 out_err_no_arch_destroy_vm:
1185         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1186         for (i = 0; i < KVM_NR_BUSES; i++)
1187                 kfree(kvm_get_bus(kvm, i));
1188         cleanup_srcu_struct(&kvm->irq_srcu);
1189 out_err_no_irq_srcu:
1190         cleanup_srcu_struct(&kvm->srcu);
1191 out_err_no_srcu:
1192         kvm_arch_free_vm(kvm);
1193         mmdrop(current->mm);
1194         return ERR_PTR(r);
1195 }
1196
1197 static void kvm_destroy_devices(struct kvm *kvm)
1198 {
1199         struct kvm_device *dev, *tmp;
1200
1201         /*
1202          * We do not need to take the kvm->lock here, because nobody else
1203          * has a reference to the struct kvm at this point and therefore
1204          * cannot access the devices list anyhow.
1205          */
1206         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1207                 list_del(&dev->vm_node);
1208                 dev->ops->destroy(dev);
1209         }
1210 }
1211
1212 static void kvm_destroy_vm(struct kvm *kvm)
1213 {
1214         int i;
1215         struct mm_struct *mm = kvm->mm;
1216
1217         kvm_destroy_pm_notifier(kvm);
1218         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1219         kvm_destroy_vm_debugfs(kvm);
1220         kvm_arch_sync_events(kvm);
1221         mutex_lock(&kvm_lock);
1222         list_del(&kvm->vm_list);
1223         mutex_unlock(&kvm_lock);
1224         kvm_arch_pre_destroy_vm(kvm);
1225
1226         kvm_free_irq_routing(kvm);
1227         for (i = 0; i < KVM_NR_BUSES; i++) {
1228                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1229
1230                 if (bus)
1231                         kvm_io_bus_destroy(bus);
1232                 kvm->buses[i] = NULL;
1233         }
1234         kvm_coalesced_mmio_free(kvm);
1235 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1236         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1237         /*
1238          * At this point, pending calls to invalidate_range_start()
1239          * have completed but no more MMU notifiers will run, so
1240          * mn_active_invalidate_count may remain unbalanced.
1241          * No threads can be waiting in install_new_memslots as the
1242          * last reference on KVM has been dropped, but freeing
1243          * memslots would deadlock without this manual intervention.
1244          */
1245         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1246         kvm->mn_active_invalidate_count = 0;
1247 #else
1248         kvm_flush_shadow_all(kvm);
1249 #endif
1250         kvm_arch_destroy_vm(kvm);
1251         kvm_destroy_devices(kvm);
1252         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1253                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1254                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1255         }
1256         cleanup_srcu_struct(&kvm->irq_srcu);
1257         cleanup_srcu_struct(&kvm->srcu);
1258         kvm_arch_free_vm(kvm);
1259         preempt_notifier_dec();
1260         hardware_disable_all();
1261         mmdrop(mm);
1262         module_put(kvm_chardev_ops.owner);
1263 }
1264
1265 void kvm_get_kvm(struct kvm *kvm)
1266 {
1267         refcount_inc(&kvm->users_count);
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1270
1271 /*
1272  * Make sure the vm is not during destruction, which is a safe version of
1273  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1274  */
1275 bool kvm_get_kvm_safe(struct kvm *kvm)
1276 {
1277         return refcount_inc_not_zero(&kvm->users_count);
1278 }
1279 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1280
1281 void kvm_put_kvm(struct kvm *kvm)
1282 {
1283         if (refcount_dec_and_test(&kvm->users_count))
1284                 kvm_destroy_vm(kvm);
1285 }
1286 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1287
1288 /*
1289  * Used to put a reference that was taken on behalf of an object associated
1290  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1291  * of the new file descriptor fails and the reference cannot be transferred to
1292  * its final owner.  In such cases, the caller is still actively using @kvm and
1293  * will fail miserably if the refcount unexpectedly hits zero.
1294  */
1295 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1296 {
1297         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1298 }
1299 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1300
1301 static int kvm_vm_release(struct inode *inode, struct file *filp)
1302 {
1303         struct kvm *kvm = filp->private_data;
1304
1305         kvm_irqfd_release(kvm);
1306
1307         kvm_put_kvm(kvm);
1308         return 0;
1309 }
1310
1311 /*
1312  * Allocation size is twice as large as the actual dirty bitmap size.
1313  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1314  */
1315 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1316 {
1317         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1318
1319         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1320         if (!memslot->dirty_bitmap)
1321                 return -ENOMEM;
1322
1323         return 0;
1324 }
1325
1326 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1327 {
1328         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1329         int node_idx_inactive = active->node_idx ^ 1;
1330
1331         return &kvm->__memslots[as_id][node_idx_inactive];
1332 }
1333
1334 /*
1335  * Helper to get the address space ID when one of memslot pointers may be NULL.
1336  * This also serves as a sanity that at least one of the pointers is non-NULL,
1337  * and that their address space IDs don't diverge.
1338  */
1339 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1340                                   struct kvm_memory_slot *b)
1341 {
1342         if (WARN_ON_ONCE(!a && !b))
1343                 return 0;
1344
1345         if (!a)
1346                 return b->as_id;
1347         if (!b)
1348                 return a->as_id;
1349
1350         WARN_ON_ONCE(a->as_id != b->as_id);
1351         return a->as_id;
1352 }
1353
1354 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1355                                 struct kvm_memory_slot *slot)
1356 {
1357         struct rb_root *gfn_tree = &slots->gfn_tree;
1358         struct rb_node **node, *parent;
1359         int idx = slots->node_idx;
1360
1361         parent = NULL;
1362         for (node = &gfn_tree->rb_node; *node; ) {
1363                 struct kvm_memory_slot *tmp;
1364
1365                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1366                 parent = *node;
1367                 if (slot->base_gfn < tmp->base_gfn)
1368                         node = &(*node)->rb_left;
1369                 else if (slot->base_gfn > tmp->base_gfn)
1370                         node = &(*node)->rb_right;
1371                 else
1372                         BUG();
1373         }
1374
1375         rb_link_node(&slot->gfn_node[idx], parent, node);
1376         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1377 }
1378
1379 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1380                                struct kvm_memory_slot *slot)
1381 {
1382         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1383 }
1384
1385 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1386                                  struct kvm_memory_slot *old,
1387                                  struct kvm_memory_slot *new)
1388 {
1389         int idx = slots->node_idx;
1390
1391         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1392
1393         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1394                         &slots->gfn_tree);
1395 }
1396
1397 /*
1398  * Replace @old with @new in the inactive memslots.
1399  *
1400  * With NULL @old this simply adds @new.
1401  * With NULL @new this simply removes @old.
1402  *
1403  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1404  * appropriately.
1405  */
1406 static void kvm_replace_memslot(struct kvm *kvm,
1407                                 struct kvm_memory_slot *old,
1408                                 struct kvm_memory_slot *new)
1409 {
1410         int as_id = kvm_memslots_get_as_id(old, new);
1411         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1412         int idx = slots->node_idx;
1413
1414         if (old) {
1415                 hash_del(&old->id_node[idx]);
1416                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1417
1418                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1419                         atomic_long_set(&slots->last_used_slot, (long)new);
1420
1421                 if (!new) {
1422                         kvm_erase_gfn_node(slots, old);
1423                         return;
1424                 }
1425         }
1426
1427         /*
1428          * Initialize @new's hva range.  Do this even when replacing an @old
1429          * slot, kvm_copy_memslot() deliberately does not touch node data.
1430          */
1431         new->hva_node[idx].start = new->userspace_addr;
1432         new->hva_node[idx].last = new->userspace_addr +
1433                                   (new->npages << PAGE_SHIFT) - 1;
1434
1435         /*
1436          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1437          * hva_node needs to be swapped with remove+insert even though hva can't
1438          * change when replacing an existing slot.
1439          */
1440         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1441         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1442
1443         /*
1444          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1445          * switch the node in the gfn tree instead of removing the old and
1446          * inserting the new as two separate operations. Replacement is a
1447          * single O(1) operation versus two O(log(n)) operations for
1448          * remove+insert.
1449          */
1450         if (old && old->base_gfn == new->base_gfn) {
1451                 kvm_replace_gfn_node(slots, old, new);
1452         } else {
1453                 if (old)
1454                         kvm_erase_gfn_node(slots, old);
1455                 kvm_insert_gfn_node(slots, new);
1456         }
1457 }
1458
1459 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1460 {
1461         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1462
1463 #ifdef __KVM_HAVE_READONLY_MEM
1464         valid_flags |= KVM_MEM_READONLY;
1465 #endif
1466
1467         if (mem->flags & ~valid_flags)
1468                 return -EINVAL;
1469
1470         return 0;
1471 }
1472
1473 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1474 {
1475         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1476
1477         /* Grab the generation from the activate memslots. */
1478         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1479
1480         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1481         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1482
1483         /*
1484          * Do not store the new memslots while there are invalidations in
1485          * progress, otherwise the locking in invalidate_range_start and
1486          * invalidate_range_end will be unbalanced.
1487          */
1488         spin_lock(&kvm->mn_invalidate_lock);
1489         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1490         while (kvm->mn_active_invalidate_count) {
1491                 set_current_state(TASK_UNINTERRUPTIBLE);
1492                 spin_unlock(&kvm->mn_invalidate_lock);
1493                 schedule();
1494                 spin_lock(&kvm->mn_invalidate_lock);
1495         }
1496         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1497         rcu_assign_pointer(kvm->memslots[as_id], slots);
1498         spin_unlock(&kvm->mn_invalidate_lock);
1499
1500         /*
1501          * Acquired in kvm_set_memslot. Must be released before synchronize
1502          * SRCU below in order to avoid deadlock with another thread
1503          * acquiring the slots_arch_lock in an srcu critical section.
1504          */
1505         mutex_unlock(&kvm->slots_arch_lock);
1506
1507         synchronize_srcu_expedited(&kvm->srcu);
1508
1509         /*
1510          * Increment the new memslot generation a second time, dropping the
1511          * update in-progress flag and incrementing the generation based on
1512          * the number of address spaces.  This provides a unique and easily
1513          * identifiable generation number while the memslots are in flux.
1514          */
1515         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1516
1517         /*
1518          * Generations must be unique even across address spaces.  We do not need
1519          * a global counter for that, instead the generation space is evenly split
1520          * across address spaces.  For example, with two address spaces, address
1521          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1522          * use generations 1, 3, 5, ...
1523          */
1524         gen += KVM_ADDRESS_SPACE_NUM;
1525
1526         kvm_arch_memslots_updated(kvm, gen);
1527
1528         slots->generation = gen;
1529 }
1530
1531 static int kvm_prepare_memory_region(struct kvm *kvm,
1532                                      const struct kvm_memory_slot *old,
1533                                      struct kvm_memory_slot *new,
1534                                      enum kvm_mr_change change)
1535 {
1536         int r;
1537
1538         /*
1539          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1540          * will be freed on "commit".  If logging is enabled in both old and
1541          * new, reuse the existing bitmap.  If logging is enabled only in the
1542          * new and KVM isn't using a ring buffer, allocate and initialize a
1543          * new bitmap.
1544          */
1545         if (change != KVM_MR_DELETE) {
1546                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1547                         new->dirty_bitmap = NULL;
1548                 else if (old && old->dirty_bitmap)
1549                         new->dirty_bitmap = old->dirty_bitmap;
1550                 else if (!kvm->dirty_ring_size) {
1551                         r = kvm_alloc_dirty_bitmap(new);
1552                         if (r)
1553                                 return r;
1554
1555                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1556                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1557                 }
1558         }
1559
1560         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1561
1562         /* Free the bitmap on failure if it was allocated above. */
1563         if (r && new && new->dirty_bitmap && old && !old->dirty_bitmap)
1564                 kvm_destroy_dirty_bitmap(new);
1565
1566         return r;
1567 }
1568
1569 static void kvm_commit_memory_region(struct kvm *kvm,
1570                                      struct kvm_memory_slot *old,
1571                                      const struct kvm_memory_slot *new,
1572                                      enum kvm_mr_change change)
1573 {
1574         /*
1575          * Update the total number of memslot pages before calling the arch
1576          * hook so that architectures can consume the result directly.
1577          */
1578         if (change == KVM_MR_DELETE)
1579                 kvm->nr_memslot_pages -= old->npages;
1580         else if (change == KVM_MR_CREATE)
1581                 kvm->nr_memslot_pages += new->npages;
1582
1583         kvm_arch_commit_memory_region(kvm, old, new, change);
1584
1585         switch (change) {
1586         case KVM_MR_CREATE:
1587                 /* Nothing more to do. */
1588                 break;
1589         case KVM_MR_DELETE:
1590                 /* Free the old memslot and all its metadata. */
1591                 kvm_free_memslot(kvm, old);
1592                 break;
1593         case KVM_MR_MOVE:
1594         case KVM_MR_FLAGS_ONLY:
1595                 /*
1596                  * Free the dirty bitmap as needed; the below check encompasses
1597                  * both the flags and whether a ring buffer is being used)
1598                  */
1599                 if (old->dirty_bitmap && !new->dirty_bitmap)
1600                         kvm_destroy_dirty_bitmap(old);
1601
1602                 /*
1603                  * The final quirk.  Free the detached, old slot, but only its
1604                  * memory, not any metadata.  Metadata, including arch specific
1605                  * data, may be reused by @new.
1606                  */
1607                 kfree(old);
1608                 break;
1609         default:
1610                 BUG();
1611         }
1612 }
1613
1614 /*
1615  * Activate @new, which must be installed in the inactive slots by the caller,
1616  * by swapping the active slots and then propagating @new to @old once @old is
1617  * unreachable and can be safely modified.
1618  *
1619  * With NULL @old this simply adds @new to @active (while swapping the sets).
1620  * With NULL @new this simply removes @old from @active and frees it
1621  * (while also swapping the sets).
1622  */
1623 static void kvm_activate_memslot(struct kvm *kvm,
1624                                  struct kvm_memory_slot *old,
1625                                  struct kvm_memory_slot *new)
1626 {
1627         int as_id = kvm_memslots_get_as_id(old, new);
1628
1629         kvm_swap_active_memslots(kvm, as_id);
1630
1631         /* Propagate the new memslot to the now inactive memslots. */
1632         kvm_replace_memslot(kvm, old, new);
1633 }
1634
1635 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1636                              const struct kvm_memory_slot *src)
1637 {
1638         dest->base_gfn = src->base_gfn;
1639         dest->npages = src->npages;
1640         dest->dirty_bitmap = src->dirty_bitmap;
1641         dest->arch = src->arch;
1642         dest->userspace_addr = src->userspace_addr;
1643         dest->flags = src->flags;
1644         dest->id = src->id;
1645         dest->as_id = src->as_id;
1646 }
1647
1648 static void kvm_invalidate_memslot(struct kvm *kvm,
1649                                    struct kvm_memory_slot *old,
1650                                    struct kvm_memory_slot *invalid_slot)
1651 {
1652         /*
1653          * Mark the current slot INVALID.  As with all memslot modifications,
1654          * this must be done on an unreachable slot to avoid modifying the
1655          * current slot in the active tree.
1656          */
1657         kvm_copy_memslot(invalid_slot, old);
1658         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1659         kvm_replace_memslot(kvm, old, invalid_slot);
1660
1661         /*
1662          * Activate the slot that is now marked INVALID, but don't propagate
1663          * the slot to the now inactive slots. The slot is either going to be
1664          * deleted or recreated as a new slot.
1665          */
1666         kvm_swap_active_memslots(kvm, old->as_id);
1667
1668         /*
1669          * From this point no new shadow pages pointing to a deleted, or moved,
1670          * memslot will be created.  Validation of sp->gfn happens in:
1671          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1672          *      - kvm_is_visible_gfn (mmu_check_root)
1673          */
1674         kvm_arch_flush_shadow_memslot(kvm, old);
1675         kvm_arch_guest_memory_reclaimed(kvm);
1676
1677         /* Was released by kvm_swap_active_memslots, reacquire. */
1678         mutex_lock(&kvm->slots_arch_lock);
1679
1680         /*
1681          * Copy the arch-specific field of the newly-installed slot back to the
1682          * old slot as the arch data could have changed between releasing
1683          * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1684          * above.  Writers are required to retrieve memslots *after* acquiring
1685          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1686          */
1687         old->arch = invalid_slot->arch;
1688 }
1689
1690 static void kvm_create_memslot(struct kvm *kvm,
1691                                struct kvm_memory_slot *new)
1692 {
1693         /* Add the new memslot to the inactive set and activate. */
1694         kvm_replace_memslot(kvm, NULL, new);
1695         kvm_activate_memslot(kvm, NULL, new);
1696 }
1697
1698 static void kvm_delete_memslot(struct kvm *kvm,
1699                                struct kvm_memory_slot *old,
1700                                struct kvm_memory_slot *invalid_slot)
1701 {
1702         /*
1703          * Remove the old memslot (in the inactive memslots) by passing NULL as
1704          * the "new" slot, and for the invalid version in the active slots.
1705          */
1706         kvm_replace_memslot(kvm, old, NULL);
1707         kvm_activate_memslot(kvm, invalid_slot, NULL);
1708 }
1709
1710 static void kvm_move_memslot(struct kvm *kvm,
1711                              struct kvm_memory_slot *old,
1712                              struct kvm_memory_slot *new,
1713                              struct kvm_memory_slot *invalid_slot)
1714 {
1715         /*
1716          * Replace the old memslot in the inactive slots, and then swap slots
1717          * and replace the current INVALID with the new as well.
1718          */
1719         kvm_replace_memslot(kvm, old, new);
1720         kvm_activate_memslot(kvm, invalid_slot, new);
1721 }
1722
1723 static void kvm_update_flags_memslot(struct kvm *kvm,
1724                                      struct kvm_memory_slot *old,
1725                                      struct kvm_memory_slot *new)
1726 {
1727         /*
1728          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1729          * an intermediate step. Instead, the old memslot is simply replaced
1730          * with a new, updated copy in both memslot sets.
1731          */
1732         kvm_replace_memslot(kvm, old, new);
1733         kvm_activate_memslot(kvm, old, new);
1734 }
1735
1736 static int kvm_set_memslot(struct kvm *kvm,
1737                            struct kvm_memory_slot *old,
1738                            struct kvm_memory_slot *new,
1739                            enum kvm_mr_change change)
1740 {
1741         struct kvm_memory_slot *invalid_slot;
1742         int r;
1743
1744         /*
1745          * Released in kvm_swap_active_memslots.
1746          *
1747          * Must be held from before the current memslots are copied until
1748          * after the new memslots are installed with rcu_assign_pointer,
1749          * then released before the synchronize srcu in kvm_swap_active_memslots.
1750          *
1751          * When modifying memslots outside of the slots_lock, must be held
1752          * before reading the pointer to the current memslots until after all
1753          * changes to those memslots are complete.
1754          *
1755          * These rules ensure that installing new memslots does not lose
1756          * changes made to the previous memslots.
1757          */
1758         mutex_lock(&kvm->slots_arch_lock);
1759
1760         /*
1761          * Invalidate the old slot if it's being deleted or moved.  This is
1762          * done prior to actually deleting/moving the memslot to allow vCPUs to
1763          * continue running by ensuring there are no mappings or shadow pages
1764          * for the memslot when it is deleted/moved.  Without pre-invalidation
1765          * (and without a lock), a window would exist between effecting the
1766          * delete/move and committing the changes in arch code where KVM or a
1767          * guest could access a non-existent memslot.
1768          *
1769          * Modifications are done on a temporary, unreachable slot.  The old
1770          * slot needs to be preserved in case a later step fails and the
1771          * invalidation needs to be reverted.
1772          */
1773         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1774                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1775                 if (!invalid_slot) {
1776                         mutex_unlock(&kvm->slots_arch_lock);
1777                         return -ENOMEM;
1778                 }
1779                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1780         }
1781
1782         r = kvm_prepare_memory_region(kvm, old, new, change);
1783         if (r) {
1784                 /*
1785                  * For DELETE/MOVE, revert the above INVALID change.  No
1786                  * modifications required since the original slot was preserved
1787                  * in the inactive slots.  Changing the active memslots also
1788                  * release slots_arch_lock.
1789                  */
1790                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1791                         kvm_activate_memslot(kvm, invalid_slot, old);
1792                         kfree(invalid_slot);
1793                 } else {
1794                         mutex_unlock(&kvm->slots_arch_lock);
1795                 }
1796                 return r;
1797         }
1798
1799         /*
1800          * For DELETE and MOVE, the working slot is now active as the INVALID
1801          * version of the old slot.  MOVE is particularly special as it reuses
1802          * the old slot and returns a copy of the old slot (in working_slot).
1803          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1804          * old slot is detached but otherwise preserved.
1805          */
1806         if (change == KVM_MR_CREATE)
1807                 kvm_create_memslot(kvm, new);
1808         else if (change == KVM_MR_DELETE)
1809                 kvm_delete_memslot(kvm, old, invalid_slot);
1810         else if (change == KVM_MR_MOVE)
1811                 kvm_move_memslot(kvm, old, new, invalid_slot);
1812         else if (change == KVM_MR_FLAGS_ONLY)
1813                 kvm_update_flags_memslot(kvm, old, new);
1814         else
1815                 BUG();
1816
1817         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1818         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1819                 kfree(invalid_slot);
1820
1821         /*
1822          * No need to refresh new->arch, changes after dropping slots_arch_lock
1823          * will directly hit the final, active memslot.  Architectures are
1824          * responsible for knowing that new->arch may be stale.
1825          */
1826         kvm_commit_memory_region(kvm, old, new, change);
1827
1828         return 0;
1829 }
1830
1831 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1832                                       gfn_t start, gfn_t end)
1833 {
1834         struct kvm_memslot_iter iter;
1835
1836         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1837                 if (iter.slot->id != id)
1838                         return true;
1839         }
1840
1841         return false;
1842 }
1843
1844 /*
1845  * Allocate some memory and give it an address in the guest physical address
1846  * space.
1847  *
1848  * Discontiguous memory is allowed, mostly for framebuffers.
1849  *
1850  * Must be called holding kvm->slots_lock for write.
1851  */
1852 int __kvm_set_memory_region(struct kvm *kvm,
1853                             const struct kvm_userspace_memory_region *mem)
1854 {
1855         struct kvm_memory_slot *old, *new;
1856         struct kvm_memslots *slots;
1857         enum kvm_mr_change change;
1858         unsigned long npages;
1859         gfn_t base_gfn;
1860         int as_id, id;
1861         int r;
1862
1863         r = check_memory_region_flags(mem);
1864         if (r)
1865                 return r;
1866
1867         as_id = mem->slot >> 16;
1868         id = (u16)mem->slot;
1869
1870         /* General sanity checks */
1871         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1872             (mem->memory_size != (unsigned long)mem->memory_size))
1873                 return -EINVAL;
1874         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1875                 return -EINVAL;
1876         /* We can read the guest memory with __xxx_user() later on. */
1877         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1878             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1879              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1880                         mem->memory_size))
1881                 return -EINVAL;
1882         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1883                 return -EINVAL;
1884         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1885                 return -EINVAL;
1886         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1887                 return -EINVAL;
1888
1889         slots = __kvm_memslots(kvm, as_id);
1890
1891         /*
1892          * Note, the old memslot (and the pointer itself!) may be invalidated
1893          * and/or destroyed by kvm_set_memslot().
1894          */
1895         old = id_to_memslot(slots, id);
1896
1897         if (!mem->memory_size) {
1898                 if (!old || !old->npages)
1899                         return -EINVAL;
1900
1901                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1902                         return -EIO;
1903
1904                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1905         }
1906
1907         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1908         npages = (mem->memory_size >> PAGE_SHIFT);
1909
1910         if (!old || !old->npages) {
1911                 change = KVM_MR_CREATE;
1912
1913                 /*
1914                  * To simplify KVM internals, the total number of pages across
1915                  * all memslots must fit in an unsigned long.
1916                  */
1917                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1918                         return -EINVAL;
1919         } else { /* Modify an existing slot. */
1920                 if ((mem->userspace_addr != old->userspace_addr) ||
1921                     (npages != old->npages) ||
1922                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1923                         return -EINVAL;
1924
1925                 if (base_gfn != old->base_gfn)
1926                         change = KVM_MR_MOVE;
1927                 else if (mem->flags != old->flags)
1928                         change = KVM_MR_FLAGS_ONLY;
1929                 else /* Nothing to change. */
1930                         return 0;
1931         }
1932
1933         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
1934             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
1935                 return -EEXIST;
1936
1937         /* Allocate a slot that will persist in the memslot. */
1938         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
1939         if (!new)
1940                 return -ENOMEM;
1941
1942         new->as_id = as_id;
1943         new->id = id;
1944         new->base_gfn = base_gfn;
1945         new->npages = npages;
1946         new->flags = mem->flags;
1947         new->userspace_addr = mem->userspace_addr;
1948
1949         r = kvm_set_memslot(kvm, old, new, change);
1950         if (r)
1951                 kfree(new);
1952         return r;
1953 }
1954 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1955
1956 int kvm_set_memory_region(struct kvm *kvm,
1957                           const struct kvm_userspace_memory_region *mem)
1958 {
1959         int r;
1960
1961         mutex_lock(&kvm->slots_lock);
1962         r = __kvm_set_memory_region(kvm, mem);
1963         mutex_unlock(&kvm->slots_lock);
1964         return r;
1965 }
1966 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1967
1968 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1969                                           struct kvm_userspace_memory_region *mem)
1970 {
1971         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1972                 return -EINVAL;
1973
1974         return kvm_set_memory_region(kvm, mem);
1975 }
1976
1977 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1978 /**
1979  * kvm_get_dirty_log - get a snapshot of dirty pages
1980  * @kvm:        pointer to kvm instance
1981  * @log:        slot id and address to which we copy the log
1982  * @is_dirty:   set to '1' if any dirty pages were found
1983  * @memslot:    set to the associated memslot, always valid on success
1984  */
1985 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1986                       int *is_dirty, struct kvm_memory_slot **memslot)
1987 {
1988         struct kvm_memslots *slots;
1989         int i, as_id, id;
1990         unsigned long n;
1991         unsigned long any = 0;
1992
1993         /* Dirty ring tracking is exclusive to dirty log tracking */
1994         if (kvm->dirty_ring_size)
1995                 return -ENXIO;
1996
1997         *memslot = NULL;
1998         *is_dirty = 0;
1999
2000         as_id = log->slot >> 16;
2001         id = (u16)log->slot;
2002         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2003                 return -EINVAL;
2004
2005         slots = __kvm_memslots(kvm, as_id);
2006         *memslot = id_to_memslot(slots, id);
2007         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2008                 return -ENOENT;
2009
2010         kvm_arch_sync_dirty_log(kvm, *memslot);
2011
2012         n = kvm_dirty_bitmap_bytes(*memslot);
2013
2014         for (i = 0; !any && i < n/sizeof(long); ++i)
2015                 any = (*memslot)->dirty_bitmap[i];
2016
2017         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2018                 return -EFAULT;
2019
2020         if (any)
2021                 *is_dirty = 1;
2022         return 0;
2023 }
2024 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2025
2026 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2027 /**
2028  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2029  *      and reenable dirty page tracking for the corresponding pages.
2030  * @kvm:        pointer to kvm instance
2031  * @log:        slot id and address to which we copy the log
2032  *
2033  * We need to keep it in mind that VCPU threads can write to the bitmap
2034  * concurrently. So, to avoid losing track of dirty pages we keep the
2035  * following order:
2036  *
2037  *    1. Take a snapshot of the bit and clear it if needed.
2038  *    2. Write protect the corresponding page.
2039  *    3. Copy the snapshot to the userspace.
2040  *    4. Upon return caller flushes TLB's if needed.
2041  *
2042  * Between 2 and 4, the guest may write to the page using the remaining TLB
2043  * entry.  This is not a problem because the page is reported dirty using
2044  * the snapshot taken before and step 4 ensures that writes done after
2045  * exiting to userspace will be logged for the next call.
2046  *
2047  */
2048 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2049 {
2050         struct kvm_memslots *slots;
2051         struct kvm_memory_slot *memslot;
2052         int i, as_id, id;
2053         unsigned long n;
2054         unsigned long *dirty_bitmap;
2055         unsigned long *dirty_bitmap_buffer;
2056         bool flush;
2057
2058         /* Dirty ring tracking is exclusive to dirty log tracking */
2059         if (kvm->dirty_ring_size)
2060                 return -ENXIO;
2061
2062         as_id = log->slot >> 16;
2063         id = (u16)log->slot;
2064         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2065                 return -EINVAL;
2066
2067         slots = __kvm_memslots(kvm, as_id);
2068         memslot = id_to_memslot(slots, id);
2069         if (!memslot || !memslot->dirty_bitmap)
2070                 return -ENOENT;
2071
2072         dirty_bitmap = memslot->dirty_bitmap;
2073
2074         kvm_arch_sync_dirty_log(kvm, memslot);
2075
2076         n = kvm_dirty_bitmap_bytes(memslot);
2077         flush = false;
2078         if (kvm->manual_dirty_log_protect) {
2079                 /*
2080                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2081                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2082                  * is some code duplication between this function and
2083                  * kvm_get_dirty_log, but hopefully all architecture
2084                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2085                  * can be eliminated.
2086                  */
2087                 dirty_bitmap_buffer = dirty_bitmap;
2088         } else {
2089                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2090                 memset(dirty_bitmap_buffer, 0, n);
2091
2092                 KVM_MMU_LOCK(kvm);
2093                 for (i = 0; i < n / sizeof(long); i++) {
2094                         unsigned long mask;
2095                         gfn_t offset;
2096
2097                         if (!dirty_bitmap[i])
2098                                 continue;
2099
2100                         flush = true;
2101                         mask = xchg(&dirty_bitmap[i], 0);
2102                         dirty_bitmap_buffer[i] = mask;
2103
2104                         offset = i * BITS_PER_LONG;
2105                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2106                                                                 offset, mask);
2107                 }
2108                 KVM_MMU_UNLOCK(kvm);
2109         }
2110
2111         if (flush)
2112                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2113
2114         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2115                 return -EFAULT;
2116         return 0;
2117 }
2118
2119
2120 /**
2121  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2122  * @kvm: kvm instance
2123  * @log: slot id and address to which we copy the log
2124  *
2125  * Steps 1-4 below provide general overview of dirty page logging. See
2126  * kvm_get_dirty_log_protect() function description for additional details.
2127  *
2128  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2129  * always flush the TLB (step 4) even if previous step failed  and the dirty
2130  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2131  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2132  * writes will be marked dirty for next log read.
2133  *
2134  *   1. Take a snapshot of the bit and clear it if needed.
2135  *   2. Write protect the corresponding page.
2136  *   3. Copy the snapshot to the userspace.
2137  *   4. Flush TLB's if needed.
2138  */
2139 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2140                                       struct kvm_dirty_log *log)
2141 {
2142         int r;
2143
2144         mutex_lock(&kvm->slots_lock);
2145
2146         r = kvm_get_dirty_log_protect(kvm, log);
2147
2148         mutex_unlock(&kvm->slots_lock);
2149         return r;
2150 }
2151
2152 /**
2153  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2154  *      and reenable dirty page tracking for the corresponding pages.
2155  * @kvm:        pointer to kvm instance
2156  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2157  */
2158 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2159                                        struct kvm_clear_dirty_log *log)
2160 {
2161         struct kvm_memslots *slots;
2162         struct kvm_memory_slot *memslot;
2163         int as_id, id;
2164         gfn_t offset;
2165         unsigned long i, n;
2166         unsigned long *dirty_bitmap;
2167         unsigned long *dirty_bitmap_buffer;
2168         bool flush;
2169
2170         /* Dirty ring tracking is exclusive to dirty log tracking */
2171         if (kvm->dirty_ring_size)
2172                 return -ENXIO;
2173
2174         as_id = log->slot >> 16;
2175         id = (u16)log->slot;
2176         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2177                 return -EINVAL;
2178
2179         if (log->first_page & 63)
2180                 return -EINVAL;
2181
2182         slots = __kvm_memslots(kvm, as_id);
2183         memslot = id_to_memslot(slots, id);
2184         if (!memslot || !memslot->dirty_bitmap)
2185                 return -ENOENT;
2186
2187         dirty_bitmap = memslot->dirty_bitmap;
2188
2189         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2190
2191         if (log->first_page > memslot->npages ||
2192             log->num_pages > memslot->npages - log->first_page ||
2193             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2194             return -EINVAL;
2195
2196         kvm_arch_sync_dirty_log(kvm, memslot);
2197
2198         flush = false;
2199         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2200         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2201                 return -EFAULT;
2202
2203         KVM_MMU_LOCK(kvm);
2204         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2205                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2206              i++, offset += BITS_PER_LONG) {
2207                 unsigned long mask = *dirty_bitmap_buffer++;
2208                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2209                 if (!mask)
2210                         continue;
2211
2212                 mask &= atomic_long_fetch_andnot(mask, p);
2213
2214                 /*
2215                  * mask contains the bits that really have been cleared.  This
2216                  * never includes any bits beyond the length of the memslot (if
2217                  * the length is not aligned to 64 pages), therefore it is not
2218                  * a problem if userspace sets them in log->dirty_bitmap.
2219                 */
2220                 if (mask) {
2221                         flush = true;
2222                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2223                                                                 offset, mask);
2224                 }
2225         }
2226         KVM_MMU_UNLOCK(kvm);
2227
2228         if (flush)
2229                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2230
2231         return 0;
2232 }
2233
2234 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2235                                         struct kvm_clear_dirty_log *log)
2236 {
2237         int r;
2238
2239         mutex_lock(&kvm->slots_lock);
2240
2241         r = kvm_clear_dirty_log_protect(kvm, log);
2242
2243         mutex_unlock(&kvm->slots_lock);
2244         return r;
2245 }
2246 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2247
2248 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2249 {
2250         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2251 }
2252 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2253
2254 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2255 {
2256         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2257         u64 gen = slots->generation;
2258         struct kvm_memory_slot *slot;
2259
2260         /*
2261          * This also protects against using a memslot from a different address space,
2262          * since different address spaces have different generation numbers.
2263          */
2264         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2265                 vcpu->last_used_slot = NULL;
2266                 vcpu->last_used_slot_gen = gen;
2267         }
2268
2269         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2270         if (slot)
2271                 return slot;
2272
2273         /*
2274          * Fall back to searching all memslots. We purposely use
2275          * search_memslots() instead of __gfn_to_memslot() to avoid
2276          * thrashing the VM-wide last_used_slot in kvm_memslots.
2277          */
2278         slot = search_memslots(slots, gfn, false);
2279         if (slot) {
2280                 vcpu->last_used_slot = slot;
2281                 return slot;
2282         }
2283
2284         return NULL;
2285 }
2286
2287 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2288 {
2289         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2290
2291         return kvm_is_visible_memslot(memslot);
2292 }
2293 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2294
2295 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2296 {
2297         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2298
2299         return kvm_is_visible_memslot(memslot);
2300 }
2301 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2302
2303 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2304 {
2305         struct vm_area_struct *vma;
2306         unsigned long addr, size;
2307
2308         size = PAGE_SIZE;
2309
2310         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2311         if (kvm_is_error_hva(addr))
2312                 return PAGE_SIZE;
2313
2314         mmap_read_lock(current->mm);
2315         vma = find_vma(current->mm, addr);
2316         if (!vma)
2317                 goto out;
2318
2319         size = vma_kernel_pagesize(vma);
2320
2321 out:
2322         mmap_read_unlock(current->mm);
2323
2324         return size;
2325 }
2326
2327 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2328 {
2329         return slot->flags & KVM_MEM_READONLY;
2330 }
2331
2332 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2333                                        gfn_t *nr_pages, bool write)
2334 {
2335         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2336                 return KVM_HVA_ERR_BAD;
2337
2338         if (memslot_is_readonly(slot) && write)
2339                 return KVM_HVA_ERR_RO_BAD;
2340
2341         if (nr_pages)
2342                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2343
2344         return __gfn_to_hva_memslot(slot, gfn);
2345 }
2346
2347 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2348                                      gfn_t *nr_pages)
2349 {
2350         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2351 }
2352
2353 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2354                                         gfn_t gfn)
2355 {
2356         return gfn_to_hva_many(slot, gfn, NULL);
2357 }
2358 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2359
2360 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2361 {
2362         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2363 }
2364 EXPORT_SYMBOL_GPL(gfn_to_hva);
2365
2366 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2367 {
2368         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2369 }
2370 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2371
2372 /*
2373  * Return the hva of a @gfn and the R/W attribute if possible.
2374  *
2375  * @slot: the kvm_memory_slot which contains @gfn
2376  * @gfn: the gfn to be translated
2377  * @writable: used to return the read/write attribute of the @slot if the hva
2378  * is valid and @writable is not NULL
2379  */
2380 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2381                                       gfn_t gfn, bool *writable)
2382 {
2383         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2384
2385         if (!kvm_is_error_hva(hva) && writable)
2386                 *writable = !memslot_is_readonly(slot);
2387
2388         return hva;
2389 }
2390
2391 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2392 {
2393         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2394
2395         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2396 }
2397
2398 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2399 {
2400         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2401
2402         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2403 }
2404
2405 static inline int check_user_page_hwpoison(unsigned long addr)
2406 {
2407         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2408
2409         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2410         return rc == -EHWPOISON;
2411 }
2412
2413 /*
2414  * The fast path to get the writable pfn which will be stored in @pfn,
2415  * true indicates success, otherwise false is returned.  It's also the
2416  * only part that runs if we can in atomic context.
2417  */
2418 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2419                             bool *writable, kvm_pfn_t *pfn)
2420 {
2421         struct page *page[1];
2422
2423         /*
2424          * Fast pin a writable pfn only if it is a write fault request
2425          * or the caller allows to map a writable pfn for a read fault
2426          * request.
2427          */
2428         if (!(write_fault || writable))
2429                 return false;
2430
2431         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2432                 *pfn = page_to_pfn(page[0]);
2433
2434                 if (writable)
2435                         *writable = true;
2436                 return true;
2437         }
2438
2439         return false;
2440 }
2441
2442 /*
2443  * The slow path to get the pfn of the specified host virtual address,
2444  * 1 indicates success, -errno is returned if error is detected.
2445  */
2446 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2447                            bool *writable, kvm_pfn_t *pfn)
2448 {
2449         unsigned int flags = FOLL_HWPOISON;
2450         struct page *page;
2451         int npages = 0;
2452
2453         might_sleep();
2454
2455         if (writable)
2456                 *writable = write_fault;
2457
2458         if (write_fault)
2459                 flags |= FOLL_WRITE;
2460         if (async)
2461                 flags |= FOLL_NOWAIT;
2462
2463         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2464         if (npages != 1)
2465                 return npages;
2466
2467         /* map read fault as writable if possible */
2468         if (unlikely(!write_fault) && writable) {
2469                 struct page *wpage;
2470
2471                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2472                         *writable = true;
2473                         put_page(page);
2474                         page = wpage;
2475                 }
2476         }
2477         *pfn = page_to_pfn(page);
2478         return npages;
2479 }
2480
2481 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2482 {
2483         if (unlikely(!(vma->vm_flags & VM_READ)))
2484                 return false;
2485
2486         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2487                 return false;
2488
2489         return true;
2490 }
2491
2492 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2493 {
2494         if (kvm_is_reserved_pfn(pfn))
2495                 return 1;
2496         return get_page_unless_zero(pfn_to_page(pfn));
2497 }
2498
2499 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2500                                unsigned long addr, bool write_fault,
2501                                bool *writable, kvm_pfn_t *p_pfn)
2502 {
2503         kvm_pfn_t pfn;
2504         pte_t *ptep;
2505         spinlock_t *ptl;
2506         int r;
2507
2508         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2509         if (r) {
2510                 /*
2511                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2512                  * not call the fault handler, so do it here.
2513                  */
2514                 bool unlocked = false;
2515                 r = fixup_user_fault(current->mm, addr,
2516                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2517                                      &unlocked);
2518                 if (unlocked)
2519                         return -EAGAIN;
2520                 if (r)
2521                         return r;
2522
2523                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2524                 if (r)
2525                         return r;
2526         }
2527
2528         if (write_fault && !pte_write(*ptep)) {
2529                 pfn = KVM_PFN_ERR_RO_FAULT;
2530                 goto out;
2531         }
2532
2533         if (writable)
2534                 *writable = pte_write(*ptep);
2535         pfn = pte_pfn(*ptep);
2536
2537         /*
2538          * Get a reference here because callers of *hva_to_pfn* and
2539          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2540          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2541          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2542          * simply do nothing for reserved pfns.
2543          *
2544          * Whoever called remap_pfn_range is also going to call e.g.
2545          * unmap_mapping_range before the underlying pages are freed,
2546          * causing a call to our MMU notifier.
2547          *
2548          * Certain IO or PFNMAP mappings can be backed with valid
2549          * struct pages, but be allocated without refcounting e.g.,
2550          * tail pages of non-compound higher order allocations, which
2551          * would then underflow the refcount when the caller does the
2552          * required put_page. Don't allow those pages here.
2553          */ 
2554         if (!kvm_try_get_pfn(pfn))
2555                 r = -EFAULT;
2556
2557 out:
2558         pte_unmap_unlock(ptep, ptl);
2559         *p_pfn = pfn;
2560
2561         return r;
2562 }
2563
2564 /*
2565  * Pin guest page in memory and return its pfn.
2566  * @addr: host virtual address which maps memory to the guest
2567  * @atomic: whether this function can sleep
2568  * @async: whether this function need to wait IO complete if the
2569  *         host page is not in the memory
2570  * @write_fault: whether we should get a writable host page
2571  * @writable: whether it allows to map a writable host page for !@write_fault
2572  *
2573  * The function will map a writable host page for these two cases:
2574  * 1): @write_fault = true
2575  * 2): @write_fault = false && @writable, @writable will tell the caller
2576  *     whether the mapping is writable.
2577  */
2578 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2579                      bool write_fault, bool *writable)
2580 {
2581         struct vm_area_struct *vma;
2582         kvm_pfn_t pfn = 0;
2583         int npages, r;
2584
2585         /* we can do it either atomically or asynchronously, not both */
2586         BUG_ON(atomic && async);
2587
2588         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2589                 return pfn;
2590
2591         if (atomic)
2592                 return KVM_PFN_ERR_FAULT;
2593
2594         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2595         if (npages == 1)
2596                 return pfn;
2597
2598         mmap_read_lock(current->mm);
2599         if (npages == -EHWPOISON ||
2600               (!async && check_user_page_hwpoison(addr))) {
2601                 pfn = KVM_PFN_ERR_HWPOISON;
2602                 goto exit;
2603         }
2604
2605 retry:
2606         vma = vma_lookup(current->mm, addr);
2607
2608         if (vma == NULL)
2609                 pfn = KVM_PFN_ERR_FAULT;
2610         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2611                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2612                 if (r == -EAGAIN)
2613                         goto retry;
2614                 if (r < 0)
2615                         pfn = KVM_PFN_ERR_FAULT;
2616         } else {
2617                 if (async && vma_is_valid(vma, write_fault))
2618                         *async = true;
2619                 pfn = KVM_PFN_ERR_FAULT;
2620         }
2621 exit:
2622         mmap_read_unlock(current->mm);
2623         return pfn;
2624 }
2625
2626 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2627                                bool atomic, bool *async, bool write_fault,
2628                                bool *writable, hva_t *hva)
2629 {
2630         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2631
2632         if (hva)
2633                 *hva = addr;
2634
2635         if (addr == KVM_HVA_ERR_RO_BAD) {
2636                 if (writable)
2637                         *writable = false;
2638                 return KVM_PFN_ERR_RO_FAULT;
2639         }
2640
2641         if (kvm_is_error_hva(addr)) {
2642                 if (writable)
2643                         *writable = false;
2644                 return KVM_PFN_NOSLOT;
2645         }
2646
2647         /* Do not map writable pfn in the readonly memslot. */
2648         if (writable && memslot_is_readonly(slot)) {
2649                 *writable = false;
2650                 writable = NULL;
2651         }
2652
2653         return hva_to_pfn(addr, atomic, async, write_fault,
2654                           writable);
2655 }
2656 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2657
2658 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2659                       bool *writable)
2660 {
2661         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2662                                     write_fault, writable, NULL);
2663 }
2664 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2665
2666 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2667 {
2668         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2669 }
2670 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2671
2672 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2673 {
2674         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2675 }
2676 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2677
2678 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2679 {
2680         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2681 }
2682 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2683
2684 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2685 {
2686         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2687 }
2688 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2689
2690 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2691 {
2692         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2693 }
2694 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2695
2696 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2697                             struct page **pages, int nr_pages)
2698 {
2699         unsigned long addr;
2700         gfn_t entry = 0;
2701
2702         addr = gfn_to_hva_many(slot, gfn, &entry);
2703         if (kvm_is_error_hva(addr))
2704                 return -1;
2705
2706         if (entry < nr_pages)
2707                 return 0;
2708
2709         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2710 }
2711 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2712
2713 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2714 {
2715         if (is_error_noslot_pfn(pfn))
2716                 return KVM_ERR_PTR_BAD_PAGE;
2717
2718         if (kvm_is_reserved_pfn(pfn)) {
2719                 WARN_ON(1);
2720                 return KVM_ERR_PTR_BAD_PAGE;
2721         }
2722
2723         return pfn_to_page(pfn);
2724 }
2725
2726 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2727 {
2728         kvm_pfn_t pfn;
2729
2730         pfn = gfn_to_pfn(kvm, gfn);
2731
2732         return kvm_pfn_to_page(pfn);
2733 }
2734 EXPORT_SYMBOL_GPL(gfn_to_page);
2735
2736 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2737 {
2738         if (pfn == 0)
2739                 return;
2740
2741         if (dirty)
2742                 kvm_release_pfn_dirty(pfn);
2743         else
2744                 kvm_release_pfn_clean(pfn);
2745 }
2746
2747 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2748 {
2749         kvm_pfn_t pfn;
2750         void *hva = NULL;
2751         struct page *page = KVM_UNMAPPED_PAGE;
2752
2753         if (!map)
2754                 return -EINVAL;
2755
2756         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2757         if (is_error_noslot_pfn(pfn))
2758                 return -EINVAL;
2759
2760         if (pfn_valid(pfn)) {
2761                 page = pfn_to_page(pfn);
2762                 hva = kmap(page);
2763 #ifdef CONFIG_HAS_IOMEM
2764         } else {
2765                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2766 #endif
2767         }
2768
2769         if (!hva)
2770                 return -EFAULT;
2771
2772         map->page = page;
2773         map->hva = hva;
2774         map->pfn = pfn;
2775         map->gfn = gfn;
2776
2777         return 0;
2778 }
2779 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2780
2781 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2782 {
2783         if (!map)
2784                 return;
2785
2786         if (!map->hva)
2787                 return;
2788
2789         if (map->page != KVM_UNMAPPED_PAGE)
2790                 kunmap(map->page);
2791 #ifdef CONFIG_HAS_IOMEM
2792         else
2793                 memunmap(map->hva);
2794 #endif
2795
2796         if (dirty)
2797                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2798
2799         kvm_release_pfn(map->pfn, dirty);
2800
2801         map->hva = NULL;
2802         map->page = NULL;
2803 }
2804 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2805
2806 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2807 {
2808         kvm_pfn_t pfn;
2809
2810         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2811
2812         return kvm_pfn_to_page(pfn);
2813 }
2814 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2815
2816 void kvm_release_page_clean(struct page *page)
2817 {
2818         WARN_ON(is_error_page(page));
2819
2820         kvm_release_pfn_clean(page_to_pfn(page));
2821 }
2822 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2823
2824 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2825 {
2826         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2827                 put_page(pfn_to_page(pfn));
2828 }
2829 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2830
2831 void kvm_release_page_dirty(struct page *page)
2832 {
2833         WARN_ON(is_error_page(page));
2834
2835         kvm_release_pfn_dirty(page_to_pfn(page));
2836 }
2837 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2838
2839 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2840 {
2841         kvm_set_pfn_dirty(pfn);
2842         kvm_release_pfn_clean(pfn);
2843 }
2844 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2845
2846 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2847 {
2848         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2849                 SetPageDirty(pfn_to_page(pfn));
2850 }
2851 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2852
2853 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2854 {
2855         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2856                 mark_page_accessed(pfn_to_page(pfn));
2857 }
2858 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2859
2860 static int next_segment(unsigned long len, int offset)
2861 {
2862         if (len > PAGE_SIZE - offset)
2863                 return PAGE_SIZE - offset;
2864         else
2865                 return len;
2866 }
2867
2868 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2869                                  void *data, int offset, int len)
2870 {
2871         int r;
2872         unsigned long addr;
2873
2874         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2875         if (kvm_is_error_hva(addr))
2876                 return -EFAULT;
2877         r = __copy_from_user(data, (void __user *)addr + offset, len);
2878         if (r)
2879                 return -EFAULT;
2880         return 0;
2881 }
2882
2883 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2884                         int len)
2885 {
2886         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2887
2888         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2889 }
2890 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2891
2892 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2893                              int offset, int len)
2894 {
2895         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2896
2897         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2898 }
2899 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2900
2901 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2902 {
2903         gfn_t gfn = gpa >> PAGE_SHIFT;
2904         int seg;
2905         int offset = offset_in_page(gpa);
2906         int ret;
2907
2908         while ((seg = next_segment(len, offset)) != 0) {
2909                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2910                 if (ret < 0)
2911                         return ret;
2912                 offset = 0;
2913                 len -= seg;
2914                 data += seg;
2915                 ++gfn;
2916         }
2917         return 0;
2918 }
2919 EXPORT_SYMBOL_GPL(kvm_read_guest);
2920
2921 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2922 {
2923         gfn_t gfn = gpa >> PAGE_SHIFT;
2924         int seg;
2925         int offset = offset_in_page(gpa);
2926         int ret;
2927
2928         while ((seg = next_segment(len, offset)) != 0) {
2929                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2930                 if (ret < 0)
2931                         return ret;
2932                 offset = 0;
2933                 len -= seg;
2934                 data += seg;
2935                 ++gfn;
2936         }
2937         return 0;
2938 }
2939 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2940
2941 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2942                                    void *data, int offset, unsigned long len)
2943 {
2944         int r;
2945         unsigned long addr;
2946
2947         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2948         if (kvm_is_error_hva(addr))
2949                 return -EFAULT;
2950         pagefault_disable();
2951         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2952         pagefault_enable();
2953         if (r)
2954                 return -EFAULT;
2955         return 0;
2956 }
2957
2958 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2959                                void *data, unsigned long len)
2960 {
2961         gfn_t gfn = gpa >> PAGE_SHIFT;
2962         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2963         int offset = offset_in_page(gpa);
2964
2965         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2966 }
2967 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2968
2969 static int __kvm_write_guest_page(struct kvm *kvm,
2970                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2971                                   const void *data, int offset, int len)
2972 {
2973         int r;
2974         unsigned long addr;
2975
2976         addr = gfn_to_hva_memslot(memslot, gfn);
2977         if (kvm_is_error_hva(addr))
2978                 return -EFAULT;
2979         r = __copy_to_user((void __user *)addr + offset, data, len);
2980         if (r)
2981                 return -EFAULT;
2982         mark_page_dirty_in_slot(kvm, memslot, gfn);
2983         return 0;
2984 }
2985
2986 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2987                          const void *data, int offset, int len)
2988 {
2989         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2990
2991         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2992 }
2993 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2994
2995 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2996                               const void *data, int offset, int len)
2997 {
2998         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2999
3000         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3001 }
3002 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3003
3004 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3005                     unsigned long len)
3006 {
3007         gfn_t gfn = gpa >> PAGE_SHIFT;
3008         int seg;
3009         int offset = offset_in_page(gpa);
3010         int ret;
3011
3012         while ((seg = next_segment(len, offset)) != 0) {
3013                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3014                 if (ret < 0)
3015                         return ret;
3016                 offset = 0;
3017                 len -= seg;
3018                 data += seg;
3019                 ++gfn;
3020         }
3021         return 0;
3022 }
3023 EXPORT_SYMBOL_GPL(kvm_write_guest);
3024
3025 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3026                          unsigned long len)
3027 {
3028         gfn_t gfn = gpa >> PAGE_SHIFT;
3029         int seg;
3030         int offset = offset_in_page(gpa);
3031         int ret;
3032
3033         while ((seg = next_segment(len, offset)) != 0) {
3034                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3035                 if (ret < 0)
3036                         return ret;
3037                 offset = 0;
3038                 len -= seg;
3039                 data += seg;
3040                 ++gfn;
3041         }
3042         return 0;
3043 }
3044 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3045
3046 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3047                                        struct gfn_to_hva_cache *ghc,
3048                                        gpa_t gpa, unsigned long len)
3049 {
3050         int offset = offset_in_page(gpa);
3051         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3052         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3053         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3054         gfn_t nr_pages_avail;
3055
3056         /* Update ghc->generation before performing any error checks. */
3057         ghc->generation = slots->generation;
3058
3059         if (start_gfn > end_gfn) {
3060                 ghc->hva = KVM_HVA_ERR_BAD;
3061                 return -EINVAL;
3062         }
3063
3064         /*
3065          * If the requested region crosses two memslots, we still
3066          * verify that the entire region is valid here.
3067          */
3068         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3069                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3070                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3071                                            &nr_pages_avail);
3072                 if (kvm_is_error_hva(ghc->hva))
3073                         return -EFAULT;
3074         }
3075
3076         /* Use the slow path for cross page reads and writes. */
3077         if (nr_pages_needed == 1)
3078                 ghc->hva += offset;
3079         else
3080                 ghc->memslot = NULL;
3081
3082         ghc->gpa = gpa;
3083         ghc->len = len;
3084         return 0;
3085 }
3086
3087 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3088                               gpa_t gpa, unsigned long len)
3089 {
3090         struct kvm_memslots *slots = kvm_memslots(kvm);
3091         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3092 }
3093 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3094
3095 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3096                                   void *data, unsigned int offset,
3097                                   unsigned long len)
3098 {
3099         struct kvm_memslots *slots = kvm_memslots(kvm);
3100         int r;
3101         gpa_t gpa = ghc->gpa + offset;
3102
3103         if (WARN_ON_ONCE(len + offset > ghc->len))
3104                 return -EINVAL;
3105
3106         if (slots->generation != ghc->generation) {
3107                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3108                         return -EFAULT;
3109         }
3110
3111         if (kvm_is_error_hva(ghc->hva))
3112                 return -EFAULT;
3113
3114         if (unlikely(!ghc->memslot))
3115                 return kvm_write_guest(kvm, gpa, data, len);
3116
3117         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3118         if (r)
3119                 return -EFAULT;
3120         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3121
3122         return 0;
3123 }
3124 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3125
3126 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3127                            void *data, unsigned long len)
3128 {
3129         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3130 }
3131 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3132
3133 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3134                                  void *data, unsigned int offset,
3135                                  unsigned long len)
3136 {
3137         struct kvm_memslots *slots = kvm_memslots(kvm);
3138         int r;
3139         gpa_t gpa = ghc->gpa + offset;
3140
3141         if (WARN_ON_ONCE(len + offset > ghc->len))
3142                 return -EINVAL;
3143
3144         if (slots->generation != ghc->generation) {
3145                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3146                         return -EFAULT;
3147         }
3148
3149         if (kvm_is_error_hva(ghc->hva))
3150                 return -EFAULT;
3151
3152         if (unlikely(!ghc->memslot))
3153                 return kvm_read_guest(kvm, gpa, data, len);
3154
3155         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3156         if (r)
3157                 return -EFAULT;
3158
3159         return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3162
3163 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3164                           void *data, unsigned long len)
3165 {
3166         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3167 }
3168 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3169
3170 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3171 {
3172         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3173         gfn_t gfn = gpa >> PAGE_SHIFT;
3174         int seg;
3175         int offset = offset_in_page(gpa);
3176         int ret;
3177
3178         while ((seg = next_segment(len, offset)) != 0) {
3179                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3180                 if (ret < 0)
3181                         return ret;
3182                 offset = 0;
3183                 len -= seg;
3184                 ++gfn;
3185         }
3186         return 0;
3187 }
3188 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3189
3190 void mark_page_dirty_in_slot(struct kvm *kvm,
3191                              const struct kvm_memory_slot *memslot,
3192                              gfn_t gfn)
3193 {
3194         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3195
3196 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3197         if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3198                 return;
3199 #endif
3200
3201         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3202                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3203                 u32 slot = (memslot->as_id << 16) | memslot->id;
3204
3205                 if (kvm->dirty_ring_size)
3206                         kvm_dirty_ring_push(&vcpu->dirty_ring,
3207                                             slot, rel_gfn);
3208                 else
3209                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3210         }
3211 }
3212 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3213
3214 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3215 {
3216         struct kvm_memory_slot *memslot;
3217
3218         memslot = gfn_to_memslot(kvm, gfn);
3219         mark_page_dirty_in_slot(kvm, memslot, gfn);
3220 }
3221 EXPORT_SYMBOL_GPL(mark_page_dirty);
3222
3223 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3224 {
3225         struct kvm_memory_slot *memslot;
3226
3227         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3228         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3229 }
3230 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3231
3232 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3233 {
3234         if (!vcpu->sigset_active)
3235                 return;
3236
3237         /*
3238          * This does a lockless modification of ->real_blocked, which is fine
3239          * because, only current can change ->real_blocked and all readers of
3240          * ->real_blocked don't care as long ->real_blocked is always a subset
3241          * of ->blocked.
3242          */
3243         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3244 }
3245
3246 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3247 {
3248         if (!vcpu->sigset_active)
3249                 return;
3250
3251         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3252         sigemptyset(&current->real_blocked);
3253 }
3254
3255 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3256 {
3257         unsigned int old, val, grow, grow_start;
3258
3259         old = val = vcpu->halt_poll_ns;
3260         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3261         grow = READ_ONCE(halt_poll_ns_grow);
3262         if (!grow)
3263                 goto out;
3264
3265         val *= grow;
3266         if (val < grow_start)
3267                 val = grow_start;
3268
3269         if (val > vcpu->kvm->max_halt_poll_ns)
3270                 val = vcpu->kvm->max_halt_poll_ns;
3271
3272         vcpu->halt_poll_ns = val;
3273 out:
3274         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3275 }
3276
3277 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3278 {
3279         unsigned int old, val, shrink, grow_start;
3280
3281         old = val = vcpu->halt_poll_ns;
3282         shrink = READ_ONCE(halt_poll_ns_shrink);
3283         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3284         if (shrink == 0)
3285                 val = 0;
3286         else
3287                 val /= shrink;
3288
3289         if (val < grow_start)
3290                 val = 0;
3291
3292         vcpu->halt_poll_ns = val;
3293         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3294 }
3295
3296 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3297 {
3298         int ret = -EINTR;
3299         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3300
3301         if (kvm_arch_vcpu_runnable(vcpu)) {
3302                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3303                 goto out;
3304         }
3305         if (kvm_cpu_has_pending_timer(vcpu))
3306                 goto out;
3307         if (signal_pending(current))
3308                 goto out;
3309         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3310                 goto out;
3311
3312         ret = 0;
3313 out:
3314         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3315         return ret;
3316 }
3317
3318 /*
3319  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3320  * pending.  This is mostly used when halting a vCPU, but may also be used
3321  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3322  */
3323 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3324 {
3325         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3326         bool waited = false;
3327
3328         vcpu->stat.generic.blocking = 1;
3329
3330         kvm_arch_vcpu_blocking(vcpu);
3331
3332         prepare_to_rcuwait(wait);
3333         for (;;) {
3334                 set_current_state(TASK_INTERRUPTIBLE);
3335
3336                 if (kvm_vcpu_check_block(vcpu) < 0)
3337                         break;
3338
3339                 waited = true;
3340                 schedule();
3341         }
3342         finish_rcuwait(wait);
3343
3344         kvm_arch_vcpu_unblocking(vcpu);
3345
3346         vcpu->stat.generic.blocking = 0;
3347
3348         return waited;
3349 }
3350
3351 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3352                                           ktime_t end, bool success)
3353 {
3354         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3355         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3356
3357         ++vcpu->stat.generic.halt_attempted_poll;
3358
3359         if (success) {
3360                 ++vcpu->stat.generic.halt_successful_poll;
3361
3362                 if (!vcpu_valid_wakeup(vcpu))
3363                         ++vcpu->stat.generic.halt_poll_invalid;
3364
3365                 stats->halt_poll_success_ns += poll_ns;
3366                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3367         } else {
3368                 stats->halt_poll_fail_ns += poll_ns;
3369                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3370         }
3371 }
3372
3373 /*
3374  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3375  * polling is enabled, busy wait for a short time before blocking to avoid the
3376  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3377  * is halted.
3378  */
3379 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3380 {
3381         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3382         bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3383         ktime_t start, cur, poll_end;
3384         bool waited = false;
3385         u64 halt_ns;
3386
3387         start = cur = poll_end = ktime_get();
3388         if (do_halt_poll) {
3389                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3390
3391                 do {
3392                         /*
3393                          * This sets KVM_REQ_UNHALT if an interrupt
3394                          * arrives.
3395                          */
3396                         if (kvm_vcpu_check_block(vcpu) < 0)
3397                                 goto out;
3398                         cpu_relax();
3399                         poll_end = cur = ktime_get();
3400                 } while (kvm_vcpu_can_poll(cur, stop));
3401         }
3402
3403         waited = kvm_vcpu_block(vcpu);
3404
3405         cur = ktime_get();
3406         if (waited) {
3407                 vcpu->stat.generic.halt_wait_ns +=
3408                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3409                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3410                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3411         }
3412 out:
3413         /* The total time the vCPU was "halted", including polling time. */
3414         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3415
3416         /*
3417          * Note, halt-polling is considered successful so long as the vCPU was
3418          * never actually scheduled out, i.e. even if the wake event arrived
3419          * after of the halt-polling loop itself, but before the full wait.
3420          */
3421         if (do_halt_poll)
3422                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3423
3424         if (halt_poll_allowed) {
3425                 if (!vcpu_valid_wakeup(vcpu)) {
3426                         shrink_halt_poll_ns(vcpu);
3427                 } else if (vcpu->kvm->max_halt_poll_ns) {
3428                         if (halt_ns <= vcpu->halt_poll_ns)
3429                                 ;
3430                         /* we had a long block, shrink polling */
3431                         else if (vcpu->halt_poll_ns &&
3432                                  halt_ns > vcpu->kvm->max_halt_poll_ns)
3433                                 shrink_halt_poll_ns(vcpu);
3434                         /* we had a short halt and our poll time is too small */
3435                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3436                                  halt_ns < vcpu->kvm->max_halt_poll_ns)
3437                                 grow_halt_poll_ns(vcpu);
3438                 } else {
3439                         vcpu->halt_poll_ns = 0;
3440                 }
3441         }
3442
3443         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3444 }
3445 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3446
3447 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3448 {
3449         if (__kvm_vcpu_wake_up(vcpu)) {
3450                 WRITE_ONCE(vcpu->ready, true);
3451                 ++vcpu->stat.generic.halt_wakeup;
3452                 return true;
3453         }
3454
3455         return false;
3456 }
3457 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3458
3459 #ifndef CONFIG_S390
3460 /*
3461  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3462  */
3463 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3464 {
3465         int me, cpu;
3466
3467         if (kvm_vcpu_wake_up(vcpu))
3468                 return;
3469
3470         me = get_cpu();
3471         /*
3472          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3473          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3474          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3475          * within the vCPU thread itself.
3476          */
3477         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3478                 if (vcpu->mode == IN_GUEST_MODE)
3479                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3480                 goto out;
3481         }
3482
3483         /*
3484          * Note, the vCPU could get migrated to a different pCPU at any point
3485          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3486          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3487          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3488          * vCPU also requires it to leave IN_GUEST_MODE.
3489          */
3490         if (kvm_arch_vcpu_should_kick(vcpu)) {
3491                 cpu = READ_ONCE(vcpu->cpu);
3492                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3493                         smp_send_reschedule(cpu);
3494         }
3495 out:
3496         put_cpu();
3497 }
3498 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3499 #endif /* !CONFIG_S390 */
3500
3501 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3502 {
3503         struct pid *pid;
3504         struct task_struct *task = NULL;
3505         int ret = 0;
3506
3507         rcu_read_lock();
3508         pid = rcu_dereference(target->pid);
3509         if (pid)
3510                 task = get_pid_task(pid, PIDTYPE_PID);
3511         rcu_read_unlock();
3512         if (!task)
3513                 return ret;
3514         ret = yield_to(task, 1);
3515         put_task_struct(task);
3516
3517         return ret;
3518 }
3519 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3520
3521 /*
3522  * Helper that checks whether a VCPU is eligible for directed yield.
3523  * Most eligible candidate to yield is decided by following heuristics:
3524  *
3525  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3526  *  (preempted lock holder), indicated by @in_spin_loop.
3527  *  Set at the beginning and cleared at the end of interception/PLE handler.
3528  *
3529  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3530  *  chance last time (mostly it has become eligible now since we have probably
3531  *  yielded to lockholder in last iteration. This is done by toggling
3532  *  @dy_eligible each time a VCPU checked for eligibility.)
3533  *
3534  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3535  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3536  *  burning. Giving priority for a potential lock-holder increases lock
3537  *  progress.
3538  *
3539  *  Since algorithm is based on heuristics, accessing another VCPU data without
3540  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3541  *  and continue with next VCPU and so on.
3542  */
3543 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3544 {
3545 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3546         bool eligible;
3547
3548         eligible = !vcpu->spin_loop.in_spin_loop ||
3549                     vcpu->spin_loop.dy_eligible;
3550
3551         if (vcpu->spin_loop.in_spin_loop)
3552                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3553
3554         return eligible;
3555 #else
3556         return true;
3557 #endif
3558 }
3559
3560 /*
3561  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3562  * a vcpu_load/vcpu_put pair.  However, for most architectures
3563  * kvm_arch_vcpu_runnable does not require vcpu_load.
3564  */
3565 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3566 {
3567         return kvm_arch_vcpu_runnable(vcpu);
3568 }
3569
3570 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3571 {
3572         if (kvm_arch_dy_runnable(vcpu))
3573                 return true;
3574
3575 #ifdef CONFIG_KVM_ASYNC_PF
3576         if (!list_empty_careful(&vcpu->async_pf.done))
3577                 return true;
3578 #endif
3579
3580         return false;
3581 }
3582
3583 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3584 {
3585         return false;
3586 }
3587
3588 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3589 {
3590         struct kvm *kvm = me->kvm;
3591         struct kvm_vcpu *vcpu;
3592         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3593         unsigned long i;
3594         int yielded = 0;
3595         int try = 3;
3596         int pass;
3597
3598         kvm_vcpu_set_in_spin_loop(me, true);
3599         /*
3600          * We boost the priority of a VCPU that is runnable but not
3601          * currently running, because it got preempted by something
3602          * else and called schedule in __vcpu_run.  Hopefully that
3603          * VCPU is holding the lock that we need and will release it.
3604          * We approximate round-robin by starting at the last boosted VCPU.
3605          */
3606         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3607                 kvm_for_each_vcpu(i, vcpu, kvm) {
3608                         if (!pass && i <= last_boosted_vcpu) {
3609                                 i = last_boosted_vcpu;
3610                                 continue;
3611                         } else if (pass && i > last_boosted_vcpu)
3612                                 break;
3613                         if (!READ_ONCE(vcpu->ready))
3614                                 continue;
3615                         if (vcpu == me)
3616                                 continue;
3617                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3618                                 continue;
3619                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3620                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3621                             !kvm_arch_vcpu_in_kernel(vcpu))
3622                                 continue;
3623                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3624                                 continue;
3625
3626                         yielded = kvm_vcpu_yield_to(vcpu);
3627                         if (yielded > 0) {
3628                                 kvm->last_boosted_vcpu = i;
3629                                 break;
3630                         } else if (yielded < 0) {
3631                                 try--;
3632                                 if (!try)
3633                                         break;
3634                         }
3635                 }
3636         }
3637         kvm_vcpu_set_in_spin_loop(me, false);
3638
3639         /* Ensure vcpu is not eligible during next spinloop */
3640         kvm_vcpu_set_dy_eligible(me, false);
3641 }
3642 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3643
3644 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3645 {
3646 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3647         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3648             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3649              kvm->dirty_ring_size / PAGE_SIZE);
3650 #else
3651         return false;
3652 #endif
3653 }
3654
3655 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3656 {
3657         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3658         struct page *page;
3659
3660         if (vmf->pgoff == 0)
3661                 page = virt_to_page(vcpu->run);
3662 #ifdef CONFIG_X86
3663         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3664                 page = virt_to_page(vcpu->arch.pio_data);
3665 #endif
3666 #ifdef CONFIG_KVM_MMIO
3667         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3668                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3669 #endif
3670         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3671                 page = kvm_dirty_ring_get_page(
3672                     &vcpu->dirty_ring,
3673                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3674         else
3675                 return kvm_arch_vcpu_fault(vcpu, vmf);
3676         get_page(page);
3677         vmf->page = page;
3678         return 0;
3679 }
3680
3681 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3682         .fault = kvm_vcpu_fault,
3683 };
3684
3685 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3686 {
3687         struct kvm_vcpu *vcpu = file->private_data;
3688         unsigned long pages = vma_pages(vma);
3689
3690         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3691              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3692             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3693                 return -EINVAL;
3694
3695         vma->vm_ops = &kvm_vcpu_vm_ops;
3696         return 0;
3697 }
3698
3699 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3700 {
3701         struct kvm_vcpu *vcpu = filp->private_data;
3702
3703         kvm_put_kvm(vcpu->kvm);
3704         return 0;
3705 }
3706
3707 static const struct file_operations kvm_vcpu_fops = {
3708         .release        = kvm_vcpu_release,
3709         .unlocked_ioctl = kvm_vcpu_ioctl,
3710         .mmap           = kvm_vcpu_mmap,
3711         .llseek         = noop_llseek,
3712         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3713 };
3714
3715 /*
3716  * Allocates an inode for the vcpu.
3717  */
3718 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3719 {
3720         char name[8 + 1 + ITOA_MAX_LEN + 1];
3721
3722         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3723         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3724 }
3725
3726 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3727 {
3728 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3729         struct dentry *debugfs_dentry;
3730         char dir_name[ITOA_MAX_LEN * 2];
3731
3732         if (!debugfs_initialized())
3733                 return;
3734
3735         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3736         debugfs_dentry = debugfs_create_dir(dir_name,
3737                                             vcpu->kvm->debugfs_dentry);
3738
3739         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3740 #endif
3741 }
3742
3743 /*
3744  * Creates some virtual cpus.  Good luck creating more than one.
3745  */
3746 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3747 {
3748         int r;
3749         struct kvm_vcpu *vcpu;
3750         struct page *page;
3751
3752         if (id >= KVM_MAX_VCPU_IDS)
3753                 return -EINVAL;
3754
3755         mutex_lock(&kvm->lock);
3756         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3757                 mutex_unlock(&kvm->lock);
3758                 return -EINVAL;
3759         }
3760
3761         kvm->created_vcpus++;
3762         mutex_unlock(&kvm->lock);
3763
3764         r = kvm_arch_vcpu_precreate(kvm, id);
3765         if (r)
3766                 goto vcpu_decrement;
3767
3768         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3769         if (!vcpu) {
3770                 r = -ENOMEM;
3771                 goto vcpu_decrement;
3772         }
3773
3774         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3775         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3776         if (!page) {
3777                 r = -ENOMEM;
3778                 goto vcpu_free;
3779         }
3780         vcpu->run = page_address(page);
3781
3782         kvm_vcpu_init(vcpu, kvm, id);
3783
3784         r = kvm_arch_vcpu_create(vcpu);
3785         if (r)
3786                 goto vcpu_free_run_page;
3787
3788         if (kvm->dirty_ring_size) {
3789                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3790                                          id, kvm->dirty_ring_size);
3791                 if (r)
3792                         goto arch_vcpu_destroy;
3793         }
3794
3795         mutex_lock(&kvm->lock);
3796         if (kvm_get_vcpu_by_id(kvm, id)) {
3797                 r = -EEXIST;
3798                 goto unlock_vcpu_destroy;
3799         }
3800
3801         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3802         r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3803         BUG_ON(r == -EBUSY);
3804         if (r)
3805                 goto unlock_vcpu_destroy;
3806
3807         /* Fill the stats id string for the vcpu */
3808         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3809                  task_pid_nr(current), id);
3810
3811         /* Now it's all set up, let userspace reach it */
3812         kvm_get_kvm(kvm);
3813         r = create_vcpu_fd(vcpu);
3814         if (r < 0) {
3815                 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3816                 kvm_put_kvm_no_destroy(kvm);
3817                 goto unlock_vcpu_destroy;
3818         }
3819
3820         /*
3821          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3822          * pointer before kvm->online_vcpu's incremented value.
3823          */
3824         smp_wmb();
3825         atomic_inc(&kvm->online_vcpus);
3826
3827         mutex_unlock(&kvm->lock);
3828         kvm_arch_vcpu_postcreate(vcpu);
3829         kvm_create_vcpu_debugfs(vcpu);
3830         return r;
3831
3832 unlock_vcpu_destroy:
3833         mutex_unlock(&kvm->lock);
3834         kvm_dirty_ring_free(&vcpu->dirty_ring);
3835 arch_vcpu_destroy:
3836         kvm_arch_vcpu_destroy(vcpu);
3837 vcpu_free_run_page:
3838         free_page((unsigned long)vcpu->run);
3839 vcpu_free:
3840         kmem_cache_free(kvm_vcpu_cache, vcpu);
3841 vcpu_decrement:
3842         mutex_lock(&kvm->lock);
3843         kvm->created_vcpus--;
3844         mutex_unlock(&kvm->lock);
3845         return r;
3846 }
3847
3848 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3849 {
3850         if (sigset) {
3851                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3852                 vcpu->sigset_active = 1;
3853                 vcpu->sigset = *sigset;
3854         } else
3855                 vcpu->sigset_active = 0;
3856         return 0;
3857 }
3858
3859 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3860                               size_t size, loff_t *offset)
3861 {
3862         struct kvm_vcpu *vcpu = file->private_data;
3863
3864         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3865                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3866                         sizeof(vcpu->stat), user_buffer, size, offset);
3867 }
3868
3869 static const struct file_operations kvm_vcpu_stats_fops = {
3870         .read = kvm_vcpu_stats_read,
3871         .llseek = noop_llseek,
3872 };
3873
3874 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3875 {
3876         int fd;
3877         struct file *file;
3878         char name[15 + ITOA_MAX_LEN + 1];
3879
3880         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3881
3882         fd = get_unused_fd_flags(O_CLOEXEC);
3883         if (fd < 0)
3884                 return fd;
3885
3886         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3887         if (IS_ERR(file)) {
3888                 put_unused_fd(fd);
3889                 return PTR_ERR(file);
3890         }
3891         file->f_mode |= FMODE_PREAD;
3892         fd_install(fd, file);
3893
3894         return fd;
3895 }
3896
3897 static long kvm_vcpu_ioctl(struct file *filp,
3898                            unsigned int ioctl, unsigned long arg)
3899 {
3900         struct kvm_vcpu *vcpu = filp->private_data;
3901         void __user *argp = (void __user *)arg;
3902         int r;
3903         struct kvm_fpu *fpu = NULL;
3904         struct kvm_sregs *kvm_sregs = NULL;
3905
3906         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3907                 return -EIO;
3908
3909         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3910                 return -EINVAL;
3911
3912         /*
3913          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3914          * execution; mutex_lock() would break them.
3915          */
3916         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3917         if (r != -ENOIOCTLCMD)
3918                 return r;
3919
3920         if (mutex_lock_killable(&vcpu->mutex))
3921                 return -EINTR;
3922         switch (ioctl) {
3923         case KVM_RUN: {
3924                 struct pid *oldpid;
3925                 r = -EINVAL;
3926                 if (arg)
3927                         goto out;
3928                 oldpid = rcu_access_pointer(vcpu->pid);
3929                 if (unlikely(oldpid != task_pid(current))) {
3930                         /* The thread running this VCPU changed. */
3931                         struct pid *newpid;
3932
3933                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3934                         if (r)
3935                                 break;
3936
3937                         newpid = get_task_pid(current, PIDTYPE_PID);
3938                         rcu_assign_pointer(vcpu->pid, newpid);
3939                         if (oldpid)
3940                                 synchronize_rcu();
3941                         put_pid(oldpid);
3942                 }
3943                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3944                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3945                 break;
3946         }
3947         case KVM_GET_REGS: {
3948                 struct kvm_regs *kvm_regs;
3949
3950                 r = -ENOMEM;
3951                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3952                 if (!kvm_regs)
3953                         goto out;
3954                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3955                 if (r)
3956                         goto out_free1;
3957                 r = -EFAULT;
3958                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3959                         goto out_free1;
3960                 r = 0;
3961 out_free1:
3962                 kfree(kvm_regs);
3963                 break;
3964         }
3965         case KVM_SET_REGS: {
3966                 struct kvm_regs *kvm_regs;
3967
3968                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3969                 if (IS_ERR(kvm_regs)) {
3970                         r = PTR_ERR(kvm_regs);
3971                         goto out;
3972                 }
3973                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3974                 kfree(kvm_regs);
3975                 break;
3976         }
3977         case KVM_GET_SREGS: {
3978                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3979                                     GFP_KERNEL_ACCOUNT);
3980                 r = -ENOMEM;
3981                 if (!kvm_sregs)
3982                         goto out;
3983                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3984                 if (r)
3985                         goto out;
3986                 r = -EFAULT;
3987                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3988                         goto out;
3989                 r = 0;
3990                 break;
3991         }
3992         case KVM_SET_SREGS: {
3993                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3994                 if (IS_ERR(kvm_sregs)) {
3995                         r = PTR_ERR(kvm_sregs);
3996                         kvm_sregs = NULL;
3997                         goto out;
3998                 }
3999                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4000                 break;
4001         }
4002         case KVM_GET_MP_STATE: {
4003                 struct kvm_mp_state mp_state;
4004
4005                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4006                 if (r)
4007                         goto out;
4008                 r = -EFAULT;
4009                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4010                         goto out;
4011                 r = 0;
4012                 break;
4013         }
4014         case KVM_SET_MP_STATE: {
4015                 struct kvm_mp_state mp_state;
4016
4017                 r = -EFAULT;
4018                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4019                         goto out;
4020                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4021                 break;
4022         }
4023         case KVM_TRANSLATE: {
4024                 struct kvm_translation tr;
4025
4026                 r = -EFAULT;
4027                 if (copy_from_user(&tr, argp, sizeof(tr)))
4028                         goto out;
4029                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4030                 if (r)
4031                         goto out;
4032                 r = -EFAULT;
4033                 if (copy_to_user(argp, &tr, sizeof(tr)))
4034                         goto out;
4035                 r = 0;
4036                 break;
4037         }
4038         case KVM_SET_GUEST_DEBUG: {
4039                 struct kvm_guest_debug dbg;
4040
4041                 r = -EFAULT;
4042                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4043                         goto out;
4044                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4045                 break;
4046         }
4047         case KVM_SET_SIGNAL_MASK: {
4048                 struct kvm_signal_mask __user *sigmask_arg = argp;
4049                 struct kvm_signal_mask kvm_sigmask;
4050                 sigset_t sigset, *p;
4051
4052                 p = NULL;
4053                 if (argp) {
4054                         r = -EFAULT;
4055                         if (copy_from_user(&kvm_sigmask, argp,
4056                                            sizeof(kvm_sigmask)))
4057                                 goto out;
4058                         r = -EINVAL;
4059                         if (kvm_sigmask.len != sizeof(sigset))
4060                                 goto out;
4061                         r = -EFAULT;
4062                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4063                                            sizeof(sigset)))
4064                                 goto out;
4065                         p = &sigset;
4066                 }
4067                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4068                 break;
4069         }
4070         case KVM_GET_FPU: {
4071                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4072                 r = -ENOMEM;
4073                 if (!fpu)
4074                         goto out;
4075                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4076                 if (r)
4077                         goto out;
4078                 r = -EFAULT;
4079                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4080                         goto out;
4081                 r = 0;
4082                 break;
4083         }
4084         case KVM_SET_FPU: {
4085                 fpu = memdup_user(argp, sizeof(*fpu));
4086                 if (IS_ERR(fpu)) {
4087                         r = PTR_ERR(fpu);
4088                         fpu = NULL;
4089                         goto out;
4090                 }
4091                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4092                 break;
4093         }
4094         case KVM_GET_STATS_FD: {
4095                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4096                 break;
4097         }
4098         default:
4099                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4100         }
4101 out:
4102         mutex_unlock(&vcpu->mutex);
4103         kfree(fpu);
4104         kfree(kvm_sregs);
4105         return r;
4106 }
4107
4108 #ifdef CONFIG_KVM_COMPAT
4109 static long kvm_vcpu_compat_ioctl(struct file *filp,
4110                                   unsigned int ioctl, unsigned long arg)
4111 {
4112         struct kvm_vcpu *vcpu = filp->private_data;
4113         void __user *argp = compat_ptr(arg);
4114         int r;
4115
4116         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4117                 return -EIO;
4118
4119         switch (ioctl) {
4120         case KVM_SET_SIGNAL_MASK: {
4121                 struct kvm_signal_mask __user *sigmask_arg = argp;
4122                 struct kvm_signal_mask kvm_sigmask;
4123                 sigset_t sigset;
4124
4125                 if (argp) {
4126                         r = -EFAULT;
4127                         if (copy_from_user(&kvm_sigmask, argp,
4128                                            sizeof(kvm_sigmask)))
4129                                 goto out;
4130                         r = -EINVAL;
4131                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4132                                 goto out;
4133                         r = -EFAULT;
4134                         if (get_compat_sigset(&sigset,
4135                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4136                                 goto out;
4137                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4138                 } else
4139                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4140                 break;
4141         }
4142         default:
4143                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4144         }
4145
4146 out:
4147         return r;
4148 }
4149 #endif
4150
4151 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4152 {
4153         struct kvm_device *dev = filp->private_data;
4154
4155         if (dev->ops->mmap)
4156                 return dev->ops->mmap(dev, vma);
4157
4158         return -ENODEV;
4159 }
4160
4161 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4162                                  int (*accessor)(struct kvm_device *dev,
4163                                                  struct kvm_device_attr *attr),
4164                                  unsigned long arg)
4165 {
4166         struct kvm_device_attr attr;
4167
4168         if (!accessor)
4169                 return -EPERM;
4170
4171         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4172                 return -EFAULT;
4173
4174         return accessor(dev, &attr);
4175 }
4176
4177 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4178                              unsigned long arg)
4179 {
4180         struct kvm_device *dev = filp->private_data;
4181
4182         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4183                 return -EIO;
4184
4185         switch (ioctl) {
4186         case KVM_SET_DEVICE_ATTR:
4187                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4188         case KVM_GET_DEVICE_ATTR:
4189                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4190         case KVM_HAS_DEVICE_ATTR:
4191                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4192         default:
4193                 if (dev->ops->ioctl)
4194                         return dev->ops->ioctl(dev, ioctl, arg);
4195
4196                 return -ENOTTY;
4197         }
4198 }
4199
4200 static int kvm_device_release(struct inode *inode, struct file *filp)
4201 {
4202         struct kvm_device *dev = filp->private_data;
4203         struct kvm *kvm = dev->kvm;
4204
4205         if (dev->ops->release) {
4206                 mutex_lock(&kvm->lock);
4207                 list_del(&dev->vm_node);
4208                 dev->ops->release(dev);
4209                 mutex_unlock(&kvm->lock);
4210         }
4211
4212         kvm_put_kvm(kvm);
4213         return 0;
4214 }
4215
4216 static const struct file_operations kvm_device_fops = {
4217         .unlocked_ioctl = kvm_device_ioctl,
4218         .release = kvm_device_release,
4219         KVM_COMPAT(kvm_device_ioctl),
4220         .mmap = kvm_device_mmap,
4221 };
4222
4223 struct kvm_device *kvm_device_from_filp(struct file *filp)
4224 {
4225         if (filp->f_op != &kvm_device_fops)
4226                 return NULL;
4227
4228         return filp->private_data;
4229 }
4230
4231 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4232 #ifdef CONFIG_KVM_MPIC
4233         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4234         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4235 #endif
4236 };
4237
4238 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4239 {
4240         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4241                 return -ENOSPC;
4242
4243         if (kvm_device_ops_table[type] != NULL)
4244                 return -EEXIST;
4245
4246         kvm_device_ops_table[type] = ops;
4247         return 0;
4248 }
4249
4250 void kvm_unregister_device_ops(u32 type)
4251 {
4252         if (kvm_device_ops_table[type] != NULL)
4253                 kvm_device_ops_table[type] = NULL;
4254 }
4255
4256 static int kvm_ioctl_create_device(struct kvm *kvm,
4257                                    struct kvm_create_device *cd)
4258 {
4259         const struct kvm_device_ops *ops = NULL;
4260         struct kvm_device *dev;
4261         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4262         int type;
4263         int ret;
4264
4265         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4266                 return -ENODEV;
4267
4268         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4269         ops = kvm_device_ops_table[type];
4270         if (ops == NULL)
4271                 return -ENODEV;
4272
4273         if (test)
4274                 return 0;
4275
4276         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4277         if (!dev)
4278                 return -ENOMEM;
4279
4280         dev->ops = ops;
4281         dev->kvm = kvm;
4282
4283         mutex_lock(&kvm->lock);
4284         ret = ops->create(dev, type);
4285         if (ret < 0) {
4286                 mutex_unlock(&kvm->lock);
4287                 kfree(dev);
4288                 return ret;
4289         }
4290         list_add(&dev->vm_node, &kvm->devices);
4291         mutex_unlock(&kvm->lock);
4292
4293         if (ops->init)
4294                 ops->init(dev);
4295
4296         kvm_get_kvm(kvm);
4297         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4298         if (ret < 0) {
4299                 kvm_put_kvm_no_destroy(kvm);
4300                 mutex_lock(&kvm->lock);
4301                 list_del(&dev->vm_node);
4302                 mutex_unlock(&kvm->lock);
4303                 ops->destroy(dev);
4304                 return ret;
4305         }
4306
4307         cd->fd = ret;
4308         return 0;
4309 }
4310
4311 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4312 {
4313         switch (arg) {
4314         case KVM_CAP_USER_MEMORY:
4315         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4316         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4317         case KVM_CAP_INTERNAL_ERROR_DATA:
4318 #ifdef CONFIG_HAVE_KVM_MSI
4319         case KVM_CAP_SIGNAL_MSI:
4320 #endif
4321 #ifdef CONFIG_HAVE_KVM_IRQFD
4322         case KVM_CAP_IRQFD:
4323         case KVM_CAP_IRQFD_RESAMPLE:
4324 #endif
4325         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4326         case KVM_CAP_CHECK_EXTENSION_VM:
4327         case KVM_CAP_ENABLE_CAP_VM:
4328         case KVM_CAP_HALT_POLL:
4329                 return 1;
4330 #ifdef CONFIG_KVM_MMIO
4331         case KVM_CAP_COALESCED_MMIO:
4332                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4333         case KVM_CAP_COALESCED_PIO:
4334                 return 1;
4335 #endif
4336 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4337         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4338                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4339 #endif
4340 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4341         case KVM_CAP_IRQ_ROUTING:
4342                 return KVM_MAX_IRQ_ROUTES;
4343 #endif
4344 #if KVM_ADDRESS_SPACE_NUM > 1
4345         case KVM_CAP_MULTI_ADDRESS_SPACE:
4346                 return KVM_ADDRESS_SPACE_NUM;
4347 #endif
4348         case KVM_CAP_NR_MEMSLOTS:
4349                 return KVM_USER_MEM_SLOTS;
4350         case KVM_CAP_DIRTY_LOG_RING:
4351 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4352                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4353 #else
4354                 return 0;
4355 #endif
4356         case KVM_CAP_BINARY_STATS_FD:
4357         case KVM_CAP_SYSTEM_EVENT_DATA:
4358                 return 1;
4359         default:
4360                 break;
4361         }
4362         return kvm_vm_ioctl_check_extension(kvm, arg);
4363 }
4364
4365 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4366 {
4367         int r;
4368
4369         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4370                 return -EINVAL;
4371
4372         /* the size should be power of 2 */
4373         if (!size || (size & (size - 1)))
4374                 return -EINVAL;
4375
4376         /* Should be bigger to keep the reserved entries, or a page */
4377         if (size < kvm_dirty_ring_get_rsvd_entries() *
4378             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4379                 return -EINVAL;
4380
4381         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4382             sizeof(struct kvm_dirty_gfn))
4383                 return -E2BIG;
4384
4385         /* We only allow it to set once */
4386         if (kvm->dirty_ring_size)
4387                 return -EINVAL;
4388
4389         mutex_lock(&kvm->lock);
4390
4391         if (kvm->created_vcpus) {
4392                 /* We don't allow to change this value after vcpu created */
4393                 r = -EINVAL;
4394         } else {
4395                 kvm->dirty_ring_size = size;
4396                 r = 0;
4397         }
4398
4399         mutex_unlock(&kvm->lock);
4400         return r;
4401 }
4402
4403 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4404 {
4405         unsigned long i;
4406         struct kvm_vcpu *vcpu;
4407         int cleared = 0;
4408
4409         if (!kvm->dirty_ring_size)
4410                 return -EINVAL;
4411
4412         mutex_lock(&kvm->slots_lock);
4413
4414         kvm_for_each_vcpu(i, vcpu, kvm)
4415                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4416
4417         mutex_unlock(&kvm->slots_lock);
4418
4419         if (cleared)
4420                 kvm_flush_remote_tlbs(kvm);
4421
4422         return cleared;
4423 }
4424
4425 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4426                                                   struct kvm_enable_cap *cap)
4427 {
4428         return -EINVAL;
4429 }
4430
4431 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4432                                            struct kvm_enable_cap *cap)
4433 {
4434         switch (cap->cap) {
4435 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4436         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4437                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4438
4439                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4440                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4441
4442                 if (cap->flags || (cap->args[0] & ~allowed_options))
4443                         return -EINVAL;
4444                 kvm->manual_dirty_log_protect = cap->args[0];
4445                 return 0;
4446         }
4447 #endif
4448         case KVM_CAP_HALT_POLL: {
4449                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4450                         return -EINVAL;
4451
4452                 kvm->max_halt_poll_ns = cap->args[0];
4453                 return 0;
4454         }
4455         case KVM_CAP_DIRTY_LOG_RING:
4456                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4457         default:
4458                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4459         }
4460 }
4461
4462 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4463                               size_t size, loff_t *offset)
4464 {
4465         struct kvm *kvm = file->private_data;
4466
4467         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4468                                 &kvm_vm_stats_desc[0], &kvm->stat,
4469                                 sizeof(kvm->stat), user_buffer, size, offset);
4470 }
4471
4472 static const struct file_operations kvm_vm_stats_fops = {
4473         .read = kvm_vm_stats_read,
4474         .llseek = noop_llseek,
4475 };
4476
4477 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4478 {
4479         int fd;
4480         struct file *file;
4481
4482         fd = get_unused_fd_flags(O_CLOEXEC);
4483         if (fd < 0)
4484                 return fd;
4485
4486         file = anon_inode_getfile("kvm-vm-stats",
4487                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4488         if (IS_ERR(file)) {
4489                 put_unused_fd(fd);
4490                 return PTR_ERR(file);
4491         }
4492         file->f_mode |= FMODE_PREAD;
4493         fd_install(fd, file);
4494
4495         return fd;
4496 }
4497
4498 static long kvm_vm_ioctl(struct file *filp,
4499                            unsigned int ioctl, unsigned long arg)
4500 {
4501         struct kvm *kvm = filp->private_data;
4502         void __user *argp = (void __user *)arg;
4503         int r;
4504
4505         if (kvm->mm != current->mm || kvm->vm_dead)
4506                 return -EIO;
4507         switch (ioctl) {
4508         case KVM_CREATE_VCPU:
4509                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4510                 break;
4511         case KVM_ENABLE_CAP: {
4512                 struct kvm_enable_cap cap;
4513
4514                 r = -EFAULT;
4515                 if (copy_from_user(&cap, argp, sizeof(cap)))
4516                         goto out;
4517                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4518                 break;
4519         }
4520         case KVM_SET_USER_MEMORY_REGION: {
4521                 struct kvm_userspace_memory_region kvm_userspace_mem;
4522
4523                 r = -EFAULT;
4524                 if (copy_from_user(&kvm_userspace_mem, argp,
4525                                                 sizeof(kvm_userspace_mem)))
4526                         goto out;
4527
4528                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4529                 break;
4530         }
4531         case KVM_GET_DIRTY_LOG: {
4532                 struct kvm_dirty_log log;
4533
4534                 r = -EFAULT;
4535                 if (copy_from_user(&log, argp, sizeof(log)))
4536                         goto out;
4537                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4538                 break;
4539         }
4540 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4541         case KVM_CLEAR_DIRTY_LOG: {
4542                 struct kvm_clear_dirty_log log;
4543
4544                 r = -EFAULT;
4545                 if (copy_from_user(&log, argp, sizeof(log)))
4546                         goto out;
4547                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4548                 break;
4549         }
4550 #endif
4551 #ifdef CONFIG_KVM_MMIO
4552         case KVM_REGISTER_COALESCED_MMIO: {
4553                 struct kvm_coalesced_mmio_zone zone;
4554
4555                 r = -EFAULT;
4556                 if (copy_from_user(&zone, argp, sizeof(zone)))
4557                         goto out;
4558                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4559                 break;
4560         }
4561         case KVM_UNREGISTER_COALESCED_MMIO: {
4562                 struct kvm_coalesced_mmio_zone zone;
4563
4564                 r = -EFAULT;
4565                 if (copy_from_user(&zone, argp, sizeof(zone)))
4566                         goto out;
4567                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4568                 break;
4569         }
4570 #endif
4571         case KVM_IRQFD: {
4572                 struct kvm_irqfd data;
4573
4574                 r = -EFAULT;
4575                 if (copy_from_user(&data, argp, sizeof(data)))
4576                         goto out;
4577                 r = kvm_irqfd(kvm, &data);
4578                 break;
4579         }
4580         case KVM_IOEVENTFD: {
4581                 struct kvm_ioeventfd data;
4582
4583                 r = -EFAULT;
4584                 if (copy_from_user(&data, argp, sizeof(data)))
4585                         goto out;
4586                 r = kvm_ioeventfd(kvm, &data);
4587                 break;
4588         }
4589 #ifdef CONFIG_HAVE_KVM_MSI
4590         case KVM_SIGNAL_MSI: {
4591                 struct kvm_msi msi;
4592
4593                 r = -EFAULT;
4594                 if (copy_from_user(&msi, argp, sizeof(msi)))
4595                         goto out;
4596                 r = kvm_send_userspace_msi(kvm, &msi);
4597                 break;
4598         }
4599 #endif
4600 #ifdef __KVM_HAVE_IRQ_LINE
4601         case KVM_IRQ_LINE_STATUS:
4602         case KVM_IRQ_LINE: {
4603                 struct kvm_irq_level irq_event;
4604
4605                 r = -EFAULT;
4606                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4607                         goto out;
4608
4609                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4610                                         ioctl == KVM_IRQ_LINE_STATUS);
4611                 if (r)
4612                         goto out;
4613
4614                 r = -EFAULT;
4615                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4616                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4617                                 goto out;
4618                 }
4619
4620                 r = 0;
4621                 break;
4622         }
4623 #endif
4624 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4625         case KVM_SET_GSI_ROUTING: {
4626                 struct kvm_irq_routing routing;
4627                 struct kvm_irq_routing __user *urouting;
4628                 struct kvm_irq_routing_entry *entries = NULL;
4629
4630                 r = -EFAULT;
4631                 if (copy_from_user(&routing, argp, sizeof(routing)))
4632                         goto out;
4633                 r = -EINVAL;
4634                 if (!kvm_arch_can_set_irq_routing(kvm))
4635                         goto out;
4636                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4637                         goto out;
4638                 if (routing.flags)
4639                         goto out;
4640                 if (routing.nr) {
4641                         urouting = argp;
4642                         entries = vmemdup_user(urouting->entries,
4643                                                array_size(sizeof(*entries),
4644                                                           routing.nr));
4645                         if (IS_ERR(entries)) {
4646                                 r = PTR_ERR(entries);
4647                                 goto out;
4648                         }
4649                 }
4650                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4651                                         routing.flags);
4652                 kvfree(entries);
4653                 break;
4654         }
4655 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4656         case KVM_CREATE_DEVICE: {
4657                 struct kvm_create_device cd;
4658
4659                 r = -EFAULT;
4660                 if (copy_from_user(&cd, argp, sizeof(cd)))
4661                         goto out;
4662
4663                 r = kvm_ioctl_create_device(kvm, &cd);
4664                 if (r)
4665                         goto out;
4666
4667                 r = -EFAULT;
4668                 if (copy_to_user(argp, &cd, sizeof(cd)))
4669                         goto out;
4670
4671                 r = 0;
4672                 break;
4673         }
4674         case KVM_CHECK_EXTENSION:
4675                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4676                 break;
4677         case KVM_RESET_DIRTY_RINGS:
4678                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4679                 break;
4680         case KVM_GET_STATS_FD:
4681                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4682                 break;
4683         default:
4684                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4685         }
4686 out:
4687         return r;
4688 }
4689
4690 #ifdef CONFIG_KVM_COMPAT
4691 struct compat_kvm_dirty_log {
4692         __u32 slot;
4693         __u32 padding1;
4694         union {
4695                 compat_uptr_t dirty_bitmap; /* one bit per page */
4696                 __u64 padding2;
4697         };
4698 };
4699
4700 struct compat_kvm_clear_dirty_log {
4701         __u32 slot;
4702         __u32 num_pages;
4703         __u64 first_page;
4704         union {
4705                 compat_uptr_t dirty_bitmap; /* one bit per page */
4706                 __u64 padding2;
4707         };
4708 };
4709
4710 static long kvm_vm_compat_ioctl(struct file *filp,
4711                            unsigned int ioctl, unsigned long arg)
4712 {
4713         struct kvm *kvm = filp->private_data;
4714         int r;
4715
4716         if (kvm->mm != current->mm || kvm->vm_dead)
4717                 return -EIO;
4718         switch (ioctl) {
4719 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4720         case KVM_CLEAR_DIRTY_LOG: {
4721                 struct compat_kvm_clear_dirty_log compat_log;
4722                 struct kvm_clear_dirty_log log;
4723
4724                 if (copy_from_user(&compat_log, (void __user *)arg,
4725                                    sizeof(compat_log)))
4726                         return -EFAULT;
4727                 log.slot         = compat_log.slot;
4728                 log.num_pages    = compat_log.num_pages;
4729                 log.first_page   = compat_log.first_page;
4730                 log.padding2     = compat_log.padding2;
4731                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4732
4733                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4734                 break;
4735         }
4736 #endif
4737         case KVM_GET_DIRTY_LOG: {
4738                 struct compat_kvm_dirty_log compat_log;
4739                 struct kvm_dirty_log log;
4740
4741                 if (copy_from_user(&compat_log, (void __user *)arg,
4742                                    sizeof(compat_log)))
4743                         return -EFAULT;
4744                 log.slot         = compat_log.slot;
4745                 log.padding1     = compat_log.padding1;
4746                 log.padding2     = compat_log.padding2;
4747                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4748
4749                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4750                 break;
4751         }
4752         default:
4753                 r = kvm_vm_ioctl(filp, ioctl, arg);
4754         }
4755         return r;
4756 }
4757 #endif
4758
4759 static const struct file_operations kvm_vm_fops = {
4760         .release        = kvm_vm_release,
4761         .unlocked_ioctl = kvm_vm_ioctl,
4762         .llseek         = noop_llseek,
4763         KVM_COMPAT(kvm_vm_compat_ioctl),
4764 };
4765
4766 bool file_is_kvm(struct file *file)
4767 {
4768         return file && file->f_op == &kvm_vm_fops;
4769 }
4770 EXPORT_SYMBOL_GPL(file_is_kvm);
4771
4772 static int kvm_dev_ioctl_create_vm(unsigned long type)
4773 {
4774         int r;
4775         struct kvm *kvm;
4776         struct file *file;
4777
4778         kvm = kvm_create_vm(type);
4779         if (IS_ERR(kvm))
4780                 return PTR_ERR(kvm);
4781 #ifdef CONFIG_KVM_MMIO
4782         r = kvm_coalesced_mmio_init(kvm);
4783         if (r < 0)
4784                 goto put_kvm;
4785 #endif
4786         r = get_unused_fd_flags(O_CLOEXEC);
4787         if (r < 0)
4788                 goto put_kvm;
4789
4790         snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4791                         "kvm-%d", task_pid_nr(current));
4792
4793         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4794         if (IS_ERR(file)) {
4795                 put_unused_fd(r);
4796                 r = PTR_ERR(file);
4797                 goto put_kvm;
4798         }
4799
4800         /*
4801          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4802          * already set, with ->release() being kvm_vm_release().  In error
4803          * cases it will be called by the final fput(file) and will take
4804          * care of doing kvm_put_kvm(kvm).
4805          */
4806         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4807                 put_unused_fd(r);
4808                 fput(file);
4809                 return -ENOMEM;
4810         }
4811         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4812
4813         fd_install(r, file);
4814         return r;
4815
4816 put_kvm:
4817         kvm_put_kvm(kvm);
4818         return r;
4819 }
4820
4821 static long kvm_dev_ioctl(struct file *filp,
4822                           unsigned int ioctl, unsigned long arg)
4823 {
4824         long r = -EINVAL;
4825
4826         switch (ioctl) {
4827         case KVM_GET_API_VERSION:
4828                 if (arg)
4829                         goto out;
4830                 r = KVM_API_VERSION;
4831                 break;
4832         case KVM_CREATE_VM:
4833                 r = kvm_dev_ioctl_create_vm(arg);
4834                 break;
4835         case KVM_CHECK_EXTENSION:
4836                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4837                 break;
4838         case KVM_GET_VCPU_MMAP_SIZE:
4839                 if (arg)
4840                         goto out;
4841                 r = PAGE_SIZE;     /* struct kvm_run */
4842 #ifdef CONFIG_X86
4843                 r += PAGE_SIZE;    /* pio data page */
4844 #endif
4845 #ifdef CONFIG_KVM_MMIO
4846                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4847 #endif
4848                 break;
4849         case KVM_TRACE_ENABLE:
4850         case KVM_TRACE_PAUSE:
4851         case KVM_TRACE_DISABLE:
4852                 r = -EOPNOTSUPP;
4853                 break;
4854         default:
4855                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4856         }
4857 out:
4858         return r;
4859 }
4860
4861 static struct file_operations kvm_chardev_ops = {
4862         .unlocked_ioctl = kvm_dev_ioctl,
4863         .llseek         = noop_llseek,
4864         KVM_COMPAT(kvm_dev_ioctl),
4865 };
4866
4867 static struct miscdevice kvm_dev = {
4868         KVM_MINOR,
4869         "kvm",
4870         &kvm_chardev_ops,
4871 };
4872
4873 static void hardware_enable_nolock(void *junk)
4874 {
4875         int cpu = raw_smp_processor_id();
4876         int r;
4877
4878         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4879                 return;
4880
4881         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4882
4883         r = kvm_arch_hardware_enable();
4884
4885         if (r) {
4886                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4887                 atomic_inc(&hardware_enable_failed);
4888                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4889         }
4890 }
4891
4892 static int kvm_starting_cpu(unsigned int cpu)
4893 {
4894         raw_spin_lock(&kvm_count_lock);
4895         if (kvm_usage_count)
4896                 hardware_enable_nolock(NULL);
4897         raw_spin_unlock(&kvm_count_lock);
4898         return 0;
4899 }
4900
4901 static void hardware_disable_nolock(void *junk)
4902 {
4903         int cpu = raw_smp_processor_id();
4904
4905         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4906                 return;
4907         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4908         kvm_arch_hardware_disable();
4909 }
4910
4911 static int kvm_dying_cpu(unsigned int cpu)
4912 {
4913         raw_spin_lock(&kvm_count_lock);
4914         if (kvm_usage_count)
4915                 hardware_disable_nolock(NULL);
4916         raw_spin_unlock(&kvm_count_lock);
4917         return 0;
4918 }
4919
4920 static void hardware_disable_all_nolock(void)
4921 {
4922         BUG_ON(!kvm_usage_count);
4923
4924         kvm_usage_count--;
4925         if (!kvm_usage_count)
4926                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4927 }
4928
4929 static void hardware_disable_all(void)
4930 {
4931         raw_spin_lock(&kvm_count_lock);
4932         hardware_disable_all_nolock();
4933         raw_spin_unlock(&kvm_count_lock);
4934 }
4935
4936 static int hardware_enable_all(void)
4937 {
4938         int r = 0;
4939
4940         raw_spin_lock(&kvm_count_lock);
4941
4942         kvm_usage_count++;
4943         if (kvm_usage_count == 1) {
4944                 atomic_set(&hardware_enable_failed, 0);
4945                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4946
4947                 if (atomic_read(&hardware_enable_failed)) {
4948                         hardware_disable_all_nolock();
4949                         r = -EBUSY;
4950                 }
4951         }
4952
4953         raw_spin_unlock(&kvm_count_lock);
4954
4955         return r;
4956 }
4957
4958 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4959                       void *v)
4960 {
4961         /*
4962          * Some (well, at least mine) BIOSes hang on reboot if
4963          * in vmx root mode.
4964          *
4965          * And Intel TXT required VMX off for all cpu when system shutdown.
4966          */
4967         pr_info("kvm: exiting hardware virtualization\n");
4968         kvm_rebooting = true;
4969         on_each_cpu(hardware_disable_nolock, NULL, 1);
4970         return NOTIFY_OK;
4971 }
4972
4973 static struct notifier_block kvm_reboot_notifier = {
4974         .notifier_call = kvm_reboot,
4975         .priority = 0,
4976 };
4977
4978 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4979 {
4980         int i;
4981
4982         for (i = 0; i < bus->dev_count; i++) {
4983                 struct kvm_io_device *pos = bus->range[i].dev;
4984
4985                 kvm_iodevice_destructor(pos);
4986         }
4987         kfree(bus);
4988 }
4989
4990 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4991                                  const struct kvm_io_range *r2)
4992 {
4993         gpa_t addr1 = r1->addr;
4994         gpa_t addr2 = r2->addr;
4995
4996         if (addr1 < addr2)
4997                 return -1;
4998
4999         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5000          * accept any overlapping write.  Any order is acceptable for
5001          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5002          * we process all of them.
5003          */
5004         if (r2->len) {
5005                 addr1 += r1->len;
5006                 addr2 += r2->len;
5007         }
5008
5009         if (addr1 > addr2)
5010                 return 1;
5011
5012         return 0;
5013 }
5014
5015 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5016 {
5017         return kvm_io_bus_cmp(p1, p2);
5018 }
5019
5020 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5021                              gpa_t addr, int len)
5022 {
5023         struct kvm_io_range *range, key;
5024         int off;
5025
5026         key = (struct kvm_io_range) {
5027                 .addr = addr,
5028                 .len = len,
5029         };
5030
5031         range = bsearch(&key, bus->range, bus->dev_count,
5032                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5033         if (range == NULL)
5034                 return -ENOENT;
5035
5036         off = range - bus->range;
5037
5038         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5039                 off--;
5040
5041         return off;
5042 }
5043
5044 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5045                               struct kvm_io_range *range, const void *val)
5046 {
5047         int idx;
5048
5049         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5050         if (idx < 0)
5051                 return -EOPNOTSUPP;
5052
5053         while (idx < bus->dev_count &&
5054                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5055                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5056                                         range->len, val))
5057                         return idx;
5058                 idx++;
5059         }
5060
5061         return -EOPNOTSUPP;
5062 }
5063
5064 /* kvm_io_bus_write - called under kvm->slots_lock */
5065 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5066                      int len, const void *val)
5067 {
5068         struct kvm_io_bus *bus;
5069         struct kvm_io_range range;
5070         int r;
5071
5072         range = (struct kvm_io_range) {
5073                 .addr = addr,
5074                 .len = len,
5075         };
5076
5077         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5078         if (!bus)
5079                 return -ENOMEM;
5080         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5081         return r < 0 ? r : 0;
5082 }
5083 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5084
5085 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5086 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5087                             gpa_t addr, int len, const void *val, long cookie)
5088 {
5089         struct kvm_io_bus *bus;
5090         struct kvm_io_range range;
5091
5092         range = (struct kvm_io_range) {
5093                 .addr = addr,
5094                 .len = len,
5095         };
5096
5097         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5098         if (!bus)
5099                 return -ENOMEM;
5100
5101         /* First try the device referenced by cookie. */
5102         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5103             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5104                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5105                                         val))
5106                         return cookie;
5107
5108         /*
5109          * cookie contained garbage; fall back to search and return the
5110          * correct cookie value.
5111          */
5112         return __kvm_io_bus_write(vcpu, bus, &range, val);
5113 }
5114
5115 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5116                              struct kvm_io_range *range, void *val)
5117 {
5118         int idx;
5119
5120         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5121         if (idx < 0)
5122                 return -EOPNOTSUPP;
5123
5124         while (idx < bus->dev_count &&
5125                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5126                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5127                                        range->len, val))
5128                         return idx;
5129                 idx++;
5130         }
5131
5132         return -EOPNOTSUPP;
5133 }
5134
5135 /* kvm_io_bus_read - called under kvm->slots_lock */
5136 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5137                     int len, void *val)
5138 {
5139         struct kvm_io_bus *bus;
5140         struct kvm_io_range range;
5141         int r;
5142
5143         range = (struct kvm_io_range) {
5144                 .addr = addr,
5145                 .len = len,
5146         };
5147
5148         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5149         if (!bus)
5150                 return -ENOMEM;
5151         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5152         return r < 0 ? r : 0;
5153 }
5154
5155 /* Caller must hold slots_lock. */
5156 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5157                             int len, struct kvm_io_device *dev)
5158 {
5159         int i;
5160         struct kvm_io_bus *new_bus, *bus;
5161         struct kvm_io_range range;
5162
5163         bus = kvm_get_bus(kvm, bus_idx);
5164         if (!bus)
5165                 return -ENOMEM;
5166
5167         /* exclude ioeventfd which is limited by maximum fd */
5168         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5169                 return -ENOSPC;
5170
5171         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5172                           GFP_KERNEL_ACCOUNT);
5173         if (!new_bus)
5174                 return -ENOMEM;
5175
5176         range = (struct kvm_io_range) {
5177                 .addr = addr,
5178                 .len = len,
5179                 .dev = dev,
5180         };
5181
5182         for (i = 0; i < bus->dev_count; i++)
5183                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5184                         break;
5185
5186         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5187         new_bus->dev_count++;
5188         new_bus->range[i] = range;
5189         memcpy(new_bus->range + i + 1, bus->range + i,
5190                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5191         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5192         synchronize_srcu_expedited(&kvm->srcu);
5193         kfree(bus);
5194
5195         return 0;
5196 }
5197
5198 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5199                               struct kvm_io_device *dev)
5200 {
5201         int i, j;
5202         struct kvm_io_bus *new_bus, *bus;
5203
5204         lockdep_assert_held(&kvm->slots_lock);
5205
5206         bus = kvm_get_bus(kvm, bus_idx);
5207         if (!bus)
5208                 return 0;
5209
5210         for (i = 0; i < bus->dev_count; i++) {
5211                 if (bus->range[i].dev == dev) {
5212                         break;
5213                 }
5214         }
5215
5216         if (i == bus->dev_count)
5217                 return 0;
5218
5219         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5220                           GFP_KERNEL_ACCOUNT);
5221         if (new_bus) {
5222                 memcpy(new_bus, bus, struct_size(bus, range, i));
5223                 new_bus->dev_count--;
5224                 memcpy(new_bus->range + i, bus->range + i + 1,
5225                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5226         }
5227
5228         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5229         synchronize_srcu_expedited(&kvm->srcu);
5230
5231         /* Destroy the old bus _after_ installing the (null) bus. */
5232         if (!new_bus) {
5233                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5234                 for (j = 0; j < bus->dev_count; j++) {
5235                         if (j == i)
5236                                 continue;
5237                         kvm_iodevice_destructor(bus->range[j].dev);
5238                 }
5239         }
5240
5241         kfree(bus);
5242         return new_bus ? 0 : -ENOMEM;
5243 }
5244
5245 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5246                                          gpa_t addr)
5247 {
5248         struct kvm_io_bus *bus;
5249         int dev_idx, srcu_idx;
5250         struct kvm_io_device *iodev = NULL;
5251
5252         srcu_idx = srcu_read_lock(&kvm->srcu);
5253
5254         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5255         if (!bus)
5256                 goto out_unlock;
5257
5258         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5259         if (dev_idx < 0)
5260                 goto out_unlock;
5261
5262         iodev = bus->range[dev_idx].dev;
5263
5264 out_unlock:
5265         srcu_read_unlock(&kvm->srcu, srcu_idx);
5266
5267         return iodev;
5268 }
5269 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5270
5271 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5272                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5273                            const char *fmt)
5274 {
5275         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5276                                           inode->i_private;
5277
5278         /*
5279          * The debugfs files are a reference to the kvm struct which
5280         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5281         * avoids the race between open and the removal of the debugfs directory.
5282          */
5283         if (!kvm_get_kvm_safe(stat_data->kvm))
5284                 return -ENOENT;
5285
5286         if (simple_attr_open(inode, file, get,
5287                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
5288                     ? set : NULL,
5289                     fmt)) {
5290                 kvm_put_kvm(stat_data->kvm);
5291                 return -ENOMEM;
5292         }
5293
5294         return 0;
5295 }
5296
5297 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5298 {
5299         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5300                                           inode->i_private;
5301
5302         simple_attr_release(inode, file);
5303         kvm_put_kvm(stat_data->kvm);
5304
5305         return 0;
5306 }
5307
5308 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5309 {
5310         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5311
5312         return 0;
5313 }
5314
5315 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5316 {
5317         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5318
5319         return 0;
5320 }
5321
5322 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5323 {
5324         unsigned long i;
5325         struct kvm_vcpu *vcpu;
5326
5327         *val = 0;
5328
5329         kvm_for_each_vcpu(i, vcpu, kvm)
5330                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5331
5332         return 0;
5333 }
5334
5335 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5336 {
5337         unsigned long i;
5338         struct kvm_vcpu *vcpu;
5339
5340         kvm_for_each_vcpu(i, vcpu, kvm)
5341                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5342
5343         return 0;
5344 }
5345
5346 static int kvm_stat_data_get(void *data, u64 *val)
5347 {
5348         int r = -EFAULT;
5349         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5350
5351         switch (stat_data->kind) {
5352         case KVM_STAT_VM:
5353                 r = kvm_get_stat_per_vm(stat_data->kvm,
5354                                         stat_data->desc->desc.offset, val);
5355                 break;
5356         case KVM_STAT_VCPU:
5357                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5358                                           stat_data->desc->desc.offset, val);
5359                 break;
5360         }
5361
5362         return r;
5363 }
5364
5365 static int kvm_stat_data_clear(void *data, u64 val)
5366 {
5367         int r = -EFAULT;
5368         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5369
5370         if (val)
5371                 return -EINVAL;
5372
5373         switch (stat_data->kind) {
5374         case KVM_STAT_VM:
5375                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5376                                           stat_data->desc->desc.offset);
5377                 break;
5378         case KVM_STAT_VCPU:
5379                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5380                                             stat_data->desc->desc.offset);
5381                 break;
5382         }
5383
5384         return r;
5385 }
5386
5387 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5388 {
5389         __simple_attr_check_format("%llu\n", 0ull);
5390         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5391                                 kvm_stat_data_clear, "%llu\n");
5392 }
5393
5394 static const struct file_operations stat_fops_per_vm = {
5395         .owner = THIS_MODULE,
5396         .open = kvm_stat_data_open,
5397         .release = kvm_debugfs_release,
5398         .read = simple_attr_read,
5399         .write = simple_attr_write,
5400         .llseek = no_llseek,
5401 };
5402
5403 static int vm_stat_get(void *_offset, u64 *val)
5404 {
5405         unsigned offset = (long)_offset;
5406         struct kvm *kvm;
5407         u64 tmp_val;
5408
5409         *val = 0;
5410         mutex_lock(&kvm_lock);
5411         list_for_each_entry(kvm, &vm_list, vm_list) {
5412                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5413                 *val += tmp_val;
5414         }
5415         mutex_unlock(&kvm_lock);
5416         return 0;
5417 }
5418
5419 static int vm_stat_clear(void *_offset, u64 val)
5420 {
5421         unsigned offset = (long)_offset;
5422         struct kvm *kvm;
5423
5424         if (val)
5425                 return -EINVAL;
5426
5427         mutex_lock(&kvm_lock);
5428         list_for_each_entry(kvm, &vm_list, vm_list) {
5429                 kvm_clear_stat_per_vm(kvm, offset);
5430         }
5431         mutex_unlock(&kvm_lock);
5432
5433         return 0;
5434 }
5435
5436 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5437 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5438
5439 static int vcpu_stat_get(void *_offset, u64 *val)
5440 {
5441         unsigned offset = (long)_offset;
5442         struct kvm *kvm;
5443         u64 tmp_val;
5444
5445         *val = 0;
5446         mutex_lock(&kvm_lock);
5447         list_for_each_entry(kvm, &vm_list, vm_list) {
5448                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5449                 *val += tmp_val;
5450         }
5451         mutex_unlock(&kvm_lock);
5452         return 0;
5453 }
5454
5455 static int vcpu_stat_clear(void *_offset, u64 val)
5456 {
5457         unsigned offset = (long)_offset;
5458         struct kvm *kvm;
5459
5460         if (val)
5461                 return -EINVAL;
5462
5463         mutex_lock(&kvm_lock);
5464         list_for_each_entry(kvm, &vm_list, vm_list) {
5465                 kvm_clear_stat_per_vcpu(kvm, offset);
5466         }
5467         mutex_unlock(&kvm_lock);
5468
5469         return 0;
5470 }
5471
5472 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5473                         "%llu\n");
5474 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5475
5476 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5477 {
5478         struct kobj_uevent_env *env;
5479         unsigned long long created, active;
5480
5481         if (!kvm_dev.this_device || !kvm)
5482                 return;
5483
5484         mutex_lock(&kvm_lock);
5485         if (type == KVM_EVENT_CREATE_VM) {
5486                 kvm_createvm_count++;
5487                 kvm_active_vms++;
5488         } else if (type == KVM_EVENT_DESTROY_VM) {
5489                 kvm_active_vms--;
5490         }
5491         created = kvm_createvm_count;
5492         active = kvm_active_vms;
5493         mutex_unlock(&kvm_lock);
5494
5495         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5496         if (!env)
5497                 return;
5498
5499         add_uevent_var(env, "CREATED=%llu", created);
5500         add_uevent_var(env, "COUNT=%llu", active);
5501
5502         if (type == KVM_EVENT_CREATE_VM) {
5503                 add_uevent_var(env, "EVENT=create");
5504                 kvm->userspace_pid = task_pid_nr(current);
5505         } else if (type == KVM_EVENT_DESTROY_VM) {
5506                 add_uevent_var(env, "EVENT=destroy");
5507         }
5508         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5509
5510         if (!IS_ERR(kvm->debugfs_dentry)) {
5511                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5512
5513                 if (p) {
5514                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5515                         if (!IS_ERR(tmp))
5516                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5517                         kfree(p);
5518                 }
5519         }
5520         /* no need for checks, since we are adding at most only 5 keys */
5521         env->envp[env->envp_idx++] = NULL;
5522         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5523         kfree(env);
5524 }
5525
5526 static void kvm_init_debug(void)
5527 {
5528         const struct file_operations *fops;
5529         const struct _kvm_stats_desc *pdesc;
5530         int i;
5531
5532         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5533
5534         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5535                 pdesc = &kvm_vm_stats_desc[i];
5536                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5537                         fops = &vm_stat_fops;
5538                 else
5539                         fops = &vm_stat_readonly_fops;
5540                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5541                                 kvm_debugfs_dir,
5542                                 (void *)(long)pdesc->desc.offset, fops);
5543         }
5544
5545         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5546                 pdesc = &kvm_vcpu_stats_desc[i];
5547                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5548                         fops = &vcpu_stat_fops;
5549                 else
5550                         fops = &vcpu_stat_readonly_fops;
5551                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5552                                 kvm_debugfs_dir,
5553                                 (void *)(long)pdesc->desc.offset, fops);
5554         }
5555 }
5556
5557 static int kvm_suspend(void)
5558 {
5559         if (kvm_usage_count)
5560                 hardware_disable_nolock(NULL);
5561         return 0;
5562 }
5563
5564 static void kvm_resume(void)
5565 {
5566         if (kvm_usage_count) {
5567                 lockdep_assert_not_held(&kvm_count_lock);
5568                 hardware_enable_nolock(NULL);
5569         }
5570 }
5571
5572 static struct syscore_ops kvm_syscore_ops = {
5573         .suspend = kvm_suspend,
5574         .resume = kvm_resume,
5575 };
5576
5577 static inline
5578 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5579 {
5580         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5581 }
5582
5583 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5584 {
5585         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5586
5587         WRITE_ONCE(vcpu->preempted, false);
5588         WRITE_ONCE(vcpu->ready, false);
5589
5590         __this_cpu_write(kvm_running_vcpu, vcpu);
5591         kvm_arch_sched_in(vcpu, cpu);
5592         kvm_arch_vcpu_load(vcpu, cpu);
5593 }
5594
5595 static void kvm_sched_out(struct preempt_notifier *pn,
5596                           struct task_struct *next)
5597 {
5598         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5599
5600         if (current->on_rq) {
5601                 WRITE_ONCE(vcpu->preempted, true);
5602                 WRITE_ONCE(vcpu->ready, true);
5603         }
5604         kvm_arch_vcpu_put(vcpu);
5605         __this_cpu_write(kvm_running_vcpu, NULL);
5606 }
5607
5608 /**
5609  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5610  *
5611  * We can disable preemption locally around accessing the per-CPU variable,
5612  * and use the resolved vcpu pointer after enabling preemption again,
5613  * because even if the current thread is migrated to another CPU, reading
5614  * the per-CPU value later will give us the same value as we update the
5615  * per-CPU variable in the preempt notifier handlers.
5616  */
5617 struct kvm_vcpu *kvm_get_running_vcpu(void)
5618 {
5619         struct kvm_vcpu *vcpu;
5620
5621         preempt_disable();
5622         vcpu = __this_cpu_read(kvm_running_vcpu);
5623         preempt_enable();
5624
5625         return vcpu;
5626 }
5627 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5628
5629 /**
5630  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5631  */
5632 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5633 {
5634         return &kvm_running_vcpu;
5635 }
5636
5637 #ifdef CONFIG_GUEST_PERF_EVENTS
5638 static unsigned int kvm_guest_state(void)
5639 {
5640         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5641         unsigned int state;
5642
5643         if (!kvm_arch_pmi_in_guest(vcpu))
5644                 return 0;
5645
5646         state = PERF_GUEST_ACTIVE;
5647         if (!kvm_arch_vcpu_in_kernel(vcpu))
5648                 state |= PERF_GUEST_USER;
5649
5650         return state;
5651 }
5652
5653 static unsigned long kvm_guest_get_ip(void)
5654 {
5655         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5656
5657         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5658         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5659                 return 0;
5660
5661         return kvm_arch_vcpu_get_ip(vcpu);
5662 }
5663
5664 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5665         .state                  = kvm_guest_state,
5666         .get_ip                 = kvm_guest_get_ip,
5667         .handle_intel_pt_intr   = NULL,
5668 };
5669
5670 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5671 {
5672         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5673         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5674 }
5675 void kvm_unregister_perf_callbacks(void)
5676 {
5677         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5678 }
5679 #endif
5680
5681 struct kvm_cpu_compat_check {
5682         void *opaque;
5683         int *ret;
5684 };
5685
5686 static void check_processor_compat(void *data)
5687 {
5688         struct kvm_cpu_compat_check *c = data;
5689
5690         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5691 }
5692
5693 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5694                   struct module *module)
5695 {
5696         struct kvm_cpu_compat_check c;
5697         int r;
5698         int cpu;
5699
5700         r = kvm_arch_init(opaque);
5701         if (r)
5702                 goto out_fail;
5703
5704         /*
5705          * kvm_arch_init makes sure there's at most one caller
5706          * for architectures that support multiple implementations,
5707          * like intel and amd on x86.
5708          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5709          * conflicts in case kvm is already setup for another implementation.
5710          */
5711         r = kvm_irqfd_init();
5712         if (r)
5713                 goto out_irqfd;
5714
5715         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5716                 r = -ENOMEM;
5717                 goto out_free_0;
5718         }
5719
5720         r = kvm_arch_hardware_setup(opaque);
5721         if (r < 0)
5722                 goto out_free_1;
5723
5724         c.ret = &r;
5725         c.opaque = opaque;
5726         for_each_online_cpu(cpu) {
5727                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5728                 if (r < 0)
5729                         goto out_free_2;
5730         }
5731
5732         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5733                                       kvm_starting_cpu, kvm_dying_cpu);
5734         if (r)
5735                 goto out_free_2;
5736         register_reboot_notifier(&kvm_reboot_notifier);
5737
5738         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5739         if (!vcpu_align)
5740                 vcpu_align = __alignof__(struct kvm_vcpu);
5741         kvm_vcpu_cache =
5742                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5743                                            SLAB_ACCOUNT,
5744                                            offsetof(struct kvm_vcpu, arch),
5745                                            offsetofend(struct kvm_vcpu, stats_id)
5746                                            - offsetof(struct kvm_vcpu, arch),
5747                                            NULL);
5748         if (!kvm_vcpu_cache) {
5749                 r = -ENOMEM;
5750                 goto out_free_3;
5751         }
5752
5753         for_each_possible_cpu(cpu) {
5754                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5755                                             GFP_KERNEL, cpu_to_node(cpu))) {
5756                         r = -ENOMEM;
5757                         goto out_free_4;
5758                 }
5759         }
5760
5761         r = kvm_async_pf_init();
5762         if (r)
5763                 goto out_free_5;
5764
5765         kvm_chardev_ops.owner = module;
5766
5767         r = misc_register(&kvm_dev);
5768         if (r) {
5769                 pr_err("kvm: misc device register failed\n");
5770                 goto out_unreg;
5771         }
5772
5773         register_syscore_ops(&kvm_syscore_ops);
5774
5775         kvm_preempt_ops.sched_in = kvm_sched_in;
5776         kvm_preempt_ops.sched_out = kvm_sched_out;
5777
5778         kvm_init_debug();
5779
5780         r = kvm_vfio_ops_init();
5781         WARN_ON(r);
5782
5783         return 0;
5784
5785 out_unreg:
5786         kvm_async_pf_deinit();
5787 out_free_5:
5788         for_each_possible_cpu(cpu)
5789                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5790 out_free_4:
5791         kmem_cache_destroy(kvm_vcpu_cache);
5792 out_free_3:
5793         unregister_reboot_notifier(&kvm_reboot_notifier);
5794         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5795 out_free_2:
5796         kvm_arch_hardware_unsetup();
5797 out_free_1:
5798         free_cpumask_var(cpus_hardware_enabled);
5799 out_free_0:
5800         kvm_irqfd_exit();
5801 out_irqfd:
5802         kvm_arch_exit();
5803 out_fail:
5804         return r;
5805 }
5806 EXPORT_SYMBOL_GPL(kvm_init);
5807
5808 void kvm_exit(void)
5809 {
5810         int cpu;
5811
5812         debugfs_remove_recursive(kvm_debugfs_dir);
5813         misc_deregister(&kvm_dev);
5814         for_each_possible_cpu(cpu)
5815                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5816         kmem_cache_destroy(kvm_vcpu_cache);
5817         kvm_async_pf_deinit();
5818         unregister_syscore_ops(&kvm_syscore_ops);
5819         unregister_reboot_notifier(&kvm_reboot_notifier);
5820         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5821         on_each_cpu(hardware_disable_nolock, NULL, 1);
5822         kvm_arch_hardware_unsetup();
5823         kvm_arch_exit();
5824         kvm_irqfd_exit();
5825         free_cpumask_var(cpus_hardware_enabled);
5826         kvm_vfio_ops_exit();
5827 }
5828 EXPORT_SYMBOL_GPL(kvm_exit);
5829
5830 struct kvm_vm_worker_thread_context {
5831         struct kvm *kvm;
5832         struct task_struct *parent;
5833         struct completion init_done;
5834         kvm_vm_thread_fn_t thread_fn;
5835         uintptr_t data;
5836         int err;
5837 };
5838
5839 static int kvm_vm_worker_thread(void *context)
5840 {
5841         /*
5842          * The init_context is allocated on the stack of the parent thread, so
5843          * we have to locally copy anything that is needed beyond initialization
5844          */
5845         struct kvm_vm_worker_thread_context *init_context = context;
5846         struct task_struct *parent;
5847         struct kvm *kvm = init_context->kvm;
5848         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5849         uintptr_t data = init_context->data;
5850         int err;
5851
5852         err = kthread_park(current);
5853         /* kthread_park(current) is never supposed to return an error */
5854         WARN_ON(err != 0);
5855         if (err)
5856                 goto init_complete;
5857
5858         err = cgroup_attach_task_all(init_context->parent, current);
5859         if (err) {
5860                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5861                         __func__, err);
5862                 goto init_complete;
5863         }
5864
5865         set_user_nice(current, task_nice(init_context->parent));
5866
5867 init_complete:
5868         init_context->err = err;
5869         complete(&init_context->init_done);
5870         init_context = NULL;
5871
5872         if (err)
5873                 goto out;
5874
5875         /* Wait to be woken up by the spawner before proceeding. */
5876         kthread_parkme();
5877
5878         if (!kthread_should_stop())
5879                 err = thread_fn(kvm, data);
5880
5881 out:
5882         /*
5883          * Move kthread back to its original cgroup to prevent it lingering in
5884          * the cgroup of the VM process, after the latter finishes its
5885          * execution.
5886          *
5887          * kthread_stop() waits on the 'exited' completion condition which is
5888          * set in exit_mm(), via mm_release(), in do_exit(). However, the
5889          * kthread is removed from the cgroup in the cgroup_exit() which is
5890          * called after the exit_mm(). This causes the kthread_stop() to return
5891          * before the kthread actually quits the cgroup.
5892          */
5893         rcu_read_lock();
5894         parent = rcu_dereference(current->real_parent);
5895         get_task_struct(parent);
5896         rcu_read_unlock();
5897         cgroup_attach_task_all(parent, current);
5898         put_task_struct(parent);
5899
5900         return err;
5901 }
5902
5903 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5904                                 uintptr_t data, const char *name,
5905                                 struct task_struct **thread_ptr)
5906 {
5907         struct kvm_vm_worker_thread_context init_context = {};
5908         struct task_struct *thread;
5909
5910         *thread_ptr = NULL;
5911         init_context.kvm = kvm;
5912         init_context.parent = current;
5913         init_context.thread_fn = thread_fn;
5914         init_context.data = data;
5915         init_completion(&init_context.init_done);
5916
5917         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5918                              "%s-%d", name, task_pid_nr(current));
5919         if (IS_ERR(thread))
5920                 return PTR_ERR(thread);
5921
5922         /* kthread_run is never supposed to return NULL */
5923         WARN_ON(thread == NULL);
5924
5925         wait_for_completion(&init_context.init_done);
5926
5927         if (!init_context.err)
5928                 *thread_ptr = thread;
5929
5930         return init_context.err;
5931 }