Merge branch 'x86-bootmem-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / tools / perf / builtin-stat.c
1 /*
2  * builtin-stat.c
3  *
4  * Builtin stat command: Give a precise performance counters summary
5  * overview about any workload, CPU or specific PID.
6  *
7  * Sample output:
8
9    $ perf stat ~/hackbench 10
10    Time: 0.104
11
12     Performance counter stats for '/home/mingo/hackbench':
13
14        1255.538611  task clock ticks     #      10.143 CPU utilization factor
15              54011  context switches     #       0.043 M/sec
16                385  CPU migrations       #       0.000 M/sec
17              17755  pagefaults           #       0.014 M/sec
18         3808323185  CPU cycles           #    3033.219 M/sec
19         1575111190  instructions         #    1254.530 M/sec
20           17367895  cache references     #      13.833 M/sec
21            7674421  cache misses         #       6.112 M/sec
22
23     Wall-clock time elapsed:   123.786620 msecs
24
25  *
26  * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
27  *
28  * Improvements and fixes by:
29  *
30  *   Arjan van de Ven <arjan@linux.intel.com>
31  *   Yanmin Zhang <yanmin.zhang@intel.com>
32  *   Wu Fengguang <fengguang.wu@intel.com>
33  *   Mike Galbraith <efault@gmx.de>
34  *   Paul Mackerras <paulus@samba.org>
35  *   Jaswinder Singh Rajput <jaswinder@kernel.org>
36  *
37  * Released under the GPL v2. (and only v2, not any later version)
38  */
39
40 #include "perf.h"
41 #include "builtin.h"
42 #include "util/util.h"
43 #include "util/parse-options.h"
44 #include "util/parse-events.h"
45 #include "util/event.h"
46 #include "util/debug.h"
47 #include "util/header.h"
48
49 #include <sys/prctl.h>
50 #include <math.h>
51
52 static struct perf_event_attr default_attrs[] = {
53
54   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK              },
55   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES        },
56   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS          },
57   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS             },
58
59   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES              },
60   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS            },
61   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS     },
62   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES           },
63   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES        },
64   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES            },
65
66 };
67
68 static int                      system_wide                     =  0;
69 static unsigned int             nr_cpus                         =  0;
70 static int                      run_idx                         =  0;
71
72 static int                      run_count                       =  1;
73 static int                      inherit                         =  1;
74 static int                      scale                           =  1;
75 static pid_t                    target_pid                      = -1;
76 static pid_t                    child_pid                       = -1;
77 static int                      null_run                        =  0;
78
79 static int                      fd[MAX_NR_CPUS][MAX_COUNTERS];
80
81 static int                      event_scaled[MAX_COUNTERS];
82
83 static volatile int done = 0;
84
85 struct stats
86 {
87         double n, mean, M2;
88 };
89
90 static void update_stats(struct stats *stats, u64 val)
91 {
92         double delta;
93
94         stats->n++;
95         delta = val - stats->mean;
96         stats->mean += delta / stats->n;
97         stats->M2 += delta*(val - stats->mean);
98 }
99
100 static double avg_stats(struct stats *stats)
101 {
102         return stats->mean;
103 }
104
105 /*
106  * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
107  *
108  *       (\Sum n_i^2) - ((\Sum n_i)^2)/n
109  * s^2 = -------------------------------
110  *                  n - 1
111  *
112  * http://en.wikipedia.org/wiki/Stddev
113  *
114  * The std dev of the mean is related to the std dev by:
115  *
116  *             s
117  * s_mean = -------
118  *          sqrt(n)
119  *
120  */
121 static double stddev_stats(struct stats *stats)
122 {
123         double variance = stats->M2 / (stats->n - 1);
124         double variance_mean = variance / stats->n;
125
126         return sqrt(variance_mean);
127 }
128
129 struct stats                    event_res_stats[MAX_COUNTERS][3];
130 struct stats                    runtime_nsecs_stats;
131 struct stats                    walltime_nsecs_stats;
132 struct stats                    runtime_cycles_stats;
133 struct stats                    runtime_branches_stats;
134
135 #define MATCH_EVENT(t, c, counter)                      \
136         (attrs[counter].type == PERF_TYPE_##t &&        \
137          attrs[counter].config == PERF_COUNT_##c)
138
139 #define ERR_PERF_OPEN \
140 "Error: counter %d, sys_perf_event_open() syscall returned with %d (%s)\n"
141
142 static void create_perf_stat_counter(int counter, int pid)
143 {
144         struct perf_event_attr *attr = attrs + counter;
145
146         if (scale)
147                 attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
148                                     PERF_FORMAT_TOTAL_TIME_RUNNING;
149
150         if (system_wide) {
151                 unsigned int cpu;
152
153                 for (cpu = 0; cpu < nr_cpus; cpu++) {
154                         fd[cpu][counter] = sys_perf_event_open(attr, -1, cpu, -1, 0);
155                         if (fd[cpu][counter] < 0 && verbose)
156                                 fprintf(stderr, ERR_PERF_OPEN, counter,
157                                         fd[cpu][counter], strerror(errno));
158                 }
159         } else {
160                 attr->inherit        = inherit;
161                 attr->disabled       = 1;
162                 attr->enable_on_exec = 1;
163
164                 fd[0][counter] = sys_perf_event_open(attr, pid, -1, -1, 0);
165                 if (fd[0][counter] < 0 && verbose)
166                         fprintf(stderr, ERR_PERF_OPEN, counter,
167                                 fd[0][counter], strerror(errno));
168         }
169 }
170
171 /*
172  * Does the counter have nsecs as a unit?
173  */
174 static inline int nsec_counter(int counter)
175 {
176         if (MATCH_EVENT(SOFTWARE, SW_CPU_CLOCK, counter) ||
177             MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
178                 return 1;
179
180         return 0;
181 }
182
183 /*
184  * Read out the results of a single counter:
185  */
186 static void read_counter(int counter)
187 {
188         u64 count[3], single_count[3];
189         unsigned int cpu;
190         size_t res, nv;
191         int scaled;
192         int i;
193
194         count[0] = count[1] = count[2] = 0;
195
196         nv = scale ? 3 : 1;
197         for (cpu = 0; cpu < nr_cpus; cpu++) {
198                 if (fd[cpu][counter] < 0)
199                         continue;
200
201                 res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
202                 assert(res == nv * sizeof(u64));
203
204                 close(fd[cpu][counter]);
205                 fd[cpu][counter] = -1;
206
207                 count[0] += single_count[0];
208                 if (scale) {
209                         count[1] += single_count[1];
210                         count[2] += single_count[2];
211                 }
212         }
213
214         scaled = 0;
215         if (scale) {
216                 if (count[2] == 0) {
217                         event_scaled[counter] = -1;
218                         count[0] = 0;
219                         return;
220                 }
221
222                 if (count[2] < count[1]) {
223                         event_scaled[counter] = 1;
224                         count[0] = (unsigned long long)
225                                 ((double)count[0] * count[1] / count[2] + 0.5);
226                 }
227         }
228
229         for (i = 0; i < 3; i++)
230                 update_stats(&event_res_stats[counter][i], count[i]);
231
232         if (verbose) {
233                 fprintf(stderr, "%s: %Ld %Ld %Ld\n", event_name(counter),
234                                 count[0], count[1], count[2]);
235         }
236
237         /*
238          * Save the full runtime - to allow normalization during printout:
239          */
240         if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
241                 update_stats(&runtime_nsecs_stats, count[0]);
242         if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
243                 update_stats(&runtime_cycles_stats, count[0]);
244         if (MATCH_EVENT(HARDWARE, HW_BRANCH_INSTRUCTIONS, counter))
245                 update_stats(&runtime_branches_stats, count[0]);
246 }
247
248 static int run_perf_stat(int argc __used, const char **argv)
249 {
250         unsigned long long t0, t1;
251         int status = 0;
252         int counter;
253         int pid = target_pid;
254         int child_ready_pipe[2], go_pipe[2];
255         const bool forks = (target_pid == -1 && argc > 0);
256         char buf;
257
258         if (!system_wide)
259                 nr_cpus = 1;
260
261         if (forks && (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0)) {
262                 perror("failed to create pipes");
263                 exit(1);
264         }
265
266         if (forks) {
267                 if ((pid = fork()) < 0)
268                         perror("failed to fork");
269
270                 if (!pid) {
271                         close(child_ready_pipe[0]);
272                         close(go_pipe[1]);
273                         fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
274
275                         /*
276                          * Do a dummy execvp to get the PLT entry resolved,
277                          * so we avoid the resolver overhead on the real
278                          * execvp call.
279                          */
280                         execvp("", (char **)argv);
281
282                         /*
283                          * Tell the parent we're ready to go
284                          */
285                         close(child_ready_pipe[1]);
286
287                         /*
288                          * Wait until the parent tells us to go.
289                          */
290                         if (read(go_pipe[0], &buf, 1) == -1)
291                                 perror("unable to read pipe");
292
293                         execvp(argv[0], (char **)argv);
294
295                         perror(argv[0]);
296                         exit(-1);
297                 }
298
299                 child_pid = pid;
300
301                 /*
302                  * Wait for the child to be ready to exec.
303                  */
304                 close(child_ready_pipe[1]);
305                 close(go_pipe[0]);
306                 if (read(child_ready_pipe[0], &buf, 1) == -1)
307                         perror("unable to read pipe");
308                 close(child_ready_pipe[0]);
309         }
310
311         for (counter = 0; counter < nr_counters; counter++)
312                 create_perf_stat_counter(counter, pid);
313
314         /*
315          * Enable counters and exec the command:
316          */
317         t0 = rdclock();
318
319         if (forks) {
320                 close(go_pipe[1]);
321                 wait(&status);
322         } else {
323                 while(!done);
324         }
325
326         t1 = rdclock();
327
328         update_stats(&walltime_nsecs_stats, t1 - t0);
329
330         for (counter = 0; counter < nr_counters; counter++)
331                 read_counter(counter);
332
333         return WEXITSTATUS(status);
334 }
335
336 static void print_noise(int counter, double avg)
337 {
338         if (run_count == 1)
339                 return;
340
341         fprintf(stderr, "   ( +- %7.3f%% )",
342                         100 * stddev_stats(&event_res_stats[counter][0]) / avg);
343 }
344
345 static void nsec_printout(int counter, double avg)
346 {
347         double msecs = avg / 1e6;
348
349         fprintf(stderr, " %14.6f  %-24s", msecs, event_name(counter));
350
351         if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) {
352                 fprintf(stderr, " # %10.3f CPUs ",
353                                 avg / avg_stats(&walltime_nsecs_stats));
354         }
355 }
356
357 static void abs_printout(int counter, double avg)
358 {
359         double total, ratio = 0.0;
360
361         fprintf(stderr, " %14.0f  %-24s", avg, event_name(counter));
362
363         if (MATCH_EVENT(HARDWARE, HW_INSTRUCTIONS, counter)) {
364                 total = avg_stats(&runtime_cycles_stats);
365
366                 if (total)
367                         ratio = avg / total;
368
369                 fprintf(stderr, " # %10.3f IPC  ", ratio);
370         } else if (MATCH_EVENT(HARDWARE, HW_BRANCH_MISSES, counter) &&
371                         runtime_branches_stats.n != 0) {
372                 total = avg_stats(&runtime_branches_stats);
373
374                 if (total)
375                         ratio = avg * 100 / total;
376
377                 fprintf(stderr, " # %10.3f %%    ", ratio);
378
379         } else if (runtime_nsecs_stats.n != 0) {
380                 total = avg_stats(&runtime_nsecs_stats);
381
382                 if (total)
383                         ratio = 1000.0 * avg / total;
384
385                 fprintf(stderr, " # %10.3f M/sec", ratio);
386         }
387 }
388
389 /*
390  * Print out the results of a single counter:
391  */
392 static void print_counter(int counter)
393 {
394         double avg = avg_stats(&event_res_stats[counter][0]);
395         int scaled = event_scaled[counter];
396
397         if (scaled == -1) {
398                 fprintf(stderr, " %14s  %-24s\n",
399                         "<not counted>", event_name(counter));
400                 return;
401         }
402
403         if (nsec_counter(counter))
404                 nsec_printout(counter, avg);
405         else
406                 abs_printout(counter, avg);
407
408         print_noise(counter, avg);
409
410         if (scaled) {
411                 double avg_enabled, avg_running;
412
413                 avg_enabled = avg_stats(&event_res_stats[counter][1]);
414                 avg_running = avg_stats(&event_res_stats[counter][2]);
415
416                 fprintf(stderr, "  (scaled from %.2f%%)",
417                                 100 * avg_running / avg_enabled);
418         }
419
420         fprintf(stderr, "\n");
421 }
422
423 static void print_stat(int argc, const char **argv)
424 {
425         int i, counter;
426
427         fflush(stdout);
428
429         fprintf(stderr, "\n");
430         fprintf(stderr, " Performance counter stats for ");
431         if(target_pid == -1) {
432                 fprintf(stderr, "\'%s", argv[0]);
433                 for (i = 1; i < argc; i++)
434                         fprintf(stderr, " %s", argv[i]);
435         }else
436                 fprintf(stderr, "task pid \'%d", target_pid);
437
438         fprintf(stderr, "\'");
439         if (run_count > 1)
440                 fprintf(stderr, " (%d runs)", run_count);
441         fprintf(stderr, ":\n\n");
442
443         for (counter = 0; counter < nr_counters; counter++)
444                 print_counter(counter);
445
446         fprintf(stderr, "\n");
447         fprintf(stderr, " %14.9f  seconds time elapsed",
448                         avg_stats(&walltime_nsecs_stats)/1e9);
449         if (run_count > 1) {
450                 fprintf(stderr, "   ( +- %7.3f%% )",
451                                 100*stddev_stats(&walltime_nsecs_stats) /
452                                 avg_stats(&walltime_nsecs_stats));
453         }
454         fprintf(stderr, "\n\n");
455 }
456
457 static volatile int signr = -1;
458
459 static void skip_signal(int signo)
460 {
461         if(target_pid != -1)
462                 done = 1;
463
464         signr = signo;
465 }
466
467 static void sig_atexit(void)
468 {
469         if (child_pid != -1)
470                 kill(child_pid, SIGTERM);
471
472         if (signr == -1)
473                 return;
474
475         signal(signr, SIG_DFL);
476         kill(getpid(), signr);
477 }
478
479 static const char * const stat_usage[] = {
480         "perf stat [<options>] [<command>]",
481         NULL
482 };
483
484 static const struct option options[] = {
485         OPT_CALLBACK('e', "event", NULL, "event",
486                      "event selector. use 'perf list' to list available events",
487                      parse_events),
488         OPT_BOOLEAN('i', "inherit", &inherit,
489                     "child tasks inherit counters"),
490         OPT_INTEGER('p', "pid", &target_pid,
491                     "stat events on existing pid"),
492         OPT_BOOLEAN('a', "all-cpus", &system_wide,
493                     "system-wide collection from all CPUs"),
494         OPT_BOOLEAN('c', "scale", &scale,
495                     "scale/normalize counters"),
496         OPT_BOOLEAN('v', "verbose", &verbose,
497                     "be more verbose (show counter open errors, etc)"),
498         OPT_INTEGER('r', "repeat", &run_count,
499                     "repeat command and print average + stddev (max: 100)"),
500         OPT_BOOLEAN('n', "null", &null_run,
501                     "null run - dont start any counters"),
502         OPT_END()
503 };
504
505 int cmd_stat(int argc, const char **argv, const char *prefix __used)
506 {
507         int status;
508
509         argc = parse_options(argc, argv, options, stat_usage,
510                 PARSE_OPT_STOP_AT_NON_OPTION);
511         if (!argc && target_pid == -1)
512                 usage_with_options(stat_usage, options);
513         if (run_count <= 0)
514                 usage_with_options(stat_usage, options);
515
516         /* Set attrs and nr_counters if no event is selected and !null_run */
517         if (!null_run && !nr_counters) {
518                 memcpy(attrs, default_attrs, sizeof(default_attrs));
519                 nr_counters = ARRAY_SIZE(default_attrs);
520         }
521
522         nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
523         assert(nr_cpus <= MAX_NR_CPUS);
524         assert((int)nr_cpus >= 0);
525
526         /*
527          * We dont want to block the signals - that would cause
528          * child tasks to inherit that and Ctrl-C would not work.
529          * What we want is for Ctrl-C to work in the exec()-ed
530          * task, but being ignored by perf stat itself:
531          */
532         atexit(sig_atexit);
533         signal(SIGINT,  skip_signal);
534         signal(SIGALRM, skip_signal);
535         signal(SIGABRT, skip_signal);
536
537         status = 0;
538         for (run_idx = 0; run_idx < run_count; run_idx++) {
539                 if (run_count != 1 && verbose)
540                         fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
541                 status = run_perf_stat(argc, argv);
542         }
543
544         print_stat(argc, argv);
545
546         return status;
547 }