Merge tag '6.6-rc-smb3-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
[sfrench/cifs-2.6.git] / sound / core / pcm_lib.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Digital Audio (PCM) abstract layer
4  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5  *                   Abramo Bagnara <abramo@alsa-project.org>
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10 #include <linux/time.h>
11 #include <linux/math64.h>
12 #include <linux/export.h>
13 #include <sound/core.h>
14 #include <sound/control.h>
15 #include <sound/tlv.h>
16 #include <sound/info.h>
17 #include <sound/pcm.h>
18 #include <sound/pcm_params.h>
19 #include <sound/timer.h>
20
21 #include "pcm_local.h"
22
23 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
24 #define CREATE_TRACE_POINTS
25 #include "pcm_trace.h"
26 #else
27 #define trace_hwptr(substream, pos, in_interrupt)
28 #define trace_xrun(substream)
29 #define trace_hw_ptr_error(substream, reason)
30 #define trace_applptr(substream, prev, curr)
31 #endif
32
33 static int fill_silence_frames(struct snd_pcm_substream *substream,
34                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36
37 static inline void update_silence_vars(struct snd_pcm_runtime *runtime,
38                                        snd_pcm_uframes_t ptr,
39                                        snd_pcm_uframes_t new_ptr)
40 {
41         snd_pcm_sframes_t delta;
42
43         delta = new_ptr - ptr;
44         if (delta == 0)
45                 return;
46         if (delta < 0)
47                 delta += runtime->boundary;
48         if ((snd_pcm_uframes_t)delta < runtime->silence_filled)
49                 runtime->silence_filled -= delta;
50         else
51                 runtime->silence_filled = 0;
52         runtime->silence_start = new_ptr;
53 }
54
55 /*
56  * fill ring buffer with silence
57  * runtime->silence_start: starting pointer to silence area
58  * runtime->silence_filled: size filled with silence
59  * runtime->silence_threshold: threshold from application
60  * runtime->silence_size: maximal size from application
61  *
62  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
63  */
64 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
65 {
66         struct snd_pcm_runtime *runtime = substream->runtime;
67         snd_pcm_uframes_t frames, ofs, transfer;
68         int err;
69
70         if (runtime->silence_size < runtime->boundary) {
71                 snd_pcm_sframes_t noise_dist;
72                 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
73                 update_silence_vars(runtime, runtime->silence_start, appl_ptr);
74                 /* initialization outside pointer updates */
75                 if (new_hw_ptr == ULONG_MAX)
76                         new_hw_ptr = runtime->status->hw_ptr;
77                 /* get hw_avail with the boundary crossing */
78                 noise_dist = appl_ptr - new_hw_ptr;
79                 if (noise_dist < 0)
80                         noise_dist += runtime->boundary;
81                 /* total noise distance */
82                 noise_dist += runtime->silence_filled;
83                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
84                         return;
85                 frames = runtime->silence_threshold - noise_dist;
86                 if (frames > runtime->silence_size)
87                         frames = runtime->silence_size;
88         } else {
89                 /*
90                  * This filling mode aims at free-running mode (used for example by dmix),
91                  * which doesn't update the application pointer.
92                  */
93                 snd_pcm_uframes_t hw_ptr = runtime->status->hw_ptr;
94                 if (new_hw_ptr == ULONG_MAX) {
95                         /*
96                          * Initialization, fill the whole unused buffer with silence.
97                          *
98                          * Usually, this is entered while stopped, before data is queued,
99                          * so both pointers are expected to be zero.
100                          */
101                         snd_pcm_sframes_t avail = runtime->control->appl_ptr - hw_ptr;
102                         if (avail < 0)
103                                 avail += runtime->boundary;
104                         /*
105                          * In free-running mode, appl_ptr will be zero even while running,
106                          * so we end up with a huge number. There is no useful way to
107                          * handle this, so we just clear the whole buffer.
108                          */
109                         runtime->silence_filled = avail > runtime->buffer_size ? 0 : avail;
110                         runtime->silence_start = hw_ptr;
111                 } else {
112                         /* Silence the just played area immediately */
113                         update_silence_vars(runtime, hw_ptr, new_hw_ptr);
114                 }
115                 /*
116                  * In this mode, silence_filled actually includes the valid
117                  * sample data from the user.
118                  */
119                 frames = runtime->buffer_size - runtime->silence_filled;
120         }
121         if (snd_BUG_ON(frames > runtime->buffer_size))
122                 return;
123         if (frames == 0)
124                 return;
125         ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
126         do {
127                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
128                 err = fill_silence_frames(substream, ofs, transfer);
129                 snd_BUG_ON(err < 0);
130                 runtime->silence_filled += transfer;
131                 frames -= transfer;
132                 ofs = 0;
133         } while (frames > 0);
134         snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
135 }
136
137 #ifdef CONFIG_SND_DEBUG
138 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
139                            char *name, size_t len)
140 {
141         snprintf(name, len, "pcmC%dD%d%c:%d",
142                  substream->pcm->card->number,
143                  substream->pcm->device,
144                  substream->stream ? 'c' : 'p',
145                  substream->number);
146 }
147 EXPORT_SYMBOL(snd_pcm_debug_name);
148 #endif
149
150 #define XRUN_DEBUG_BASIC        (1<<0)
151 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
152 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
153
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155
156 #define xrun_debug(substream, mask) \
157                         ((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask)     0
160 #endif
161
162 #define dump_stack_on_xrun(substream) do {                      \
163                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
164                         dump_stack();                           \
165         } while (0)
166
167 /* call with stream lock held */
168 void __snd_pcm_xrun(struct snd_pcm_substream *substream)
169 {
170         struct snd_pcm_runtime *runtime = substream->runtime;
171
172         trace_xrun(substream);
173         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
174                 struct timespec64 tstamp;
175
176                 snd_pcm_gettime(runtime, &tstamp);
177                 runtime->status->tstamp.tv_sec = tstamp.tv_sec;
178                 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
179         }
180         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
181         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
182                 char name[16];
183                 snd_pcm_debug_name(substream, name, sizeof(name));
184                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
185                 dump_stack_on_xrun(substream);
186         }
187 }
188
189 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
190 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
191         do {                                                            \
192                 trace_hw_ptr_error(substream, reason);  \
193                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
194                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
195                                            (in_interrupt) ? 'Q' : 'P', ##args); \
196                         dump_stack_on_xrun(substream);                  \
197                 }                                                       \
198         } while (0)
199
200 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
201
202 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
203
204 #endif
205
206 int snd_pcm_update_state(struct snd_pcm_substream *substream,
207                          struct snd_pcm_runtime *runtime)
208 {
209         snd_pcm_uframes_t avail;
210
211         avail = snd_pcm_avail(substream);
212         if (avail > runtime->avail_max)
213                 runtime->avail_max = avail;
214         if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
215                 if (avail >= runtime->buffer_size) {
216                         snd_pcm_drain_done(substream);
217                         return -EPIPE;
218                 }
219         } else {
220                 if (avail >= runtime->stop_threshold) {
221                         __snd_pcm_xrun(substream);
222                         return -EPIPE;
223                 }
224         }
225         if (runtime->twake) {
226                 if (avail >= runtime->twake)
227                         wake_up(&runtime->tsleep);
228         } else if (avail >= runtime->control->avail_min)
229                 wake_up(&runtime->sleep);
230         return 0;
231 }
232
233 static void update_audio_tstamp(struct snd_pcm_substream *substream,
234                                 struct timespec64 *curr_tstamp,
235                                 struct timespec64 *audio_tstamp)
236 {
237         struct snd_pcm_runtime *runtime = substream->runtime;
238         u64 audio_frames, audio_nsecs;
239         struct timespec64 driver_tstamp;
240
241         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
242                 return;
243
244         if (!(substream->ops->get_time_info) ||
245                 (runtime->audio_tstamp_report.actual_type ==
246                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
247
248                 /*
249                  * provide audio timestamp derived from pointer position
250                  * add delay only if requested
251                  */
252
253                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
254
255                 if (runtime->audio_tstamp_config.report_delay) {
256                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
257                                 audio_frames -=  runtime->delay;
258                         else
259                                 audio_frames +=  runtime->delay;
260                 }
261                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
262                                 runtime->rate);
263                 *audio_tstamp = ns_to_timespec64(audio_nsecs);
264         }
265
266         if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
267             runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
268                 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
269                 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
270                 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
271                 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
272         }
273
274
275         /*
276          * re-take a driver timestamp to let apps detect if the reference tstamp
277          * read by low-level hardware was provided with a delay
278          */
279         snd_pcm_gettime(substream->runtime, &driver_tstamp);
280         runtime->driver_tstamp = driver_tstamp;
281 }
282
283 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
284                                   unsigned int in_interrupt)
285 {
286         struct snd_pcm_runtime *runtime = substream->runtime;
287         snd_pcm_uframes_t pos;
288         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
289         snd_pcm_sframes_t hdelta, delta;
290         unsigned long jdelta;
291         unsigned long curr_jiffies;
292         struct timespec64 curr_tstamp;
293         struct timespec64 audio_tstamp;
294         int crossed_boundary = 0;
295
296         old_hw_ptr = runtime->status->hw_ptr;
297
298         /*
299          * group pointer, time and jiffies reads to allow for more
300          * accurate correlations/corrections.
301          * The values are stored at the end of this routine after
302          * corrections for hw_ptr position
303          */
304         pos = substream->ops->pointer(substream);
305         curr_jiffies = jiffies;
306         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
307                 if ((substream->ops->get_time_info) &&
308                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
309                         substream->ops->get_time_info(substream, &curr_tstamp,
310                                                 &audio_tstamp,
311                                                 &runtime->audio_tstamp_config,
312                                                 &runtime->audio_tstamp_report);
313
314                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
315                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
316                                 snd_pcm_gettime(runtime, &curr_tstamp);
317                 } else
318                         snd_pcm_gettime(runtime, &curr_tstamp);
319         }
320
321         if (pos == SNDRV_PCM_POS_XRUN) {
322                 __snd_pcm_xrun(substream);
323                 return -EPIPE;
324         }
325         if (pos >= runtime->buffer_size) {
326                 if (printk_ratelimit()) {
327                         char name[16];
328                         snd_pcm_debug_name(substream, name, sizeof(name));
329                         pcm_err(substream->pcm,
330                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
331                                 name, pos, runtime->buffer_size,
332                                 runtime->period_size);
333                 }
334                 pos = 0;
335         }
336         pos -= pos % runtime->min_align;
337         trace_hwptr(substream, pos, in_interrupt);
338         hw_base = runtime->hw_ptr_base;
339         new_hw_ptr = hw_base + pos;
340         if (in_interrupt) {
341                 /* we know that one period was processed */
342                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
343                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
344                 if (delta > new_hw_ptr) {
345                         /* check for double acknowledged interrupts */
346                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
347                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
348                                 hw_base += runtime->buffer_size;
349                                 if (hw_base >= runtime->boundary) {
350                                         hw_base = 0;
351                                         crossed_boundary++;
352                                 }
353                                 new_hw_ptr = hw_base + pos;
354                                 goto __delta;
355                         }
356                 }
357         }
358         /* new_hw_ptr might be lower than old_hw_ptr in case when */
359         /* pointer crosses the end of the ring buffer */
360         if (new_hw_ptr < old_hw_ptr) {
361                 hw_base += runtime->buffer_size;
362                 if (hw_base >= runtime->boundary) {
363                         hw_base = 0;
364                         crossed_boundary++;
365                 }
366                 new_hw_ptr = hw_base + pos;
367         }
368       __delta:
369         delta = new_hw_ptr - old_hw_ptr;
370         if (delta < 0)
371                 delta += runtime->boundary;
372
373         if (runtime->no_period_wakeup) {
374                 snd_pcm_sframes_t xrun_threshold;
375                 /*
376                  * Without regular period interrupts, we have to check
377                  * the elapsed time to detect xruns.
378                  */
379                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
380                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
381                         goto no_delta_check;
382                 hdelta = jdelta - delta * HZ / runtime->rate;
383                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
384                 while (hdelta > xrun_threshold) {
385                         delta += runtime->buffer_size;
386                         hw_base += runtime->buffer_size;
387                         if (hw_base >= runtime->boundary) {
388                                 hw_base = 0;
389                                 crossed_boundary++;
390                         }
391                         new_hw_ptr = hw_base + pos;
392                         hdelta -= runtime->hw_ptr_buffer_jiffies;
393                 }
394                 goto no_delta_check;
395         }
396
397         /* something must be really wrong */
398         if (delta >= runtime->buffer_size + runtime->period_size) {
399                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
400                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
401                              substream->stream, (long)pos,
402                              (long)new_hw_ptr, (long)old_hw_ptr);
403                 return 0;
404         }
405
406         /* Do jiffies check only in xrun_debug mode */
407         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
408                 goto no_jiffies_check;
409
410         /* Skip the jiffies check for hardwares with BATCH flag.
411          * Such hardware usually just increases the position at each IRQ,
412          * thus it can't give any strange position.
413          */
414         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
415                 goto no_jiffies_check;
416         hdelta = delta;
417         if (hdelta < runtime->delay)
418                 goto no_jiffies_check;
419         hdelta -= runtime->delay;
420         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
421         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
422                 delta = jdelta /
423                         (((runtime->period_size * HZ) / runtime->rate)
424                                                                 + HZ/100);
425                 /* move new_hw_ptr according jiffies not pos variable */
426                 new_hw_ptr = old_hw_ptr;
427                 hw_base = delta;
428                 /* use loop to avoid checks for delta overflows */
429                 /* the delta value is small or zero in most cases */
430                 while (delta > 0) {
431                         new_hw_ptr += runtime->period_size;
432                         if (new_hw_ptr >= runtime->boundary) {
433                                 new_hw_ptr -= runtime->boundary;
434                                 crossed_boundary--;
435                         }
436                         delta--;
437                 }
438                 /* align hw_base to buffer_size */
439                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
440                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
441                              (long)pos, (long)hdelta,
442                              (long)runtime->period_size, jdelta,
443                              ((hdelta * HZ) / runtime->rate), hw_base,
444                              (unsigned long)old_hw_ptr,
445                              (unsigned long)new_hw_ptr);
446                 /* reset values to proper state */
447                 delta = 0;
448                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
449         }
450  no_jiffies_check:
451         if (delta > runtime->period_size + runtime->period_size / 2) {
452                 hw_ptr_error(substream, in_interrupt,
453                              "Lost interrupts?",
454                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
455                              substream->stream, (long)delta,
456                              (long)new_hw_ptr,
457                              (long)old_hw_ptr);
458         }
459
460  no_delta_check:
461         if (runtime->status->hw_ptr == new_hw_ptr) {
462                 runtime->hw_ptr_jiffies = curr_jiffies;
463                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
464                 return 0;
465         }
466
467         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
468             runtime->silence_size > 0)
469                 snd_pcm_playback_silence(substream, new_hw_ptr);
470
471         if (in_interrupt) {
472                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
473                 if (delta < 0)
474                         delta += runtime->boundary;
475                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
476                 runtime->hw_ptr_interrupt += delta;
477                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
478                         runtime->hw_ptr_interrupt -= runtime->boundary;
479         }
480         runtime->hw_ptr_base = hw_base;
481         runtime->status->hw_ptr = new_hw_ptr;
482         runtime->hw_ptr_jiffies = curr_jiffies;
483         if (crossed_boundary) {
484                 snd_BUG_ON(crossed_boundary != 1);
485                 runtime->hw_ptr_wrap += runtime->boundary;
486         }
487
488         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
489
490         return snd_pcm_update_state(substream, runtime);
491 }
492
493 /* CAUTION: call it with irq disabled */
494 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
495 {
496         return snd_pcm_update_hw_ptr0(substream, 0);
497 }
498
499 /**
500  * snd_pcm_set_ops - set the PCM operators
501  * @pcm: the pcm instance
502  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
503  * @ops: the operator table
504  *
505  * Sets the given PCM operators to the pcm instance.
506  */
507 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
508                      const struct snd_pcm_ops *ops)
509 {
510         struct snd_pcm_str *stream = &pcm->streams[direction];
511         struct snd_pcm_substream *substream;
512         
513         for (substream = stream->substream; substream != NULL; substream = substream->next)
514                 substream->ops = ops;
515 }
516 EXPORT_SYMBOL(snd_pcm_set_ops);
517
518 /**
519  * snd_pcm_set_sync - set the PCM sync id
520  * @substream: the pcm substream
521  *
522  * Sets the PCM sync identifier for the card.
523  */
524 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
525 {
526         struct snd_pcm_runtime *runtime = substream->runtime;
527         
528         runtime->sync.id32[0] = substream->pcm->card->number;
529         runtime->sync.id32[1] = -1;
530         runtime->sync.id32[2] = -1;
531         runtime->sync.id32[3] = -1;
532 }
533 EXPORT_SYMBOL(snd_pcm_set_sync);
534
535 /*
536  *  Standard ioctl routine
537  */
538
539 static inline unsigned int div32(unsigned int a, unsigned int b, 
540                                  unsigned int *r)
541 {
542         if (b == 0) {
543                 *r = 0;
544                 return UINT_MAX;
545         }
546         *r = a % b;
547         return a / b;
548 }
549
550 static inline unsigned int div_down(unsigned int a, unsigned int b)
551 {
552         if (b == 0)
553                 return UINT_MAX;
554         return a / b;
555 }
556
557 static inline unsigned int div_up(unsigned int a, unsigned int b)
558 {
559         unsigned int r;
560         unsigned int q;
561         if (b == 0)
562                 return UINT_MAX;
563         q = div32(a, b, &r);
564         if (r)
565                 ++q;
566         return q;
567 }
568
569 static inline unsigned int mul(unsigned int a, unsigned int b)
570 {
571         if (a == 0)
572                 return 0;
573         if (div_down(UINT_MAX, a) < b)
574                 return UINT_MAX;
575         return a * b;
576 }
577
578 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
579                                     unsigned int c, unsigned int *r)
580 {
581         u_int64_t n = (u_int64_t) a * b;
582         if (c == 0) {
583                 *r = 0;
584                 return UINT_MAX;
585         }
586         n = div_u64_rem(n, c, r);
587         if (n >= UINT_MAX) {
588                 *r = 0;
589                 return UINT_MAX;
590         }
591         return n;
592 }
593
594 /**
595  * snd_interval_refine - refine the interval value of configurator
596  * @i: the interval value to refine
597  * @v: the interval value to refer to
598  *
599  * Refines the interval value with the reference value.
600  * The interval is changed to the range satisfying both intervals.
601  * The interval status (min, max, integer, etc.) are evaluated.
602  *
603  * Return: Positive if the value is changed, zero if it's not changed, or a
604  * negative error code.
605  */
606 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
607 {
608         int changed = 0;
609         if (snd_BUG_ON(snd_interval_empty(i)))
610                 return -EINVAL;
611         if (i->min < v->min) {
612                 i->min = v->min;
613                 i->openmin = v->openmin;
614                 changed = 1;
615         } else if (i->min == v->min && !i->openmin && v->openmin) {
616                 i->openmin = 1;
617                 changed = 1;
618         }
619         if (i->max > v->max) {
620                 i->max = v->max;
621                 i->openmax = v->openmax;
622                 changed = 1;
623         } else if (i->max == v->max && !i->openmax && v->openmax) {
624                 i->openmax = 1;
625                 changed = 1;
626         }
627         if (!i->integer && v->integer) {
628                 i->integer = 1;
629                 changed = 1;
630         }
631         if (i->integer) {
632                 if (i->openmin) {
633                         i->min++;
634                         i->openmin = 0;
635                 }
636                 if (i->openmax) {
637                         i->max--;
638                         i->openmax = 0;
639                 }
640         } else if (!i->openmin && !i->openmax && i->min == i->max)
641                 i->integer = 1;
642         if (snd_interval_checkempty(i)) {
643                 snd_interval_none(i);
644                 return -EINVAL;
645         }
646         return changed;
647 }
648 EXPORT_SYMBOL(snd_interval_refine);
649
650 static int snd_interval_refine_first(struct snd_interval *i)
651 {
652         const unsigned int last_max = i->max;
653
654         if (snd_BUG_ON(snd_interval_empty(i)))
655                 return -EINVAL;
656         if (snd_interval_single(i))
657                 return 0;
658         i->max = i->min;
659         if (i->openmin)
660                 i->max++;
661         /* only exclude max value if also excluded before refine */
662         i->openmax = (i->openmax && i->max >= last_max);
663         return 1;
664 }
665
666 static int snd_interval_refine_last(struct snd_interval *i)
667 {
668         const unsigned int last_min = i->min;
669
670         if (snd_BUG_ON(snd_interval_empty(i)))
671                 return -EINVAL;
672         if (snd_interval_single(i))
673                 return 0;
674         i->min = i->max;
675         if (i->openmax)
676                 i->min--;
677         /* only exclude min value if also excluded before refine */
678         i->openmin = (i->openmin && i->min <= last_min);
679         return 1;
680 }
681
682 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
683 {
684         if (a->empty || b->empty) {
685                 snd_interval_none(c);
686                 return;
687         }
688         c->empty = 0;
689         c->min = mul(a->min, b->min);
690         c->openmin = (a->openmin || b->openmin);
691         c->max = mul(a->max,  b->max);
692         c->openmax = (a->openmax || b->openmax);
693         c->integer = (a->integer && b->integer);
694 }
695
696 /**
697  * snd_interval_div - refine the interval value with division
698  * @a: dividend
699  * @b: divisor
700  * @c: quotient
701  *
702  * c = a / b
703  *
704  * Returns non-zero if the value is changed, zero if not changed.
705  */
706 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
707 {
708         unsigned int r;
709         if (a->empty || b->empty) {
710                 snd_interval_none(c);
711                 return;
712         }
713         c->empty = 0;
714         c->min = div32(a->min, b->max, &r);
715         c->openmin = (r || a->openmin || b->openmax);
716         if (b->min > 0) {
717                 c->max = div32(a->max, b->min, &r);
718                 if (r) {
719                         c->max++;
720                         c->openmax = 1;
721                 } else
722                         c->openmax = (a->openmax || b->openmin);
723         } else {
724                 c->max = UINT_MAX;
725                 c->openmax = 0;
726         }
727         c->integer = 0;
728 }
729
730 /**
731  * snd_interval_muldivk - refine the interval value
732  * @a: dividend 1
733  * @b: dividend 2
734  * @k: divisor (as integer)
735  * @c: result
736   *
737  * c = a * b / k
738  *
739  * Returns non-zero if the value is changed, zero if not changed.
740  */
741 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
742                       unsigned int k, struct snd_interval *c)
743 {
744         unsigned int r;
745         if (a->empty || b->empty) {
746                 snd_interval_none(c);
747                 return;
748         }
749         c->empty = 0;
750         c->min = muldiv32(a->min, b->min, k, &r);
751         c->openmin = (r || a->openmin || b->openmin);
752         c->max = muldiv32(a->max, b->max, k, &r);
753         if (r) {
754                 c->max++;
755                 c->openmax = 1;
756         } else
757                 c->openmax = (a->openmax || b->openmax);
758         c->integer = 0;
759 }
760
761 /**
762  * snd_interval_mulkdiv - refine the interval value
763  * @a: dividend 1
764  * @k: dividend 2 (as integer)
765  * @b: divisor
766  * @c: result
767  *
768  * c = a * k / b
769  *
770  * Returns non-zero if the value is changed, zero if not changed.
771  */
772 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
773                       const struct snd_interval *b, struct snd_interval *c)
774 {
775         unsigned int r;
776         if (a->empty || b->empty) {
777                 snd_interval_none(c);
778                 return;
779         }
780         c->empty = 0;
781         c->min = muldiv32(a->min, k, b->max, &r);
782         c->openmin = (r || a->openmin || b->openmax);
783         if (b->min > 0) {
784                 c->max = muldiv32(a->max, k, b->min, &r);
785                 if (r) {
786                         c->max++;
787                         c->openmax = 1;
788                 } else
789                         c->openmax = (a->openmax || b->openmin);
790         } else {
791                 c->max = UINT_MAX;
792                 c->openmax = 0;
793         }
794         c->integer = 0;
795 }
796
797 /* ---- */
798
799
800 /**
801  * snd_interval_ratnum - refine the interval value
802  * @i: interval to refine
803  * @rats_count: number of ratnum_t 
804  * @rats: ratnum_t array
805  * @nump: pointer to store the resultant numerator
806  * @denp: pointer to store the resultant denominator
807  *
808  * Return: Positive if the value is changed, zero if it's not changed, or a
809  * negative error code.
810  */
811 int snd_interval_ratnum(struct snd_interval *i,
812                         unsigned int rats_count, const struct snd_ratnum *rats,
813                         unsigned int *nump, unsigned int *denp)
814 {
815         unsigned int best_num, best_den;
816         int best_diff;
817         unsigned int k;
818         struct snd_interval t;
819         int err;
820         unsigned int result_num, result_den;
821         int result_diff;
822
823         best_num = best_den = best_diff = 0;
824         for (k = 0; k < rats_count; ++k) {
825                 unsigned int num = rats[k].num;
826                 unsigned int den;
827                 unsigned int q = i->min;
828                 int diff;
829                 if (q == 0)
830                         q = 1;
831                 den = div_up(num, q);
832                 if (den < rats[k].den_min)
833                         continue;
834                 if (den > rats[k].den_max)
835                         den = rats[k].den_max;
836                 else {
837                         unsigned int r;
838                         r = (den - rats[k].den_min) % rats[k].den_step;
839                         if (r != 0)
840                                 den -= r;
841                 }
842                 diff = num - q * den;
843                 if (diff < 0)
844                         diff = -diff;
845                 if (best_num == 0 ||
846                     diff * best_den < best_diff * den) {
847                         best_diff = diff;
848                         best_den = den;
849                         best_num = num;
850                 }
851         }
852         if (best_den == 0) {
853                 i->empty = 1;
854                 return -EINVAL;
855         }
856         t.min = div_down(best_num, best_den);
857         t.openmin = !!(best_num % best_den);
858         
859         result_num = best_num;
860         result_diff = best_diff;
861         result_den = best_den;
862         best_num = best_den = best_diff = 0;
863         for (k = 0; k < rats_count; ++k) {
864                 unsigned int num = rats[k].num;
865                 unsigned int den;
866                 unsigned int q = i->max;
867                 int diff;
868                 if (q == 0) {
869                         i->empty = 1;
870                         return -EINVAL;
871                 }
872                 den = div_down(num, q);
873                 if (den > rats[k].den_max)
874                         continue;
875                 if (den < rats[k].den_min)
876                         den = rats[k].den_min;
877                 else {
878                         unsigned int r;
879                         r = (den - rats[k].den_min) % rats[k].den_step;
880                         if (r != 0)
881                                 den += rats[k].den_step - r;
882                 }
883                 diff = q * den - num;
884                 if (diff < 0)
885                         diff = -diff;
886                 if (best_num == 0 ||
887                     diff * best_den < best_diff * den) {
888                         best_diff = diff;
889                         best_den = den;
890                         best_num = num;
891                 }
892         }
893         if (best_den == 0) {
894                 i->empty = 1;
895                 return -EINVAL;
896         }
897         t.max = div_up(best_num, best_den);
898         t.openmax = !!(best_num % best_den);
899         t.integer = 0;
900         err = snd_interval_refine(i, &t);
901         if (err < 0)
902                 return err;
903
904         if (snd_interval_single(i)) {
905                 if (best_diff * result_den < result_diff * best_den) {
906                         result_num = best_num;
907                         result_den = best_den;
908                 }
909                 if (nump)
910                         *nump = result_num;
911                 if (denp)
912                         *denp = result_den;
913         }
914         return err;
915 }
916 EXPORT_SYMBOL(snd_interval_ratnum);
917
918 /**
919  * snd_interval_ratden - refine the interval value
920  * @i: interval to refine
921  * @rats_count: number of struct ratden
922  * @rats: struct ratden array
923  * @nump: pointer to store the resultant numerator
924  * @denp: pointer to store the resultant denominator
925  *
926  * Return: Positive if the value is changed, zero if it's not changed, or a
927  * negative error code.
928  */
929 static int snd_interval_ratden(struct snd_interval *i,
930                                unsigned int rats_count,
931                                const struct snd_ratden *rats,
932                                unsigned int *nump, unsigned int *denp)
933 {
934         unsigned int best_num, best_diff, best_den;
935         unsigned int k;
936         struct snd_interval t;
937         int err;
938
939         best_num = best_den = best_diff = 0;
940         for (k = 0; k < rats_count; ++k) {
941                 unsigned int num;
942                 unsigned int den = rats[k].den;
943                 unsigned int q = i->min;
944                 int diff;
945                 num = mul(q, den);
946                 if (num > rats[k].num_max)
947                         continue;
948                 if (num < rats[k].num_min)
949                         num = rats[k].num_max;
950                 else {
951                         unsigned int r;
952                         r = (num - rats[k].num_min) % rats[k].num_step;
953                         if (r != 0)
954                                 num += rats[k].num_step - r;
955                 }
956                 diff = num - q * den;
957                 if (best_num == 0 ||
958                     diff * best_den < best_diff * den) {
959                         best_diff = diff;
960                         best_den = den;
961                         best_num = num;
962                 }
963         }
964         if (best_den == 0) {
965                 i->empty = 1;
966                 return -EINVAL;
967         }
968         t.min = div_down(best_num, best_den);
969         t.openmin = !!(best_num % best_den);
970         
971         best_num = best_den = best_diff = 0;
972         for (k = 0; k < rats_count; ++k) {
973                 unsigned int num;
974                 unsigned int den = rats[k].den;
975                 unsigned int q = i->max;
976                 int diff;
977                 num = mul(q, den);
978                 if (num < rats[k].num_min)
979                         continue;
980                 if (num > rats[k].num_max)
981                         num = rats[k].num_max;
982                 else {
983                         unsigned int r;
984                         r = (num - rats[k].num_min) % rats[k].num_step;
985                         if (r != 0)
986                                 num -= r;
987                 }
988                 diff = q * den - num;
989                 if (best_num == 0 ||
990                     diff * best_den < best_diff * den) {
991                         best_diff = diff;
992                         best_den = den;
993                         best_num = num;
994                 }
995         }
996         if (best_den == 0) {
997                 i->empty = 1;
998                 return -EINVAL;
999         }
1000         t.max = div_up(best_num, best_den);
1001         t.openmax = !!(best_num % best_den);
1002         t.integer = 0;
1003         err = snd_interval_refine(i, &t);
1004         if (err < 0)
1005                 return err;
1006
1007         if (snd_interval_single(i)) {
1008                 if (nump)
1009                         *nump = best_num;
1010                 if (denp)
1011                         *denp = best_den;
1012         }
1013         return err;
1014 }
1015
1016 /**
1017  * snd_interval_list - refine the interval value from the list
1018  * @i: the interval value to refine
1019  * @count: the number of elements in the list
1020  * @list: the value list
1021  * @mask: the bit-mask to evaluate
1022  *
1023  * Refines the interval value from the list.
1024  * When mask is non-zero, only the elements corresponding to bit 1 are
1025  * evaluated.
1026  *
1027  * Return: Positive if the value is changed, zero if it's not changed, or a
1028  * negative error code.
1029  */
1030 int snd_interval_list(struct snd_interval *i, unsigned int count,
1031                       const unsigned int *list, unsigned int mask)
1032 {
1033         unsigned int k;
1034         struct snd_interval list_range;
1035
1036         if (!count) {
1037                 i->empty = 1;
1038                 return -EINVAL;
1039         }
1040         snd_interval_any(&list_range);
1041         list_range.min = UINT_MAX;
1042         list_range.max = 0;
1043         for (k = 0; k < count; k++) {
1044                 if (mask && !(mask & (1 << k)))
1045                         continue;
1046                 if (!snd_interval_test(i, list[k]))
1047                         continue;
1048                 list_range.min = min(list_range.min, list[k]);
1049                 list_range.max = max(list_range.max, list[k]);
1050         }
1051         return snd_interval_refine(i, &list_range);
1052 }
1053 EXPORT_SYMBOL(snd_interval_list);
1054
1055 /**
1056  * snd_interval_ranges - refine the interval value from the list of ranges
1057  * @i: the interval value to refine
1058  * @count: the number of elements in the list of ranges
1059  * @ranges: the ranges list
1060  * @mask: the bit-mask to evaluate
1061  *
1062  * Refines the interval value from the list of ranges.
1063  * When mask is non-zero, only the elements corresponding to bit 1 are
1064  * evaluated.
1065  *
1066  * Return: Positive if the value is changed, zero if it's not changed, or a
1067  * negative error code.
1068  */
1069 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1070                         const struct snd_interval *ranges, unsigned int mask)
1071 {
1072         unsigned int k;
1073         struct snd_interval range_union;
1074         struct snd_interval range;
1075
1076         if (!count) {
1077                 snd_interval_none(i);
1078                 return -EINVAL;
1079         }
1080         snd_interval_any(&range_union);
1081         range_union.min = UINT_MAX;
1082         range_union.max = 0;
1083         for (k = 0; k < count; k++) {
1084                 if (mask && !(mask & (1 << k)))
1085                         continue;
1086                 snd_interval_copy(&range, &ranges[k]);
1087                 if (snd_interval_refine(&range, i) < 0)
1088                         continue;
1089                 if (snd_interval_empty(&range))
1090                         continue;
1091
1092                 if (range.min < range_union.min) {
1093                         range_union.min = range.min;
1094                         range_union.openmin = 1;
1095                 }
1096                 if (range.min == range_union.min && !range.openmin)
1097                         range_union.openmin = 0;
1098                 if (range.max > range_union.max) {
1099                         range_union.max = range.max;
1100                         range_union.openmax = 1;
1101                 }
1102                 if (range.max == range_union.max && !range.openmax)
1103                         range_union.openmax = 0;
1104         }
1105         return snd_interval_refine(i, &range_union);
1106 }
1107 EXPORT_SYMBOL(snd_interval_ranges);
1108
1109 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1110 {
1111         unsigned int n;
1112         int changed = 0;
1113         n = i->min % step;
1114         if (n != 0 || i->openmin) {
1115                 i->min += step - n;
1116                 i->openmin = 0;
1117                 changed = 1;
1118         }
1119         n = i->max % step;
1120         if (n != 0 || i->openmax) {
1121                 i->max -= n;
1122                 i->openmax = 0;
1123                 changed = 1;
1124         }
1125         if (snd_interval_checkempty(i)) {
1126                 i->empty = 1;
1127                 return -EINVAL;
1128         }
1129         return changed;
1130 }
1131
1132 /* Info constraints helpers */
1133
1134 /**
1135  * snd_pcm_hw_rule_add - add the hw-constraint rule
1136  * @runtime: the pcm runtime instance
1137  * @cond: condition bits
1138  * @var: the variable to evaluate
1139  * @func: the evaluation function
1140  * @private: the private data pointer passed to function
1141  * @dep: the dependent variables
1142  *
1143  * Return: Zero if successful, or a negative error code on failure.
1144  */
1145 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1146                         int var,
1147                         snd_pcm_hw_rule_func_t func, void *private,
1148                         int dep, ...)
1149 {
1150         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1151         struct snd_pcm_hw_rule *c;
1152         unsigned int k;
1153         va_list args;
1154         va_start(args, dep);
1155         if (constrs->rules_num >= constrs->rules_all) {
1156                 struct snd_pcm_hw_rule *new;
1157                 unsigned int new_rules = constrs->rules_all + 16;
1158                 new = krealloc_array(constrs->rules, new_rules,
1159                                      sizeof(*c), GFP_KERNEL);
1160                 if (!new) {
1161                         va_end(args);
1162                         return -ENOMEM;
1163                 }
1164                 constrs->rules = new;
1165                 constrs->rules_all = new_rules;
1166         }
1167         c = &constrs->rules[constrs->rules_num];
1168         c->cond = cond;
1169         c->func = func;
1170         c->var = var;
1171         c->private = private;
1172         k = 0;
1173         while (1) {
1174                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1175                         va_end(args);
1176                         return -EINVAL;
1177                 }
1178                 c->deps[k++] = dep;
1179                 if (dep < 0)
1180                         break;
1181                 dep = va_arg(args, int);
1182         }
1183         constrs->rules_num++;
1184         va_end(args);
1185         return 0;
1186 }
1187 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1188
1189 /**
1190  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1191  * @runtime: PCM runtime instance
1192  * @var: hw_params variable to apply the mask
1193  * @mask: the bitmap mask
1194  *
1195  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1196  *
1197  * Return: Zero if successful, or a negative error code on failure.
1198  */
1199 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1200                                u_int32_t mask)
1201 {
1202         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1203         struct snd_mask *maskp = constrs_mask(constrs, var);
1204         *maskp->bits &= mask;
1205         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1206         if (*maskp->bits == 0)
1207                 return -EINVAL;
1208         return 0;
1209 }
1210
1211 /**
1212  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1213  * @runtime: PCM runtime instance
1214  * @var: hw_params variable to apply the mask
1215  * @mask: the 64bit bitmap mask
1216  *
1217  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1218  *
1219  * Return: Zero if successful, or a negative error code on failure.
1220  */
1221 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1222                                  u_int64_t mask)
1223 {
1224         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1225         struct snd_mask *maskp = constrs_mask(constrs, var);
1226         maskp->bits[0] &= (u_int32_t)mask;
1227         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1228         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1229         if (! maskp->bits[0] && ! maskp->bits[1])
1230                 return -EINVAL;
1231         return 0;
1232 }
1233 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1234
1235 /**
1236  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1237  * @runtime: PCM runtime instance
1238  * @var: hw_params variable to apply the integer constraint
1239  *
1240  * Apply the constraint of integer to an interval parameter.
1241  *
1242  * Return: Positive if the value is changed, zero if it's not changed, or a
1243  * negative error code.
1244  */
1245 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1246 {
1247         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1248         return snd_interval_setinteger(constrs_interval(constrs, var));
1249 }
1250 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1251
1252 /**
1253  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254  * @runtime: PCM runtime instance
1255  * @var: hw_params variable to apply the range
1256  * @min: the minimal value
1257  * @max: the maximal value
1258  * 
1259  * Apply the min/max range constraint to an interval parameter.
1260  *
1261  * Return: Positive if the value is changed, zero if it's not changed, or a
1262  * negative error code.
1263  */
1264 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1265                                  unsigned int min, unsigned int max)
1266 {
1267         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268         struct snd_interval t;
1269         t.min = min;
1270         t.max = max;
1271         t.openmin = t.openmax = 0;
1272         t.integer = 0;
1273         return snd_interval_refine(constrs_interval(constrs, var), &t);
1274 }
1275 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1276
1277 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1278                                 struct snd_pcm_hw_rule *rule)
1279 {
1280         struct snd_pcm_hw_constraint_list *list = rule->private;
1281         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1282 }               
1283
1284
1285 /**
1286  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1287  * @runtime: PCM runtime instance
1288  * @cond: condition bits
1289  * @var: hw_params variable to apply the list constraint
1290  * @l: list
1291  * 
1292  * Apply the list of constraints to an interval parameter.
1293  *
1294  * Return: Zero if successful, or a negative error code on failure.
1295  */
1296 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1297                                unsigned int cond,
1298                                snd_pcm_hw_param_t var,
1299                                const struct snd_pcm_hw_constraint_list *l)
1300 {
1301         return snd_pcm_hw_rule_add(runtime, cond, var,
1302                                    snd_pcm_hw_rule_list, (void *)l,
1303                                    var, -1);
1304 }
1305 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1306
1307 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1308                                   struct snd_pcm_hw_rule *rule)
1309 {
1310         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1311         return snd_interval_ranges(hw_param_interval(params, rule->var),
1312                                    r->count, r->ranges, r->mask);
1313 }
1314
1315
1316 /**
1317  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1318  * @runtime: PCM runtime instance
1319  * @cond: condition bits
1320  * @var: hw_params variable to apply the list of range constraints
1321  * @r: ranges
1322  *
1323  * Apply the list of range constraints to an interval parameter.
1324  *
1325  * Return: Zero if successful, or a negative error code on failure.
1326  */
1327 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1328                                  unsigned int cond,
1329                                  snd_pcm_hw_param_t var,
1330                                  const struct snd_pcm_hw_constraint_ranges *r)
1331 {
1332         return snd_pcm_hw_rule_add(runtime, cond, var,
1333                                    snd_pcm_hw_rule_ranges, (void *)r,
1334                                    var, -1);
1335 }
1336 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1337
1338 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1339                                    struct snd_pcm_hw_rule *rule)
1340 {
1341         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1342         unsigned int num = 0, den = 0;
1343         int err;
1344         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1345                                   r->nrats, r->rats, &num, &den);
1346         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1347                 params->rate_num = num;
1348                 params->rate_den = den;
1349         }
1350         return err;
1351 }
1352
1353 /**
1354  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1355  * @runtime: PCM runtime instance
1356  * @cond: condition bits
1357  * @var: hw_params variable to apply the ratnums constraint
1358  * @r: struct snd_ratnums constriants
1359  *
1360  * Return: Zero if successful, or a negative error code on failure.
1361  */
1362 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1363                                   unsigned int cond,
1364                                   snd_pcm_hw_param_t var,
1365                                   const struct snd_pcm_hw_constraint_ratnums *r)
1366 {
1367         return snd_pcm_hw_rule_add(runtime, cond, var,
1368                                    snd_pcm_hw_rule_ratnums, (void *)r,
1369                                    var, -1);
1370 }
1371 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1372
1373 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1374                                    struct snd_pcm_hw_rule *rule)
1375 {
1376         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1377         unsigned int num = 0, den = 0;
1378         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1379                                   r->nrats, r->rats, &num, &den);
1380         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1381                 params->rate_num = num;
1382                 params->rate_den = den;
1383         }
1384         return err;
1385 }
1386
1387 /**
1388  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1389  * @runtime: PCM runtime instance
1390  * @cond: condition bits
1391  * @var: hw_params variable to apply the ratdens constraint
1392  * @r: struct snd_ratdens constriants
1393  *
1394  * Return: Zero if successful, or a negative error code on failure.
1395  */
1396 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1397                                   unsigned int cond,
1398                                   snd_pcm_hw_param_t var,
1399                                   const struct snd_pcm_hw_constraint_ratdens *r)
1400 {
1401         return snd_pcm_hw_rule_add(runtime, cond, var,
1402                                    snd_pcm_hw_rule_ratdens, (void *)r,
1403                                    var, -1);
1404 }
1405 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1406
1407 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1408                                   struct snd_pcm_hw_rule *rule)
1409 {
1410         unsigned int l = (unsigned long) rule->private;
1411         int width = l & 0xffff;
1412         unsigned int msbits = l >> 16;
1413         const struct snd_interval *i =
1414                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1415
1416         if (!snd_interval_single(i))
1417                 return 0;
1418
1419         if ((snd_interval_value(i) == width) ||
1420             (width == 0 && snd_interval_value(i) > msbits))
1421                 params->msbits = min_not_zero(params->msbits, msbits);
1422
1423         return 0;
1424 }
1425
1426 /**
1427  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1428  * @runtime: PCM runtime instance
1429  * @cond: condition bits
1430  * @width: sample bits width
1431  * @msbits: msbits width
1432  *
1433  * This constraint will set the number of most significant bits (msbits) if a
1434  * sample format with the specified width has been select. If width is set to 0
1435  * the msbits will be set for any sample format with a width larger than the
1436  * specified msbits.
1437  *
1438  * Return: Zero if successful, or a negative error code on failure.
1439  */
1440 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1441                                  unsigned int cond,
1442                                  unsigned int width,
1443                                  unsigned int msbits)
1444 {
1445         unsigned long l = (msbits << 16) | width;
1446         return snd_pcm_hw_rule_add(runtime, cond, -1,
1447                                     snd_pcm_hw_rule_msbits,
1448                                     (void*) l,
1449                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1450 }
1451 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1452
1453 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1454                                 struct snd_pcm_hw_rule *rule)
1455 {
1456         unsigned long step = (unsigned long) rule->private;
1457         return snd_interval_step(hw_param_interval(params, rule->var), step);
1458 }
1459
1460 /**
1461  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1462  * @runtime: PCM runtime instance
1463  * @cond: condition bits
1464  * @var: hw_params variable to apply the step constraint
1465  * @step: step size
1466  *
1467  * Return: Zero if successful, or a negative error code on failure.
1468  */
1469 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1470                                unsigned int cond,
1471                                snd_pcm_hw_param_t var,
1472                                unsigned long step)
1473 {
1474         return snd_pcm_hw_rule_add(runtime, cond, var, 
1475                                    snd_pcm_hw_rule_step, (void *) step,
1476                                    var, -1);
1477 }
1478 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1479
1480 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1481 {
1482         static const unsigned int pow2_sizes[] = {
1483                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1484                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1485                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1486                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1487         };
1488         return snd_interval_list(hw_param_interval(params, rule->var),
1489                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1490 }               
1491
1492 /**
1493  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1494  * @runtime: PCM runtime instance
1495  * @cond: condition bits
1496  * @var: hw_params variable to apply the power-of-2 constraint
1497  *
1498  * Return: Zero if successful, or a negative error code on failure.
1499  */
1500 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1501                                unsigned int cond,
1502                                snd_pcm_hw_param_t var)
1503 {
1504         return snd_pcm_hw_rule_add(runtime, cond, var, 
1505                                    snd_pcm_hw_rule_pow2, NULL,
1506                                    var, -1);
1507 }
1508 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1509
1510 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1511                                            struct snd_pcm_hw_rule *rule)
1512 {
1513         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1514         struct snd_interval *rate;
1515
1516         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1517         return snd_interval_list(rate, 1, &base_rate, 0);
1518 }
1519
1520 /**
1521  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1522  * @runtime: PCM runtime instance
1523  * @base_rate: the rate at which the hardware does not resample
1524  *
1525  * Return: Zero if successful, or a negative error code on failure.
1526  */
1527 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1528                                unsigned int base_rate)
1529 {
1530         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1531                                    SNDRV_PCM_HW_PARAM_RATE,
1532                                    snd_pcm_hw_rule_noresample_func,
1533                                    (void *)(uintptr_t)base_rate,
1534                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1535 }
1536 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1537
1538 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1539                                   snd_pcm_hw_param_t var)
1540 {
1541         if (hw_is_mask(var)) {
1542                 snd_mask_any(hw_param_mask(params, var));
1543                 params->cmask |= 1 << var;
1544                 params->rmask |= 1 << var;
1545                 return;
1546         }
1547         if (hw_is_interval(var)) {
1548                 snd_interval_any(hw_param_interval(params, var));
1549                 params->cmask |= 1 << var;
1550                 params->rmask |= 1 << var;
1551                 return;
1552         }
1553         snd_BUG();
1554 }
1555
1556 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1557 {
1558         unsigned int k;
1559         memset(params, 0, sizeof(*params));
1560         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1561                 _snd_pcm_hw_param_any(params, k);
1562         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1563                 _snd_pcm_hw_param_any(params, k);
1564         params->info = ~0U;
1565 }
1566 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1567
1568 /**
1569  * snd_pcm_hw_param_value - return @params field @var value
1570  * @params: the hw_params instance
1571  * @var: parameter to retrieve
1572  * @dir: pointer to the direction (-1,0,1) or %NULL
1573  *
1574  * Return: The value for field @var if it's fixed in configuration space
1575  * defined by @params. -%EINVAL otherwise.
1576  */
1577 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1578                            snd_pcm_hw_param_t var, int *dir)
1579 {
1580         if (hw_is_mask(var)) {
1581                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1582                 if (!snd_mask_single(mask))
1583                         return -EINVAL;
1584                 if (dir)
1585                         *dir = 0;
1586                 return snd_mask_value(mask);
1587         }
1588         if (hw_is_interval(var)) {
1589                 const struct snd_interval *i = hw_param_interval_c(params, var);
1590                 if (!snd_interval_single(i))
1591                         return -EINVAL;
1592                 if (dir)
1593                         *dir = i->openmin;
1594                 return snd_interval_value(i);
1595         }
1596         return -EINVAL;
1597 }
1598 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1599
1600 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1601                                 snd_pcm_hw_param_t var)
1602 {
1603         if (hw_is_mask(var)) {
1604                 snd_mask_none(hw_param_mask(params, var));
1605                 params->cmask |= 1 << var;
1606                 params->rmask |= 1 << var;
1607         } else if (hw_is_interval(var)) {
1608                 snd_interval_none(hw_param_interval(params, var));
1609                 params->cmask |= 1 << var;
1610                 params->rmask |= 1 << var;
1611         } else {
1612                 snd_BUG();
1613         }
1614 }
1615 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1616
1617 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1618                                    snd_pcm_hw_param_t var)
1619 {
1620         int changed;
1621         if (hw_is_mask(var))
1622                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1623         else if (hw_is_interval(var))
1624                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1625         else
1626                 return -EINVAL;
1627         if (changed > 0) {
1628                 params->cmask |= 1 << var;
1629                 params->rmask |= 1 << var;
1630         }
1631         return changed;
1632 }
1633
1634
1635 /**
1636  * snd_pcm_hw_param_first - refine config space and return minimum value
1637  * @pcm: PCM instance
1638  * @params: the hw_params instance
1639  * @var: parameter to retrieve
1640  * @dir: pointer to the direction (-1,0,1) or %NULL
1641  *
1642  * Inside configuration space defined by @params remove from @var all
1643  * values > minimum. Reduce configuration space accordingly.
1644  *
1645  * Return: The minimum, or a negative error code on failure.
1646  */
1647 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1648                            struct snd_pcm_hw_params *params, 
1649                            snd_pcm_hw_param_t var, int *dir)
1650 {
1651         int changed = _snd_pcm_hw_param_first(params, var);
1652         if (changed < 0)
1653                 return changed;
1654         if (params->rmask) {
1655                 int err = snd_pcm_hw_refine(pcm, params);
1656                 if (err < 0)
1657                         return err;
1658         }
1659         return snd_pcm_hw_param_value(params, var, dir);
1660 }
1661 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1662
1663 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1664                                   snd_pcm_hw_param_t var)
1665 {
1666         int changed;
1667         if (hw_is_mask(var))
1668                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1669         else if (hw_is_interval(var))
1670                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1671         else
1672                 return -EINVAL;
1673         if (changed > 0) {
1674                 params->cmask |= 1 << var;
1675                 params->rmask |= 1 << var;
1676         }
1677         return changed;
1678 }
1679
1680
1681 /**
1682  * snd_pcm_hw_param_last - refine config space and return maximum value
1683  * @pcm: PCM instance
1684  * @params: the hw_params instance
1685  * @var: parameter to retrieve
1686  * @dir: pointer to the direction (-1,0,1) or %NULL
1687  *
1688  * Inside configuration space defined by @params remove from @var all
1689  * values < maximum. Reduce configuration space accordingly.
1690  *
1691  * Return: The maximum, or a negative error code on failure.
1692  */
1693 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1694                           struct snd_pcm_hw_params *params,
1695                           snd_pcm_hw_param_t var, int *dir)
1696 {
1697         int changed = _snd_pcm_hw_param_last(params, var);
1698         if (changed < 0)
1699                 return changed;
1700         if (params->rmask) {
1701                 int err = snd_pcm_hw_refine(pcm, params);
1702                 if (err < 0)
1703                         return err;
1704         }
1705         return snd_pcm_hw_param_value(params, var, dir);
1706 }
1707 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1708
1709 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1710                                    void *arg)
1711 {
1712         struct snd_pcm_runtime *runtime = substream->runtime;
1713         unsigned long flags;
1714         snd_pcm_stream_lock_irqsave(substream, flags);
1715         if (snd_pcm_running(substream) &&
1716             snd_pcm_update_hw_ptr(substream) >= 0)
1717                 runtime->status->hw_ptr %= runtime->buffer_size;
1718         else {
1719                 runtime->status->hw_ptr = 0;
1720                 runtime->hw_ptr_wrap = 0;
1721         }
1722         snd_pcm_stream_unlock_irqrestore(substream, flags);
1723         return 0;
1724 }
1725
1726 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1727                                           void *arg)
1728 {
1729         struct snd_pcm_channel_info *info = arg;
1730         struct snd_pcm_runtime *runtime = substream->runtime;
1731         int width;
1732         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1733                 info->offset = -1;
1734                 return 0;
1735         }
1736         width = snd_pcm_format_physical_width(runtime->format);
1737         if (width < 0)
1738                 return width;
1739         info->offset = 0;
1740         switch (runtime->access) {
1741         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1742         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1743                 info->first = info->channel * width;
1744                 info->step = runtime->channels * width;
1745                 break;
1746         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1747         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1748         {
1749                 size_t size = runtime->dma_bytes / runtime->channels;
1750                 info->first = info->channel * size * 8;
1751                 info->step = width;
1752                 break;
1753         }
1754         default:
1755                 snd_BUG();
1756                 break;
1757         }
1758         return 0;
1759 }
1760
1761 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1762                                        void *arg)
1763 {
1764         struct snd_pcm_hw_params *params = arg;
1765         snd_pcm_format_t format;
1766         int channels;
1767         ssize_t frame_size;
1768
1769         params->fifo_size = substream->runtime->hw.fifo_size;
1770         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1771                 format = params_format(params);
1772                 channels = params_channels(params);
1773                 frame_size = snd_pcm_format_size(format, channels);
1774                 if (frame_size > 0)
1775                         params->fifo_size /= frame_size;
1776         }
1777         return 0;
1778 }
1779
1780 /**
1781  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1782  * @substream: the pcm substream instance
1783  * @cmd: ioctl command
1784  * @arg: ioctl argument
1785  *
1786  * Processes the generic ioctl commands for PCM.
1787  * Can be passed as the ioctl callback for PCM ops.
1788  *
1789  * Return: Zero if successful, or a negative error code on failure.
1790  */
1791 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1792                       unsigned int cmd, void *arg)
1793 {
1794         switch (cmd) {
1795         case SNDRV_PCM_IOCTL1_RESET:
1796                 return snd_pcm_lib_ioctl_reset(substream, arg);
1797         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1798                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1799         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1800                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1801         }
1802         return -ENXIO;
1803 }
1804 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1805
1806 /**
1807  * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1808  *                                              under acquired lock of PCM substream.
1809  * @substream: the instance of pcm substream.
1810  *
1811  * This function is called when the batch of audio data frames as the same size as the period of
1812  * buffer is already processed in audio data transmission.
1813  *
1814  * The call of function updates the status of runtime with the latest position of audio data
1815  * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1816  * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1817  * substream according to configured threshold.
1818  *
1819  * The function is intended to use for the case that PCM driver operates audio data frames under
1820  * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1821  * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1822  * since lock of PCM substream should be acquired in advance.
1823  *
1824  * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1825  * function:
1826  *
1827  * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1828  * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1829  * - .get_time_info - to retrieve audio time stamp if needed.
1830  *
1831  * Even if more than one periods have elapsed since the last call, you have to call this only once.
1832  */
1833 void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1834 {
1835         struct snd_pcm_runtime *runtime;
1836
1837         if (PCM_RUNTIME_CHECK(substream))
1838                 return;
1839         runtime = substream->runtime;
1840
1841         if (!snd_pcm_running(substream) ||
1842             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1843                 goto _end;
1844
1845 #ifdef CONFIG_SND_PCM_TIMER
1846         if (substream->timer_running)
1847                 snd_timer_interrupt(substream->timer, 1);
1848 #endif
1849  _end:
1850         snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
1851 }
1852 EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1853
1854 /**
1855  * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1856  *                            PCM substream.
1857  * @substream: the instance of PCM substream.
1858  *
1859  * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1860  * acquiring lock of PCM substream voluntarily.
1861  *
1862  * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1863  * the batch of audio data frames as the same size as the period of buffer is already processed in
1864  * audio data transmission.
1865  */
1866 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1867 {
1868         unsigned long flags;
1869
1870         if (snd_BUG_ON(!substream))
1871                 return;
1872
1873         snd_pcm_stream_lock_irqsave(substream, flags);
1874         snd_pcm_period_elapsed_under_stream_lock(substream);
1875         snd_pcm_stream_unlock_irqrestore(substream, flags);
1876 }
1877 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1878
1879 /*
1880  * Wait until avail_min data becomes available
1881  * Returns a negative error code if any error occurs during operation.
1882  * The available space is stored on availp.  When err = 0 and avail = 0
1883  * on the capture stream, it indicates the stream is in DRAINING state.
1884  */
1885 static int wait_for_avail(struct snd_pcm_substream *substream,
1886                               snd_pcm_uframes_t *availp)
1887 {
1888         struct snd_pcm_runtime *runtime = substream->runtime;
1889         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1890         wait_queue_entry_t wait;
1891         int err = 0;
1892         snd_pcm_uframes_t avail = 0;
1893         long wait_time, tout;
1894
1895         init_waitqueue_entry(&wait, current);
1896         set_current_state(TASK_INTERRUPTIBLE);
1897         add_wait_queue(&runtime->tsleep, &wait);
1898
1899         if (runtime->no_period_wakeup)
1900                 wait_time = MAX_SCHEDULE_TIMEOUT;
1901         else {
1902                 /* use wait time from substream if available */
1903                 if (substream->wait_time) {
1904                         wait_time = substream->wait_time;
1905                 } else {
1906                         wait_time = 100;
1907
1908                         if (runtime->rate) {
1909                                 long t = runtime->buffer_size * 1100 / runtime->rate;
1910                                 wait_time = max(t, wait_time);
1911                         }
1912                 }
1913                 wait_time = msecs_to_jiffies(wait_time);
1914         }
1915
1916         for (;;) {
1917                 if (signal_pending(current)) {
1918                         err = -ERESTARTSYS;
1919                         break;
1920                 }
1921
1922                 /*
1923                  * We need to check if space became available already
1924                  * (and thus the wakeup happened already) first to close
1925                  * the race of space already having become available.
1926                  * This check must happen after been added to the waitqueue
1927                  * and having current state be INTERRUPTIBLE.
1928                  */
1929                 avail = snd_pcm_avail(substream);
1930                 if (avail >= runtime->twake)
1931                         break;
1932                 snd_pcm_stream_unlock_irq(substream);
1933
1934                 tout = schedule_timeout(wait_time);
1935
1936                 snd_pcm_stream_lock_irq(substream);
1937                 set_current_state(TASK_INTERRUPTIBLE);
1938                 switch (runtime->state) {
1939                 case SNDRV_PCM_STATE_SUSPENDED:
1940                         err = -ESTRPIPE;
1941                         goto _endloop;
1942                 case SNDRV_PCM_STATE_XRUN:
1943                         err = -EPIPE;
1944                         goto _endloop;
1945                 case SNDRV_PCM_STATE_DRAINING:
1946                         if (is_playback)
1947                                 err = -EPIPE;
1948                         else 
1949                                 avail = 0; /* indicate draining */
1950                         goto _endloop;
1951                 case SNDRV_PCM_STATE_OPEN:
1952                 case SNDRV_PCM_STATE_SETUP:
1953                 case SNDRV_PCM_STATE_DISCONNECTED:
1954                         err = -EBADFD;
1955                         goto _endloop;
1956                 case SNDRV_PCM_STATE_PAUSED:
1957                         continue;
1958                 }
1959                 if (!tout) {
1960                         pcm_dbg(substream->pcm,
1961                                 "%s timeout (DMA or IRQ trouble?)\n",
1962                                 is_playback ? "playback write" : "capture read");
1963                         err = -EIO;
1964                         break;
1965                 }
1966         }
1967  _endloop:
1968         set_current_state(TASK_RUNNING);
1969         remove_wait_queue(&runtime->tsleep, &wait);
1970         *availp = avail;
1971         return err;
1972 }
1973         
1974 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1975                               int channel, unsigned long hwoff,
1976                               struct iov_iter *iter, unsigned long bytes);
1977
1978 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1979                           snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f,
1980                           bool);
1981
1982 /* calculate the target DMA-buffer position to be written/read */
1983 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1984                            int channel, unsigned long hwoff)
1985 {
1986         return runtime->dma_area + hwoff +
1987                 channel * (runtime->dma_bytes / runtime->channels);
1988 }
1989
1990 /* default copy ops for write; used for both interleaved and non- modes */
1991 static int default_write_copy(struct snd_pcm_substream *substream,
1992                               int channel, unsigned long hwoff,
1993                               struct iov_iter *iter, unsigned long bytes)
1994 {
1995         if (copy_from_iter(get_dma_ptr(substream->runtime, channel, hwoff),
1996                            bytes, iter) != bytes)
1997                 return -EFAULT;
1998         return 0;
1999 }
2000
2001 /* fill silence instead of copy data; called as a transfer helper
2002  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
2003  * a NULL buffer is passed
2004  */
2005 static int fill_silence(struct snd_pcm_substream *substream, int channel,
2006                         unsigned long hwoff, struct iov_iter *iter,
2007                         unsigned long bytes)
2008 {
2009         struct snd_pcm_runtime *runtime = substream->runtime;
2010
2011         if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
2012                 return 0;
2013         if (substream->ops->fill_silence)
2014                 return substream->ops->fill_silence(substream, channel,
2015                                                     hwoff, bytes);
2016
2017         snd_pcm_format_set_silence(runtime->format,
2018                                    get_dma_ptr(runtime, channel, hwoff),
2019                                    bytes_to_samples(runtime, bytes));
2020         return 0;
2021 }
2022
2023 /* default copy ops for read; used for both interleaved and non- modes */
2024 static int default_read_copy(struct snd_pcm_substream *substream,
2025                              int channel, unsigned long hwoff,
2026                              struct iov_iter *iter, unsigned long bytes)
2027 {
2028         if (copy_to_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2029                          bytes, iter) != bytes)
2030                 return -EFAULT;
2031         return 0;
2032 }
2033
2034 /* call transfer with the filled iov_iter */
2035 static int do_transfer(struct snd_pcm_substream *substream, int c,
2036                        unsigned long hwoff, void *data, unsigned long bytes,
2037                        pcm_transfer_f transfer, bool in_kernel)
2038 {
2039         struct iov_iter iter;
2040         int err, type;
2041
2042         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
2043                 type = ITER_SOURCE;
2044         else
2045                 type = ITER_DEST;
2046
2047         if (in_kernel) {
2048                 struct kvec kvec = { data, bytes };
2049
2050                 iov_iter_kvec(&iter, type, &kvec, 1, bytes);
2051                 return transfer(substream, c, hwoff, &iter, bytes);
2052         }
2053
2054         err = import_ubuf(type, (__force void __user *)data, bytes, &iter);
2055         if (err)
2056                 return err;
2057         return transfer(substream, c, hwoff, &iter, bytes);
2058 }
2059
2060 /* call transfer function with the converted pointers and sizes;
2061  * for interleaved mode, it's one shot for all samples
2062  */
2063 static int interleaved_copy(struct snd_pcm_substream *substream,
2064                             snd_pcm_uframes_t hwoff, void *data,
2065                             snd_pcm_uframes_t off,
2066                             snd_pcm_uframes_t frames,
2067                             pcm_transfer_f transfer,
2068                             bool in_kernel)
2069 {
2070         struct snd_pcm_runtime *runtime = substream->runtime;
2071
2072         /* convert to bytes */
2073         hwoff = frames_to_bytes(runtime, hwoff);
2074         off = frames_to_bytes(runtime, off);
2075         frames = frames_to_bytes(runtime, frames);
2076
2077         return do_transfer(substream, 0, hwoff, data + off, frames, transfer,
2078                            in_kernel);
2079 }
2080
2081 /* call transfer function with the converted pointers and sizes for each
2082  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2083  */
2084 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2085                                snd_pcm_uframes_t hwoff, void *data,
2086                                snd_pcm_uframes_t off,
2087                                snd_pcm_uframes_t frames,
2088                                pcm_transfer_f transfer,
2089                                bool in_kernel)
2090 {
2091         struct snd_pcm_runtime *runtime = substream->runtime;
2092         int channels = runtime->channels;
2093         void **bufs = data;
2094         int c, err;
2095
2096         /* convert to bytes; note that it's not frames_to_bytes() here.
2097          * in non-interleaved mode, we copy for each channel, thus
2098          * each copy is n_samples bytes x channels = whole frames.
2099          */
2100         off = samples_to_bytes(runtime, off);
2101         frames = samples_to_bytes(runtime, frames);
2102         hwoff = samples_to_bytes(runtime, hwoff);
2103         for (c = 0; c < channels; ++c, ++bufs) {
2104                 if (!data || !*bufs)
2105                         err = fill_silence(substream, c, hwoff, NULL, frames);
2106                 else
2107                         err = do_transfer(substream, c, hwoff, *bufs + off,
2108                                           frames, transfer, in_kernel);
2109                 if (err < 0)
2110                         return err;
2111         }
2112         return 0;
2113 }
2114
2115 /* fill silence on the given buffer position;
2116  * called from snd_pcm_playback_silence()
2117  */
2118 static int fill_silence_frames(struct snd_pcm_substream *substream,
2119                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2120 {
2121         if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2122             substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2123                 return interleaved_copy(substream, off, NULL, 0, frames,
2124                                         fill_silence, true);
2125         else
2126                 return noninterleaved_copy(substream, off, NULL, 0, frames,
2127                                            fill_silence, true);
2128 }
2129
2130 /* sanity-check for read/write methods */
2131 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2132 {
2133         struct snd_pcm_runtime *runtime;
2134         if (PCM_RUNTIME_CHECK(substream))
2135                 return -ENXIO;
2136         runtime = substream->runtime;
2137         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2138                 return -EINVAL;
2139         if (runtime->state == SNDRV_PCM_STATE_OPEN)
2140                 return -EBADFD;
2141         return 0;
2142 }
2143
2144 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2145 {
2146         switch (runtime->state) {
2147         case SNDRV_PCM_STATE_PREPARED:
2148         case SNDRV_PCM_STATE_RUNNING:
2149         case SNDRV_PCM_STATE_PAUSED:
2150                 return 0;
2151         case SNDRV_PCM_STATE_XRUN:
2152                 return -EPIPE;
2153         case SNDRV_PCM_STATE_SUSPENDED:
2154                 return -ESTRPIPE;
2155         default:
2156                 return -EBADFD;
2157         }
2158 }
2159
2160 /* update to the given appl_ptr and call ack callback if needed;
2161  * when an error is returned, take back to the original value
2162  */
2163 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2164                            snd_pcm_uframes_t appl_ptr)
2165 {
2166         struct snd_pcm_runtime *runtime = substream->runtime;
2167         snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2168         snd_pcm_sframes_t diff;
2169         int ret;
2170
2171         if (old_appl_ptr == appl_ptr)
2172                 return 0;
2173
2174         if (appl_ptr >= runtime->boundary)
2175                 return -EINVAL;
2176         /*
2177          * check if a rewind is requested by the application
2178          */
2179         if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2180                 diff = appl_ptr - old_appl_ptr;
2181                 if (diff >= 0) {
2182                         if (diff > runtime->buffer_size)
2183                                 return -EINVAL;
2184                 } else {
2185                         if (runtime->boundary + diff > runtime->buffer_size)
2186                                 return -EINVAL;
2187                 }
2188         }
2189
2190         runtime->control->appl_ptr = appl_ptr;
2191         if (substream->ops->ack) {
2192                 ret = substream->ops->ack(substream);
2193                 if (ret < 0) {
2194                         runtime->control->appl_ptr = old_appl_ptr;
2195                         if (ret == -EPIPE)
2196                                 __snd_pcm_xrun(substream);
2197                         return ret;
2198                 }
2199         }
2200
2201         trace_applptr(substream, old_appl_ptr, appl_ptr);
2202
2203         return 0;
2204 }
2205
2206 /* the common loop for read/write data */
2207 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2208                                      void *data, bool interleaved,
2209                                      snd_pcm_uframes_t size, bool in_kernel)
2210 {
2211         struct snd_pcm_runtime *runtime = substream->runtime;
2212         snd_pcm_uframes_t xfer = 0;
2213         snd_pcm_uframes_t offset = 0;
2214         snd_pcm_uframes_t avail;
2215         pcm_copy_f writer;
2216         pcm_transfer_f transfer;
2217         bool nonblock;
2218         bool is_playback;
2219         int err;
2220
2221         err = pcm_sanity_check(substream);
2222         if (err < 0)
2223                 return err;
2224
2225         is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2226         if (interleaved) {
2227                 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2228                     runtime->channels > 1)
2229                         return -EINVAL;
2230                 writer = interleaved_copy;
2231         } else {
2232                 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2233                         return -EINVAL;
2234                 writer = noninterleaved_copy;
2235         }
2236
2237         if (!data) {
2238                 if (is_playback)
2239                         transfer = fill_silence;
2240                 else
2241                         return -EINVAL;
2242         } else {
2243                 if (substream->ops->copy)
2244                         transfer = substream->ops->copy;
2245                 else
2246                         transfer = is_playback ?
2247                                 default_write_copy : default_read_copy;
2248         }
2249
2250         if (size == 0)
2251                 return 0;
2252
2253         nonblock = !!(substream->f_flags & O_NONBLOCK);
2254
2255         snd_pcm_stream_lock_irq(substream);
2256         err = pcm_accessible_state(runtime);
2257         if (err < 0)
2258                 goto _end_unlock;
2259
2260         runtime->twake = runtime->control->avail_min ? : 1;
2261         if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2262                 snd_pcm_update_hw_ptr(substream);
2263
2264         /*
2265          * If size < start_threshold, wait indefinitely. Another
2266          * thread may start capture
2267          */
2268         if (!is_playback &&
2269             runtime->state == SNDRV_PCM_STATE_PREPARED &&
2270             size >= runtime->start_threshold) {
2271                 err = snd_pcm_start(substream);
2272                 if (err < 0)
2273                         goto _end_unlock;
2274         }
2275
2276         avail = snd_pcm_avail(substream);
2277
2278         while (size > 0) {
2279                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2280                 snd_pcm_uframes_t cont;
2281                 if (!avail) {
2282                         if (!is_playback &&
2283                             runtime->state == SNDRV_PCM_STATE_DRAINING) {
2284                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2285                                 goto _end_unlock;
2286                         }
2287                         if (nonblock) {
2288                                 err = -EAGAIN;
2289                                 goto _end_unlock;
2290                         }
2291                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2292                                         runtime->control->avail_min ? : 1);
2293                         err = wait_for_avail(substream, &avail);
2294                         if (err < 0)
2295                                 goto _end_unlock;
2296                         if (!avail)
2297                                 continue; /* draining */
2298                 }
2299                 frames = size > avail ? avail : size;
2300                 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2301                 appl_ofs = appl_ptr % runtime->buffer_size;
2302                 cont = runtime->buffer_size - appl_ofs;
2303                 if (frames > cont)
2304                         frames = cont;
2305                 if (snd_BUG_ON(!frames)) {
2306                         err = -EINVAL;
2307                         goto _end_unlock;
2308                 }
2309                 if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2310                         err = -EBUSY;
2311                         goto _end_unlock;
2312                 }
2313                 snd_pcm_stream_unlock_irq(substream);
2314                 if (!is_playback)
2315                         snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2316                 err = writer(substream, appl_ofs, data, offset, frames,
2317                              transfer, in_kernel);
2318                 if (is_playback)
2319                         snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2320                 snd_pcm_stream_lock_irq(substream);
2321                 atomic_dec(&runtime->buffer_accessing);
2322                 if (err < 0)
2323                         goto _end_unlock;
2324                 err = pcm_accessible_state(runtime);
2325                 if (err < 0)
2326                         goto _end_unlock;
2327                 appl_ptr += frames;
2328                 if (appl_ptr >= runtime->boundary)
2329                         appl_ptr -= runtime->boundary;
2330                 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2331                 if (err < 0)
2332                         goto _end_unlock;
2333
2334                 offset += frames;
2335                 size -= frames;
2336                 xfer += frames;
2337                 avail -= frames;
2338                 if (is_playback &&
2339                     runtime->state == SNDRV_PCM_STATE_PREPARED &&
2340                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2341                         err = snd_pcm_start(substream);
2342                         if (err < 0)
2343                                 goto _end_unlock;
2344                 }
2345         }
2346  _end_unlock:
2347         runtime->twake = 0;
2348         if (xfer > 0 && err >= 0)
2349                 snd_pcm_update_state(substream, runtime);
2350         snd_pcm_stream_unlock_irq(substream);
2351         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2352 }
2353 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2354
2355 /*
2356  * standard channel mapping helpers
2357  */
2358
2359 /* default channel maps for multi-channel playbacks, up to 8 channels */
2360 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2361         { .channels = 1,
2362           .map = { SNDRV_CHMAP_MONO } },
2363         { .channels = 2,
2364           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2365         { .channels = 4,
2366           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2367                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2368         { .channels = 6,
2369           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2370                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2371                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2372         { .channels = 8,
2373           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2374                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2375                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2376                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2377         { }
2378 };
2379 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2380
2381 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2382 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2383         { .channels = 1,
2384           .map = { SNDRV_CHMAP_MONO } },
2385         { .channels = 2,
2386           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2387         { .channels = 4,
2388           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2389                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2390         { .channels = 6,
2391           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2392                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2393                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2394         { .channels = 8,
2395           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2396                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2397                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2398                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2399         { }
2400 };
2401 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2402
2403 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2404 {
2405         if (ch > info->max_channels)
2406                 return false;
2407         return !info->channel_mask || (info->channel_mask & (1U << ch));
2408 }
2409
2410 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2411                               struct snd_ctl_elem_info *uinfo)
2412 {
2413         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2414
2415         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2416         uinfo->count = info->max_channels;
2417         uinfo->value.integer.min = 0;
2418         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2419         return 0;
2420 }
2421
2422 /* get callback for channel map ctl element
2423  * stores the channel position firstly matching with the current channels
2424  */
2425 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2426                              struct snd_ctl_elem_value *ucontrol)
2427 {
2428         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2429         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2430         struct snd_pcm_substream *substream;
2431         const struct snd_pcm_chmap_elem *map;
2432
2433         if (!info->chmap)
2434                 return -EINVAL;
2435         substream = snd_pcm_chmap_substream(info, idx);
2436         if (!substream)
2437                 return -ENODEV;
2438         memset(ucontrol->value.integer.value, 0,
2439                sizeof(long) * info->max_channels);
2440         if (!substream->runtime)
2441                 return 0; /* no channels set */
2442         for (map = info->chmap; map->channels; map++) {
2443                 int i;
2444                 if (map->channels == substream->runtime->channels &&
2445                     valid_chmap_channels(info, map->channels)) {
2446                         for (i = 0; i < map->channels; i++)
2447                                 ucontrol->value.integer.value[i] = map->map[i];
2448                         return 0;
2449                 }
2450         }
2451         return -EINVAL;
2452 }
2453
2454 /* tlv callback for channel map ctl element
2455  * expands the pre-defined channel maps in a form of TLV
2456  */
2457 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2458                              unsigned int size, unsigned int __user *tlv)
2459 {
2460         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2461         const struct snd_pcm_chmap_elem *map;
2462         unsigned int __user *dst;
2463         int c, count = 0;
2464
2465         if (!info->chmap)
2466                 return -EINVAL;
2467         if (size < 8)
2468                 return -ENOMEM;
2469         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2470                 return -EFAULT;
2471         size -= 8;
2472         dst = tlv + 2;
2473         for (map = info->chmap; map->channels; map++) {
2474                 int chs_bytes = map->channels * 4;
2475                 if (!valid_chmap_channels(info, map->channels))
2476                         continue;
2477                 if (size < 8)
2478                         return -ENOMEM;
2479                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2480                     put_user(chs_bytes, dst + 1))
2481                         return -EFAULT;
2482                 dst += 2;
2483                 size -= 8;
2484                 count += 8;
2485                 if (size < chs_bytes)
2486                         return -ENOMEM;
2487                 size -= chs_bytes;
2488                 count += chs_bytes;
2489                 for (c = 0; c < map->channels; c++) {
2490                         if (put_user(map->map[c], dst))
2491                                 return -EFAULT;
2492                         dst++;
2493                 }
2494         }
2495         if (put_user(count, tlv + 1))
2496                 return -EFAULT;
2497         return 0;
2498 }
2499
2500 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2501 {
2502         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2503         info->pcm->streams[info->stream].chmap_kctl = NULL;
2504         kfree(info);
2505 }
2506
2507 /**
2508  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2509  * @pcm: the assigned PCM instance
2510  * @stream: stream direction
2511  * @chmap: channel map elements (for query)
2512  * @max_channels: the max number of channels for the stream
2513  * @private_value: the value passed to each kcontrol's private_value field
2514  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2515  *
2516  * Create channel-mapping control elements assigned to the given PCM stream(s).
2517  * Return: Zero if successful, or a negative error value.
2518  */
2519 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2520                            const struct snd_pcm_chmap_elem *chmap,
2521                            int max_channels,
2522                            unsigned long private_value,
2523                            struct snd_pcm_chmap **info_ret)
2524 {
2525         struct snd_pcm_chmap *info;
2526         struct snd_kcontrol_new knew = {
2527                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2528                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2529                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2530                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2531                 .info = pcm_chmap_ctl_info,
2532                 .get = pcm_chmap_ctl_get,
2533                 .tlv.c = pcm_chmap_ctl_tlv,
2534         };
2535         int err;
2536
2537         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2538                 return -EBUSY;
2539         info = kzalloc(sizeof(*info), GFP_KERNEL);
2540         if (!info)
2541                 return -ENOMEM;
2542         info->pcm = pcm;
2543         info->stream = stream;
2544         info->chmap = chmap;
2545         info->max_channels = max_channels;
2546         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2547                 knew.name = "Playback Channel Map";
2548         else
2549                 knew.name = "Capture Channel Map";
2550         knew.device = pcm->device;
2551         knew.count = pcm->streams[stream].substream_count;
2552         knew.private_value = private_value;
2553         info->kctl = snd_ctl_new1(&knew, info);
2554         if (!info->kctl) {
2555                 kfree(info);
2556                 return -ENOMEM;
2557         }
2558         info->kctl->private_free = pcm_chmap_ctl_private_free;
2559         err = snd_ctl_add(pcm->card, info->kctl);
2560         if (err < 0)
2561                 return err;
2562         pcm->streams[stream].chmap_kctl = info->kctl;
2563         if (info_ret)
2564                 *info_ret = info;
2565         return 0;
2566 }
2567 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);