Merge git://git.infradead.org/users/eparis/selinux
[sfrench/cifs-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>             /* for local_port_range[] */
54 #include <net/sock.h>
55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h>    /* for network interface checks */
64 #include <net/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h>           /* for Unix socket types */
70 #include <net/af_unix.h>        /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84 #include <linux/security.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
87
88 #include "avc.h"
89 #include "objsec.h"
90 #include "netif.h"
91 #include "netnode.h"
92 #include "netport.h"
93 #include "xfrm.h"
94 #include "netlabel.h"
95 #include "audit.h"
96 #include "avc_ss.h"
97
98 #define SB_TYPE_FMT "%s%s%s"
99 #define SB_SUBTYPE(sb) (sb->s_subtype && sb->s_subtype[0])
100 #define SB_TYPE_ARGS(sb) sb->s_type->name, SB_SUBTYPE(sb) ? "." : "", SB_SUBTYPE(sb) ? sb->s_subtype : ""
101
102 extern struct security_operations *security_ops;
103
104 /* SECMARK reference count */
105 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
106
107 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
108 int selinux_enforcing;
109
110 static int __init enforcing_setup(char *str)
111 {
112         unsigned long enforcing;
113         if (!strict_strtoul(str, 0, &enforcing))
114                 selinux_enforcing = enforcing ? 1 : 0;
115         return 1;
116 }
117 __setup("enforcing=", enforcing_setup);
118 #endif
119
120 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
121 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
122
123 static int __init selinux_enabled_setup(char *str)
124 {
125         unsigned long enabled;
126         if (!strict_strtoul(str, 0, &enabled))
127                 selinux_enabled = enabled ? 1 : 0;
128         return 1;
129 }
130 __setup("selinux=", selinux_enabled_setup);
131 #else
132 int selinux_enabled = 1;
133 #endif
134
135 static struct kmem_cache *sel_inode_cache;
136
137 /**
138  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
139  *
140  * Description:
141  * This function checks the SECMARK reference counter to see if any SECMARK
142  * targets are currently configured, if the reference counter is greater than
143  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
144  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
145  * policy capability is enabled, SECMARK is always considered enabled.
146  *
147  */
148 static int selinux_secmark_enabled(void)
149 {
150         return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
151 }
152
153 /**
154  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
155  *
156  * Description:
157  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
158  * (1) if any are enabled or false (0) if neither are enabled.  If the
159  * always_check_network policy capability is enabled, peer labeling
160  * is always considered enabled.
161  *
162  */
163 static int selinux_peerlbl_enabled(void)
164 {
165         return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
166 }
167
168 /*
169  * initialise the security for the init task
170  */
171 static void cred_init_security(void)
172 {
173         struct cred *cred = (struct cred *) current->real_cred;
174         struct task_security_struct *tsec;
175
176         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
177         if (!tsec)
178                 panic("SELinux:  Failed to initialize initial task.\n");
179
180         tsec->osid = tsec->sid = SECINITSID_KERNEL;
181         cred->security = tsec;
182 }
183
184 /*
185  * get the security ID of a set of credentials
186  */
187 static inline u32 cred_sid(const struct cred *cred)
188 {
189         const struct task_security_struct *tsec;
190
191         tsec = cred->security;
192         return tsec->sid;
193 }
194
195 /*
196  * get the objective security ID of a task
197  */
198 static inline u32 task_sid(const struct task_struct *task)
199 {
200         u32 sid;
201
202         rcu_read_lock();
203         sid = cred_sid(__task_cred(task));
204         rcu_read_unlock();
205         return sid;
206 }
207
208 /*
209  * get the subjective security ID of the current task
210  */
211 static inline u32 current_sid(void)
212 {
213         const struct task_security_struct *tsec = current_security();
214
215         return tsec->sid;
216 }
217
218 /* Allocate and free functions for each kind of security blob. */
219
220 static int inode_alloc_security(struct inode *inode)
221 {
222         struct inode_security_struct *isec;
223         u32 sid = current_sid();
224
225         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
226         if (!isec)
227                 return -ENOMEM;
228
229         mutex_init(&isec->lock);
230         INIT_LIST_HEAD(&isec->list);
231         isec->inode = inode;
232         isec->sid = SECINITSID_UNLABELED;
233         isec->sclass = SECCLASS_FILE;
234         isec->task_sid = sid;
235         inode->i_security = isec;
236
237         return 0;
238 }
239
240 static void inode_free_security(struct inode *inode)
241 {
242         struct inode_security_struct *isec = inode->i_security;
243         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
244
245         spin_lock(&sbsec->isec_lock);
246         if (!list_empty(&isec->list))
247                 list_del_init(&isec->list);
248         spin_unlock(&sbsec->isec_lock);
249
250         inode->i_security = NULL;
251         kmem_cache_free(sel_inode_cache, isec);
252 }
253
254 static int file_alloc_security(struct file *file)
255 {
256         struct file_security_struct *fsec;
257         u32 sid = current_sid();
258
259         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
260         if (!fsec)
261                 return -ENOMEM;
262
263         fsec->sid = sid;
264         fsec->fown_sid = sid;
265         file->f_security = fsec;
266
267         return 0;
268 }
269
270 static void file_free_security(struct file *file)
271 {
272         struct file_security_struct *fsec = file->f_security;
273         file->f_security = NULL;
274         kfree(fsec);
275 }
276
277 static int superblock_alloc_security(struct super_block *sb)
278 {
279         struct superblock_security_struct *sbsec;
280
281         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
282         if (!sbsec)
283                 return -ENOMEM;
284
285         mutex_init(&sbsec->lock);
286         INIT_LIST_HEAD(&sbsec->isec_head);
287         spin_lock_init(&sbsec->isec_lock);
288         sbsec->sb = sb;
289         sbsec->sid = SECINITSID_UNLABELED;
290         sbsec->def_sid = SECINITSID_FILE;
291         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
292         sb->s_security = sbsec;
293
294         return 0;
295 }
296
297 static void superblock_free_security(struct super_block *sb)
298 {
299         struct superblock_security_struct *sbsec = sb->s_security;
300         sb->s_security = NULL;
301         kfree(sbsec);
302 }
303
304 /* The file system's label must be initialized prior to use. */
305
306 static const char *labeling_behaviors[7] = {
307         "uses xattr",
308         "uses transition SIDs",
309         "uses task SIDs",
310         "uses genfs_contexts",
311         "not configured for labeling",
312         "uses mountpoint labeling",
313         "uses native labeling",
314 };
315
316 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
317
318 static inline int inode_doinit(struct inode *inode)
319 {
320         return inode_doinit_with_dentry(inode, NULL);
321 }
322
323 enum {
324         Opt_error = -1,
325         Opt_context = 1,
326         Opt_fscontext = 2,
327         Opt_defcontext = 3,
328         Opt_rootcontext = 4,
329         Opt_labelsupport = 5,
330         Opt_nextmntopt = 6,
331 };
332
333 #define NUM_SEL_MNT_OPTS        (Opt_nextmntopt - 1)
334
335 static const match_table_t tokens = {
336         {Opt_context, CONTEXT_STR "%s"},
337         {Opt_fscontext, FSCONTEXT_STR "%s"},
338         {Opt_defcontext, DEFCONTEXT_STR "%s"},
339         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
340         {Opt_labelsupport, LABELSUPP_STR},
341         {Opt_error, NULL},
342 };
343
344 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
345
346 static int may_context_mount_sb_relabel(u32 sid,
347                         struct superblock_security_struct *sbsec,
348                         const struct cred *cred)
349 {
350         const struct task_security_struct *tsec = cred->security;
351         int rc;
352
353         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
354                           FILESYSTEM__RELABELFROM, NULL);
355         if (rc)
356                 return rc;
357
358         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
359                           FILESYSTEM__RELABELTO, NULL);
360         return rc;
361 }
362
363 static int may_context_mount_inode_relabel(u32 sid,
364                         struct superblock_security_struct *sbsec,
365                         const struct cred *cred)
366 {
367         const struct task_security_struct *tsec = cred->security;
368         int rc;
369         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
370                           FILESYSTEM__RELABELFROM, NULL);
371         if (rc)
372                 return rc;
373
374         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
375                           FILESYSTEM__ASSOCIATE, NULL);
376         return rc;
377 }
378
379 static int selinux_is_sblabel_mnt(struct super_block *sb)
380 {
381         struct superblock_security_struct *sbsec = sb->s_security;
382
383         if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
384             sbsec->behavior == SECURITY_FS_USE_TRANS ||
385             sbsec->behavior == SECURITY_FS_USE_TASK)
386                 return 1;
387
388         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
389         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
390                 return 1;
391
392         /*
393          * Special handling for rootfs. Is genfs but supports
394          * setting SELinux context on in-core inodes.
395          */
396         if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
397                 return 1;
398
399         return 0;
400 }
401
402 static int sb_finish_set_opts(struct super_block *sb)
403 {
404         struct superblock_security_struct *sbsec = sb->s_security;
405         struct dentry *root = sb->s_root;
406         struct inode *root_inode = root->d_inode;
407         int rc = 0;
408
409         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
410                 /* Make sure that the xattr handler exists and that no
411                    error other than -ENODATA is returned by getxattr on
412                    the root directory.  -ENODATA is ok, as this may be
413                    the first boot of the SELinux kernel before we have
414                    assigned xattr values to the filesystem. */
415                 if (!root_inode->i_op->getxattr) {
416                         printk(KERN_WARNING "SELinux: (dev %s, type "SB_TYPE_FMT") has no "
417                                "xattr support\n", sb->s_id, SB_TYPE_ARGS(sb));
418                         rc = -EOPNOTSUPP;
419                         goto out;
420                 }
421                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
422                 if (rc < 0 && rc != -ENODATA) {
423                         if (rc == -EOPNOTSUPP)
424                                 printk(KERN_WARNING "SELinux: (dev %s, type "
425                                        SB_TYPE_FMT") has no security xattr handler\n",
426                                        sb->s_id, SB_TYPE_ARGS(sb));
427                         else
428                                 printk(KERN_WARNING "SELinux: (dev %s, type "
429                                        SB_TYPE_FMT") getxattr errno %d\n", sb->s_id,
430                                        SB_TYPE_ARGS(sb), -rc);
431                         goto out;
432                 }
433         }
434
435         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
436                 printk(KERN_ERR "SELinux: initialized (dev %s, type "SB_TYPE_FMT"), unknown behavior\n",
437                        sb->s_id, SB_TYPE_ARGS(sb));
438         else
439                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type "SB_TYPE_FMT"), %s\n",
440                        sb->s_id, SB_TYPE_ARGS(sb),
441                        labeling_behaviors[sbsec->behavior-1]);
442
443         sbsec->flags |= SE_SBINITIALIZED;
444         if (selinux_is_sblabel_mnt(sb))
445                 sbsec->flags |= SBLABEL_MNT;
446
447         /* Initialize the root inode. */
448         rc = inode_doinit_with_dentry(root_inode, root);
449
450         /* Initialize any other inodes associated with the superblock, e.g.
451            inodes created prior to initial policy load or inodes created
452            during get_sb by a pseudo filesystem that directly
453            populates itself. */
454         spin_lock(&sbsec->isec_lock);
455 next_inode:
456         if (!list_empty(&sbsec->isec_head)) {
457                 struct inode_security_struct *isec =
458                                 list_entry(sbsec->isec_head.next,
459                                            struct inode_security_struct, list);
460                 struct inode *inode = isec->inode;
461                 spin_unlock(&sbsec->isec_lock);
462                 inode = igrab(inode);
463                 if (inode) {
464                         if (!IS_PRIVATE(inode))
465                                 inode_doinit(inode);
466                         iput(inode);
467                 }
468                 spin_lock(&sbsec->isec_lock);
469                 list_del_init(&isec->list);
470                 goto next_inode;
471         }
472         spin_unlock(&sbsec->isec_lock);
473 out:
474         return rc;
475 }
476
477 /*
478  * This function should allow an FS to ask what it's mount security
479  * options were so it can use those later for submounts, displaying
480  * mount options, or whatever.
481  */
482 static int selinux_get_mnt_opts(const struct super_block *sb,
483                                 struct security_mnt_opts *opts)
484 {
485         int rc = 0, i;
486         struct superblock_security_struct *sbsec = sb->s_security;
487         char *context = NULL;
488         u32 len;
489         char tmp;
490
491         security_init_mnt_opts(opts);
492
493         if (!(sbsec->flags & SE_SBINITIALIZED))
494                 return -EINVAL;
495
496         if (!ss_initialized)
497                 return -EINVAL;
498
499         /* make sure we always check enough bits to cover the mask */
500         BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
501
502         tmp = sbsec->flags & SE_MNTMASK;
503         /* count the number of mount options for this sb */
504         for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
505                 if (tmp & 0x01)
506                         opts->num_mnt_opts++;
507                 tmp >>= 1;
508         }
509         /* Check if the Label support flag is set */
510         if (sbsec->flags & SBLABEL_MNT)
511                 opts->num_mnt_opts++;
512
513         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
514         if (!opts->mnt_opts) {
515                 rc = -ENOMEM;
516                 goto out_free;
517         }
518
519         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
520         if (!opts->mnt_opts_flags) {
521                 rc = -ENOMEM;
522                 goto out_free;
523         }
524
525         i = 0;
526         if (sbsec->flags & FSCONTEXT_MNT) {
527                 rc = security_sid_to_context(sbsec->sid, &context, &len);
528                 if (rc)
529                         goto out_free;
530                 opts->mnt_opts[i] = context;
531                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
532         }
533         if (sbsec->flags & CONTEXT_MNT) {
534                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
535                 if (rc)
536                         goto out_free;
537                 opts->mnt_opts[i] = context;
538                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
539         }
540         if (sbsec->flags & DEFCONTEXT_MNT) {
541                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
542                 if (rc)
543                         goto out_free;
544                 opts->mnt_opts[i] = context;
545                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
546         }
547         if (sbsec->flags & ROOTCONTEXT_MNT) {
548                 struct inode *root = sbsec->sb->s_root->d_inode;
549                 struct inode_security_struct *isec = root->i_security;
550
551                 rc = security_sid_to_context(isec->sid, &context, &len);
552                 if (rc)
553                         goto out_free;
554                 opts->mnt_opts[i] = context;
555                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
556         }
557         if (sbsec->flags & SBLABEL_MNT) {
558                 opts->mnt_opts[i] = NULL;
559                 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
560         }
561
562         BUG_ON(i != opts->num_mnt_opts);
563
564         return 0;
565
566 out_free:
567         security_free_mnt_opts(opts);
568         return rc;
569 }
570
571 static int bad_option(struct superblock_security_struct *sbsec, char flag,
572                       u32 old_sid, u32 new_sid)
573 {
574         char mnt_flags = sbsec->flags & SE_MNTMASK;
575
576         /* check if the old mount command had the same options */
577         if (sbsec->flags & SE_SBINITIALIZED)
578                 if (!(sbsec->flags & flag) ||
579                     (old_sid != new_sid))
580                         return 1;
581
582         /* check if we were passed the same options twice,
583          * aka someone passed context=a,context=b
584          */
585         if (!(sbsec->flags & SE_SBINITIALIZED))
586                 if (mnt_flags & flag)
587                         return 1;
588         return 0;
589 }
590
591 /*
592  * Allow filesystems with binary mount data to explicitly set mount point
593  * labeling information.
594  */
595 static int selinux_set_mnt_opts(struct super_block *sb,
596                                 struct security_mnt_opts *opts,
597                                 unsigned long kern_flags,
598                                 unsigned long *set_kern_flags)
599 {
600         const struct cred *cred = current_cred();
601         int rc = 0, i;
602         struct superblock_security_struct *sbsec = sb->s_security;
603         struct inode *inode = sbsec->sb->s_root->d_inode;
604         struct inode_security_struct *root_isec = inode->i_security;
605         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606         u32 defcontext_sid = 0;
607         char **mount_options = opts->mnt_opts;
608         int *flags = opts->mnt_opts_flags;
609         int num_opts = opts->num_mnt_opts;
610
611         mutex_lock(&sbsec->lock);
612
613         if (!ss_initialized) {
614                 if (!num_opts) {
615                         /* Defer initialization until selinux_complete_init,
616                            after the initial policy is loaded and the security
617                            server is ready to handle calls. */
618                         goto out;
619                 }
620                 rc = -EINVAL;
621                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
622                         "before the security server is initialized\n");
623                 goto out;
624         }
625         if (kern_flags && !set_kern_flags) {
626                 /* Specifying internal flags without providing a place to
627                  * place the results is not allowed */
628                 rc = -EINVAL;
629                 goto out;
630         }
631
632         /*
633          * Binary mount data FS will come through this function twice.  Once
634          * from an explicit call and once from the generic calls from the vfs.
635          * Since the generic VFS calls will not contain any security mount data
636          * we need to skip the double mount verification.
637          *
638          * This does open a hole in which we will not notice if the first
639          * mount using this sb set explict options and a second mount using
640          * this sb does not set any security options.  (The first options
641          * will be used for both mounts)
642          */
643         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
644             && (num_opts == 0))
645                 goto out;
646
647         /*
648          * parse the mount options, check if they are valid sids.
649          * also check if someone is trying to mount the same sb more
650          * than once with different security options.
651          */
652         for (i = 0; i < num_opts; i++) {
653                 u32 sid;
654
655                 if (flags[i] == SBLABEL_MNT)
656                         continue;
657                 rc = security_context_to_sid(mount_options[i],
658                                              strlen(mount_options[i]), &sid);
659                 if (rc) {
660                         printk(KERN_WARNING "SELinux: security_context_to_sid"
661                                "(%s) failed for (dev %s, type "SB_TYPE_FMT") errno=%d\n",
662                                mount_options[i], sb->s_id, SB_TYPE_ARGS(sb), rc);
663                         goto out;
664                 }
665                 switch (flags[i]) {
666                 case FSCONTEXT_MNT:
667                         fscontext_sid = sid;
668
669                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
670                                         fscontext_sid))
671                                 goto out_double_mount;
672
673                         sbsec->flags |= FSCONTEXT_MNT;
674                         break;
675                 case CONTEXT_MNT:
676                         context_sid = sid;
677
678                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
679                                         context_sid))
680                                 goto out_double_mount;
681
682                         sbsec->flags |= CONTEXT_MNT;
683                         break;
684                 case ROOTCONTEXT_MNT:
685                         rootcontext_sid = sid;
686
687                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
688                                         rootcontext_sid))
689                                 goto out_double_mount;
690
691                         sbsec->flags |= ROOTCONTEXT_MNT;
692
693                         break;
694                 case DEFCONTEXT_MNT:
695                         defcontext_sid = sid;
696
697                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
698                                         defcontext_sid))
699                                 goto out_double_mount;
700
701                         sbsec->flags |= DEFCONTEXT_MNT;
702
703                         break;
704                 default:
705                         rc = -EINVAL;
706                         goto out;
707                 }
708         }
709
710         if (sbsec->flags & SE_SBINITIALIZED) {
711                 /* previously mounted with options, but not on this attempt? */
712                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
713                         goto out_double_mount;
714                 rc = 0;
715                 goto out;
716         }
717
718         if (strcmp(sb->s_type->name, "proc") == 0)
719                 sbsec->flags |= SE_SBPROC;
720
721         if (!sbsec->behavior) {
722                 /*
723                  * Determine the labeling behavior to use for this
724                  * filesystem type.
725                  */
726                 rc = security_fs_use(sb);
727                 if (rc) {
728                         printk(KERN_WARNING
729                                 "%s: security_fs_use(%s) returned %d\n",
730                                         __func__, sb->s_type->name, rc);
731                         goto out;
732                 }
733         }
734         /* sets the context of the superblock for the fs being mounted. */
735         if (fscontext_sid) {
736                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
737                 if (rc)
738                         goto out;
739
740                 sbsec->sid = fscontext_sid;
741         }
742
743         /*
744          * Switch to using mount point labeling behavior.
745          * sets the label used on all file below the mountpoint, and will set
746          * the superblock context if not already set.
747          */
748         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
749                 sbsec->behavior = SECURITY_FS_USE_NATIVE;
750                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
751         }
752
753         if (context_sid) {
754                 if (!fscontext_sid) {
755                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
756                                                           cred);
757                         if (rc)
758                                 goto out;
759                         sbsec->sid = context_sid;
760                 } else {
761                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
762                                                              cred);
763                         if (rc)
764                                 goto out;
765                 }
766                 if (!rootcontext_sid)
767                         rootcontext_sid = context_sid;
768
769                 sbsec->mntpoint_sid = context_sid;
770                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
771         }
772
773         if (rootcontext_sid) {
774                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
775                                                      cred);
776                 if (rc)
777                         goto out;
778
779                 root_isec->sid = rootcontext_sid;
780                 root_isec->initialized = 1;
781         }
782
783         if (defcontext_sid) {
784                 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
785                         sbsec->behavior != SECURITY_FS_USE_NATIVE) {
786                         rc = -EINVAL;
787                         printk(KERN_WARNING "SELinux: defcontext option is "
788                                "invalid for this filesystem type\n");
789                         goto out;
790                 }
791
792                 if (defcontext_sid != sbsec->def_sid) {
793                         rc = may_context_mount_inode_relabel(defcontext_sid,
794                                                              sbsec, cred);
795                         if (rc)
796                                 goto out;
797                 }
798
799                 sbsec->def_sid = defcontext_sid;
800         }
801
802         rc = sb_finish_set_opts(sb);
803 out:
804         mutex_unlock(&sbsec->lock);
805         return rc;
806 out_double_mount:
807         rc = -EINVAL;
808         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
809                "security settings for (dev %s, type "SB_TYPE_FMT")\n", sb->s_id,
810                SB_TYPE_ARGS(sb));
811         goto out;
812 }
813
814 static int selinux_cmp_sb_context(const struct super_block *oldsb,
815                                     const struct super_block *newsb)
816 {
817         struct superblock_security_struct *old = oldsb->s_security;
818         struct superblock_security_struct *new = newsb->s_security;
819         char oldflags = old->flags & SE_MNTMASK;
820         char newflags = new->flags & SE_MNTMASK;
821
822         if (oldflags != newflags)
823                 goto mismatch;
824         if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
825                 goto mismatch;
826         if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
827                 goto mismatch;
828         if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
829                 goto mismatch;
830         if (oldflags & ROOTCONTEXT_MNT) {
831                 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
832                 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
833                 if (oldroot->sid != newroot->sid)
834                         goto mismatch;
835         }
836         return 0;
837 mismatch:
838         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
839                             "different security settings for (dev %s, "
840                             "type %s)\n", newsb->s_id, newsb->s_type->name);
841         return -EBUSY;
842 }
843
844 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
845                                         struct super_block *newsb)
846 {
847         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
848         struct superblock_security_struct *newsbsec = newsb->s_security;
849
850         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
851         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
852         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
853
854         /*
855          * if the parent was able to be mounted it clearly had no special lsm
856          * mount options.  thus we can safely deal with this superblock later
857          */
858         if (!ss_initialized)
859                 return 0;
860
861         /* how can we clone if the old one wasn't set up?? */
862         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
863
864         /* if fs is reusing a sb, make sure that the contexts match */
865         if (newsbsec->flags & SE_SBINITIALIZED)
866                 return selinux_cmp_sb_context(oldsb, newsb);
867
868         mutex_lock(&newsbsec->lock);
869
870         newsbsec->flags = oldsbsec->flags;
871
872         newsbsec->sid = oldsbsec->sid;
873         newsbsec->def_sid = oldsbsec->def_sid;
874         newsbsec->behavior = oldsbsec->behavior;
875
876         if (set_context) {
877                 u32 sid = oldsbsec->mntpoint_sid;
878
879                 if (!set_fscontext)
880                         newsbsec->sid = sid;
881                 if (!set_rootcontext) {
882                         struct inode *newinode = newsb->s_root->d_inode;
883                         struct inode_security_struct *newisec = newinode->i_security;
884                         newisec->sid = sid;
885                 }
886                 newsbsec->mntpoint_sid = sid;
887         }
888         if (set_rootcontext) {
889                 const struct inode *oldinode = oldsb->s_root->d_inode;
890                 const struct inode_security_struct *oldisec = oldinode->i_security;
891                 struct inode *newinode = newsb->s_root->d_inode;
892                 struct inode_security_struct *newisec = newinode->i_security;
893
894                 newisec->sid = oldisec->sid;
895         }
896
897         sb_finish_set_opts(newsb);
898         mutex_unlock(&newsbsec->lock);
899         return 0;
900 }
901
902 static int selinux_parse_opts_str(char *options,
903                                   struct security_mnt_opts *opts)
904 {
905         char *p;
906         char *context = NULL, *defcontext = NULL;
907         char *fscontext = NULL, *rootcontext = NULL;
908         int rc, num_mnt_opts = 0;
909
910         opts->num_mnt_opts = 0;
911
912         /* Standard string-based options. */
913         while ((p = strsep(&options, "|")) != NULL) {
914                 int token;
915                 substring_t args[MAX_OPT_ARGS];
916
917                 if (!*p)
918                         continue;
919
920                 token = match_token(p, tokens, args);
921
922                 switch (token) {
923                 case Opt_context:
924                         if (context || defcontext) {
925                                 rc = -EINVAL;
926                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
927                                 goto out_err;
928                         }
929                         context = match_strdup(&args[0]);
930                         if (!context) {
931                                 rc = -ENOMEM;
932                                 goto out_err;
933                         }
934                         break;
935
936                 case Opt_fscontext:
937                         if (fscontext) {
938                                 rc = -EINVAL;
939                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
940                                 goto out_err;
941                         }
942                         fscontext = match_strdup(&args[0]);
943                         if (!fscontext) {
944                                 rc = -ENOMEM;
945                                 goto out_err;
946                         }
947                         break;
948
949                 case Opt_rootcontext:
950                         if (rootcontext) {
951                                 rc = -EINVAL;
952                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
953                                 goto out_err;
954                         }
955                         rootcontext = match_strdup(&args[0]);
956                         if (!rootcontext) {
957                                 rc = -ENOMEM;
958                                 goto out_err;
959                         }
960                         break;
961
962                 case Opt_defcontext:
963                         if (context || defcontext) {
964                                 rc = -EINVAL;
965                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
966                                 goto out_err;
967                         }
968                         defcontext = match_strdup(&args[0]);
969                         if (!defcontext) {
970                                 rc = -ENOMEM;
971                                 goto out_err;
972                         }
973                         break;
974                 case Opt_labelsupport:
975                         break;
976                 default:
977                         rc = -EINVAL;
978                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
979                         goto out_err;
980
981                 }
982         }
983
984         rc = -ENOMEM;
985         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
986         if (!opts->mnt_opts)
987                 goto out_err;
988
989         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
990         if (!opts->mnt_opts_flags) {
991                 kfree(opts->mnt_opts);
992                 goto out_err;
993         }
994
995         if (fscontext) {
996                 opts->mnt_opts[num_mnt_opts] = fscontext;
997                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
998         }
999         if (context) {
1000                 opts->mnt_opts[num_mnt_opts] = context;
1001                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1002         }
1003         if (rootcontext) {
1004                 opts->mnt_opts[num_mnt_opts] = rootcontext;
1005                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1006         }
1007         if (defcontext) {
1008                 opts->mnt_opts[num_mnt_opts] = defcontext;
1009                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1010         }
1011
1012         opts->num_mnt_opts = num_mnt_opts;
1013         return 0;
1014
1015 out_err:
1016         kfree(context);
1017         kfree(defcontext);
1018         kfree(fscontext);
1019         kfree(rootcontext);
1020         return rc;
1021 }
1022 /*
1023  * string mount options parsing and call set the sbsec
1024  */
1025 static int superblock_doinit(struct super_block *sb, void *data)
1026 {
1027         int rc = 0;
1028         char *options = data;
1029         struct security_mnt_opts opts;
1030
1031         security_init_mnt_opts(&opts);
1032
1033         if (!data)
1034                 goto out;
1035
1036         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1037
1038         rc = selinux_parse_opts_str(options, &opts);
1039         if (rc)
1040                 goto out_err;
1041
1042 out:
1043         rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1044
1045 out_err:
1046         security_free_mnt_opts(&opts);
1047         return rc;
1048 }
1049
1050 static void selinux_write_opts(struct seq_file *m,
1051                                struct security_mnt_opts *opts)
1052 {
1053         int i;
1054         char *prefix;
1055
1056         for (i = 0; i < opts->num_mnt_opts; i++) {
1057                 char *has_comma;
1058
1059                 if (opts->mnt_opts[i])
1060                         has_comma = strchr(opts->mnt_opts[i], ',');
1061                 else
1062                         has_comma = NULL;
1063
1064                 switch (opts->mnt_opts_flags[i]) {
1065                 case CONTEXT_MNT:
1066                         prefix = CONTEXT_STR;
1067                         break;
1068                 case FSCONTEXT_MNT:
1069                         prefix = FSCONTEXT_STR;
1070                         break;
1071                 case ROOTCONTEXT_MNT:
1072                         prefix = ROOTCONTEXT_STR;
1073                         break;
1074                 case DEFCONTEXT_MNT:
1075                         prefix = DEFCONTEXT_STR;
1076                         break;
1077                 case SBLABEL_MNT:
1078                         seq_putc(m, ',');
1079                         seq_puts(m, LABELSUPP_STR);
1080                         continue;
1081                 default:
1082                         BUG();
1083                         return;
1084                 };
1085                 /* we need a comma before each option */
1086                 seq_putc(m, ',');
1087                 seq_puts(m, prefix);
1088                 if (has_comma)
1089                         seq_putc(m, '\"');
1090                 seq_puts(m, opts->mnt_opts[i]);
1091                 if (has_comma)
1092                         seq_putc(m, '\"');
1093         }
1094 }
1095
1096 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1097 {
1098         struct security_mnt_opts opts;
1099         int rc;
1100
1101         rc = selinux_get_mnt_opts(sb, &opts);
1102         if (rc) {
1103                 /* before policy load we may get EINVAL, don't show anything */
1104                 if (rc == -EINVAL)
1105                         rc = 0;
1106                 return rc;
1107         }
1108
1109         selinux_write_opts(m, &opts);
1110
1111         security_free_mnt_opts(&opts);
1112
1113         return rc;
1114 }
1115
1116 static inline u16 inode_mode_to_security_class(umode_t mode)
1117 {
1118         switch (mode & S_IFMT) {
1119         case S_IFSOCK:
1120                 return SECCLASS_SOCK_FILE;
1121         case S_IFLNK:
1122                 return SECCLASS_LNK_FILE;
1123         case S_IFREG:
1124                 return SECCLASS_FILE;
1125         case S_IFBLK:
1126                 return SECCLASS_BLK_FILE;
1127         case S_IFDIR:
1128                 return SECCLASS_DIR;
1129         case S_IFCHR:
1130                 return SECCLASS_CHR_FILE;
1131         case S_IFIFO:
1132                 return SECCLASS_FIFO_FILE;
1133
1134         }
1135
1136         return SECCLASS_FILE;
1137 }
1138
1139 static inline int default_protocol_stream(int protocol)
1140 {
1141         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1142 }
1143
1144 static inline int default_protocol_dgram(int protocol)
1145 {
1146         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1147 }
1148
1149 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1150 {
1151         switch (family) {
1152         case PF_UNIX:
1153                 switch (type) {
1154                 case SOCK_STREAM:
1155                 case SOCK_SEQPACKET:
1156                         return SECCLASS_UNIX_STREAM_SOCKET;
1157                 case SOCK_DGRAM:
1158                         return SECCLASS_UNIX_DGRAM_SOCKET;
1159                 }
1160                 break;
1161         case PF_INET:
1162         case PF_INET6:
1163                 switch (type) {
1164                 case SOCK_STREAM:
1165                         if (default_protocol_stream(protocol))
1166                                 return SECCLASS_TCP_SOCKET;
1167                         else
1168                                 return SECCLASS_RAWIP_SOCKET;
1169                 case SOCK_DGRAM:
1170                         if (default_protocol_dgram(protocol))
1171                                 return SECCLASS_UDP_SOCKET;
1172                         else
1173                                 return SECCLASS_RAWIP_SOCKET;
1174                 case SOCK_DCCP:
1175                         return SECCLASS_DCCP_SOCKET;
1176                 default:
1177                         return SECCLASS_RAWIP_SOCKET;
1178                 }
1179                 break;
1180         case PF_NETLINK:
1181                 switch (protocol) {
1182                 case NETLINK_ROUTE:
1183                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1184                 case NETLINK_FIREWALL:
1185                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1186                 case NETLINK_SOCK_DIAG:
1187                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1188                 case NETLINK_NFLOG:
1189                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1190                 case NETLINK_XFRM:
1191                         return SECCLASS_NETLINK_XFRM_SOCKET;
1192                 case NETLINK_SELINUX:
1193                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1194                 case NETLINK_AUDIT:
1195                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1196                 case NETLINK_IP6_FW:
1197                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1198                 case NETLINK_DNRTMSG:
1199                         return SECCLASS_NETLINK_DNRT_SOCKET;
1200                 case NETLINK_KOBJECT_UEVENT:
1201                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1202                 default:
1203                         return SECCLASS_NETLINK_SOCKET;
1204                 }
1205         case PF_PACKET:
1206                 return SECCLASS_PACKET_SOCKET;
1207         case PF_KEY:
1208                 return SECCLASS_KEY_SOCKET;
1209         case PF_APPLETALK:
1210                 return SECCLASS_APPLETALK_SOCKET;
1211         }
1212
1213         return SECCLASS_SOCKET;
1214 }
1215
1216 #ifdef CONFIG_PROC_FS
1217 static int selinux_proc_get_sid(struct dentry *dentry,
1218                                 u16 tclass,
1219                                 u32 *sid)
1220 {
1221         int rc;
1222         char *buffer, *path;
1223
1224         buffer = (char *)__get_free_page(GFP_KERNEL);
1225         if (!buffer)
1226                 return -ENOMEM;
1227
1228         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1229         if (IS_ERR(path))
1230                 rc = PTR_ERR(path);
1231         else {
1232                 /* each process gets a /proc/PID/ entry. Strip off the
1233                  * PID part to get a valid selinux labeling.
1234                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1235                 while (path[1] >= '0' && path[1] <= '9') {
1236                         path[1] = '/';
1237                         path++;
1238                 }
1239                 rc = security_genfs_sid("proc", path, tclass, sid);
1240         }
1241         free_page((unsigned long)buffer);
1242         return rc;
1243 }
1244 #else
1245 static int selinux_proc_get_sid(struct dentry *dentry,
1246                                 u16 tclass,
1247                                 u32 *sid)
1248 {
1249         return -EINVAL;
1250 }
1251 #endif
1252
1253 /* The inode's security attributes must be initialized before first use. */
1254 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1255 {
1256         struct superblock_security_struct *sbsec = NULL;
1257         struct inode_security_struct *isec = inode->i_security;
1258         u32 sid;
1259         struct dentry *dentry;
1260 #define INITCONTEXTLEN 255
1261         char *context = NULL;
1262         unsigned len = 0;
1263         int rc = 0;
1264
1265         if (isec->initialized)
1266                 goto out;
1267
1268         mutex_lock(&isec->lock);
1269         if (isec->initialized)
1270                 goto out_unlock;
1271
1272         sbsec = inode->i_sb->s_security;
1273         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1274                 /* Defer initialization until selinux_complete_init,
1275                    after the initial policy is loaded and the security
1276                    server is ready to handle calls. */
1277                 spin_lock(&sbsec->isec_lock);
1278                 if (list_empty(&isec->list))
1279                         list_add(&isec->list, &sbsec->isec_head);
1280                 spin_unlock(&sbsec->isec_lock);
1281                 goto out_unlock;
1282         }
1283
1284         switch (sbsec->behavior) {
1285         case SECURITY_FS_USE_NATIVE:
1286                 break;
1287         case SECURITY_FS_USE_XATTR:
1288                 if (!inode->i_op->getxattr) {
1289                         isec->sid = sbsec->def_sid;
1290                         break;
1291                 }
1292
1293                 /* Need a dentry, since the xattr API requires one.
1294                    Life would be simpler if we could just pass the inode. */
1295                 if (opt_dentry) {
1296                         /* Called from d_instantiate or d_splice_alias. */
1297                         dentry = dget(opt_dentry);
1298                 } else {
1299                         /* Called from selinux_complete_init, try to find a dentry. */
1300                         dentry = d_find_alias(inode);
1301                 }
1302                 if (!dentry) {
1303                         /*
1304                          * this is can be hit on boot when a file is accessed
1305                          * before the policy is loaded.  When we load policy we
1306                          * may find inodes that have no dentry on the
1307                          * sbsec->isec_head list.  No reason to complain as these
1308                          * will get fixed up the next time we go through
1309                          * inode_doinit with a dentry, before these inodes could
1310                          * be used again by userspace.
1311                          */
1312                         goto out_unlock;
1313                 }
1314
1315                 len = INITCONTEXTLEN;
1316                 context = kmalloc(len+1, GFP_NOFS);
1317                 if (!context) {
1318                         rc = -ENOMEM;
1319                         dput(dentry);
1320                         goto out_unlock;
1321                 }
1322                 context[len] = '\0';
1323                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1324                                            context, len);
1325                 if (rc == -ERANGE) {
1326                         kfree(context);
1327
1328                         /* Need a larger buffer.  Query for the right size. */
1329                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1330                                                    NULL, 0);
1331                         if (rc < 0) {
1332                                 dput(dentry);
1333                                 goto out_unlock;
1334                         }
1335                         len = rc;
1336                         context = kmalloc(len+1, GFP_NOFS);
1337                         if (!context) {
1338                                 rc = -ENOMEM;
1339                                 dput(dentry);
1340                                 goto out_unlock;
1341                         }
1342                         context[len] = '\0';
1343                         rc = inode->i_op->getxattr(dentry,
1344                                                    XATTR_NAME_SELINUX,
1345                                                    context, len);
1346                 }
1347                 dput(dentry);
1348                 if (rc < 0) {
1349                         if (rc != -ENODATA) {
1350                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1351                                        "%d for dev=%s ino=%ld\n", __func__,
1352                                        -rc, inode->i_sb->s_id, inode->i_ino);
1353                                 kfree(context);
1354                                 goto out_unlock;
1355                         }
1356                         /* Map ENODATA to the default file SID */
1357                         sid = sbsec->def_sid;
1358                         rc = 0;
1359                 } else {
1360                         rc = security_context_to_sid_default(context, rc, &sid,
1361                                                              sbsec->def_sid,
1362                                                              GFP_NOFS);
1363                         if (rc) {
1364                                 char *dev = inode->i_sb->s_id;
1365                                 unsigned long ino = inode->i_ino;
1366
1367                                 if (rc == -EINVAL) {
1368                                         if (printk_ratelimit())
1369                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1370                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1371                                                         "filesystem in question.\n", ino, dev, context);
1372                                 } else {
1373                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1374                                                "returned %d for dev=%s ino=%ld\n",
1375                                                __func__, context, -rc, dev, ino);
1376                                 }
1377                                 kfree(context);
1378                                 /* Leave with the unlabeled SID */
1379                                 rc = 0;
1380                                 break;
1381                         }
1382                 }
1383                 kfree(context);
1384                 isec->sid = sid;
1385                 break;
1386         case SECURITY_FS_USE_TASK:
1387                 isec->sid = isec->task_sid;
1388                 break;
1389         case SECURITY_FS_USE_TRANS:
1390                 /* Default to the fs SID. */
1391                 isec->sid = sbsec->sid;
1392
1393                 /* Try to obtain a transition SID. */
1394                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1395                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1396                                              isec->sclass, NULL, &sid);
1397                 if (rc)
1398                         goto out_unlock;
1399                 isec->sid = sid;
1400                 break;
1401         case SECURITY_FS_USE_MNTPOINT:
1402                 isec->sid = sbsec->mntpoint_sid;
1403                 break;
1404         default:
1405                 /* Default to the fs superblock SID. */
1406                 isec->sid = sbsec->sid;
1407
1408                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1409                         if (opt_dentry) {
1410                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1411                                 rc = selinux_proc_get_sid(opt_dentry,
1412                                                           isec->sclass,
1413                                                           &sid);
1414                                 if (rc)
1415                                         goto out_unlock;
1416                                 isec->sid = sid;
1417                         }
1418                 }
1419                 break;
1420         }
1421
1422         isec->initialized = 1;
1423
1424 out_unlock:
1425         mutex_unlock(&isec->lock);
1426 out:
1427         if (isec->sclass == SECCLASS_FILE)
1428                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1429         return rc;
1430 }
1431
1432 /* Convert a Linux signal to an access vector. */
1433 static inline u32 signal_to_av(int sig)
1434 {
1435         u32 perm = 0;
1436
1437         switch (sig) {
1438         case SIGCHLD:
1439                 /* Commonly granted from child to parent. */
1440                 perm = PROCESS__SIGCHLD;
1441                 break;
1442         case SIGKILL:
1443                 /* Cannot be caught or ignored */
1444                 perm = PROCESS__SIGKILL;
1445                 break;
1446         case SIGSTOP:
1447                 /* Cannot be caught or ignored */
1448                 perm = PROCESS__SIGSTOP;
1449                 break;
1450         default:
1451                 /* All other signals. */
1452                 perm = PROCESS__SIGNAL;
1453                 break;
1454         }
1455
1456         return perm;
1457 }
1458
1459 /*
1460  * Check permission between a pair of credentials
1461  * fork check, ptrace check, etc.
1462  */
1463 static int cred_has_perm(const struct cred *actor,
1464                          const struct cred *target,
1465                          u32 perms)
1466 {
1467         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1468
1469         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1470 }
1471
1472 /*
1473  * Check permission between a pair of tasks, e.g. signal checks,
1474  * fork check, ptrace check, etc.
1475  * tsk1 is the actor and tsk2 is the target
1476  * - this uses the default subjective creds of tsk1
1477  */
1478 static int task_has_perm(const struct task_struct *tsk1,
1479                          const struct task_struct *tsk2,
1480                          u32 perms)
1481 {
1482         const struct task_security_struct *__tsec1, *__tsec2;
1483         u32 sid1, sid2;
1484
1485         rcu_read_lock();
1486         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1487         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1488         rcu_read_unlock();
1489         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1490 }
1491
1492 /*
1493  * Check permission between current and another task, e.g. signal checks,
1494  * fork check, ptrace check, etc.
1495  * current is the actor and tsk2 is the target
1496  * - this uses current's subjective creds
1497  */
1498 static int current_has_perm(const struct task_struct *tsk,
1499                             u32 perms)
1500 {
1501         u32 sid, tsid;
1502
1503         sid = current_sid();
1504         tsid = task_sid(tsk);
1505         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1506 }
1507
1508 #if CAP_LAST_CAP > 63
1509 #error Fix SELinux to handle capabilities > 63.
1510 #endif
1511
1512 /* Check whether a task is allowed to use a capability. */
1513 static int cred_has_capability(const struct cred *cred,
1514                                int cap, int audit)
1515 {
1516         struct common_audit_data ad;
1517         struct av_decision avd;
1518         u16 sclass;
1519         u32 sid = cred_sid(cred);
1520         u32 av = CAP_TO_MASK(cap);
1521         int rc;
1522
1523         ad.type = LSM_AUDIT_DATA_CAP;
1524         ad.u.cap = cap;
1525
1526         switch (CAP_TO_INDEX(cap)) {
1527         case 0:
1528                 sclass = SECCLASS_CAPABILITY;
1529                 break;
1530         case 1:
1531                 sclass = SECCLASS_CAPABILITY2;
1532                 break;
1533         default:
1534                 printk(KERN_ERR
1535                        "SELinux:  out of range capability %d\n", cap);
1536                 BUG();
1537                 return -EINVAL;
1538         }
1539
1540         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1541         if (audit == SECURITY_CAP_AUDIT) {
1542                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1543                 if (rc2)
1544                         return rc2;
1545         }
1546         return rc;
1547 }
1548
1549 /* Check whether a task is allowed to use a system operation. */
1550 static int task_has_system(struct task_struct *tsk,
1551                            u32 perms)
1552 {
1553         u32 sid = task_sid(tsk);
1554
1555         return avc_has_perm(sid, SECINITSID_KERNEL,
1556                             SECCLASS_SYSTEM, perms, NULL);
1557 }
1558
1559 /* Check whether a task has a particular permission to an inode.
1560    The 'adp' parameter is optional and allows other audit
1561    data to be passed (e.g. the dentry). */
1562 static int inode_has_perm(const struct cred *cred,
1563                           struct inode *inode,
1564                           u32 perms,
1565                           struct common_audit_data *adp,
1566                           unsigned flags)
1567 {
1568         struct inode_security_struct *isec;
1569         u32 sid;
1570
1571         validate_creds(cred);
1572
1573         if (unlikely(IS_PRIVATE(inode)))
1574                 return 0;
1575
1576         sid = cred_sid(cred);
1577         isec = inode->i_security;
1578
1579         return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1580 }
1581
1582 /* Same as inode_has_perm, but pass explicit audit data containing
1583    the dentry to help the auditing code to more easily generate the
1584    pathname if needed. */
1585 static inline int dentry_has_perm(const struct cred *cred,
1586                                   struct dentry *dentry,
1587                                   u32 av)
1588 {
1589         struct inode *inode = dentry->d_inode;
1590         struct common_audit_data ad;
1591
1592         ad.type = LSM_AUDIT_DATA_DENTRY;
1593         ad.u.dentry = dentry;
1594         return inode_has_perm(cred, inode, av, &ad, 0);
1595 }
1596
1597 /* Same as inode_has_perm, but pass explicit audit data containing
1598    the path to help the auditing code to more easily generate the
1599    pathname if needed. */
1600 static inline int path_has_perm(const struct cred *cred,
1601                                 struct path *path,
1602                                 u32 av)
1603 {
1604         struct inode *inode = path->dentry->d_inode;
1605         struct common_audit_data ad;
1606
1607         ad.type = LSM_AUDIT_DATA_PATH;
1608         ad.u.path = *path;
1609         return inode_has_perm(cred, inode, av, &ad, 0);
1610 }
1611
1612 /* Same as path_has_perm, but uses the inode from the file struct. */
1613 static inline int file_path_has_perm(const struct cred *cred,
1614                                      struct file *file,
1615                                      u32 av)
1616 {
1617         struct common_audit_data ad;
1618
1619         ad.type = LSM_AUDIT_DATA_PATH;
1620         ad.u.path = file->f_path;
1621         return inode_has_perm(cred, file_inode(file), av, &ad, 0);
1622 }
1623
1624 /* Check whether a task can use an open file descriptor to
1625    access an inode in a given way.  Check access to the
1626    descriptor itself, and then use dentry_has_perm to
1627    check a particular permission to the file.
1628    Access to the descriptor is implicitly granted if it
1629    has the same SID as the process.  If av is zero, then
1630    access to the file is not checked, e.g. for cases
1631    where only the descriptor is affected like seek. */
1632 static int file_has_perm(const struct cred *cred,
1633                          struct file *file,
1634                          u32 av)
1635 {
1636         struct file_security_struct *fsec = file->f_security;
1637         struct inode *inode = file_inode(file);
1638         struct common_audit_data ad;
1639         u32 sid = cred_sid(cred);
1640         int rc;
1641
1642         ad.type = LSM_AUDIT_DATA_PATH;
1643         ad.u.path = file->f_path;
1644
1645         if (sid != fsec->sid) {
1646                 rc = avc_has_perm(sid, fsec->sid,
1647                                   SECCLASS_FD,
1648                                   FD__USE,
1649                                   &ad);
1650                 if (rc)
1651                         goto out;
1652         }
1653
1654         /* av is zero if only checking access to the descriptor. */
1655         rc = 0;
1656         if (av)
1657                 rc = inode_has_perm(cred, inode, av, &ad, 0);
1658
1659 out:
1660         return rc;
1661 }
1662
1663 /* Check whether a task can create a file. */
1664 static int may_create(struct inode *dir,
1665                       struct dentry *dentry,
1666                       u16 tclass)
1667 {
1668         const struct task_security_struct *tsec = current_security();
1669         struct inode_security_struct *dsec;
1670         struct superblock_security_struct *sbsec;
1671         u32 sid, newsid;
1672         struct common_audit_data ad;
1673         int rc;
1674
1675         dsec = dir->i_security;
1676         sbsec = dir->i_sb->s_security;
1677
1678         sid = tsec->sid;
1679         newsid = tsec->create_sid;
1680
1681         ad.type = LSM_AUDIT_DATA_DENTRY;
1682         ad.u.dentry = dentry;
1683
1684         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1685                           DIR__ADD_NAME | DIR__SEARCH,
1686                           &ad);
1687         if (rc)
1688                 return rc;
1689
1690         if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1691                 rc = security_transition_sid(sid, dsec->sid, tclass,
1692                                              &dentry->d_name, &newsid);
1693                 if (rc)
1694                         return rc;
1695         }
1696
1697         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1698         if (rc)
1699                 return rc;
1700
1701         return avc_has_perm(newsid, sbsec->sid,
1702                             SECCLASS_FILESYSTEM,
1703                             FILESYSTEM__ASSOCIATE, &ad);
1704 }
1705
1706 /* Check whether a task can create a key. */
1707 static int may_create_key(u32 ksid,
1708                           struct task_struct *ctx)
1709 {
1710         u32 sid = task_sid(ctx);
1711
1712         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1713 }
1714
1715 #define MAY_LINK        0
1716 #define MAY_UNLINK      1
1717 #define MAY_RMDIR       2
1718
1719 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1720 static int may_link(struct inode *dir,
1721                     struct dentry *dentry,
1722                     int kind)
1723
1724 {
1725         struct inode_security_struct *dsec, *isec;
1726         struct common_audit_data ad;
1727         u32 sid = current_sid();
1728         u32 av;
1729         int rc;
1730
1731         dsec = dir->i_security;
1732         isec = dentry->d_inode->i_security;
1733
1734         ad.type = LSM_AUDIT_DATA_DENTRY;
1735         ad.u.dentry = dentry;
1736
1737         av = DIR__SEARCH;
1738         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1739         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1740         if (rc)
1741                 return rc;
1742
1743         switch (kind) {
1744         case MAY_LINK:
1745                 av = FILE__LINK;
1746                 break;
1747         case MAY_UNLINK:
1748                 av = FILE__UNLINK;
1749                 break;
1750         case MAY_RMDIR:
1751                 av = DIR__RMDIR;
1752                 break;
1753         default:
1754                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1755                         __func__, kind);
1756                 return 0;
1757         }
1758
1759         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1760         return rc;
1761 }
1762
1763 static inline int may_rename(struct inode *old_dir,
1764                              struct dentry *old_dentry,
1765                              struct inode *new_dir,
1766                              struct dentry *new_dentry)
1767 {
1768         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1769         struct common_audit_data ad;
1770         u32 sid = current_sid();
1771         u32 av;
1772         int old_is_dir, new_is_dir;
1773         int rc;
1774
1775         old_dsec = old_dir->i_security;
1776         old_isec = old_dentry->d_inode->i_security;
1777         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1778         new_dsec = new_dir->i_security;
1779
1780         ad.type = LSM_AUDIT_DATA_DENTRY;
1781
1782         ad.u.dentry = old_dentry;
1783         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1784                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1785         if (rc)
1786                 return rc;
1787         rc = avc_has_perm(sid, old_isec->sid,
1788                           old_isec->sclass, FILE__RENAME, &ad);
1789         if (rc)
1790                 return rc;
1791         if (old_is_dir && new_dir != old_dir) {
1792                 rc = avc_has_perm(sid, old_isec->sid,
1793                                   old_isec->sclass, DIR__REPARENT, &ad);
1794                 if (rc)
1795                         return rc;
1796         }
1797
1798         ad.u.dentry = new_dentry;
1799         av = DIR__ADD_NAME | DIR__SEARCH;
1800         if (new_dentry->d_inode)
1801                 av |= DIR__REMOVE_NAME;
1802         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1803         if (rc)
1804                 return rc;
1805         if (new_dentry->d_inode) {
1806                 new_isec = new_dentry->d_inode->i_security;
1807                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1808                 rc = avc_has_perm(sid, new_isec->sid,
1809                                   new_isec->sclass,
1810                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1811                 if (rc)
1812                         return rc;
1813         }
1814
1815         return 0;
1816 }
1817
1818 /* Check whether a task can perform a filesystem operation. */
1819 static int superblock_has_perm(const struct cred *cred,
1820                                struct super_block *sb,
1821                                u32 perms,
1822                                struct common_audit_data *ad)
1823 {
1824         struct superblock_security_struct *sbsec;
1825         u32 sid = cred_sid(cred);
1826
1827         sbsec = sb->s_security;
1828         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1829 }
1830
1831 /* Convert a Linux mode and permission mask to an access vector. */
1832 static inline u32 file_mask_to_av(int mode, int mask)
1833 {
1834         u32 av = 0;
1835
1836         if (!S_ISDIR(mode)) {
1837                 if (mask & MAY_EXEC)
1838                         av |= FILE__EXECUTE;
1839                 if (mask & MAY_READ)
1840                         av |= FILE__READ;
1841
1842                 if (mask & MAY_APPEND)
1843                         av |= FILE__APPEND;
1844                 else if (mask & MAY_WRITE)
1845                         av |= FILE__WRITE;
1846
1847         } else {
1848                 if (mask & MAY_EXEC)
1849                         av |= DIR__SEARCH;
1850                 if (mask & MAY_WRITE)
1851                         av |= DIR__WRITE;
1852                 if (mask & MAY_READ)
1853                         av |= DIR__READ;
1854         }
1855
1856         return av;
1857 }
1858
1859 /* Convert a Linux file to an access vector. */
1860 static inline u32 file_to_av(struct file *file)
1861 {
1862         u32 av = 0;
1863
1864         if (file->f_mode & FMODE_READ)
1865                 av |= FILE__READ;
1866         if (file->f_mode & FMODE_WRITE) {
1867                 if (file->f_flags & O_APPEND)
1868                         av |= FILE__APPEND;
1869                 else
1870                         av |= FILE__WRITE;
1871         }
1872         if (!av) {
1873                 /*
1874                  * Special file opened with flags 3 for ioctl-only use.
1875                  */
1876                 av = FILE__IOCTL;
1877         }
1878
1879         return av;
1880 }
1881
1882 /*
1883  * Convert a file to an access vector and include the correct open
1884  * open permission.
1885  */
1886 static inline u32 open_file_to_av(struct file *file)
1887 {
1888         u32 av = file_to_av(file);
1889
1890         if (selinux_policycap_openperm)
1891                 av |= FILE__OPEN;
1892
1893         return av;
1894 }
1895
1896 /* Hook functions begin here. */
1897
1898 static int selinux_ptrace_access_check(struct task_struct *child,
1899                                      unsigned int mode)
1900 {
1901         int rc;
1902
1903         rc = cap_ptrace_access_check(child, mode);
1904         if (rc)
1905                 return rc;
1906
1907         if (mode & PTRACE_MODE_READ) {
1908                 u32 sid = current_sid();
1909                 u32 csid = task_sid(child);
1910                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1911         }
1912
1913         return current_has_perm(child, PROCESS__PTRACE);
1914 }
1915
1916 static int selinux_ptrace_traceme(struct task_struct *parent)
1917 {
1918         int rc;
1919
1920         rc = cap_ptrace_traceme(parent);
1921         if (rc)
1922                 return rc;
1923
1924         return task_has_perm(parent, current, PROCESS__PTRACE);
1925 }
1926
1927 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1928                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1929 {
1930         int error;
1931
1932         error = current_has_perm(target, PROCESS__GETCAP);
1933         if (error)
1934                 return error;
1935
1936         return cap_capget(target, effective, inheritable, permitted);
1937 }
1938
1939 static int selinux_capset(struct cred *new, const struct cred *old,
1940                           const kernel_cap_t *effective,
1941                           const kernel_cap_t *inheritable,
1942                           const kernel_cap_t *permitted)
1943 {
1944         int error;
1945
1946         error = cap_capset(new, old,
1947                                       effective, inheritable, permitted);
1948         if (error)
1949                 return error;
1950
1951         return cred_has_perm(old, new, PROCESS__SETCAP);
1952 }
1953
1954 /*
1955  * (This comment used to live with the selinux_task_setuid hook,
1956  * which was removed).
1957  *
1958  * Since setuid only affects the current process, and since the SELinux
1959  * controls are not based on the Linux identity attributes, SELinux does not
1960  * need to control this operation.  However, SELinux does control the use of
1961  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1962  */
1963
1964 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1965                            int cap, int audit)
1966 {
1967         int rc;
1968
1969         rc = cap_capable(cred, ns, cap, audit);
1970         if (rc)
1971                 return rc;
1972
1973         return cred_has_capability(cred, cap, audit);
1974 }
1975
1976 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1977 {
1978         const struct cred *cred = current_cred();
1979         int rc = 0;
1980
1981         if (!sb)
1982                 return 0;
1983
1984         switch (cmds) {
1985         case Q_SYNC:
1986         case Q_QUOTAON:
1987         case Q_QUOTAOFF:
1988         case Q_SETINFO:
1989         case Q_SETQUOTA:
1990                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1991                 break;
1992         case Q_GETFMT:
1993         case Q_GETINFO:
1994         case Q_GETQUOTA:
1995                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1996                 break;
1997         default:
1998                 rc = 0;  /* let the kernel handle invalid cmds */
1999                 break;
2000         }
2001         return rc;
2002 }
2003
2004 static int selinux_quota_on(struct dentry *dentry)
2005 {
2006         const struct cred *cred = current_cred();
2007
2008         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2009 }
2010
2011 static int selinux_syslog(int type)
2012 {
2013         int rc;
2014
2015         switch (type) {
2016         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2017         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2018                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2019                 break;
2020         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2021         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2022         /* Set level of messages printed to console */
2023         case SYSLOG_ACTION_CONSOLE_LEVEL:
2024                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2025                 break;
2026         case SYSLOG_ACTION_CLOSE:       /* Close log */
2027         case SYSLOG_ACTION_OPEN:        /* Open log */
2028         case SYSLOG_ACTION_READ:        /* Read from log */
2029         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
2030         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
2031         default:
2032                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2033                 break;
2034         }
2035         return rc;
2036 }
2037
2038 /*
2039  * Check that a process has enough memory to allocate a new virtual
2040  * mapping. 0 means there is enough memory for the allocation to
2041  * succeed and -ENOMEM implies there is not.
2042  *
2043  * Do not audit the selinux permission check, as this is applied to all
2044  * processes that allocate mappings.
2045  */
2046 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2047 {
2048         int rc, cap_sys_admin = 0;
2049
2050         rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2051                              SECURITY_CAP_NOAUDIT);
2052         if (rc == 0)
2053                 cap_sys_admin = 1;
2054
2055         return __vm_enough_memory(mm, pages, cap_sys_admin);
2056 }
2057
2058 /* binprm security operations */
2059
2060 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2061 {
2062         const struct task_security_struct *old_tsec;
2063         struct task_security_struct *new_tsec;
2064         struct inode_security_struct *isec;
2065         struct common_audit_data ad;
2066         struct inode *inode = file_inode(bprm->file);
2067         int rc;
2068
2069         rc = cap_bprm_set_creds(bprm);
2070         if (rc)
2071                 return rc;
2072
2073         /* SELinux context only depends on initial program or script and not
2074          * the script interpreter */
2075         if (bprm->cred_prepared)
2076                 return 0;
2077
2078         old_tsec = current_security();
2079         new_tsec = bprm->cred->security;
2080         isec = inode->i_security;
2081
2082         /* Default to the current task SID. */
2083         new_tsec->sid = old_tsec->sid;
2084         new_tsec->osid = old_tsec->sid;
2085
2086         /* Reset fs, key, and sock SIDs on execve. */
2087         new_tsec->create_sid = 0;
2088         new_tsec->keycreate_sid = 0;
2089         new_tsec->sockcreate_sid = 0;
2090
2091         if (old_tsec->exec_sid) {
2092                 new_tsec->sid = old_tsec->exec_sid;
2093                 /* Reset exec SID on execve. */
2094                 new_tsec->exec_sid = 0;
2095
2096                 /*
2097                  * Minimize confusion: if no_new_privs and a transition is
2098                  * explicitly requested, then fail the exec.
2099                  */
2100                 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2101                         return -EPERM;
2102         } else {
2103                 /* Check for a default transition on this program. */
2104                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2105                                              SECCLASS_PROCESS, NULL,
2106                                              &new_tsec->sid);
2107                 if (rc)
2108                         return rc;
2109         }
2110
2111         ad.type = LSM_AUDIT_DATA_PATH;
2112         ad.u.path = bprm->file->f_path;
2113
2114         if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2115             (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2116                 new_tsec->sid = old_tsec->sid;
2117
2118         if (new_tsec->sid == old_tsec->sid) {
2119                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2120                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2121                 if (rc)
2122                         return rc;
2123         } else {
2124                 /* Check permissions for the transition. */
2125                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2126                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2127                 if (rc)
2128                         return rc;
2129
2130                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2131                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2132                 if (rc)
2133                         return rc;
2134
2135                 /* Check for shared state */
2136                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2137                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2138                                           SECCLASS_PROCESS, PROCESS__SHARE,
2139                                           NULL);
2140                         if (rc)
2141                                 return -EPERM;
2142                 }
2143
2144                 /* Make sure that anyone attempting to ptrace over a task that
2145                  * changes its SID has the appropriate permit */
2146                 if (bprm->unsafe &
2147                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2148                         struct task_struct *tracer;
2149                         struct task_security_struct *sec;
2150                         u32 ptsid = 0;
2151
2152                         rcu_read_lock();
2153                         tracer = ptrace_parent(current);
2154                         if (likely(tracer != NULL)) {
2155                                 sec = __task_cred(tracer)->security;
2156                                 ptsid = sec->sid;
2157                         }
2158                         rcu_read_unlock();
2159
2160                         if (ptsid != 0) {
2161                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2162                                                   SECCLASS_PROCESS,
2163                                                   PROCESS__PTRACE, NULL);
2164                                 if (rc)
2165                                         return -EPERM;
2166                         }
2167                 }
2168
2169                 /* Clear any possibly unsafe personality bits on exec: */
2170                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2171         }
2172
2173         return 0;
2174 }
2175
2176 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2177 {
2178         const struct task_security_struct *tsec = current_security();
2179         u32 sid, osid;
2180         int atsecure = 0;
2181
2182         sid = tsec->sid;
2183         osid = tsec->osid;
2184
2185         if (osid != sid) {
2186                 /* Enable secure mode for SIDs transitions unless
2187                    the noatsecure permission is granted between
2188                    the two SIDs, i.e. ahp returns 0. */
2189                 atsecure = avc_has_perm(osid, sid,
2190                                         SECCLASS_PROCESS,
2191                                         PROCESS__NOATSECURE, NULL);
2192         }
2193
2194         return (atsecure || cap_bprm_secureexec(bprm));
2195 }
2196
2197 static int match_file(const void *p, struct file *file, unsigned fd)
2198 {
2199         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2200 }
2201
2202 /* Derived from fs/exec.c:flush_old_files. */
2203 static inline void flush_unauthorized_files(const struct cred *cred,
2204                                             struct files_struct *files)
2205 {
2206         struct file *file, *devnull = NULL;
2207         struct tty_struct *tty;
2208         int drop_tty = 0;
2209         unsigned n;
2210
2211         tty = get_current_tty();
2212         if (tty) {
2213                 spin_lock(&tty_files_lock);
2214                 if (!list_empty(&tty->tty_files)) {
2215                         struct tty_file_private *file_priv;
2216
2217                         /* Revalidate access to controlling tty.
2218                            Use file_path_has_perm on the tty path directly
2219                            rather than using file_has_perm, as this particular
2220                            open file may belong to another process and we are
2221                            only interested in the inode-based check here. */
2222                         file_priv = list_first_entry(&tty->tty_files,
2223                                                 struct tty_file_private, list);
2224                         file = file_priv->file;
2225                         if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2226                                 drop_tty = 1;
2227                 }
2228                 spin_unlock(&tty_files_lock);
2229                 tty_kref_put(tty);
2230         }
2231         /* Reset controlling tty. */
2232         if (drop_tty)
2233                 no_tty();
2234
2235         /* Revalidate access to inherited open files. */
2236         n = iterate_fd(files, 0, match_file, cred);
2237         if (!n) /* none found? */
2238                 return;
2239
2240         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2241         if (IS_ERR(devnull))
2242                 devnull = NULL;
2243         /* replace all the matching ones with this */
2244         do {
2245                 replace_fd(n - 1, devnull, 0);
2246         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2247         if (devnull)
2248                 fput(devnull);
2249 }
2250
2251 /*
2252  * Prepare a process for imminent new credential changes due to exec
2253  */
2254 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2255 {
2256         struct task_security_struct *new_tsec;
2257         struct rlimit *rlim, *initrlim;
2258         int rc, i;
2259
2260         new_tsec = bprm->cred->security;
2261         if (new_tsec->sid == new_tsec->osid)
2262                 return;
2263
2264         /* Close files for which the new task SID is not authorized. */
2265         flush_unauthorized_files(bprm->cred, current->files);
2266
2267         /* Always clear parent death signal on SID transitions. */
2268         current->pdeath_signal = 0;
2269
2270         /* Check whether the new SID can inherit resource limits from the old
2271          * SID.  If not, reset all soft limits to the lower of the current
2272          * task's hard limit and the init task's soft limit.
2273          *
2274          * Note that the setting of hard limits (even to lower them) can be
2275          * controlled by the setrlimit check.  The inclusion of the init task's
2276          * soft limit into the computation is to avoid resetting soft limits
2277          * higher than the default soft limit for cases where the default is
2278          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2279          */
2280         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2281                           PROCESS__RLIMITINH, NULL);
2282         if (rc) {
2283                 /* protect against do_prlimit() */
2284                 task_lock(current);
2285                 for (i = 0; i < RLIM_NLIMITS; i++) {
2286                         rlim = current->signal->rlim + i;
2287                         initrlim = init_task.signal->rlim + i;
2288                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2289                 }
2290                 task_unlock(current);
2291                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2292         }
2293 }
2294
2295 /*
2296  * Clean up the process immediately after the installation of new credentials
2297  * due to exec
2298  */
2299 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2300 {
2301         const struct task_security_struct *tsec = current_security();
2302         struct itimerval itimer;
2303         u32 osid, sid;
2304         int rc, i;
2305
2306         osid = tsec->osid;
2307         sid = tsec->sid;
2308
2309         if (sid == osid)
2310                 return;
2311
2312         /* Check whether the new SID can inherit signal state from the old SID.
2313          * If not, clear itimers to avoid subsequent signal generation and
2314          * flush and unblock signals.
2315          *
2316          * This must occur _after_ the task SID has been updated so that any
2317          * kill done after the flush will be checked against the new SID.
2318          */
2319         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2320         if (rc) {
2321                 memset(&itimer, 0, sizeof itimer);
2322                 for (i = 0; i < 3; i++)
2323                         do_setitimer(i, &itimer, NULL);
2324                 spin_lock_irq(&current->sighand->siglock);
2325                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2326                         __flush_signals(current);
2327                         flush_signal_handlers(current, 1);
2328                         sigemptyset(&current->blocked);
2329                 }
2330                 spin_unlock_irq(&current->sighand->siglock);
2331         }
2332
2333         /* Wake up the parent if it is waiting so that it can recheck
2334          * wait permission to the new task SID. */
2335         read_lock(&tasklist_lock);
2336         __wake_up_parent(current, current->real_parent);
2337         read_unlock(&tasklist_lock);
2338 }
2339
2340 /* superblock security operations */
2341
2342 static int selinux_sb_alloc_security(struct super_block *sb)
2343 {
2344         return superblock_alloc_security(sb);
2345 }
2346
2347 static void selinux_sb_free_security(struct super_block *sb)
2348 {
2349         superblock_free_security(sb);
2350 }
2351
2352 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2353 {
2354         if (plen > olen)
2355                 return 0;
2356
2357         return !memcmp(prefix, option, plen);
2358 }
2359
2360 static inline int selinux_option(char *option, int len)
2361 {
2362         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2363                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2364                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2365                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2366                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2367 }
2368
2369 static inline void take_option(char **to, char *from, int *first, int len)
2370 {
2371         if (!*first) {
2372                 **to = ',';
2373                 *to += 1;
2374         } else
2375                 *first = 0;
2376         memcpy(*to, from, len);
2377         *to += len;
2378 }
2379
2380 static inline void take_selinux_option(char **to, char *from, int *first,
2381                                        int len)
2382 {
2383         int current_size = 0;
2384
2385         if (!*first) {
2386                 **to = '|';
2387                 *to += 1;
2388         } else
2389                 *first = 0;
2390
2391         while (current_size < len) {
2392                 if (*from != '"') {
2393                         **to = *from;
2394                         *to += 1;
2395                 }
2396                 from += 1;
2397                 current_size += 1;
2398         }
2399 }
2400
2401 static int selinux_sb_copy_data(char *orig, char *copy)
2402 {
2403         int fnosec, fsec, rc = 0;
2404         char *in_save, *in_curr, *in_end;
2405         char *sec_curr, *nosec_save, *nosec;
2406         int open_quote = 0;
2407
2408         in_curr = orig;
2409         sec_curr = copy;
2410
2411         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2412         if (!nosec) {
2413                 rc = -ENOMEM;
2414                 goto out;
2415         }
2416
2417         nosec_save = nosec;
2418         fnosec = fsec = 1;
2419         in_save = in_end = orig;
2420
2421         do {
2422                 if (*in_end == '"')
2423                         open_quote = !open_quote;
2424                 if ((*in_end == ',' && open_quote == 0) ||
2425                                 *in_end == '\0') {
2426                         int len = in_end - in_curr;
2427
2428                         if (selinux_option(in_curr, len))
2429                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2430                         else
2431                                 take_option(&nosec, in_curr, &fnosec, len);
2432
2433                         in_curr = in_end + 1;
2434                 }
2435         } while (*in_end++);
2436
2437         strcpy(in_save, nosec_save);
2438         free_page((unsigned long)nosec_save);
2439 out:
2440         return rc;
2441 }
2442
2443 static int selinux_sb_remount(struct super_block *sb, void *data)
2444 {
2445         int rc, i, *flags;
2446         struct security_mnt_opts opts;
2447         char *secdata, **mount_options;
2448         struct superblock_security_struct *sbsec = sb->s_security;
2449
2450         if (!(sbsec->flags & SE_SBINITIALIZED))
2451                 return 0;
2452
2453         if (!data)
2454                 return 0;
2455
2456         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2457                 return 0;
2458
2459         security_init_mnt_opts(&opts);
2460         secdata = alloc_secdata();
2461         if (!secdata)
2462                 return -ENOMEM;
2463         rc = selinux_sb_copy_data(data, secdata);
2464         if (rc)
2465                 goto out_free_secdata;
2466
2467         rc = selinux_parse_opts_str(secdata, &opts);
2468         if (rc)
2469                 goto out_free_secdata;
2470
2471         mount_options = opts.mnt_opts;
2472         flags = opts.mnt_opts_flags;
2473
2474         for (i = 0; i < opts.num_mnt_opts; i++) {
2475                 u32 sid;
2476                 size_t len;
2477
2478                 if (flags[i] == SBLABEL_MNT)
2479                         continue;
2480                 len = strlen(mount_options[i]);
2481                 rc = security_context_to_sid(mount_options[i], len, &sid);
2482                 if (rc) {
2483                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2484                                "(%s) failed for (dev %s, type "SB_TYPE_FMT") errno=%d\n",
2485                                mount_options[i], sb->s_id, SB_TYPE_ARGS(sb), rc);
2486                         goto out_free_opts;
2487                 }
2488                 rc = -EINVAL;
2489                 switch (flags[i]) {
2490                 case FSCONTEXT_MNT:
2491                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2492                                 goto out_bad_option;
2493                         break;
2494                 case CONTEXT_MNT:
2495                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2496                                 goto out_bad_option;
2497                         break;
2498                 case ROOTCONTEXT_MNT: {
2499                         struct inode_security_struct *root_isec;
2500                         root_isec = sb->s_root->d_inode->i_security;
2501
2502                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2503                                 goto out_bad_option;
2504                         break;
2505                 }
2506                 case DEFCONTEXT_MNT:
2507                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2508                                 goto out_bad_option;
2509                         break;
2510                 default:
2511                         goto out_free_opts;
2512                 }
2513         }
2514
2515         rc = 0;
2516 out_free_opts:
2517         security_free_mnt_opts(&opts);
2518 out_free_secdata:
2519         free_secdata(secdata);
2520         return rc;
2521 out_bad_option:
2522         printk(KERN_WARNING "SELinux: unable to change security options "
2523                "during remount (dev %s, type "SB_TYPE_FMT")\n", sb->s_id,
2524                SB_TYPE_ARGS(sb));
2525         goto out_free_opts;
2526 }
2527
2528 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2529 {
2530         const struct cred *cred = current_cred();
2531         struct common_audit_data ad;
2532         int rc;
2533
2534         rc = superblock_doinit(sb, data);
2535         if (rc)
2536                 return rc;
2537
2538         /* Allow all mounts performed by the kernel */
2539         if (flags & MS_KERNMOUNT)
2540                 return 0;
2541
2542         ad.type = LSM_AUDIT_DATA_DENTRY;
2543         ad.u.dentry = sb->s_root;
2544         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2545 }
2546
2547 static int selinux_sb_statfs(struct dentry *dentry)
2548 {
2549         const struct cred *cred = current_cred();
2550         struct common_audit_data ad;
2551
2552         ad.type = LSM_AUDIT_DATA_DENTRY;
2553         ad.u.dentry = dentry->d_sb->s_root;
2554         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2555 }
2556
2557 static int selinux_mount(const char *dev_name,
2558                          struct path *path,
2559                          const char *type,
2560                          unsigned long flags,
2561                          void *data)
2562 {
2563         const struct cred *cred = current_cred();
2564
2565         if (flags & MS_REMOUNT)
2566                 return superblock_has_perm(cred, path->dentry->d_sb,
2567                                            FILESYSTEM__REMOUNT, NULL);
2568         else
2569                 return path_has_perm(cred, path, FILE__MOUNTON);
2570 }
2571
2572 static int selinux_umount(struct vfsmount *mnt, int flags)
2573 {
2574         const struct cred *cred = current_cred();
2575
2576         return superblock_has_perm(cred, mnt->mnt_sb,
2577                                    FILESYSTEM__UNMOUNT, NULL);
2578 }
2579
2580 /* inode security operations */
2581
2582 static int selinux_inode_alloc_security(struct inode *inode)
2583 {
2584         return inode_alloc_security(inode);
2585 }
2586
2587 static void selinux_inode_free_security(struct inode *inode)
2588 {
2589         inode_free_security(inode);
2590 }
2591
2592 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2593                                         struct qstr *name, void **ctx,
2594                                         u32 *ctxlen)
2595 {
2596         const struct cred *cred = current_cred();
2597         struct task_security_struct *tsec;
2598         struct inode_security_struct *dsec;
2599         struct superblock_security_struct *sbsec;
2600         struct inode *dir = dentry->d_parent->d_inode;
2601         u32 newsid;
2602         int rc;
2603
2604         tsec = cred->security;
2605         dsec = dir->i_security;
2606         sbsec = dir->i_sb->s_security;
2607
2608         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2609                 newsid = tsec->create_sid;
2610         } else {
2611                 rc = security_transition_sid(tsec->sid, dsec->sid,
2612                                              inode_mode_to_security_class(mode),
2613                                              name,
2614                                              &newsid);
2615                 if (rc) {
2616                         printk(KERN_WARNING
2617                                 "%s: security_transition_sid failed, rc=%d\n",
2618                                __func__, -rc);
2619                         return rc;
2620                 }
2621         }
2622
2623         return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2624 }
2625
2626 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2627                                        const struct qstr *qstr, char **name,
2628                                        void **value, size_t *len)
2629 {
2630         const struct task_security_struct *tsec = current_security();
2631         struct inode_security_struct *dsec;
2632         struct superblock_security_struct *sbsec;
2633         u32 sid, newsid, clen;
2634         int rc;
2635         char *namep = NULL, *context;
2636
2637         dsec = dir->i_security;
2638         sbsec = dir->i_sb->s_security;
2639
2640         sid = tsec->sid;
2641         newsid = tsec->create_sid;
2642
2643         if ((sbsec->flags & SE_SBINITIALIZED) &&
2644             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2645                 newsid = sbsec->mntpoint_sid;
2646         else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2647                 rc = security_transition_sid(sid, dsec->sid,
2648                                              inode_mode_to_security_class(inode->i_mode),
2649                                              qstr, &newsid);
2650                 if (rc) {
2651                         printk(KERN_WARNING "%s:  "
2652                                "security_transition_sid failed, rc=%d (dev=%s "
2653                                "ino=%ld)\n",
2654                                __func__,
2655                                -rc, inode->i_sb->s_id, inode->i_ino);
2656                         return rc;
2657                 }
2658         }
2659
2660         /* Possibly defer initialization to selinux_complete_init. */
2661         if (sbsec->flags & SE_SBINITIALIZED) {
2662                 struct inode_security_struct *isec = inode->i_security;
2663                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2664                 isec->sid = newsid;
2665                 isec->initialized = 1;
2666         }
2667
2668         if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2669                 return -EOPNOTSUPP;
2670
2671         if (name) {
2672                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2673                 if (!namep)
2674                         return -ENOMEM;
2675                 *name = namep;
2676         }
2677
2678         if (value && len) {
2679                 rc = security_sid_to_context_force(newsid, &context, &clen);
2680                 if (rc) {
2681                         kfree(namep);
2682                         return rc;
2683                 }
2684                 *value = context;
2685                 *len = clen;
2686         }
2687
2688         return 0;
2689 }
2690
2691 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2692 {
2693         return may_create(dir, dentry, SECCLASS_FILE);
2694 }
2695
2696 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2697 {
2698         return may_link(dir, old_dentry, MAY_LINK);
2699 }
2700
2701 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2702 {
2703         return may_link(dir, dentry, MAY_UNLINK);
2704 }
2705
2706 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2707 {
2708         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2709 }
2710
2711 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2712 {
2713         return may_create(dir, dentry, SECCLASS_DIR);
2714 }
2715
2716 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2717 {
2718         return may_link(dir, dentry, MAY_RMDIR);
2719 }
2720
2721 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2722 {
2723         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2724 }
2725
2726 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2727                                 struct inode *new_inode, struct dentry *new_dentry)
2728 {
2729         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2730 }
2731
2732 static int selinux_inode_readlink(struct dentry *dentry)
2733 {
2734         const struct cred *cred = current_cred();
2735
2736         return dentry_has_perm(cred, dentry, FILE__READ);
2737 }
2738
2739 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2740 {
2741         const struct cred *cred = current_cred();
2742
2743         return dentry_has_perm(cred, dentry, FILE__READ);
2744 }
2745
2746 static noinline int audit_inode_permission(struct inode *inode,
2747                                            u32 perms, u32 audited, u32 denied,
2748                                            unsigned flags)
2749 {
2750         struct common_audit_data ad;
2751         struct inode_security_struct *isec = inode->i_security;
2752         int rc;
2753
2754         ad.type = LSM_AUDIT_DATA_INODE;
2755         ad.u.inode = inode;
2756
2757         rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2758                             audited, denied, &ad, flags);
2759         if (rc)
2760                 return rc;
2761         return 0;
2762 }
2763
2764 static int selinux_inode_permission(struct inode *inode, int mask)
2765 {
2766         const struct cred *cred = current_cred();
2767         u32 perms;
2768         bool from_access;
2769         unsigned flags = mask & MAY_NOT_BLOCK;
2770         struct inode_security_struct *isec;
2771         u32 sid;
2772         struct av_decision avd;
2773         int rc, rc2;
2774         u32 audited, denied;
2775
2776         from_access = mask & MAY_ACCESS;
2777         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2778
2779         /* No permission to check.  Existence test. */
2780         if (!mask)
2781                 return 0;
2782
2783         validate_creds(cred);
2784
2785         if (unlikely(IS_PRIVATE(inode)))
2786                 return 0;
2787
2788         perms = file_mask_to_av(inode->i_mode, mask);
2789
2790         sid = cred_sid(cred);
2791         isec = inode->i_security;
2792
2793         rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2794         audited = avc_audit_required(perms, &avd, rc,
2795                                      from_access ? FILE__AUDIT_ACCESS : 0,
2796                                      &denied);
2797         if (likely(!audited))
2798                 return rc;
2799
2800         rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2801         if (rc2)
2802                 return rc2;
2803         return rc;
2804 }
2805
2806 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2807 {
2808         const struct cred *cred = current_cred();
2809         unsigned int ia_valid = iattr->ia_valid;
2810         __u32 av = FILE__WRITE;
2811
2812         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2813         if (ia_valid & ATTR_FORCE) {
2814                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2815                               ATTR_FORCE);
2816                 if (!ia_valid)
2817                         return 0;
2818         }
2819
2820         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2821                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2822                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2823
2824         if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2825                 av |= FILE__OPEN;
2826
2827         return dentry_has_perm(cred, dentry, av);
2828 }
2829
2830 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2831 {
2832         const struct cred *cred = current_cred();
2833         struct path path;
2834
2835         path.dentry = dentry;
2836         path.mnt = mnt;
2837
2838         return path_has_perm(cred, &path, FILE__GETATTR);
2839 }
2840
2841 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2842 {
2843         const struct cred *cred = current_cred();
2844
2845         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2846                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2847                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2848                         if (!capable(CAP_SETFCAP))
2849                                 return -EPERM;
2850                 } else if (!capable(CAP_SYS_ADMIN)) {
2851                         /* A different attribute in the security namespace.
2852                            Restrict to administrator. */
2853                         return -EPERM;
2854                 }
2855         }
2856
2857         /* Not an attribute we recognize, so just check the
2858            ordinary setattr permission. */
2859         return dentry_has_perm(cred, dentry, FILE__SETATTR);
2860 }
2861
2862 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2863                                   const void *value, size_t size, int flags)
2864 {
2865         struct inode *inode = dentry->d_inode;
2866         struct inode_security_struct *isec = inode->i_security;
2867         struct superblock_security_struct *sbsec;
2868         struct common_audit_data ad;
2869         u32 newsid, sid = current_sid();
2870         int rc = 0;
2871
2872         if (strcmp(name, XATTR_NAME_SELINUX))
2873                 return selinux_inode_setotherxattr(dentry, name);
2874
2875         sbsec = inode->i_sb->s_security;
2876         if (!(sbsec->flags & SBLABEL_MNT))
2877                 return -EOPNOTSUPP;
2878
2879         if (!inode_owner_or_capable(inode))
2880                 return -EPERM;
2881
2882         ad.type = LSM_AUDIT_DATA_DENTRY;
2883         ad.u.dentry = dentry;
2884
2885         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2886                           FILE__RELABELFROM, &ad);
2887         if (rc)
2888                 return rc;
2889
2890         rc = security_context_to_sid(value, size, &newsid);
2891         if (rc == -EINVAL) {
2892                 if (!capable(CAP_MAC_ADMIN)) {
2893                         struct audit_buffer *ab;
2894                         size_t audit_size;
2895                         const char *str;
2896
2897                         /* We strip a nul only if it is at the end, otherwise the
2898                          * context contains a nul and we should audit that */
2899                         if (value) {
2900                                 str = value;
2901                                 if (str[size - 1] == '\0')
2902                                         audit_size = size - 1;
2903                                 else
2904                                         audit_size = size;
2905                         } else {
2906                                 str = "";
2907                                 audit_size = 0;
2908                         }
2909                         ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2910                         audit_log_format(ab, "op=setxattr invalid_context=");
2911                         audit_log_n_untrustedstring(ab, value, audit_size);
2912                         audit_log_end(ab);
2913
2914                         return rc;
2915                 }
2916                 rc = security_context_to_sid_force(value, size, &newsid);
2917         }
2918         if (rc)
2919                 return rc;
2920
2921         rc = avc_has_perm(sid, newsid, isec->sclass,
2922                           FILE__RELABELTO, &ad);
2923         if (rc)
2924                 return rc;
2925
2926         rc = security_validate_transition(isec->sid, newsid, sid,
2927                                           isec->sclass);
2928         if (rc)
2929                 return rc;
2930
2931         return avc_has_perm(newsid,
2932                             sbsec->sid,
2933                             SECCLASS_FILESYSTEM,
2934                             FILESYSTEM__ASSOCIATE,
2935                             &ad);
2936 }
2937
2938 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2939                                         const void *value, size_t size,
2940                                         int flags)
2941 {
2942         struct inode *inode = dentry->d_inode;
2943         struct inode_security_struct *isec = inode->i_security;
2944         u32 newsid;
2945         int rc;
2946
2947         if (strcmp(name, XATTR_NAME_SELINUX)) {
2948                 /* Not an attribute we recognize, so nothing to do. */
2949                 return;
2950         }
2951
2952         rc = security_context_to_sid_force(value, size, &newsid);
2953         if (rc) {
2954                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2955                        "for (%s, %lu), rc=%d\n",
2956                        inode->i_sb->s_id, inode->i_ino, -rc);
2957                 return;
2958         }
2959
2960         isec->sclass = inode_mode_to_security_class(inode->i_mode);
2961         isec->sid = newsid;
2962         isec->initialized = 1;
2963
2964         return;
2965 }
2966
2967 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2968 {
2969         const struct cred *cred = current_cred();
2970
2971         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2972 }
2973
2974 static int selinux_inode_listxattr(struct dentry *dentry)
2975 {
2976         const struct cred *cred = current_cred();
2977
2978         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2979 }
2980
2981 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2982 {
2983         if (strcmp(name, XATTR_NAME_SELINUX))
2984                 return selinux_inode_setotherxattr(dentry, name);
2985
2986         /* No one is allowed to remove a SELinux security label.
2987            You can change the label, but all data must be labeled. */
2988         return -EACCES;
2989 }
2990
2991 /*
2992  * Copy the inode security context value to the user.
2993  *
2994  * Permission check is handled by selinux_inode_getxattr hook.
2995  */
2996 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2997 {
2998         u32 size;
2999         int error;
3000         char *context = NULL;
3001         struct inode_security_struct *isec = inode->i_security;
3002
3003         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3004                 return -EOPNOTSUPP;
3005
3006         /*
3007          * If the caller has CAP_MAC_ADMIN, then get the raw context
3008          * value even if it is not defined by current policy; otherwise,
3009          * use the in-core value under current policy.
3010          * Use the non-auditing forms of the permission checks since
3011          * getxattr may be called by unprivileged processes commonly
3012          * and lack of permission just means that we fall back to the
3013          * in-core context value, not a denial.
3014          */
3015         error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3016                                 SECURITY_CAP_NOAUDIT);
3017         if (!error)
3018                 error = security_sid_to_context_force(isec->sid, &context,
3019                                                       &size);
3020         else
3021                 error = security_sid_to_context(isec->sid, &context, &size);
3022         if (error)
3023                 return error;
3024         error = size;
3025         if (alloc) {
3026                 *buffer = context;
3027                 goto out_nofree;
3028         }
3029         kfree(context);
3030 out_nofree:
3031         return error;
3032 }
3033
3034 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3035                                      const void *value, size_t size, int flags)
3036 {
3037         struct inode_security_struct *isec = inode->i_security;
3038         u32 newsid;
3039         int rc;
3040
3041         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3042                 return -EOPNOTSUPP;
3043
3044         if (!value || !size)
3045                 return -EACCES;
3046
3047         rc = security_context_to_sid((void *)value, size, &newsid);
3048         if (rc)
3049                 return rc;
3050
3051         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3052         isec->sid = newsid;
3053         isec->initialized = 1;
3054         return 0;
3055 }
3056
3057 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3058 {
3059         const int len = sizeof(XATTR_NAME_SELINUX);
3060         if (buffer && len <= buffer_size)
3061                 memcpy(buffer, XATTR_NAME_SELINUX, len);
3062         return len;
3063 }
3064
3065 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3066 {
3067         struct inode_security_struct *isec = inode->i_security;
3068         *secid = isec->sid;
3069 }
3070
3071 /* file security operations */
3072
3073 static int selinux_revalidate_file_permission(struct file *file, int mask)
3074 {
3075         const struct cred *cred = current_cred();
3076         struct inode *inode = file_inode(file);
3077
3078         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3079         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3080                 mask |= MAY_APPEND;
3081
3082         return file_has_perm(cred, file,
3083                              file_mask_to_av(inode->i_mode, mask));
3084 }
3085
3086 static int selinux_file_permission(struct file *file, int mask)
3087 {
3088         struct inode *inode = file_inode(file);
3089         struct file_security_struct *fsec = file->f_security;
3090         struct inode_security_struct *isec = inode->i_security;
3091         u32 sid = current_sid();
3092
3093         if (!mask)
3094                 /* No permission to check.  Existence test. */
3095                 return 0;
3096
3097         if (sid == fsec->sid && fsec->isid == isec->sid &&
3098             fsec->pseqno == avc_policy_seqno())
3099                 /* No change since file_open check. */
3100                 return 0;
3101
3102         return selinux_revalidate_file_permission(file, mask);
3103 }
3104
3105 static int selinux_file_alloc_security(struct file *file)
3106 {
3107         return file_alloc_security(file);
3108 }
3109
3110 static void selinux_file_free_security(struct file *file)
3111 {
3112         file_free_security(file);
3113 }
3114
3115 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3116                               unsigned long arg)
3117 {
3118         const struct cred *cred = current_cred();
3119         int error = 0;
3120
3121         switch (cmd) {
3122         case FIONREAD:
3123         /* fall through */
3124         case FIBMAP:
3125         /* fall through */
3126         case FIGETBSZ:
3127         /* fall through */
3128         case FS_IOC_GETFLAGS:
3129         /* fall through */
3130         case FS_IOC_GETVERSION:
3131                 error = file_has_perm(cred, file, FILE__GETATTR);
3132                 break;
3133
3134         case FS_IOC_SETFLAGS:
3135         /* fall through */
3136         case FS_IOC_SETVERSION:
3137                 error = file_has_perm(cred, file, FILE__SETATTR);
3138                 break;
3139
3140         /* sys_ioctl() checks */
3141         case FIONBIO:
3142         /* fall through */
3143         case FIOASYNC:
3144                 error = file_has_perm(cred, file, 0);
3145                 break;
3146
3147         case KDSKBENT:
3148         case KDSKBSENT:
3149                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3150                                             SECURITY_CAP_AUDIT);
3151                 break;
3152
3153         /* default case assumes that the command will go
3154          * to the file's ioctl() function.
3155          */
3156         default:
3157                 error = file_has_perm(cred, file, FILE__IOCTL);
3158         }
3159         return error;
3160 }
3161
3162 static int default_noexec;
3163
3164 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3165 {
3166         const struct cred *cred = current_cred();
3167         int rc = 0;
3168
3169         if (default_noexec &&
3170             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3171                 /*
3172                  * We are making executable an anonymous mapping or a
3173                  * private file mapping that will also be writable.
3174                  * This has an additional check.
3175                  */
3176                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3177                 if (rc)
3178                         goto error;
3179         }
3180
3181         if (file) {
3182                 /* read access is always possible with a mapping */
3183                 u32 av = FILE__READ;
3184
3185                 /* write access only matters if the mapping is shared */
3186                 if (shared && (prot & PROT_WRITE))
3187                         av |= FILE__WRITE;
3188
3189                 if (prot & PROT_EXEC)
3190                         av |= FILE__EXECUTE;
3191
3192                 return file_has_perm(cred, file, av);
3193         }
3194
3195 error:
3196         return rc;
3197 }
3198
3199 static int selinux_mmap_addr(unsigned long addr)
3200 {
3201         int rc = 0;
3202         u32 sid = current_sid();
3203
3204         /*
3205          * notice that we are intentionally putting the SELinux check before
3206          * the secondary cap_file_mmap check.  This is such a likely attempt
3207          * at bad behaviour/exploit that we always want to get the AVC, even
3208          * if DAC would have also denied the operation.
3209          */
3210         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3211                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3212                                   MEMPROTECT__MMAP_ZERO, NULL);
3213                 if (rc)
3214                         return rc;
3215         }
3216
3217         /* do DAC check on address space usage */
3218         return cap_mmap_addr(addr);
3219 }
3220
3221 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3222                              unsigned long prot, unsigned long flags)
3223 {
3224         if (selinux_checkreqprot)
3225                 prot = reqprot;
3226
3227         return file_map_prot_check(file, prot,
3228                                    (flags & MAP_TYPE) == MAP_SHARED);
3229 }
3230
3231 static int selinux_file_mprotect(struct vm_area_struct *vma,
3232                                  unsigned long reqprot,
3233                                  unsigned long prot)
3234 {
3235         const struct cred *cred = current_cred();
3236
3237         if (selinux_checkreqprot)
3238                 prot = reqprot;
3239
3240         if (default_noexec &&
3241             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3242                 int rc = 0;
3243                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3244                     vma->vm_end <= vma->vm_mm->brk) {
3245                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3246                 } else if (!vma->vm_file &&
3247                            vma->vm_start <= vma->vm_mm->start_stack &&
3248                            vma->vm_end >= vma->vm_mm->start_stack) {
3249                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3250                 } else if (vma->vm_file && vma->anon_vma) {
3251                         /*
3252                          * We are making executable a file mapping that has
3253                          * had some COW done. Since pages might have been
3254                          * written, check ability to execute the possibly
3255                          * modified content.  This typically should only
3256                          * occur for text relocations.
3257                          */
3258                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3259                 }
3260                 if (rc)
3261                         return rc;
3262         }
3263
3264         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3265 }
3266
3267 static int selinux_file_lock(struct file *file, unsigned int cmd)
3268 {
3269         const struct cred *cred = current_cred();
3270
3271         return file_has_perm(cred, file, FILE__LOCK);
3272 }
3273
3274 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3275                               unsigned long arg)
3276 {
3277         const struct cred *cred = current_cred();
3278         int err = 0;
3279
3280         switch (cmd) {
3281         case F_SETFL:
3282                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3283                         err = file_has_perm(cred, file, FILE__WRITE);
3284                         break;
3285                 }
3286                 /* fall through */
3287         case F_SETOWN:
3288         case F_SETSIG:
3289         case F_GETFL:
3290         case F_GETOWN:
3291         case F_GETSIG:
3292         case F_GETOWNER_UIDS:
3293                 /* Just check FD__USE permission */
3294                 err = file_has_perm(cred, file, 0);
3295                 break;
3296         case F_GETLK:
3297         case F_SETLK:
3298         case F_SETLKW:
3299 #if BITS_PER_LONG == 32
3300         case F_GETLK64:
3301         case F_SETLK64:
3302         case F_SETLKW64:
3303 #endif
3304                 err = file_has_perm(cred, file, FILE__LOCK);
3305                 break;
3306         }
3307
3308         return err;
3309 }
3310
3311 static int selinux_file_set_fowner(struct file *file)
3312 {
3313         struct file_security_struct *fsec;
3314
3315         fsec = file->f_security;
3316         fsec->fown_sid = current_sid();
3317
3318         return 0;
3319 }
3320
3321 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3322                                        struct fown_struct *fown, int signum)
3323 {
3324         struct file *file;
3325         u32 sid = task_sid(tsk);
3326         u32 perm;
3327         struct file_security_struct *fsec;
3328
3329         /* struct fown_struct is never outside the context of a struct file */
3330         file = container_of(fown, struct file, f_owner);
3331
3332         fsec = file->f_security;
3333
3334         if (!signum)
3335                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3336         else
3337                 perm = signal_to_av(signum);
3338
3339         return avc_has_perm(fsec->fown_sid, sid,
3340                             SECCLASS_PROCESS, perm, NULL);
3341 }
3342
3343 static int selinux_file_receive(struct file *file)
3344 {
3345         const struct cred *cred = current_cred();
3346
3347         return file_has_perm(cred, file, file_to_av(file));
3348 }
3349
3350 static int selinux_file_open(struct file *file, const struct cred *cred)
3351 {
3352         struct file_security_struct *fsec;
3353         struct inode_security_struct *isec;
3354
3355         fsec = file->f_security;
3356         isec = file_inode(file)->i_security;
3357         /*
3358          * Save inode label and policy sequence number
3359          * at open-time so that selinux_file_permission
3360          * can determine whether revalidation is necessary.
3361          * Task label is already saved in the file security
3362          * struct as its SID.
3363          */
3364         fsec->isid = isec->sid;
3365         fsec->pseqno = avc_policy_seqno();
3366         /*
3367          * Since the inode label or policy seqno may have changed
3368          * between the selinux_inode_permission check and the saving
3369          * of state above, recheck that access is still permitted.
3370          * Otherwise, access might never be revalidated against the
3371          * new inode label or new policy.
3372          * This check is not redundant - do not remove.
3373          */
3374         return file_path_has_perm(cred, file, open_file_to_av(file));
3375 }
3376
3377 /* task security operations */
3378
3379 static int selinux_task_create(unsigned long clone_flags)
3380 {
3381         return current_has_perm(current, PROCESS__FORK);
3382 }
3383
3384 /*
3385  * allocate the SELinux part of blank credentials
3386  */
3387 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3388 {
3389         struct task_security_struct *tsec;
3390
3391         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3392         if (!tsec)
3393                 return -ENOMEM;
3394
3395         cred->security = tsec;
3396         return 0;
3397 }
3398
3399 /*
3400  * detach and free the LSM part of a set of credentials
3401  */
3402 static void selinux_cred_free(struct cred *cred)
3403 {
3404         struct task_security_struct *tsec = cred->security;
3405
3406         /*
3407          * cred->security == NULL if security_cred_alloc_blank() or
3408          * security_prepare_creds() returned an error.
3409          */
3410         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3411         cred->security = (void *) 0x7UL;
3412         kfree(tsec);
3413 }
3414
3415 /*
3416  * prepare a new set of credentials for modification
3417  */
3418 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3419                                 gfp_t gfp)
3420 {
3421         const struct task_security_struct *old_tsec;
3422         struct task_security_struct *tsec;
3423
3424         old_tsec = old->security;
3425
3426         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3427         if (!tsec)
3428                 return -ENOMEM;
3429
3430         new->security = tsec;
3431         return 0;
3432 }
3433
3434 /*
3435  * transfer the SELinux data to a blank set of creds
3436  */
3437 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3438 {
3439         const struct task_security_struct *old_tsec = old->security;
3440         struct task_security_struct *tsec = new->security;
3441
3442         *tsec = *old_tsec;
3443 }
3444
3445 /*
3446  * set the security data for a kernel service
3447  * - all the creation contexts are set to unlabelled
3448  */
3449 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3450 {
3451         struct task_security_struct *tsec = new->security;
3452         u32 sid = current_sid();
3453         int ret;
3454
3455         ret = avc_has_perm(sid, secid,
3456                            SECCLASS_KERNEL_SERVICE,
3457                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3458                            NULL);
3459         if (ret == 0) {
3460                 tsec->sid = secid;
3461                 tsec->create_sid = 0;
3462                 tsec->keycreate_sid = 0;
3463                 tsec->sockcreate_sid = 0;
3464         }
3465         return ret;
3466 }
3467
3468 /*
3469  * set the file creation context in a security record to the same as the
3470  * objective context of the specified inode
3471  */
3472 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3473 {
3474         struct inode_security_struct *isec = inode->i_security;
3475         struct task_security_struct *tsec = new->security;
3476         u32 sid = current_sid();
3477         int ret;
3478
3479         ret = avc_has_perm(sid, isec->sid,
3480                            SECCLASS_KERNEL_SERVICE,
3481                            KERNEL_SERVICE__CREATE_FILES_AS,
3482                            NULL);
3483
3484         if (ret == 0)
3485                 tsec->create_sid = isec->sid;
3486         return ret;
3487 }
3488
3489 static int selinux_kernel_module_request(char *kmod_name)
3490 {
3491         u32 sid;
3492         struct common_audit_data ad;
3493
3494         sid = task_sid(current);
3495
3496         ad.type = LSM_AUDIT_DATA_KMOD;
3497         ad.u.kmod_name = kmod_name;
3498
3499         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3500                             SYSTEM__MODULE_REQUEST, &ad);
3501 }
3502
3503 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3504 {
3505         return current_has_perm(p, PROCESS__SETPGID);
3506 }
3507
3508 static int selinux_task_getpgid(struct task_struct *p)
3509 {
3510         return current_has_perm(p, PROCESS__GETPGID);
3511 }
3512
3513 static int selinux_task_getsid(struct task_struct *p)
3514 {
3515         return current_has_perm(p, PROCESS__GETSESSION);
3516 }
3517
3518 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3519 {
3520         *secid = task_sid(p);
3521 }
3522
3523 static int selinux_task_setnice(struct task_struct *p, int nice)
3524 {
3525         int rc;
3526
3527         rc = cap_task_setnice(p, nice);
3528         if (rc)
3529                 return rc;
3530
3531         return current_has_perm(p, PROCESS__SETSCHED);
3532 }
3533
3534 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3535 {
3536         int rc;
3537
3538         rc = cap_task_setioprio(p, ioprio);
3539         if (rc)
3540                 return rc;
3541
3542         return current_has_perm(p, PROCESS__SETSCHED);
3543 }
3544
3545 static int selinux_task_getioprio(struct task_struct *p)
3546 {
3547         return current_has_perm(p, PROCESS__GETSCHED);
3548 }
3549
3550 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3551                 struct rlimit *new_rlim)
3552 {
3553         struct rlimit *old_rlim = p->signal->rlim + resource;
3554
3555         /* Control the ability to change the hard limit (whether
3556            lowering or raising it), so that the hard limit can
3557            later be used as a safe reset point for the soft limit
3558            upon context transitions.  See selinux_bprm_committing_creds. */
3559         if (old_rlim->rlim_max != new_rlim->rlim_max)
3560                 return current_has_perm(p, PROCESS__SETRLIMIT);
3561
3562         return 0;
3563 }
3564
3565 static int selinux_task_setscheduler(struct task_struct *p)
3566 {
3567         int rc;
3568
3569         rc = cap_task_setscheduler(p);
3570         if (rc)
3571                 return rc;
3572
3573         return current_has_perm(p, PROCESS__SETSCHED);
3574 }
3575
3576 static int selinux_task_getscheduler(struct task_struct *p)
3577 {
3578         return current_has_perm(p, PROCESS__GETSCHED);
3579 }
3580
3581 static int selinux_task_movememory(struct task_struct *p)
3582 {
3583         return current_has_perm(p, PROCESS__SETSCHED);
3584 }
3585
3586 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3587                                 int sig, u32 secid)
3588 {
3589         u32 perm;
3590         int rc;
3591
3592         if (!sig)
3593                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3594         else
3595                 perm = signal_to_av(sig);
3596         if (secid)
3597                 rc = avc_has_perm(secid, task_sid(p),
3598                                   SECCLASS_PROCESS, perm, NULL);
3599         else
3600                 rc = current_has_perm(p, perm);
3601         return rc;
3602 }
3603
3604 static int selinux_task_wait(struct task_struct *p)
3605 {
3606         return task_has_perm(p, current, PROCESS__SIGCHLD);
3607 }
3608
3609 static void selinux_task_to_inode(struct task_struct *p,
3610                                   struct inode *inode)
3611 {
3612         struct inode_security_struct *isec = inode->i_security;
3613         u32 sid = task_sid(p);
3614
3615         isec->sid = sid;
3616         isec->initialized = 1;
3617 }
3618
3619 /* Returns error only if unable to parse addresses */
3620 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3621                         struct common_audit_data *ad, u8 *proto)
3622 {
3623         int offset, ihlen, ret = -EINVAL;
3624         struct iphdr _iph, *ih;
3625
3626         offset = skb_network_offset(skb);
3627         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3628         if (ih == NULL)
3629                 goto out;
3630
3631         ihlen = ih->ihl * 4;
3632         if (ihlen < sizeof(_iph))
3633                 goto out;
3634
3635         ad->u.net->v4info.saddr = ih->saddr;
3636         ad->u.net->v4info.daddr = ih->daddr;
3637         ret = 0;
3638
3639         if (proto)
3640                 *proto = ih->protocol;
3641
3642         switch (ih->protocol) {
3643         case IPPROTO_TCP: {
3644                 struct tcphdr _tcph, *th;
3645
3646                 if (ntohs(ih->frag_off) & IP_OFFSET)
3647                         break;
3648
3649                 offset += ihlen;
3650                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3651                 if (th == NULL)
3652                         break;
3653
3654                 ad->u.net->sport = th->source;
3655                 ad->u.net->dport = th->dest;
3656                 break;
3657         }
3658
3659         case IPPROTO_UDP: {
3660                 struct udphdr _udph, *uh;
3661
3662                 if (ntohs(ih->frag_off) & IP_OFFSET)
3663                         break;
3664
3665                 offset += ihlen;
3666                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3667                 if (uh == NULL)
3668                         break;
3669
3670                 ad->u.net->sport = uh->source;
3671                 ad->u.net->dport = uh->dest;
3672                 break;
3673         }
3674
3675         case IPPROTO_DCCP: {
3676                 struct dccp_hdr _dccph, *dh;
3677
3678                 if (ntohs(ih->frag_off) & IP_OFFSET)
3679                         break;
3680
3681                 offset += ihlen;
3682                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3683                 if (dh == NULL)
3684                         break;
3685
3686                 ad->u.net->sport = dh->dccph_sport;
3687                 ad->u.net->dport = dh->dccph_dport;
3688                 break;
3689         }
3690
3691         default:
3692                 break;
3693         }
3694 out:
3695         return ret;
3696 }
3697
3698 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3699
3700 /* Returns error only if unable to parse addresses */
3701 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3702                         struct common_audit_data *ad, u8 *proto)
3703 {
3704         u8 nexthdr;
3705         int ret = -EINVAL, offset;
3706         struct ipv6hdr _ipv6h, *ip6;
3707         __be16 frag_off;
3708
3709         offset = skb_network_offset(skb);
3710         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3711         if (ip6 == NULL)
3712                 goto out;
3713
3714         ad->u.net->v6info.saddr = ip6->saddr;
3715         ad->u.net->v6info.daddr = ip6->daddr;
3716         ret = 0;
3717
3718         nexthdr = ip6->nexthdr;
3719         offset += sizeof(_ipv6h);
3720         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3721         if (offset < 0)
3722                 goto out;
3723
3724         if (proto)
3725                 *proto = nexthdr;
3726
3727         switch (nexthdr) {
3728         case IPPROTO_TCP: {
3729                 struct tcphdr _tcph, *th;
3730
3731                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3732                 if (th == NULL)
3733                         break;
3734
3735                 ad->u.net->sport = th->source;
3736                 ad->u.net->dport = th->dest;
3737                 break;
3738         }
3739
3740         case IPPROTO_UDP: {
3741                 struct udphdr _udph, *uh;
3742
3743                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3744                 if (uh == NULL)
3745                         break;
3746
3747                 ad->u.net->sport = uh->source;
3748                 ad->u.net->dport = uh->dest;
3749                 break;
3750         }
3751
3752         case IPPROTO_DCCP: {
3753                 struct dccp_hdr _dccph, *dh;
3754
3755                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3756                 if (dh == NULL)
3757                         break;
3758
3759                 ad->u.net->sport = dh->dccph_sport;
3760                 ad->u.net->dport = dh->dccph_dport;
3761                 break;
3762         }
3763
3764         /* includes fragments */
3765         default:
3766                 break;
3767         }
3768 out:
3769         return ret;
3770 }
3771
3772 #endif /* IPV6 */
3773
3774 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3775                              char **_addrp, int src, u8 *proto)
3776 {
3777         char *addrp;
3778         int ret;
3779
3780         switch (ad->u.net->family) {
3781         case PF_INET:
3782                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3783                 if (ret)
3784                         goto parse_error;
3785                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3786                                        &ad->u.net->v4info.daddr);
3787                 goto okay;
3788
3789 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3790         case PF_INET6:
3791                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3792                 if (ret)
3793                         goto parse_error;
3794                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3795                                        &ad->u.net->v6info.daddr);
3796                 goto okay;
3797 #endif  /* IPV6 */
3798         default:
3799                 addrp = NULL;
3800                 goto okay;
3801         }
3802
3803 parse_error:
3804         printk(KERN_WARNING
3805                "SELinux: failure in selinux_parse_skb(),"
3806                " unable to parse packet\n");
3807         return ret;
3808
3809 okay:
3810         if (_addrp)
3811                 *_addrp = addrp;
3812         return 0;
3813 }
3814
3815 /**
3816  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3817  * @skb: the packet
3818  * @family: protocol family
3819  * @sid: the packet's peer label SID
3820  *
3821  * Description:
3822  * Check the various different forms of network peer labeling and determine
3823  * the peer label/SID for the packet; most of the magic actually occurs in
3824  * the security server function security_net_peersid_cmp().  The function
3825  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3826  * or -EACCES if @sid is invalid due to inconsistencies with the different
3827  * peer labels.
3828  *
3829  */
3830 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3831 {
3832         int err;
3833         u32 xfrm_sid;
3834         u32 nlbl_sid;
3835         u32 nlbl_type;
3836
3837         err = selinux_skb_xfrm_sid(skb, &xfrm_sid);
3838         if (unlikely(err))
3839                 return -EACCES;
3840         err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3841         if (unlikely(err))
3842                 return -EACCES;
3843
3844         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3845         if (unlikely(err)) {
3846                 printk(KERN_WARNING
3847                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3848                        " unable to determine packet's peer label\n");
3849                 return -EACCES;
3850         }
3851
3852         return 0;
3853 }
3854
3855 /* socket security operations */
3856
3857 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3858                                  u16 secclass, u32 *socksid)
3859 {
3860         if (tsec->sockcreate_sid > SECSID_NULL) {
3861                 *socksid = tsec->sockcreate_sid;
3862                 return 0;
3863         }
3864
3865         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3866                                        socksid);
3867 }
3868
3869 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3870 {
3871         struct sk_security_struct *sksec = sk->sk_security;
3872         struct common_audit_data ad;
3873         struct lsm_network_audit net = {0,};
3874         u32 tsid = task_sid(task);
3875
3876         if (sksec->sid == SECINITSID_KERNEL)
3877                 return 0;
3878
3879         ad.type = LSM_AUDIT_DATA_NET;
3880         ad.u.net = &net;
3881         ad.u.net->sk = sk;
3882
3883         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3884 }
3885
3886 static int selinux_socket_create(int family, int type,
3887                                  int protocol, int kern)
3888 {
3889         const struct task_security_struct *tsec = current_security();
3890         u32 newsid;
3891         u16 secclass;
3892         int rc;
3893
3894         if (kern)
3895                 return 0;
3896
3897         secclass = socket_type_to_security_class(family, type, protocol);
3898         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3899         if (rc)
3900                 return rc;
3901
3902         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3903 }
3904
3905 static int selinux_socket_post_create(struct socket *sock, int family,
3906                                       int type, int protocol, int kern)
3907 {
3908         const struct task_security_struct *tsec = current_security();
3909         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3910         struct sk_security_struct *sksec;
3911         int err = 0;
3912
3913         isec->sclass = socket_type_to_security_class(family, type, protocol);
3914
3915         if (kern)
3916                 isec->sid = SECINITSID_KERNEL;
3917         else {
3918                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3919                 if (err)
3920                         return err;
3921         }
3922
3923         isec->initialized = 1;
3924
3925         if (sock->sk) {
3926                 sksec = sock->sk->sk_security;
3927                 sksec->sid = isec->sid;
3928                 sksec->sclass = isec->sclass;
3929                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3930         }
3931
3932         return err;
3933 }
3934
3935 /* Range of port numbers used to automatically bind.
3936    Need to determine whether we should perform a name_bind
3937    permission check between the socket and the port number. */
3938
3939 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3940 {
3941         struct sock *sk = sock->sk;
3942         u16 family;
3943         int err;
3944
3945         err = sock_has_perm(current, sk, SOCKET__BIND);
3946         if (err)
3947                 goto out;
3948
3949         /*
3950          * If PF_INET or PF_INET6, check name_bind permission for the port.
3951          * Multiple address binding for SCTP is not supported yet: we just
3952          * check the first address now.
3953          */
3954         family = sk->sk_family;
3955         if (family == PF_INET || family == PF_INET6) {
3956                 char *addrp;
3957                 struct sk_security_struct *sksec = sk->sk_security;
3958                 struct common_audit_data ad;
3959                 struct lsm_network_audit net = {0,};
3960                 struct sockaddr_in *addr4 = NULL;
3961                 struct sockaddr_in6 *addr6 = NULL;
3962                 unsigned short snum;
3963                 u32 sid, node_perm;
3964
3965                 if (family == PF_INET) {
3966                         addr4 = (struct sockaddr_in *)address;
3967                         snum = ntohs(addr4->sin_port);
3968                         addrp = (char *)&addr4->sin_addr.s_addr;
3969                 } else {
3970                         addr6 = (struct sockaddr_in6 *)address;
3971                         snum = ntohs(addr6->sin6_port);
3972                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3973                 }
3974
3975                 if (snum) {
3976                         int low, high;
3977
3978                         inet_get_local_port_range(&low, &high);
3979
3980                         if (snum < max(PROT_SOCK, low) || snum > high) {
3981                                 err = sel_netport_sid(sk->sk_protocol,
3982                                                       snum, &sid);
3983                                 if (err)
3984                                         goto out;
3985                                 ad.type = LSM_AUDIT_DATA_NET;
3986                                 ad.u.net = &net;
3987                                 ad.u.net->sport = htons(snum);
3988                                 ad.u.net->family = family;
3989                                 err = avc_has_perm(sksec->sid, sid,
3990                                                    sksec->sclass,
3991                                                    SOCKET__NAME_BIND, &ad);
3992                                 if (err)
3993                                         goto out;
3994                         }
3995                 }
3996
3997                 switch (sksec->sclass) {
3998                 case SECCLASS_TCP_SOCKET:
3999                         node_perm = TCP_SOCKET__NODE_BIND;
4000                         break;
4001
4002                 case SECCLASS_UDP_SOCKET:
4003                         node_perm = UDP_SOCKET__NODE_BIND;
4004                         break;
4005
4006                 case SECCLASS_DCCP_SOCKET:
4007                         node_perm = DCCP_SOCKET__NODE_BIND;
4008                         break;
4009
4010                 default:
4011                         node_perm = RAWIP_SOCKET__NODE_BIND;
4012                         break;
4013                 }
4014
4015                 err = sel_netnode_sid(addrp, family, &sid);
4016                 if (err)
4017                         goto out;
4018
4019                 ad.type = LSM_AUDIT_DATA_NET;
4020                 ad.u.net = &net;
4021                 ad.u.net->sport = htons(snum);
4022                 ad.u.net->family = family;
4023
4024                 if (family == PF_INET)
4025                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4026                 else
4027                         ad.u.net->v6info.saddr = addr6->sin6_addr;
4028
4029                 err = avc_has_perm(sksec->sid, sid,
4030                                    sksec->sclass, node_perm, &ad);
4031                 if (err)
4032                         goto out;
4033         }
4034 out:
4035         return err;
4036 }
4037
4038 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4039 {
4040         struct sock *sk = sock->sk;
4041         struct sk_security_struct *sksec = sk->sk_security;
4042         int err;
4043
4044         err = sock_has_perm(current, sk, SOCKET__CONNECT);
4045         if (err)
4046                 return err;
4047
4048         /*
4049          * If a TCP or DCCP socket, check name_connect permission for the port.
4050          */
4051         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4052             sksec->sclass == SECCLASS_DCCP_SOCKET) {
4053                 struct common_audit_data ad;
4054                 struct lsm_network_audit net = {0,};
4055                 struct sockaddr_in *addr4 = NULL;
4056                 struct sockaddr_in6 *addr6 = NULL;
4057                 unsigned short snum;
4058                 u32 sid, perm;
4059
4060                 if (sk->sk_family == PF_INET) {
4061                         addr4 = (struct sockaddr_in *)address;
4062                         if (addrlen < sizeof(struct sockaddr_in))
4063                                 return -EINVAL;
4064                         snum = ntohs(addr4->sin_port);
4065                 } else {
4066                         addr6 = (struct sockaddr_in6 *)address;
4067                         if (addrlen < SIN6_LEN_RFC2133)
4068                                 return -EINVAL;
4069                         snum = ntohs(addr6->sin6_port);
4070                 }
4071
4072                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4073                 if (err)
4074                         goto out;
4075
4076                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4077                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4078
4079                 ad.type = LSM_AUDIT_DATA_NET;
4080                 ad.u.net = &net;
4081                 ad.u.net->dport = htons(snum);
4082                 ad.u.net->family = sk->sk_family;
4083                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4084                 if (err)
4085                         goto out;
4086         }
4087
4088         err = selinux_netlbl_socket_connect(sk, address);
4089
4090 out:
4091         return err;
4092 }
4093
4094 static int selinux_socket_listen(struct socket *sock, int backlog)
4095 {
4096         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4097 }
4098
4099 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4100 {
4101         int err;
4102         struct inode_security_struct *isec;
4103         struct inode_security_struct *newisec;
4104
4105         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4106         if (err)
4107                 return err;
4108
4109         newisec = SOCK_INODE(newsock)->i_security;
4110
4111         isec = SOCK_INODE(sock)->i_security;
4112         newisec->sclass = isec->sclass;
4113         newisec->sid = isec->sid;
4114         newisec->initialized = 1;
4115
4116         return 0;
4117 }
4118
4119 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4120                                   int size)
4121 {
4122         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4123 }
4124
4125 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4126                                   int size, int flags)
4127 {
4128         return sock_has_perm(current, sock->sk, SOCKET__READ);
4129 }
4130
4131 static int selinux_socket_getsockname(struct socket *sock)
4132 {
4133         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4134 }
4135
4136 static int selinux_socket_getpeername(struct socket *sock)
4137 {
4138         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4139 }
4140
4141 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4142 {
4143         int err;
4144
4145         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4146         if (err)
4147                 return err;
4148
4149         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4150 }
4151
4152 static int selinux_socket_getsockopt(struct socket *sock, int level,
4153                                      int optname)
4154 {
4155         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4156 }
4157
4158 static int selinux_socket_shutdown(struct socket *sock, int how)
4159 {
4160         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4161 }
4162
4163 static int selinux_socket_unix_stream_connect(struct sock *sock,
4164                                               struct sock *other,
4165                                               struct sock *newsk)
4166 {
4167         struct sk_security_struct *sksec_sock = sock->sk_security;
4168         struct sk_security_struct *sksec_other = other->sk_security;
4169         struct sk_security_struct *sksec_new = newsk->sk_security;
4170         struct common_audit_data ad;
4171         struct lsm_network_audit net = {0,};
4172         int err;
4173
4174         ad.type = LSM_AUDIT_DATA_NET;
4175         ad.u.net = &net;
4176         ad.u.net->sk = other;
4177
4178         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4179                            sksec_other->sclass,
4180                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4181         if (err)
4182                 return err;
4183
4184         /* server child socket */
4185         sksec_new->peer_sid = sksec_sock->sid;
4186         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4187                                     &sksec_new->sid);
4188         if (err)
4189                 return err;
4190
4191         /* connecting socket */
4192         sksec_sock->peer_sid = sksec_new->sid;
4193
4194         return 0;
4195 }
4196
4197 static int selinux_socket_unix_may_send(struct socket *sock,
4198                                         struct socket *other)
4199 {
4200         struct sk_security_struct *ssec = sock->sk->sk_security;
4201         struct sk_security_struct *osec = other->sk->sk_security;
4202         struct common_audit_data ad;
4203         struct lsm_network_audit net = {0,};
4204
4205         ad.type = LSM_AUDIT_DATA_NET;
4206         ad.u.net = &net;
4207         ad.u.net->sk = other->sk;
4208
4209         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4210                             &ad);
4211 }
4212
4213 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4214                                     u32 peer_sid,
4215                                     struct common_audit_data *ad)
4216 {
4217         int err;
4218         u32 if_sid;
4219         u32 node_sid;
4220
4221         err = sel_netif_sid(ifindex, &if_sid);
4222         if (err)
4223                 return err;
4224         err = avc_has_perm(peer_sid, if_sid,
4225                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4226         if (err)
4227                 return err;
4228
4229         err = sel_netnode_sid(addrp, family, &node_sid);
4230         if (err)
4231                 return err;
4232         return avc_has_perm(peer_sid, node_sid,
4233                             SECCLASS_NODE, NODE__RECVFROM, ad);
4234 }
4235
4236 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4237                                        u16 family)
4238 {
4239         int err = 0;
4240         struct sk_security_struct *sksec = sk->sk_security;
4241         u32 sk_sid = sksec->sid;
4242         struct common_audit_data ad;
4243         struct lsm_network_audit net = {0,};
4244         char *addrp;
4245
4246         ad.type = LSM_AUDIT_DATA_NET;
4247         ad.u.net = &net;
4248         ad.u.net->netif = skb->skb_iif;
4249         ad.u.net->family = family;
4250         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4251         if (err)
4252                 return err;
4253
4254         if (selinux_secmark_enabled()) {
4255                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4256                                    PACKET__RECV, &ad);
4257                 if (err)
4258                         return err;
4259         }
4260
4261         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4262         if (err)
4263                 return err;
4264         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4265
4266         return err;
4267 }
4268
4269 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4270 {
4271         int err;
4272         struct sk_security_struct *sksec = sk->sk_security;
4273         u16 family = sk->sk_family;
4274         u32 sk_sid = sksec->sid;
4275         struct common_audit_data ad;
4276         struct lsm_network_audit net = {0,};
4277         char *addrp;
4278         u8 secmark_active;
4279         u8 peerlbl_active;
4280
4281         if (family != PF_INET && family != PF_INET6)
4282                 return 0;
4283
4284         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4285         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4286                 family = PF_INET;
4287
4288         /* If any sort of compatibility mode is enabled then handoff processing
4289          * to the selinux_sock_rcv_skb_compat() function to deal with the
4290          * special handling.  We do this in an attempt to keep this function
4291          * as fast and as clean as possible. */
4292         if (!selinux_policycap_netpeer)
4293                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4294
4295         secmark_active = selinux_secmark_enabled();
4296         peerlbl_active = selinux_peerlbl_enabled();
4297         if (!secmark_active && !peerlbl_active)
4298                 return 0;
4299
4300         ad.type = LSM_AUDIT_DATA_NET;
4301         ad.u.net = &net;
4302         ad.u.net->netif = skb->skb_iif;
4303         ad.u.net->family = family;
4304         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4305         if (err)
4306                 return err;
4307
4308         if (peerlbl_active) {
4309                 u32 peer_sid;
4310
4311                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4312                 if (err)
4313                         return err;
4314                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4315                                                peer_sid, &ad);
4316                 if (err) {
4317                         selinux_netlbl_err(skb, err, 0);
4318                         return err;
4319                 }
4320                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4321                                    PEER__RECV, &ad);
4322                 if (err)
4323                         selinux_netlbl_err(skb, err, 0);
4324         }
4325
4326         if (secmark_active) {
4327                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4328                                    PACKET__RECV, &ad);
4329                 if (err)
4330                         return err;
4331         }
4332
4333         return err;
4334 }
4335
4336 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4337                                             int __user *optlen, unsigned len)
4338 {
4339         int err = 0;
4340         char *scontext;
4341         u32 scontext_len;
4342         struct sk_security_struct *sksec = sock->sk->sk_security;
4343         u32 peer_sid = SECSID_NULL;
4344
4345         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4346             sksec->sclass == SECCLASS_TCP_SOCKET)
4347                 peer_sid = sksec->peer_sid;
4348         if (peer_sid == SECSID_NULL)
4349                 return -ENOPROTOOPT;
4350
4351         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4352         if (err)
4353                 return err;
4354
4355         if (scontext_len > len) {
4356                 err = -ERANGE;
4357                 goto out_len;
4358         }
4359
4360         if (copy_to_user(optval, scontext, scontext_len))
4361                 err = -EFAULT;
4362
4363 out_len:
4364         if (put_user(scontext_len, optlen))
4365                 err = -EFAULT;
4366         kfree(scontext);
4367         return err;
4368 }
4369
4370 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4371 {
4372         u32 peer_secid = SECSID_NULL;
4373         u16 family;
4374
4375         if (skb && skb->protocol == htons(ETH_P_IP))
4376                 family = PF_INET;
4377         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4378                 family = PF_INET6;
4379         else if (sock)
4380                 family = sock->sk->sk_family;
4381         else
4382                 goto out;
4383
4384         if (sock && family == PF_UNIX)
4385                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4386         else if (skb)
4387                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4388
4389 out:
4390         *secid = peer_secid;
4391         if (peer_secid == SECSID_NULL)
4392                 return -EINVAL;
4393         return 0;
4394 }
4395
4396 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4397 {
4398         struct sk_security_struct *sksec;
4399
4400         sksec = kzalloc(sizeof(*sksec), priority);
4401         if (!sksec)
4402                 return -ENOMEM;
4403
4404         sksec->peer_sid = SECINITSID_UNLABELED;
4405         sksec->sid = SECINITSID_UNLABELED;
4406         selinux_netlbl_sk_security_reset(sksec);
4407         sk->sk_security = sksec;
4408
4409         return 0;
4410 }
4411
4412 static void selinux_sk_free_security(struct sock *sk)
4413 {
4414         struct sk_security_struct *sksec = sk->sk_security;
4415
4416         sk->sk_security = NULL;
4417         selinux_netlbl_sk_security_free(sksec);
4418         kfree(sksec);
4419 }
4420
4421 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4422 {
4423         struct sk_security_struct *sksec = sk->sk_security;
4424         struct sk_security_struct *newsksec = newsk->sk_security;
4425
4426         newsksec->sid = sksec->sid;
4427         newsksec->peer_sid = sksec->peer_sid;
4428         newsksec->sclass = sksec->sclass;
4429
4430         selinux_netlbl_sk_security_reset(newsksec);
4431 }
4432
4433 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4434 {
4435         if (!sk)
4436                 *secid = SECINITSID_ANY_SOCKET;
4437         else {
4438                 struct sk_security_struct *sksec = sk->sk_security;
4439
4440                 *secid = sksec->sid;
4441         }
4442 }
4443
4444 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4445 {
4446         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4447         struct sk_security_struct *sksec = sk->sk_security;
4448
4449         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4450             sk->sk_family == PF_UNIX)
4451                 isec->sid = sksec->sid;
4452         sksec->sclass = isec->sclass;
4453 }
4454
4455 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4456                                      struct request_sock *req)
4457 {
4458         struct sk_security_struct *sksec = sk->sk_security;
4459         int err;
4460         u16 family = sk->sk_family;
4461         u32 newsid;
4462         u32 peersid;
4463
4464         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4465         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4466                 family = PF_INET;
4467
4468         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4469         if (err)
4470                 return err;
4471         if (peersid == SECSID_NULL) {
4472                 req->secid = sksec->sid;
4473                 req->peer_secid = SECSID_NULL;
4474         } else {
4475                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4476                 if (err)
4477                         return err;
4478                 req->secid = newsid;
4479                 req->peer_secid = peersid;
4480         }
4481
4482         return selinux_netlbl_inet_conn_request(req, family);
4483 }
4484
4485 static void selinux_inet_csk_clone(struct sock *newsk,
4486                                    const struct request_sock *req)
4487 {
4488         struct sk_security_struct *newsksec = newsk->sk_security;
4489
4490         newsksec->sid = req->secid;
4491         newsksec->peer_sid = req->peer_secid;
4492         /* NOTE: Ideally, we should also get the isec->sid for the
4493            new socket in sync, but we don't have the isec available yet.
4494            So we will wait until sock_graft to do it, by which
4495            time it will have been created and available. */
4496
4497         /* We don't need to take any sort of lock here as we are the only
4498          * thread with access to newsksec */
4499         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4500 }
4501
4502 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4503 {
4504         u16 family = sk->sk_family;
4505         struct sk_security_struct *sksec = sk->sk_security;
4506
4507         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4508         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4509                 family = PF_INET;
4510
4511         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4512 }
4513
4514 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4515 {
4516         skb_set_owner_w(skb, sk);
4517 }
4518
4519 static int selinux_secmark_relabel_packet(u32 sid)
4520 {
4521         const struct task_security_struct *__tsec;
4522         u32 tsid;
4523
4524         __tsec = current_security();
4525         tsid = __tsec->sid;
4526
4527         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4528 }
4529
4530 static void selinux_secmark_refcount_inc(void)
4531 {
4532         atomic_inc(&selinux_secmark_refcount);
4533 }
4534
4535 static void selinux_secmark_refcount_dec(void)
4536 {
4537         atomic_dec(&selinux_secmark_refcount);
4538 }
4539
4540 static void selinux_req_classify_flow(const struct request_sock *req,
4541                                       struct flowi *fl)
4542 {
4543         fl->flowi_secid = req->secid;
4544 }
4545
4546 static int selinux_tun_dev_alloc_security(void **security)
4547 {
4548         struct tun_security_struct *tunsec;
4549
4550         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4551         if (!tunsec)
4552                 return -ENOMEM;
4553         tunsec->sid = current_sid();
4554
4555         *security = tunsec;
4556         return 0;
4557 }
4558
4559 static void selinux_tun_dev_free_security(void *security)
4560 {
4561         kfree(security);
4562 }
4563
4564 static int selinux_tun_dev_create(void)
4565 {
4566         u32 sid = current_sid();
4567
4568         /* we aren't taking into account the "sockcreate" SID since the socket
4569          * that is being created here is not a socket in the traditional sense,
4570          * instead it is a private sock, accessible only to the kernel, and
4571          * representing a wide range of network traffic spanning multiple
4572          * connections unlike traditional sockets - check the TUN driver to
4573          * get a better understanding of why this socket is special */
4574
4575         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4576                             NULL);
4577 }
4578
4579 static int selinux_tun_dev_attach_queue(void *security)
4580 {
4581         struct tun_security_struct *tunsec = security;
4582
4583         return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4584                             TUN_SOCKET__ATTACH_QUEUE, NULL);
4585 }
4586
4587 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4588 {
4589         struct tun_security_struct *tunsec = security;
4590         struct sk_security_struct *sksec = sk->sk_security;
4591
4592         /* we don't currently perform any NetLabel based labeling here and it
4593          * isn't clear that we would want to do so anyway; while we could apply
4594          * labeling without the support of the TUN user the resulting labeled
4595          * traffic from the other end of the connection would almost certainly
4596          * cause confusion to the TUN user that had no idea network labeling
4597          * protocols were being used */
4598
4599         sksec->sid = tunsec->sid;
4600         sksec->sclass = SECCLASS_TUN_SOCKET;
4601
4602         return 0;
4603 }
4604
4605 static int selinux_tun_dev_open(void *security)
4606 {
4607         struct tun_security_struct *tunsec = security;
4608         u32 sid = current_sid();
4609         int err;
4610
4611         err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4612                            TUN_SOCKET__RELABELFROM, NULL);
4613         if (err)
4614                 return err;
4615         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4616                            TUN_SOCKET__RELABELTO, NULL);
4617         if (err)
4618                 return err;
4619         tunsec->sid = sid;
4620
4621         return 0;
4622 }
4623
4624 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4625 {
4626         int err = 0;
4627         u32 perm;
4628         struct nlmsghdr *nlh;
4629         struct sk_security_struct *sksec = sk->sk_security;
4630
4631         if (skb->len < NLMSG_HDRLEN) {
4632                 err = -EINVAL;
4633                 goto out;
4634         }
4635         nlh = nlmsg_hdr(skb);
4636
4637         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4638         if (err) {
4639                 if (err == -EINVAL) {
4640                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4641                                   "SELinux:  unrecognized netlink message"
4642                                   " type=%hu for sclass=%hu\n",
4643                                   nlh->nlmsg_type, sksec->sclass);
4644                         if (!selinux_enforcing || security_get_allow_unknown())
4645                                 err = 0;
4646                 }
4647
4648                 /* Ignore */
4649                 if (err == -ENOENT)
4650                         err = 0;
4651                 goto out;
4652         }
4653
4654         err = sock_has_perm(current, sk, perm);
4655 out:
4656         return err;
4657 }
4658
4659 #ifdef CONFIG_NETFILTER
4660
4661 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4662                                        u16 family)
4663 {
4664         int err;
4665         char *addrp;
4666         u32 peer_sid;
4667         struct common_audit_data ad;
4668         struct lsm_network_audit net = {0,};
4669         u8 secmark_active;
4670         u8 netlbl_active;
4671         u8 peerlbl_active;
4672
4673         if (!selinux_policycap_netpeer)
4674                 return NF_ACCEPT;
4675
4676         secmark_active = selinux_secmark_enabled();
4677         netlbl_active = netlbl_enabled();
4678         peerlbl_active = selinux_peerlbl_enabled();
4679         if (!secmark_active && !peerlbl_active)
4680                 return NF_ACCEPT;
4681
4682         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4683                 return NF_DROP;
4684
4685         ad.type = LSM_AUDIT_DATA_NET;
4686         ad.u.net = &net;
4687         ad.u.net->netif = ifindex;
4688         ad.u.net->family = family;
4689         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4690                 return NF_DROP;
4691
4692         if (peerlbl_active) {
4693                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4694                                                peer_sid, &ad);
4695                 if (err) {
4696                         selinux_netlbl_err(skb, err, 1);
4697                         return NF_DROP;
4698                 }
4699         }
4700
4701         if (secmark_active)
4702                 if (avc_has_perm(peer_sid, skb->secmark,
4703                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4704                         return NF_DROP;
4705
4706         if (netlbl_active)
4707                 /* we do this in the FORWARD path and not the POST_ROUTING
4708                  * path because we want to make sure we apply the necessary
4709                  * labeling before IPsec is applied so we can leverage AH
4710                  * protection */
4711                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4712                         return NF_DROP;
4713
4714         return NF_ACCEPT;
4715 }
4716
4717 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4718                                          struct sk_buff *skb,
4719                                          const struct net_device *in,
4720                                          const struct net_device *out,
4721                                          int (*okfn)(struct sk_buff *))
4722 {
4723         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4724 }
4725
4726 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4727 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4728                                          struct sk_buff *skb,
4729                                          const struct net_device *in,
4730                                          const struct net_device *out,
4731                                          int (*okfn)(struct sk_buff *))
4732 {
4733         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4734 }
4735 #endif  /* IPV6 */
4736
4737 static unsigned int selinux_ip_output(struct sk_buff *skb,
4738                                       u16 family)
4739 {
4740         u32 sid;
4741
4742         if (!netlbl_enabled())
4743                 return NF_ACCEPT;
4744
4745         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4746          * because we want to make sure we apply the necessary labeling
4747          * before IPsec is applied so we can leverage AH protection */
4748         if (skb->sk) {
4749                 struct sk_security_struct *sksec = skb->sk->sk_security;
4750                 sid = sksec->sid;
4751         } else
4752                 sid = SECINITSID_KERNEL;
4753         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4754                 return NF_DROP;
4755
4756         return NF_ACCEPT;
4757 }
4758
4759 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4760                                         struct sk_buff *skb,
4761                                         const struct net_device *in,
4762                                         const struct net_device *out,
4763                                         int (*okfn)(struct sk_buff *))
4764 {
4765         return selinux_ip_output(skb, PF_INET);
4766 }
4767
4768 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4769                                                 int ifindex,
4770                                                 u16 family)
4771 {
4772         struct sock *sk = skb->sk;
4773         struct sk_security_struct *sksec;
4774         struct common_audit_data ad;
4775         struct lsm_network_audit net = {0,};
4776         char *addrp;
4777         u8 proto;
4778
4779         if (sk == NULL)
4780                 return NF_ACCEPT;
4781         sksec = sk->sk_security;
4782
4783         ad.type = LSM_AUDIT_DATA_NET;
4784         ad.u.net = &net;
4785         ad.u.net->netif = ifindex;
4786         ad.u.net->family = family;
4787         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4788                 return NF_DROP;
4789
4790         if (selinux_secmark_enabled())
4791                 if (avc_has_perm(sksec->sid, skb->secmark,
4792                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4793                         return NF_DROP_ERR(-ECONNREFUSED);
4794
4795         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4796                 return NF_DROP_ERR(-ECONNREFUSED);
4797
4798         return NF_ACCEPT;
4799 }
4800
4801 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4802                                          u16 family)
4803 {
4804         u32 secmark_perm;
4805         u32 peer_sid;
4806         struct sock *sk;
4807         struct common_audit_data ad;
4808         struct lsm_network_audit net = {0,};
4809         char *addrp;
4810         u8 secmark_active;
4811         u8 peerlbl_active;
4812
4813         /* If any sort of compatibility mode is enabled then handoff processing
4814          * to the selinux_ip_postroute_compat() function to deal with the
4815          * special handling.  We do this in an attempt to keep this function
4816          * as fast and as clean as possible. */
4817         if (!selinux_policycap_netpeer)
4818                 return selinux_ip_postroute_compat(skb, ifindex, family);
4819 #ifdef CONFIG_XFRM
4820         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4821          * packet transformation so allow the packet to pass without any checks
4822          * since we'll have another chance to perform access control checks
4823          * when the packet is on it's final way out.
4824          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4825          *       is NULL, in this case go ahead and apply access control. */
4826         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4827                 return NF_ACCEPT;
4828 #endif
4829         secmark_active = selinux_secmark_enabled();
4830         peerlbl_active = selinux_peerlbl_enabled();
4831         if (!secmark_active && !peerlbl_active)
4832                 return NF_ACCEPT;
4833
4834         /* if the packet is being forwarded then get the peer label from the
4835          * packet itself; otherwise check to see if it is from a local
4836          * application or the kernel, if from an application get the peer label
4837          * from the sending socket, otherwise use the kernel's sid */
4838         sk = skb->sk;
4839         if (sk == NULL) {
4840                 if (skb->skb_iif) {
4841                         secmark_perm = PACKET__FORWARD_OUT;
4842                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4843                                 return NF_DROP;
4844                 } else {
4845                         secmark_perm = PACKET__SEND;
4846                         peer_sid = SECINITSID_KERNEL;
4847                 }
4848         } else {
4849                 struct sk_security_struct *sksec = sk->sk_security;
4850                 peer_sid = sksec->sid;
4851                 secmark_perm = PACKET__SEND;
4852         }
4853
4854         ad.type = LSM_AUDIT_DATA_NET;
4855         ad.u.net = &net;
4856         ad.u.net->netif = ifindex;
4857         ad.u.net->family = family;
4858         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4859                 return NF_DROP;
4860
4861         if (secmark_active)
4862                 if (avc_has_perm(peer_sid, skb->secmark,
4863                                  SECCLASS_PACKET, secmark_perm, &ad))
4864                         return NF_DROP_ERR(-ECONNREFUSED);
4865
4866         if (peerlbl_active) {
4867                 u32 if_sid;
4868                 u32 node_sid;
4869
4870                 if (sel_netif_sid(ifindex, &if_sid))
4871                         return NF_DROP;
4872                 if (avc_has_perm(peer_sid, if_sid,
4873                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4874                         return NF_DROP_ERR(-ECONNREFUSED);
4875
4876                 if (sel_netnode_sid(addrp, family, &node_sid))
4877                         return NF_DROP;
4878                 if (avc_has_perm(peer_sid, node_sid,
4879                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4880                         return NF_DROP_ERR(-ECONNREFUSED);
4881         }
4882
4883         return NF_ACCEPT;
4884 }
4885
4886 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4887                                            struct sk_buff *skb,
4888                                            const struct net_device *in,
4889                                            const struct net_device *out,
4890                                            int (*okfn)(struct sk_buff *))
4891 {
4892         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4893 }
4894
4895 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4896 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4897                                            struct sk_buff *skb,
4898                                            const struct net_device *in,
4899                                            const struct net_device *out,
4900                                            int (*okfn)(struct sk_buff *))
4901 {
4902         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4903 }
4904 #endif  /* IPV6 */
4905
4906 #endif  /* CONFIG_NETFILTER */
4907
4908 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4909 {
4910         int err;
4911
4912         err = cap_netlink_send(sk, skb);
4913         if (err)
4914                 return err;
4915
4916         return selinux_nlmsg_perm(sk, skb);
4917 }
4918
4919 static int ipc_alloc_security(struct task_struct *task,
4920                               struct kern_ipc_perm *perm,
4921                               u16 sclass)
4922 {
4923         struct ipc_security_struct *isec;
4924         u32 sid;
4925
4926         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4927         if (!isec)
4928                 return -ENOMEM;
4929
4930         sid = task_sid(task);
4931         isec->sclass = sclass;
4932         isec->sid = sid;
4933         perm->security = isec;
4934
4935         return 0;
4936 }
4937
4938 static void ipc_free_security(struct kern_ipc_perm *perm)
4939 {
4940         struct ipc_security_struct *isec = perm->security;
4941         perm->security = NULL;
4942         kfree(isec);
4943 }
4944
4945 static int msg_msg_alloc_security(struct msg_msg *msg)
4946 {
4947         struct msg_security_struct *msec;
4948
4949         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4950         if (!msec)
4951                 return -ENOMEM;
4952
4953         msec->sid = SECINITSID_UNLABELED;
4954         msg->security = msec;
4955
4956         return 0;
4957 }
4958
4959 static void msg_msg_free_security(struct msg_msg *msg)
4960 {
4961         struct msg_security_struct *msec = msg->security;
4962
4963         msg->security = NULL;
4964         kfree(msec);
4965 }
4966
4967 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4968                         u32 perms)
4969 {
4970         struct ipc_security_struct *isec;
4971         struct common_audit_data ad;
4972         u32 sid = current_sid();
4973
4974         isec = ipc_perms->security;
4975
4976         ad.type = LSM_AUDIT_DATA_IPC;
4977         ad.u.ipc_id = ipc_perms->key;
4978
4979         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4980 }
4981
4982 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4983 {
4984         return msg_msg_alloc_security(msg);
4985 }
4986
4987 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4988 {
4989         msg_msg_free_security(msg);
4990 }
4991
4992 /* message queue security operations */
4993 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4994 {
4995         struct ipc_security_struct *isec;
4996         struct common_audit_data ad;
4997         u32 sid = current_sid();
4998         int rc;
4999
5000         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5001         if (rc)
5002                 return rc;
5003
5004         isec = msq->q_perm.security;
5005
5006         ad.type = LSM_AUDIT_DATA_IPC;
5007         ad.u.ipc_id = msq->q_perm.key;
5008
5009         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5010                           MSGQ__CREATE, &ad);
5011         if (rc) {
5012                 ipc_free_security(&msq->q_perm);
5013                 return rc;
5014         }
5015         return 0;
5016 }
5017
5018 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5019 {
5020         ipc_free_security(&msq->q_perm);
5021 }
5022
5023 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5024 {
5025         struct ipc_security_struct *isec;
5026         struct common_audit_data ad;
5027         u32 sid = current_sid();
5028
5029         isec = msq->q_perm.security;
5030
5031         ad.type = LSM_AUDIT_DATA_IPC;
5032         ad.u.ipc_id = msq->q_perm.key;
5033
5034         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5035                             MSGQ__ASSOCIATE, &ad);
5036 }
5037
5038 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5039 {
5040         int err;
5041         int perms;
5042
5043         switch (cmd) {
5044         case IPC_INFO:
5045         case MSG_INFO:
5046                 /* No specific object, just general system-wide information. */
5047                 return task_has_system(current, SYSTEM__IPC_INFO);
5048         case IPC_STAT:
5049         case MSG_STAT:
5050                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5051                 break;
5052         case IPC_SET:
5053                 perms = MSGQ__SETATTR;
5054                 break;
5055         case IPC_RMID:
5056                 perms = MSGQ__DESTROY;
5057                 break;
5058         default:
5059                 return 0;
5060         }
5061
5062         err = ipc_has_perm(&msq->q_perm, perms);
5063         return err;
5064 }
5065
5066 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5067 {
5068         struct ipc_security_struct *isec;
5069         struct msg_security_struct *msec;
5070         struct common_audit_data ad;
5071         u32 sid = current_sid();
5072         int rc;
5073
5074         isec = msq->q_perm.security;
5075         msec = msg->security;
5076
5077         /*
5078          * First time through, need to assign label to the message
5079          */
5080         if (msec->sid == SECINITSID_UNLABELED) {
5081                 /*
5082                  * Compute new sid based on current process and
5083                  * message queue this message will be stored in
5084                  */
5085                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5086                                              NULL, &msec->sid);
5087                 if (rc)
5088                         return rc;
5089         }
5090
5091         ad.type = LSM_AUDIT_DATA_IPC;
5092         ad.u.ipc_id = msq->q_perm.key;
5093
5094         /* Can this process write to the queue? */
5095         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5096                           MSGQ__WRITE, &ad);
5097         if (!rc)
5098                 /* Can this process send the message */
5099                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5100                                   MSG__SEND, &ad);
5101         if (!rc)
5102                 /* Can the message be put in the queue? */
5103                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5104                                   MSGQ__ENQUEUE, &ad);
5105
5106         return rc;
5107 }
5108
5109 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5110                                     struct task_struct *target,
5111                                     long type, int mode)
5112 {
5113         struct ipc_security_struct *isec;
5114         struct msg_security_struct *msec;
5115         struct common_audit_data ad;
5116         u32 sid = task_sid(target);
5117         int rc;
5118
5119         isec = msq->q_perm.security;
5120         msec = msg->security;
5121
5122         ad.type = LSM_AUDIT_DATA_IPC;
5123         ad.u.ipc_id = msq->q_perm.key;
5124
5125         rc = avc_has_perm(sid, isec->sid,
5126                           SECCLASS_MSGQ, MSGQ__READ, &ad);
5127         if (!rc)
5128                 rc = avc_has_perm(sid, msec->sid,
5129                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
5130         return rc;
5131 }
5132
5133 /* Shared Memory security operations */
5134 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5135 {
5136         struct ipc_security_struct *isec;
5137         struct common_audit_data ad;
5138         u32 sid = current_sid();
5139         int rc;
5140
5141         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5142         if (rc)
5143                 return rc;
5144
5145         isec = shp->shm_perm.security;
5146
5147         ad.type = LSM_AUDIT_DATA_IPC;
5148         ad.u.ipc_id = shp->shm_perm.key;
5149
5150         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5151                           SHM__CREATE, &ad);
5152         if (rc) {
5153                 ipc_free_security(&shp->shm_perm);
5154                 return rc;
5155         }
5156         return 0;
5157 }
5158
5159 static void selinux_shm_free_security(struct shmid_kernel *shp)
5160 {
5161         ipc_free_security(&shp->shm_perm);
5162 }
5163
5164 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5165 {
5166         struct ipc_security_struct *isec;
5167         struct common_audit_data ad;
5168         u32 sid = current_sid();
5169
5170         isec = shp->shm_perm.security;
5171
5172         ad.type = LSM_AUDIT_DATA_IPC;
5173         ad.u.ipc_id = shp->shm_perm.key;
5174
5175         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5176                             SHM__ASSOCIATE, &ad);
5177 }
5178
5179 /* Note, at this point, shp is locked down */
5180 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5181 {
5182         int perms;
5183         int err;
5184
5185         switch (cmd) {
5186         case IPC_INFO:
5187         case SHM_INFO:
5188                 /* No specific object, just general system-wide information. */
5189                 return task_has_system(current, SYSTEM__IPC_INFO);
5190         case IPC_STAT:
5191         case SHM_STAT:
5192                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5193                 break;
5194         case IPC_SET:
5195                 perms = SHM__SETATTR;
5196                 break;
5197         case SHM_LOCK:
5198         case SHM_UNLOCK:
5199                 perms = SHM__LOCK;
5200                 break;
5201         case IPC_RMID:
5202                 perms = SHM__DESTROY;
5203                 break;
5204         default:
5205                 return 0;
5206         }
5207
5208         err = ipc_has_perm(&shp->shm_perm, perms);
5209         return err;
5210 }
5211
5212 static int selinux_shm_shmat(struct shmid_kernel *shp,
5213                              char __user *shmaddr, int shmflg)
5214 {
5215         u32 perms;
5216
5217         if (shmflg & SHM_RDONLY)
5218                 perms = SHM__READ;
5219         else
5220                 perms = SHM__READ | SHM__WRITE;
5221
5222         return ipc_has_perm(&shp->shm_perm, perms);
5223 }
5224
5225 /* Semaphore security operations */
5226 static int selinux_sem_alloc_security(struct sem_array *sma)
5227 {
5228         struct ipc_security_struct *isec;
5229         struct common_audit_data ad;
5230         u32 sid = current_sid();
5231         int rc;
5232
5233         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5234         if (rc)
5235                 return rc;
5236
5237         isec = sma->sem_perm.security;
5238
5239         ad.type = LSM_AUDIT_DATA_IPC;
5240         ad.u.ipc_id = sma->sem_perm.key;
5241
5242         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5243                           SEM__CREATE, &ad);
5244         if (rc) {
5245                 ipc_free_security(&sma->sem_perm);
5246                 return rc;
5247         }
5248         return 0;
5249 }
5250
5251 static void selinux_sem_free_security(struct sem_array *sma)
5252 {
5253         ipc_free_security(&sma->sem_perm);
5254 }
5255
5256 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5257 {
5258         struct ipc_security_struct *isec;
5259         struct common_audit_data ad;
5260         u32 sid = current_sid();
5261
5262         isec = sma->sem_perm.security;
5263
5264         ad.type = LSM_AUDIT_DATA_IPC;
5265         ad.u.ipc_id = sma->sem_perm.key;
5266
5267         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5268                             SEM__ASSOCIATE, &ad);
5269 }
5270
5271 /* Note, at this point, sma is locked down */
5272 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5273 {
5274         int err;
5275         u32 perms;
5276
5277         switch (cmd) {
5278         case IPC_INFO:
5279         case SEM_INFO:
5280                 /* No specific object, just general system-wide information. */
5281                 return task_has_system(current, SYSTEM__IPC_INFO);
5282         case GETPID:
5283         case GETNCNT:
5284         case GETZCNT:
5285                 perms = SEM__GETATTR;
5286                 break;
5287         case GETVAL:
5288         case GETALL:
5289                 perms = SEM__READ;
5290                 break;
5291         case SETVAL:
5292         case SETALL:
5293                 perms = SEM__WRITE;
5294                 break;
5295         case IPC_RMID:
5296                 perms = SEM__DESTROY;
5297                 break;
5298         case IPC_SET:
5299                 perms = SEM__SETATTR;
5300                 break;
5301         case IPC_STAT:
5302         case SEM_STAT:
5303                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5304                 break;
5305         default:
5306                 return 0;
5307         }
5308
5309         err = ipc_has_perm(&sma->sem_perm, perms);
5310         return err;
5311 }
5312
5313 static int selinux_sem_semop(struct sem_array *sma,
5314                              struct sembuf *sops, unsigned nsops, int alter)
5315 {
5316         u32 perms;
5317
5318         if (alter)
5319                 perms = SEM__READ | SEM__WRITE;
5320         else
5321                 perms = SEM__READ;
5322
5323         return ipc_has_perm(&sma->sem_perm, perms);
5324 }
5325
5326 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5327 {
5328         u32 av = 0;
5329
5330         av = 0;
5331         if (flag & S_IRUGO)
5332                 av |= IPC__UNIX_READ;
5333         if (flag & S_IWUGO)
5334                 av |= IPC__UNIX_WRITE;
5335
5336         if (av == 0)
5337                 return 0;
5338
5339         return ipc_has_perm(ipcp, av);
5340 }
5341
5342 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5343 {
5344         struct ipc_security_struct *isec = ipcp->security;
5345         *secid = isec->sid;
5346 }
5347
5348 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5349 {
5350         if (inode)
5351                 inode_doinit_with_dentry(inode, dentry);
5352 }
5353
5354 static int selinux_getprocattr(struct task_struct *p,
5355                                char *name, char **value)
5356 {
5357         const struct task_security_struct *__tsec;
5358         u32 sid;
5359         int error;
5360         unsigned len;
5361
5362         if (current != p) {
5363                 error = current_has_perm(p, PROCESS__GETATTR);
5364                 if (error)
5365                         return error;
5366         }
5367
5368         rcu_read_lock();
5369         __tsec = __task_cred(p)->security;
5370
5371         if (!strcmp(name, "current"))
5372                 sid = __tsec->sid;
5373         else if (!strcmp(name, "prev"))
5374                 sid = __tsec->osid;
5375         else if (!strcmp(name, "exec"))
5376                 sid = __tsec->exec_sid;
5377         else if (!strcmp(name, "fscreate"))
5378                 sid = __tsec->create_sid;
5379         else if (!strcmp(name, "keycreate"))
5380                 sid = __tsec->keycreate_sid;
5381         else if (!strcmp(name, "sockcreate"))
5382                 sid = __tsec->sockcreate_sid;
5383         else
5384                 goto invalid;
5385         rcu_read_unlock();
5386
5387         if (!sid)
5388                 return 0;
5389
5390         error = security_sid_to_context(sid, value, &len);
5391         if (error)
5392                 return error;
5393         return len;
5394
5395 invalid:
5396         rcu_read_unlock();
5397         return -EINVAL;
5398 }
5399
5400 static int selinux_setprocattr(struct task_struct *p,
5401                                char *name, void *value, size_t size)
5402 {
5403         struct task_security_struct *tsec;
5404         struct task_struct *tracer;
5405         struct cred *new;
5406         u32 sid = 0, ptsid;
5407         int error;
5408         char *str = value;
5409
5410         if (current != p) {
5411                 /* SELinux only allows a process to change its own
5412                    security attributes. */
5413                 return -EACCES;
5414         }
5415
5416         /*
5417          * Basic control over ability to set these attributes at all.
5418          * current == p, but we'll pass them separately in case the
5419          * above restriction is ever removed.
5420          */
5421         if (!strcmp(name, "exec"))
5422                 error = current_has_perm(p, PROCESS__SETEXEC);
5423         else if (!strcmp(name, "fscreate"))
5424                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5425         else if (!strcmp(name, "keycreate"))
5426                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5427         else if (!strcmp(name, "sockcreate"))
5428                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5429         else if (!strcmp(name, "current"))
5430                 error = current_has_perm(p, PROCESS__SETCURRENT);
5431         else
5432                 error = -EINVAL;
5433         if (error)
5434                 return error;
5435
5436         /* Obtain a SID for the context, if one was specified. */
5437         if (size && str[1] && str[1] != '\n') {
5438                 if (str[size-1] == '\n') {
5439                         str[size-1] = 0;
5440                         size--;
5441                 }
5442                 error = security_context_to_sid(value, size, &sid);
5443                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5444                         if (!capable(CAP_MAC_ADMIN)) {
5445                                 struct audit_buffer *ab;
5446                                 size_t audit_size;
5447
5448                                 /* We strip a nul only if it is at the end, otherwise the
5449                                  * context contains a nul and we should audit that */
5450                                 if (str[size - 1] == '\0')
5451                                         audit_size = size - 1;
5452                                 else
5453                                         audit_size = size;
5454                                 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5455                                 audit_log_format(ab, "op=fscreate invalid_context=");
5456                                 audit_log_n_untrustedstring(ab, value, audit_size);
5457                                 audit_log_end(ab);
5458
5459                                 return error;
5460                         }
5461                         error = security_context_to_sid_force(value, size,
5462                                                               &sid);
5463                 }
5464                 if (error)
5465                         return error;
5466         }
5467
5468         new = prepare_creds();
5469         if (!new)
5470                 return -ENOMEM;
5471
5472         /* Permission checking based on the specified context is
5473            performed during the actual operation (execve,
5474            open/mkdir/...), when we know the full context of the
5475            operation.  See selinux_bprm_set_creds for the execve
5476            checks and may_create for the file creation checks. The
5477            operation will then fail if the context is not permitted. */
5478         tsec = new->security;
5479         if (!strcmp(name, "exec")) {
5480                 tsec->exec_sid = sid;
5481         } else if (!strcmp(name, "fscreate")) {
5482                 tsec->create_sid = sid;
5483         } else if (!strcmp(name, "keycreate")) {
5484                 error = may_create_key(sid, p);
5485                 if (error)
5486                         goto abort_change;
5487                 tsec->keycreate_sid = sid;
5488         } else if (!strcmp(name, "sockcreate")) {
5489                 tsec->sockcreate_sid = sid;
5490         } else if (!strcmp(name, "current")) {
5491                 error = -EINVAL;
5492                 if (sid == 0)
5493                         goto abort_change;
5494
5495                 /* Only allow single threaded processes to change context */
5496                 error = -EPERM;
5497                 if (!current_is_single_threaded()) {
5498                         error = security_bounded_transition(tsec->sid, sid);
5499                         if (error)
5500                                 goto abort_change;
5501                 }
5502
5503                 /* Check permissions for the transition. */
5504                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5505                                      PROCESS__DYNTRANSITION, NULL);
5506                 if (error)
5507                         goto abort_change;
5508
5509                 /* Check for ptracing, and update the task SID if ok.
5510                    Otherwise, leave SID unchanged and fail. */
5511                 ptsid = 0;
5512                 task_lock(p);
5513                 tracer = ptrace_parent(p);
5514                 if (tracer)
5515                         ptsid = task_sid(tracer);
5516                 task_unlock(p);
5517
5518                 if (tracer) {
5519                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5520                                              PROCESS__PTRACE, NULL);
5521                         if (error)
5522                                 goto abort_change;
5523                 }
5524
5525                 tsec->sid = sid;
5526         } else {
5527                 error = -EINVAL;
5528                 goto abort_change;
5529         }
5530
5531         commit_creds(new);
5532         return size;
5533
5534 abort_change:
5535         abort_creds(new);
5536         return error;
5537 }
5538
5539 static int selinux_ismaclabel(const char *name)
5540 {
5541         return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5542 }
5543
5544 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5545 {
5546         return security_sid_to_context(secid, secdata, seclen);
5547 }
5548
5549 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5550 {
5551         return security_context_to_sid(secdata, seclen, secid);
5552 }
5553
5554 static void selinux_release_secctx(char *secdata, u32 seclen)
5555 {
5556         kfree(secdata);
5557 }
5558
5559 /*
5560  *      called with inode->i_mutex locked
5561  */
5562 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5563 {
5564         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5565 }
5566
5567 /*
5568  *      called with inode->i_mutex locked
5569  */
5570 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5571 {
5572         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5573 }
5574
5575 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5576 {
5577         int len = 0;
5578         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5579                                                 ctx, true);
5580         if (len < 0)
5581                 return len;
5582         *ctxlen = len;
5583         return 0;
5584 }
5585 #ifdef CONFIG_KEYS
5586
5587 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5588                              unsigned long flags)
5589 {
5590         const struct task_security_struct *tsec;
5591         struct key_security_struct *ksec;
5592
5593         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5594         if (!ksec)
5595                 return -ENOMEM;
5596
5597         tsec = cred->security;
5598         if (tsec->keycreate_sid)
5599                 ksec->sid = tsec->keycreate_sid;
5600         else
5601                 ksec->sid = tsec->sid;
5602
5603         k->security = ksec;
5604         return 0;
5605 }
5606
5607 static void selinux_key_free(struct key *k)
5608 {
5609         struct key_security_struct *ksec = k->security;
5610
5611         k->security = NULL;
5612         kfree(ksec);
5613 }
5614
5615 static int selinux_key_permission(key_ref_t key_ref,
5616                                   const struct cred *cred,
5617                                   key_perm_t perm)
5618 {
5619         struct key *key;
5620         struct key_security_struct *ksec;
5621         u32 sid;
5622
5623         /* if no specific permissions are requested, we skip the
5624            permission check. No serious, additional covert channels
5625            appear to be created. */
5626         if (perm == 0)
5627                 return 0;
5628
5629         sid = cred_sid(cred);
5630
5631         key = key_ref_to_ptr(key_ref);
5632         ksec = key->security;
5633
5634         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5635 }
5636
5637 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5638 {
5639         struct key_security_struct *ksec = key->security;
5640         char *context = NULL;
5641         unsigned len;
5642         int rc;
5643
5644         rc = security_sid_to_context(ksec->sid, &context, &len);
5645         if (!rc)
5646                 rc = len;
5647         *_buffer = context;
5648         return rc;
5649 }
5650
5651 #endif
5652
5653 static struct security_operations selinux_ops = {
5654         .name =                         "selinux",
5655
5656         .ptrace_access_check =          selinux_ptrace_access_check,
5657         .ptrace_traceme =               selinux_ptrace_traceme,
5658         .capget =                       selinux_capget,
5659         .capset =                       selinux_capset,
5660         .capable =                      selinux_capable,
5661         .quotactl =                     selinux_quotactl,
5662         .quota_on =                     selinux_quota_on,
5663         .syslog =                       selinux_syslog,
5664         .vm_enough_memory =             selinux_vm_enough_memory,
5665
5666         .netlink_send =                 selinux_netlink_send,
5667
5668         .bprm_set_creds =               selinux_bprm_set_creds,
5669         .bprm_committing_creds =        selinux_bprm_committing_creds,
5670         .bprm_committed_creds =         selinux_bprm_committed_creds,
5671         .bprm_secureexec =              selinux_bprm_secureexec,
5672
5673         .sb_alloc_security =            selinux_sb_alloc_security,
5674         .sb_free_security =             selinux_sb_free_security,
5675         .sb_copy_data =                 selinux_sb_copy_data,
5676         .sb_remount =                   selinux_sb_remount,
5677         .sb_kern_mount =                selinux_sb_kern_mount,
5678         .sb_show_options =              selinux_sb_show_options,
5679         .sb_statfs =                    selinux_sb_statfs,
5680         .sb_mount =                     selinux_mount,
5681         .sb_umount =                    selinux_umount,
5682         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5683         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5684         .sb_parse_opts_str =            selinux_parse_opts_str,
5685
5686         .dentry_init_security =         selinux_dentry_init_security,
5687
5688         .inode_alloc_security =         selinux_inode_alloc_security,
5689         .inode_free_security =          selinux_inode_free_security,
5690         .inode_init_security =          selinux_inode_init_security,
5691         .inode_create =                 selinux_inode_create,
5692         .inode_link =                   selinux_inode_link,
5693         .inode_unlink =                 selinux_inode_unlink,
5694         .inode_symlink =                selinux_inode_symlink,
5695         .inode_mkdir =                  selinux_inode_mkdir,
5696         .inode_rmdir =                  selinux_inode_rmdir,
5697         .inode_mknod =                  selinux_inode_mknod,
5698         .inode_rename =                 selinux_inode_rename,
5699         .inode_readlink =               selinux_inode_readlink,
5700         .inode_follow_link =            selinux_inode_follow_link,
5701         .inode_permission =             selinux_inode_permission,
5702         .inode_setattr =                selinux_inode_setattr,
5703         .inode_getattr =                selinux_inode_getattr,
5704         .inode_setxattr =               selinux_inode_setxattr,
5705         .inode_post_setxattr =          selinux_inode_post_setxattr,
5706         .inode_getxattr =               selinux_inode_getxattr,
5707         .inode_listxattr =              selinux_inode_listxattr,
5708         .inode_removexattr =            selinux_inode_removexattr,
5709         .inode_getsecurity =            selinux_inode_getsecurity,
5710         .inode_setsecurity =            selinux_inode_setsecurity,
5711         .inode_listsecurity =           selinux_inode_listsecurity,
5712         .inode_getsecid =               selinux_inode_getsecid,
5713
5714         .file_permission =              selinux_file_permission,
5715         .file_alloc_security =          selinux_file_alloc_security,
5716         .file_free_security =           selinux_file_free_security,
5717         .file_ioctl =                   selinux_file_ioctl,
5718         .mmap_file =                    selinux_mmap_file,
5719         .mmap_addr =                    selinux_mmap_addr,
5720         .file_mprotect =                selinux_file_mprotect,
5721         .file_lock =                    selinux_file_lock,
5722         .file_fcntl =                   selinux_file_fcntl,
5723         .file_set_fowner =              selinux_file_set_fowner,
5724         .file_send_sigiotask =          selinux_file_send_sigiotask,
5725         .file_receive =                 selinux_file_receive,
5726
5727         .file_open =                    selinux_file_open,
5728
5729         .task_create =                  selinux_task_create,
5730         .cred_alloc_blank =             selinux_cred_alloc_blank,
5731         .cred_free =                    selinux_cred_free,
5732         .cred_prepare =                 selinux_cred_prepare,
5733         .cred_transfer =                selinux_cred_transfer,
5734         .kernel_act_as =                selinux_kernel_act_as,
5735         .kernel_create_files_as =       selinux_kernel_create_files_as,
5736         .kernel_module_request =        selinux_kernel_module_request,
5737         .task_setpgid =                 selinux_task_setpgid,
5738         .task_getpgid =                 selinux_task_getpgid,
5739         .task_getsid =                  selinux_task_getsid,
5740         .task_getsecid =                selinux_task_getsecid,
5741         .task_setnice =                 selinux_task_setnice,
5742         .task_setioprio =               selinux_task_setioprio,
5743         .task_getioprio =               selinux_task_getioprio,
5744         .task_setrlimit =               selinux_task_setrlimit,
5745         .task_setscheduler =            selinux_task_setscheduler,
5746         .task_getscheduler =            selinux_task_getscheduler,
5747         .task_movememory =              selinux_task_movememory,
5748         .task_kill =                    selinux_task_kill,
5749         .task_wait =                    selinux_task_wait,
5750         .task_to_inode =                selinux_task_to_inode,
5751
5752         .ipc_permission =               selinux_ipc_permission,
5753         .ipc_getsecid =                 selinux_ipc_getsecid,
5754
5755         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5756         .msg_msg_free_security =        selinux_msg_msg_free_security,
5757
5758         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5759         .msg_queue_free_security =      selinux_msg_queue_free_security,
5760         .msg_queue_associate =          selinux_msg_queue_associate,
5761         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5762         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5763         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5764
5765         .shm_alloc_security =           selinux_shm_alloc_security,
5766         .shm_free_security =            selinux_shm_free_security,
5767         .shm_associate =                selinux_shm_associate,
5768         .shm_shmctl =                   selinux_shm_shmctl,
5769         .shm_shmat =                    selinux_shm_shmat,
5770
5771         .sem_alloc_security =           selinux_sem_alloc_security,
5772         .sem_free_security =            selinux_sem_free_security,
5773         .sem_associate =                selinux_sem_associate,
5774         .sem_semctl =                   selinux_sem_semctl,
5775         .sem_semop =                    selinux_sem_semop,
5776
5777         .d_instantiate =                selinux_d_instantiate,
5778
5779         .getprocattr =                  selinux_getprocattr,
5780         .setprocattr =                  selinux_setprocattr,
5781
5782         .ismaclabel =                   selinux_ismaclabel,
5783         .secid_to_secctx =              selinux_secid_to_secctx,
5784         .secctx_to_secid =              selinux_secctx_to_secid,
5785         .release_secctx =               selinux_release_secctx,
5786         .inode_notifysecctx =           selinux_inode_notifysecctx,
5787         .inode_setsecctx =              selinux_inode_setsecctx,
5788         .inode_getsecctx =              selinux_inode_getsecctx,
5789
5790         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5791         .unix_may_send =                selinux_socket_unix_may_send,
5792
5793         .socket_create =                selinux_socket_create,
5794         .socket_post_create =           selinux_socket_post_create,
5795         .socket_bind =                  selinux_socket_bind,
5796         .socket_connect =               selinux_socket_connect,
5797         .socket_listen =                selinux_socket_listen,
5798         .socket_accept =                selinux_socket_accept,
5799         .socket_sendmsg =               selinux_socket_sendmsg,
5800         .socket_recvmsg =               selinux_socket_recvmsg,
5801         .socket_getsockname =           selinux_socket_getsockname,
5802         .socket_getpeername =           selinux_socket_getpeername,
5803         .socket_getsockopt =            selinux_socket_getsockopt,
5804         .socket_setsockopt =            selinux_socket_setsockopt,
5805         .socket_shutdown =              selinux_socket_shutdown,
5806         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5807         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5808         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5809         .sk_alloc_security =            selinux_sk_alloc_security,
5810         .sk_free_security =             selinux_sk_free_security,
5811         .sk_clone_security =            selinux_sk_clone_security,
5812         .sk_getsecid =                  selinux_sk_getsecid,
5813         .sock_graft =                   selinux_sock_graft,
5814         .inet_conn_request =            selinux_inet_conn_request,
5815         .inet_csk_clone =               selinux_inet_csk_clone,
5816         .inet_conn_established =        selinux_inet_conn_established,
5817         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5818         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5819         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5820         .req_classify_flow =            selinux_req_classify_flow,
5821         .tun_dev_alloc_security =       selinux_tun_dev_alloc_security,
5822         .tun_dev_free_security =        selinux_tun_dev_free_security,
5823         .tun_dev_create =               selinux_tun_dev_create,
5824         .tun_dev_attach_queue =         selinux_tun_dev_attach_queue,
5825         .tun_dev_attach =               selinux_tun_dev_attach,
5826         .tun_dev_open =                 selinux_tun_dev_open,
5827         .skb_owned_by =                 selinux_skb_owned_by,
5828
5829 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5830         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5831         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5832         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5833         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5834         .xfrm_state_alloc =             selinux_xfrm_state_alloc,
5835         .xfrm_state_alloc_acquire =     selinux_xfrm_state_alloc_acquire,
5836         .xfrm_state_free_security =     selinux_xfrm_state_free,
5837         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5838         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5839         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5840         .xfrm_decode_session =          selinux_xfrm_decode_session,
5841 #endif
5842
5843 #ifdef CONFIG_KEYS
5844         .key_alloc =                    selinux_key_alloc,
5845         .key_free =                     selinux_key_free,
5846         .key_permission =               selinux_key_permission,
5847         .key_getsecurity =              selinux_key_getsecurity,
5848 #endif
5849
5850 #ifdef CONFIG_AUDIT
5851         .audit_rule_init =              selinux_audit_rule_init,
5852         .audit_rule_known =             selinux_audit_rule_known,
5853         .audit_rule_match =             selinux_audit_rule_match,
5854         .audit_rule_free =              selinux_audit_rule_free,
5855 #endif
5856 };
5857
5858 static __init int selinux_init(void)
5859 {
5860         if (!security_module_enable(&selinux_ops)) {
5861                 selinux_enabled = 0;
5862                 return 0;
5863         }
5864
5865         if (!selinux_enabled) {
5866                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5867                 return 0;
5868         }
5869
5870         printk(KERN_INFO "SELinux:  Initializing.\n");
5871
5872         /* Set the security state for the initial task. */
5873         cred_init_security();
5874
5875         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5876
5877         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5878                                             sizeof(struct inode_security_struct),
5879                                             0, SLAB_PANIC, NULL);
5880         avc_init();
5881
5882         if (register_security(&selinux_ops))
5883                 panic("SELinux: Unable to register with kernel.\n");
5884
5885         if (selinux_enforcing)
5886                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5887         else
5888                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5889
5890         return 0;
5891 }
5892
5893 static void delayed_superblock_init(struct super_block *sb, void *unused)
5894 {
5895         superblock_doinit(sb, NULL);
5896 }
5897
5898 void selinux_complete_init(void)
5899 {
5900         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5901
5902         /* Set up any superblocks initialized prior to the policy load. */
5903         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5904         iterate_supers(delayed_superblock_init, NULL);
5905 }
5906
5907 /* SELinux requires early initialization in order to label
5908    all processes and objects when they are created. */
5909 security_initcall(selinux_init);
5910
5911 #if defined(CONFIG_NETFILTER)
5912
5913 static struct nf_hook_ops selinux_ipv4_ops[] = {
5914         {
5915                 .hook =         selinux_ipv4_postroute,
5916                 .owner =        THIS_MODULE,
5917                 .pf =           NFPROTO_IPV4,
5918                 .hooknum =      NF_INET_POST_ROUTING,
5919                 .priority =     NF_IP_PRI_SELINUX_LAST,
5920         },
5921         {
5922                 .hook =         selinux_ipv4_forward,
5923                 .owner =        THIS_MODULE,
5924                 .pf =           NFPROTO_IPV4,
5925                 .hooknum =      NF_INET_FORWARD,
5926                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5927         },
5928         {
5929                 .hook =         selinux_ipv4_output,
5930                 .owner =        THIS_MODULE,
5931                 .pf =           NFPROTO_IPV4,
5932                 .hooknum =      NF_INET_LOCAL_OUT,
5933                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5934         }
5935 };
5936
5937 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5938
5939 static struct nf_hook_ops selinux_ipv6_ops[] = {
5940         {
5941                 .hook =         selinux_ipv6_postroute,
5942                 .owner =        THIS_MODULE,
5943                 .pf =           NFPROTO_IPV6,
5944                 .hooknum =      NF_INET_POST_ROUTING,
5945                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5946         },
5947         {
5948                 .hook =         selinux_ipv6_forward,
5949                 .owner =        THIS_MODULE,
5950                 .pf =           NFPROTO_IPV6,
5951                 .hooknum =      NF_INET_FORWARD,
5952                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5953         }
5954 };
5955
5956 #endif  /* IPV6 */
5957
5958 static int __init selinux_nf_ip_init(void)
5959 {
5960         int err = 0;
5961
5962         if (!selinux_enabled)
5963                 goto out;
5964
5965         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5966
5967         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5968         if (err)
5969                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5970
5971 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5972         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5973         if (err)
5974                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5975 #endif  /* IPV6 */
5976
5977 out:
5978         return err;
5979 }
5980
5981 __initcall(selinux_nf_ip_init);
5982
5983 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5984 static void selinux_nf_ip_exit(void)
5985 {
5986         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5987
5988         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5989 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5990         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5991 #endif  /* IPV6 */
5992 }
5993 #endif
5994
5995 #else /* CONFIG_NETFILTER */
5996
5997 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5998 #define selinux_nf_ip_exit()
5999 #endif
6000
6001 #endif /* CONFIG_NETFILTER */
6002
6003 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6004 static int selinux_disabled;
6005
6006 int selinux_disable(void)
6007 {
6008         if (ss_initialized) {
6009                 /* Not permitted after initial policy load. */
6010                 return -EINVAL;
6011         }
6012
6013         if (selinux_disabled) {
6014                 /* Only do this once. */
6015                 return -EINVAL;
6016         }
6017
6018         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6019
6020         selinux_disabled = 1;
6021         selinux_enabled = 0;
6022
6023         reset_security_ops();
6024
6025         /* Try to destroy the avc node cache */
6026         avc_disable();
6027
6028         /* Unregister netfilter hooks. */
6029         selinux_nf_ip_exit();
6030
6031         /* Unregister selinuxfs. */
6032         exit_sel_fs();
6033
6034         return 0;
6035 }
6036 #endif