Merge branches 'acpi-battery', 'acpi-video' and 'acpi-misc'
[sfrench/cifs-2.6.git] / security / keys / trusted-keys / trusted_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2010 IBM Corporation
4  * Copyright (c) 2019-2021, Linaro Limited
5  *
6  * See Documentation/security/keys/trusted-encrypted.rst
7  */
8
9 #include <keys/user-type.h>
10 #include <keys/trusted-type.h>
11 #include <keys/trusted_tee.h>
12 #include <keys/trusted_caam.h>
13 #include <keys/trusted_tpm.h>
14 #include <linux/capability.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/key-type.h>
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <linux/random.h>
21 #include <linux/rcupdate.h>
22 #include <linux/slab.h>
23 #include <linux/static_call.h>
24 #include <linux/string.h>
25 #include <linux/uaccess.h>
26
27 static char *trusted_rng = "default";
28 module_param_named(rng, trusted_rng, charp, 0);
29 MODULE_PARM_DESC(rng, "Select trusted key RNG");
30
31 static char *trusted_key_source;
32 module_param_named(source, trusted_key_source, charp, 0);
33 MODULE_PARM_DESC(source, "Select trusted keys source (tpm, tee or caam)");
34
35 static const struct trusted_key_source trusted_key_sources[] = {
36 #if defined(CONFIG_TRUSTED_KEYS_TPM)
37         { "tpm", &trusted_key_tpm_ops },
38 #endif
39 #if defined(CONFIG_TRUSTED_KEYS_TEE)
40         { "tee", &trusted_key_tee_ops },
41 #endif
42 #if defined(CONFIG_TRUSTED_KEYS_CAAM)
43         { "caam", &trusted_key_caam_ops },
44 #endif
45 };
46
47 DEFINE_STATIC_CALL_NULL(trusted_key_init, *trusted_key_sources[0].ops->init);
48 DEFINE_STATIC_CALL_NULL(trusted_key_seal, *trusted_key_sources[0].ops->seal);
49 DEFINE_STATIC_CALL_NULL(trusted_key_unseal,
50                         *trusted_key_sources[0].ops->unseal);
51 DEFINE_STATIC_CALL_NULL(trusted_key_get_random,
52                         *trusted_key_sources[0].ops->get_random);
53 DEFINE_STATIC_CALL_NULL(trusted_key_exit, *trusted_key_sources[0].ops->exit);
54 static unsigned char migratable;
55
56 enum {
57         Opt_err,
58         Opt_new, Opt_load, Opt_update,
59 };
60
61 static const match_table_t key_tokens = {
62         {Opt_new, "new"},
63         {Opt_load, "load"},
64         {Opt_update, "update"},
65         {Opt_err, NULL}
66 };
67
68 /*
69  * datablob_parse - parse the keyctl data and fill in the
70  *                  payload structure
71  *
72  * On success returns 0, otherwise -EINVAL.
73  */
74 static int datablob_parse(char **datablob, struct trusted_key_payload *p)
75 {
76         substring_t args[MAX_OPT_ARGS];
77         long keylen;
78         int ret = -EINVAL;
79         int key_cmd;
80         char *c;
81
82         /* main command */
83         c = strsep(datablob, " \t");
84         if (!c)
85                 return -EINVAL;
86         key_cmd = match_token(c, key_tokens, args);
87         switch (key_cmd) {
88         case Opt_new:
89                 /* first argument is key size */
90                 c = strsep(datablob, " \t");
91                 if (!c)
92                         return -EINVAL;
93                 ret = kstrtol(c, 10, &keylen);
94                 if (ret < 0 || keylen < MIN_KEY_SIZE || keylen > MAX_KEY_SIZE)
95                         return -EINVAL;
96                 p->key_len = keylen;
97                 ret = Opt_new;
98                 break;
99         case Opt_load:
100                 /* first argument is sealed blob */
101                 c = strsep(datablob, " \t");
102                 if (!c)
103                         return -EINVAL;
104                 p->blob_len = strlen(c) / 2;
105                 if (p->blob_len > MAX_BLOB_SIZE)
106                         return -EINVAL;
107                 ret = hex2bin(p->blob, c, p->blob_len);
108                 if (ret < 0)
109                         return -EINVAL;
110                 ret = Opt_load;
111                 break;
112         case Opt_update:
113                 ret = Opt_update;
114                 break;
115         case Opt_err:
116                 return -EINVAL;
117         }
118         return ret;
119 }
120
121 static struct trusted_key_payload *trusted_payload_alloc(struct key *key)
122 {
123         struct trusted_key_payload *p = NULL;
124         int ret;
125
126         ret = key_payload_reserve(key, sizeof(*p));
127         if (ret < 0)
128                 goto err;
129         p = kzalloc(sizeof(*p), GFP_KERNEL);
130         if (!p)
131                 goto err;
132
133         p->migratable = migratable;
134 err:
135         return p;
136 }
137
138 /*
139  * trusted_instantiate - create a new trusted key
140  *
141  * Unseal an existing trusted blob or, for a new key, get a
142  * random key, then seal and create a trusted key-type key,
143  * adding it to the specified keyring.
144  *
145  * On success, return 0. Otherwise return errno.
146  */
147 static int trusted_instantiate(struct key *key,
148                                struct key_preparsed_payload *prep)
149 {
150         struct trusted_key_payload *payload = NULL;
151         size_t datalen = prep->datalen;
152         char *datablob, *orig_datablob;
153         int ret = 0;
154         int key_cmd;
155         size_t key_len;
156
157         if (datalen <= 0 || datalen > 32767 || !prep->data)
158                 return -EINVAL;
159
160         orig_datablob = datablob = kmalloc(datalen + 1, GFP_KERNEL);
161         if (!datablob)
162                 return -ENOMEM;
163         memcpy(datablob, prep->data, datalen);
164         datablob[datalen] = '\0';
165
166         payload = trusted_payload_alloc(key);
167         if (!payload) {
168                 ret = -ENOMEM;
169                 goto out;
170         }
171
172         key_cmd = datablob_parse(&datablob, payload);
173         if (key_cmd < 0) {
174                 ret = key_cmd;
175                 goto out;
176         }
177
178         dump_payload(payload);
179
180         switch (key_cmd) {
181         case Opt_load:
182                 ret = static_call(trusted_key_unseal)(payload, datablob);
183                 dump_payload(payload);
184                 if (ret < 0)
185                         pr_info("key_unseal failed (%d)\n", ret);
186                 break;
187         case Opt_new:
188                 key_len = payload->key_len;
189                 ret = static_call(trusted_key_get_random)(payload->key,
190                                                           key_len);
191                 if (ret < 0)
192                         goto out;
193
194                 if (ret != key_len) {
195                         pr_info("key_create failed (%d)\n", ret);
196                         ret = -EIO;
197                         goto out;
198                 }
199
200                 ret = static_call(trusted_key_seal)(payload, datablob);
201                 if (ret < 0)
202                         pr_info("key_seal failed (%d)\n", ret);
203                 break;
204         default:
205                 ret = -EINVAL;
206         }
207 out:
208         kfree_sensitive(orig_datablob);
209         if (!ret)
210                 rcu_assign_keypointer(key, payload);
211         else
212                 kfree_sensitive(payload);
213         return ret;
214 }
215
216 static void trusted_rcu_free(struct rcu_head *rcu)
217 {
218         struct trusted_key_payload *p;
219
220         p = container_of(rcu, struct trusted_key_payload, rcu);
221         kfree_sensitive(p);
222 }
223
224 /*
225  * trusted_update - reseal an existing key with new PCR values
226  */
227 static int trusted_update(struct key *key, struct key_preparsed_payload *prep)
228 {
229         struct trusted_key_payload *p;
230         struct trusted_key_payload *new_p;
231         size_t datalen = prep->datalen;
232         char *datablob, *orig_datablob;
233         int ret = 0;
234
235         if (key_is_negative(key))
236                 return -ENOKEY;
237         p = key->payload.data[0];
238         if (!p->migratable)
239                 return -EPERM;
240         if (datalen <= 0 || datalen > 32767 || !prep->data)
241                 return -EINVAL;
242
243         orig_datablob = datablob = kmalloc(datalen + 1, GFP_KERNEL);
244         if (!datablob)
245                 return -ENOMEM;
246
247         new_p = trusted_payload_alloc(key);
248         if (!new_p) {
249                 ret = -ENOMEM;
250                 goto out;
251         }
252
253         memcpy(datablob, prep->data, datalen);
254         datablob[datalen] = '\0';
255         ret = datablob_parse(&datablob, new_p);
256         if (ret != Opt_update) {
257                 ret = -EINVAL;
258                 kfree_sensitive(new_p);
259                 goto out;
260         }
261
262         /* copy old key values, and reseal with new pcrs */
263         new_p->migratable = p->migratable;
264         new_p->key_len = p->key_len;
265         memcpy(new_p->key, p->key, p->key_len);
266         dump_payload(p);
267         dump_payload(new_p);
268
269         ret = static_call(trusted_key_seal)(new_p, datablob);
270         if (ret < 0) {
271                 pr_info("key_seal failed (%d)\n", ret);
272                 kfree_sensitive(new_p);
273                 goto out;
274         }
275
276         rcu_assign_keypointer(key, new_p);
277         call_rcu(&p->rcu, trusted_rcu_free);
278 out:
279         kfree_sensitive(orig_datablob);
280         return ret;
281 }
282
283 /*
284  * trusted_read - copy the sealed blob data to userspace in hex.
285  * On success, return to userspace the trusted key datablob size.
286  */
287 static long trusted_read(const struct key *key, char *buffer,
288                          size_t buflen)
289 {
290         const struct trusted_key_payload *p;
291         char *bufp;
292         int i;
293
294         p = dereference_key_locked(key);
295         if (!p)
296                 return -EINVAL;
297
298         if (buffer && buflen >= 2 * p->blob_len) {
299                 bufp = buffer;
300                 for (i = 0; i < p->blob_len; i++)
301                         bufp = hex_byte_pack(bufp, p->blob[i]);
302         }
303         return 2 * p->blob_len;
304 }
305
306 /*
307  * trusted_destroy - clear and free the key's payload
308  */
309 static void trusted_destroy(struct key *key)
310 {
311         kfree_sensitive(key->payload.data[0]);
312 }
313
314 struct key_type key_type_trusted = {
315         .name = "trusted",
316         .instantiate = trusted_instantiate,
317         .update = trusted_update,
318         .destroy = trusted_destroy,
319         .describe = user_describe,
320         .read = trusted_read,
321 };
322 EXPORT_SYMBOL_GPL(key_type_trusted);
323
324 static int kernel_get_random(unsigned char *key, size_t key_len)
325 {
326         return get_random_bytes_wait(key, key_len) ?: key_len;
327 }
328
329 static int __init init_trusted(void)
330 {
331         int (*get_random)(unsigned char *key, size_t key_len);
332         int i, ret = 0;
333
334         for (i = 0; i < ARRAY_SIZE(trusted_key_sources); i++) {
335                 if (trusted_key_source &&
336                     strncmp(trusted_key_source, trusted_key_sources[i].name,
337                             strlen(trusted_key_sources[i].name)))
338                         continue;
339
340                 /*
341                  * We always support trusted.rng="kernel" and "default" as
342                  * well as trusted.rng=$trusted.source if the trust source
343                  * defines its own get_random callback.
344                  */
345                 get_random = trusted_key_sources[i].ops->get_random;
346                 if (trusted_rng && strcmp(trusted_rng, "default")) {
347                         if (!strcmp(trusted_rng, "kernel")) {
348                                 get_random = kernel_get_random;
349                         } else if (strcmp(trusted_rng, trusted_key_sources[i].name) ||
350                                    !get_random) {
351                                 pr_warn("Unsupported RNG. Supported: kernel");
352                                 if (get_random)
353                                         pr_cont(", %s", trusted_key_sources[i].name);
354                                 pr_cont(", default\n");
355                                 return -EINVAL;
356                         }
357                 }
358
359                 if (!get_random)
360                         get_random = kernel_get_random;
361
362                 static_call_update(trusted_key_init,
363                                    trusted_key_sources[i].ops->init);
364                 static_call_update(trusted_key_seal,
365                                    trusted_key_sources[i].ops->seal);
366                 static_call_update(trusted_key_unseal,
367                                    trusted_key_sources[i].ops->unseal);
368                 static_call_update(trusted_key_get_random,
369                                    get_random);
370                 static_call_update(trusted_key_exit,
371                                    trusted_key_sources[i].ops->exit);
372                 migratable = trusted_key_sources[i].ops->migratable;
373
374                 ret = static_call(trusted_key_init)();
375                 if (!ret)
376                         break;
377         }
378
379         /*
380          * encrypted_keys.ko depends on successful load of this module even if
381          * trusted key implementation is not found.
382          */
383         if (ret == -ENODEV)
384                 return 0;
385
386         return ret;
387 }
388
389 static void __exit cleanup_trusted(void)
390 {
391         static_call_cond(trusted_key_exit)();
392 }
393
394 late_initcall(init_trusted);
395 module_exit(cleanup_trusted);
396
397 MODULE_LICENSE("GPL");