arm64: mte: fix prctl(PR_GET_TAGGED_ADDR_CTRL) if TCF0=NONE
[sfrench/cifs-2.6.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2019 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139         return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141
142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144         return rcu_dereference_rtnl(wiphy->regd);
145 }
146
147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149         switch (dfs_region) {
150         case NL80211_DFS_UNSET:
151                 return "unset";
152         case NL80211_DFS_FCC:
153                 return "FCC";
154         case NL80211_DFS_ETSI:
155                 return "ETSI";
156         case NL80211_DFS_JP:
157                 return "JP";
158         }
159         return "Unknown";
160 }
161
162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164         const struct ieee80211_regdomain *regd = NULL;
165         const struct ieee80211_regdomain *wiphy_regd = NULL;
166
167         regd = get_cfg80211_regdom();
168         if (!wiphy)
169                 goto out;
170
171         wiphy_regd = get_wiphy_regdom(wiphy);
172         if (!wiphy_regd)
173                 goto out;
174
175         if (wiphy_regd->dfs_region == regd->dfs_region)
176                 goto out;
177
178         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179                  dev_name(&wiphy->dev),
180                  reg_dfs_region_str(wiphy_regd->dfs_region),
181                  reg_dfs_region_str(regd->dfs_region));
182
183 out:
184         return regd->dfs_region;
185 }
186
187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189         if (!r)
190                 return;
191         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193
194 static struct regulatory_request *get_last_request(void)
195 {
196         return rcu_dereference_rtnl(last_request);
197 }
198
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209
210 struct reg_beacon {
211         struct list_head list;
212         struct ieee80211_channel chan;
213 };
214
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223         .n_reg_rules = 8,
224         .alpha2 =  "00",
225         .reg_rules = {
226                 /* IEEE 802.11b/g, channels 1..11 */
227                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228                 /* IEEE 802.11b/g, channels 12..13. */
229                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231                 /* IEEE 802.11 channel 14 - Only JP enables
232                  * this and for 802.11b only */
233                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234                         NL80211_RRF_NO_IR |
235                         NL80211_RRF_NO_OFDM),
236                 /* IEEE 802.11a, channel 36..48 */
237                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238                         NL80211_RRF_NO_IR |
239                         NL80211_RRF_AUTO_BW),
240
241                 /* IEEE 802.11a, channel 52..64 - DFS required */
242                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243                         NL80211_RRF_NO_IR |
244                         NL80211_RRF_AUTO_BW |
245                         NL80211_RRF_DFS),
246
247                 /* IEEE 802.11a, channel 100..144 - DFS required */
248                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249                         NL80211_RRF_NO_IR |
250                         NL80211_RRF_DFS),
251
252                 /* IEEE 802.11a, channel 149..165 */
253                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254                         NL80211_RRF_NO_IR),
255
256                 /* IEEE 802.11ad (60GHz), channels 1..3 */
257                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258         }
259 };
260
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263         &world_regdom;
264
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271
272 static void reg_free_request(struct regulatory_request *request)
273 {
274         if (request == &core_request_world)
275                 return;
276
277         if (request != get_last_request())
278                 kfree(request);
279 }
280
281 static void reg_free_last_request(void)
282 {
283         struct regulatory_request *lr = get_last_request();
284
285         if (lr != &core_request_world && lr)
286                 kfree_rcu(lr, rcu_head);
287 }
288
289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291         struct regulatory_request *lr;
292
293         lr = get_last_request();
294         if (lr == request)
295                 return;
296
297         reg_free_last_request();
298         rcu_assign_pointer(last_request, request);
299 }
300
301 static void reset_regdomains(bool full_reset,
302                              const struct ieee80211_regdomain *new_regdom)
303 {
304         const struct ieee80211_regdomain *r;
305
306         ASSERT_RTNL();
307
308         r = get_cfg80211_regdom();
309
310         /* avoid freeing static information or freeing something twice */
311         if (r == cfg80211_world_regdom)
312                 r = NULL;
313         if (cfg80211_world_regdom == &world_regdom)
314                 cfg80211_world_regdom = NULL;
315         if (r == &world_regdom)
316                 r = NULL;
317
318         rcu_free_regdom(r);
319         rcu_free_regdom(cfg80211_world_regdom);
320
321         cfg80211_world_regdom = &world_regdom;
322         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324         if (!full_reset)
325                 return;
326
327         reg_update_last_request(&core_request_world);
328 }
329
330 /*
331  * Dynamic world regulatory domain requested by the wireless
332  * core upon initialization
333  */
334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336         struct regulatory_request *lr;
337
338         lr = get_last_request();
339
340         WARN_ON(!lr);
341
342         reset_regdomains(false, rd);
343
344         cfg80211_world_regdom = rd;
345 }
346
347 bool is_world_regdom(const char *alpha2)
348 {
349         if (!alpha2)
350                 return false;
351         return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353
354 static bool is_alpha2_set(const char *alpha2)
355 {
356         if (!alpha2)
357                 return false;
358         return alpha2[0] && alpha2[1];
359 }
360
361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363         if (!alpha2)
364                 return false;
365         /*
366          * Special case where regulatory domain was built by driver
367          * but a specific alpha2 cannot be determined
368          */
369         return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371
372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374         if (!alpha2)
375                 return false;
376         /*
377          * Special case where regulatory domain is the
378          * result of an intersection between two regulatory domain
379          * structures
380          */
381         return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383
384 static bool is_an_alpha2(const char *alpha2)
385 {
386         if (!alpha2)
387                 return false;
388         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390
391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393         if (!alpha2_x || !alpha2_y)
394                 return false;
395         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397
398 static bool regdom_changes(const char *alpha2)
399 {
400         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402         if (!r)
403                 return true;
404         return !alpha2_equal(r->alpha2, alpha2);
405 }
406
407 /*
408  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410  * has ever been issued.
411  */
412 static bool is_user_regdom_saved(void)
413 {
414         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415                 return false;
416
417         /* This would indicate a mistake on the design */
418         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419                  "Unexpected user alpha2: %c%c\n",
420                  user_alpha2[0], user_alpha2[1]))
421                 return false;
422
423         return true;
424 }
425
426 static const struct ieee80211_regdomain *
427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429         struct ieee80211_regdomain *regd;
430         unsigned int i;
431
432         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433                        GFP_KERNEL);
434         if (!regd)
435                 return ERR_PTR(-ENOMEM);
436
437         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438
439         for (i = 0; i < src_regd->n_reg_rules; i++)
440                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441                        sizeof(struct ieee80211_reg_rule));
442
443         return regd;
444 }
445
446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
447 {
448         ASSERT_RTNL();
449
450         if (!IS_ERR(cfg80211_user_regdom))
451                 kfree(cfg80211_user_regdom);
452         cfg80211_user_regdom = reg_copy_regd(rd);
453 }
454
455 struct reg_regdb_apply_request {
456         struct list_head list;
457         const struct ieee80211_regdomain *regdom;
458 };
459
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462
463 static void reg_regdb_apply(struct work_struct *work)
464 {
465         struct reg_regdb_apply_request *request;
466
467         rtnl_lock();
468
469         mutex_lock(&reg_regdb_apply_mutex);
470         while (!list_empty(&reg_regdb_apply_list)) {
471                 request = list_first_entry(&reg_regdb_apply_list,
472                                            struct reg_regdb_apply_request,
473                                            list);
474                 list_del(&request->list);
475
476                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477                 kfree(request);
478         }
479         mutex_unlock(&reg_regdb_apply_mutex);
480
481         rtnl_unlock();
482 }
483
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485
486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
487 {
488         struct reg_regdb_apply_request *request;
489
490         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491         if (!request) {
492                 kfree(regdom);
493                 return -ENOMEM;
494         }
495
496         request->regdom = regdom;
497
498         mutex_lock(&reg_regdb_apply_mutex);
499         list_add_tail(&request->list, &reg_regdb_apply_list);
500         mutex_unlock(&reg_regdb_apply_mutex);
501
502         schedule_work(&reg_regdb_work);
503         return 0;
504 }
505
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA  */
508 #define REG_MAX_CRDA_TIMEOUTS 10
509
510 static u32 reg_crda_timeouts;
511
512 static void crda_timeout_work(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
514
515 static void crda_timeout_work(struct work_struct *work)
516 {
517         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518         rtnl_lock();
519         reg_crda_timeouts++;
520         restore_regulatory_settings(true, false);
521         rtnl_unlock();
522 }
523
524 static void cancel_crda_timeout(void)
525 {
526         cancel_delayed_work(&crda_timeout);
527 }
528
529 static void cancel_crda_timeout_sync(void)
530 {
531         cancel_delayed_work_sync(&crda_timeout);
532 }
533
534 static void reset_crda_timeouts(void)
535 {
536         reg_crda_timeouts = 0;
537 }
538
539 /*
540  * This lets us keep regulatory code which is updated on a regulatory
541  * basis in userspace.
542  */
543 static int call_crda(const char *alpha2)
544 {
545         char country[12];
546         char *env[] = { country, NULL };
547         int ret;
548
549         snprintf(country, sizeof(country), "COUNTRY=%c%c",
550                  alpha2[0], alpha2[1]);
551
552         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554                 return -EINVAL;
555         }
556
557         if (!is_world_regdom((char *) alpha2))
558                 pr_debug("Calling CRDA for country: %c%c\n",
559                          alpha2[0], alpha2[1]);
560         else
561                 pr_debug("Calling CRDA to update world regulatory domain\n");
562
563         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
564         if (ret)
565                 return ret;
566
567         queue_delayed_work(system_power_efficient_wq,
568                            &crda_timeout, msecs_to_jiffies(3142));
569         return 0;
570 }
571 #else
572 static inline void cancel_crda_timeout(void) {}
573 static inline void cancel_crda_timeout_sync(void) {}
574 static inline void reset_crda_timeouts(void) {}
575 static inline int call_crda(const char *alpha2)
576 {
577         return -ENODATA;
578 }
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
580
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header *regdb;
583
584 struct fwdb_country {
585         u8 alpha2[2];
586         __be16 coll_ptr;
587         /* this struct cannot be extended */
588 } __packed __aligned(4);
589
590 struct fwdb_collection {
591         u8 len;
592         u8 n_rules;
593         u8 dfs_region;
594         /* no optional data yet */
595         /* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed __aligned(4);
597
598 enum fwdb_flags {
599         FWDB_FLAG_NO_OFDM       = BIT(0),
600         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
601         FWDB_FLAG_DFS           = BIT(2),
602         FWDB_FLAG_NO_IR         = BIT(3),
603         FWDB_FLAG_AUTO_BW       = BIT(4),
604 };
605
606 struct fwdb_wmm_ac {
607         u8 ecw;
608         u8 aifsn;
609         __be16 cot;
610 } __packed;
611
612 struct fwdb_wmm_rule {
613         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615 } __packed;
616
617 struct fwdb_rule {
618         u8 len;
619         u8 flags;
620         __be16 max_eirp;
621         __be32 start, end, max_bw;
622         /* start of optional data */
623         __be16 cac_timeout;
624         __be16 wmm_ptr;
625 } __packed __aligned(4);
626
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
629
630 struct fwdb_header {
631         __be32 magic;
632         __be32 version;
633         struct fwdb_country country[];
634 } __packed __aligned(4);
635
636 static int ecw2cw(int ecw)
637 {
638         return (1 << ecw) - 1;
639 }
640
641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
642 {
643         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644         int i;
645
646         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649                 u8 aifsn = ac[i].aifsn;
650
651                 if (cw_min >= cw_max)
652                         return false;
653
654                 if (aifsn < 1)
655                         return false;
656         }
657
658         return true;
659 }
660
661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
662 {
663         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
664
665         if ((u8 *)rule + sizeof(rule->len) > data + size)
666                 return false;
667
668         /* mandatory fields */
669         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670                 return false;
671         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673                 struct fwdb_wmm_rule *wmm;
674
675                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676                         return false;
677
678                 wmm = (void *)(data + wmm_ptr);
679
680                 if (!valid_wmm(wmm))
681                         return false;
682         }
683         return true;
684 }
685
686 static bool valid_country(const u8 *data, unsigned int size,
687                           const struct fwdb_country *country)
688 {
689         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690         struct fwdb_collection *coll = (void *)(data + ptr);
691         __be16 *rules_ptr;
692         unsigned int i;
693
694         /* make sure we can read len/n_rules */
695         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696                 return false;
697
698         /* make sure base struct and all rules fit */
699         if ((u8 *)coll + ALIGN(coll->len, 2) +
700             (coll->n_rules * 2) > data + size)
701                 return false;
702
703         /* mandatory fields must exist */
704         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705                 return false;
706
707         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
708
709         for (i = 0; i < coll->n_rules; i++) {
710                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
711
712                 if (!valid_rule(data, size, rule_ptr))
713                         return false;
714         }
715
716         return true;
717 }
718
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key *builtin_regdb_keys;
721
722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
723 {
724         const u8 *end = p + buflen;
725         size_t plen;
726         key_ref_t key;
727
728         while (p < end) {
729                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730                  * than 256 bytes in size.
731                  */
732                 if (end - p < 4)
733                         goto dodgy_cert;
734                 if (p[0] != 0x30 &&
735                     p[1] != 0x82)
736                         goto dodgy_cert;
737                 plen = (p[2] << 8) | p[3];
738                 plen += 4;
739                 if (plen > end - p)
740                         goto dodgy_cert;
741
742                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743                                            "asymmetric", NULL, p, plen,
744                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
745                                             KEY_USR_VIEW | KEY_USR_READ),
746                                            KEY_ALLOC_NOT_IN_QUOTA |
747                                            KEY_ALLOC_BUILT_IN |
748                                            KEY_ALLOC_BYPASS_RESTRICTION);
749                 if (IS_ERR(key)) {
750                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
751                                PTR_ERR(key));
752                 } else {
753                         pr_notice("Loaded X.509 cert '%s'\n",
754                                   key_ref_to_ptr(key)->description);
755                         key_ref_put(key);
756                 }
757                 p += plen;
758         }
759
760         return;
761
762 dodgy_cert:
763         pr_err("Problem parsing in-kernel X.509 certificate list\n");
764 }
765
766 static int __init load_builtin_regdb_keys(void)
767 {
768         builtin_regdb_keys =
769                 keyring_alloc(".builtin_regdb_keys",
770                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
772                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
773                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
774         if (IS_ERR(builtin_regdb_keys))
775                 return PTR_ERR(builtin_regdb_keys);
776
777         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
778
779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
781 #endif
782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
784                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
785 #endif
786
787         return 0;
788 }
789
790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
791 {
792         const struct firmware *sig;
793         bool result;
794
795         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
796                 return false;
797
798         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
799                                         builtin_regdb_keys,
800                                         VERIFYING_UNSPECIFIED_SIGNATURE,
801                                         NULL, NULL) == 0;
802
803         release_firmware(sig);
804
805         return result;
806 }
807
808 static void free_regdb_keyring(void)
809 {
810         key_put(builtin_regdb_keys);
811 }
812 #else
813 static int load_builtin_regdb_keys(void)
814 {
815         return 0;
816 }
817
818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
819 {
820         return true;
821 }
822
823 static void free_regdb_keyring(void)
824 {
825 }
826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
827
828 static bool valid_regdb(const u8 *data, unsigned int size)
829 {
830         const struct fwdb_header *hdr = (void *)data;
831         const struct fwdb_country *country;
832
833         if (size < sizeof(*hdr))
834                 return false;
835
836         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
837                 return false;
838
839         if (hdr->version != cpu_to_be32(FWDB_VERSION))
840                 return false;
841
842         if (!regdb_has_valid_signature(data, size))
843                 return false;
844
845         country = &hdr->country[0];
846         while ((u8 *)(country + 1) <= data + size) {
847                 if (!country->coll_ptr)
848                         break;
849                 if (!valid_country(data, size, country))
850                         return false;
851                 country++;
852         }
853
854         return true;
855 }
856
857 static void set_wmm_rule(const struct fwdb_header *db,
858                          const struct fwdb_country *country,
859                          const struct fwdb_rule *rule,
860                          struct ieee80211_reg_rule *rrule)
861 {
862         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
863         struct fwdb_wmm_rule *wmm;
864         unsigned int i, wmm_ptr;
865
866         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
867         wmm = (void *)((u8 *)db + wmm_ptr);
868
869         if (!valid_wmm(wmm)) {
870                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
871                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
872                        country->alpha2[0], country->alpha2[1]);
873                 return;
874         }
875
876         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
877                 wmm_rule->client[i].cw_min =
878                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
879                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
880                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
881                 wmm_rule->client[i].cot =
882                         1000 * be16_to_cpu(wmm->client[i].cot);
883                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
884                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
885                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
886                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
887         }
888
889         rrule->has_wmm = true;
890 }
891
892 static int __regdb_query_wmm(const struct fwdb_header *db,
893                              const struct fwdb_country *country, int freq,
894                              struct ieee80211_reg_rule *rrule)
895 {
896         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
897         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
898         int i;
899
900         for (i = 0; i < coll->n_rules; i++) {
901                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
902                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
903                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
904
905                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
906                         continue;
907
908                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
909                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
910                         set_wmm_rule(db, country, rule, rrule);
911                         return 0;
912                 }
913         }
914
915         return -ENODATA;
916 }
917
918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
919 {
920         const struct fwdb_header *hdr = regdb;
921         const struct fwdb_country *country;
922
923         if (!regdb)
924                 return -ENODATA;
925
926         if (IS_ERR(regdb))
927                 return PTR_ERR(regdb);
928
929         country = &hdr->country[0];
930         while (country->coll_ptr) {
931                 if (alpha2_equal(alpha2, country->alpha2))
932                         return __regdb_query_wmm(regdb, country, freq, rule);
933
934                 country++;
935         }
936
937         return -ENODATA;
938 }
939 EXPORT_SYMBOL(reg_query_regdb_wmm);
940
941 static int regdb_query_country(const struct fwdb_header *db,
942                                const struct fwdb_country *country)
943 {
944         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
945         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
946         struct ieee80211_regdomain *regdom;
947         unsigned int i;
948
949         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
950                          GFP_KERNEL);
951         if (!regdom)
952                 return -ENOMEM;
953
954         regdom->n_reg_rules = coll->n_rules;
955         regdom->alpha2[0] = country->alpha2[0];
956         regdom->alpha2[1] = country->alpha2[1];
957         regdom->dfs_region = coll->dfs_region;
958
959         for (i = 0; i < regdom->n_reg_rules; i++) {
960                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
961                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
962                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
963                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
964
965                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
966                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
967                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
968
969                 rrule->power_rule.max_antenna_gain = 0;
970                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
971
972                 rrule->flags = 0;
973                 if (rule->flags & FWDB_FLAG_NO_OFDM)
974                         rrule->flags |= NL80211_RRF_NO_OFDM;
975                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
976                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
977                 if (rule->flags & FWDB_FLAG_DFS)
978                         rrule->flags |= NL80211_RRF_DFS;
979                 if (rule->flags & FWDB_FLAG_NO_IR)
980                         rrule->flags |= NL80211_RRF_NO_IR;
981                 if (rule->flags & FWDB_FLAG_AUTO_BW)
982                         rrule->flags |= NL80211_RRF_AUTO_BW;
983
984                 rrule->dfs_cac_ms = 0;
985
986                 /* handle optional data */
987                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
988                         rrule->dfs_cac_ms =
989                                 1000 * be16_to_cpu(rule->cac_timeout);
990                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
991                         set_wmm_rule(db, country, rule, rrule);
992         }
993
994         return reg_schedule_apply(regdom);
995 }
996
997 static int query_regdb(const char *alpha2)
998 {
999         const struct fwdb_header *hdr = regdb;
1000         const struct fwdb_country *country;
1001
1002         ASSERT_RTNL();
1003
1004         if (IS_ERR(regdb))
1005                 return PTR_ERR(regdb);
1006
1007         country = &hdr->country[0];
1008         while (country->coll_ptr) {
1009                 if (alpha2_equal(alpha2, country->alpha2))
1010                         return regdb_query_country(regdb, country);
1011                 country++;
1012         }
1013
1014         return -ENODATA;
1015 }
1016
1017 static void regdb_fw_cb(const struct firmware *fw, void *context)
1018 {
1019         int set_error = 0;
1020         bool restore = true;
1021         void *db;
1022
1023         if (!fw) {
1024                 pr_info("failed to load regulatory.db\n");
1025                 set_error = -ENODATA;
1026         } else if (!valid_regdb(fw->data, fw->size)) {
1027                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028                 set_error = -EINVAL;
1029         }
1030
1031         rtnl_lock();
1032         if (regdb && !IS_ERR(regdb)) {
1033                 /* negative case - a bug
1034                  * positive case - can happen due to race in case of multiple cb's in
1035                  * queue, due to usage of asynchronous callback
1036                  *
1037                  * Either case, just restore and free new db.
1038                  */
1039         } else if (set_error) {
1040                 regdb = ERR_PTR(set_error);
1041         } else if (fw) {
1042                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1043                 if (db) {
1044                         regdb = db;
1045                         restore = context && query_regdb(context);
1046                 } else {
1047                         restore = true;
1048                 }
1049         }
1050
1051         if (restore)
1052                 restore_regulatory_settings(true, false);
1053
1054         rtnl_unlock();
1055
1056         kfree(context);
1057
1058         release_firmware(fw);
1059 }
1060
1061 static int query_regdb_file(const char *alpha2)
1062 {
1063         ASSERT_RTNL();
1064
1065         if (regdb)
1066                 return query_regdb(alpha2);
1067
1068         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1069         if (!alpha2)
1070                 return -ENOMEM;
1071
1072         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1073                                        &reg_pdev->dev, GFP_KERNEL,
1074                                        (void *)alpha2, regdb_fw_cb);
1075 }
1076
1077 int reg_reload_regdb(void)
1078 {
1079         const struct firmware *fw;
1080         void *db;
1081         int err;
1082
1083         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1084         if (err)
1085                 return err;
1086
1087         if (!valid_regdb(fw->data, fw->size)) {
1088                 err = -ENODATA;
1089                 goto out;
1090         }
1091
1092         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1093         if (!db) {
1094                 err = -ENOMEM;
1095                 goto out;
1096         }
1097
1098         rtnl_lock();
1099         if (!IS_ERR_OR_NULL(regdb))
1100                 kfree(regdb);
1101         regdb = db;
1102         rtnl_unlock();
1103
1104  out:
1105         release_firmware(fw);
1106         return err;
1107 }
1108
1109 static bool reg_query_database(struct regulatory_request *request)
1110 {
1111         if (query_regdb_file(request->alpha2) == 0)
1112                 return true;
1113
1114         if (call_crda(request->alpha2) == 0)
1115                 return true;
1116
1117         return false;
1118 }
1119
1120 bool reg_is_valid_request(const char *alpha2)
1121 {
1122         struct regulatory_request *lr = get_last_request();
1123
1124         if (!lr || lr->processed)
1125                 return false;
1126
1127         return alpha2_equal(lr->alpha2, alpha2);
1128 }
1129
1130 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1131 {
1132         struct regulatory_request *lr = get_last_request();
1133
1134         /*
1135          * Follow the driver's regulatory domain, if present, unless a country
1136          * IE has been processed or a user wants to help complaince further
1137          */
1138         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1140             wiphy->regd)
1141                 return get_wiphy_regdom(wiphy);
1142
1143         return get_cfg80211_regdom();
1144 }
1145
1146 static unsigned int
1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1148                                  const struct ieee80211_reg_rule *rule)
1149 {
1150         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1151         const struct ieee80211_freq_range *freq_range_tmp;
1152         const struct ieee80211_reg_rule *tmp;
1153         u32 start_freq, end_freq, idx, no;
1154
1155         for (idx = 0; idx < rd->n_reg_rules; idx++)
1156                 if (rule == &rd->reg_rules[idx])
1157                         break;
1158
1159         if (idx == rd->n_reg_rules)
1160                 return 0;
1161
1162         /* get start_freq */
1163         no = idx;
1164
1165         while (no) {
1166                 tmp = &rd->reg_rules[--no];
1167                 freq_range_tmp = &tmp->freq_range;
1168
1169                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1170                         break;
1171
1172                 freq_range = freq_range_tmp;
1173         }
1174
1175         start_freq = freq_range->start_freq_khz;
1176
1177         /* get end_freq */
1178         freq_range = &rule->freq_range;
1179         no = idx;
1180
1181         while (no < rd->n_reg_rules - 1) {
1182                 tmp = &rd->reg_rules[++no];
1183                 freq_range_tmp = &tmp->freq_range;
1184
1185                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1186                         break;
1187
1188                 freq_range = freq_range_tmp;
1189         }
1190
1191         end_freq = freq_range->end_freq_khz;
1192
1193         return end_freq - start_freq;
1194 }
1195
1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1197                                    const struct ieee80211_reg_rule *rule)
1198 {
1199         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1200
1201         if (rule->flags & NL80211_RRF_NO_160MHZ)
1202                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1203         if (rule->flags & NL80211_RRF_NO_80MHZ)
1204                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1205
1206         /*
1207          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1208          * are not allowed.
1209          */
1210         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1211             rule->flags & NL80211_RRF_NO_HT40PLUS)
1212                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1213
1214         return bw;
1215 }
1216
1217 /* Sanity check on a regulatory rule */
1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1219 {
1220         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1221         u32 freq_diff;
1222
1223         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1224                 return false;
1225
1226         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1227                 return false;
1228
1229         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1230
1231         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1232             freq_range->max_bandwidth_khz > freq_diff)
1233                 return false;
1234
1235         return true;
1236 }
1237
1238 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1239 {
1240         const struct ieee80211_reg_rule *reg_rule = NULL;
1241         unsigned int i;
1242
1243         if (!rd->n_reg_rules)
1244                 return false;
1245
1246         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1247                 return false;
1248
1249         for (i = 0; i < rd->n_reg_rules; i++) {
1250                 reg_rule = &rd->reg_rules[i];
1251                 if (!is_valid_reg_rule(reg_rule))
1252                         return false;
1253         }
1254
1255         return true;
1256 }
1257
1258 /**
1259  * freq_in_rule_band - tells us if a frequency is in a frequency band
1260  * @freq_range: frequency rule we want to query
1261  * @freq_khz: frequency we are inquiring about
1262  *
1263  * This lets us know if a specific frequency rule is or is not relevant to
1264  * a specific frequency's band. Bands are device specific and artificial
1265  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1266  * however it is safe for now to assume that a frequency rule should not be
1267  * part of a frequency's band if the start freq or end freq are off by more
1268  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1269  * 60 GHz band.
1270  * This resolution can be lowered and should be considered as we add
1271  * regulatory rule support for other "bands".
1272  **/
1273 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1274                               u32 freq_khz)
1275 {
1276 #define ONE_GHZ_IN_KHZ  1000000
1277         /*
1278          * From 802.11ad: directional multi-gigabit (DMG):
1279          * Pertaining to operation in a frequency band containing a channel
1280          * with the Channel starting frequency above 45 GHz.
1281          */
1282         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1283                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1284         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1285                 return true;
1286         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1287                 return true;
1288         return false;
1289 #undef ONE_GHZ_IN_KHZ
1290 }
1291
1292 /*
1293  * Later on we can perhaps use the more restrictive DFS
1294  * region but we don't have information for that yet so
1295  * for now simply disallow conflicts.
1296  */
1297 static enum nl80211_dfs_regions
1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1299                          const enum nl80211_dfs_regions dfs_region2)
1300 {
1301         if (dfs_region1 != dfs_region2)
1302                 return NL80211_DFS_UNSET;
1303         return dfs_region1;
1304 }
1305
1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1307                                     const struct ieee80211_wmm_ac *wmm_ac2,
1308                                     struct ieee80211_wmm_ac *intersect)
1309 {
1310         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1311         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1312         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1313         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1314 }
1315
1316 /*
1317  * Helper for regdom_intersect(), this does the real
1318  * mathematical intersection fun
1319  */
1320 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1321                                const struct ieee80211_regdomain *rd2,
1322                                const struct ieee80211_reg_rule *rule1,
1323                                const struct ieee80211_reg_rule *rule2,
1324                                struct ieee80211_reg_rule *intersected_rule)
1325 {
1326         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1327         struct ieee80211_freq_range *freq_range;
1328         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1329         struct ieee80211_power_rule *power_rule;
1330         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1331         struct ieee80211_wmm_rule *wmm_rule;
1332         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1333
1334         freq_range1 = &rule1->freq_range;
1335         freq_range2 = &rule2->freq_range;
1336         freq_range = &intersected_rule->freq_range;
1337
1338         power_rule1 = &rule1->power_rule;
1339         power_rule2 = &rule2->power_rule;
1340         power_rule = &intersected_rule->power_rule;
1341
1342         wmm_rule1 = &rule1->wmm_rule;
1343         wmm_rule2 = &rule2->wmm_rule;
1344         wmm_rule = &intersected_rule->wmm_rule;
1345
1346         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1347                                          freq_range2->start_freq_khz);
1348         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1349                                        freq_range2->end_freq_khz);
1350
1351         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1352         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1353
1354         if (rule1->flags & NL80211_RRF_AUTO_BW)
1355                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1356         if (rule2->flags & NL80211_RRF_AUTO_BW)
1357                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1358
1359         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1360
1361         intersected_rule->flags = rule1->flags | rule2->flags;
1362
1363         /*
1364          * In case NL80211_RRF_AUTO_BW requested for both rules
1365          * set AUTO_BW in intersected rule also. Next we will
1366          * calculate BW correctly in handle_channel function.
1367          * In other case remove AUTO_BW flag while we calculate
1368          * maximum bandwidth correctly and auto calculation is
1369          * not required.
1370          */
1371         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1372             (rule2->flags & NL80211_RRF_AUTO_BW))
1373                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1374         else
1375                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1376
1377         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1378         if (freq_range->max_bandwidth_khz > freq_diff)
1379                 freq_range->max_bandwidth_khz = freq_diff;
1380
1381         power_rule->max_eirp = min(power_rule1->max_eirp,
1382                 power_rule2->max_eirp);
1383         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1384                 power_rule2->max_antenna_gain);
1385
1386         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1387                                            rule2->dfs_cac_ms);
1388
1389         if (rule1->has_wmm && rule2->has_wmm) {
1390                 u8 ac;
1391
1392                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1393                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1394                                                 &wmm_rule2->client[ac],
1395                                                 &wmm_rule->client[ac]);
1396                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1397                                                 &wmm_rule2->ap[ac],
1398                                                 &wmm_rule->ap[ac]);
1399                 }
1400
1401                 intersected_rule->has_wmm = true;
1402         } else if (rule1->has_wmm) {
1403                 *wmm_rule = *wmm_rule1;
1404                 intersected_rule->has_wmm = true;
1405         } else if (rule2->has_wmm) {
1406                 *wmm_rule = *wmm_rule2;
1407                 intersected_rule->has_wmm = true;
1408         } else {
1409                 intersected_rule->has_wmm = false;
1410         }
1411
1412         if (!is_valid_reg_rule(intersected_rule))
1413                 return -EINVAL;
1414
1415         return 0;
1416 }
1417
1418 /* check whether old rule contains new rule */
1419 static bool rule_contains(struct ieee80211_reg_rule *r1,
1420                           struct ieee80211_reg_rule *r2)
1421 {
1422         /* for simplicity, currently consider only same flags */
1423         if (r1->flags != r2->flags)
1424                 return false;
1425
1426         /* verify r1 is more restrictive */
1427         if ((r1->power_rule.max_antenna_gain >
1428              r2->power_rule.max_antenna_gain) ||
1429             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1430                 return false;
1431
1432         /* make sure r2's range is contained within r1 */
1433         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1434             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1435                 return false;
1436
1437         /* and finally verify that r1.max_bw >= r2.max_bw */
1438         if (r1->freq_range.max_bandwidth_khz <
1439             r2->freq_range.max_bandwidth_khz)
1440                 return false;
1441
1442         return true;
1443 }
1444
1445 /* add or extend current rules. do nothing if rule is already contained */
1446 static void add_rule(struct ieee80211_reg_rule *rule,
1447                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1448 {
1449         struct ieee80211_reg_rule *tmp_rule;
1450         int i;
1451
1452         for (i = 0; i < *n_rules; i++) {
1453                 tmp_rule = &reg_rules[i];
1454                 /* rule is already contained - do nothing */
1455                 if (rule_contains(tmp_rule, rule))
1456                         return;
1457
1458                 /* extend rule if possible */
1459                 if (rule_contains(rule, tmp_rule)) {
1460                         memcpy(tmp_rule, rule, sizeof(*rule));
1461                         return;
1462                 }
1463         }
1464
1465         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1466         (*n_rules)++;
1467 }
1468
1469 /**
1470  * regdom_intersect - do the intersection between two regulatory domains
1471  * @rd1: first regulatory domain
1472  * @rd2: second regulatory domain
1473  *
1474  * Use this function to get the intersection between two regulatory domains.
1475  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1476  * as no one single alpha2 can represent this regulatory domain.
1477  *
1478  * Returns a pointer to the regulatory domain structure which will hold the
1479  * resulting intersection of rules between rd1 and rd2. We will
1480  * kzalloc() this structure for you.
1481  */
1482 static struct ieee80211_regdomain *
1483 regdom_intersect(const struct ieee80211_regdomain *rd1,
1484                  const struct ieee80211_regdomain *rd2)
1485 {
1486         int r;
1487         unsigned int x, y;
1488         unsigned int num_rules = 0;
1489         const struct ieee80211_reg_rule *rule1, *rule2;
1490         struct ieee80211_reg_rule intersected_rule;
1491         struct ieee80211_regdomain *rd;
1492
1493         if (!rd1 || !rd2)
1494                 return NULL;
1495
1496         /*
1497          * First we get a count of the rules we'll need, then we actually
1498          * build them. This is to so we can malloc() and free() a
1499          * regdomain once. The reason we use reg_rules_intersect() here
1500          * is it will return -EINVAL if the rule computed makes no sense.
1501          * All rules that do check out OK are valid.
1502          */
1503
1504         for (x = 0; x < rd1->n_reg_rules; x++) {
1505                 rule1 = &rd1->reg_rules[x];
1506                 for (y = 0; y < rd2->n_reg_rules; y++) {
1507                         rule2 = &rd2->reg_rules[y];
1508                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1509                                                  &intersected_rule))
1510                                 num_rules++;
1511                 }
1512         }
1513
1514         if (!num_rules)
1515                 return NULL;
1516
1517         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1518         if (!rd)
1519                 return NULL;
1520
1521         for (x = 0; x < rd1->n_reg_rules; x++) {
1522                 rule1 = &rd1->reg_rules[x];
1523                 for (y = 0; y < rd2->n_reg_rules; y++) {
1524                         rule2 = &rd2->reg_rules[y];
1525                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1526                                                 &intersected_rule);
1527                         /*
1528                          * No need to memset here the intersected rule here as
1529                          * we're not using the stack anymore
1530                          */
1531                         if (r)
1532                                 continue;
1533
1534                         add_rule(&intersected_rule, rd->reg_rules,
1535                                  &rd->n_reg_rules);
1536                 }
1537         }
1538
1539         rd->alpha2[0] = '9';
1540         rd->alpha2[1] = '8';
1541         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1542                                                   rd2->dfs_region);
1543
1544         return rd;
1545 }
1546
1547 /*
1548  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1549  * want to just have the channel structure use these
1550  */
1551 static u32 map_regdom_flags(u32 rd_flags)
1552 {
1553         u32 channel_flags = 0;
1554         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1555                 channel_flags |= IEEE80211_CHAN_NO_IR;
1556         if (rd_flags & NL80211_RRF_DFS)
1557                 channel_flags |= IEEE80211_CHAN_RADAR;
1558         if (rd_flags & NL80211_RRF_NO_OFDM)
1559                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1560         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1561                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1562         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1563                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1564         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1565                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1567                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1568         if (rd_flags & NL80211_RRF_NO_80MHZ)
1569                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1570         if (rd_flags & NL80211_RRF_NO_160MHZ)
1571                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1572         if (rd_flags & NL80211_RRF_NO_HE)
1573                 channel_flags |= IEEE80211_CHAN_NO_HE;
1574         return channel_flags;
1575 }
1576
1577 static const struct ieee80211_reg_rule *
1578 freq_reg_info_regd(u32 center_freq,
1579                    const struct ieee80211_regdomain *regd, u32 bw)
1580 {
1581         int i;
1582         bool band_rule_found = false;
1583         bool bw_fits = false;
1584
1585         if (!regd)
1586                 return ERR_PTR(-EINVAL);
1587
1588         for (i = 0; i < regd->n_reg_rules; i++) {
1589                 const struct ieee80211_reg_rule *rr;
1590                 const struct ieee80211_freq_range *fr = NULL;
1591
1592                 rr = &regd->reg_rules[i];
1593                 fr = &rr->freq_range;
1594
1595                 /*
1596                  * We only need to know if one frequency rule was
1597                  * in center_freq's band, that's enough, so let's
1598                  * not overwrite it once found
1599                  */
1600                 if (!band_rule_found)
1601                         band_rule_found = freq_in_rule_band(fr, center_freq);
1602
1603                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1604
1605                 if (band_rule_found && bw_fits)
1606                         return rr;
1607         }
1608
1609         if (!band_rule_found)
1610                 return ERR_PTR(-ERANGE);
1611
1612         return ERR_PTR(-EINVAL);
1613 }
1614
1615 static const struct ieee80211_reg_rule *
1616 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1617 {
1618         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1619         const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1620         const struct ieee80211_reg_rule *reg_rule;
1621         int i = ARRAY_SIZE(bws) - 1;
1622         u32 bw;
1623
1624         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1625                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1626                 if (!IS_ERR(reg_rule))
1627                         return reg_rule;
1628         }
1629
1630         return reg_rule;
1631 }
1632
1633 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1634                                                u32 center_freq)
1635 {
1636         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1637
1638         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1639 }
1640 EXPORT_SYMBOL(freq_reg_info);
1641
1642 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1643 {
1644         switch (initiator) {
1645         case NL80211_REGDOM_SET_BY_CORE:
1646                 return "core";
1647         case NL80211_REGDOM_SET_BY_USER:
1648                 return "user";
1649         case NL80211_REGDOM_SET_BY_DRIVER:
1650                 return "driver";
1651         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1652                 return "country element";
1653         default:
1654                 WARN_ON(1);
1655                 return "bug";
1656         }
1657 }
1658 EXPORT_SYMBOL(reg_initiator_name);
1659
1660 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1661                                           const struct ieee80211_reg_rule *reg_rule,
1662                                           const struct ieee80211_channel *chan)
1663 {
1664         const struct ieee80211_freq_range *freq_range = NULL;
1665         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1666         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1667
1668         freq_range = &reg_rule->freq_range;
1669
1670         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1671         center_freq_khz = ieee80211_channel_to_khz(chan);
1672         /* Check if auto calculation requested */
1673         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1674                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1675
1676         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1677         if (!cfg80211_does_bw_fit_range(freq_range,
1678                                         center_freq_khz,
1679                                         MHZ_TO_KHZ(10)))
1680                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1681         if (!cfg80211_does_bw_fit_range(freq_range,
1682                                         center_freq_khz,
1683                                         MHZ_TO_KHZ(20)))
1684                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1685
1686         if (is_s1g) {
1687                 /* S1G is strict about non overlapping channels. We can
1688                  * calculate which bandwidth is allowed per channel by finding
1689                  * the largest bandwidth which cleanly divides the freq_range.
1690                  */
1691                 int edge_offset;
1692                 int ch_bw = max_bandwidth_khz;
1693
1694                 while (ch_bw) {
1695                         edge_offset = (center_freq_khz - ch_bw / 2) -
1696                                       freq_range->start_freq_khz;
1697                         if (edge_offset % ch_bw == 0) {
1698                                 switch (KHZ_TO_MHZ(ch_bw)) {
1699                                 case 1:
1700                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1701                                         break;
1702                                 case 2:
1703                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1704                                         break;
1705                                 case 4:
1706                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1707                                         break;
1708                                 case 8:
1709                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1710                                         break;
1711                                 case 16:
1712                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1713                                         break;
1714                                 default:
1715                                         /* If we got here, no bandwidths fit on
1716                                          * this frequency, ie. band edge.
1717                                          */
1718                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1719                                         break;
1720                                 }
1721                                 break;
1722                         }
1723                         ch_bw /= 2;
1724                 }
1725         } else {
1726                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1727                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1728                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1729                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1730                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1731                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1732                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1733                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1734                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1735                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1736         }
1737         return bw_flags;
1738 }
1739
1740 static void handle_channel_single_rule(struct wiphy *wiphy,
1741                                        enum nl80211_reg_initiator initiator,
1742                                        struct ieee80211_channel *chan,
1743                                        u32 flags,
1744                                        struct regulatory_request *lr,
1745                                        struct wiphy *request_wiphy,
1746                                        const struct ieee80211_reg_rule *reg_rule)
1747 {
1748         u32 bw_flags = 0;
1749         const struct ieee80211_power_rule *power_rule = NULL;
1750         const struct ieee80211_regdomain *regd;
1751
1752         regd = reg_get_regdomain(wiphy);
1753
1754         power_rule = &reg_rule->power_rule;
1755         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1756
1757         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1758             request_wiphy && request_wiphy == wiphy &&
1759             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1760                 /*
1761                  * This guarantees the driver's requested regulatory domain
1762                  * will always be used as a base for further regulatory
1763                  * settings
1764                  */
1765                 chan->flags = chan->orig_flags =
1766                         map_regdom_flags(reg_rule->flags) | bw_flags;
1767                 chan->max_antenna_gain = chan->orig_mag =
1768                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1769                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1770                         (int) MBM_TO_DBM(power_rule->max_eirp);
1771
1772                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1773                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1774                         if (reg_rule->dfs_cac_ms)
1775                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1776                 }
1777
1778                 return;
1779         }
1780
1781         chan->dfs_state = NL80211_DFS_USABLE;
1782         chan->dfs_state_entered = jiffies;
1783
1784         chan->beacon_found = false;
1785         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1786         chan->max_antenna_gain =
1787                 min_t(int, chan->orig_mag,
1788                       MBI_TO_DBI(power_rule->max_antenna_gain));
1789         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1790
1791         if (chan->flags & IEEE80211_CHAN_RADAR) {
1792                 if (reg_rule->dfs_cac_ms)
1793                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1794                 else
1795                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1796         }
1797
1798         if (chan->orig_mpwr) {
1799                 /*
1800                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1801                  * will always follow the passed country IE power settings.
1802                  */
1803                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1804                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1805                         chan->max_power = chan->max_reg_power;
1806                 else
1807                         chan->max_power = min(chan->orig_mpwr,
1808                                               chan->max_reg_power);
1809         } else
1810                 chan->max_power = chan->max_reg_power;
1811 }
1812
1813 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1814                                           enum nl80211_reg_initiator initiator,
1815                                           struct ieee80211_channel *chan,
1816                                           u32 flags,
1817                                           struct regulatory_request *lr,
1818                                           struct wiphy *request_wiphy,
1819                                           const struct ieee80211_reg_rule *rrule1,
1820                                           const struct ieee80211_reg_rule *rrule2,
1821                                           struct ieee80211_freq_range *comb_range)
1822 {
1823         u32 bw_flags1 = 0;
1824         u32 bw_flags2 = 0;
1825         const struct ieee80211_power_rule *power_rule1 = NULL;
1826         const struct ieee80211_power_rule *power_rule2 = NULL;
1827         const struct ieee80211_regdomain *regd;
1828
1829         regd = reg_get_regdomain(wiphy);
1830
1831         power_rule1 = &rrule1->power_rule;
1832         power_rule2 = &rrule2->power_rule;
1833         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1834         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1835
1836         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1837             request_wiphy && request_wiphy == wiphy &&
1838             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1839                 /* This guarantees the driver's requested regulatory domain
1840                  * will always be used as a base for further regulatory
1841                  * settings
1842                  */
1843                 chan->flags =
1844                         map_regdom_flags(rrule1->flags) |
1845                         map_regdom_flags(rrule2->flags) |
1846                         bw_flags1 |
1847                         bw_flags2;
1848                 chan->orig_flags = chan->flags;
1849                 chan->max_antenna_gain =
1850                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1851                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1852                 chan->orig_mag = chan->max_antenna_gain;
1853                 chan->max_reg_power =
1854                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1855                               MBM_TO_DBM(power_rule2->max_eirp));
1856                 chan->max_power = chan->max_reg_power;
1857                 chan->orig_mpwr = chan->max_reg_power;
1858
1859                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1860                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1861                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1862                                 chan->dfs_cac_ms = max_t(unsigned int,
1863                                                          rrule1->dfs_cac_ms,
1864                                                          rrule2->dfs_cac_ms);
1865                 }
1866
1867                 return;
1868         }
1869
1870         chan->dfs_state = NL80211_DFS_USABLE;
1871         chan->dfs_state_entered = jiffies;
1872
1873         chan->beacon_found = false;
1874         chan->flags = flags | bw_flags1 | bw_flags2 |
1875                       map_regdom_flags(rrule1->flags) |
1876                       map_regdom_flags(rrule2->flags);
1877
1878         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1879          * (otherwise no adj. rule case), recheck therefore
1880          */
1881         if (cfg80211_does_bw_fit_range(comb_range,
1882                                        ieee80211_channel_to_khz(chan),
1883                                        MHZ_TO_KHZ(10)))
1884                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1885         if (cfg80211_does_bw_fit_range(comb_range,
1886                                        ieee80211_channel_to_khz(chan),
1887                                        MHZ_TO_KHZ(20)))
1888                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1889
1890         chan->max_antenna_gain =
1891                 min_t(int, chan->orig_mag,
1892                       min_t(int,
1893                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1894                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1895         chan->max_reg_power = min_t(int,
1896                                     MBM_TO_DBM(power_rule1->max_eirp),
1897                                     MBM_TO_DBM(power_rule2->max_eirp));
1898
1899         if (chan->flags & IEEE80211_CHAN_RADAR) {
1900                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1901                         chan->dfs_cac_ms = max_t(unsigned int,
1902                                                  rrule1->dfs_cac_ms,
1903                                                  rrule2->dfs_cac_ms);
1904                 else
1905                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1906         }
1907
1908         if (chan->orig_mpwr) {
1909                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1910                  * will always follow the passed country IE power settings.
1911                  */
1912                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1913                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1914                         chan->max_power = chan->max_reg_power;
1915                 else
1916                         chan->max_power = min(chan->orig_mpwr,
1917                                               chan->max_reg_power);
1918         } else {
1919                 chan->max_power = chan->max_reg_power;
1920         }
1921 }
1922
1923 /* Note that right now we assume the desired channel bandwidth
1924  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1925  * per channel, the primary and the extension channel).
1926  */
1927 static void handle_channel(struct wiphy *wiphy,
1928                            enum nl80211_reg_initiator initiator,
1929                            struct ieee80211_channel *chan)
1930 {
1931         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1932         struct regulatory_request *lr = get_last_request();
1933         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1934         const struct ieee80211_reg_rule *rrule = NULL;
1935         const struct ieee80211_reg_rule *rrule1 = NULL;
1936         const struct ieee80211_reg_rule *rrule2 = NULL;
1937
1938         u32 flags = chan->orig_flags;
1939
1940         rrule = freq_reg_info(wiphy, orig_chan_freq);
1941         if (IS_ERR(rrule)) {
1942                 /* check for adjacent match, therefore get rules for
1943                  * chan - 20 MHz and chan + 20 MHz and test
1944                  * if reg rules are adjacent
1945                  */
1946                 rrule1 = freq_reg_info(wiphy,
1947                                        orig_chan_freq - MHZ_TO_KHZ(20));
1948                 rrule2 = freq_reg_info(wiphy,
1949                                        orig_chan_freq + MHZ_TO_KHZ(20));
1950                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1951                         struct ieee80211_freq_range comb_range;
1952
1953                         if (rrule1->freq_range.end_freq_khz !=
1954                             rrule2->freq_range.start_freq_khz)
1955                                 goto disable_chan;
1956
1957                         comb_range.start_freq_khz =
1958                                 rrule1->freq_range.start_freq_khz;
1959                         comb_range.end_freq_khz =
1960                                 rrule2->freq_range.end_freq_khz;
1961                         comb_range.max_bandwidth_khz =
1962                                 min_t(u32,
1963                                       rrule1->freq_range.max_bandwidth_khz,
1964                                       rrule2->freq_range.max_bandwidth_khz);
1965
1966                         if (!cfg80211_does_bw_fit_range(&comb_range,
1967                                                         orig_chan_freq,
1968                                                         MHZ_TO_KHZ(20)))
1969                                 goto disable_chan;
1970
1971                         handle_channel_adjacent_rules(wiphy, initiator, chan,
1972                                                       flags, lr, request_wiphy,
1973                                                       rrule1, rrule2,
1974                                                       &comb_range);
1975                         return;
1976                 }
1977
1978 disable_chan:
1979                 /* We will disable all channels that do not match our
1980                  * received regulatory rule unless the hint is coming
1981                  * from a Country IE and the Country IE had no information
1982                  * about a band. The IEEE 802.11 spec allows for an AP
1983                  * to send only a subset of the regulatory rules allowed,
1984                  * so an AP in the US that only supports 2.4 GHz may only send
1985                  * a country IE with information for the 2.4 GHz band
1986                  * while 5 GHz is still supported.
1987                  */
1988                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1989                     PTR_ERR(rrule) == -ERANGE)
1990                         return;
1991
1992                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1993                     request_wiphy && request_wiphy == wiphy &&
1994                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1995                         pr_debug("Disabling freq %d.%03d MHz for good\n",
1996                                  chan->center_freq, chan->freq_offset);
1997                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1998                         chan->flags = chan->orig_flags;
1999                 } else {
2000                         pr_debug("Disabling freq %d.%03d MHz\n",
2001                                  chan->center_freq, chan->freq_offset);
2002                         chan->flags |= IEEE80211_CHAN_DISABLED;
2003                 }
2004                 return;
2005         }
2006
2007         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2008                                    request_wiphy, rrule);
2009 }
2010
2011 static void handle_band(struct wiphy *wiphy,
2012                         enum nl80211_reg_initiator initiator,
2013                         struct ieee80211_supported_band *sband)
2014 {
2015         unsigned int i;
2016
2017         if (!sband)
2018                 return;
2019
2020         for (i = 0; i < sband->n_channels; i++)
2021                 handle_channel(wiphy, initiator, &sband->channels[i]);
2022 }
2023
2024 static bool reg_request_cell_base(struct regulatory_request *request)
2025 {
2026         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2027                 return false;
2028         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2029 }
2030
2031 bool reg_last_request_cell_base(void)
2032 {
2033         return reg_request_cell_base(get_last_request());
2034 }
2035
2036 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2037 /* Core specific check */
2038 static enum reg_request_treatment
2039 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2040 {
2041         struct regulatory_request *lr = get_last_request();
2042
2043         if (!reg_num_devs_support_basehint)
2044                 return REG_REQ_IGNORE;
2045
2046         if (reg_request_cell_base(lr) &&
2047             !regdom_changes(pending_request->alpha2))
2048                 return REG_REQ_ALREADY_SET;
2049
2050         return REG_REQ_OK;
2051 }
2052
2053 /* Device specific check */
2054 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2055 {
2056         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2057 }
2058 #else
2059 static enum reg_request_treatment
2060 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2061 {
2062         return REG_REQ_IGNORE;
2063 }
2064
2065 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2066 {
2067         return true;
2068 }
2069 #endif
2070
2071 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2072 {
2073         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2074             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2075                 return true;
2076         return false;
2077 }
2078
2079 static bool ignore_reg_update(struct wiphy *wiphy,
2080                               enum nl80211_reg_initiator initiator)
2081 {
2082         struct regulatory_request *lr = get_last_request();
2083
2084         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2085                 return true;
2086
2087         if (!lr) {
2088                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2089                          reg_initiator_name(initiator));
2090                 return true;
2091         }
2092
2093         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2094             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2095                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2096                          reg_initiator_name(initiator));
2097                 return true;
2098         }
2099
2100         /*
2101          * wiphy->regd will be set once the device has its own
2102          * desired regulatory domain set
2103          */
2104         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2105             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2106             !is_world_regdom(lr->alpha2)) {
2107                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2108                          reg_initiator_name(initiator));
2109                 return true;
2110         }
2111
2112         if (reg_request_cell_base(lr))
2113                 return reg_dev_ignore_cell_hint(wiphy);
2114
2115         return false;
2116 }
2117
2118 static bool reg_is_world_roaming(struct wiphy *wiphy)
2119 {
2120         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2121         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2122         struct regulatory_request *lr = get_last_request();
2123
2124         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2125                 return true;
2126
2127         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2128             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2129                 return true;
2130
2131         return false;
2132 }
2133
2134 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2135                               struct reg_beacon *reg_beacon)
2136 {
2137         struct ieee80211_supported_band *sband;
2138         struct ieee80211_channel *chan;
2139         bool channel_changed = false;
2140         struct ieee80211_channel chan_before;
2141
2142         sband = wiphy->bands[reg_beacon->chan.band];
2143         chan = &sband->channels[chan_idx];
2144
2145         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2146                 return;
2147
2148         if (chan->beacon_found)
2149                 return;
2150
2151         chan->beacon_found = true;
2152
2153         if (!reg_is_world_roaming(wiphy))
2154                 return;
2155
2156         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2157                 return;
2158
2159         chan_before = *chan;
2160
2161         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2162                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2163                 channel_changed = true;
2164         }
2165
2166         if (channel_changed)
2167                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2168 }
2169
2170 /*
2171  * Called when a scan on a wiphy finds a beacon on
2172  * new channel
2173  */
2174 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2175                                     struct reg_beacon *reg_beacon)
2176 {
2177         unsigned int i;
2178         struct ieee80211_supported_band *sband;
2179
2180         if (!wiphy->bands[reg_beacon->chan.band])
2181                 return;
2182
2183         sband = wiphy->bands[reg_beacon->chan.band];
2184
2185         for (i = 0; i < sband->n_channels; i++)
2186                 handle_reg_beacon(wiphy, i, reg_beacon);
2187 }
2188
2189 /*
2190  * Called upon reg changes or a new wiphy is added
2191  */
2192 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2193 {
2194         unsigned int i;
2195         struct ieee80211_supported_band *sband;
2196         struct reg_beacon *reg_beacon;
2197
2198         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2199                 if (!wiphy->bands[reg_beacon->chan.band])
2200                         continue;
2201                 sband = wiphy->bands[reg_beacon->chan.band];
2202                 for (i = 0; i < sband->n_channels; i++)
2203                         handle_reg_beacon(wiphy, i, reg_beacon);
2204         }
2205 }
2206
2207 /* Reap the advantages of previously found beacons */
2208 static void reg_process_beacons(struct wiphy *wiphy)
2209 {
2210         /*
2211          * Means we are just firing up cfg80211, so no beacons would
2212          * have been processed yet.
2213          */
2214         if (!last_request)
2215                 return;
2216         wiphy_update_beacon_reg(wiphy);
2217 }
2218
2219 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2220 {
2221         if (!chan)
2222                 return false;
2223         if (chan->flags & IEEE80211_CHAN_DISABLED)
2224                 return false;
2225         /* This would happen when regulatory rules disallow HT40 completely */
2226         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2227                 return false;
2228         return true;
2229 }
2230
2231 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2232                                          struct ieee80211_channel *channel)
2233 {
2234         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2235         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2236         const struct ieee80211_regdomain *regd;
2237         unsigned int i;
2238         u32 flags;
2239
2240         if (!is_ht40_allowed(channel)) {
2241                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2242                 return;
2243         }
2244
2245         /*
2246          * We need to ensure the extension channels exist to
2247          * be able to use HT40- or HT40+, this finds them (or not)
2248          */
2249         for (i = 0; i < sband->n_channels; i++) {
2250                 struct ieee80211_channel *c = &sband->channels[i];
2251
2252                 if (c->center_freq == (channel->center_freq - 20))
2253                         channel_before = c;
2254                 if (c->center_freq == (channel->center_freq + 20))
2255                         channel_after = c;
2256         }
2257
2258         flags = 0;
2259         regd = get_wiphy_regdom(wiphy);
2260         if (regd) {
2261                 const struct ieee80211_reg_rule *reg_rule =
2262                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2263                                            regd, MHZ_TO_KHZ(20));
2264
2265                 if (!IS_ERR(reg_rule))
2266                         flags = reg_rule->flags;
2267         }
2268
2269         /*
2270          * Please note that this assumes target bandwidth is 20 MHz,
2271          * if that ever changes we also need to change the below logic
2272          * to include that as well.
2273          */
2274         if (!is_ht40_allowed(channel_before) ||
2275             flags & NL80211_RRF_NO_HT40MINUS)
2276                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2277         else
2278                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2279
2280         if (!is_ht40_allowed(channel_after) ||
2281             flags & NL80211_RRF_NO_HT40PLUS)
2282                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2283         else
2284                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2285 }
2286
2287 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2288                                       struct ieee80211_supported_band *sband)
2289 {
2290         unsigned int i;
2291
2292         if (!sband)
2293                 return;
2294
2295         for (i = 0; i < sband->n_channels; i++)
2296                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2297 }
2298
2299 static void reg_process_ht_flags(struct wiphy *wiphy)
2300 {
2301         enum nl80211_band band;
2302
2303         if (!wiphy)
2304                 return;
2305
2306         for (band = 0; band < NUM_NL80211_BANDS; band++)
2307                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2308 }
2309
2310 static void reg_call_notifier(struct wiphy *wiphy,
2311                               struct regulatory_request *request)
2312 {
2313         if (wiphy->reg_notifier)
2314                 wiphy->reg_notifier(wiphy, request);
2315 }
2316
2317 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2318 {
2319         struct cfg80211_chan_def chandef = {};
2320         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2321         enum nl80211_iftype iftype;
2322
2323         wdev_lock(wdev);
2324         iftype = wdev->iftype;
2325
2326         /* make sure the interface is active */
2327         if (!wdev->netdev || !netif_running(wdev->netdev))
2328                 goto wdev_inactive_unlock;
2329
2330         switch (iftype) {
2331         case NL80211_IFTYPE_AP:
2332         case NL80211_IFTYPE_P2P_GO:
2333                 if (!wdev->beacon_interval)
2334                         goto wdev_inactive_unlock;
2335                 chandef = wdev->chandef;
2336                 break;
2337         case NL80211_IFTYPE_ADHOC:
2338                 if (!wdev->ssid_len)
2339                         goto wdev_inactive_unlock;
2340                 chandef = wdev->chandef;
2341                 break;
2342         case NL80211_IFTYPE_STATION:
2343         case NL80211_IFTYPE_P2P_CLIENT:
2344                 if (!wdev->current_bss ||
2345                     !wdev->current_bss->pub.channel)
2346                         goto wdev_inactive_unlock;
2347
2348                 if (!rdev->ops->get_channel ||
2349                     rdev_get_channel(rdev, wdev, &chandef))
2350                         cfg80211_chandef_create(&chandef,
2351                                                 wdev->current_bss->pub.channel,
2352                                                 NL80211_CHAN_NO_HT);
2353                 break;
2354         case NL80211_IFTYPE_MONITOR:
2355         case NL80211_IFTYPE_AP_VLAN:
2356         case NL80211_IFTYPE_P2P_DEVICE:
2357                 /* no enforcement required */
2358                 break;
2359         default:
2360                 /* others not implemented for now */
2361                 WARN_ON(1);
2362                 break;
2363         }
2364
2365         wdev_unlock(wdev);
2366
2367         switch (iftype) {
2368         case NL80211_IFTYPE_AP:
2369         case NL80211_IFTYPE_P2P_GO:
2370         case NL80211_IFTYPE_ADHOC:
2371                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2372         case NL80211_IFTYPE_STATION:
2373         case NL80211_IFTYPE_P2P_CLIENT:
2374                 return cfg80211_chandef_usable(wiphy, &chandef,
2375                                                IEEE80211_CHAN_DISABLED);
2376         default:
2377                 break;
2378         }
2379
2380         return true;
2381
2382 wdev_inactive_unlock:
2383         wdev_unlock(wdev);
2384         return true;
2385 }
2386
2387 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2388 {
2389         struct wireless_dev *wdev;
2390         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2391
2392         ASSERT_RTNL();
2393
2394         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2395                 if (!reg_wdev_chan_valid(wiphy, wdev))
2396                         cfg80211_leave(rdev, wdev);
2397 }
2398
2399 static void reg_check_chans_work(struct work_struct *work)
2400 {
2401         struct cfg80211_registered_device *rdev;
2402
2403         pr_debug("Verifying active interfaces after reg change\n");
2404         rtnl_lock();
2405
2406         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2407                 if (!(rdev->wiphy.regulatory_flags &
2408                       REGULATORY_IGNORE_STALE_KICKOFF))
2409                         reg_leave_invalid_chans(&rdev->wiphy);
2410
2411         rtnl_unlock();
2412 }
2413
2414 static void reg_check_channels(void)
2415 {
2416         /*
2417          * Give usermode a chance to do something nicer (move to another
2418          * channel, orderly disconnection), before forcing a disconnection.
2419          */
2420         mod_delayed_work(system_power_efficient_wq,
2421                          &reg_check_chans,
2422                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2423 }
2424
2425 static void wiphy_update_regulatory(struct wiphy *wiphy,
2426                                     enum nl80211_reg_initiator initiator)
2427 {
2428         enum nl80211_band band;
2429         struct regulatory_request *lr = get_last_request();
2430
2431         if (ignore_reg_update(wiphy, initiator)) {
2432                 /*
2433                  * Regulatory updates set by CORE are ignored for custom
2434                  * regulatory cards. Let us notify the changes to the driver,
2435                  * as some drivers used this to restore its orig_* reg domain.
2436                  */
2437                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2438                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2439                     !(wiphy->regulatory_flags &
2440                       REGULATORY_WIPHY_SELF_MANAGED))
2441                         reg_call_notifier(wiphy, lr);
2442                 return;
2443         }
2444
2445         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2446
2447         for (band = 0; band < NUM_NL80211_BANDS; band++)
2448                 handle_band(wiphy, initiator, wiphy->bands[band]);
2449
2450         reg_process_beacons(wiphy);
2451         reg_process_ht_flags(wiphy);
2452         reg_call_notifier(wiphy, lr);
2453 }
2454
2455 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2456 {
2457         struct cfg80211_registered_device *rdev;
2458         struct wiphy *wiphy;
2459
2460         ASSERT_RTNL();
2461
2462         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2463                 wiphy = &rdev->wiphy;
2464                 wiphy_update_regulatory(wiphy, initiator);
2465         }
2466
2467         reg_check_channels();
2468 }
2469
2470 static void handle_channel_custom(struct wiphy *wiphy,
2471                                   struct ieee80211_channel *chan,
2472                                   const struct ieee80211_regdomain *regd,
2473                                   u32 min_bw)
2474 {
2475         u32 bw_flags = 0;
2476         const struct ieee80211_reg_rule *reg_rule = NULL;
2477         const struct ieee80211_power_rule *power_rule = NULL;
2478         u32 bw, center_freq_khz;
2479
2480         center_freq_khz = ieee80211_channel_to_khz(chan);
2481         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2482                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2483                 if (!IS_ERR(reg_rule))
2484                         break;
2485         }
2486
2487         if (IS_ERR_OR_NULL(reg_rule)) {
2488                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2489                          chan->center_freq, chan->freq_offset);
2490                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2491                         chan->flags |= IEEE80211_CHAN_DISABLED;
2492                 } else {
2493                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2494                         chan->flags = chan->orig_flags;
2495                 }
2496                 return;
2497         }
2498
2499         power_rule = &reg_rule->power_rule;
2500         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2501
2502         chan->dfs_state_entered = jiffies;
2503         chan->dfs_state = NL80211_DFS_USABLE;
2504
2505         chan->beacon_found = false;
2506
2507         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2508                 chan->flags = chan->orig_flags | bw_flags |
2509                               map_regdom_flags(reg_rule->flags);
2510         else
2511                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2512
2513         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2514         chan->max_reg_power = chan->max_power =
2515                 (int) MBM_TO_DBM(power_rule->max_eirp);
2516
2517         if (chan->flags & IEEE80211_CHAN_RADAR) {
2518                 if (reg_rule->dfs_cac_ms)
2519                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2520                 else
2521                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2522         }
2523
2524         chan->max_power = chan->max_reg_power;
2525 }
2526
2527 static void handle_band_custom(struct wiphy *wiphy,
2528                                struct ieee80211_supported_band *sband,
2529                                const struct ieee80211_regdomain *regd)
2530 {
2531         unsigned int i;
2532
2533         if (!sband)
2534                 return;
2535
2536         /*
2537          * We currently assume that you always want at least 20 MHz,
2538          * otherwise channel 12 might get enabled if this rule is
2539          * compatible to US, which permits 2402 - 2472 MHz.
2540          */
2541         for (i = 0; i < sband->n_channels; i++)
2542                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2543                                       MHZ_TO_KHZ(20));
2544 }
2545
2546 /* Used by drivers prior to wiphy registration */
2547 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2548                                    const struct ieee80211_regdomain *regd)
2549 {
2550         enum nl80211_band band;
2551         unsigned int bands_set = 0;
2552
2553         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2554              "wiphy should have REGULATORY_CUSTOM_REG\n");
2555         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2556
2557         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2558                 if (!wiphy->bands[band])
2559                         continue;
2560                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2561                 bands_set++;
2562         }
2563
2564         /*
2565          * no point in calling this if it won't have any effect
2566          * on your device's supported bands.
2567          */
2568         WARN_ON(!bands_set);
2569 }
2570 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2571
2572 static void reg_set_request_processed(void)
2573 {
2574         bool need_more_processing = false;
2575         struct regulatory_request *lr = get_last_request();
2576
2577         lr->processed = true;
2578
2579         spin_lock(&reg_requests_lock);
2580         if (!list_empty(&reg_requests_list))
2581                 need_more_processing = true;
2582         spin_unlock(&reg_requests_lock);
2583
2584         cancel_crda_timeout();
2585
2586         if (need_more_processing)
2587                 schedule_work(&reg_work);
2588 }
2589
2590 /**
2591  * reg_process_hint_core - process core regulatory requests
2592  * @core_request: a pending core regulatory request
2593  *
2594  * The wireless subsystem can use this function to process
2595  * a regulatory request issued by the regulatory core.
2596  */
2597 static enum reg_request_treatment
2598 reg_process_hint_core(struct regulatory_request *core_request)
2599 {
2600         if (reg_query_database(core_request)) {
2601                 core_request->intersect = false;
2602                 core_request->processed = false;
2603                 reg_update_last_request(core_request);
2604                 return REG_REQ_OK;
2605         }
2606
2607         return REG_REQ_IGNORE;
2608 }
2609
2610 static enum reg_request_treatment
2611 __reg_process_hint_user(struct regulatory_request *user_request)
2612 {
2613         struct regulatory_request *lr = get_last_request();
2614
2615         if (reg_request_cell_base(user_request))
2616                 return reg_ignore_cell_hint(user_request);
2617
2618         if (reg_request_cell_base(lr))
2619                 return REG_REQ_IGNORE;
2620
2621         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2622                 return REG_REQ_INTERSECT;
2623         /*
2624          * If the user knows better the user should set the regdom
2625          * to their country before the IE is picked up
2626          */
2627         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2628             lr->intersect)
2629                 return REG_REQ_IGNORE;
2630         /*
2631          * Process user requests only after previous user/driver/core
2632          * requests have been processed
2633          */
2634         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2635              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2636              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2637             regdom_changes(lr->alpha2))
2638                 return REG_REQ_IGNORE;
2639
2640         if (!regdom_changes(user_request->alpha2))
2641                 return REG_REQ_ALREADY_SET;
2642
2643         return REG_REQ_OK;
2644 }
2645
2646 /**
2647  * reg_process_hint_user - process user regulatory requests
2648  * @user_request: a pending user regulatory request
2649  *
2650  * The wireless subsystem can use this function to process
2651  * a regulatory request initiated by userspace.
2652  */
2653 static enum reg_request_treatment
2654 reg_process_hint_user(struct regulatory_request *user_request)
2655 {
2656         enum reg_request_treatment treatment;
2657
2658         treatment = __reg_process_hint_user(user_request);
2659         if (treatment == REG_REQ_IGNORE ||
2660             treatment == REG_REQ_ALREADY_SET)
2661                 return REG_REQ_IGNORE;
2662
2663         user_request->intersect = treatment == REG_REQ_INTERSECT;
2664         user_request->processed = false;
2665
2666         if (reg_query_database(user_request)) {
2667                 reg_update_last_request(user_request);
2668                 user_alpha2[0] = user_request->alpha2[0];
2669                 user_alpha2[1] = user_request->alpha2[1];
2670                 return REG_REQ_OK;
2671         }
2672
2673         return REG_REQ_IGNORE;
2674 }
2675
2676 static enum reg_request_treatment
2677 __reg_process_hint_driver(struct regulatory_request *driver_request)
2678 {
2679         struct regulatory_request *lr = get_last_request();
2680
2681         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2682                 if (regdom_changes(driver_request->alpha2))
2683                         return REG_REQ_OK;
2684                 return REG_REQ_ALREADY_SET;
2685         }
2686
2687         /*
2688          * This would happen if you unplug and plug your card
2689          * back in or if you add a new device for which the previously
2690          * loaded card also agrees on the regulatory domain.
2691          */
2692         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2693             !regdom_changes(driver_request->alpha2))
2694                 return REG_REQ_ALREADY_SET;
2695
2696         return REG_REQ_INTERSECT;
2697 }
2698
2699 /**
2700  * reg_process_hint_driver - process driver regulatory requests
2701  * @wiphy: the wireless device for the regulatory request
2702  * @driver_request: a pending driver regulatory request
2703  *
2704  * The wireless subsystem can use this function to process
2705  * a regulatory request issued by an 802.11 driver.
2706  *
2707  * Returns one of the different reg request treatment values.
2708  */
2709 static enum reg_request_treatment
2710 reg_process_hint_driver(struct wiphy *wiphy,
2711                         struct regulatory_request *driver_request)
2712 {
2713         const struct ieee80211_regdomain *regd, *tmp;
2714         enum reg_request_treatment treatment;
2715
2716         treatment = __reg_process_hint_driver(driver_request);
2717
2718         switch (treatment) {
2719         case REG_REQ_OK:
2720                 break;
2721         case REG_REQ_IGNORE:
2722                 return REG_REQ_IGNORE;
2723         case REG_REQ_INTERSECT:
2724         case REG_REQ_ALREADY_SET:
2725                 regd = reg_copy_regd(get_cfg80211_regdom());
2726                 if (IS_ERR(regd))
2727                         return REG_REQ_IGNORE;
2728
2729                 tmp = get_wiphy_regdom(wiphy);
2730                 rcu_assign_pointer(wiphy->regd, regd);
2731                 rcu_free_regdom(tmp);
2732         }
2733
2734
2735         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2736         driver_request->processed = false;
2737
2738         /*
2739          * Since CRDA will not be called in this case as we already
2740          * have applied the requested regulatory domain before we just
2741          * inform userspace we have processed the request
2742          */
2743         if (treatment == REG_REQ_ALREADY_SET) {
2744                 nl80211_send_reg_change_event(driver_request);
2745                 reg_update_last_request(driver_request);
2746                 reg_set_request_processed();
2747                 return REG_REQ_ALREADY_SET;
2748         }
2749
2750         if (reg_query_database(driver_request)) {
2751                 reg_update_last_request(driver_request);
2752                 return REG_REQ_OK;
2753         }
2754
2755         return REG_REQ_IGNORE;
2756 }
2757
2758 static enum reg_request_treatment
2759 __reg_process_hint_country_ie(struct wiphy *wiphy,
2760                               struct regulatory_request *country_ie_request)
2761 {
2762         struct wiphy *last_wiphy = NULL;
2763         struct regulatory_request *lr = get_last_request();
2764
2765         if (reg_request_cell_base(lr)) {
2766                 /* Trust a Cell base station over the AP's country IE */
2767                 if (regdom_changes(country_ie_request->alpha2))
2768                         return REG_REQ_IGNORE;
2769                 return REG_REQ_ALREADY_SET;
2770         } else {
2771                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2772                         return REG_REQ_IGNORE;
2773         }
2774
2775         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2776                 return -EINVAL;
2777
2778         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2779                 return REG_REQ_OK;
2780
2781         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2782
2783         if (last_wiphy != wiphy) {
2784                 /*
2785                  * Two cards with two APs claiming different
2786                  * Country IE alpha2s. We could
2787                  * intersect them, but that seems unlikely
2788                  * to be correct. Reject second one for now.
2789                  */
2790                 if (regdom_changes(country_ie_request->alpha2))
2791                         return REG_REQ_IGNORE;
2792                 return REG_REQ_ALREADY_SET;
2793         }
2794
2795         if (regdom_changes(country_ie_request->alpha2))
2796                 return REG_REQ_OK;
2797         return REG_REQ_ALREADY_SET;
2798 }
2799
2800 /**
2801  * reg_process_hint_country_ie - process regulatory requests from country IEs
2802  * @wiphy: the wireless device for the regulatory request
2803  * @country_ie_request: a regulatory request from a country IE
2804  *
2805  * The wireless subsystem can use this function to process
2806  * a regulatory request issued by a country Information Element.
2807  *
2808  * Returns one of the different reg request treatment values.
2809  */
2810 static enum reg_request_treatment
2811 reg_process_hint_country_ie(struct wiphy *wiphy,
2812                             struct regulatory_request *country_ie_request)
2813 {
2814         enum reg_request_treatment treatment;
2815
2816         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2817
2818         switch (treatment) {
2819         case REG_REQ_OK:
2820                 break;
2821         case REG_REQ_IGNORE:
2822                 return REG_REQ_IGNORE;
2823         case REG_REQ_ALREADY_SET:
2824                 reg_free_request(country_ie_request);
2825                 return REG_REQ_ALREADY_SET;
2826         case REG_REQ_INTERSECT:
2827                 /*
2828                  * This doesn't happen yet, not sure we
2829                  * ever want to support it for this case.
2830                  */
2831                 WARN_ONCE(1, "Unexpected intersection for country elements");
2832                 return REG_REQ_IGNORE;
2833         }
2834
2835         country_ie_request->intersect = false;
2836         country_ie_request->processed = false;
2837
2838         if (reg_query_database(country_ie_request)) {
2839                 reg_update_last_request(country_ie_request);
2840                 return REG_REQ_OK;
2841         }
2842
2843         return REG_REQ_IGNORE;
2844 }
2845
2846 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2847 {
2848         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2849         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2850         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2851         bool dfs_domain_same;
2852
2853         rcu_read_lock();
2854
2855         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2856         wiphy1_regd = rcu_dereference(wiphy1->regd);
2857         if (!wiphy1_regd)
2858                 wiphy1_regd = cfg80211_regd;
2859
2860         wiphy2_regd = rcu_dereference(wiphy2->regd);
2861         if (!wiphy2_regd)
2862                 wiphy2_regd = cfg80211_regd;
2863
2864         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2865
2866         rcu_read_unlock();
2867
2868         return dfs_domain_same;
2869 }
2870
2871 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2872                                     struct ieee80211_channel *src_chan)
2873 {
2874         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2875             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2876                 return;
2877
2878         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2879             src_chan->flags & IEEE80211_CHAN_DISABLED)
2880                 return;
2881
2882         if (src_chan->center_freq == dst_chan->center_freq &&
2883             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2884                 dst_chan->dfs_state = src_chan->dfs_state;
2885                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2886         }
2887 }
2888
2889 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2890                                        struct wiphy *src_wiphy)
2891 {
2892         struct ieee80211_supported_band *src_sband, *dst_sband;
2893         struct ieee80211_channel *src_chan, *dst_chan;
2894         int i, j, band;
2895
2896         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2897                 return;
2898
2899         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2900                 dst_sband = dst_wiphy->bands[band];
2901                 src_sband = src_wiphy->bands[band];
2902                 if (!dst_sband || !src_sband)
2903                         continue;
2904
2905                 for (i = 0; i < dst_sband->n_channels; i++) {
2906                         dst_chan = &dst_sband->channels[i];
2907                         for (j = 0; j < src_sband->n_channels; j++) {
2908                                 src_chan = &src_sband->channels[j];
2909                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2910                         }
2911                 }
2912         }
2913 }
2914
2915 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2916 {
2917         struct cfg80211_registered_device *rdev;
2918
2919         ASSERT_RTNL();
2920
2921         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2922                 if (wiphy == &rdev->wiphy)
2923                         continue;
2924                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2925         }
2926 }
2927
2928 /* This processes *all* regulatory hints */
2929 static void reg_process_hint(struct regulatory_request *reg_request)
2930 {
2931         struct wiphy *wiphy = NULL;
2932         enum reg_request_treatment treatment;
2933         enum nl80211_reg_initiator initiator = reg_request->initiator;
2934
2935         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2936                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2937
2938         switch (initiator) {
2939         case NL80211_REGDOM_SET_BY_CORE:
2940                 treatment = reg_process_hint_core(reg_request);
2941                 break;
2942         case NL80211_REGDOM_SET_BY_USER:
2943                 treatment = reg_process_hint_user(reg_request);
2944                 break;
2945         case NL80211_REGDOM_SET_BY_DRIVER:
2946                 if (!wiphy)
2947                         goto out_free;
2948                 treatment = reg_process_hint_driver(wiphy, reg_request);
2949                 break;
2950         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2951                 if (!wiphy)
2952                         goto out_free;
2953                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2954                 break;
2955         default:
2956                 WARN(1, "invalid initiator %d\n", initiator);
2957                 goto out_free;
2958         }
2959
2960         if (treatment == REG_REQ_IGNORE)
2961                 goto out_free;
2962
2963         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2964              "unexpected treatment value %d\n", treatment);
2965
2966         /* This is required so that the orig_* parameters are saved.
2967          * NOTE: treatment must be set for any case that reaches here!
2968          */
2969         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2970             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2971                 wiphy_update_regulatory(wiphy, initiator);
2972                 wiphy_all_share_dfs_chan_state(wiphy);
2973                 reg_check_channels();
2974         }
2975
2976         return;
2977
2978 out_free:
2979         reg_free_request(reg_request);
2980 }
2981
2982 static void notify_self_managed_wiphys(struct regulatory_request *request)
2983 {
2984         struct cfg80211_registered_device *rdev;
2985         struct wiphy *wiphy;
2986
2987         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2988                 wiphy = &rdev->wiphy;
2989                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2990                     request->initiator == NL80211_REGDOM_SET_BY_USER)
2991                         reg_call_notifier(wiphy, request);
2992         }
2993 }
2994
2995 /*
2996  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2997  * Regulatory hints come on a first come first serve basis and we
2998  * must process each one atomically.
2999  */
3000 static void reg_process_pending_hints(void)
3001 {
3002         struct regulatory_request *reg_request, *lr;
3003
3004         lr = get_last_request();
3005
3006         /* When last_request->processed becomes true this will be rescheduled */
3007         if (lr && !lr->processed) {
3008                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3009                 return;
3010         }
3011
3012         spin_lock(&reg_requests_lock);
3013
3014         if (list_empty(&reg_requests_list)) {
3015                 spin_unlock(&reg_requests_lock);
3016                 return;
3017         }
3018
3019         reg_request = list_first_entry(&reg_requests_list,
3020                                        struct regulatory_request,
3021                                        list);
3022         list_del_init(&reg_request->list);
3023
3024         spin_unlock(&reg_requests_lock);
3025
3026         notify_self_managed_wiphys(reg_request);
3027
3028         reg_process_hint(reg_request);
3029
3030         lr = get_last_request();
3031
3032         spin_lock(&reg_requests_lock);
3033         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3034                 schedule_work(&reg_work);
3035         spin_unlock(&reg_requests_lock);
3036 }
3037
3038 /* Processes beacon hints -- this has nothing to do with country IEs */
3039 static void reg_process_pending_beacon_hints(void)
3040 {
3041         struct cfg80211_registered_device *rdev;
3042         struct reg_beacon *pending_beacon, *tmp;
3043
3044         /* This goes through the _pending_ beacon list */
3045         spin_lock_bh(&reg_pending_beacons_lock);
3046
3047         list_for_each_entry_safe(pending_beacon, tmp,
3048                                  &reg_pending_beacons, list) {
3049                 list_del_init(&pending_beacon->list);
3050
3051                 /* Applies the beacon hint to current wiphys */
3052                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3053                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3054
3055                 /* Remembers the beacon hint for new wiphys or reg changes */
3056                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3057         }
3058
3059         spin_unlock_bh(&reg_pending_beacons_lock);
3060 }
3061
3062 static void reg_process_self_managed_hints(void)
3063 {
3064         struct cfg80211_registered_device *rdev;
3065         struct wiphy *wiphy;
3066         const struct ieee80211_regdomain *tmp;
3067         const struct ieee80211_regdomain *regd;
3068         enum nl80211_band band;
3069         struct regulatory_request request = {};
3070
3071         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3072                 wiphy = &rdev->wiphy;
3073
3074                 spin_lock(&reg_requests_lock);
3075                 regd = rdev->requested_regd;
3076                 rdev->requested_regd = NULL;
3077                 spin_unlock(&reg_requests_lock);
3078
3079                 if (regd == NULL)
3080                         continue;
3081
3082                 tmp = get_wiphy_regdom(wiphy);
3083                 rcu_assign_pointer(wiphy->regd, regd);
3084                 rcu_free_regdom(tmp);
3085
3086                 for (band = 0; band < NUM_NL80211_BANDS; band++)
3087                         handle_band_custom(wiphy, wiphy->bands[band], regd);
3088
3089                 reg_process_ht_flags(wiphy);
3090
3091                 request.wiphy_idx = get_wiphy_idx(wiphy);
3092                 request.alpha2[0] = regd->alpha2[0];
3093                 request.alpha2[1] = regd->alpha2[1];
3094                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3095
3096                 nl80211_send_wiphy_reg_change_event(&request);
3097         }
3098
3099         reg_check_channels();
3100 }
3101
3102 static void reg_todo(struct work_struct *work)
3103 {
3104         rtnl_lock();
3105         reg_process_pending_hints();
3106         reg_process_pending_beacon_hints();
3107         reg_process_self_managed_hints();
3108         rtnl_unlock();
3109 }
3110
3111 static void queue_regulatory_request(struct regulatory_request *request)
3112 {
3113         request->alpha2[0] = toupper(request->alpha2[0]);
3114         request->alpha2[1] = toupper(request->alpha2[1]);
3115
3116         spin_lock(&reg_requests_lock);
3117         list_add_tail(&request->list, &reg_requests_list);
3118         spin_unlock(&reg_requests_lock);
3119
3120         schedule_work(&reg_work);
3121 }
3122
3123 /*
3124  * Core regulatory hint -- happens during cfg80211_init()
3125  * and when we restore regulatory settings.
3126  */
3127 static int regulatory_hint_core(const char *alpha2)
3128 {
3129         struct regulatory_request *request;
3130
3131         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3132         if (!request)
3133                 return -ENOMEM;
3134
3135         request->alpha2[0] = alpha2[0];
3136         request->alpha2[1] = alpha2[1];
3137         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3138         request->wiphy_idx = WIPHY_IDX_INVALID;
3139
3140         queue_regulatory_request(request);
3141
3142         return 0;
3143 }
3144
3145 /* User hints */
3146 int regulatory_hint_user(const char *alpha2,
3147                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3148 {
3149         struct regulatory_request *request;
3150
3151         if (WARN_ON(!alpha2))
3152                 return -EINVAL;
3153
3154         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3155                 return -EINVAL;
3156
3157         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3158         if (!request)
3159                 return -ENOMEM;
3160
3161         request->wiphy_idx = WIPHY_IDX_INVALID;
3162         request->alpha2[0] = alpha2[0];
3163         request->alpha2[1] = alpha2[1];
3164         request->initiator = NL80211_REGDOM_SET_BY_USER;
3165         request->user_reg_hint_type = user_reg_hint_type;
3166
3167         /* Allow calling CRDA again */
3168         reset_crda_timeouts();
3169
3170         queue_regulatory_request(request);
3171
3172         return 0;
3173 }
3174
3175 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3176 {
3177         spin_lock(&reg_indoor_lock);
3178
3179         /* It is possible that more than one user space process is trying to
3180          * configure the indoor setting. To handle such cases, clear the indoor
3181          * setting in case that some process does not think that the device
3182          * is operating in an indoor environment. In addition, if a user space
3183          * process indicates that it is controlling the indoor setting, save its
3184          * portid, i.e., make it the owner.
3185          */
3186         reg_is_indoor = is_indoor;
3187         if (reg_is_indoor) {
3188                 if (!reg_is_indoor_portid)
3189                         reg_is_indoor_portid = portid;
3190         } else {
3191                 reg_is_indoor_portid = 0;
3192         }
3193
3194         spin_unlock(&reg_indoor_lock);
3195
3196         if (!is_indoor)
3197                 reg_check_channels();
3198
3199         return 0;
3200 }
3201
3202 void regulatory_netlink_notify(u32 portid)
3203 {
3204         spin_lock(&reg_indoor_lock);
3205
3206         if (reg_is_indoor_portid != portid) {
3207                 spin_unlock(&reg_indoor_lock);
3208                 return;
3209         }
3210
3211         reg_is_indoor = false;
3212         reg_is_indoor_portid = 0;
3213
3214         spin_unlock(&reg_indoor_lock);
3215
3216         reg_check_channels();
3217 }
3218
3219 /* Driver hints */
3220 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3221 {
3222         struct regulatory_request *request;
3223
3224         if (WARN_ON(!alpha2 || !wiphy))
3225                 return -EINVAL;
3226
3227         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3228
3229         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3230         if (!request)
3231                 return -ENOMEM;
3232
3233         request->wiphy_idx = get_wiphy_idx(wiphy);
3234
3235         request->alpha2[0] = alpha2[0];
3236         request->alpha2[1] = alpha2[1];
3237         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3238
3239         /* Allow calling CRDA again */
3240         reset_crda_timeouts();
3241
3242         queue_regulatory_request(request);
3243
3244         return 0;
3245 }
3246 EXPORT_SYMBOL(regulatory_hint);
3247
3248 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3249                                 const u8 *country_ie, u8 country_ie_len)
3250 {
3251         char alpha2[2];
3252         enum environment_cap env = ENVIRON_ANY;
3253         struct regulatory_request *request = NULL, *lr;
3254
3255         /* IE len must be evenly divisible by 2 */
3256         if (country_ie_len & 0x01)
3257                 return;
3258
3259         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3260                 return;
3261
3262         request = kzalloc(sizeof(*request), GFP_KERNEL);
3263         if (!request)
3264                 return;
3265
3266         alpha2[0] = country_ie[0];
3267         alpha2[1] = country_ie[1];
3268
3269         if (country_ie[2] == 'I')
3270                 env = ENVIRON_INDOOR;
3271         else if (country_ie[2] == 'O')
3272                 env = ENVIRON_OUTDOOR;
3273
3274         rcu_read_lock();
3275         lr = get_last_request();
3276
3277         if (unlikely(!lr))
3278                 goto out;
3279
3280         /*
3281          * We will run this only upon a successful connection on cfg80211.
3282          * We leave conflict resolution to the workqueue, where can hold
3283          * the RTNL.
3284          */
3285         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3286             lr->wiphy_idx != WIPHY_IDX_INVALID)
3287                 goto out;
3288
3289         request->wiphy_idx = get_wiphy_idx(wiphy);
3290         request->alpha2[0] = alpha2[0];
3291         request->alpha2[1] = alpha2[1];
3292         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3293         request->country_ie_env = env;
3294
3295         /* Allow calling CRDA again */
3296         reset_crda_timeouts();
3297
3298         queue_regulatory_request(request);
3299         request = NULL;
3300 out:
3301         kfree(request);
3302         rcu_read_unlock();
3303 }
3304
3305 static void restore_alpha2(char *alpha2, bool reset_user)
3306 {
3307         /* indicates there is no alpha2 to consider for restoration */
3308         alpha2[0] = '9';
3309         alpha2[1] = '7';
3310
3311         /* The user setting has precedence over the module parameter */
3312         if (is_user_regdom_saved()) {
3313                 /* Unless we're asked to ignore it and reset it */
3314                 if (reset_user) {
3315                         pr_debug("Restoring regulatory settings including user preference\n");
3316                         user_alpha2[0] = '9';
3317                         user_alpha2[1] = '7';
3318
3319                         /*
3320                          * If we're ignoring user settings, we still need to
3321                          * check the module parameter to ensure we put things
3322                          * back as they were for a full restore.
3323                          */
3324                         if (!is_world_regdom(ieee80211_regdom)) {
3325                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3326                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3327                                 alpha2[0] = ieee80211_regdom[0];
3328                                 alpha2[1] = ieee80211_regdom[1];
3329                         }
3330                 } else {
3331                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3332                                  user_alpha2[0], user_alpha2[1]);
3333                         alpha2[0] = user_alpha2[0];
3334                         alpha2[1] = user_alpha2[1];
3335                 }
3336         } else if (!is_world_regdom(ieee80211_regdom)) {
3337                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3338                          ieee80211_regdom[0], ieee80211_regdom[1]);
3339                 alpha2[0] = ieee80211_regdom[0];
3340                 alpha2[1] = ieee80211_regdom[1];
3341         } else
3342                 pr_debug("Restoring regulatory settings\n");
3343 }
3344
3345 static void restore_custom_reg_settings(struct wiphy *wiphy)
3346 {
3347         struct ieee80211_supported_band *sband;
3348         enum nl80211_band band;
3349         struct ieee80211_channel *chan;
3350         int i;
3351
3352         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3353                 sband = wiphy->bands[band];
3354                 if (!sband)
3355                         continue;
3356                 for (i = 0; i < sband->n_channels; i++) {
3357                         chan = &sband->channels[i];
3358                         chan->flags = chan->orig_flags;
3359                         chan->max_antenna_gain = chan->orig_mag;
3360                         chan->max_power = chan->orig_mpwr;
3361                         chan->beacon_found = false;
3362                 }
3363         }
3364 }
3365
3366 /*
3367  * Restoring regulatory settings involves ingoring any
3368  * possibly stale country IE information and user regulatory
3369  * settings if so desired, this includes any beacon hints
3370  * learned as we could have traveled outside to another country
3371  * after disconnection. To restore regulatory settings we do
3372  * exactly what we did at bootup:
3373  *
3374  *   - send a core regulatory hint
3375  *   - send a user regulatory hint if applicable
3376  *
3377  * Device drivers that send a regulatory hint for a specific country
3378  * keep their own regulatory domain on wiphy->regd so that does
3379  * not need to be remembered.
3380  */
3381 static void restore_regulatory_settings(bool reset_user, bool cached)
3382 {
3383         char alpha2[2];
3384         char world_alpha2[2];
3385         struct reg_beacon *reg_beacon, *btmp;
3386         LIST_HEAD(tmp_reg_req_list);
3387         struct cfg80211_registered_device *rdev;
3388
3389         ASSERT_RTNL();
3390
3391         /*
3392          * Clear the indoor setting in case that it is not controlled by user
3393          * space, as otherwise there is no guarantee that the device is still
3394          * operating in an indoor environment.
3395          */
3396         spin_lock(&reg_indoor_lock);
3397         if (reg_is_indoor && !reg_is_indoor_portid) {
3398                 reg_is_indoor = false;
3399                 reg_check_channels();
3400         }
3401         spin_unlock(&reg_indoor_lock);
3402
3403         reset_regdomains(true, &world_regdom);
3404         restore_alpha2(alpha2, reset_user);
3405
3406         /*
3407          * If there's any pending requests we simply
3408          * stash them to a temporary pending queue and
3409          * add then after we've restored regulatory
3410          * settings.
3411          */
3412         spin_lock(&reg_requests_lock);
3413         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3414         spin_unlock(&reg_requests_lock);
3415
3416         /* Clear beacon hints */
3417         spin_lock_bh(&reg_pending_beacons_lock);
3418         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3419                 list_del(&reg_beacon->list);
3420                 kfree(reg_beacon);
3421         }
3422         spin_unlock_bh(&reg_pending_beacons_lock);
3423
3424         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3425                 list_del(&reg_beacon->list);
3426                 kfree(reg_beacon);
3427         }
3428
3429         /* First restore to the basic regulatory settings */
3430         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3431         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3432
3433         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3434                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3435                         continue;
3436                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3437                         restore_custom_reg_settings(&rdev->wiphy);
3438         }
3439
3440         if (cached && (!is_an_alpha2(alpha2) ||
3441                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3442                 reset_regdomains(false, cfg80211_world_regdom);
3443                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3444                 print_regdomain(get_cfg80211_regdom());
3445                 nl80211_send_reg_change_event(&core_request_world);
3446                 reg_set_request_processed();
3447
3448                 if (is_an_alpha2(alpha2) &&
3449                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3450                         struct regulatory_request *ureq;
3451
3452                         spin_lock(&reg_requests_lock);
3453                         ureq = list_last_entry(&reg_requests_list,
3454                                                struct regulatory_request,
3455                                                list);
3456                         list_del(&ureq->list);
3457                         spin_unlock(&reg_requests_lock);
3458
3459                         notify_self_managed_wiphys(ureq);
3460                         reg_update_last_request(ureq);
3461                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3462                                    REGD_SOURCE_CACHED);
3463                 }
3464         } else {
3465                 regulatory_hint_core(world_alpha2);
3466
3467                 /*
3468                  * This restores the ieee80211_regdom module parameter
3469                  * preference or the last user requested regulatory
3470                  * settings, user regulatory settings takes precedence.
3471                  */
3472                 if (is_an_alpha2(alpha2))
3473                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3474         }
3475
3476         spin_lock(&reg_requests_lock);
3477         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3478         spin_unlock(&reg_requests_lock);
3479
3480         pr_debug("Kicking the queue\n");
3481
3482         schedule_work(&reg_work);
3483 }
3484
3485 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3486 {
3487         struct cfg80211_registered_device *rdev;
3488         struct wireless_dev *wdev;
3489
3490         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3491                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3492                         wdev_lock(wdev);
3493                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3494                                 wdev_unlock(wdev);
3495                                 return false;
3496                         }
3497                         wdev_unlock(wdev);
3498                 }
3499         }
3500
3501         return true;
3502 }
3503
3504 void regulatory_hint_disconnect(void)
3505 {
3506         /* Restore of regulatory settings is not required when wiphy(s)
3507          * ignore IE from connected access point but clearance of beacon hints
3508          * is required when wiphy(s) supports beacon hints.
3509          */
3510         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3511                 struct reg_beacon *reg_beacon, *btmp;
3512
3513                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3514                         return;
3515
3516                 spin_lock_bh(&reg_pending_beacons_lock);
3517                 list_for_each_entry_safe(reg_beacon, btmp,
3518                                          &reg_pending_beacons, list) {
3519                         list_del(&reg_beacon->list);
3520                         kfree(reg_beacon);
3521                 }
3522                 spin_unlock_bh(&reg_pending_beacons_lock);
3523
3524                 list_for_each_entry_safe(reg_beacon, btmp,
3525                                          &reg_beacon_list, list) {
3526                         list_del(&reg_beacon->list);
3527                         kfree(reg_beacon);
3528                 }
3529
3530                 return;
3531         }
3532
3533         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3534         restore_regulatory_settings(false, true);
3535 }
3536
3537 static bool freq_is_chan_12_13_14(u32 freq)
3538 {
3539         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3540             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3541             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3542                 return true;
3543         return false;
3544 }
3545
3546 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3547 {
3548         struct reg_beacon *pending_beacon;
3549
3550         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3551                 if (ieee80211_channel_equal(beacon_chan,
3552                                             &pending_beacon->chan))
3553                         return true;
3554         return false;
3555 }
3556
3557 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3558                                  struct ieee80211_channel *beacon_chan,
3559                                  gfp_t gfp)
3560 {
3561         struct reg_beacon *reg_beacon;
3562         bool processing;
3563
3564         if (beacon_chan->beacon_found ||
3565             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3566             (beacon_chan->band == NL80211_BAND_2GHZ &&
3567              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3568                 return 0;
3569
3570         spin_lock_bh(&reg_pending_beacons_lock);
3571         processing = pending_reg_beacon(beacon_chan);
3572         spin_unlock_bh(&reg_pending_beacons_lock);
3573
3574         if (processing)
3575                 return 0;
3576
3577         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3578         if (!reg_beacon)
3579                 return -ENOMEM;
3580
3581         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3582                  beacon_chan->center_freq, beacon_chan->freq_offset,
3583                  ieee80211_freq_khz_to_channel(
3584                          ieee80211_channel_to_khz(beacon_chan)),
3585                  wiphy_name(wiphy));
3586
3587         memcpy(&reg_beacon->chan, beacon_chan,
3588                sizeof(struct ieee80211_channel));
3589
3590         /*
3591          * Since we can be called from BH or and non-BH context
3592          * we must use spin_lock_bh()
3593          */
3594         spin_lock_bh(&reg_pending_beacons_lock);
3595         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3596         spin_unlock_bh(&reg_pending_beacons_lock);
3597
3598         schedule_work(&reg_work);
3599
3600         return 0;
3601 }
3602
3603 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3604 {
3605         unsigned int i;
3606         const struct ieee80211_reg_rule *reg_rule = NULL;
3607         const struct ieee80211_freq_range *freq_range = NULL;
3608         const struct ieee80211_power_rule *power_rule = NULL;
3609         char bw[32], cac_time[32];
3610
3611         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3612
3613         for (i = 0; i < rd->n_reg_rules; i++) {
3614                 reg_rule = &rd->reg_rules[i];
3615                 freq_range = &reg_rule->freq_range;
3616                 power_rule = &reg_rule->power_rule;
3617
3618                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3619                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3620                                  freq_range->max_bandwidth_khz,
3621                                  reg_get_max_bandwidth(rd, reg_rule));
3622                 else
3623                         snprintf(bw, sizeof(bw), "%d KHz",
3624                                  freq_range->max_bandwidth_khz);
3625
3626                 if (reg_rule->flags & NL80211_RRF_DFS)
3627                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3628                                   reg_rule->dfs_cac_ms/1000);
3629                 else
3630                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3631
3632
3633                 /*
3634                  * There may not be documentation for max antenna gain
3635                  * in certain regions
3636                  */
3637                 if (power_rule->max_antenna_gain)
3638                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3639                                 freq_range->start_freq_khz,
3640                                 freq_range->end_freq_khz,
3641                                 bw,
3642                                 power_rule->max_antenna_gain,
3643                                 power_rule->max_eirp,
3644                                 cac_time);
3645                 else
3646                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3647                                 freq_range->start_freq_khz,
3648                                 freq_range->end_freq_khz,
3649                                 bw,
3650                                 power_rule->max_eirp,
3651                                 cac_time);
3652         }
3653 }
3654
3655 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3656 {
3657         switch (dfs_region) {
3658         case NL80211_DFS_UNSET:
3659         case NL80211_DFS_FCC:
3660         case NL80211_DFS_ETSI:
3661         case NL80211_DFS_JP:
3662                 return true;
3663         default:
3664                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3665                 return false;
3666         }
3667 }
3668
3669 static void print_regdomain(const struct ieee80211_regdomain *rd)
3670 {
3671         struct regulatory_request *lr = get_last_request();
3672
3673         if (is_intersected_alpha2(rd->alpha2)) {
3674                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3675                         struct cfg80211_registered_device *rdev;
3676                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3677                         if (rdev) {
3678                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3679                                         rdev->country_ie_alpha2[0],
3680                                         rdev->country_ie_alpha2[1]);
3681                         } else
3682                                 pr_debug("Current regulatory domain intersected:\n");
3683                 } else
3684                         pr_debug("Current regulatory domain intersected:\n");
3685         } else if (is_world_regdom(rd->alpha2)) {
3686                 pr_debug("World regulatory domain updated:\n");
3687         } else {
3688                 if (is_unknown_alpha2(rd->alpha2))
3689                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3690                 else {
3691                         if (reg_request_cell_base(lr))
3692                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3693                                         rd->alpha2[0], rd->alpha2[1]);
3694                         else
3695                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3696                                         rd->alpha2[0], rd->alpha2[1]);
3697                 }
3698         }
3699
3700         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3701         print_rd_rules(rd);
3702 }
3703
3704 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3705 {
3706         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3707         print_rd_rules(rd);
3708 }
3709
3710 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3711 {
3712         if (!is_world_regdom(rd->alpha2))
3713                 return -EINVAL;
3714         update_world_regdomain(rd);
3715         return 0;
3716 }
3717
3718 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3719                            struct regulatory_request *user_request)
3720 {
3721         const struct ieee80211_regdomain *intersected_rd = NULL;
3722
3723         if (!regdom_changes(rd->alpha2))
3724                 return -EALREADY;
3725
3726         if (!is_valid_rd(rd)) {
3727                 pr_err("Invalid regulatory domain detected: %c%c\n",
3728                        rd->alpha2[0], rd->alpha2[1]);
3729                 print_regdomain_info(rd);
3730                 return -EINVAL;
3731         }
3732
3733         if (!user_request->intersect) {
3734                 reset_regdomains(false, rd);
3735                 return 0;
3736         }
3737
3738         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3739         if (!intersected_rd)
3740                 return -EINVAL;
3741
3742         kfree(rd);
3743         rd = NULL;
3744         reset_regdomains(false, intersected_rd);
3745
3746         return 0;
3747 }
3748
3749 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3750                              struct regulatory_request *driver_request)
3751 {
3752         const struct ieee80211_regdomain *regd;
3753         const struct ieee80211_regdomain *intersected_rd = NULL;
3754         const struct ieee80211_regdomain *tmp;
3755         struct wiphy *request_wiphy;
3756
3757         if (is_world_regdom(rd->alpha2))
3758                 return -EINVAL;
3759
3760         if (!regdom_changes(rd->alpha2))
3761                 return -EALREADY;
3762
3763         if (!is_valid_rd(rd)) {
3764                 pr_err("Invalid regulatory domain detected: %c%c\n",
3765                        rd->alpha2[0], rd->alpha2[1]);
3766                 print_regdomain_info(rd);
3767                 return -EINVAL;
3768         }
3769
3770         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3771         if (!request_wiphy)
3772                 return -ENODEV;
3773
3774         if (!driver_request->intersect) {
3775                 if (request_wiphy->regd)
3776                         return -EALREADY;
3777
3778                 regd = reg_copy_regd(rd);
3779                 if (IS_ERR(regd))
3780                         return PTR_ERR(regd);
3781
3782                 rcu_assign_pointer(request_wiphy->regd, regd);
3783                 reset_regdomains(false, rd);
3784                 return 0;
3785         }
3786
3787         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3788         if (!intersected_rd)
3789                 return -EINVAL;
3790
3791         /*
3792          * We can trash what CRDA provided now.
3793          * However if a driver requested this specific regulatory
3794          * domain we keep it for its private use
3795          */
3796         tmp = get_wiphy_regdom(request_wiphy);
3797         rcu_assign_pointer(request_wiphy->regd, rd);
3798         rcu_free_regdom(tmp);
3799
3800         rd = NULL;
3801
3802         reset_regdomains(false, intersected_rd);
3803
3804         return 0;
3805 }
3806
3807 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3808                                  struct regulatory_request *country_ie_request)
3809 {
3810         struct wiphy *request_wiphy;
3811
3812         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3813             !is_unknown_alpha2(rd->alpha2))
3814                 return -EINVAL;
3815
3816         /*
3817          * Lets only bother proceeding on the same alpha2 if the current
3818          * rd is non static (it means CRDA was present and was used last)
3819          * and the pending request came in from a country IE
3820          */
3821
3822         if (!is_valid_rd(rd)) {
3823                 pr_err("Invalid regulatory domain detected: %c%c\n",
3824                        rd->alpha2[0], rd->alpha2[1]);
3825                 print_regdomain_info(rd);
3826                 return -EINVAL;
3827         }
3828
3829         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3830         if (!request_wiphy)
3831                 return -ENODEV;
3832
3833         if (country_ie_request->intersect)
3834                 return -EINVAL;
3835
3836         reset_regdomains(false, rd);
3837         return 0;
3838 }
3839
3840 /*
3841  * Use this call to set the current regulatory domain. Conflicts with
3842  * multiple drivers can be ironed out later. Caller must've already
3843  * kmalloc'd the rd structure.
3844  */
3845 int set_regdom(const struct ieee80211_regdomain *rd,
3846                enum ieee80211_regd_source regd_src)
3847 {
3848         struct regulatory_request *lr;
3849         bool user_reset = false;
3850         int r;
3851
3852         if (IS_ERR_OR_NULL(rd))
3853                 return -ENODATA;
3854
3855         if (!reg_is_valid_request(rd->alpha2)) {
3856                 kfree(rd);
3857                 return -EINVAL;
3858         }
3859
3860         if (regd_src == REGD_SOURCE_CRDA)
3861                 reset_crda_timeouts();
3862
3863         lr = get_last_request();
3864
3865         /* Note that this doesn't update the wiphys, this is done below */
3866         switch (lr->initiator) {
3867         case NL80211_REGDOM_SET_BY_CORE:
3868                 r = reg_set_rd_core(rd);
3869                 break;
3870         case NL80211_REGDOM_SET_BY_USER:
3871                 cfg80211_save_user_regdom(rd);
3872                 r = reg_set_rd_user(rd, lr);
3873                 user_reset = true;
3874                 break;
3875         case NL80211_REGDOM_SET_BY_DRIVER:
3876                 r = reg_set_rd_driver(rd, lr);
3877                 break;
3878         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3879                 r = reg_set_rd_country_ie(rd, lr);
3880                 break;
3881         default:
3882                 WARN(1, "invalid initiator %d\n", lr->initiator);
3883                 kfree(rd);
3884                 return -EINVAL;
3885         }
3886
3887         if (r) {
3888                 switch (r) {
3889                 case -EALREADY:
3890                         reg_set_request_processed();
3891                         break;
3892                 default:
3893                         /* Back to world regulatory in case of errors */
3894                         restore_regulatory_settings(user_reset, false);
3895                 }
3896
3897                 kfree(rd);
3898                 return r;
3899         }
3900
3901         /* This would make this whole thing pointless */
3902         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3903                 return -EINVAL;
3904
3905         /* update all wiphys now with the new established regulatory domain */
3906         update_all_wiphy_regulatory(lr->initiator);
3907
3908         print_regdomain(get_cfg80211_regdom());
3909
3910         nl80211_send_reg_change_event(lr);
3911
3912         reg_set_request_processed();
3913
3914         return 0;
3915 }
3916
3917 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3918                                        struct ieee80211_regdomain *rd)
3919 {
3920         const struct ieee80211_regdomain *regd;
3921         const struct ieee80211_regdomain *prev_regd;
3922         struct cfg80211_registered_device *rdev;
3923
3924         if (WARN_ON(!wiphy || !rd))
3925                 return -EINVAL;
3926
3927         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3928                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3929                 return -EPERM;
3930
3931         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3932                 print_regdomain_info(rd);
3933                 return -EINVAL;
3934         }
3935
3936         regd = reg_copy_regd(rd);
3937         if (IS_ERR(regd))
3938                 return PTR_ERR(regd);
3939
3940         rdev = wiphy_to_rdev(wiphy);
3941
3942         spin_lock(&reg_requests_lock);
3943         prev_regd = rdev->requested_regd;
3944         rdev->requested_regd = regd;
3945         spin_unlock(&reg_requests_lock);
3946
3947         kfree(prev_regd);
3948         return 0;
3949 }
3950
3951 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3952                               struct ieee80211_regdomain *rd)
3953 {
3954         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3955
3956         if (ret)
3957                 return ret;
3958
3959         schedule_work(&reg_work);
3960         return 0;
3961 }
3962 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3963
3964 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3965                                         struct ieee80211_regdomain *rd)
3966 {
3967         int ret;
3968
3969         ASSERT_RTNL();
3970
3971         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3972         if (ret)
3973                 return ret;
3974
3975         /* process the request immediately */
3976         reg_process_self_managed_hints();
3977         return 0;
3978 }
3979 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3980
3981 void wiphy_regulatory_register(struct wiphy *wiphy)
3982 {
3983         struct regulatory_request *lr = get_last_request();
3984
3985         /* self-managed devices ignore beacon hints and country IE */
3986         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3987                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3988                                            REGULATORY_COUNTRY_IE_IGNORE;
3989
3990                 /*
3991                  * The last request may have been received before this
3992                  * registration call. Call the driver notifier if
3993                  * initiator is USER.
3994                  */
3995                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
3996                         reg_call_notifier(wiphy, lr);
3997         }
3998
3999         if (!reg_dev_ignore_cell_hint(wiphy))
4000                 reg_num_devs_support_basehint++;
4001
4002         wiphy_update_regulatory(wiphy, lr->initiator);
4003         wiphy_all_share_dfs_chan_state(wiphy);
4004 }
4005
4006 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4007 {
4008         struct wiphy *request_wiphy = NULL;
4009         struct regulatory_request *lr;
4010
4011         lr = get_last_request();
4012
4013         if (!reg_dev_ignore_cell_hint(wiphy))
4014                 reg_num_devs_support_basehint--;
4015
4016         rcu_free_regdom(get_wiphy_regdom(wiphy));
4017         RCU_INIT_POINTER(wiphy->regd, NULL);
4018
4019         if (lr)
4020                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4021
4022         if (!request_wiphy || request_wiphy != wiphy)
4023                 return;
4024
4025         lr->wiphy_idx = WIPHY_IDX_INVALID;
4026         lr->country_ie_env = ENVIRON_ANY;
4027 }
4028
4029 /*
4030  * See FCC notices for UNII band definitions
4031  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4032  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4033  */
4034 int cfg80211_get_unii(int freq)
4035 {
4036         /* UNII-1 */
4037         if (freq >= 5150 && freq <= 5250)
4038                 return 0;
4039
4040         /* UNII-2A */
4041         if (freq > 5250 && freq <= 5350)
4042                 return 1;
4043
4044         /* UNII-2B */
4045         if (freq > 5350 && freq <= 5470)
4046                 return 2;
4047
4048         /* UNII-2C */
4049         if (freq > 5470 && freq <= 5725)
4050                 return 3;
4051
4052         /* UNII-3 */
4053         if (freq > 5725 && freq <= 5825)
4054                 return 4;
4055
4056         /* UNII-5 */
4057         if (freq > 5925 && freq <= 6425)
4058                 return 5;
4059
4060         /* UNII-6 */
4061         if (freq > 6425 && freq <= 6525)
4062                 return 6;
4063
4064         /* UNII-7 */
4065         if (freq > 6525 && freq <= 6875)
4066                 return 7;
4067
4068         /* UNII-8 */
4069         if (freq > 6875 && freq <= 7125)
4070                 return 8;
4071
4072         return -EINVAL;
4073 }
4074
4075 bool regulatory_indoor_allowed(void)
4076 {
4077         return reg_is_indoor;
4078 }
4079
4080 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4081 {
4082         const struct ieee80211_regdomain *regd = NULL;
4083         const struct ieee80211_regdomain *wiphy_regd = NULL;
4084         bool pre_cac_allowed = false;
4085
4086         rcu_read_lock();
4087
4088         regd = rcu_dereference(cfg80211_regdomain);
4089         wiphy_regd = rcu_dereference(wiphy->regd);
4090         if (!wiphy_regd) {
4091                 if (regd->dfs_region == NL80211_DFS_ETSI)
4092                         pre_cac_allowed = true;
4093
4094                 rcu_read_unlock();
4095
4096                 return pre_cac_allowed;
4097         }
4098
4099         if (regd->dfs_region == wiphy_regd->dfs_region &&
4100             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4101                 pre_cac_allowed = true;
4102
4103         rcu_read_unlock();
4104
4105         return pre_cac_allowed;
4106 }
4107 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4108
4109 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4110 {
4111         struct wireless_dev *wdev;
4112         /* If we finished CAC or received radar, we should end any
4113          * CAC running on the same channels.
4114          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4115          * either all channels are available - those the CAC_FINISHED
4116          * event has effected another wdev state, or there is a channel
4117          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4118          * event has effected another wdev state.
4119          * In both cases we should end the CAC on the wdev.
4120          */
4121         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4122                 if (wdev->cac_started &&
4123                     !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4124                         rdev_end_cac(rdev, wdev->netdev);
4125         }
4126 }
4127
4128 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4129                                     struct cfg80211_chan_def *chandef,
4130                                     enum nl80211_dfs_state dfs_state,
4131                                     enum nl80211_radar_event event)
4132 {
4133         struct cfg80211_registered_device *rdev;
4134
4135         ASSERT_RTNL();
4136
4137         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4138                 return;
4139
4140         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4141                 if (wiphy == &rdev->wiphy)
4142                         continue;
4143
4144                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4145                         continue;
4146
4147                 if (!ieee80211_get_channel(&rdev->wiphy,
4148                                            chandef->chan->center_freq))
4149                         continue;
4150
4151                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4152
4153                 if (event == NL80211_RADAR_DETECTED ||
4154                     event == NL80211_RADAR_CAC_FINISHED) {
4155                         cfg80211_sched_dfs_chan_update(rdev);
4156                         cfg80211_check_and_end_cac(rdev);
4157                 }
4158
4159                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4160         }
4161 }
4162
4163 static int __init regulatory_init_db(void)
4164 {
4165         int err;
4166
4167         /*
4168          * It's possible that - due to other bugs/issues - cfg80211
4169          * never called regulatory_init() below, or that it failed;
4170          * in that case, don't try to do any further work here as
4171          * it's doomed to lead to crashes.
4172          */
4173         if (IS_ERR_OR_NULL(reg_pdev))
4174                 return -EINVAL;
4175
4176         err = load_builtin_regdb_keys();
4177         if (err)
4178                 return err;
4179
4180         /* We always try to get an update for the static regdomain */
4181         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4182         if (err) {
4183                 if (err == -ENOMEM) {
4184                         platform_device_unregister(reg_pdev);
4185                         return err;
4186                 }
4187                 /*
4188                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4189                  * memory which is handled and propagated appropriately above
4190                  * but it can also fail during a netlink_broadcast() or during
4191                  * early boot for call_usermodehelper(). For now treat these
4192                  * errors as non-fatal.
4193                  */
4194                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4195         }
4196
4197         /*
4198          * Finally, if the user set the module parameter treat it
4199          * as a user hint.
4200          */
4201         if (!is_world_regdom(ieee80211_regdom))
4202                 regulatory_hint_user(ieee80211_regdom,
4203                                      NL80211_USER_REG_HINT_USER);
4204
4205         return 0;
4206 }
4207 #ifndef MODULE
4208 late_initcall(regulatory_init_db);
4209 #endif
4210
4211 int __init regulatory_init(void)
4212 {
4213         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4214         if (IS_ERR(reg_pdev))
4215                 return PTR_ERR(reg_pdev);
4216
4217         spin_lock_init(&reg_requests_lock);
4218         spin_lock_init(&reg_pending_beacons_lock);
4219         spin_lock_init(&reg_indoor_lock);
4220
4221         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4222
4223         user_alpha2[0] = '9';
4224         user_alpha2[1] = '7';
4225
4226 #ifdef MODULE
4227         return regulatory_init_db();
4228 #else
4229         return 0;
4230 #endif
4231 }
4232
4233 void regulatory_exit(void)
4234 {
4235         struct regulatory_request *reg_request, *tmp;
4236         struct reg_beacon *reg_beacon, *btmp;
4237
4238         cancel_work_sync(&reg_work);
4239         cancel_crda_timeout_sync();
4240         cancel_delayed_work_sync(&reg_check_chans);
4241
4242         /* Lock to suppress warnings */
4243         rtnl_lock();
4244         reset_regdomains(true, NULL);
4245         rtnl_unlock();
4246
4247         dev_set_uevent_suppress(&reg_pdev->dev, true);
4248
4249         platform_device_unregister(reg_pdev);
4250
4251         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4252                 list_del(&reg_beacon->list);
4253                 kfree(reg_beacon);
4254         }
4255
4256         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4257                 list_del(&reg_beacon->list);
4258                 kfree(reg_beacon);
4259         }
4260
4261         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4262                 list_del(&reg_request->list);
4263                 kfree(reg_request);
4264         }
4265
4266         if (!IS_ERR_OR_NULL(regdb))
4267                 kfree(regdb);
4268         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4269                 kfree(cfg80211_user_regdom);
4270
4271         free_regdb_keyring();
4272 }