dt-bindings: reset: imx7: Fix the spelling of 'indices'
[sfrench/cifs-2.6.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 /* device_offload_lock is used to synchronize tls_dev_add
42  * against NETDEV_DOWN notifications.
43  */
44 static DECLARE_RWSEM(device_offload_lock);
45
46 static void tls_device_gc_task(struct work_struct *work);
47
48 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
49 static LIST_HEAD(tls_device_gc_list);
50 static LIST_HEAD(tls_device_list);
51 static DEFINE_SPINLOCK(tls_device_lock);
52
53 static void tls_device_free_ctx(struct tls_context *ctx)
54 {
55         if (ctx->tx_conf == TLS_HW) {
56                 kfree(tls_offload_ctx_tx(ctx));
57                 kfree(ctx->tx.rec_seq);
58                 kfree(ctx->tx.iv);
59         }
60
61         if (ctx->rx_conf == TLS_HW)
62                 kfree(tls_offload_ctx_rx(ctx));
63
64         kfree(ctx);
65 }
66
67 static void tls_device_gc_task(struct work_struct *work)
68 {
69         struct tls_context *ctx, *tmp;
70         unsigned long flags;
71         LIST_HEAD(gc_list);
72
73         spin_lock_irqsave(&tls_device_lock, flags);
74         list_splice_init(&tls_device_gc_list, &gc_list);
75         spin_unlock_irqrestore(&tls_device_lock, flags);
76
77         list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
78                 struct net_device *netdev = ctx->netdev;
79
80                 if (netdev && ctx->tx_conf == TLS_HW) {
81                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
82                                                         TLS_OFFLOAD_CTX_DIR_TX);
83                         dev_put(netdev);
84                         ctx->netdev = NULL;
85                 }
86
87                 list_del(&ctx->list);
88                 tls_device_free_ctx(ctx);
89         }
90 }
91
92 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
93 {
94         unsigned long flags;
95
96         spin_lock_irqsave(&tls_device_lock, flags);
97         list_move_tail(&ctx->list, &tls_device_gc_list);
98
99         /* schedule_work inside the spinlock
100          * to make sure tls_device_down waits for that work.
101          */
102         schedule_work(&tls_device_gc_work);
103
104         spin_unlock_irqrestore(&tls_device_lock, flags);
105 }
106
107 /* We assume that the socket is already connected */
108 static struct net_device *get_netdev_for_sock(struct sock *sk)
109 {
110         struct dst_entry *dst = sk_dst_get(sk);
111         struct net_device *netdev = NULL;
112
113         if (likely(dst)) {
114                 netdev = dst->dev;
115                 dev_hold(netdev);
116         }
117
118         dst_release(dst);
119
120         return netdev;
121 }
122
123 static void destroy_record(struct tls_record_info *record)
124 {
125         int nr_frags = record->num_frags;
126         skb_frag_t *frag;
127
128         while (nr_frags-- > 0) {
129                 frag = &record->frags[nr_frags];
130                 __skb_frag_unref(frag);
131         }
132         kfree(record);
133 }
134
135 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
136 {
137         struct tls_record_info *info, *temp;
138
139         list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
140                 list_del(&info->list);
141                 destroy_record(info);
142         }
143
144         offload_ctx->retransmit_hint = NULL;
145 }
146
147 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
148 {
149         struct tls_context *tls_ctx = tls_get_ctx(sk);
150         struct tls_record_info *info, *temp;
151         struct tls_offload_context_tx *ctx;
152         u64 deleted_records = 0;
153         unsigned long flags;
154
155         if (!tls_ctx)
156                 return;
157
158         ctx = tls_offload_ctx_tx(tls_ctx);
159
160         spin_lock_irqsave(&ctx->lock, flags);
161         info = ctx->retransmit_hint;
162         if (info && !before(acked_seq, info->end_seq)) {
163                 ctx->retransmit_hint = NULL;
164                 list_del(&info->list);
165                 destroy_record(info);
166                 deleted_records++;
167         }
168
169         list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
170                 if (before(acked_seq, info->end_seq))
171                         break;
172                 list_del(&info->list);
173
174                 destroy_record(info);
175                 deleted_records++;
176         }
177
178         ctx->unacked_record_sn += deleted_records;
179         spin_unlock_irqrestore(&ctx->lock, flags);
180 }
181
182 /* At this point, there should be no references on this
183  * socket and no in-flight SKBs associated with this
184  * socket, so it is safe to free all the resources.
185  */
186 static void tls_device_sk_destruct(struct sock *sk)
187 {
188         struct tls_context *tls_ctx = tls_get_ctx(sk);
189         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
190
191         tls_ctx->sk_destruct(sk);
192
193         if (tls_ctx->tx_conf == TLS_HW) {
194                 if (ctx->open_record)
195                         destroy_record(ctx->open_record);
196                 delete_all_records(ctx);
197                 crypto_free_aead(ctx->aead_send);
198                 clean_acked_data_disable(inet_csk(sk));
199         }
200
201         if (refcount_dec_and_test(&tls_ctx->refcount))
202                 tls_device_queue_ctx_destruction(tls_ctx);
203 }
204
205 void tls_device_free_resources_tx(struct sock *sk)
206 {
207         struct tls_context *tls_ctx = tls_get_ctx(sk);
208
209         tls_free_partial_record(sk, tls_ctx);
210 }
211
212 static void tls_append_frag(struct tls_record_info *record,
213                             struct page_frag *pfrag,
214                             int size)
215 {
216         skb_frag_t *frag;
217
218         frag = &record->frags[record->num_frags - 1];
219         if (frag->page.p == pfrag->page &&
220             frag->page_offset + frag->size == pfrag->offset) {
221                 frag->size += size;
222         } else {
223                 ++frag;
224                 frag->page.p = pfrag->page;
225                 frag->page_offset = pfrag->offset;
226                 frag->size = size;
227                 ++record->num_frags;
228                 get_page(pfrag->page);
229         }
230
231         pfrag->offset += size;
232         record->len += size;
233 }
234
235 static int tls_push_record(struct sock *sk,
236                            struct tls_context *ctx,
237                            struct tls_offload_context_tx *offload_ctx,
238                            struct tls_record_info *record,
239                            struct page_frag *pfrag,
240                            int flags,
241                            unsigned char record_type)
242 {
243         struct tls_prot_info *prot = &ctx->prot_info;
244         struct tcp_sock *tp = tcp_sk(sk);
245         struct page_frag dummy_tag_frag;
246         skb_frag_t *frag;
247         int i;
248
249         /* fill prepend */
250         frag = &record->frags[0];
251         tls_fill_prepend(ctx,
252                          skb_frag_address(frag),
253                          record->len - prot->prepend_size,
254                          record_type,
255                          ctx->crypto_send.info.version);
256
257         /* HW doesn't care about the data in the tag, because it fills it. */
258         dummy_tag_frag.page = skb_frag_page(frag);
259         dummy_tag_frag.offset = 0;
260
261         tls_append_frag(record, &dummy_tag_frag, prot->tag_size);
262         record->end_seq = tp->write_seq + record->len;
263         spin_lock_irq(&offload_ctx->lock);
264         list_add_tail(&record->list, &offload_ctx->records_list);
265         spin_unlock_irq(&offload_ctx->lock);
266         offload_ctx->open_record = NULL;
267         tls_advance_record_sn(sk, &ctx->tx, ctx->crypto_send.info.version);
268
269         for (i = 0; i < record->num_frags; i++) {
270                 frag = &record->frags[i];
271                 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
272                 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
273                             frag->size, frag->page_offset);
274                 sk_mem_charge(sk, frag->size);
275                 get_page(skb_frag_page(frag));
276         }
277         sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
278
279         /* all ready, send */
280         return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
281 }
282
283 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
284                                  struct page_frag *pfrag,
285                                  size_t prepend_size)
286 {
287         struct tls_record_info *record;
288         skb_frag_t *frag;
289
290         record = kmalloc(sizeof(*record), GFP_KERNEL);
291         if (!record)
292                 return -ENOMEM;
293
294         frag = &record->frags[0];
295         __skb_frag_set_page(frag, pfrag->page);
296         frag->page_offset = pfrag->offset;
297         skb_frag_size_set(frag, prepend_size);
298
299         get_page(pfrag->page);
300         pfrag->offset += prepend_size;
301
302         record->num_frags = 1;
303         record->len = prepend_size;
304         offload_ctx->open_record = record;
305         return 0;
306 }
307
308 static int tls_do_allocation(struct sock *sk,
309                              struct tls_offload_context_tx *offload_ctx,
310                              struct page_frag *pfrag,
311                              size_t prepend_size)
312 {
313         int ret;
314
315         if (!offload_ctx->open_record) {
316                 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
317                                                    sk->sk_allocation))) {
318                         sk->sk_prot->enter_memory_pressure(sk);
319                         sk_stream_moderate_sndbuf(sk);
320                         return -ENOMEM;
321                 }
322
323                 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
324                 if (ret)
325                         return ret;
326
327                 if (pfrag->size > pfrag->offset)
328                         return 0;
329         }
330
331         if (!sk_page_frag_refill(sk, pfrag))
332                 return -ENOMEM;
333
334         return 0;
335 }
336
337 static int tls_push_data(struct sock *sk,
338                          struct iov_iter *msg_iter,
339                          size_t size, int flags,
340                          unsigned char record_type)
341 {
342         struct tls_context *tls_ctx = tls_get_ctx(sk);
343         struct tls_prot_info *prot = &tls_ctx->prot_info;
344         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
345         int tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
346         int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
347         struct tls_record_info *record = ctx->open_record;
348         struct page_frag *pfrag;
349         size_t orig_size = size;
350         u32 max_open_record_len;
351         int copy, rc = 0;
352         bool done = false;
353         long timeo;
354
355         if (flags &
356             ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
357                 return -ENOTSUPP;
358
359         if (sk->sk_err)
360                 return -sk->sk_err;
361
362         timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
363         if (tls_is_partially_sent_record(tls_ctx)) {
364                 rc = tls_push_partial_record(sk, tls_ctx, flags);
365                 if (rc < 0)
366                         return rc;
367         }
368
369         pfrag = sk_page_frag(sk);
370
371         /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
372          * we need to leave room for an authentication tag.
373          */
374         max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
375                               prot->prepend_size;
376         do {
377                 rc = tls_do_allocation(sk, ctx, pfrag,
378                                        prot->prepend_size);
379                 if (rc) {
380                         rc = sk_stream_wait_memory(sk, &timeo);
381                         if (!rc)
382                                 continue;
383
384                         record = ctx->open_record;
385                         if (!record)
386                                 break;
387 handle_error:
388                         if (record_type != TLS_RECORD_TYPE_DATA) {
389                                 /* avoid sending partial
390                                  * record with type !=
391                                  * application_data
392                                  */
393                                 size = orig_size;
394                                 destroy_record(record);
395                                 ctx->open_record = NULL;
396                         } else if (record->len > prot->prepend_size) {
397                                 goto last_record;
398                         }
399
400                         break;
401                 }
402
403                 record = ctx->open_record;
404                 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
405                 copy = min_t(size_t, copy, (max_open_record_len - record->len));
406
407                 if (copy_from_iter_nocache(page_address(pfrag->page) +
408                                                pfrag->offset,
409                                            copy, msg_iter) != copy) {
410                         rc = -EFAULT;
411                         goto handle_error;
412                 }
413                 tls_append_frag(record, pfrag, copy);
414
415                 size -= copy;
416                 if (!size) {
417 last_record:
418                         tls_push_record_flags = flags;
419                         if (more) {
420                                 tls_ctx->pending_open_record_frags =
421                                                 !!record->num_frags;
422                                 break;
423                         }
424
425                         done = true;
426                 }
427
428                 if (done || record->len >= max_open_record_len ||
429                     (record->num_frags >= MAX_SKB_FRAGS - 1)) {
430                         rc = tls_push_record(sk,
431                                              tls_ctx,
432                                              ctx,
433                                              record,
434                                              pfrag,
435                                              tls_push_record_flags,
436                                              record_type);
437                         if (rc < 0)
438                                 break;
439                 }
440         } while (!done);
441
442         if (orig_size - size > 0)
443                 rc = orig_size - size;
444
445         return rc;
446 }
447
448 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
449 {
450         unsigned char record_type = TLS_RECORD_TYPE_DATA;
451         int rc;
452
453         lock_sock(sk);
454
455         if (unlikely(msg->msg_controllen)) {
456                 rc = tls_proccess_cmsg(sk, msg, &record_type);
457                 if (rc)
458                         goto out;
459         }
460
461         rc = tls_push_data(sk, &msg->msg_iter, size,
462                            msg->msg_flags, record_type);
463
464 out:
465         release_sock(sk);
466         return rc;
467 }
468
469 int tls_device_sendpage(struct sock *sk, struct page *page,
470                         int offset, size_t size, int flags)
471 {
472         struct iov_iter msg_iter;
473         char *kaddr = kmap(page);
474         struct kvec iov;
475         int rc;
476
477         if (flags & MSG_SENDPAGE_NOTLAST)
478                 flags |= MSG_MORE;
479
480         lock_sock(sk);
481
482         if (flags & MSG_OOB) {
483                 rc = -ENOTSUPP;
484                 goto out;
485         }
486
487         iov.iov_base = kaddr + offset;
488         iov.iov_len = size;
489         iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
490         rc = tls_push_data(sk, &msg_iter, size,
491                            flags, TLS_RECORD_TYPE_DATA);
492         kunmap(page);
493
494 out:
495         release_sock(sk);
496         return rc;
497 }
498
499 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
500                                        u32 seq, u64 *p_record_sn)
501 {
502         u64 record_sn = context->hint_record_sn;
503         struct tls_record_info *info;
504
505         info = context->retransmit_hint;
506         if (!info ||
507             before(seq, info->end_seq - info->len)) {
508                 /* if retransmit_hint is irrelevant start
509                  * from the beggining of the list
510                  */
511                 info = list_first_entry(&context->records_list,
512                                         struct tls_record_info, list);
513                 record_sn = context->unacked_record_sn;
514         }
515
516         list_for_each_entry_from(info, &context->records_list, list) {
517                 if (before(seq, info->end_seq)) {
518                         if (!context->retransmit_hint ||
519                             after(info->end_seq,
520                                   context->retransmit_hint->end_seq)) {
521                                 context->hint_record_sn = record_sn;
522                                 context->retransmit_hint = info;
523                         }
524                         *p_record_sn = record_sn;
525                         return info;
526                 }
527                 record_sn++;
528         }
529
530         return NULL;
531 }
532 EXPORT_SYMBOL(tls_get_record);
533
534 static int tls_device_push_pending_record(struct sock *sk, int flags)
535 {
536         struct iov_iter msg_iter;
537
538         iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
539         return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
540 }
541
542 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
543 {
544         if (!sk->sk_write_pending && tls_is_partially_sent_record(ctx)) {
545                 gfp_t sk_allocation = sk->sk_allocation;
546
547                 sk->sk_allocation = GFP_ATOMIC;
548                 tls_push_partial_record(sk, ctx, MSG_DONTWAIT | MSG_NOSIGNAL);
549                 sk->sk_allocation = sk_allocation;
550         }
551 }
552
553 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn)
554 {
555         struct tls_context *tls_ctx = tls_get_ctx(sk);
556         struct net_device *netdev = tls_ctx->netdev;
557         struct tls_offload_context_rx *rx_ctx;
558         u32 is_req_pending;
559         s64 resync_req;
560         u32 req_seq;
561
562         if (tls_ctx->rx_conf != TLS_HW)
563                 return;
564
565         rx_ctx = tls_offload_ctx_rx(tls_ctx);
566         resync_req = atomic64_read(&rx_ctx->resync_req);
567         req_seq = (resync_req >> 32) - ((u32)TLS_HEADER_SIZE - 1);
568         is_req_pending = resync_req;
569
570         if (unlikely(is_req_pending) && req_seq == seq &&
571             atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
572                 netdev->tlsdev_ops->tls_dev_resync_rx(netdev, sk,
573                                                       seq + TLS_HEADER_SIZE - 1,
574                                                       rcd_sn);
575 }
576
577 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
578 {
579         struct strp_msg *rxm = strp_msg(skb);
580         int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
581         struct sk_buff *skb_iter, *unused;
582         struct scatterlist sg[1];
583         char *orig_buf, *buf;
584
585         orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
586                            TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
587         if (!orig_buf)
588                 return -ENOMEM;
589         buf = orig_buf;
590
591         nsg = skb_cow_data(skb, 0, &unused);
592         if (unlikely(nsg < 0)) {
593                 err = nsg;
594                 goto free_buf;
595         }
596
597         sg_init_table(sg, 1);
598         sg_set_buf(&sg[0], buf,
599                    rxm->full_len + TLS_HEADER_SIZE +
600                    TLS_CIPHER_AES_GCM_128_IV_SIZE);
601         skb_copy_bits(skb, offset, buf,
602                       TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
603
604         /* We are interested only in the decrypted data not the auth */
605         err = decrypt_skb(sk, skb, sg);
606         if (err != -EBADMSG)
607                 goto free_buf;
608         else
609                 err = 0;
610
611         data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
612
613         if (skb_pagelen(skb) > offset) {
614                 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
615
616                 if (skb->decrypted)
617                         skb_store_bits(skb, offset, buf, copy);
618
619                 offset += copy;
620                 buf += copy;
621         }
622
623         pos = skb_pagelen(skb);
624         skb_walk_frags(skb, skb_iter) {
625                 int frag_pos;
626
627                 /* Practically all frags must belong to msg if reencrypt
628                  * is needed with current strparser and coalescing logic,
629                  * but strparser may "get optimized", so let's be safe.
630                  */
631                 if (pos + skb_iter->len <= offset)
632                         goto done_with_frag;
633                 if (pos >= data_len + rxm->offset)
634                         break;
635
636                 frag_pos = offset - pos;
637                 copy = min_t(int, skb_iter->len - frag_pos,
638                              data_len + rxm->offset - offset);
639
640                 if (skb_iter->decrypted)
641                         skb_store_bits(skb_iter, frag_pos, buf, copy);
642
643                 offset += copy;
644                 buf += copy;
645 done_with_frag:
646                 pos += skb_iter->len;
647         }
648
649 free_buf:
650         kfree(orig_buf);
651         return err;
652 }
653
654 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
655 {
656         struct tls_context *tls_ctx = tls_get_ctx(sk);
657         struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
658         int is_decrypted = skb->decrypted;
659         int is_encrypted = !is_decrypted;
660         struct sk_buff *skb_iter;
661
662         /* Skip if it is already decrypted */
663         if (ctx->sw.decrypted)
664                 return 0;
665
666         /* Check if all the data is decrypted already */
667         skb_walk_frags(skb, skb_iter) {
668                 is_decrypted &= skb_iter->decrypted;
669                 is_encrypted &= !skb_iter->decrypted;
670         }
671
672         ctx->sw.decrypted |= is_decrypted;
673
674         /* Return immedeatly if the record is either entirely plaintext or
675          * entirely ciphertext. Otherwise handle reencrypt partially decrypted
676          * record.
677          */
678         return (is_encrypted || is_decrypted) ? 0 :
679                 tls_device_reencrypt(sk, skb);
680 }
681
682 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
683                               struct net_device *netdev)
684 {
685         if (sk->sk_destruct != tls_device_sk_destruct) {
686                 refcount_set(&ctx->refcount, 1);
687                 dev_hold(netdev);
688                 ctx->netdev = netdev;
689                 spin_lock_irq(&tls_device_lock);
690                 list_add_tail(&ctx->list, &tls_device_list);
691                 spin_unlock_irq(&tls_device_lock);
692
693                 ctx->sk_destruct = sk->sk_destruct;
694                 sk->sk_destruct = tls_device_sk_destruct;
695         }
696 }
697
698 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
699 {
700         u16 nonce_size, tag_size, iv_size, rec_seq_size;
701         struct tls_context *tls_ctx = tls_get_ctx(sk);
702         struct tls_prot_info *prot = &tls_ctx->prot_info;
703         struct tls_record_info *start_marker_record;
704         struct tls_offload_context_tx *offload_ctx;
705         struct tls_crypto_info *crypto_info;
706         struct net_device *netdev;
707         char *iv, *rec_seq;
708         struct sk_buff *skb;
709         int rc = -EINVAL;
710         __be64 rcd_sn;
711
712         if (!ctx)
713                 goto out;
714
715         if (ctx->priv_ctx_tx) {
716                 rc = -EEXIST;
717                 goto out;
718         }
719
720         start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
721         if (!start_marker_record) {
722                 rc = -ENOMEM;
723                 goto out;
724         }
725
726         offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
727         if (!offload_ctx) {
728                 rc = -ENOMEM;
729                 goto free_marker_record;
730         }
731
732         crypto_info = &ctx->crypto_send.info;
733         switch (crypto_info->cipher_type) {
734         case TLS_CIPHER_AES_GCM_128:
735                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
736                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
737                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
738                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
739                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
740                 rec_seq =
741                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
742                 break;
743         default:
744                 rc = -EINVAL;
745                 goto free_offload_ctx;
746         }
747
748         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
749         prot->tag_size = tag_size;
750         prot->overhead_size = prot->prepend_size + prot->tag_size;
751         prot->iv_size = iv_size;
752         ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
753                              GFP_KERNEL);
754         if (!ctx->tx.iv) {
755                 rc = -ENOMEM;
756                 goto free_offload_ctx;
757         }
758
759         memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
760
761         prot->rec_seq_size = rec_seq_size;
762         ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
763         if (!ctx->tx.rec_seq) {
764                 rc = -ENOMEM;
765                 goto free_iv;
766         }
767
768         rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
769         if (rc)
770                 goto free_rec_seq;
771
772         /* start at rec_seq - 1 to account for the start marker record */
773         memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
774         offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
775
776         start_marker_record->end_seq = tcp_sk(sk)->write_seq;
777         start_marker_record->len = 0;
778         start_marker_record->num_frags = 0;
779
780         INIT_LIST_HEAD(&offload_ctx->records_list);
781         list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
782         spin_lock_init(&offload_ctx->lock);
783         sg_init_table(offload_ctx->sg_tx_data,
784                       ARRAY_SIZE(offload_ctx->sg_tx_data));
785
786         clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
787         ctx->push_pending_record = tls_device_push_pending_record;
788
789         /* TLS offload is greatly simplified if we don't send
790          * SKBs where only part of the payload needs to be encrypted.
791          * So mark the last skb in the write queue as end of record.
792          */
793         skb = tcp_write_queue_tail(sk);
794         if (skb)
795                 TCP_SKB_CB(skb)->eor = 1;
796
797         /* We support starting offload on multiple sockets
798          * concurrently, so we only need a read lock here.
799          * This lock must precede get_netdev_for_sock to prevent races between
800          * NETDEV_DOWN and setsockopt.
801          */
802         down_read(&device_offload_lock);
803         netdev = get_netdev_for_sock(sk);
804         if (!netdev) {
805                 pr_err_ratelimited("%s: netdev not found\n", __func__);
806                 rc = -EINVAL;
807                 goto release_lock;
808         }
809
810         if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
811                 rc = -ENOTSUPP;
812                 goto release_netdev;
813         }
814
815         /* Avoid offloading if the device is down
816          * We don't want to offload new flows after
817          * the NETDEV_DOWN event
818          */
819         if (!(netdev->flags & IFF_UP)) {
820                 rc = -EINVAL;
821                 goto release_netdev;
822         }
823
824         ctx->priv_ctx_tx = offload_ctx;
825         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
826                                              &ctx->crypto_send.info,
827                                              tcp_sk(sk)->write_seq);
828         if (rc)
829                 goto release_netdev;
830
831         tls_device_attach(ctx, sk, netdev);
832
833         /* following this assignment tls_is_sk_tx_device_offloaded
834          * will return true and the context might be accessed
835          * by the netdev's xmit function.
836          */
837         smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
838         dev_put(netdev);
839         up_read(&device_offload_lock);
840         goto out;
841
842 release_netdev:
843         dev_put(netdev);
844 release_lock:
845         up_read(&device_offload_lock);
846         clean_acked_data_disable(inet_csk(sk));
847         crypto_free_aead(offload_ctx->aead_send);
848 free_rec_seq:
849         kfree(ctx->tx.rec_seq);
850 free_iv:
851         kfree(ctx->tx.iv);
852 free_offload_ctx:
853         kfree(offload_ctx);
854         ctx->priv_ctx_tx = NULL;
855 free_marker_record:
856         kfree(start_marker_record);
857 out:
858         return rc;
859 }
860
861 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
862 {
863         struct tls_offload_context_rx *context;
864         struct net_device *netdev;
865         int rc = 0;
866
867         /* We support starting offload on multiple sockets
868          * concurrently, so we only need a read lock here.
869          * This lock must precede get_netdev_for_sock to prevent races between
870          * NETDEV_DOWN and setsockopt.
871          */
872         down_read(&device_offload_lock);
873         netdev = get_netdev_for_sock(sk);
874         if (!netdev) {
875                 pr_err_ratelimited("%s: netdev not found\n", __func__);
876                 rc = -EINVAL;
877                 goto release_lock;
878         }
879
880         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
881                 rc = -ENOTSUPP;
882                 goto release_netdev;
883         }
884
885         /* Avoid offloading if the device is down
886          * We don't want to offload new flows after
887          * the NETDEV_DOWN event
888          */
889         if (!(netdev->flags & IFF_UP)) {
890                 rc = -EINVAL;
891                 goto release_netdev;
892         }
893
894         context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
895         if (!context) {
896                 rc = -ENOMEM;
897                 goto release_netdev;
898         }
899
900         ctx->priv_ctx_rx = context;
901         rc = tls_set_sw_offload(sk, ctx, 0);
902         if (rc)
903                 goto release_ctx;
904
905         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
906                                              &ctx->crypto_recv.info,
907                                              tcp_sk(sk)->copied_seq);
908         if (rc)
909                 goto free_sw_resources;
910
911         tls_device_attach(ctx, sk, netdev);
912         goto release_netdev;
913
914 free_sw_resources:
915         up_read(&device_offload_lock);
916         tls_sw_free_resources_rx(sk);
917         down_read(&device_offload_lock);
918 release_ctx:
919         ctx->priv_ctx_rx = NULL;
920 release_netdev:
921         dev_put(netdev);
922 release_lock:
923         up_read(&device_offload_lock);
924         return rc;
925 }
926
927 void tls_device_offload_cleanup_rx(struct sock *sk)
928 {
929         struct tls_context *tls_ctx = tls_get_ctx(sk);
930         struct net_device *netdev;
931
932         down_read(&device_offload_lock);
933         netdev = tls_ctx->netdev;
934         if (!netdev)
935                 goto out;
936
937         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
938                 pr_err_ratelimited("%s: device is missing NETIF_F_HW_TLS_RX cap\n",
939                                    __func__);
940                 goto out;
941         }
942
943         netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
944                                         TLS_OFFLOAD_CTX_DIR_RX);
945
946         if (tls_ctx->tx_conf != TLS_HW) {
947                 dev_put(netdev);
948                 tls_ctx->netdev = NULL;
949         }
950 out:
951         up_read(&device_offload_lock);
952         tls_sw_release_resources_rx(sk);
953 }
954
955 static int tls_device_down(struct net_device *netdev)
956 {
957         struct tls_context *ctx, *tmp;
958         unsigned long flags;
959         LIST_HEAD(list);
960
961         /* Request a write lock to block new offload attempts */
962         down_write(&device_offload_lock);
963
964         spin_lock_irqsave(&tls_device_lock, flags);
965         list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
966                 if (ctx->netdev != netdev ||
967                     !refcount_inc_not_zero(&ctx->refcount))
968                         continue;
969
970                 list_move(&ctx->list, &list);
971         }
972         spin_unlock_irqrestore(&tls_device_lock, flags);
973
974         list_for_each_entry_safe(ctx, tmp, &list, list) {
975                 if (ctx->tx_conf == TLS_HW)
976                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
977                                                         TLS_OFFLOAD_CTX_DIR_TX);
978                 if (ctx->rx_conf == TLS_HW)
979                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
980                                                         TLS_OFFLOAD_CTX_DIR_RX);
981                 ctx->netdev = NULL;
982                 dev_put(netdev);
983                 list_del_init(&ctx->list);
984
985                 if (refcount_dec_and_test(&ctx->refcount))
986                         tls_device_free_ctx(ctx);
987         }
988
989         up_write(&device_offload_lock);
990
991         flush_work(&tls_device_gc_work);
992
993         return NOTIFY_DONE;
994 }
995
996 static int tls_dev_event(struct notifier_block *this, unsigned long event,
997                          void *ptr)
998 {
999         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1000
1001         if (!(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1002                 return NOTIFY_DONE;
1003
1004         switch (event) {
1005         case NETDEV_REGISTER:
1006         case NETDEV_FEAT_CHANGE:
1007                 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1008                     !dev->tlsdev_ops->tls_dev_resync_rx)
1009                         return NOTIFY_BAD;
1010
1011                 if  (dev->tlsdev_ops &&
1012                      dev->tlsdev_ops->tls_dev_add &&
1013                      dev->tlsdev_ops->tls_dev_del)
1014                         return NOTIFY_DONE;
1015                 else
1016                         return NOTIFY_BAD;
1017         case NETDEV_DOWN:
1018                 return tls_device_down(dev);
1019         }
1020         return NOTIFY_DONE;
1021 }
1022
1023 static struct notifier_block tls_dev_notifier = {
1024         .notifier_call  = tls_dev_event,
1025 };
1026
1027 void __init tls_device_init(void)
1028 {
1029         register_netdevice_notifier(&tls_dev_notifier);
1030 }
1031
1032 void __exit tls_device_cleanup(void)
1033 {
1034         unregister_netdevice_notifier(&tls_dev_notifier);
1035         flush_work(&tls_device_gc_work);
1036         clean_acked_data_flush();
1037 }