rust: upgrade to Rust 1.76.0
[sfrench/cifs-2.6.git] / net / ipv4 / inet_connection_sock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
4  *              operating system.  INET is implemented using the  BSD Socket
5  *              interface as the means of communication with the user level.
6  *
7  *              Support for INET connection oriented protocols.
8  *
9  * Authors:     See the TCP sources
10  */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *                              if IPv6 only, and any IPv4 addresses
29  *                              if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *                              IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *                              and 0.0.0.0 equals to 0.0.0.0 only
33  */
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35                                  const struct in6_addr *sk2_rcv_saddr6,
36                                  __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37                                  bool sk1_ipv6only, bool sk2_ipv6only,
38                                  bool match_sk1_wildcard,
39                                  bool match_sk2_wildcard)
40 {
41         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44         /* if both are mapped, treat as IPv4 */
45         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46                 if (!sk2_ipv6only) {
47                         if (sk1_rcv_saddr == sk2_rcv_saddr)
48                                 return true;
49                         return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50                                 (match_sk2_wildcard && !sk2_rcv_saddr);
51                 }
52                 return false;
53         }
54
55         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56                 return true;
57
58         if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60                 return true;
61
62         if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64                 return true;
65
66         if (sk2_rcv_saddr6 &&
67             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68                 return true;
69
70         return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *                              0.0.0.0 only equals to 0.0.0.0
77  */
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79                                  bool sk2_ipv6only, bool match_sk1_wildcard,
80                                  bool match_sk2_wildcard)
81 {
82         if (!sk2_ipv6only) {
83                 if (sk1_rcv_saddr == sk2_rcv_saddr)
84                         return true;
85                 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86                         (match_sk2_wildcard && !sk2_rcv_saddr);
87         }
88         return false;
89 }
90
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92                           bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95         if (sk->sk_family == AF_INET6)
96                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97                                             inet6_rcv_saddr(sk2),
98                                             sk->sk_rcv_saddr,
99                                             sk2->sk_rcv_saddr,
100                                             ipv6_only_sock(sk),
101                                             ipv6_only_sock(sk2),
102                                             match_wildcard,
103                                             match_wildcard);
104 #endif
105         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106                                     ipv6_only_sock(sk2), match_wildcard,
107                                     match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114         if (sk->sk_family == AF_INET6)
115                 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117         return !sk->sk_rcv_saddr;
118 }
119
120 /**
121  *      inet_sk_get_local_port_range - fetch ephemeral ports range
122  *      @sk: socket
123  *      @low: pointer to low port
124  *      @high: pointer to high port
125  *
126  *      Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127  *      Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128  *      Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129  */
130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131 {
132         int lo, hi, sk_lo, sk_hi;
133         bool local_range = false;
134         u32 sk_range;
135
136         inet_get_local_port_range(sock_net(sk), &lo, &hi);
137
138         sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139         if (unlikely(sk_range)) {
140                 sk_lo = sk_range & 0xffff;
141                 sk_hi = sk_range >> 16;
142
143                 if (lo <= sk_lo && sk_lo <= hi)
144                         lo = sk_lo;
145                 if (lo <= sk_hi && sk_hi <= hi)
146                         hi = sk_hi;
147                 local_range = true;
148         }
149
150         *low = lo;
151         *high = hi;
152         return local_range;
153 }
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
155
156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
157 {
158 #if IS_ENABLED(CONFIG_IPV6)
159         if (sk->sk_family == AF_INET6) {
160                 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
161
162                 if (addr_type == IPV6_ADDR_ANY)
163                         return false;
164
165                 if (addr_type != IPV6_ADDR_MAPPED)
166                         return true;
167         }
168 #endif
169         return sk->sk_rcv_saddr != htonl(INADDR_ANY);
170 }
171
172 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
173                                kuid_t sk_uid, bool relax,
174                                bool reuseport_cb_ok, bool reuseport_ok)
175 {
176         int bound_dev_if2;
177
178         if (sk == sk2)
179                 return false;
180
181         bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
182
183         if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
184             sk->sk_bound_dev_if == bound_dev_if2) {
185                 if (sk->sk_reuse && sk2->sk_reuse &&
186                     sk2->sk_state != TCP_LISTEN) {
187                         if (!relax || (!reuseport_ok && sk->sk_reuseport &&
188                                        sk2->sk_reuseport && reuseport_cb_ok &&
189                                        (sk2->sk_state == TCP_TIME_WAIT ||
190                                         uid_eq(sk_uid, sock_i_uid(sk2)))))
191                                 return true;
192                 } else if (!reuseport_ok || !sk->sk_reuseport ||
193                            !sk2->sk_reuseport || !reuseport_cb_ok ||
194                            (sk2->sk_state != TCP_TIME_WAIT &&
195                             !uid_eq(sk_uid, sock_i_uid(sk2)))) {
196                         return true;
197                 }
198         }
199         return false;
200 }
201
202 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
203                                    kuid_t sk_uid, bool relax,
204                                    bool reuseport_cb_ok, bool reuseport_ok)
205 {
206         if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
207                 return false;
208
209         return inet_bind_conflict(sk, sk2, sk_uid, relax,
210                                   reuseport_cb_ok, reuseport_ok);
211 }
212
213 static bool inet_bhash2_conflict(const struct sock *sk,
214                                  const struct inet_bind2_bucket *tb2,
215                                  kuid_t sk_uid,
216                                  bool relax, bool reuseport_cb_ok,
217                                  bool reuseport_ok)
218 {
219         struct sock *sk2;
220
221         sk_for_each_bound(sk2, &tb2->owners) {
222                 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
223                                            reuseport_cb_ok, reuseport_ok))
224                         return true;
225         }
226
227         return false;
228 }
229
230 #define sk_for_each_bound_bhash(__sk, __tb2, __tb)                      \
231         hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node)        \
232                 sk_for_each_bound(sk2, &(__tb2)->owners)
233
234 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
235 static int inet_csk_bind_conflict(const struct sock *sk,
236                                   const struct inet_bind_bucket *tb,
237                                   const struct inet_bind2_bucket *tb2, /* may be null */
238                                   bool relax, bool reuseport_ok)
239 {
240         kuid_t uid = sock_i_uid((struct sock *)sk);
241         struct sock_reuseport *reuseport_cb;
242         bool reuseport_cb_ok;
243         struct sock *sk2;
244
245         rcu_read_lock();
246         reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
247         /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
248         reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
249         rcu_read_unlock();
250
251         /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
252          * ipv4) should have been checked already. We need to do these two
253          * checks separately because their spinlocks have to be acquired/released
254          * independently of each other, to prevent possible deadlocks
255          */
256         if (inet_use_bhash2_on_bind(sk))
257                 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
258                                                    reuseport_cb_ok, reuseport_ok);
259
260         /* Unlike other sk lookup places we do not check
261          * for sk_net here, since _all_ the socks listed
262          * in tb->owners and tb2->owners list belong
263          * to the same net - the one this bucket belongs to.
264          */
265         sk_for_each_bound_bhash(sk2, tb2, tb) {
266                 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
267                         continue;
268
269                 if (inet_rcv_saddr_equal(sk, sk2, true))
270                         return true;
271         }
272
273         return false;
274 }
275
276 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
277  * INADDR_ANY (if ipv4) socket.
278  *
279  * Caller must hold bhash hashbucket lock with local bh disabled, to protect
280  * against concurrent binds on the port for addr any
281  */
282 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
283                                           bool relax, bool reuseport_ok)
284 {
285         kuid_t uid = sock_i_uid((struct sock *)sk);
286         const struct net *net = sock_net(sk);
287         struct sock_reuseport *reuseport_cb;
288         struct inet_bind_hashbucket *head2;
289         struct inet_bind2_bucket *tb2;
290         bool reuseport_cb_ok;
291
292         rcu_read_lock();
293         reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
294         /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
295         reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
296         rcu_read_unlock();
297
298         head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
299
300         spin_lock(&head2->lock);
301
302         inet_bind_bucket_for_each(tb2, &head2->chain)
303                 if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
304                         break;
305
306         if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
307                                         reuseport_ok)) {
308                 spin_unlock(&head2->lock);
309                 return true;
310         }
311
312         spin_unlock(&head2->lock);
313         return false;
314 }
315
316 /*
317  * Find an open port number for the socket.  Returns with the
318  * inet_bind_hashbucket locks held if successful.
319  */
320 static struct inet_bind_hashbucket *
321 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
322                         struct inet_bind2_bucket **tb2_ret,
323                         struct inet_bind_hashbucket **head2_ret, int *port_ret)
324 {
325         struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
326         int i, low, high, attempt_half, port, l3mdev;
327         struct inet_bind_hashbucket *head, *head2;
328         struct net *net = sock_net(sk);
329         struct inet_bind2_bucket *tb2;
330         struct inet_bind_bucket *tb;
331         u32 remaining, offset;
332         bool relax = false;
333
334         l3mdev = inet_sk_bound_l3mdev(sk);
335 ports_exhausted:
336         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
337 other_half_scan:
338         inet_sk_get_local_port_range(sk, &low, &high);
339         high++; /* [32768, 60999] -> [32768, 61000[ */
340         if (high - low < 4)
341                 attempt_half = 0;
342         if (attempt_half) {
343                 int half = low + (((high - low) >> 2) << 1);
344
345                 if (attempt_half == 1)
346                         high = half;
347                 else
348                         low = half;
349         }
350         remaining = high - low;
351         if (likely(remaining > 1))
352                 remaining &= ~1U;
353
354         offset = get_random_u32_below(remaining);
355         /* __inet_hash_connect() favors ports having @low parity
356          * We do the opposite to not pollute connect() users.
357          */
358         offset |= 1U;
359
360 other_parity_scan:
361         port = low + offset;
362         for (i = 0; i < remaining; i += 2, port += 2) {
363                 if (unlikely(port >= high))
364                         port -= remaining;
365                 if (inet_is_local_reserved_port(net, port))
366                         continue;
367                 head = &hinfo->bhash[inet_bhashfn(net, port,
368                                                   hinfo->bhash_size)];
369                 spin_lock_bh(&head->lock);
370                 if (inet_use_bhash2_on_bind(sk)) {
371                         if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
372                                 goto next_port;
373                 }
374
375                 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
376                 spin_lock(&head2->lock);
377                 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
378                 inet_bind_bucket_for_each(tb, &head->chain)
379                         if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
380                                 if (!inet_csk_bind_conflict(sk, tb, tb2,
381                                                             relax, false))
382                                         goto success;
383                                 spin_unlock(&head2->lock);
384                                 goto next_port;
385                         }
386                 tb = NULL;
387                 goto success;
388 next_port:
389                 spin_unlock_bh(&head->lock);
390                 cond_resched();
391         }
392
393         offset--;
394         if (!(offset & 1))
395                 goto other_parity_scan;
396
397         if (attempt_half == 1) {
398                 /* OK we now try the upper half of the range */
399                 attempt_half = 2;
400                 goto other_half_scan;
401         }
402
403         if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
404                 /* We still have a chance to connect to different destinations */
405                 relax = true;
406                 goto ports_exhausted;
407         }
408         return NULL;
409 success:
410         *port_ret = port;
411         *tb_ret = tb;
412         *tb2_ret = tb2;
413         *head2_ret = head2;
414         return head;
415 }
416
417 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
418                                      struct sock *sk)
419 {
420         kuid_t uid = sock_i_uid(sk);
421
422         if (tb->fastreuseport <= 0)
423                 return 0;
424         if (!sk->sk_reuseport)
425                 return 0;
426         if (rcu_access_pointer(sk->sk_reuseport_cb))
427                 return 0;
428         if (!uid_eq(tb->fastuid, uid))
429                 return 0;
430         /* We only need to check the rcv_saddr if this tb was once marked
431          * without fastreuseport and then was reset, as we can only know that
432          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
433          * owners list.
434          */
435         if (tb->fastreuseport == FASTREUSEPORT_ANY)
436                 return 1;
437 #if IS_ENABLED(CONFIG_IPV6)
438         if (tb->fast_sk_family == AF_INET6)
439                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
440                                             inet6_rcv_saddr(sk),
441                                             tb->fast_rcv_saddr,
442                                             sk->sk_rcv_saddr,
443                                             tb->fast_ipv6_only,
444                                             ipv6_only_sock(sk), true, false);
445 #endif
446         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
447                                     ipv6_only_sock(sk), true, false);
448 }
449
450 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
451                                struct sock *sk)
452 {
453         kuid_t uid = sock_i_uid(sk);
454         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
455
456         if (hlist_empty(&tb->bhash2)) {
457                 tb->fastreuse = reuse;
458                 if (sk->sk_reuseport) {
459                         tb->fastreuseport = FASTREUSEPORT_ANY;
460                         tb->fastuid = uid;
461                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
462                         tb->fast_ipv6_only = ipv6_only_sock(sk);
463                         tb->fast_sk_family = sk->sk_family;
464 #if IS_ENABLED(CONFIG_IPV6)
465                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
466 #endif
467                 } else {
468                         tb->fastreuseport = 0;
469                 }
470         } else {
471                 if (!reuse)
472                         tb->fastreuse = 0;
473                 if (sk->sk_reuseport) {
474                         /* We didn't match or we don't have fastreuseport set on
475                          * the tb, but we have sk_reuseport set on this socket
476                          * and we know that there are no bind conflicts with
477                          * this socket in this tb, so reset our tb's reuseport
478                          * settings so that any subsequent sockets that match
479                          * our current socket will be put on the fast path.
480                          *
481                          * If we reset we need to set FASTREUSEPORT_STRICT so we
482                          * do extra checking for all subsequent sk_reuseport
483                          * socks.
484                          */
485                         if (!sk_reuseport_match(tb, sk)) {
486                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
487                                 tb->fastuid = uid;
488                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
489                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
490                                 tb->fast_sk_family = sk->sk_family;
491 #if IS_ENABLED(CONFIG_IPV6)
492                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
493 #endif
494                         }
495                 } else {
496                         tb->fastreuseport = 0;
497                 }
498         }
499 }
500
501 /* Obtain a reference to a local port for the given sock,
502  * if snum is zero it means select any available local port.
503  * We try to allocate an odd port (and leave even ports for connect())
504  */
505 int inet_csk_get_port(struct sock *sk, unsigned short snum)
506 {
507         struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
508         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
509         bool found_port = false, check_bind_conflict = true;
510         bool bhash_created = false, bhash2_created = false;
511         int ret = -EADDRINUSE, port = snum, l3mdev;
512         struct inet_bind_hashbucket *head, *head2;
513         struct inet_bind2_bucket *tb2 = NULL;
514         struct inet_bind_bucket *tb = NULL;
515         bool head2_lock_acquired = false;
516         struct net *net = sock_net(sk);
517
518         l3mdev = inet_sk_bound_l3mdev(sk);
519
520         if (!port) {
521                 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
522                 if (!head)
523                         return ret;
524
525                 head2_lock_acquired = true;
526
527                 if (tb && tb2)
528                         goto success;
529                 found_port = true;
530         } else {
531                 head = &hinfo->bhash[inet_bhashfn(net, port,
532                                                   hinfo->bhash_size)];
533                 spin_lock_bh(&head->lock);
534                 inet_bind_bucket_for_each(tb, &head->chain)
535                         if (inet_bind_bucket_match(tb, net, port, l3mdev))
536                                 break;
537         }
538
539         if (!tb) {
540                 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
541                                              head, port, l3mdev);
542                 if (!tb)
543                         goto fail_unlock;
544                 bhash_created = true;
545         }
546
547         if (!found_port) {
548                 if (!hlist_empty(&tb->bhash2)) {
549                         if (sk->sk_reuse == SK_FORCE_REUSE ||
550                             (tb->fastreuse > 0 && reuse) ||
551                             sk_reuseport_match(tb, sk))
552                                 check_bind_conflict = false;
553                 }
554
555                 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
556                         if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
557                                 goto fail_unlock;
558                 }
559
560                 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
561                 spin_lock(&head2->lock);
562                 head2_lock_acquired = true;
563                 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
564         }
565
566         if (!tb2) {
567                 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
568                                                net, head2, tb, sk);
569                 if (!tb2)
570                         goto fail_unlock;
571                 bhash2_created = true;
572         }
573
574         if (!found_port && check_bind_conflict) {
575                 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
576                         goto fail_unlock;
577         }
578
579 success:
580         inet_csk_update_fastreuse(tb, sk);
581
582         if (!inet_csk(sk)->icsk_bind_hash)
583                 inet_bind_hash(sk, tb, tb2, port);
584         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
585         WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
586         ret = 0;
587
588 fail_unlock:
589         if (ret) {
590                 if (bhash2_created)
591                         inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
592                 if (bhash_created)
593                         inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
594         }
595         if (head2_lock_acquired)
596                 spin_unlock(&head2->lock);
597         spin_unlock_bh(&head->lock);
598         return ret;
599 }
600 EXPORT_SYMBOL_GPL(inet_csk_get_port);
601
602 /*
603  * Wait for an incoming connection, avoid race conditions. This must be called
604  * with the socket locked.
605  */
606 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
607 {
608         struct inet_connection_sock *icsk = inet_csk(sk);
609         DEFINE_WAIT(wait);
610         int err;
611
612         /*
613          * True wake-one mechanism for incoming connections: only
614          * one process gets woken up, not the 'whole herd'.
615          * Since we do not 'race & poll' for established sockets
616          * anymore, the common case will execute the loop only once.
617          *
618          * Subtle issue: "add_wait_queue_exclusive()" will be added
619          * after any current non-exclusive waiters, and we know that
620          * it will always _stay_ after any new non-exclusive waiters
621          * because all non-exclusive waiters are added at the
622          * beginning of the wait-queue. As such, it's ok to "drop"
623          * our exclusiveness temporarily when we get woken up without
624          * having to remove and re-insert us on the wait queue.
625          */
626         for (;;) {
627                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
628                                           TASK_INTERRUPTIBLE);
629                 release_sock(sk);
630                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
631                         timeo = schedule_timeout(timeo);
632                 sched_annotate_sleep();
633                 lock_sock(sk);
634                 err = 0;
635                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
636                         break;
637                 err = -EINVAL;
638                 if (sk->sk_state != TCP_LISTEN)
639                         break;
640                 err = sock_intr_errno(timeo);
641                 if (signal_pending(current))
642                         break;
643                 err = -EAGAIN;
644                 if (!timeo)
645                         break;
646         }
647         finish_wait(sk_sleep(sk), &wait);
648         return err;
649 }
650
651 /*
652  * This will accept the next outstanding connection.
653  */
654 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
655 {
656         struct inet_connection_sock *icsk = inet_csk(sk);
657         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
658         struct request_sock *req;
659         struct sock *newsk;
660         int error;
661
662         lock_sock(sk);
663
664         /* We need to make sure that this socket is listening,
665          * and that it has something pending.
666          */
667         error = -EINVAL;
668         if (sk->sk_state != TCP_LISTEN)
669                 goto out_err;
670
671         /* Find already established connection */
672         if (reqsk_queue_empty(queue)) {
673                 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
674
675                 /* If this is a non blocking socket don't sleep */
676                 error = -EAGAIN;
677                 if (!timeo)
678                         goto out_err;
679
680                 error = inet_csk_wait_for_connect(sk, timeo);
681                 if (error)
682                         goto out_err;
683         }
684         req = reqsk_queue_remove(queue, sk);
685         newsk = req->sk;
686
687         if (sk->sk_protocol == IPPROTO_TCP &&
688             tcp_rsk(req)->tfo_listener) {
689                 spin_lock_bh(&queue->fastopenq.lock);
690                 if (tcp_rsk(req)->tfo_listener) {
691                         /* We are still waiting for the final ACK from 3WHS
692                          * so can't free req now. Instead, we set req->sk to
693                          * NULL to signify that the child socket is taken
694                          * so reqsk_fastopen_remove() will free the req
695                          * when 3WHS finishes (or is aborted).
696                          */
697                         req->sk = NULL;
698                         req = NULL;
699                 }
700                 spin_unlock_bh(&queue->fastopenq.lock);
701         }
702
703 out:
704         release_sock(sk);
705         if (newsk && mem_cgroup_sockets_enabled) {
706                 int amt = 0;
707
708                 /* atomically get the memory usage, set and charge the
709                  * newsk->sk_memcg.
710                  */
711                 lock_sock(newsk);
712
713                 mem_cgroup_sk_alloc(newsk);
714                 if (newsk->sk_memcg) {
715                         /* The socket has not been accepted yet, no need
716                          * to look at newsk->sk_wmem_queued.
717                          */
718                         amt = sk_mem_pages(newsk->sk_forward_alloc +
719                                            atomic_read(&newsk->sk_rmem_alloc));
720                 }
721
722                 if (amt)
723                         mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
724                                                 GFP_KERNEL | __GFP_NOFAIL);
725
726                 release_sock(newsk);
727         }
728         if (req)
729                 reqsk_put(req);
730         return newsk;
731 out_err:
732         newsk = NULL;
733         req = NULL;
734         *err = error;
735         goto out;
736 }
737 EXPORT_SYMBOL(inet_csk_accept);
738
739 /*
740  * Using different timers for retransmit, delayed acks and probes
741  * We may wish use just one timer maintaining a list of expire jiffies
742  * to optimize.
743  */
744 void inet_csk_init_xmit_timers(struct sock *sk,
745                                void (*retransmit_handler)(struct timer_list *t),
746                                void (*delack_handler)(struct timer_list *t),
747                                void (*keepalive_handler)(struct timer_list *t))
748 {
749         struct inet_connection_sock *icsk = inet_csk(sk);
750
751         timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
752         timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
753         timer_setup(&sk->sk_timer, keepalive_handler, 0);
754         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
755 }
756 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
757
758 void inet_csk_clear_xmit_timers(struct sock *sk)
759 {
760         struct inet_connection_sock *icsk = inet_csk(sk);
761
762         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
763
764         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
765         sk_stop_timer(sk, &icsk->icsk_delack_timer);
766         sk_stop_timer(sk, &sk->sk_timer);
767 }
768 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
769
770 void inet_csk_delete_keepalive_timer(struct sock *sk)
771 {
772         sk_stop_timer(sk, &sk->sk_timer);
773 }
774 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
775
776 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
777 {
778         sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
779 }
780 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
781
782 struct dst_entry *inet_csk_route_req(const struct sock *sk,
783                                      struct flowi4 *fl4,
784                                      const struct request_sock *req)
785 {
786         const struct inet_request_sock *ireq = inet_rsk(req);
787         struct net *net = read_pnet(&ireq->ireq_net);
788         struct ip_options_rcu *opt;
789         struct rtable *rt;
790
791         rcu_read_lock();
792         opt = rcu_dereference(ireq->ireq_opt);
793
794         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
795                            ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
796                            sk->sk_protocol, inet_sk_flowi_flags(sk),
797                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
798                            ireq->ir_loc_addr, ireq->ir_rmt_port,
799                            htons(ireq->ir_num), sk->sk_uid);
800         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
801         rt = ip_route_output_flow(net, fl4, sk);
802         if (IS_ERR(rt))
803                 goto no_route;
804         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
805                 goto route_err;
806         rcu_read_unlock();
807         return &rt->dst;
808
809 route_err:
810         ip_rt_put(rt);
811 no_route:
812         rcu_read_unlock();
813         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
814         return NULL;
815 }
816 EXPORT_SYMBOL_GPL(inet_csk_route_req);
817
818 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
819                                             struct sock *newsk,
820                                             const struct request_sock *req)
821 {
822         const struct inet_request_sock *ireq = inet_rsk(req);
823         struct net *net = read_pnet(&ireq->ireq_net);
824         struct inet_sock *newinet = inet_sk(newsk);
825         struct ip_options_rcu *opt;
826         struct flowi4 *fl4;
827         struct rtable *rt;
828
829         opt = rcu_dereference(ireq->ireq_opt);
830         fl4 = &newinet->cork.fl.u.ip4;
831
832         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
833                            ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
834                            sk->sk_protocol, inet_sk_flowi_flags(sk),
835                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
836                            ireq->ir_loc_addr, ireq->ir_rmt_port,
837                            htons(ireq->ir_num), sk->sk_uid);
838         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
839         rt = ip_route_output_flow(net, fl4, sk);
840         if (IS_ERR(rt))
841                 goto no_route;
842         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
843                 goto route_err;
844         return &rt->dst;
845
846 route_err:
847         ip_rt_put(rt);
848 no_route:
849         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
850         return NULL;
851 }
852 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
853
854 /* Decide when to expire the request and when to resend SYN-ACK */
855 static void syn_ack_recalc(struct request_sock *req,
856                            const int max_syn_ack_retries,
857                            const u8 rskq_defer_accept,
858                            int *expire, int *resend)
859 {
860         if (!rskq_defer_accept) {
861                 *expire = req->num_timeout >= max_syn_ack_retries;
862                 *resend = 1;
863                 return;
864         }
865         *expire = req->num_timeout >= max_syn_ack_retries &&
866                   (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
867         /* Do not resend while waiting for data after ACK,
868          * start to resend on end of deferring period to give
869          * last chance for data or ACK to create established socket.
870          */
871         *resend = !inet_rsk(req)->acked ||
872                   req->num_timeout >= rskq_defer_accept - 1;
873 }
874
875 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
876 {
877         int err = req->rsk_ops->rtx_syn_ack(parent, req);
878
879         if (!err)
880                 req->num_retrans++;
881         return err;
882 }
883 EXPORT_SYMBOL(inet_rtx_syn_ack);
884
885 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
886                                              struct sock *sk)
887 {
888         struct sock *req_sk, *nreq_sk;
889         struct request_sock *nreq;
890
891         nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
892         if (!nreq) {
893                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
894
895                 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
896                 sock_put(sk);
897                 return NULL;
898         }
899
900         req_sk = req_to_sk(req);
901         nreq_sk = req_to_sk(nreq);
902
903         memcpy(nreq_sk, req_sk,
904                offsetof(struct sock, sk_dontcopy_begin));
905         memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
906                req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
907
908         sk_node_init(&nreq_sk->sk_node);
909         nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
910 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
911         nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
912 #endif
913         nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
914
915         nreq->rsk_listener = sk;
916
917         /* We need not acquire fastopenq->lock
918          * because the child socket is locked in inet_csk_listen_stop().
919          */
920         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
921                 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
922
923         return nreq;
924 }
925
926 static void reqsk_queue_migrated(struct request_sock_queue *queue,
927                                  const struct request_sock *req)
928 {
929         if (req->num_timeout == 0)
930                 atomic_inc(&queue->young);
931         atomic_inc(&queue->qlen);
932 }
933
934 static void reqsk_migrate_reset(struct request_sock *req)
935 {
936         req->saved_syn = NULL;
937 #if IS_ENABLED(CONFIG_IPV6)
938         inet_rsk(req)->ipv6_opt = NULL;
939         inet_rsk(req)->pktopts = NULL;
940 #else
941         inet_rsk(req)->ireq_opt = NULL;
942 #endif
943 }
944
945 /* return true if req was found in the ehash table */
946 static bool reqsk_queue_unlink(struct request_sock *req)
947 {
948         struct sock *sk = req_to_sk(req);
949         bool found = false;
950
951         if (sk_hashed(sk)) {
952                 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
953                 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
954
955                 spin_lock(lock);
956                 found = __sk_nulls_del_node_init_rcu(sk);
957                 spin_unlock(lock);
958         }
959         if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
960                 reqsk_put(req);
961         return found;
962 }
963
964 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
965 {
966         bool unlinked = reqsk_queue_unlink(req);
967
968         if (unlinked) {
969                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
970                 reqsk_put(req);
971         }
972         return unlinked;
973 }
974 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
975
976 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
977 {
978         inet_csk_reqsk_queue_drop(sk, req);
979         reqsk_put(req);
980 }
981 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
982
983 static void reqsk_timer_handler(struct timer_list *t)
984 {
985         struct request_sock *req = from_timer(req, t, rsk_timer);
986         struct request_sock *nreq = NULL, *oreq = req;
987         struct sock *sk_listener = req->rsk_listener;
988         struct inet_connection_sock *icsk;
989         struct request_sock_queue *queue;
990         struct net *net;
991         int max_syn_ack_retries, qlen, expire = 0, resend = 0;
992
993         if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
994                 struct sock *nsk;
995
996                 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
997                 if (!nsk)
998                         goto drop;
999
1000                 nreq = inet_reqsk_clone(req, nsk);
1001                 if (!nreq)
1002                         goto drop;
1003
1004                 /* The new timer for the cloned req can decrease the 2
1005                  * by calling inet_csk_reqsk_queue_drop_and_put(), so
1006                  * hold another count to prevent use-after-free and
1007                  * call reqsk_put() just before return.
1008                  */
1009                 refcount_set(&nreq->rsk_refcnt, 2 + 1);
1010                 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1011                 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1012
1013                 req = nreq;
1014                 sk_listener = nsk;
1015         }
1016
1017         icsk = inet_csk(sk_listener);
1018         net = sock_net(sk_listener);
1019         max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1020                 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1021         /* Normally all the openreqs are young and become mature
1022          * (i.e. converted to established socket) for first timeout.
1023          * If synack was not acknowledged for 1 second, it means
1024          * one of the following things: synack was lost, ack was lost,
1025          * rtt is high or nobody planned to ack (i.e. synflood).
1026          * When server is a bit loaded, queue is populated with old
1027          * open requests, reducing effective size of queue.
1028          * When server is well loaded, queue size reduces to zero
1029          * after several minutes of work. It is not synflood,
1030          * it is normal operation. The solution is pruning
1031          * too old entries overriding normal timeout, when
1032          * situation becomes dangerous.
1033          *
1034          * Essentially, we reserve half of room for young
1035          * embrions; and abort old ones without pity, if old
1036          * ones are about to clog our table.
1037          */
1038         queue = &icsk->icsk_accept_queue;
1039         qlen = reqsk_queue_len(queue);
1040         if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1041                 int young = reqsk_queue_len_young(queue) << 1;
1042
1043                 while (max_syn_ack_retries > 2) {
1044                         if (qlen < young)
1045                                 break;
1046                         max_syn_ack_retries--;
1047                         young <<= 1;
1048                 }
1049         }
1050         syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1051                        &expire, &resend);
1052         req->rsk_ops->syn_ack_timeout(req);
1053         if (!expire &&
1054             (!resend ||
1055              !inet_rtx_syn_ack(sk_listener, req) ||
1056              inet_rsk(req)->acked)) {
1057                 if (req->num_timeout++ == 0)
1058                         atomic_dec(&queue->young);
1059                 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1060
1061                 if (!nreq)
1062                         return;
1063
1064                 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1065                         /* delete timer */
1066                         inet_csk_reqsk_queue_drop(sk_listener, nreq);
1067                         goto no_ownership;
1068                 }
1069
1070                 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1071                 reqsk_migrate_reset(oreq);
1072                 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1073                 reqsk_put(oreq);
1074
1075                 reqsk_put(nreq);
1076                 return;
1077         }
1078
1079         /* Even if we can clone the req, we may need not retransmit any more
1080          * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1081          * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1082          */
1083         if (nreq) {
1084                 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1085 no_ownership:
1086                 reqsk_migrate_reset(nreq);
1087                 reqsk_queue_removed(queue, nreq);
1088                 __reqsk_free(nreq);
1089         }
1090
1091 drop:
1092         inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1093 }
1094
1095 static void reqsk_queue_hash_req(struct request_sock *req,
1096                                  unsigned long timeout)
1097 {
1098         timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1099         mod_timer(&req->rsk_timer, jiffies + timeout);
1100
1101         inet_ehash_insert(req_to_sk(req), NULL, NULL);
1102         /* before letting lookups find us, make sure all req fields
1103          * are committed to memory and refcnt initialized.
1104          */
1105         smp_wmb();
1106         refcount_set(&req->rsk_refcnt, 2 + 1);
1107 }
1108
1109 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1110                                    unsigned long timeout)
1111 {
1112         reqsk_queue_hash_req(req, timeout);
1113         inet_csk_reqsk_queue_added(sk);
1114 }
1115 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1116
1117 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1118                            const gfp_t priority)
1119 {
1120         struct inet_connection_sock *icsk = inet_csk(newsk);
1121
1122         if (!icsk->icsk_ulp_ops)
1123                 return;
1124
1125         icsk->icsk_ulp_ops->clone(req, newsk, priority);
1126 }
1127
1128 /**
1129  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
1130  *      @sk: the socket to clone
1131  *      @req: request_sock
1132  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1133  *
1134  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1135  */
1136 struct sock *inet_csk_clone_lock(const struct sock *sk,
1137                                  const struct request_sock *req,
1138                                  const gfp_t priority)
1139 {
1140         struct sock *newsk = sk_clone_lock(sk, priority);
1141
1142         if (newsk) {
1143                 struct inet_connection_sock *newicsk = inet_csk(newsk);
1144
1145                 inet_sk_set_state(newsk, TCP_SYN_RECV);
1146                 newicsk->icsk_bind_hash = NULL;
1147                 newicsk->icsk_bind2_hash = NULL;
1148
1149                 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1150                 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1151                 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1152
1153                 /* listeners have SOCK_RCU_FREE, not the children */
1154                 sock_reset_flag(newsk, SOCK_RCU_FREE);
1155
1156                 inet_sk(newsk)->mc_list = NULL;
1157
1158                 newsk->sk_mark = inet_rsk(req)->ir_mark;
1159                 atomic64_set(&newsk->sk_cookie,
1160                              atomic64_read(&inet_rsk(req)->ir_cookie));
1161
1162                 newicsk->icsk_retransmits = 0;
1163                 newicsk->icsk_backoff     = 0;
1164                 newicsk->icsk_probes_out  = 0;
1165                 newicsk->icsk_probes_tstamp = 0;
1166
1167                 /* Deinitialize accept_queue to trap illegal accesses. */
1168                 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1169
1170                 inet_clone_ulp(req, newsk, priority);
1171
1172                 security_inet_csk_clone(newsk, req);
1173         }
1174         return newsk;
1175 }
1176 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1177
1178 /*
1179  * At this point, there should be no process reference to this
1180  * socket, and thus no user references at all.  Therefore we
1181  * can assume the socket waitqueue is inactive and nobody will
1182  * try to jump onto it.
1183  */
1184 void inet_csk_destroy_sock(struct sock *sk)
1185 {
1186         WARN_ON(sk->sk_state != TCP_CLOSE);
1187         WARN_ON(!sock_flag(sk, SOCK_DEAD));
1188
1189         /* It cannot be in hash table! */
1190         WARN_ON(!sk_unhashed(sk));
1191
1192         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1193         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1194
1195         sk->sk_prot->destroy(sk);
1196
1197         sk_stream_kill_queues(sk);
1198
1199         xfrm_sk_free_policy(sk);
1200
1201         this_cpu_dec(*sk->sk_prot->orphan_count);
1202
1203         sock_put(sk);
1204 }
1205 EXPORT_SYMBOL(inet_csk_destroy_sock);
1206
1207 /* This function allows to force a closure of a socket after the call to
1208  * tcp/dccp_create_openreq_child().
1209  */
1210 void inet_csk_prepare_forced_close(struct sock *sk)
1211         __releases(&sk->sk_lock.slock)
1212 {
1213         /* sk_clone_lock locked the socket and set refcnt to 2 */
1214         bh_unlock_sock(sk);
1215         sock_put(sk);
1216         inet_csk_prepare_for_destroy_sock(sk);
1217         inet_sk(sk)->inet_num = 0;
1218 }
1219 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1220
1221 static int inet_ulp_can_listen(const struct sock *sk)
1222 {
1223         const struct inet_connection_sock *icsk = inet_csk(sk);
1224
1225         if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1226                 return -EINVAL;
1227
1228         return 0;
1229 }
1230
1231 int inet_csk_listen_start(struct sock *sk)
1232 {
1233         struct inet_connection_sock *icsk = inet_csk(sk);
1234         struct inet_sock *inet = inet_sk(sk);
1235         int err;
1236
1237         err = inet_ulp_can_listen(sk);
1238         if (unlikely(err))
1239                 return err;
1240
1241         reqsk_queue_alloc(&icsk->icsk_accept_queue);
1242
1243         sk->sk_ack_backlog = 0;
1244         inet_csk_delack_init(sk);
1245
1246         /* There is race window here: we announce ourselves listening,
1247          * but this transition is still not validated by get_port().
1248          * It is OK, because this socket enters to hash table only
1249          * after validation is complete.
1250          */
1251         inet_sk_state_store(sk, TCP_LISTEN);
1252         err = sk->sk_prot->get_port(sk, inet->inet_num);
1253         if (!err) {
1254                 inet->inet_sport = htons(inet->inet_num);
1255
1256                 sk_dst_reset(sk);
1257                 err = sk->sk_prot->hash(sk);
1258
1259                 if (likely(!err))
1260                         return 0;
1261         }
1262
1263         inet_sk_set_state(sk, TCP_CLOSE);
1264         return err;
1265 }
1266 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1267
1268 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1269                               struct sock *child)
1270 {
1271         sk->sk_prot->disconnect(child, O_NONBLOCK);
1272
1273         sock_orphan(child);
1274
1275         this_cpu_inc(*sk->sk_prot->orphan_count);
1276
1277         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1278                 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1279                 BUG_ON(sk != req->rsk_listener);
1280
1281                 /* Paranoid, to prevent race condition if
1282                  * an inbound pkt destined for child is
1283                  * blocked by sock lock in tcp_v4_rcv().
1284                  * Also to satisfy an assertion in
1285                  * tcp_v4_destroy_sock().
1286                  */
1287                 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1288         }
1289         inet_csk_destroy_sock(child);
1290 }
1291
1292 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1293                                       struct request_sock *req,
1294                                       struct sock *child)
1295 {
1296         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1297
1298         spin_lock(&queue->rskq_lock);
1299         if (unlikely(sk->sk_state != TCP_LISTEN)) {
1300                 inet_child_forget(sk, req, child);
1301                 child = NULL;
1302         } else {
1303                 req->sk = child;
1304                 req->dl_next = NULL;
1305                 if (queue->rskq_accept_head == NULL)
1306                         WRITE_ONCE(queue->rskq_accept_head, req);
1307                 else
1308                         queue->rskq_accept_tail->dl_next = req;
1309                 queue->rskq_accept_tail = req;
1310                 sk_acceptq_added(sk);
1311         }
1312         spin_unlock(&queue->rskq_lock);
1313         return child;
1314 }
1315 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1316
1317 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1318                                          struct request_sock *req, bool own_req)
1319 {
1320         if (own_req) {
1321                 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1322                 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1323
1324                 if (sk != req->rsk_listener) {
1325                         /* another listening sk has been selected,
1326                          * migrate the req to it.
1327                          */
1328                         struct request_sock *nreq;
1329
1330                         /* hold a refcnt for the nreq->rsk_listener
1331                          * which is assigned in inet_reqsk_clone()
1332                          */
1333                         sock_hold(sk);
1334                         nreq = inet_reqsk_clone(req, sk);
1335                         if (!nreq) {
1336                                 inet_child_forget(sk, req, child);
1337                                 goto child_put;
1338                         }
1339
1340                         refcount_set(&nreq->rsk_refcnt, 1);
1341                         if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1342                                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1343                                 reqsk_migrate_reset(req);
1344                                 reqsk_put(req);
1345                                 return child;
1346                         }
1347
1348                         __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1349                         reqsk_migrate_reset(nreq);
1350                         __reqsk_free(nreq);
1351                 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1352                         return child;
1353                 }
1354         }
1355         /* Too bad, another child took ownership of the request, undo. */
1356 child_put:
1357         bh_unlock_sock(child);
1358         sock_put(child);
1359         return NULL;
1360 }
1361 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1362
1363 /*
1364  *      This routine closes sockets which have been at least partially
1365  *      opened, but not yet accepted.
1366  */
1367 void inet_csk_listen_stop(struct sock *sk)
1368 {
1369         struct inet_connection_sock *icsk = inet_csk(sk);
1370         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1371         struct request_sock *next, *req;
1372
1373         /* Following specs, it would be better either to send FIN
1374          * (and enter FIN-WAIT-1, it is normal close)
1375          * or to send active reset (abort).
1376          * Certainly, it is pretty dangerous while synflood, but it is
1377          * bad justification for our negligence 8)
1378          * To be honest, we are not able to make either
1379          * of the variants now.                 --ANK
1380          */
1381         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1382                 struct sock *child = req->sk, *nsk;
1383                 struct request_sock *nreq;
1384
1385                 local_bh_disable();
1386                 bh_lock_sock(child);
1387                 WARN_ON(sock_owned_by_user(child));
1388                 sock_hold(child);
1389
1390                 nsk = reuseport_migrate_sock(sk, child, NULL);
1391                 if (nsk) {
1392                         nreq = inet_reqsk_clone(req, nsk);
1393                         if (nreq) {
1394                                 refcount_set(&nreq->rsk_refcnt, 1);
1395
1396                                 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1397                                         __NET_INC_STATS(sock_net(nsk),
1398                                                         LINUX_MIB_TCPMIGRATEREQSUCCESS);
1399                                         reqsk_migrate_reset(req);
1400                                 } else {
1401                                         __NET_INC_STATS(sock_net(nsk),
1402                                                         LINUX_MIB_TCPMIGRATEREQFAILURE);
1403                                         reqsk_migrate_reset(nreq);
1404                                         __reqsk_free(nreq);
1405                                 }
1406
1407                                 /* inet_csk_reqsk_queue_add() has already
1408                                  * called inet_child_forget() on failure case.
1409                                  */
1410                                 goto skip_child_forget;
1411                         }
1412                 }
1413
1414                 inet_child_forget(sk, req, child);
1415 skip_child_forget:
1416                 reqsk_put(req);
1417                 bh_unlock_sock(child);
1418                 local_bh_enable();
1419                 sock_put(child);
1420
1421                 cond_resched();
1422         }
1423         if (queue->fastopenq.rskq_rst_head) {
1424                 /* Free all the reqs queued in rskq_rst_head. */
1425                 spin_lock_bh(&queue->fastopenq.lock);
1426                 req = queue->fastopenq.rskq_rst_head;
1427                 queue->fastopenq.rskq_rst_head = NULL;
1428                 spin_unlock_bh(&queue->fastopenq.lock);
1429                 while (req != NULL) {
1430                         next = req->dl_next;
1431                         reqsk_put(req);
1432                         req = next;
1433                 }
1434         }
1435         WARN_ON_ONCE(sk->sk_ack_backlog);
1436 }
1437 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1438
1439 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1440 {
1441         struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1442         const struct inet_sock *inet = inet_sk(sk);
1443
1444         sin->sin_family         = AF_INET;
1445         sin->sin_addr.s_addr    = inet->inet_daddr;
1446         sin->sin_port           = inet->inet_dport;
1447 }
1448 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1449
1450 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1451 {
1452         const struct inet_sock *inet = inet_sk(sk);
1453         const struct ip_options_rcu *inet_opt;
1454         __be32 daddr = inet->inet_daddr;
1455         struct flowi4 *fl4;
1456         struct rtable *rt;
1457
1458         rcu_read_lock();
1459         inet_opt = rcu_dereference(inet->inet_opt);
1460         if (inet_opt && inet_opt->opt.srr)
1461                 daddr = inet_opt->opt.faddr;
1462         fl4 = &fl->u.ip4;
1463         rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1464                                    inet->inet_saddr, inet->inet_dport,
1465                                    inet->inet_sport, sk->sk_protocol,
1466                                    RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1467         if (IS_ERR(rt))
1468                 rt = NULL;
1469         if (rt)
1470                 sk_setup_caps(sk, &rt->dst);
1471         rcu_read_unlock();
1472
1473         return &rt->dst;
1474 }
1475
1476 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1477 {
1478         struct dst_entry *dst = __sk_dst_check(sk, 0);
1479         struct inet_sock *inet = inet_sk(sk);
1480
1481         if (!dst) {
1482                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1483                 if (!dst)
1484                         goto out;
1485         }
1486         dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1487
1488         dst = __sk_dst_check(sk, 0);
1489         if (!dst)
1490                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1491 out:
1492         return dst;
1493 }
1494 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);