]> git.samba.org - sfrench/cifs-2.6.git/blob - net/core/dev.c
zonefs: convert zonefs to use the new mount api
[sfrench/cifs-2.6.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static DECLARE_RWSEM(devnet_rename_sem);
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock_irqsave(struct softnet_data *sd,
220                                     unsigned long *flags)
221 {
222         if (IS_ENABLED(CONFIG_RPS))
223                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225                 local_irq_save(*flags);
226 }
227
228 static inline void rps_lock_irq_disable(struct softnet_data *sd)
229 {
230         if (IS_ENABLED(CONFIG_RPS))
231                 spin_lock_irq(&sd->input_pkt_queue.lock);
232         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233                 local_irq_disable();
234 }
235
236 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237                                           unsigned long *flags)
238 {
239         if (IS_ENABLED(CONFIG_RPS))
240                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242                 local_irq_restore(*flags);
243 }
244
245 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246 {
247         if (IS_ENABLED(CONFIG_RPS))
248                 spin_unlock_irq(&sd->input_pkt_queue.lock);
249         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250                 local_irq_enable();
251 }
252
253 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254                                                        const char *name)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259         if (!name_node)
260                 return NULL;
261         INIT_HLIST_NODE(&name_node->hlist);
262         name_node->dev = dev;
263         name_node->name = name;
264         return name_node;
265 }
266
267 static struct netdev_name_node *
268 netdev_name_node_head_alloc(struct net_device *dev)
269 {
270         struct netdev_name_node *name_node;
271
272         name_node = netdev_name_node_alloc(dev, dev->name);
273         if (!name_node)
274                 return NULL;
275         INIT_LIST_HEAD(&name_node->list);
276         return name_node;
277 }
278
279 static void netdev_name_node_free(struct netdev_name_node *name_node)
280 {
281         kfree(name_node);
282 }
283
284 static void netdev_name_node_add(struct net *net,
285                                  struct netdev_name_node *name_node)
286 {
287         hlist_add_head_rcu(&name_node->hlist,
288                            dev_name_hash(net, name_node->name));
289 }
290
291 static void netdev_name_node_del(struct netdev_name_node *name_node)
292 {
293         hlist_del_rcu(&name_node->hlist);
294 }
295
296 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297                                                         const char *name)
298 {
299         struct hlist_head *head = dev_name_hash(net, name);
300         struct netdev_name_node *name_node;
301
302         hlist_for_each_entry(name_node, head, hlist)
303                 if (!strcmp(name_node->name, name))
304                         return name_node;
305         return NULL;
306 }
307
308 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309                                                             const char *name)
310 {
311         struct hlist_head *head = dev_name_hash(net, name);
312         struct netdev_name_node *name_node;
313
314         hlist_for_each_entry_rcu(name_node, head, hlist)
315                 if (!strcmp(name_node->name, name))
316                         return name_node;
317         return NULL;
318 }
319
320 bool netdev_name_in_use(struct net *net, const char *name)
321 {
322         return netdev_name_node_lookup(net, name);
323 }
324 EXPORT_SYMBOL(netdev_name_in_use);
325
326 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327 {
328         struct netdev_name_node *name_node;
329         struct net *net = dev_net(dev);
330
331         name_node = netdev_name_node_lookup(net, name);
332         if (name_node)
333                 return -EEXIST;
334         name_node = netdev_name_node_alloc(dev, name);
335         if (!name_node)
336                 return -ENOMEM;
337         netdev_name_node_add(net, name_node);
338         /* The node that holds dev->name acts as a head of per-device list. */
339         list_add_tail(&name_node->list, &dev->name_node->list);
340
341         return 0;
342 }
343
344 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
345 {
346         list_del(&name_node->list);
347         kfree(name_node->name);
348         netdev_name_node_free(name_node);
349 }
350
351 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
352 {
353         struct netdev_name_node *name_node;
354         struct net *net = dev_net(dev);
355
356         name_node = netdev_name_node_lookup(net, name);
357         if (!name_node)
358                 return -ENOENT;
359         /* lookup might have found our primary name or a name belonging
360          * to another device.
361          */
362         if (name_node == dev->name_node || name_node->dev != dev)
363                 return -EINVAL;
364
365         netdev_name_node_del(name_node);
366         synchronize_rcu();
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct netdev_name_node *name_node;
384         struct net *net = dev_net(dev);
385
386         ASSERT_RTNL();
387
388         write_lock(&dev_base_lock);
389         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
390         netdev_name_node_add(net, dev->name_node);
391         hlist_add_head_rcu(&dev->index_hlist,
392                            dev_index_hash(net, dev->ifindex));
393         write_unlock(&dev_base_lock);
394
395         netdev_for_each_altname(dev, name_node)
396                 netdev_name_node_add(net, name_node);
397
398         /* We reserved the ifindex, this can't fail */
399         WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
400
401         dev_base_seq_inc(net);
402 }
403
404 /* Device list removal
405  * caller must respect a RCU grace period before freeing/reusing dev
406  */
407 static void unlist_netdevice(struct net_device *dev, bool lock)
408 {
409         struct netdev_name_node *name_node;
410         struct net *net = dev_net(dev);
411
412         ASSERT_RTNL();
413
414         xa_erase(&net->dev_by_index, dev->ifindex);
415
416         netdev_for_each_altname(dev, name_node)
417                 netdev_name_node_del(name_node);
418
419         /* Unlink dev from the device chain */
420         if (lock)
421                 write_lock(&dev_base_lock);
422         list_del_rcu(&dev->dev_list);
423         netdev_name_node_del(dev->name_node);
424         hlist_del_rcu(&dev->index_hlist);
425         if (lock)
426                 write_unlock(&dev_base_lock);
427
428         dev_base_seq_inc(dev_net(dev));
429 }
430
431 /*
432  *      Our notifier list
433  */
434
435 static RAW_NOTIFIER_HEAD(netdev_chain);
436
437 /*
438  *      Device drivers call our routines to queue packets here. We empty the
439  *      queue in the local softnet handler.
440  */
441
442 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
443 EXPORT_PER_CPU_SYMBOL(softnet_data);
444
445 #ifdef CONFIG_LOCKDEP
446 /*
447  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
448  * according to dev->type
449  */
450 static const unsigned short netdev_lock_type[] = {
451          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
452          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
453          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
454          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
455          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
456          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
457          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
458          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
459          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
460          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
461          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
462          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
463          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
464          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
465          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
466
467 static const char *const netdev_lock_name[] = {
468         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
469         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
470         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
471         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
472         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
473         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
474         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
475         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
476         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
477         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
478         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
479         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
480         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
481         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
482         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
483
484 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
485 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
486
487 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
488 {
489         int i;
490
491         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
492                 if (netdev_lock_type[i] == dev_type)
493                         return i;
494         /* the last key is used by default */
495         return ARRAY_SIZE(netdev_lock_type) - 1;
496 }
497
498 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
499                                                  unsigned short dev_type)
500 {
501         int i;
502
503         i = netdev_lock_pos(dev_type);
504         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
505                                    netdev_lock_name[i]);
506 }
507
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510         int i;
511
512         i = netdev_lock_pos(dev->type);
513         lockdep_set_class_and_name(&dev->addr_list_lock,
514                                    &netdev_addr_lock_key[i],
515                                    netdev_lock_name[i]);
516 }
517 #else
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519                                                  unsigned short dev_type)
520 {
521 }
522
523 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
524 {
525 }
526 #endif
527
528 /*******************************************************************************
529  *
530  *              Protocol management and registration routines
531  *
532  *******************************************************************************/
533
534
535 /*
536  *      Add a protocol ID to the list. Now that the input handler is
537  *      smarter we can dispense with all the messy stuff that used to be
538  *      here.
539  *
540  *      BEWARE!!! Protocol handlers, mangling input packets,
541  *      MUST BE last in hash buckets and checking protocol handlers
542  *      MUST start from promiscuous ptype_all chain in net_bh.
543  *      It is true now, do not change it.
544  *      Explanation follows: if protocol handler, mangling packet, will
545  *      be the first on list, it is not able to sense, that packet
546  *      is cloned and should be copied-on-write, so that it will
547  *      change it and subsequent readers will get broken packet.
548  *                                                      --ANK (980803)
549  */
550
551 static inline struct list_head *ptype_head(const struct packet_type *pt)
552 {
553         if (pt->type == htons(ETH_P_ALL))
554                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
555         else
556                 return pt->dev ? &pt->dev->ptype_specific :
557                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
558 }
559
560 /**
561  *      dev_add_pack - add packet handler
562  *      @pt: packet type declaration
563  *
564  *      Add a protocol handler to the networking stack. The passed &packet_type
565  *      is linked into kernel lists and may not be freed until it has been
566  *      removed from the kernel lists.
567  *
568  *      This call does not sleep therefore it can not
569  *      guarantee all CPU's that are in middle of receiving packets
570  *      will see the new packet type (until the next received packet).
571  */
572
573 void dev_add_pack(struct packet_type *pt)
574 {
575         struct list_head *head = ptype_head(pt);
576
577         spin_lock(&ptype_lock);
578         list_add_rcu(&pt->list, head);
579         spin_unlock(&ptype_lock);
580 }
581 EXPORT_SYMBOL(dev_add_pack);
582
583 /**
584  *      __dev_remove_pack        - remove packet handler
585  *      @pt: packet type declaration
586  *
587  *      Remove a protocol handler that was previously added to the kernel
588  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
589  *      from the kernel lists and can be freed or reused once this function
590  *      returns.
591  *
592  *      The packet type might still be in use by receivers
593  *      and must not be freed until after all the CPU's have gone
594  *      through a quiescent state.
595  */
596 void __dev_remove_pack(struct packet_type *pt)
597 {
598         struct list_head *head = ptype_head(pt);
599         struct packet_type *pt1;
600
601         spin_lock(&ptype_lock);
602
603         list_for_each_entry(pt1, head, list) {
604                 if (pt == pt1) {
605                         list_del_rcu(&pt->list);
606                         goto out;
607                 }
608         }
609
610         pr_warn("dev_remove_pack: %p not found\n", pt);
611 out:
612         spin_unlock(&ptype_lock);
613 }
614 EXPORT_SYMBOL(__dev_remove_pack);
615
616 /**
617  *      dev_remove_pack  - remove packet handler
618  *      @pt: packet type declaration
619  *
620  *      Remove a protocol handler that was previously added to the kernel
621  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
622  *      from the kernel lists and can be freed or reused once this function
623  *      returns.
624  *
625  *      This call sleeps to guarantee that no CPU is looking at the packet
626  *      type after return.
627  */
628 void dev_remove_pack(struct packet_type *pt)
629 {
630         __dev_remove_pack(pt);
631
632         synchronize_net();
633 }
634 EXPORT_SYMBOL(dev_remove_pack);
635
636
637 /*******************************************************************************
638  *
639  *                          Device Interface Subroutines
640  *
641  *******************************************************************************/
642
643 /**
644  *      dev_get_iflink  - get 'iflink' value of a interface
645  *      @dev: targeted interface
646  *
647  *      Indicates the ifindex the interface is linked to.
648  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
649  */
650
651 int dev_get_iflink(const struct net_device *dev)
652 {
653         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
654                 return dev->netdev_ops->ndo_get_iflink(dev);
655
656         return dev->ifindex;
657 }
658 EXPORT_SYMBOL(dev_get_iflink);
659
660 /**
661  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
662  *      @dev: targeted interface
663  *      @skb: The packet.
664  *
665  *      For better visibility of tunnel traffic OVS needs to retrieve
666  *      egress tunnel information for a packet. Following API allows
667  *      user to get this info.
668  */
669 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
670 {
671         struct ip_tunnel_info *info;
672
673         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
674                 return -EINVAL;
675
676         info = skb_tunnel_info_unclone(skb);
677         if (!info)
678                 return -ENOMEM;
679         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
680                 return -EINVAL;
681
682         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
683 }
684 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
685
686 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
687 {
688         int k = stack->num_paths++;
689
690         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
691                 return NULL;
692
693         return &stack->path[k];
694 }
695
696 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
697                           struct net_device_path_stack *stack)
698 {
699         const struct net_device *last_dev;
700         struct net_device_path_ctx ctx = {
701                 .dev    = dev,
702         };
703         struct net_device_path *path;
704         int ret = 0;
705
706         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
707         stack->num_paths = 0;
708         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
709                 last_dev = ctx.dev;
710                 path = dev_fwd_path(stack);
711                 if (!path)
712                         return -1;
713
714                 memset(path, 0, sizeof(struct net_device_path));
715                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
716                 if (ret < 0)
717                         return -1;
718
719                 if (WARN_ON_ONCE(last_dev == ctx.dev))
720                         return -1;
721         }
722
723         if (!ctx.dev)
724                 return ret;
725
726         path = dev_fwd_path(stack);
727         if (!path)
728                 return -1;
729         path->type = DEV_PATH_ETHERNET;
730         path->dev = ctx.dev;
731
732         return ret;
733 }
734 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
735
736 /**
737  *      __dev_get_by_name       - find a device by its name
738  *      @net: the applicable net namespace
739  *      @name: name to find
740  *
741  *      Find an interface by name. Must be called under RTNL semaphore
742  *      or @dev_base_lock. If the name is found a pointer to the device
743  *      is returned. If the name is not found then %NULL is returned. The
744  *      reference counters are not incremented so the caller must be
745  *      careful with locks.
746  */
747
748 struct net_device *__dev_get_by_name(struct net *net, const char *name)
749 {
750         struct netdev_name_node *node_name;
751
752         node_name = netdev_name_node_lookup(net, name);
753         return node_name ? node_name->dev : NULL;
754 }
755 EXPORT_SYMBOL(__dev_get_by_name);
756
757 /**
758  * dev_get_by_name_rcu  - find a device by its name
759  * @net: the applicable net namespace
760  * @name: name to find
761  *
762  * Find an interface by name.
763  * If the name is found a pointer to the device is returned.
764  * If the name is not found then %NULL is returned.
765  * The reference counters are not incremented so the caller must be
766  * careful with locks. The caller must hold RCU lock.
767  */
768
769 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
770 {
771         struct netdev_name_node *node_name;
772
773         node_name = netdev_name_node_lookup_rcu(net, name);
774         return node_name ? node_name->dev : NULL;
775 }
776 EXPORT_SYMBOL(dev_get_by_name_rcu);
777
778 /* Deprecated for new users, call netdev_get_by_name() instead */
779 struct net_device *dev_get_by_name(struct net *net, const char *name)
780 {
781         struct net_device *dev;
782
783         rcu_read_lock();
784         dev = dev_get_by_name_rcu(net, name);
785         dev_hold(dev);
786         rcu_read_unlock();
787         return dev;
788 }
789 EXPORT_SYMBOL(dev_get_by_name);
790
791 /**
792  *      netdev_get_by_name() - find a device by its name
793  *      @net: the applicable net namespace
794  *      @name: name to find
795  *      @tracker: tracking object for the acquired reference
796  *      @gfp: allocation flags for the tracker
797  *
798  *      Find an interface by name. This can be called from any
799  *      context and does its own locking. The returned handle has
800  *      the usage count incremented and the caller must use netdev_put() to
801  *      release it when it is no longer needed. %NULL is returned if no
802  *      matching device is found.
803  */
804 struct net_device *netdev_get_by_name(struct net *net, const char *name,
805                                       netdevice_tracker *tracker, gfp_t gfp)
806 {
807         struct net_device *dev;
808
809         dev = dev_get_by_name(net, name);
810         if (dev)
811                 netdev_tracker_alloc(dev, tracker, gfp);
812         return dev;
813 }
814 EXPORT_SYMBOL(netdev_get_by_name);
815
816 /**
817  *      __dev_get_by_index - find a device by its ifindex
818  *      @net: the applicable net namespace
819  *      @ifindex: index of device
820  *
821  *      Search for an interface by index. Returns %NULL if the device
822  *      is not found or a pointer to the device. The device has not
823  *      had its reference counter increased so the caller must be careful
824  *      about locking. The caller must hold either the RTNL semaphore
825  *      or @dev_base_lock.
826  */
827
828 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
829 {
830         struct net_device *dev;
831         struct hlist_head *head = dev_index_hash(net, ifindex);
832
833         hlist_for_each_entry(dev, head, index_hlist)
834                 if (dev->ifindex == ifindex)
835                         return dev;
836
837         return NULL;
838 }
839 EXPORT_SYMBOL(__dev_get_by_index);
840
841 /**
842  *      dev_get_by_index_rcu - find a device by its ifindex
843  *      @net: the applicable net namespace
844  *      @ifindex: index of device
845  *
846  *      Search for an interface by index. Returns %NULL if the device
847  *      is not found or a pointer to the device. The device has not
848  *      had its reference counter increased so the caller must be careful
849  *      about locking. The caller must hold RCU lock.
850  */
851
852 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
853 {
854         struct net_device *dev;
855         struct hlist_head *head = dev_index_hash(net, ifindex);
856
857         hlist_for_each_entry_rcu(dev, head, index_hlist)
858                 if (dev->ifindex == ifindex)
859                         return dev;
860
861         return NULL;
862 }
863 EXPORT_SYMBOL(dev_get_by_index_rcu);
864
865 /* Deprecated for new users, call netdev_get_by_index() instead */
866 struct net_device *dev_get_by_index(struct net *net, int ifindex)
867 {
868         struct net_device *dev;
869
870         rcu_read_lock();
871         dev = dev_get_by_index_rcu(net, ifindex);
872         dev_hold(dev);
873         rcu_read_unlock();
874         return dev;
875 }
876 EXPORT_SYMBOL(dev_get_by_index);
877
878 /**
879  *      netdev_get_by_index() - find a device by its ifindex
880  *      @net: the applicable net namespace
881  *      @ifindex: index of device
882  *      @tracker: tracking object for the acquired reference
883  *      @gfp: allocation flags for the tracker
884  *
885  *      Search for an interface by index. Returns NULL if the device
886  *      is not found or a pointer to the device. The device returned has
887  *      had a reference added and the pointer is safe until the user calls
888  *      netdev_put() to indicate they have finished with it.
889  */
890 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
891                                        netdevice_tracker *tracker, gfp_t gfp)
892 {
893         struct net_device *dev;
894
895         dev = dev_get_by_index(net, ifindex);
896         if (dev)
897                 netdev_tracker_alloc(dev, tracker, gfp);
898         return dev;
899 }
900 EXPORT_SYMBOL(netdev_get_by_index);
901
902 /**
903  *      dev_get_by_napi_id - find a device by napi_id
904  *      @napi_id: ID of the NAPI struct
905  *
906  *      Search for an interface by NAPI ID. Returns %NULL if the device
907  *      is not found or a pointer to the device. The device has not had
908  *      its reference counter increased so the caller must be careful
909  *      about locking. The caller must hold RCU lock.
910  */
911
912 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
913 {
914         struct napi_struct *napi;
915
916         WARN_ON_ONCE(!rcu_read_lock_held());
917
918         if (napi_id < MIN_NAPI_ID)
919                 return NULL;
920
921         napi = napi_by_id(napi_id);
922
923         return napi ? napi->dev : NULL;
924 }
925 EXPORT_SYMBOL(dev_get_by_napi_id);
926
927 /**
928  *      netdev_get_name - get a netdevice name, knowing its ifindex.
929  *      @net: network namespace
930  *      @name: a pointer to the buffer where the name will be stored.
931  *      @ifindex: the ifindex of the interface to get the name from.
932  */
933 int netdev_get_name(struct net *net, char *name, int ifindex)
934 {
935         struct net_device *dev;
936         int ret;
937
938         down_read(&devnet_rename_sem);
939         rcu_read_lock();
940
941         dev = dev_get_by_index_rcu(net, ifindex);
942         if (!dev) {
943                 ret = -ENODEV;
944                 goto out;
945         }
946
947         strcpy(name, dev->name);
948
949         ret = 0;
950 out:
951         rcu_read_unlock();
952         up_read(&devnet_rename_sem);
953         return ret;
954 }
955
956 /**
957  *      dev_getbyhwaddr_rcu - find a device by its hardware address
958  *      @net: the applicable net namespace
959  *      @type: media type of device
960  *      @ha: hardware address
961  *
962  *      Search for an interface by MAC address. Returns NULL if the device
963  *      is not found or a pointer to the device.
964  *      The caller must hold RCU or RTNL.
965  *      The returned device has not had its ref count increased
966  *      and the caller must therefore be careful about locking
967  *
968  */
969
970 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
971                                        const char *ha)
972 {
973         struct net_device *dev;
974
975         for_each_netdev_rcu(net, dev)
976                 if (dev->type == type &&
977                     !memcmp(dev->dev_addr, ha, dev->addr_len))
978                         return dev;
979
980         return NULL;
981 }
982 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
983
984 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
985 {
986         struct net_device *dev, *ret = NULL;
987
988         rcu_read_lock();
989         for_each_netdev_rcu(net, dev)
990                 if (dev->type == type) {
991                         dev_hold(dev);
992                         ret = dev;
993                         break;
994                 }
995         rcu_read_unlock();
996         return ret;
997 }
998 EXPORT_SYMBOL(dev_getfirstbyhwtype);
999
1000 /**
1001  *      __dev_get_by_flags - find any device with given flags
1002  *      @net: the applicable net namespace
1003  *      @if_flags: IFF_* values
1004  *      @mask: bitmask of bits in if_flags to check
1005  *
1006  *      Search for any interface with the given flags. Returns NULL if a device
1007  *      is not found or a pointer to the device. Must be called inside
1008  *      rtnl_lock(), and result refcount is unchanged.
1009  */
1010
1011 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1012                                       unsigned short mask)
1013 {
1014         struct net_device *dev, *ret;
1015
1016         ASSERT_RTNL();
1017
1018         ret = NULL;
1019         for_each_netdev(net, dev) {
1020                 if (((dev->flags ^ if_flags) & mask) == 0) {
1021                         ret = dev;
1022                         break;
1023                 }
1024         }
1025         return ret;
1026 }
1027 EXPORT_SYMBOL(__dev_get_by_flags);
1028
1029 /**
1030  *      dev_valid_name - check if name is okay for network device
1031  *      @name: name string
1032  *
1033  *      Network device names need to be valid file names to
1034  *      allow sysfs to work.  We also disallow any kind of
1035  *      whitespace.
1036  */
1037 bool dev_valid_name(const char *name)
1038 {
1039         if (*name == '\0')
1040                 return false;
1041         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1042                 return false;
1043         if (!strcmp(name, ".") || !strcmp(name, ".."))
1044                 return false;
1045
1046         while (*name) {
1047                 if (*name == '/' || *name == ':' || isspace(*name))
1048                         return false;
1049                 name++;
1050         }
1051         return true;
1052 }
1053 EXPORT_SYMBOL(dev_valid_name);
1054
1055 /**
1056  *      __dev_alloc_name - allocate a name for a device
1057  *      @net: network namespace to allocate the device name in
1058  *      @name: name format string
1059  *      @res: result name string
1060  *
1061  *      Passed a format string - eg "lt%d" it will try and find a suitable
1062  *      id. It scans list of devices to build up a free map, then chooses
1063  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1064  *      while allocating the name and adding the device in order to avoid
1065  *      duplicates.
1066  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1067  *      Returns the number of the unit assigned or a negative errno code.
1068  */
1069
1070 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1071 {
1072         int i = 0;
1073         const char *p;
1074         const int max_netdevices = 8*PAGE_SIZE;
1075         unsigned long *inuse;
1076         struct net_device *d;
1077         char buf[IFNAMSIZ];
1078
1079         /* Verify the string as this thing may have come from the user.
1080          * There must be one "%d" and no other "%" characters.
1081          */
1082         p = strchr(name, '%');
1083         if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1084                 return -EINVAL;
1085
1086         /* Use one page as a bit array of possible slots */
1087         inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1088         if (!inuse)
1089                 return -ENOMEM;
1090
1091         for_each_netdev(net, d) {
1092                 struct netdev_name_node *name_node;
1093
1094                 netdev_for_each_altname(d, name_node) {
1095                         if (!sscanf(name_node->name, name, &i))
1096                                 continue;
1097                         if (i < 0 || i >= max_netdevices)
1098                                 continue;
1099
1100                         /* avoid cases where sscanf is not exact inverse of printf */
1101                         snprintf(buf, IFNAMSIZ, name, i);
1102                         if (!strncmp(buf, name_node->name, IFNAMSIZ))
1103                                 __set_bit(i, inuse);
1104                 }
1105                 if (!sscanf(d->name, name, &i))
1106                         continue;
1107                 if (i < 0 || i >= max_netdevices)
1108                         continue;
1109
1110                 /* avoid cases where sscanf is not exact inverse of printf */
1111                 snprintf(buf, IFNAMSIZ, name, i);
1112                 if (!strncmp(buf, d->name, IFNAMSIZ))
1113                         __set_bit(i, inuse);
1114         }
1115
1116         i = find_first_zero_bit(inuse, max_netdevices);
1117         bitmap_free(inuse);
1118         if (i == max_netdevices)
1119                 return -ENFILE;
1120
1121         /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1122         strscpy(buf, name, IFNAMSIZ);
1123         snprintf(res, IFNAMSIZ, buf, i);
1124         return i;
1125 }
1126
1127 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1128 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1129                                const char *want_name, char *out_name,
1130                                int dup_errno)
1131 {
1132         if (!dev_valid_name(want_name))
1133                 return -EINVAL;
1134
1135         if (strchr(want_name, '%'))
1136                 return __dev_alloc_name(net, want_name, out_name);
1137
1138         if (netdev_name_in_use(net, want_name))
1139                 return -dup_errno;
1140         if (out_name != want_name)
1141                 strscpy(out_name, want_name, IFNAMSIZ);
1142         return 0;
1143 }
1144
1145 /**
1146  *      dev_alloc_name - allocate a name for a device
1147  *      @dev: device
1148  *      @name: name format string
1149  *
1150  *      Passed a format string - eg "lt%d" it will try and find a suitable
1151  *      id. It scans list of devices to build up a free map, then chooses
1152  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1153  *      while allocating the name and adding the device in order to avoid
1154  *      duplicates.
1155  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1156  *      Returns the number of the unit assigned or a negative errno code.
1157  */
1158
1159 int dev_alloc_name(struct net_device *dev, const char *name)
1160 {
1161         return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1162 }
1163 EXPORT_SYMBOL(dev_alloc_name);
1164
1165 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1166                               const char *name)
1167 {
1168         int ret;
1169
1170         ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1171         return ret < 0 ? ret : 0;
1172 }
1173
1174 /**
1175  *      dev_change_name - change name of a device
1176  *      @dev: device
1177  *      @newname: name (or format string) must be at least IFNAMSIZ
1178  *
1179  *      Change name of a device, can pass format strings "eth%d".
1180  *      for wildcarding.
1181  */
1182 int dev_change_name(struct net_device *dev, const char *newname)
1183 {
1184         unsigned char old_assign_type;
1185         char oldname[IFNAMSIZ];
1186         int err = 0;
1187         int ret;
1188         struct net *net;
1189
1190         ASSERT_RTNL();
1191         BUG_ON(!dev_net(dev));
1192
1193         net = dev_net(dev);
1194
1195         down_write(&devnet_rename_sem);
1196
1197         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1198                 up_write(&devnet_rename_sem);
1199                 return 0;
1200         }
1201
1202         memcpy(oldname, dev->name, IFNAMSIZ);
1203
1204         err = dev_get_valid_name(net, dev, newname);
1205         if (err < 0) {
1206                 up_write(&devnet_rename_sem);
1207                 return err;
1208         }
1209
1210         if (oldname[0] && !strchr(oldname, '%'))
1211                 netdev_info(dev, "renamed from %s%s\n", oldname,
1212                             dev->flags & IFF_UP ? " (while UP)" : "");
1213
1214         old_assign_type = dev->name_assign_type;
1215         dev->name_assign_type = NET_NAME_RENAMED;
1216
1217 rollback:
1218         ret = device_rename(&dev->dev, dev->name);
1219         if (ret) {
1220                 memcpy(dev->name, oldname, IFNAMSIZ);
1221                 dev->name_assign_type = old_assign_type;
1222                 up_write(&devnet_rename_sem);
1223                 return ret;
1224         }
1225
1226         up_write(&devnet_rename_sem);
1227
1228         netdev_adjacent_rename_links(dev, oldname);
1229
1230         write_lock(&dev_base_lock);
1231         netdev_name_node_del(dev->name_node);
1232         write_unlock(&dev_base_lock);
1233
1234         synchronize_rcu();
1235
1236         write_lock(&dev_base_lock);
1237         netdev_name_node_add(net, dev->name_node);
1238         write_unlock(&dev_base_lock);
1239
1240         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1241         ret = notifier_to_errno(ret);
1242
1243         if (ret) {
1244                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1245                 if (err >= 0) {
1246                         err = ret;
1247                         down_write(&devnet_rename_sem);
1248                         memcpy(dev->name, oldname, IFNAMSIZ);
1249                         memcpy(oldname, newname, IFNAMSIZ);
1250                         dev->name_assign_type = old_assign_type;
1251                         old_assign_type = NET_NAME_RENAMED;
1252                         goto rollback;
1253                 } else {
1254                         netdev_err(dev, "name change rollback failed: %d\n",
1255                                    ret);
1256                 }
1257         }
1258
1259         return err;
1260 }
1261
1262 /**
1263  *      dev_set_alias - change ifalias of a device
1264  *      @dev: device
1265  *      @alias: name up to IFALIASZ
1266  *      @len: limit of bytes to copy from info
1267  *
1268  *      Set ifalias for a device,
1269  */
1270 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1271 {
1272         struct dev_ifalias *new_alias = NULL;
1273
1274         if (len >= IFALIASZ)
1275                 return -EINVAL;
1276
1277         if (len) {
1278                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1279                 if (!new_alias)
1280                         return -ENOMEM;
1281
1282                 memcpy(new_alias->ifalias, alias, len);
1283                 new_alias->ifalias[len] = 0;
1284         }
1285
1286         mutex_lock(&ifalias_mutex);
1287         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1288                                         mutex_is_locked(&ifalias_mutex));
1289         mutex_unlock(&ifalias_mutex);
1290
1291         if (new_alias)
1292                 kfree_rcu(new_alias, rcuhead);
1293
1294         return len;
1295 }
1296 EXPORT_SYMBOL(dev_set_alias);
1297
1298 /**
1299  *      dev_get_alias - get ifalias of a device
1300  *      @dev: device
1301  *      @name: buffer to store name of ifalias
1302  *      @len: size of buffer
1303  *
1304  *      get ifalias for a device.  Caller must make sure dev cannot go
1305  *      away,  e.g. rcu read lock or own a reference count to device.
1306  */
1307 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1308 {
1309         const struct dev_ifalias *alias;
1310         int ret = 0;
1311
1312         rcu_read_lock();
1313         alias = rcu_dereference(dev->ifalias);
1314         if (alias)
1315                 ret = snprintf(name, len, "%s", alias->ifalias);
1316         rcu_read_unlock();
1317
1318         return ret;
1319 }
1320
1321 /**
1322  *      netdev_features_change - device changes features
1323  *      @dev: device to cause notification
1324  *
1325  *      Called to indicate a device has changed features.
1326  */
1327 void netdev_features_change(struct net_device *dev)
1328 {
1329         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1330 }
1331 EXPORT_SYMBOL(netdev_features_change);
1332
1333 /**
1334  *      netdev_state_change - device changes state
1335  *      @dev: device to cause notification
1336  *
1337  *      Called to indicate a device has changed state. This function calls
1338  *      the notifier chains for netdev_chain and sends a NEWLINK message
1339  *      to the routing socket.
1340  */
1341 void netdev_state_change(struct net_device *dev)
1342 {
1343         if (dev->flags & IFF_UP) {
1344                 struct netdev_notifier_change_info change_info = {
1345                         .info.dev = dev,
1346                 };
1347
1348                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1349                                               &change_info.info);
1350                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1351         }
1352 }
1353 EXPORT_SYMBOL(netdev_state_change);
1354
1355 /**
1356  * __netdev_notify_peers - notify network peers about existence of @dev,
1357  * to be called when rtnl lock is already held.
1358  * @dev: network device
1359  *
1360  * Generate traffic such that interested network peers are aware of
1361  * @dev, such as by generating a gratuitous ARP. This may be used when
1362  * a device wants to inform the rest of the network about some sort of
1363  * reconfiguration such as a failover event or virtual machine
1364  * migration.
1365  */
1366 void __netdev_notify_peers(struct net_device *dev)
1367 {
1368         ASSERT_RTNL();
1369         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1370         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1371 }
1372 EXPORT_SYMBOL(__netdev_notify_peers);
1373
1374 /**
1375  * netdev_notify_peers - notify network peers about existence of @dev
1376  * @dev: network device
1377  *
1378  * Generate traffic such that interested network peers are aware of
1379  * @dev, such as by generating a gratuitous ARP. This may be used when
1380  * a device wants to inform the rest of the network about some sort of
1381  * reconfiguration such as a failover event or virtual machine
1382  * migration.
1383  */
1384 void netdev_notify_peers(struct net_device *dev)
1385 {
1386         rtnl_lock();
1387         __netdev_notify_peers(dev);
1388         rtnl_unlock();
1389 }
1390 EXPORT_SYMBOL(netdev_notify_peers);
1391
1392 static int napi_threaded_poll(void *data);
1393
1394 static int napi_kthread_create(struct napi_struct *n)
1395 {
1396         int err = 0;
1397
1398         /* Create and wake up the kthread once to put it in
1399          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1400          * warning and work with loadavg.
1401          */
1402         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1403                                 n->dev->name, n->napi_id);
1404         if (IS_ERR(n->thread)) {
1405                 err = PTR_ERR(n->thread);
1406                 pr_err("kthread_run failed with err %d\n", err);
1407                 n->thread = NULL;
1408         }
1409
1410         return err;
1411 }
1412
1413 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1414 {
1415         const struct net_device_ops *ops = dev->netdev_ops;
1416         int ret;
1417
1418         ASSERT_RTNL();
1419         dev_addr_check(dev);
1420
1421         if (!netif_device_present(dev)) {
1422                 /* may be detached because parent is runtime-suspended */
1423                 if (dev->dev.parent)
1424                         pm_runtime_resume(dev->dev.parent);
1425                 if (!netif_device_present(dev))
1426                         return -ENODEV;
1427         }
1428
1429         /* Block netpoll from trying to do any rx path servicing.
1430          * If we don't do this there is a chance ndo_poll_controller
1431          * or ndo_poll may be running while we open the device
1432          */
1433         netpoll_poll_disable(dev);
1434
1435         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1436         ret = notifier_to_errno(ret);
1437         if (ret)
1438                 return ret;
1439
1440         set_bit(__LINK_STATE_START, &dev->state);
1441
1442         if (ops->ndo_validate_addr)
1443                 ret = ops->ndo_validate_addr(dev);
1444
1445         if (!ret && ops->ndo_open)
1446                 ret = ops->ndo_open(dev);
1447
1448         netpoll_poll_enable(dev);
1449
1450         if (ret)
1451                 clear_bit(__LINK_STATE_START, &dev->state);
1452         else {
1453                 dev->flags |= IFF_UP;
1454                 dev_set_rx_mode(dev);
1455                 dev_activate(dev);
1456                 add_device_randomness(dev->dev_addr, dev->addr_len);
1457         }
1458
1459         return ret;
1460 }
1461
1462 /**
1463  *      dev_open        - prepare an interface for use.
1464  *      @dev: device to open
1465  *      @extack: netlink extended ack
1466  *
1467  *      Takes a device from down to up state. The device's private open
1468  *      function is invoked and then the multicast lists are loaded. Finally
1469  *      the device is moved into the up state and a %NETDEV_UP message is
1470  *      sent to the netdev notifier chain.
1471  *
1472  *      Calling this function on an active interface is a nop. On a failure
1473  *      a negative errno code is returned.
1474  */
1475 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1476 {
1477         int ret;
1478
1479         if (dev->flags & IFF_UP)
1480                 return 0;
1481
1482         ret = __dev_open(dev, extack);
1483         if (ret < 0)
1484                 return ret;
1485
1486         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1487         call_netdevice_notifiers(NETDEV_UP, dev);
1488
1489         return ret;
1490 }
1491 EXPORT_SYMBOL(dev_open);
1492
1493 static void __dev_close_many(struct list_head *head)
1494 {
1495         struct net_device *dev;
1496
1497         ASSERT_RTNL();
1498         might_sleep();
1499
1500         list_for_each_entry(dev, head, close_list) {
1501                 /* Temporarily disable netpoll until the interface is down */
1502                 netpoll_poll_disable(dev);
1503
1504                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1505
1506                 clear_bit(__LINK_STATE_START, &dev->state);
1507
1508                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1509                  * can be even on different cpu. So just clear netif_running().
1510                  *
1511                  * dev->stop() will invoke napi_disable() on all of it's
1512                  * napi_struct instances on this device.
1513                  */
1514                 smp_mb__after_atomic(); /* Commit netif_running(). */
1515         }
1516
1517         dev_deactivate_many(head);
1518
1519         list_for_each_entry(dev, head, close_list) {
1520                 const struct net_device_ops *ops = dev->netdev_ops;
1521
1522                 /*
1523                  *      Call the device specific close. This cannot fail.
1524                  *      Only if device is UP
1525                  *
1526                  *      We allow it to be called even after a DETACH hot-plug
1527                  *      event.
1528                  */
1529                 if (ops->ndo_stop)
1530                         ops->ndo_stop(dev);
1531
1532                 dev->flags &= ~IFF_UP;
1533                 netpoll_poll_enable(dev);
1534         }
1535 }
1536
1537 static void __dev_close(struct net_device *dev)
1538 {
1539         LIST_HEAD(single);
1540
1541         list_add(&dev->close_list, &single);
1542         __dev_close_many(&single);
1543         list_del(&single);
1544 }
1545
1546 void dev_close_many(struct list_head *head, bool unlink)
1547 {
1548         struct net_device *dev, *tmp;
1549
1550         /* Remove the devices that don't need to be closed */
1551         list_for_each_entry_safe(dev, tmp, head, close_list)
1552                 if (!(dev->flags & IFF_UP))
1553                         list_del_init(&dev->close_list);
1554
1555         __dev_close_many(head);
1556
1557         list_for_each_entry_safe(dev, tmp, head, close_list) {
1558                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1559                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1560                 if (unlink)
1561                         list_del_init(&dev->close_list);
1562         }
1563 }
1564 EXPORT_SYMBOL(dev_close_many);
1565
1566 /**
1567  *      dev_close - shutdown an interface.
1568  *      @dev: device to shutdown
1569  *
1570  *      This function moves an active device into down state. A
1571  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1572  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1573  *      chain.
1574  */
1575 void dev_close(struct net_device *dev)
1576 {
1577         if (dev->flags & IFF_UP) {
1578                 LIST_HEAD(single);
1579
1580                 list_add(&dev->close_list, &single);
1581                 dev_close_many(&single, true);
1582                 list_del(&single);
1583         }
1584 }
1585 EXPORT_SYMBOL(dev_close);
1586
1587
1588 /**
1589  *      dev_disable_lro - disable Large Receive Offload on a device
1590  *      @dev: device
1591  *
1592  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1593  *      called under RTNL.  This is needed if received packets may be
1594  *      forwarded to another interface.
1595  */
1596 void dev_disable_lro(struct net_device *dev)
1597 {
1598         struct net_device *lower_dev;
1599         struct list_head *iter;
1600
1601         dev->wanted_features &= ~NETIF_F_LRO;
1602         netdev_update_features(dev);
1603
1604         if (unlikely(dev->features & NETIF_F_LRO))
1605                 netdev_WARN(dev, "failed to disable LRO!\n");
1606
1607         netdev_for_each_lower_dev(dev, lower_dev, iter)
1608                 dev_disable_lro(lower_dev);
1609 }
1610 EXPORT_SYMBOL(dev_disable_lro);
1611
1612 /**
1613  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1614  *      @dev: device
1615  *
1616  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1617  *      called under RTNL.  This is needed if Generic XDP is installed on
1618  *      the device.
1619  */
1620 static void dev_disable_gro_hw(struct net_device *dev)
1621 {
1622         dev->wanted_features &= ~NETIF_F_GRO_HW;
1623         netdev_update_features(dev);
1624
1625         if (unlikely(dev->features & NETIF_F_GRO_HW))
1626                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1627 }
1628
1629 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1630 {
1631 #define N(val)                                          \
1632         case NETDEV_##val:                              \
1633                 return "NETDEV_" __stringify(val);
1634         switch (cmd) {
1635         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1636         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1637         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1638         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1639         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1640         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1641         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1642         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1643         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1644         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1645         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1646         N(XDP_FEAT_CHANGE)
1647         }
1648 #undef N
1649         return "UNKNOWN_NETDEV_EVENT";
1650 }
1651 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1652
1653 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1654                                    struct net_device *dev)
1655 {
1656         struct netdev_notifier_info info = {
1657                 .dev = dev,
1658         };
1659
1660         return nb->notifier_call(nb, val, &info);
1661 }
1662
1663 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1664                                              struct net_device *dev)
1665 {
1666         int err;
1667
1668         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1669         err = notifier_to_errno(err);
1670         if (err)
1671                 return err;
1672
1673         if (!(dev->flags & IFF_UP))
1674                 return 0;
1675
1676         call_netdevice_notifier(nb, NETDEV_UP, dev);
1677         return 0;
1678 }
1679
1680 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1681                                                 struct net_device *dev)
1682 {
1683         if (dev->flags & IFF_UP) {
1684                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1685                                         dev);
1686                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1687         }
1688         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1689 }
1690
1691 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1692                                                  struct net *net)
1693 {
1694         struct net_device *dev;
1695         int err;
1696
1697         for_each_netdev(net, dev) {
1698                 err = call_netdevice_register_notifiers(nb, dev);
1699                 if (err)
1700                         goto rollback;
1701         }
1702         return 0;
1703
1704 rollback:
1705         for_each_netdev_continue_reverse(net, dev)
1706                 call_netdevice_unregister_notifiers(nb, dev);
1707         return err;
1708 }
1709
1710 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1711                                                     struct net *net)
1712 {
1713         struct net_device *dev;
1714
1715         for_each_netdev(net, dev)
1716                 call_netdevice_unregister_notifiers(nb, dev);
1717 }
1718
1719 static int dev_boot_phase = 1;
1720
1721 /**
1722  * register_netdevice_notifier - register a network notifier block
1723  * @nb: notifier
1724  *
1725  * Register a notifier to be called when network device events occur.
1726  * The notifier passed is linked into the kernel structures and must
1727  * not be reused until it has been unregistered. A negative errno code
1728  * is returned on a failure.
1729  *
1730  * When registered all registration and up events are replayed
1731  * to the new notifier to allow device to have a race free
1732  * view of the network device list.
1733  */
1734
1735 int register_netdevice_notifier(struct notifier_block *nb)
1736 {
1737         struct net *net;
1738         int err;
1739
1740         /* Close race with setup_net() and cleanup_net() */
1741         down_write(&pernet_ops_rwsem);
1742         rtnl_lock();
1743         err = raw_notifier_chain_register(&netdev_chain, nb);
1744         if (err)
1745                 goto unlock;
1746         if (dev_boot_phase)
1747                 goto unlock;
1748         for_each_net(net) {
1749                 err = call_netdevice_register_net_notifiers(nb, net);
1750                 if (err)
1751                         goto rollback;
1752         }
1753
1754 unlock:
1755         rtnl_unlock();
1756         up_write(&pernet_ops_rwsem);
1757         return err;
1758
1759 rollback:
1760         for_each_net_continue_reverse(net)
1761                 call_netdevice_unregister_net_notifiers(nb, net);
1762
1763         raw_notifier_chain_unregister(&netdev_chain, nb);
1764         goto unlock;
1765 }
1766 EXPORT_SYMBOL(register_netdevice_notifier);
1767
1768 /**
1769  * unregister_netdevice_notifier - unregister a network notifier block
1770  * @nb: notifier
1771  *
1772  * Unregister a notifier previously registered by
1773  * register_netdevice_notifier(). The notifier is unlinked into the
1774  * kernel structures and may then be reused. A negative errno code
1775  * is returned on a failure.
1776  *
1777  * After unregistering unregister and down device events are synthesized
1778  * for all devices on the device list to the removed notifier to remove
1779  * the need for special case cleanup code.
1780  */
1781
1782 int unregister_netdevice_notifier(struct notifier_block *nb)
1783 {
1784         struct net *net;
1785         int err;
1786
1787         /* Close race with setup_net() and cleanup_net() */
1788         down_write(&pernet_ops_rwsem);
1789         rtnl_lock();
1790         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1791         if (err)
1792                 goto unlock;
1793
1794         for_each_net(net)
1795                 call_netdevice_unregister_net_notifiers(nb, net);
1796
1797 unlock:
1798         rtnl_unlock();
1799         up_write(&pernet_ops_rwsem);
1800         return err;
1801 }
1802 EXPORT_SYMBOL(unregister_netdevice_notifier);
1803
1804 static int __register_netdevice_notifier_net(struct net *net,
1805                                              struct notifier_block *nb,
1806                                              bool ignore_call_fail)
1807 {
1808         int err;
1809
1810         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1811         if (err)
1812                 return err;
1813         if (dev_boot_phase)
1814                 return 0;
1815
1816         err = call_netdevice_register_net_notifiers(nb, net);
1817         if (err && !ignore_call_fail)
1818                 goto chain_unregister;
1819
1820         return 0;
1821
1822 chain_unregister:
1823         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1824         return err;
1825 }
1826
1827 static int __unregister_netdevice_notifier_net(struct net *net,
1828                                                struct notifier_block *nb)
1829 {
1830         int err;
1831
1832         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1833         if (err)
1834                 return err;
1835
1836         call_netdevice_unregister_net_notifiers(nb, net);
1837         return 0;
1838 }
1839
1840 /**
1841  * register_netdevice_notifier_net - register a per-netns network notifier block
1842  * @net: network namespace
1843  * @nb: notifier
1844  *
1845  * Register a notifier to be called when network device events occur.
1846  * The notifier passed is linked into the kernel structures and must
1847  * not be reused until it has been unregistered. A negative errno code
1848  * is returned on a failure.
1849  *
1850  * When registered all registration and up events are replayed
1851  * to the new notifier to allow device to have a race free
1852  * view of the network device list.
1853  */
1854
1855 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1856 {
1857         int err;
1858
1859         rtnl_lock();
1860         err = __register_netdevice_notifier_net(net, nb, false);
1861         rtnl_unlock();
1862         return err;
1863 }
1864 EXPORT_SYMBOL(register_netdevice_notifier_net);
1865
1866 /**
1867  * unregister_netdevice_notifier_net - unregister a per-netns
1868  *                                     network notifier block
1869  * @net: network namespace
1870  * @nb: notifier
1871  *
1872  * Unregister a notifier previously registered by
1873  * register_netdevice_notifier_net(). The notifier is unlinked from the
1874  * kernel structures and may then be reused. A negative errno code
1875  * is returned on a failure.
1876  *
1877  * After unregistering unregister and down device events are synthesized
1878  * for all devices on the device list to the removed notifier to remove
1879  * the need for special case cleanup code.
1880  */
1881
1882 int unregister_netdevice_notifier_net(struct net *net,
1883                                       struct notifier_block *nb)
1884 {
1885         int err;
1886
1887         rtnl_lock();
1888         err = __unregister_netdevice_notifier_net(net, nb);
1889         rtnl_unlock();
1890         return err;
1891 }
1892 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1893
1894 static void __move_netdevice_notifier_net(struct net *src_net,
1895                                           struct net *dst_net,
1896                                           struct notifier_block *nb)
1897 {
1898         __unregister_netdevice_notifier_net(src_net, nb);
1899         __register_netdevice_notifier_net(dst_net, nb, true);
1900 }
1901
1902 int register_netdevice_notifier_dev_net(struct net_device *dev,
1903                                         struct notifier_block *nb,
1904                                         struct netdev_net_notifier *nn)
1905 {
1906         int err;
1907
1908         rtnl_lock();
1909         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1910         if (!err) {
1911                 nn->nb = nb;
1912                 list_add(&nn->list, &dev->net_notifier_list);
1913         }
1914         rtnl_unlock();
1915         return err;
1916 }
1917 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1918
1919 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1920                                           struct notifier_block *nb,
1921                                           struct netdev_net_notifier *nn)
1922 {
1923         int err;
1924
1925         rtnl_lock();
1926         list_del(&nn->list);
1927         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1928         rtnl_unlock();
1929         return err;
1930 }
1931 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1932
1933 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1934                                              struct net *net)
1935 {
1936         struct netdev_net_notifier *nn;
1937
1938         list_for_each_entry(nn, &dev->net_notifier_list, list)
1939                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1940 }
1941
1942 /**
1943  *      call_netdevice_notifiers_info - call all network notifier blocks
1944  *      @val: value passed unmodified to notifier function
1945  *      @info: notifier information data
1946  *
1947  *      Call all network notifier blocks.  Parameters and return value
1948  *      are as for raw_notifier_call_chain().
1949  */
1950
1951 int call_netdevice_notifiers_info(unsigned long val,
1952                                   struct netdev_notifier_info *info)
1953 {
1954         struct net *net = dev_net(info->dev);
1955         int ret;
1956
1957         ASSERT_RTNL();
1958
1959         /* Run per-netns notifier block chain first, then run the global one.
1960          * Hopefully, one day, the global one is going to be removed after
1961          * all notifier block registrators get converted to be per-netns.
1962          */
1963         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1964         if (ret & NOTIFY_STOP_MASK)
1965                 return ret;
1966         return raw_notifier_call_chain(&netdev_chain, val, info);
1967 }
1968
1969 /**
1970  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1971  *                                             for and rollback on error
1972  *      @val_up: value passed unmodified to notifier function
1973  *      @val_down: value passed unmodified to the notifier function when
1974  *                 recovering from an error on @val_up
1975  *      @info: notifier information data
1976  *
1977  *      Call all per-netns network notifier blocks, but not notifier blocks on
1978  *      the global notifier chain. Parameters and return value are as for
1979  *      raw_notifier_call_chain_robust().
1980  */
1981
1982 static int
1983 call_netdevice_notifiers_info_robust(unsigned long val_up,
1984                                      unsigned long val_down,
1985                                      struct netdev_notifier_info *info)
1986 {
1987         struct net *net = dev_net(info->dev);
1988
1989         ASSERT_RTNL();
1990
1991         return raw_notifier_call_chain_robust(&net->netdev_chain,
1992                                               val_up, val_down, info);
1993 }
1994
1995 static int call_netdevice_notifiers_extack(unsigned long val,
1996                                            struct net_device *dev,
1997                                            struct netlink_ext_ack *extack)
1998 {
1999         struct netdev_notifier_info info = {
2000                 .dev = dev,
2001                 .extack = extack,
2002         };
2003
2004         return call_netdevice_notifiers_info(val, &info);
2005 }
2006
2007 /**
2008  *      call_netdevice_notifiers - call all network notifier blocks
2009  *      @val: value passed unmodified to notifier function
2010  *      @dev: net_device pointer passed unmodified to notifier function
2011  *
2012  *      Call all network notifier blocks.  Parameters and return value
2013  *      are as for raw_notifier_call_chain().
2014  */
2015
2016 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2017 {
2018         return call_netdevice_notifiers_extack(val, dev, NULL);
2019 }
2020 EXPORT_SYMBOL(call_netdevice_notifiers);
2021
2022 /**
2023  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2024  *      @val: value passed unmodified to notifier function
2025  *      @dev: net_device pointer passed unmodified to notifier function
2026  *      @arg: additional u32 argument passed to the notifier function
2027  *
2028  *      Call all network notifier blocks.  Parameters and return value
2029  *      are as for raw_notifier_call_chain().
2030  */
2031 static int call_netdevice_notifiers_mtu(unsigned long val,
2032                                         struct net_device *dev, u32 arg)
2033 {
2034         struct netdev_notifier_info_ext info = {
2035                 .info.dev = dev,
2036                 .ext.mtu = arg,
2037         };
2038
2039         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2040
2041         return call_netdevice_notifiers_info(val, &info.info);
2042 }
2043
2044 #ifdef CONFIG_NET_INGRESS
2045 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2046
2047 void net_inc_ingress_queue(void)
2048 {
2049         static_branch_inc(&ingress_needed_key);
2050 }
2051 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2052
2053 void net_dec_ingress_queue(void)
2054 {
2055         static_branch_dec(&ingress_needed_key);
2056 }
2057 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2058 #endif
2059
2060 #ifdef CONFIG_NET_EGRESS
2061 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2062
2063 void net_inc_egress_queue(void)
2064 {
2065         static_branch_inc(&egress_needed_key);
2066 }
2067 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2068
2069 void net_dec_egress_queue(void)
2070 {
2071         static_branch_dec(&egress_needed_key);
2072 }
2073 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2074 #endif
2075
2076 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2077 EXPORT_SYMBOL(netstamp_needed_key);
2078 #ifdef CONFIG_JUMP_LABEL
2079 static atomic_t netstamp_needed_deferred;
2080 static atomic_t netstamp_wanted;
2081 static void netstamp_clear(struct work_struct *work)
2082 {
2083         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2084         int wanted;
2085
2086         wanted = atomic_add_return(deferred, &netstamp_wanted);
2087         if (wanted > 0)
2088                 static_branch_enable(&netstamp_needed_key);
2089         else
2090                 static_branch_disable(&netstamp_needed_key);
2091 }
2092 static DECLARE_WORK(netstamp_work, netstamp_clear);
2093 #endif
2094
2095 void net_enable_timestamp(void)
2096 {
2097 #ifdef CONFIG_JUMP_LABEL
2098         int wanted = atomic_read(&netstamp_wanted);
2099
2100         while (wanted > 0) {
2101                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2102                         return;
2103         }
2104         atomic_inc(&netstamp_needed_deferred);
2105         schedule_work(&netstamp_work);
2106 #else
2107         static_branch_inc(&netstamp_needed_key);
2108 #endif
2109 }
2110 EXPORT_SYMBOL(net_enable_timestamp);
2111
2112 void net_disable_timestamp(void)
2113 {
2114 #ifdef CONFIG_JUMP_LABEL
2115         int wanted = atomic_read(&netstamp_wanted);
2116
2117         while (wanted > 1) {
2118                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2119                         return;
2120         }
2121         atomic_dec(&netstamp_needed_deferred);
2122         schedule_work(&netstamp_work);
2123 #else
2124         static_branch_dec(&netstamp_needed_key);
2125 #endif
2126 }
2127 EXPORT_SYMBOL(net_disable_timestamp);
2128
2129 static inline void net_timestamp_set(struct sk_buff *skb)
2130 {
2131         skb->tstamp = 0;
2132         skb->mono_delivery_time = 0;
2133         if (static_branch_unlikely(&netstamp_needed_key))
2134                 skb->tstamp = ktime_get_real();
2135 }
2136
2137 #define net_timestamp_check(COND, SKB)                          \
2138         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2139                 if ((COND) && !(SKB)->tstamp)                   \
2140                         (SKB)->tstamp = ktime_get_real();       \
2141         }                                                       \
2142
2143 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2144 {
2145         return __is_skb_forwardable(dev, skb, true);
2146 }
2147 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2148
2149 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2150                               bool check_mtu)
2151 {
2152         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2153
2154         if (likely(!ret)) {
2155                 skb->protocol = eth_type_trans(skb, dev);
2156                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2157         }
2158
2159         return ret;
2160 }
2161
2162 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2163 {
2164         return __dev_forward_skb2(dev, skb, true);
2165 }
2166 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2167
2168 /**
2169  * dev_forward_skb - loopback an skb to another netif
2170  *
2171  * @dev: destination network device
2172  * @skb: buffer to forward
2173  *
2174  * return values:
2175  *      NET_RX_SUCCESS  (no congestion)
2176  *      NET_RX_DROP     (packet was dropped, but freed)
2177  *
2178  * dev_forward_skb can be used for injecting an skb from the
2179  * start_xmit function of one device into the receive queue
2180  * of another device.
2181  *
2182  * The receiving device may be in another namespace, so
2183  * we have to clear all information in the skb that could
2184  * impact namespace isolation.
2185  */
2186 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2187 {
2188         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2189 }
2190 EXPORT_SYMBOL_GPL(dev_forward_skb);
2191
2192 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2193 {
2194         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2195 }
2196
2197 static inline int deliver_skb(struct sk_buff *skb,
2198                               struct packet_type *pt_prev,
2199                               struct net_device *orig_dev)
2200 {
2201         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2202                 return -ENOMEM;
2203         refcount_inc(&skb->users);
2204         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2205 }
2206
2207 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2208                                           struct packet_type **pt,
2209                                           struct net_device *orig_dev,
2210                                           __be16 type,
2211                                           struct list_head *ptype_list)
2212 {
2213         struct packet_type *ptype, *pt_prev = *pt;
2214
2215         list_for_each_entry_rcu(ptype, ptype_list, list) {
2216                 if (ptype->type != type)
2217                         continue;
2218                 if (pt_prev)
2219                         deliver_skb(skb, pt_prev, orig_dev);
2220                 pt_prev = ptype;
2221         }
2222         *pt = pt_prev;
2223 }
2224
2225 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2226 {
2227         if (!ptype->af_packet_priv || !skb->sk)
2228                 return false;
2229
2230         if (ptype->id_match)
2231                 return ptype->id_match(ptype, skb->sk);
2232         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2233                 return true;
2234
2235         return false;
2236 }
2237
2238 /**
2239  * dev_nit_active - return true if any network interface taps are in use
2240  *
2241  * @dev: network device to check for the presence of taps
2242  */
2243 bool dev_nit_active(struct net_device *dev)
2244 {
2245         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2246 }
2247 EXPORT_SYMBOL_GPL(dev_nit_active);
2248
2249 /*
2250  *      Support routine. Sends outgoing frames to any network
2251  *      taps currently in use.
2252  */
2253
2254 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2255 {
2256         struct packet_type *ptype;
2257         struct sk_buff *skb2 = NULL;
2258         struct packet_type *pt_prev = NULL;
2259         struct list_head *ptype_list = &ptype_all;
2260
2261         rcu_read_lock();
2262 again:
2263         list_for_each_entry_rcu(ptype, ptype_list, list) {
2264                 if (ptype->ignore_outgoing)
2265                         continue;
2266
2267                 /* Never send packets back to the socket
2268                  * they originated from - MvS (miquels@drinkel.ow.org)
2269                  */
2270                 if (skb_loop_sk(ptype, skb))
2271                         continue;
2272
2273                 if (pt_prev) {
2274                         deliver_skb(skb2, pt_prev, skb->dev);
2275                         pt_prev = ptype;
2276                         continue;
2277                 }
2278
2279                 /* need to clone skb, done only once */
2280                 skb2 = skb_clone(skb, GFP_ATOMIC);
2281                 if (!skb2)
2282                         goto out_unlock;
2283
2284                 net_timestamp_set(skb2);
2285
2286                 /* skb->nh should be correctly
2287                  * set by sender, so that the second statement is
2288                  * just protection against buggy protocols.
2289                  */
2290                 skb_reset_mac_header(skb2);
2291
2292                 if (skb_network_header(skb2) < skb2->data ||
2293                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2294                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2295                                              ntohs(skb2->protocol),
2296                                              dev->name);
2297                         skb_reset_network_header(skb2);
2298                 }
2299
2300                 skb2->transport_header = skb2->network_header;
2301                 skb2->pkt_type = PACKET_OUTGOING;
2302                 pt_prev = ptype;
2303         }
2304
2305         if (ptype_list == &ptype_all) {
2306                 ptype_list = &dev->ptype_all;
2307                 goto again;
2308         }
2309 out_unlock:
2310         if (pt_prev) {
2311                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2312                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2313                 else
2314                         kfree_skb(skb2);
2315         }
2316         rcu_read_unlock();
2317 }
2318 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2319
2320 /**
2321  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2322  * @dev: Network device
2323  * @txq: number of queues available
2324  *
2325  * If real_num_tx_queues is changed the tc mappings may no longer be
2326  * valid. To resolve this verify the tc mapping remains valid and if
2327  * not NULL the mapping. With no priorities mapping to this
2328  * offset/count pair it will no longer be used. In the worst case TC0
2329  * is invalid nothing can be done so disable priority mappings. If is
2330  * expected that drivers will fix this mapping if they can before
2331  * calling netif_set_real_num_tx_queues.
2332  */
2333 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2334 {
2335         int i;
2336         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2337
2338         /* If TC0 is invalidated disable TC mapping */
2339         if (tc->offset + tc->count > txq) {
2340                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2341                 dev->num_tc = 0;
2342                 return;
2343         }
2344
2345         /* Invalidated prio to tc mappings set to TC0 */
2346         for (i = 1; i < TC_BITMASK + 1; i++) {
2347                 int q = netdev_get_prio_tc_map(dev, i);
2348
2349                 tc = &dev->tc_to_txq[q];
2350                 if (tc->offset + tc->count > txq) {
2351                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2352                                     i, q);
2353                         netdev_set_prio_tc_map(dev, i, 0);
2354                 }
2355         }
2356 }
2357
2358 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2359 {
2360         if (dev->num_tc) {
2361                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2362                 int i;
2363
2364                 /* walk through the TCs and see if it falls into any of them */
2365                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2366                         if ((txq - tc->offset) < tc->count)
2367                                 return i;
2368                 }
2369
2370                 /* didn't find it, just return -1 to indicate no match */
2371                 return -1;
2372         }
2373
2374         return 0;
2375 }
2376 EXPORT_SYMBOL(netdev_txq_to_tc);
2377
2378 #ifdef CONFIG_XPS
2379 static struct static_key xps_needed __read_mostly;
2380 static struct static_key xps_rxqs_needed __read_mostly;
2381 static DEFINE_MUTEX(xps_map_mutex);
2382 #define xmap_dereference(P)             \
2383         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2384
2385 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2386                              struct xps_dev_maps *old_maps, int tci, u16 index)
2387 {
2388         struct xps_map *map = NULL;
2389         int pos;
2390
2391         map = xmap_dereference(dev_maps->attr_map[tci]);
2392         if (!map)
2393                 return false;
2394
2395         for (pos = map->len; pos--;) {
2396                 if (map->queues[pos] != index)
2397                         continue;
2398
2399                 if (map->len > 1) {
2400                         map->queues[pos] = map->queues[--map->len];
2401                         break;
2402                 }
2403
2404                 if (old_maps)
2405                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2406                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2407                 kfree_rcu(map, rcu);
2408                 return false;
2409         }
2410
2411         return true;
2412 }
2413
2414 static bool remove_xps_queue_cpu(struct net_device *dev,
2415                                  struct xps_dev_maps *dev_maps,
2416                                  int cpu, u16 offset, u16 count)
2417 {
2418         int num_tc = dev_maps->num_tc;
2419         bool active = false;
2420         int tci;
2421
2422         for (tci = cpu * num_tc; num_tc--; tci++) {
2423                 int i, j;
2424
2425                 for (i = count, j = offset; i--; j++) {
2426                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2427                                 break;
2428                 }
2429
2430                 active |= i < 0;
2431         }
2432
2433         return active;
2434 }
2435
2436 static void reset_xps_maps(struct net_device *dev,
2437                            struct xps_dev_maps *dev_maps,
2438                            enum xps_map_type type)
2439 {
2440         static_key_slow_dec_cpuslocked(&xps_needed);
2441         if (type == XPS_RXQS)
2442                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2443
2444         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2445
2446         kfree_rcu(dev_maps, rcu);
2447 }
2448
2449 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2450                            u16 offset, u16 count)
2451 {
2452         struct xps_dev_maps *dev_maps;
2453         bool active = false;
2454         int i, j;
2455
2456         dev_maps = xmap_dereference(dev->xps_maps[type]);
2457         if (!dev_maps)
2458                 return;
2459
2460         for (j = 0; j < dev_maps->nr_ids; j++)
2461                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2462         if (!active)
2463                 reset_xps_maps(dev, dev_maps, type);
2464
2465         if (type == XPS_CPUS) {
2466                 for (i = offset + (count - 1); count--; i--)
2467                         netdev_queue_numa_node_write(
2468                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2469         }
2470 }
2471
2472 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2473                                    u16 count)
2474 {
2475         if (!static_key_false(&xps_needed))
2476                 return;
2477
2478         cpus_read_lock();
2479         mutex_lock(&xps_map_mutex);
2480
2481         if (static_key_false(&xps_rxqs_needed))
2482                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2483
2484         clean_xps_maps(dev, XPS_CPUS, offset, count);
2485
2486         mutex_unlock(&xps_map_mutex);
2487         cpus_read_unlock();
2488 }
2489
2490 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2491 {
2492         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2493 }
2494
2495 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2496                                       u16 index, bool is_rxqs_map)
2497 {
2498         struct xps_map *new_map;
2499         int alloc_len = XPS_MIN_MAP_ALLOC;
2500         int i, pos;
2501
2502         for (pos = 0; map && pos < map->len; pos++) {
2503                 if (map->queues[pos] != index)
2504                         continue;
2505                 return map;
2506         }
2507
2508         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2509         if (map) {
2510                 if (pos < map->alloc_len)
2511                         return map;
2512
2513                 alloc_len = map->alloc_len * 2;
2514         }
2515
2516         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2517          *  map
2518          */
2519         if (is_rxqs_map)
2520                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2521         else
2522                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2523                                        cpu_to_node(attr_index));
2524         if (!new_map)
2525                 return NULL;
2526
2527         for (i = 0; i < pos; i++)
2528                 new_map->queues[i] = map->queues[i];
2529         new_map->alloc_len = alloc_len;
2530         new_map->len = pos;
2531
2532         return new_map;
2533 }
2534
2535 /* Copy xps maps at a given index */
2536 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2537                               struct xps_dev_maps *new_dev_maps, int index,
2538                               int tc, bool skip_tc)
2539 {
2540         int i, tci = index * dev_maps->num_tc;
2541         struct xps_map *map;
2542
2543         /* copy maps belonging to foreign traffic classes */
2544         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2545                 if (i == tc && skip_tc)
2546                         continue;
2547
2548                 /* fill in the new device map from the old device map */
2549                 map = xmap_dereference(dev_maps->attr_map[tci]);
2550                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2551         }
2552 }
2553
2554 /* Must be called under cpus_read_lock */
2555 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2556                           u16 index, enum xps_map_type type)
2557 {
2558         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2559         const unsigned long *online_mask = NULL;
2560         bool active = false, copy = false;
2561         int i, j, tci, numa_node_id = -2;
2562         int maps_sz, num_tc = 1, tc = 0;
2563         struct xps_map *map, *new_map;
2564         unsigned int nr_ids;
2565
2566         WARN_ON_ONCE(index >= dev->num_tx_queues);
2567
2568         if (dev->num_tc) {
2569                 /* Do not allow XPS on subordinate device directly */
2570                 num_tc = dev->num_tc;
2571                 if (num_tc < 0)
2572                         return -EINVAL;
2573
2574                 /* If queue belongs to subordinate dev use its map */
2575                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2576
2577                 tc = netdev_txq_to_tc(dev, index);
2578                 if (tc < 0)
2579                         return -EINVAL;
2580         }
2581
2582         mutex_lock(&xps_map_mutex);
2583
2584         dev_maps = xmap_dereference(dev->xps_maps[type]);
2585         if (type == XPS_RXQS) {
2586                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2587                 nr_ids = dev->num_rx_queues;
2588         } else {
2589                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2590                 if (num_possible_cpus() > 1)
2591                         online_mask = cpumask_bits(cpu_online_mask);
2592                 nr_ids = nr_cpu_ids;
2593         }
2594
2595         if (maps_sz < L1_CACHE_BYTES)
2596                 maps_sz = L1_CACHE_BYTES;
2597
2598         /* The old dev_maps could be larger or smaller than the one we're
2599          * setting up now, as dev->num_tc or nr_ids could have been updated in
2600          * between. We could try to be smart, but let's be safe instead and only
2601          * copy foreign traffic classes if the two map sizes match.
2602          */
2603         if (dev_maps &&
2604             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2605                 copy = true;
2606
2607         /* allocate memory for queue storage */
2608         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2609              j < nr_ids;) {
2610                 if (!new_dev_maps) {
2611                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2612                         if (!new_dev_maps) {
2613                                 mutex_unlock(&xps_map_mutex);
2614                                 return -ENOMEM;
2615                         }
2616
2617                         new_dev_maps->nr_ids = nr_ids;
2618                         new_dev_maps->num_tc = num_tc;
2619                 }
2620
2621                 tci = j * num_tc + tc;
2622                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2623
2624                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2625                 if (!map)
2626                         goto error;
2627
2628                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2629         }
2630
2631         if (!new_dev_maps)
2632                 goto out_no_new_maps;
2633
2634         if (!dev_maps) {
2635                 /* Increment static keys at most once per type */
2636                 static_key_slow_inc_cpuslocked(&xps_needed);
2637                 if (type == XPS_RXQS)
2638                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2639         }
2640
2641         for (j = 0; j < nr_ids; j++) {
2642                 bool skip_tc = false;
2643
2644                 tci = j * num_tc + tc;
2645                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2646                     netif_attr_test_online(j, online_mask, nr_ids)) {
2647                         /* add tx-queue to CPU/rx-queue maps */
2648                         int pos = 0;
2649
2650                         skip_tc = true;
2651
2652                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2653                         while ((pos < map->len) && (map->queues[pos] != index))
2654                                 pos++;
2655
2656                         if (pos == map->len)
2657                                 map->queues[map->len++] = index;
2658 #ifdef CONFIG_NUMA
2659                         if (type == XPS_CPUS) {
2660                                 if (numa_node_id == -2)
2661                                         numa_node_id = cpu_to_node(j);
2662                                 else if (numa_node_id != cpu_to_node(j))
2663                                         numa_node_id = -1;
2664                         }
2665 #endif
2666                 }
2667
2668                 if (copy)
2669                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2670                                           skip_tc);
2671         }
2672
2673         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2674
2675         /* Cleanup old maps */
2676         if (!dev_maps)
2677                 goto out_no_old_maps;
2678
2679         for (j = 0; j < dev_maps->nr_ids; j++) {
2680                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2681                         map = xmap_dereference(dev_maps->attr_map[tci]);
2682                         if (!map)
2683                                 continue;
2684
2685                         if (copy) {
2686                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2687                                 if (map == new_map)
2688                                         continue;
2689                         }
2690
2691                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2692                         kfree_rcu(map, rcu);
2693                 }
2694         }
2695
2696         old_dev_maps = dev_maps;
2697
2698 out_no_old_maps:
2699         dev_maps = new_dev_maps;
2700         active = true;
2701
2702 out_no_new_maps:
2703         if (type == XPS_CPUS)
2704                 /* update Tx queue numa node */
2705                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2706                                              (numa_node_id >= 0) ?
2707                                              numa_node_id : NUMA_NO_NODE);
2708
2709         if (!dev_maps)
2710                 goto out_no_maps;
2711
2712         /* removes tx-queue from unused CPUs/rx-queues */
2713         for (j = 0; j < dev_maps->nr_ids; j++) {
2714                 tci = j * dev_maps->num_tc;
2715
2716                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2717                         if (i == tc &&
2718                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2719                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2720                                 continue;
2721
2722                         active |= remove_xps_queue(dev_maps,
2723                                                    copy ? old_dev_maps : NULL,
2724                                                    tci, index);
2725                 }
2726         }
2727
2728         if (old_dev_maps)
2729                 kfree_rcu(old_dev_maps, rcu);
2730
2731         /* free map if not active */
2732         if (!active)
2733                 reset_xps_maps(dev, dev_maps, type);
2734
2735 out_no_maps:
2736         mutex_unlock(&xps_map_mutex);
2737
2738         return 0;
2739 error:
2740         /* remove any maps that we added */
2741         for (j = 0; j < nr_ids; j++) {
2742                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2743                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2744                         map = copy ?
2745                               xmap_dereference(dev_maps->attr_map[tci]) :
2746                               NULL;
2747                         if (new_map && new_map != map)
2748                                 kfree(new_map);
2749                 }
2750         }
2751
2752         mutex_unlock(&xps_map_mutex);
2753
2754         kfree(new_dev_maps);
2755         return -ENOMEM;
2756 }
2757 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2758
2759 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2760                         u16 index)
2761 {
2762         int ret;
2763
2764         cpus_read_lock();
2765         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2766         cpus_read_unlock();
2767
2768         return ret;
2769 }
2770 EXPORT_SYMBOL(netif_set_xps_queue);
2771
2772 #endif
2773 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2774 {
2775         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2776
2777         /* Unbind any subordinate channels */
2778         while (txq-- != &dev->_tx[0]) {
2779                 if (txq->sb_dev)
2780                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2781         }
2782 }
2783
2784 void netdev_reset_tc(struct net_device *dev)
2785 {
2786 #ifdef CONFIG_XPS
2787         netif_reset_xps_queues_gt(dev, 0);
2788 #endif
2789         netdev_unbind_all_sb_channels(dev);
2790
2791         /* Reset TC configuration of device */
2792         dev->num_tc = 0;
2793         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2794         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2795 }
2796 EXPORT_SYMBOL(netdev_reset_tc);
2797
2798 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2799 {
2800         if (tc >= dev->num_tc)
2801                 return -EINVAL;
2802
2803 #ifdef CONFIG_XPS
2804         netif_reset_xps_queues(dev, offset, count);
2805 #endif
2806         dev->tc_to_txq[tc].count = count;
2807         dev->tc_to_txq[tc].offset = offset;
2808         return 0;
2809 }
2810 EXPORT_SYMBOL(netdev_set_tc_queue);
2811
2812 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2813 {
2814         if (num_tc > TC_MAX_QUEUE)
2815                 return -EINVAL;
2816
2817 #ifdef CONFIG_XPS
2818         netif_reset_xps_queues_gt(dev, 0);
2819 #endif
2820         netdev_unbind_all_sb_channels(dev);
2821
2822         dev->num_tc = num_tc;
2823         return 0;
2824 }
2825 EXPORT_SYMBOL(netdev_set_num_tc);
2826
2827 void netdev_unbind_sb_channel(struct net_device *dev,
2828                               struct net_device *sb_dev)
2829 {
2830         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2831
2832 #ifdef CONFIG_XPS
2833         netif_reset_xps_queues_gt(sb_dev, 0);
2834 #endif
2835         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2836         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2837
2838         while (txq-- != &dev->_tx[0]) {
2839                 if (txq->sb_dev == sb_dev)
2840                         txq->sb_dev = NULL;
2841         }
2842 }
2843 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2844
2845 int netdev_bind_sb_channel_queue(struct net_device *dev,
2846                                  struct net_device *sb_dev,
2847                                  u8 tc, u16 count, u16 offset)
2848 {
2849         /* Make certain the sb_dev and dev are already configured */
2850         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2851                 return -EINVAL;
2852
2853         /* We cannot hand out queues we don't have */
2854         if ((offset + count) > dev->real_num_tx_queues)
2855                 return -EINVAL;
2856
2857         /* Record the mapping */
2858         sb_dev->tc_to_txq[tc].count = count;
2859         sb_dev->tc_to_txq[tc].offset = offset;
2860
2861         /* Provide a way for Tx queue to find the tc_to_txq map or
2862          * XPS map for itself.
2863          */
2864         while (count--)
2865                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2866
2867         return 0;
2868 }
2869 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2870
2871 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2872 {
2873         /* Do not use a multiqueue device to represent a subordinate channel */
2874         if (netif_is_multiqueue(dev))
2875                 return -ENODEV;
2876
2877         /* We allow channels 1 - 32767 to be used for subordinate channels.
2878          * Channel 0 is meant to be "native" mode and used only to represent
2879          * the main root device. We allow writing 0 to reset the device back
2880          * to normal mode after being used as a subordinate channel.
2881          */
2882         if (channel > S16_MAX)
2883                 return -EINVAL;
2884
2885         dev->num_tc = -channel;
2886
2887         return 0;
2888 }
2889 EXPORT_SYMBOL(netdev_set_sb_channel);
2890
2891 /*
2892  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2893  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2894  */
2895 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2896 {
2897         bool disabling;
2898         int rc;
2899
2900         disabling = txq < dev->real_num_tx_queues;
2901
2902         if (txq < 1 || txq > dev->num_tx_queues)
2903                 return -EINVAL;
2904
2905         if (dev->reg_state == NETREG_REGISTERED ||
2906             dev->reg_state == NETREG_UNREGISTERING) {
2907                 ASSERT_RTNL();
2908
2909                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2910                                                   txq);
2911                 if (rc)
2912                         return rc;
2913
2914                 if (dev->num_tc)
2915                         netif_setup_tc(dev, txq);
2916
2917                 dev_qdisc_change_real_num_tx(dev, txq);
2918
2919                 dev->real_num_tx_queues = txq;
2920
2921                 if (disabling) {
2922                         synchronize_net();
2923                         qdisc_reset_all_tx_gt(dev, txq);
2924 #ifdef CONFIG_XPS
2925                         netif_reset_xps_queues_gt(dev, txq);
2926 #endif
2927                 }
2928         } else {
2929                 dev->real_num_tx_queues = txq;
2930         }
2931
2932         return 0;
2933 }
2934 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2935
2936 #ifdef CONFIG_SYSFS
2937 /**
2938  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2939  *      @dev: Network device
2940  *      @rxq: Actual number of RX queues
2941  *
2942  *      This must be called either with the rtnl_lock held or before
2943  *      registration of the net device.  Returns 0 on success, or a
2944  *      negative error code.  If called before registration, it always
2945  *      succeeds.
2946  */
2947 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2948 {
2949         int rc;
2950
2951         if (rxq < 1 || rxq > dev->num_rx_queues)
2952                 return -EINVAL;
2953
2954         if (dev->reg_state == NETREG_REGISTERED) {
2955                 ASSERT_RTNL();
2956
2957                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2958                                                   rxq);
2959                 if (rc)
2960                         return rc;
2961         }
2962
2963         dev->real_num_rx_queues = rxq;
2964         return 0;
2965 }
2966 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2967 #endif
2968
2969 /**
2970  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2971  *      @dev: Network device
2972  *      @txq: Actual number of TX queues
2973  *      @rxq: Actual number of RX queues
2974  *
2975  *      Set the real number of both TX and RX queues.
2976  *      Does nothing if the number of queues is already correct.
2977  */
2978 int netif_set_real_num_queues(struct net_device *dev,
2979                               unsigned int txq, unsigned int rxq)
2980 {
2981         unsigned int old_rxq = dev->real_num_rx_queues;
2982         int err;
2983
2984         if (txq < 1 || txq > dev->num_tx_queues ||
2985             rxq < 1 || rxq > dev->num_rx_queues)
2986                 return -EINVAL;
2987
2988         /* Start from increases, so the error path only does decreases -
2989          * decreases can't fail.
2990          */
2991         if (rxq > dev->real_num_rx_queues) {
2992                 err = netif_set_real_num_rx_queues(dev, rxq);
2993                 if (err)
2994                         return err;
2995         }
2996         if (txq > dev->real_num_tx_queues) {
2997                 err = netif_set_real_num_tx_queues(dev, txq);
2998                 if (err)
2999                         goto undo_rx;
3000         }
3001         if (rxq < dev->real_num_rx_queues)
3002                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3003         if (txq < dev->real_num_tx_queues)
3004                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3005
3006         return 0;
3007 undo_rx:
3008         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3009         return err;
3010 }
3011 EXPORT_SYMBOL(netif_set_real_num_queues);
3012
3013 /**
3014  * netif_set_tso_max_size() - set the max size of TSO frames supported
3015  * @dev:        netdev to update
3016  * @size:       max skb->len of a TSO frame
3017  *
3018  * Set the limit on the size of TSO super-frames the device can handle.
3019  * Unless explicitly set the stack will assume the value of
3020  * %GSO_LEGACY_MAX_SIZE.
3021  */
3022 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3023 {
3024         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3025         if (size < READ_ONCE(dev->gso_max_size))
3026                 netif_set_gso_max_size(dev, size);
3027         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3028                 netif_set_gso_ipv4_max_size(dev, size);
3029 }
3030 EXPORT_SYMBOL(netif_set_tso_max_size);
3031
3032 /**
3033  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3034  * @dev:        netdev to update
3035  * @segs:       max number of TCP segments
3036  *
3037  * Set the limit on the number of TCP segments the device can generate from
3038  * a single TSO super-frame.
3039  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3040  */
3041 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3042 {
3043         dev->tso_max_segs = segs;
3044         if (segs < READ_ONCE(dev->gso_max_segs))
3045                 netif_set_gso_max_segs(dev, segs);
3046 }
3047 EXPORT_SYMBOL(netif_set_tso_max_segs);
3048
3049 /**
3050  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3051  * @to:         netdev to update
3052  * @from:       netdev from which to copy the limits
3053  */
3054 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3055 {
3056         netif_set_tso_max_size(to, from->tso_max_size);
3057         netif_set_tso_max_segs(to, from->tso_max_segs);
3058 }
3059 EXPORT_SYMBOL(netif_inherit_tso_max);
3060
3061 /**
3062  * netif_get_num_default_rss_queues - default number of RSS queues
3063  *
3064  * Default value is the number of physical cores if there are only 1 or 2, or
3065  * divided by 2 if there are more.
3066  */
3067 int netif_get_num_default_rss_queues(void)
3068 {
3069         cpumask_var_t cpus;
3070         int cpu, count = 0;
3071
3072         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3073                 return 1;
3074
3075         cpumask_copy(cpus, cpu_online_mask);
3076         for_each_cpu(cpu, cpus) {
3077                 ++count;
3078                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3079         }
3080         free_cpumask_var(cpus);
3081
3082         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3083 }
3084 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3085
3086 static void __netif_reschedule(struct Qdisc *q)
3087 {
3088         struct softnet_data *sd;
3089         unsigned long flags;
3090
3091         local_irq_save(flags);
3092         sd = this_cpu_ptr(&softnet_data);
3093         q->next_sched = NULL;
3094         *sd->output_queue_tailp = q;
3095         sd->output_queue_tailp = &q->next_sched;
3096         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3097         local_irq_restore(flags);
3098 }
3099
3100 void __netif_schedule(struct Qdisc *q)
3101 {
3102         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3103                 __netif_reschedule(q);
3104 }
3105 EXPORT_SYMBOL(__netif_schedule);
3106
3107 struct dev_kfree_skb_cb {
3108         enum skb_drop_reason reason;
3109 };
3110
3111 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3112 {
3113         return (struct dev_kfree_skb_cb *)skb->cb;
3114 }
3115
3116 void netif_schedule_queue(struct netdev_queue *txq)
3117 {
3118         rcu_read_lock();
3119         if (!netif_xmit_stopped(txq)) {
3120                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3121
3122                 __netif_schedule(q);
3123         }
3124         rcu_read_unlock();
3125 }
3126 EXPORT_SYMBOL(netif_schedule_queue);
3127
3128 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3129 {
3130         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3131                 struct Qdisc *q;
3132
3133                 rcu_read_lock();
3134                 q = rcu_dereference(dev_queue->qdisc);
3135                 __netif_schedule(q);
3136                 rcu_read_unlock();
3137         }
3138 }
3139 EXPORT_SYMBOL(netif_tx_wake_queue);
3140
3141 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3142 {
3143         unsigned long flags;
3144
3145         if (unlikely(!skb))
3146                 return;
3147
3148         if (likely(refcount_read(&skb->users) == 1)) {
3149                 smp_rmb();
3150                 refcount_set(&skb->users, 0);
3151         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3152                 return;
3153         }
3154         get_kfree_skb_cb(skb)->reason = reason;
3155         local_irq_save(flags);
3156         skb->next = __this_cpu_read(softnet_data.completion_queue);
3157         __this_cpu_write(softnet_data.completion_queue, skb);
3158         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3159         local_irq_restore(flags);
3160 }
3161 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3162
3163 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3164 {
3165         if (in_hardirq() || irqs_disabled())
3166                 dev_kfree_skb_irq_reason(skb, reason);
3167         else
3168                 kfree_skb_reason(skb, reason);
3169 }
3170 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3171
3172
3173 /**
3174  * netif_device_detach - mark device as removed
3175  * @dev: network device
3176  *
3177  * Mark device as removed from system and therefore no longer available.
3178  */
3179 void netif_device_detach(struct net_device *dev)
3180 {
3181         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3182             netif_running(dev)) {
3183                 netif_tx_stop_all_queues(dev);
3184         }
3185 }
3186 EXPORT_SYMBOL(netif_device_detach);
3187
3188 /**
3189  * netif_device_attach - mark device as attached
3190  * @dev: network device
3191  *
3192  * Mark device as attached from system and restart if needed.
3193  */
3194 void netif_device_attach(struct net_device *dev)
3195 {
3196         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3197             netif_running(dev)) {
3198                 netif_tx_wake_all_queues(dev);
3199                 __netdev_watchdog_up(dev);
3200         }
3201 }
3202 EXPORT_SYMBOL(netif_device_attach);
3203
3204 /*
3205  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3206  * to be used as a distribution range.
3207  */
3208 static u16 skb_tx_hash(const struct net_device *dev,
3209                        const struct net_device *sb_dev,
3210                        struct sk_buff *skb)
3211 {
3212         u32 hash;
3213         u16 qoffset = 0;
3214         u16 qcount = dev->real_num_tx_queues;
3215
3216         if (dev->num_tc) {
3217                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3218
3219                 qoffset = sb_dev->tc_to_txq[tc].offset;
3220                 qcount = sb_dev->tc_to_txq[tc].count;
3221                 if (unlikely(!qcount)) {
3222                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3223                                              sb_dev->name, qoffset, tc);
3224                         qoffset = 0;
3225                         qcount = dev->real_num_tx_queues;
3226                 }
3227         }
3228
3229         if (skb_rx_queue_recorded(skb)) {
3230                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3231                 hash = skb_get_rx_queue(skb);
3232                 if (hash >= qoffset)
3233                         hash -= qoffset;
3234                 while (unlikely(hash >= qcount))
3235                         hash -= qcount;
3236                 return hash + qoffset;
3237         }
3238
3239         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3240 }
3241
3242 void skb_warn_bad_offload(const struct sk_buff *skb)
3243 {
3244         static const netdev_features_t null_features;
3245         struct net_device *dev = skb->dev;
3246         const char *name = "";
3247
3248         if (!net_ratelimit())
3249                 return;
3250
3251         if (dev) {
3252                 if (dev->dev.parent)
3253                         name = dev_driver_string(dev->dev.parent);
3254                 else
3255                         name = netdev_name(dev);
3256         }
3257         skb_dump(KERN_WARNING, skb, false);
3258         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3259              name, dev ? &dev->features : &null_features,
3260              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3261 }
3262
3263 /*
3264  * Invalidate hardware checksum when packet is to be mangled, and
3265  * complete checksum manually on outgoing path.
3266  */
3267 int skb_checksum_help(struct sk_buff *skb)
3268 {
3269         __wsum csum;
3270         int ret = 0, offset;
3271
3272         if (skb->ip_summed == CHECKSUM_COMPLETE)
3273                 goto out_set_summed;
3274
3275         if (unlikely(skb_is_gso(skb))) {
3276                 skb_warn_bad_offload(skb);
3277                 return -EINVAL;
3278         }
3279
3280         /* Before computing a checksum, we should make sure no frag could
3281          * be modified by an external entity : checksum could be wrong.
3282          */
3283         if (skb_has_shared_frag(skb)) {
3284                 ret = __skb_linearize(skb);
3285                 if (ret)
3286                         goto out;
3287         }
3288
3289         offset = skb_checksum_start_offset(skb);
3290         ret = -EINVAL;
3291         if (unlikely(offset >= skb_headlen(skb))) {
3292                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3293                 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3294                           offset, skb_headlen(skb));
3295                 goto out;
3296         }
3297         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3298
3299         offset += skb->csum_offset;
3300         if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3301                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3302                 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3303                           offset + sizeof(__sum16), skb_headlen(skb));
3304                 goto out;
3305         }
3306         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3307         if (ret)
3308                 goto out;
3309
3310         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3311 out_set_summed:
3312         skb->ip_summed = CHECKSUM_NONE;
3313 out:
3314         return ret;
3315 }
3316 EXPORT_SYMBOL(skb_checksum_help);
3317
3318 int skb_crc32c_csum_help(struct sk_buff *skb)
3319 {
3320         __le32 crc32c_csum;
3321         int ret = 0, offset, start;
3322
3323         if (skb->ip_summed != CHECKSUM_PARTIAL)
3324                 goto out;
3325
3326         if (unlikely(skb_is_gso(skb)))
3327                 goto out;
3328
3329         /* Before computing a checksum, we should make sure no frag could
3330          * be modified by an external entity : checksum could be wrong.
3331          */
3332         if (unlikely(skb_has_shared_frag(skb))) {
3333                 ret = __skb_linearize(skb);
3334                 if (ret)
3335                         goto out;
3336         }
3337         start = skb_checksum_start_offset(skb);
3338         offset = start + offsetof(struct sctphdr, checksum);
3339         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3340                 ret = -EINVAL;
3341                 goto out;
3342         }
3343
3344         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3345         if (ret)
3346                 goto out;
3347
3348         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3349                                                   skb->len - start, ~(__u32)0,
3350                                                   crc32c_csum_stub));
3351         *(__le32 *)(skb->data + offset) = crc32c_csum;
3352         skb_reset_csum_not_inet(skb);
3353 out:
3354         return ret;
3355 }
3356
3357 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3358 {
3359         __be16 type = skb->protocol;
3360
3361         /* Tunnel gso handlers can set protocol to ethernet. */
3362         if (type == htons(ETH_P_TEB)) {
3363                 struct ethhdr *eth;
3364
3365                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3366                         return 0;
3367
3368                 eth = (struct ethhdr *)skb->data;
3369                 type = eth->h_proto;
3370         }
3371
3372         return vlan_get_protocol_and_depth(skb, type, depth);
3373 }
3374
3375
3376 /* Take action when hardware reception checksum errors are detected. */
3377 #ifdef CONFIG_BUG
3378 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3379 {
3380         netdev_err(dev, "hw csum failure\n");
3381         skb_dump(KERN_ERR, skb, true);
3382         dump_stack();
3383 }
3384
3385 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3386 {
3387         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3388 }
3389 EXPORT_SYMBOL(netdev_rx_csum_fault);
3390 #endif
3391
3392 /* XXX: check that highmem exists at all on the given machine. */
3393 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3394 {
3395 #ifdef CONFIG_HIGHMEM
3396         int i;
3397
3398         if (!(dev->features & NETIF_F_HIGHDMA)) {
3399                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3400                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3401
3402                         if (PageHighMem(skb_frag_page(frag)))
3403                                 return 1;
3404                 }
3405         }
3406 #endif
3407         return 0;
3408 }
3409
3410 /* If MPLS offload request, verify we are testing hardware MPLS features
3411  * instead of standard features for the netdev.
3412  */
3413 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3414 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3415                                            netdev_features_t features,
3416                                            __be16 type)
3417 {
3418         if (eth_p_mpls(type))
3419                 features &= skb->dev->mpls_features;
3420
3421         return features;
3422 }
3423 #else
3424 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3425                                            netdev_features_t features,
3426                                            __be16 type)
3427 {
3428         return features;
3429 }
3430 #endif
3431
3432 static netdev_features_t harmonize_features(struct sk_buff *skb,
3433         netdev_features_t features)
3434 {
3435         __be16 type;
3436
3437         type = skb_network_protocol(skb, NULL);
3438         features = net_mpls_features(skb, features, type);
3439
3440         if (skb->ip_summed != CHECKSUM_NONE &&
3441             !can_checksum_protocol(features, type)) {
3442                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3443         }
3444         if (illegal_highdma(skb->dev, skb))
3445                 features &= ~NETIF_F_SG;
3446
3447         return features;
3448 }
3449
3450 netdev_features_t passthru_features_check(struct sk_buff *skb,
3451                                           struct net_device *dev,
3452                                           netdev_features_t features)
3453 {
3454         return features;
3455 }
3456 EXPORT_SYMBOL(passthru_features_check);
3457
3458 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3459                                              struct net_device *dev,
3460                                              netdev_features_t features)
3461 {
3462         return vlan_features_check(skb, features);
3463 }
3464
3465 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3466                                             struct net_device *dev,
3467                                             netdev_features_t features)
3468 {
3469         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3470
3471         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3472                 return features & ~NETIF_F_GSO_MASK;
3473
3474         if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3475                 return features & ~NETIF_F_GSO_MASK;
3476
3477         if (!skb_shinfo(skb)->gso_type) {
3478                 skb_warn_bad_offload(skb);
3479                 return features & ~NETIF_F_GSO_MASK;
3480         }
3481
3482         /* Support for GSO partial features requires software
3483          * intervention before we can actually process the packets
3484          * so we need to strip support for any partial features now
3485          * and we can pull them back in after we have partially
3486          * segmented the frame.
3487          */
3488         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3489                 features &= ~dev->gso_partial_features;
3490
3491         /* Make sure to clear the IPv4 ID mangling feature if the
3492          * IPv4 header has the potential to be fragmented.
3493          */
3494         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3495                 struct iphdr *iph = skb->encapsulation ?
3496                                     inner_ip_hdr(skb) : ip_hdr(skb);
3497
3498                 if (!(iph->frag_off & htons(IP_DF)))
3499                         features &= ~NETIF_F_TSO_MANGLEID;
3500         }
3501
3502         return features;
3503 }
3504
3505 netdev_features_t netif_skb_features(struct sk_buff *skb)
3506 {
3507         struct net_device *dev = skb->dev;
3508         netdev_features_t features = dev->features;
3509
3510         if (skb_is_gso(skb))
3511                 features = gso_features_check(skb, dev, features);
3512
3513         /* If encapsulation offload request, verify we are testing
3514          * hardware encapsulation features instead of standard
3515          * features for the netdev
3516          */
3517         if (skb->encapsulation)
3518                 features &= dev->hw_enc_features;
3519
3520         if (skb_vlan_tagged(skb))
3521                 features = netdev_intersect_features(features,
3522                                                      dev->vlan_features |
3523                                                      NETIF_F_HW_VLAN_CTAG_TX |
3524                                                      NETIF_F_HW_VLAN_STAG_TX);
3525
3526         if (dev->netdev_ops->ndo_features_check)
3527                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3528                                                                 features);
3529         else
3530                 features &= dflt_features_check(skb, dev, features);
3531
3532         return harmonize_features(skb, features);
3533 }
3534 EXPORT_SYMBOL(netif_skb_features);
3535
3536 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3537                     struct netdev_queue *txq, bool more)
3538 {
3539         unsigned int len;
3540         int rc;
3541
3542         if (dev_nit_active(dev))
3543                 dev_queue_xmit_nit(skb, dev);
3544
3545         len = skb->len;
3546         trace_net_dev_start_xmit(skb, dev);
3547         rc = netdev_start_xmit(skb, dev, txq, more);
3548         trace_net_dev_xmit(skb, rc, dev, len);
3549
3550         return rc;
3551 }
3552
3553 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3554                                     struct netdev_queue *txq, int *ret)
3555 {
3556         struct sk_buff *skb = first;
3557         int rc = NETDEV_TX_OK;
3558
3559         while (skb) {
3560                 struct sk_buff *next = skb->next;
3561
3562                 skb_mark_not_on_list(skb);
3563                 rc = xmit_one(skb, dev, txq, next != NULL);
3564                 if (unlikely(!dev_xmit_complete(rc))) {
3565                         skb->next = next;
3566                         goto out;
3567                 }
3568
3569                 skb = next;
3570                 if (netif_tx_queue_stopped(txq) && skb) {
3571                         rc = NETDEV_TX_BUSY;
3572                         break;
3573                 }
3574         }
3575
3576 out:
3577         *ret = rc;
3578         return skb;
3579 }
3580
3581 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3582                                           netdev_features_t features)
3583 {
3584         if (skb_vlan_tag_present(skb) &&
3585             !vlan_hw_offload_capable(features, skb->vlan_proto))
3586                 skb = __vlan_hwaccel_push_inside(skb);
3587         return skb;
3588 }
3589
3590 int skb_csum_hwoffload_help(struct sk_buff *skb,
3591                             const netdev_features_t features)
3592 {
3593         if (unlikely(skb_csum_is_sctp(skb)))
3594                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3595                         skb_crc32c_csum_help(skb);
3596
3597         if (features & NETIF_F_HW_CSUM)
3598                 return 0;
3599
3600         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3601                 switch (skb->csum_offset) {
3602                 case offsetof(struct tcphdr, check):
3603                 case offsetof(struct udphdr, check):
3604                         return 0;
3605                 }
3606         }
3607
3608         return skb_checksum_help(skb);
3609 }
3610 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3611
3612 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3613 {
3614         netdev_features_t features;
3615
3616         features = netif_skb_features(skb);
3617         skb = validate_xmit_vlan(skb, features);
3618         if (unlikely(!skb))
3619                 goto out_null;
3620
3621         skb = sk_validate_xmit_skb(skb, dev);
3622         if (unlikely(!skb))
3623                 goto out_null;
3624
3625         if (netif_needs_gso(skb, features)) {
3626                 struct sk_buff *segs;
3627
3628                 segs = skb_gso_segment(skb, features);
3629                 if (IS_ERR(segs)) {
3630                         goto out_kfree_skb;
3631                 } else if (segs) {
3632                         consume_skb(skb);
3633                         skb = segs;
3634                 }
3635         } else {
3636                 if (skb_needs_linearize(skb, features) &&
3637                     __skb_linearize(skb))
3638                         goto out_kfree_skb;
3639
3640                 /* If packet is not checksummed and device does not
3641                  * support checksumming for this protocol, complete
3642                  * checksumming here.
3643                  */
3644                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3645                         if (skb->encapsulation)
3646                                 skb_set_inner_transport_header(skb,
3647                                                                skb_checksum_start_offset(skb));
3648                         else
3649                                 skb_set_transport_header(skb,
3650                                                          skb_checksum_start_offset(skb));
3651                         if (skb_csum_hwoffload_help(skb, features))
3652                                 goto out_kfree_skb;
3653                 }
3654         }
3655
3656         skb = validate_xmit_xfrm(skb, features, again);
3657
3658         return skb;
3659
3660 out_kfree_skb:
3661         kfree_skb(skb);
3662 out_null:
3663         dev_core_stats_tx_dropped_inc(dev);
3664         return NULL;
3665 }
3666
3667 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3668 {
3669         struct sk_buff *next, *head = NULL, *tail;
3670
3671         for (; skb != NULL; skb = next) {
3672                 next = skb->next;
3673                 skb_mark_not_on_list(skb);
3674
3675                 /* in case skb wont be segmented, point to itself */
3676                 skb->prev = skb;
3677
3678                 skb = validate_xmit_skb(skb, dev, again);
3679                 if (!skb)
3680                         continue;
3681
3682                 if (!head)
3683                         head = skb;
3684                 else
3685                         tail->next = skb;
3686                 /* If skb was segmented, skb->prev points to
3687                  * the last segment. If not, it still contains skb.
3688                  */
3689                 tail = skb->prev;
3690         }
3691         return head;
3692 }
3693 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3694
3695 static void qdisc_pkt_len_init(struct sk_buff *skb)
3696 {
3697         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3698
3699         qdisc_skb_cb(skb)->pkt_len = skb->len;
3700
3701         /* To get more precise estimation of bytes sent on wire,
3702          * we add to pkt_len the headers size of all segments
3703          */
3704         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3705                 u16 gso_segs = shinfo->gso_segs;
3706                 unsigned int hdr_len;
3707
3708                 /* mac layer + network layer */
3709                 hdr_len = skb_transport_offset(skb);
3710
3711                 /* + transport layer */
3712                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3713                         const struct tcphdr *th;
3714                         struct tcphdr _tcphdr;
3715
3716                         th = skb_header_pointer(skb, hdr_len,
3717                                                 sizeof(_tcphdr), &_tcphdr);
3718                         if (likely(th))
3719                                 hdr_len += __tcp_hdrlen(th);
3720                 } else {
3721                         struct udphdr _udphdr;
3722
3723                         if (skb_header_pointer(skb, hdr_len,
3724                                                sizeof(_udphdr), &_udphdr))
3725                                 hdr_len += sizeof(struct udphdr);
3726                 }
3727
3728                 if (shinfo->gso_type & SKB_GSO_DODGY)
3729                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3730                                                 shinfo->gso_size);
3731
3732                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3733         }
3734 }
3735
3736 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3737                              struct sk_buff **to_free,
3738                              struct netdev_queue *txq)
3739 {
3740         int rc;
3741
3742         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3743         if (rc == NET_XMIT_SUCCESS)
3744                 trace_qdisc_enqueue(q, txq, skb);
3745         return rc;
3746 }
3747
3748 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3749                                  struct net_device *dev,
3750                                  struct netdev_queue *txq)
3751 {
3752         spinlock_t *root_lock = qdisc_lock(q);
3753         struct sk_buff *to_free = NULL;
3754         bool contended;
3755         int rc;
3756
3757         qdisc_calculate_pkt_len(skb, q);
3758
3759         tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3760
3761         if (q->flags & TCQ_F_NOLOCK) {
3762                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3763                     qdisc_run_begin(q)) {
3764                         /* Retest nolock_qdisc_is_empty() within the protection
3765                          * of q->seqlock to protect from racing with requeuing.
3766                          */
3767                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3768                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3769                                 __qdisc_run(q);
3770                                 qdisc_run_end(q);
3771
3772                                 goto no_lock_out;
3773                         }
3774
3775                         qdisc_bstats_cpu_update(q, skb);
3776                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3777                             !nolock_qdisc_is_empty(q))
3778                                 __qdisc_run(q);
3779
3780                         qdisc_run_end(q);
3781                         return NET_XMIT_SUCCESS;
3782                 }
3783
3784                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3785                 qdisc_run(q);
3786
3787 no_lock_out:
3788                 if (unlikely(to_free))
3789                         kfree_skb_list_reason(to_free,
3790                                               tcf_get_drop_reason(to_free));
3791                 return rc;
3792         }
3793
3794         /*
3795          * Heuristic to force contended enqueues to serialize on a
3796          * separate lock before trying to get qdisc main lock.
3797          * This permits qdisc->running owner to get the lock more
3798          * often and dequeue packets faster.
3799          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3800          * and then other tasks will only enqueue packets. The packets will be
3801          * sent after the qdisc owner is scheduled again. To prevent this
3802          * scenario the task always serialize on the lock.
3803          */
3804         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3805         if (unlikely(contended))
3806                 spin_lock(&q->busylock);
3807
3808         spin_lock(root_lock);
3809         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3810                 __qdisc_drop(skb, &to_free);
3811                 rc = NET_XMIT_DROP;
3812         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3813                    qdisc_run_begin(q)) {
3814                 /*
3815                  * This is a work-conserving queue; there are no old skbs
3816                  * waiting to be sent out; and the qdisc is not running -
3817                  * xmit the skb directly.
3818                  */
3819
3820                 qdisc_bstats_update(q, skb);
3821
3822                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3823                         if (unlikely(contended)) {
3824                                 spin_unlock(&q->busylock);
3825                                 contended = false;
3826                         }
3827                         __qdisc_run(q);
3828                 }
3829
3830                 qdisc_run_end(q);
3831                 rc = NET_XMIT_SUCCESS;
3832         } else {
3833                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3834                 if (qdisc_run_begin(q)) {
3835                         if (unlikely(contended)) {
3836                                 spin_unlock(&q->busylock);
3837                                 contended = false;
3838                         }
3839                         __qdisc_run(q);
3840                         qdisc_run_end(q);
3841                 }
3842         }
3843         spin_unlock(root_lock);
3844         if (unlikely(to_free))
3845                 kfree_skb_list_reason(to_free,
3846                                       tcf_get_drop_reason(to_free));
3847         if (unlikely(contended))
3848                 spin_unlock(&q->busylock);
3849         return rc;
3850 }
3851
3852 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3853 static void skb_update_prio(struct sk_buff *skb)
3854 {
3855         const struct netprio_map *map;
3856         const struct sock *sk;
3857         unsigned int prioidx;
3858
3859         if (skb->priority)
3860                 return;
3861         map = rcu_dereference_bh(skb->dev->priomap);
3862         if (!map)
3863                 return;
3864         sk = skb_to_full_sk(skb);
3865         if (!sk)
3866                 return;
3867
3868         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3869
3870         if (prioidx < map->priomap_len)
3871                 skb->priority = map->priomap[prioidx];
3872 }
3873 #else
3874 #define skb_update_prio(skb)
3875 #endif
3876
3877 /**
3878  *      dev_loopback_xmit - loop back @skb
3879  *      @net: network namespace this loopback is happening in
3880  *      @sk:  sk needed to be a netfilter okfn
3881  *      @skb: buffer to transmit
3882  */
3883 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3884 {
3885         skb_reset_mac_header(skb);
3886         __skb_pull(skb, skb_network_offset(skb));
3887         skb->pkt_type = PACKET_LOOPBACK;
3888         if (skb->ip_summed == CHECKSUM_NONE)
3889                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3890         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3891         skb_dst_force(skb);
3892         netif_rx(skb);
3893         return 0;
3894 }
3895 EXPORT_SYMBOL(dev_loopback_xmit);
3896
3897 #ifdef CONFIG_NET_EGRESS
3898 static struct netdev_queue *
3899 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3900 {
3901         int qm = skb_get_queue_mapping(skb);
3902
3903         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3904 }
3905
3906 static bool netdev_xmit_txqueue_skipped(void)
3907 {
3908         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3909 }
3910
3911 void netdev_xmit_skip_txqueue(bool skip)
3912 {
3913         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3914 }
3915 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3916 #endif /* CONFIG_NET_EGRESS */
3917
3918 #ifdef CONFIG_NET_XGRESS
3919 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3920                   enum skb_drop_reason *drop_reason)
3921 {
3922         int ret = TC_ACT_UNSPEC;
3923 #ifdef CONFIG_NET_CLS_ACT
3924         struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3925         struct tcf_result res;
3926
3927         if (!miniq)
3928                 return ret;
3929
3930         tc_skb_cb(skb)->mru = 0;
3931         tc_skb_cb(skb)->post_ct = false;
3932         tcf_set_drop_reason(skb, *drop_reason);
3933
3934         mini_qdisc_bstats_cpu_update(miniq, skb);
3935         ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3936         /* Only tcf related quirks below. */
3937         switch (ret) {
3938         case TC_ACT_SHOT:
3939                 *drop_reason = tcf_get_drop_reason(skb);
3940                 mini_qdisc_qstats_cpu_drop(miniq);
3941                 break;
3942         case TC_ACT_OK:
3943         case TC_ACT_RECLASSIFY:
3944                 skb->tc_index = TC_H_MIN(res.classid);
3945                 break;
3946         }
3947 #endif /* CONFIG_NET_CLS_ACT */
3948         return ret;
3949 }
3950
3951 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3952
3953 void tcx_inc(void)
3954 {
3955         static_branch_inc(&tcx_needed_key);
3956 }
3957
3958 void tcx_dec(void)
3959 {
3960         static_branch_dec(&tcx_needed_key);
3961 }
3962
3963 static __always_inline enum tcx_action_base
3964 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3965         const bool needs_mac)
3966 {
3967         const struct bpf_mprog_fp *fp;
3968         const struct bpf_prog *prog;
3969         int ret = TCX_NEXT;
3970
3971         if (needs_mac)
3972                 __skb_push(skb, skb->mac_len);
3973         bpf_mprog_foreach_prog(entry, fp, prog) {
3974                 bpf_compute_data_pointers(skb);
3975                 ret = bpf_prog_run(prog, skb);
3976                 if (ret != TCX_NEXT)
3977                         break;
3978         }
3979         if (needs_mac)
3980                 __skb_pull(skb, skb->mac_len);
3981         return tcx_action_code(skb, ret);
3982 }
3983
3984 static __always_inline struct sk_buff *
3985 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3986                    struct net_device *orig_dev, bool *another)
3987 {
3988         struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3989         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3990         int sch_ret;
3991
3992         if (!entry)
3993                 return skb;
3994         if (*pt_prev) {
3995                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3996                 *pt_prev = NULL;
3997         }
3998
3999         qdisc_skb_cb(skb)->pkt_len = skb->len;
4000         tcx_set_ingress(skb, true);
4001
4002         if (static_branch_unlikely(&tcx_needed_key)) {
4003                 sch_ret = tcx_run(entry, skb, true);
4004                 if (sch_ret != TC_ACT_UNSPEC)
4005                         goto ingress_verdict;
4006         }
4007         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4008 ingress_verdict:
4009         switch (sch_ret) {
4010         case TC_ACT_REDIRECT:
4011                 /* skb_mac_header check was done by BPF, so we can safely
4012                  * push the L2 header back before redirecting to another
4013                  * netdev.
4014                  */
4015                 __skb_push(skb, skb->mac_len);
4016                 if (skb_do_redirect(skb) == -EAGAIN) {
4017                         __skb_pull(skb, skb->mac_len);
4018                         *another = true;
4019                         break;
4020                 }
4021                 *ret = NET_RX_SUCCESS;
4022                 return NULL;
4023         case TC_ACT_SHOT:
4024                 kfree_skb_reason(skb, drop_reason);
4025                 *ret = NET_RX_DROP;
4026                 return NULL;
4027         /* used by tc_run */
4028         case TC_ACT_STOLEN:
4029         case TC_ACT_QUEUED:
4030         case TC_ACT_TRAP:
4031                 consume_skb(skb);
4032                 fallthrough;
4033         case TC_ACT_CONSUMED:
4034                 *ret = NET_RX_SUCCESS;
4035                 return NULL;
4036         }
4037
4038         return skb;
4039 }
4040
4041 static __always_inline struct sk_buff *
4042 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4043 {
4044         struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4045         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4046         int sch_ret;
4047
4048         if (!entry)
4049                 return skb;
4050
4051         /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4052          * already set by the caller.
4053          */
4054         if (static_branch_unlikely(&tcx_needed_key)) {
4055                 sch_ret = tcx_run(entry, skb, false);
4056                 if (sch_ret != TC_ACT_UNSPEC)
4057                         goto egress_verdict;
4058         }
4059         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4060 egress_verdict:
4061         switch (sch_ret) {
4062         case TC_ACT_REDIRECT:
4063                 /* No need to push/pop skb's mac_header here on egress! */
4064                 skb_do_redirect(skb);
4065                 *ret = NET_XMIT_SUCCESS;
4066                 return NULL;
4067         case TC_ACT_SHOT:
4068                 kfree_skb_reason(skb, drop_reason);
4069                 *ret = NET_XMIT_DROP;
4070                 return NULL;
4071         /* used by tc_run */
4072         case TC_ACT_STOLEN:
4073         case TC_ACT_QUEUED:
4074         case TC_ACT_TRAP:
4075                 consume_skb(skb);
4076                 fallthrough;
4077         case TC_ACT_CONSUMED:
4078                 *ret = NET_XMIT_SUCCESS;
4079                 return NULL;
4080         }
4081
4082         return skb;
4083 }
4084 #else
4085 static __always_inline struct sk_buff *
4086 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4087                    struct net_device *orig_dev, bool *another)
4088 {
4089         return skb;
4090 }
4091
4092 static __always_inline struct sk_buff *
4093 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4094 {
4095         return skb;
4096 }
4097 #endif /* CONFIG_NET_XGRESS */
4098
4099 #ifdef CONFIG_XPS
4100 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4101                                struct xps_dev_maps *dev_maps, unsigned int tci)
4102 {
4103         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4104         struct xps_map *map;
4105         int queue_index = -1;
4106
4107         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4108                 return queue_index;
4109
4110         tci *= dev_maps->num_tc;
4111         tci += tc;
4112
4113         map = rcu_dereference(dev_maps->attr_map[tci]);
4114         if (map) {
4115                 if (map->len == 1)
4116                         queue_index = map->queues[0];
4117                 else
4118                         queue_index = map->queues[reciprocal_scale(
4119                                                 skb_get_hash(skb), map->len)];
4120                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4121                         queue_index = -1;
4122         }
4123         return queue_index;
4124 }
4125 #endif
4126
4127 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4128                          struct sk_buff *skb)
4129 {
4130 #ifdef CONFIG_XPS
4131         struct xps_dev_maps *dev_maps;
4132         struct sock *sk = skb->sk;
4133         int queue_index = -1;
4134
4135         if (!static_key_false(&xps_needed))
4136                 return -1;
4137
4138         rcu_read_lock();
4139         if (!static_key_false(&xps_rxqs_needed))
4140                 goto get_cpus_map;
4141
4142         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4143         if (dev_maps) {
4144                 int tci = sk_rx_queue_get(sk);
4145
4146                 if (tci >= 0)
4147                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4148                                                           tci);
4149         }
4150
4151 get_cpus_map:
4152         if (queue_index < 0) {
4153                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4154                 if (dev_maps) {
4155                         unsigned int tci = skb->sender_cpu - 1;
4156
4157                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4158                                                           tci);
4159                 }
4160         }
4161         rcu_read_unlock();
4162
4163         return queue_index;
4164 #else
4165         return -1;
4166 #endif
4167 }
4168
4169 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4170                      struct net_device *sb_dev)
4171 {
4172         return 0;
4173 }
4174 EXPORT_SYMBOL(dev_pick_tx_zero);
4175
4176 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4177                        struct net_device *sb_dev)
4178 {
4179         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4180 }
4181 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4182
4183 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4184                      struct net_device *sb_dev)
4185 {
4186         struct sock *sk = skb->sk;
4187         int queue_index = sk_tx_queue_get(sk);
4188
4189         sb_dev = sb_dev ? : dev;
4190
4191         if (queue_index < 0 || skb->ooo_okay ||
4192             queue_index >= dev->real_num_tx_queues) {
4193                 int new_index = get_xps_queue(dev, sb_dev, skb);
4194
4195                 if (new_index < 0)
4196                         new_index = skb_tx_hash(dev, sb_dev, skb);
4197
4198                 if (queue_index != new_index && sk &&
4199                     sk_fullsock(sk) &&
4200                     rcu_access_pointer(sk->sk_dst_cache))
4201                         sk_tx_queue_set(sk, new_index);
4202
4203                 queue_index = new_index;
4204         }
4205
4206         return queue_index;
4207 }
4208 EXPORT_SYMBOL(netdev_pick_tx);
4209
4210 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4211                                          struct sk_buff *skb,
4212                                          struct net_device *sb_dev)
4213 {
4214         int queue_index = 0;
4215
4216 #ifdef CONFIG_XPS
4217         u32 sender_cpu = skb->sender_cpu - 1;
4218
4219         if (sender_cpu >= (u32)NR_CPUS)
4220                 skb->sender_cpu = raw_smp_processor_id() + 1;
4221 #endif
4222
4223         if (dev->real_num_tx_queues != 1) {
4224                 const struct net_device_ops *ops = dev->netdev_ops;
4225
4226                 if (ops->ndo_select_queue)
4227                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4228                 else
4229                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4230
4231                 queue_index = netdev_cap_txqueue(dev, queue_index);
4232         }
4233
4234         skb_set_queue_mapping(skb, queue_index);
4235         return netdev_get_tx_queue(dev, queue_index);
4236 }
4237
4238 /**
4239  * __dev_queue_xmit() - transmit a buffer
4240  * @skb:        buffer to transmit
4241  * @sb_dev:     suboordinate device used for L2 forwarding offload
4242  *
4243  * Queue a buffer for transmission to a network device. The caller must
4244  * have set the device and priority and built the buffer before calling
4245  * this function. The function can be called from an interrupt.
4246  *
4247  * When calling this method, interrupts MUST be enabled. This is because
4248  * the BH enable code must have IRQs enabled so that it will not deadlock.
4249  *
4250  * Regardless of the return value, the skb is consumed, so it is currently
4251  * difficult to retry a send to this method. (You can bump the ref count
4252  * before sending to hold a reference for retry if you are careful.)
4253  *
4254  * Return:
4255  * * 0                          - buffer successfully transmitted
4256  * * positive qdisc return code - NET_XMIT_DROP etc.
4257  * * negative errno             - other errors
4258  */
4259 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4260 {
4261         struct net_device *dev = skb->dev;
4262         struct netdev_queue *txq = NULL;
4263         struct Qdisc *q;
4264         int rc = -ENOMEM;
4265         bool again = false;
4266
4267         skb_reset_mac_header(skb);
4268         skb_assert_len(skb);
4269
4270         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4271                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4272
4273         /* Disable soft irqs for various locks below. Also
4274          * stops preemption for RCU.
4275          */
4276         rcu_read_lock_bh();
4277
4278         skb_update_prio(skb);
4279
4280         qdisc_pkt_len_init(skb);
4281         tcx_set_ingress(skb, false);
4282 #ifdef CONFIG_NET_EGRESS
4283         if (static_branch_unlikely(&egress_needed_key)) {
4284                 if (nf_hook_egress_active()) {
4285                         skb = nf_hook_egress(skb, &rc, dev);
4286                         if (!skb)
4287                                 goto out;
4288                 }
4289
4290                 netdev_xmit_skip_txqueue(false);
4291
4292                 nf_skip_egress(skb, true);
4293                 skb = sch_handle_egress(skb, &rc, dev);
4294                 if (!skb)
4295                         goto out;
4296                 nf_skip_egress(skb, false);
4297
4298                 if (netdev_xmit_txqueue_skipped())
4299                         txq = netdev_tx_queue_mapping(dev, skb);
4300         }
4301 #endif
4302         /* If device/qdisc don't need skb->dst, release it right now while
4303          * its hot in this cpu cache.
4304          */
4305         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4306                 skb_dst_drop(skb);
4307         else
4308                 skb_dst_force(skb);
4309
4310         if (!txq)
4311                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4312
4313         q = rcu_dereference_bh(txq->qdisc);
4314
4315         trace_net_dev_queue(skb);
4316         if (q->enqueue) {
4317                 rc = __dev_xmit_skb(skb, q, dev, txq);
4318                 goto out;
4319         }
4320
4321         /* The device has no queue. Common case for software devices:
4322          * loopback, all the sorts of tunnels...
4323
4324          * Really, it is unlikely that netif_tx_lock protection is necessary
4325          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4326          * counters.)
4327          * However, it is possible, that they rely on protection
4328          * made by us here.
4329
4330          * Check this and shot the lock. It is not prone from deadlocks.
4331          *Either shot noqueue qdisc, it is even simpler 8)
4332          */
4333         if (dev->flags & IFF_UP) {
4334                 int cpu = smp_processor_id(); /* ok because BHs are off */
4335
4336                 /* Other cpus might concurrently change txq->xmit_lock_owner
4337                  * to -1 or to their cpu id, but not to our id.
4338                  */
4339                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4340                         if (dev_xmit_recursion())
4341                                 goto recursion_alert;
4342
4343                         skb = validate_xmit_skb(skb, dev, &again);
4344                         if (!skb)
4345                                 goto out;
4346
4347                         HARD_TX_LOCK(dev, txq, cpu);
4348
4349                         if (!netif_xmit_stopped(txq)) {
4350                                 dev_xmit_recursion_inc();
4351                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4352                                 dev_xmit_recursion_dec();
4353                                 if (dev_xmit_complete(rc)) {
4354                                         HARD_TX_UNLOCK(dev, txq);
4355                                         goto out;
4356                                 }
4357                         }
4358                         HARD_TX_UNLOCK(dev, txq);
4359                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4360                                              dev->name);
4361                 } else {
4362                         /* Recursion is detected! It is possible,
4363                          * unfortunately
4364                          */
4365 recursion_alert:
4366                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4367                                              dev->name);
4368                 }
4369         }
4370
4371         rc = -ENETDOWN;
4372         rcu_read_unlock_bh();
4373
4374         dev_core_stats_tx_dropped_inc(dev);
4375         kfree_skb_list(skb);
4376         return rc;
4377 out:
4378         rcu_read_unlock_bh();
4379         return rc;
4380 }
4381 EXPORT_SYMBOL(__dev_queue_xmit);
4382
4383 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4384 {
4385         struct net_device *dev = skb->dev;
4386         struct sk_buff *orig_skb = skb;
4387         struct netdev_queue *txq;
4388         int ret = NETDEV_TX_BUSY;
4389         bool again = false;
4390
4391         if (unlikely(!netif_running(dev) ||
4392                      !netif_carrier_ok(dev)))
4393                 goto drop;
4394
4395         skb = validate_xmit_skb_list(skb, dev, &again);
4396         if (skb != orig_skb)
4397                 goto drop;
4398
4399         skb_set_queue_mapping(skb, queue_id);
4400         txq = skb_get_tx_queue(dev, skb);
4401
4402         local_bh_disable();
4403
4404         dev_xmit_recursion_inc();
4405         HARD_TX_LOCK(dev, txq, smp_processor_id());
4406         if (!netif_xmit_frozen_or_drv_stopped(txq))
4407                 ret = netdev_start_xmit(skb, dev, txq, false);
4408         HARD_TX_UNLOCK(dev, txq);
4409         dev_xmit_recursion_dec();
4410
4411         local_bh_enable();
4412         return ret;
4413 drop:
4414         dev_core_stats_tx_dropped_inc(dev);
4415         kfree_skb_list(skb);
4416         return NET_XMIT_DROP;
4417 }
4418 EXPORT_SYMBOL(__dev_direct_xmit);
4419
4420 /*************************************************************************
4421  *                      Receiver routines
4422  *************************************************************************/
4423
4424 int netdev_max_backlog __read_mostly = 1000;
4425 EXPORT_SYMBOL(netdev_max_backlog);
4426
4427 int netdev_tstamp_prequeue __read_mostly = 1;
4428 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4429 int netdev_budget __read_mostly = 300;
4430 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4431 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4432 int weight_p __read_mostly = 64;           /* old backlog weight */
4433 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4434 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4435 int dev_rx_weight __read_mostly = 64;
4436 int dev_tx_weight __read_mostly = 64;
4437
4438 /* Called with irq disabled */
4439 static inline void ____napi_schedule(struct softnet_data *sd,
4440                                      struct napi_struct *napi)
4441 {
4442         struct task_struct *thread;
4443
4444         lockdep_assert_irqs_disabled();
4445
4446         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4447                 /* Paired with smp_mb__before_atomic() in
4448                  * napi_enable()/dev_set_threaded().
4449                  * Use READ_ONCE() to guarantee a complete
4450                  * read on napi->thread. Only call
4451                  * wake_up_process() when it's not NULL.
4452                  */
4453                 thread = READ_ONCE(napi->thread);
4454                 if (thread) {
4455                         /* Avoid doing set_bit() if the thread is in
4456                          * INTERRUPTIBLE state, cause napi_thread_wait()
4457                          * makes sure to proceed with napi polling
4458                          * if the thread is explicitly woken from here.
4459                          */
4460                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4461                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4462                         wake_up_process(thread);
4463                         return;
4464                 }
4465         }
4466
4467         list_add_tail(&napi->poll_list, &sd->poll_list);
4468         WRITE_ONCE(napi->list_owner, smp_processor_id());
4469         /* If not called from net_rx_action()
4470          * we have to raise NET_RX_SOFTIRQ.
4471          */
4472         if (!sd->in_net_rx_action)
4473                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4474 }
4475
4476 #ifdef CONFIG_RPS
4477
4478 /* One global table that all flow-based protocols share. */
4479 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4480 EXPORT_SYMBOL(rps_sock_flow_table);
4481 u32 rps_cpu_mask __read_mostly;
4482 EXPORT_SYMBOL(rps_cpu_mask);
4483
4484 struct static_key_false rps_needed __read_mostly;
4485 EXPORT_SYMBOL(rps_needed);
4486 struct static_key_false rfs_needed __read_mostly;
4487 EXPORT_SYMBOL(rfs_needed);
4488
4489 static struct rps_dev_flow *
4490 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4491             struct rps_dev_flow *rflow, u16 next_cpu)
4492 {
4493         if (next_cpu < nr_cpu_ids) {
4494 #ifdef CONFIG_RFS_ACCEL
4495                 struct netdev_rx_queue *rxqueue;
4496                 struct rps_dev_flow_table *flow_table;
4497                 struct rps_dev_flow *old_rflow;
4498                 u32 flow_id;
4499                 u16 rxq_index;
4500                 int rc;
4501
4502                 /* Should we steer this flow to a different hardware queue? */
4503                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4504                     !(dev->features & NETIF_F_NTUPLE))
4505                         goto out;
4506                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4507                 if (rxq_index == skb_get_rx_queue(skb))
4508                         goto out;
4509
4510                 rxqueue = dev->_rx + rxq_index;
4511                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4512                 if (!flow_table)
4513                         goto out;
4514                 flow_id = skb_get_hash(skb) & flow_table->mask;
4515                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4516                                                         rxq_index, flow_id);
4517                 if (rc < 0)
4518                         goto out;
4519                 old_rflow = rflow;
4520                 rflow = &flow_table->flows[flow_id];
4521                 rflow->filter = rc;
4522                 if (old_rflow->filter == rflow->filter)
4523                         old_rflow->filter = RPS_NO_FILTER;
4524         out:
4525 #endif
4526                 rflow->last_qtail =
4527                         per_cpu(softnet_data, next_cpu).input_queue_head;
4528         }
4529
4530         rflow->cpu = next_cpu;
4531         return rflow;
4532 }
4533
4534 /*
4535  * get_rps_cpu is called from netif_receive_skb and returns the target
4536  * CPU from the RPS map of the receiving queue for a given skb.
4537  * rcu_read_lock must be held on entry.
4538  */
4539 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4540                        struct rps_dev_flow **rflowp)
4541 {
4542         const struct rps_sock_flow_table *sock_flow_table;
4543         struct netdev_rx_queue *rxqueue = dev->_rx;
4544         struct rps_dev_flow_table *flow_table;
4545         struct rps_map *map;
4546         int cpu = -1;
4547         u32 tcpu;
4548         u32 hash;
4549
4550         if (skb_rx_queue_recorded(skb)) {
4551                 u16 index = skb_get_rx_queue(skb);
4552
4553                 if (unlikely(index >= dev->real_num_rx_queues)) {
4554                         WARN_ONCE(dev->real_num_rx_queues > 1,
4555                                   "%s received packet on queue %u, but number "
4556                                   "of RX queues is %u\n",
4557                                   dev->name, index, dev->real_num_rx_queues);
4558                         goto done;
4559                 }
4560                 rxqueue += index;
4561         }
4562
4563         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4564
4565         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4566         map = rcu_dereference(rxqueue->rps_map);
4567         if (!flow_table && !map)
4568                 goto done;
4569
4570         skb_reset_network_header(skb);
4571         hash = skb_get_hash(skb);
4572         if (!hash)
4573                 goto done;
4574
4575         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4576         if (flow_table && sock_flow_table) {
4577                 struct rps_dev_flow *rflow;
4578                 u32 next_cpu;
4579                 u32 ident;
4580
4581                 /* First check into global flow table if there is a match.
4582                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4583                  */
4584                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4585                 if ((ident ^ hash) & ~rps_cpu_mask)
4586                         goto try_rps;
4587
4588                 next_cpu = ident & rps_cpu_mask;
4589
4590                 /* OK, now we know there is a match,
4591                  * we can look at the local (per receive queue) flow table
4592                  */
4593                 rflow = &flow_table->flows[hash & flow_table->mask];
4594                 tcpu = rflow->cpu;
4595
4596                 /*
4597                  * If the desired CPU (where last recvmsg was done) is
4598                  * different from current CPU (one in the rx-queue flow
4599                  * table entry), switch if one of the following holds:
4600                  *   - Current CPU is unset (>= nr_cpu_ids).
4601                  *   - Current CPU is offline.
4602                  *   - The current CPU's queue tail has advanced beyond the
4603                  *     last packet that was enqueued using this table entry.
4604                  *     This guarantees that all previous packets for the flow
4605                  *     have been dequeued, thus preserving in order delivery.
4606                  */
4607                 if (unlikely(tcpu != next_cpu) &&
4608                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4609                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4610                       rflow->last_qtail)) >= 0)) {
4611                         tcpu = next_cpu;
4612                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4613                 }
4614
4615                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4616                         *rflowp = rflow;
4617                         cpu = tcpu;
4618                         goto done;
4619                 }
4620         }
4621
4622 try_rps:
4623
4624         if (map) {
4625                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4626                 if (cpu_online(tcpu)) {
4627                         cpu = tcpu;
4628                         goto done;
4629                 }
4630         }
4631
4632 done:
4633         return cpu;
4634 }
4635
4636 #ifdef CONFIG_RFS_ACCEL
4637
4638 /**
4639  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4640  * @dev: Device on which the filter was set
4641  * @rxq_index: RX queue index
4642  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4643  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4644  *
4645  * Drivers that implement ndo_rx_flow_steer() should periodically call
4646  * this function for each installed filter and remove the filters for
4647  * which it returns %true.
4648  */
4649 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4650                          u32 flow_id, u16 filter_id)
4651 {
4652         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4653         struct rps_dev_flow_table *flow_table;
4654         struct rps_dev_flow *rflow;
4655         bool expire = true;
4656         unsigned int cpu;
4657
4658         rcu_read_lock();
4659         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4660         if (flow_table && flow_id <= flow_table->mask) {
4661                 rflow = &flow_table->flows[flow_id];
4662                 cpu = READ_ONCE(rflow->cpu);
4663                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4664                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4665                            rflow->last_qtail) <
4666                      (int)(10 * flow_table->mask)))
4667                         expire = false;
4668         }
4669         rcu_read_unlock();
4670         return expire;
4671 }
4672 EXPORT_SYMBOL(rps_may_expire_flow);
4673
4674 #endif /* CONFIG_RFS_ACCEL */
4675
4676 /* Called from hardirq (IPI) context */
4677 static void rps_trigger_softirq(void *data)
4678 {
4679         struct softnet_data *sd = data;
4680
4681         ____napi_schedule(sd, &sd->backlog);
4682         sd->received_rps++;
4683 }
4684
4685 #endif /* CONFIG_RPS */
4686
4687 /* Called from hardirq (IPI) context */
4688 static void trigger_rx_softirq(void *data)
4689 {
4690         struct softnet_data *sd = data;
4691
4692         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4693         smp_store_release(&sd->defer_ipi_scheduled, 0);
4694 }
4695
4696 /*
4697  * After we queued a packet into sd->input_pkt_queue,
4698  * we need to make sure this queue is serviced soon.
4699  *
4700  * - If this is another cpu queue, link it to our rps_ipi_list,
4701  *   and make sure we will process rps_ipi_list from net_rx_action().
4702  *
4703  * - If this is our own queue, NAPI schedule our backlog.
4704  *   Note that this also raises NET_RX_SOFTIRQ.
4705  */
4706 static void napi_schedule_rps(struct softnet_data *sd)
4707 {
4708         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4709
4710 #ifdef CONFIG_RPS
4711         if (sd != mysd) {
4712                 sd->rps_ipi_next = mysd->rps_ipi_list;
4713                 mysd->rps_ipi_list = sd;
4714
4715                 /* If not called from net_rx_action() or napi_threaded_poll()
4716                  * we have to raise NET_RX_SOFTIRQ.
4717                  */
4718                 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4719                         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4720                 return;
4721         }
4722 #endif /* CONFIG_RPS */
4723         __napi_schedule_irqoff(&mysd->backlog);
4724 }
4725
4726 #ifdef CONFIG_NET_FLOW_LIMIT
4727 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4728 #endif
4729
4730 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4731 {
4732 #ifdef CONFIG_NET_FLOW_LIMIT
4733         struct sd_flow_limit *fl;
4734         struct softnet_data *sd;
4735         unsigned int old_flow, new_flow;
4736
4737         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4738                 return false;
4739
4740         sd = this_cpu_ptr(&softnet_data);
4741
4742         rcu_read_lock();
4743         fl = rcu_dereference(sd->flow_limit);
4744         if (fl) {
4745                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4746                 old_flow = fl->history[fl->history_head];
4747                 fl->history[fl->history_head] = new_flow;
4748
4749                 fl->history_head++;
4750                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4751
4752                 if (likely(fl->buckets[old_flow]))
4753                         fl->buckets[old_flow]--;
4754
4755                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4756                         fl->count++;
4757                         rcu_read_unlock();
4758                         return true;
4759                 }
4760         }
4761         rcu_read_unlock();
4762 #endif
4763         return false;
4764 }
4765
4766 /*
4767  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4768  * queue (may be a remote CPU queue).
4769  */
4770 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4771                               unsigned int *qtail)
4772 {
4773         enum skb_drop_reason reason;
4774         struct softnet_data *sd;
4775         unsigned long flags;
4776         unsigned int qlen;
4777
4778         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4779         sd = &per_cpu(softnet_data, cpu);
4780
4781         rps_lock_irqsave(sd, &flags);
4782         if (!netif_running(skb->dev))
4783                 goto drop;
4784         qlen = skb_queue_len(&sd->input_pkt_queue);
4785         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4786                 if (qlen) {
4787 enqueue:
4788                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4789                         input_queue_tail_incr_save(sd, qtail);
4790                         rps_unlock_irq_restore(sd, &flags);
4791                         return NET_RX_SUCCESS;
4792                 }
4793
4794                 /* Schedule NAPI for backlog device
4795                  * We can use non atomic operation since we own the queue lock
4796                  */
4797                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4798                         napi_schedule_rps(sd);
4799                 goto enqueue;
4800         }
4801         reason = SKB_DROP_REASON_CPU_BACKLOG;
4802
4803 drop:
4804         sd->dropped++;
4805         rps_unlock_irq_restore(sd, &flags);
4806
4807         dev_core_stats_rx_dropped_inc(skb->dev);
4808         kfree_skb_reason(skb, reason);
4809         return NET_RX_DROP;
4810 }
4811
4812 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4813 {
4814         struct net_device *dev = skb->dev;
4815         struct netdev_rx_queue *rxqueue;
4816
4817         rxqueue = dev->_rx;
4818
4819         if (skb_rx_queue_recorded(skb)) {
4820                 u16 index = skb_get_rx_queue(skb);
4821
4822                 if (unlikely(index >= dev->real_num_rx_queues)) {
4823                         WARN_ONCE(dev->real_num_rx_queues > 1,
4824                                   "%s received packet on queue %u, but number "
4825                                   "of RX queues is %u\n",
4826                                   dev->name, index, dev->real_num_rx_queues);
4827
4828                         return rxqueue; /* Return first rxqueue */
4829                 }
4830                 rxqueue += index;
4831         }
4832         return rxqueue;
4833 }
4834
4835 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4836                              struct bpf_prog *xdp_prog)
4837 {
4838         void *orig_data, *orig_data_end, *hard_start;
4839         struct netdev_rx_queue *rxqueue;
4840         bool orig_bcast, orig_host;
4841         u32 mac_len, frame_sz;
4842         __be16 orig_eth_type;
4843         struct ethhdr *eth;
4844         u32 metalen, act;
4845         int off;
4846
4847         /* The XDP program wants to see the packet starting at the MAC
4848          * header.
4849          */
4850         mac_len = skb->data - skb_mac_header(skb);
4851         hard_start = skb->data - skb_headroom(skb);
4852
4853         /* SKB "head" area always have tailroom for skb_shared_info */
4854         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4855         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4856
4857         rxqueue = netif_get_rxqueue(skb);
4858         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4859         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4860                          skb_headlen(skb) + mac_len, true);
4861
4862         orig_data_end = xdp->data_end;
4863         orig_data = xdp->data;
4864         eth = (struct ethhdr *)xdp->data;
4865         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4866         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4867         orig_eth_type = eth->h_proto;
4868
4869         act = bpf_prog_run_xdp(xdp_prog, xdp);
4870
4871         /* check if bpf_xdp_adjust_head was used */
4872         off = xdp->data - orig_data;
4873         if (off) {
4874                 if (off > 0)
4875                         __skb_pull(skb, off);
4876                 else if (off < 0)
4877                         __skb_push(skb, -off);
4878
4879                 skb->mac_header += off;
4880                 skb_reset_network_header(skb);
4881         }
4882
4883         /* check if bpf_xdp_adjust_tail was used */
4884         off = xdp->data_end - orig_data_end;
4885         if (off != 0) {
4886                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4887                 skb->len += off; /* positive on grow, negative on shrink */
4888         }
4889
4890         /* check if XDP changed eth hdr such SKB needs update */
4891         eth = (struct ethhdr *)xdp->data;
4892         if ((orig_eth_type != eth->h_proto) ||
4893             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4894                                                   skb->dev->dev_addr)) ||
4895             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4896                 __skb_push(skb, ETH_HLEN);
4897                 skb->pkt_type = PACKET_HOST;
4898                 skb->protocol = eth_type_trans(skb, skb->dev);
4899         }
4900
4901         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4902          * before calling us again on redirect path. We do not call do_redirect
4903          * as we leave that up to the caller.
4904          *
4905          * Caller is responsible for managing lifetime of skb (i.e. calling
4906          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4907          */
4908         switch (act) {
4909         case XDP_REDIRECT:
4910         case XDP_TX:
4911                 __skb_push(skb, mac_len);
4912                 break;
4913         case XDP_PASS:
4914                 metalen = xdp->data - xdp->data_meta;
4915                 if (metalen)
4916                         skb_metadata_set(skb, metalen);
4917                 break;
4918         }
4919
4920         return act;
4921 }
4922
4923 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4924                                      struct xdp_buff *xdp,
4925                                      struct bpf_prog *xdp_prog)
4926 {
4927         u32 act = XDP_DROP;
4928
4929         /* Reinjected packets coming from act_mirred or similar should
4930          * not get XDP generic processing.
4931          */
4932         if (skb_is_redirected(skb))
4933                 return XDP_PASS;
4934
4935         /* XDP packets must be linear and must have sufficient headroom
4936          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4937          * native XDP provides, thus we need to do it here as well.
4938          */
4939         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4940             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4941                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4942                 int troom = skb->tail + skb->data_len - skb->end;
4943
4944                 /* In case we have to go down the path and also linearize,
4945                  * then lets do the pskb_expand_head() work just once here.
4946                  */
4947                 if (pskb_expand_head(skb,
4948                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4949                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4950                         goto do_drop;
4951                 if (skb_linearize(skb))
4952                         goto do_drop;
4953         }
4954
4955         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4956         switch (act) {
4957         case XDP_REDIRECT:
4958         case XDP_TX:
4959         case XDP_PASS:
4960                 break;
4961         default:
4962                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4963                 fallthrough;
4964         case XDP_ABORTED:
4965                 trace_xdp_exception(skb->dev, xdp_prog, act);
4966                 fallthrough;
4967         case XDP_DROP:
4968         do_drop:
4969                 kfree_skb(skb);
4970                 break;
4971         }
4972
4973         return act;
4974 }
4975
4976 /* When doing generic XDP we have to bypass the qdisc layer and the
4977  * network taps in order to match in-driver-XDP behavior. This also means
4978  * that XDP packets are able to starve other packets going through a qdisc,
4979  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4980  * queues, so they do not have this starvation issue.
4981  */
4982 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4983 {
4984         struct net_device *dev = skb->dev;
4985         struct netdev_queue *txq;
4986         bool free_skb = true;
4987         int cpu, rc;
4988
4989         txq = netdev_core_pick_tx(dev, skb, NULL);
4990         cpu = smp_processor_id();
4991         HARD_TX_LOCK(dev, txq, cpu);
4992         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4993                 rc = netdev_start_xmit(skb, dev, txq, 0);
4994                 if (dev_xmit_complete(rc))
4995                         free_skb = false;
4996         }
4997         HARD_TX_UNLOCK(dev, txq);
4998         if (free_skb) {
4999                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5000                 dev_core_stats_tx_dropped_inc(dev);
5001                 kfree_skb(skb);
5002         }
5003 }
5004
5005 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5006
5007 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5008 {
5009         if (xdp_prog) {
5010                 struct xdp_buff xdp;
5011                 u32 act;
5012                 int err;
5013
5014                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5015                 if (act != XDP_PASS) {
5016                         switch (act) {
5017                         case XDP_REDIRECT:
5018                                 err = xdp_do_generic_redirect(skb->dev, skb,
5019                                                               &xdp, xdp_prog);
5020                                 if (err)
5021                                         goto out_redir;
5022                                 break;
5023                         case XDP_TX:
5024                                 generic_xdp_tx(skb, xdp_prog);
5025                                 break;
5026                         }
5027                         return XDP_DROP;
5028                 }
5029         }
5030         return XDP_PASS;
5031 out_redir:
5032         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5033         return XDP_DROP;
5034 }
5035 EXPORT_SYMBOL_GPL(do_xdp_generic);
5036
5037 static int netif_rx_internal(struct sk_buff *skb)
5038 {
5039         int ret;
5040
5041         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5042
5043         trace_netif_rx(skb);
5044
5045 #ifdef CONFIG_RPS
5046         if (static_branch_unlikely(&rps_needed)) {
5047                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5048                 int cpu;
5049
5050                 rcu_read_lock();
5051
5052                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5053                 if (cpu < 0)
5054                         cpu = smp_processor_id();
5055
5056                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5057
5058                 rcu_read_unlock();
5059         } else
5060 #endif
5061         {
5062                 unsigned int qtail;
5063
5064                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5065         }
5066         return ret;
5067 }
5068
5069 /**
5070  *      __netif_rx      -       Slightly optimized version of netif_rx
5071  *      @skb: buffer to post
5072  *
5073  *      This behaves as netif_rx except that it does not disable bottom halves.
5074  *      As a result this function may only be invoked from the interrupt context
5075  *      (either hard or soft interrupt).
5076  */
5077 int __netif_rx(struct sk_buff *skb)
5078 {
5079         int ret;
5080
5081         lockdep_assert_once(hardirq_count() | softirq_count());
5082
5083         trace_netif_rx_entry(skb);
5084         ret = netif_rx_internal(skb);
5085         trace_netif_rx_exit(ret);
5086         return ret;
5087 }
5088 EXPORT_SYMBOL(__netif_rx);
5089
5090 /**
5091  *      netif_rx        -       post buffer to the network code
5092  *      @skb: buffer to post
5093  *
5094  *      This function receives a packet from a device driver and queues it for
5095  *      the upper (protocol) levels to process via the backlog NAPI device. It
5096  *      always succeeds. The buffer may be dropped during processing for
5097  *      congestion control or by the protocol layers.
5098  *      The network buffer is passed via the backlog NAPI device. Modern NIC
5099  *      driver should use NAPI and GRO.
5100  *      This function can used from interrupt and from process context. The
5101  *      caller from process context must not disable interrupts before invoking
5102  *      this function.
5103  *
5104  *      return values:
5105  *      NET_RX_SUCCESS  (no congestion)
5106  *      NET_RX_DROP     (packet was dropped)
5107  *
5108  */
5109 int netif_rx(struct sk_buff *skb)
5110 {
5111         bool need_bh_off = !(hardirq_count() | softirq_count());
5112         int ret;
5113
5114         if (need_bh_off)
5115                 local_bh_disable();
5116         trace_netif_rx_entry(skb);
5117         ret = netif_rx_internal(skb);
5118         trace_netif_rx_exit(ret);
5119         if (need_bh_off)
5120                 local_bh_enable();
5121         return ret;
5122 }
5123 EXPORT_SYMBOL(netif_rx);
5124
5125 static __latent_entropy void net_tx_action(struct softirq_action *h)
5126 {
5127         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5128
5129         if (sd->completion_queue) {
5130                 struct sk_buff *clist;
5131
5132                 local_irq_disable();
5133                 clist = sd->completion_queue;
5134                 sd->completion_queue = NULL;
5135                 local_irq_enable();
5136
5137                 while (clist) {
5138                         struct sk_buff *skb = clist;
5139
5140                         clist = clist->next;
5141
5142                         WARN_ON(refcount_read(&skb->users));
5143                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5144                                 trace_consume_skb(skb, net_tx_action);
5145                         else
5146                                 trace_kfree_skb(skb, net_tx_action,
5147                                                 get_kfree_skb_cb(skb)->reason);
5148
5149                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5150                                 __kfree_skb(skb);
5151                         else
5152                                 __napi_kfree_skb(skb,
5153                                                  get_kfree_skb_cb(skb)->reason);
5154                 }
5155         }
5156
5157         if (sd->output_queue) {
5158                 struct Qdisc *head;
5159
5160                 local_irq_disable();
5161                 head = sd->output_queue;
5162                 sd->output_queue = NULL;
5163                 sd->output_queue_tailp = &sd->output_queue;
5164                 local_irq_enable();
5165
5166                 rcu_read_lock();
5167
5168                 while (head) {
5169                         struct Qdisc *q = head;
5170                         spinlock_t *root_lock = NULL;
5171
5172                         head = head->next_sched;
5173
5174                         /* We need to make sure head->next_sched is read
5175                          * before clearing __QDISC_STATE_SCHED
5176                          */
5177                         smp_mb__before_atomic();
5178
5179                         if (!(q->flags & TCQ_F_NOLOCK)) {
5180                                 root_lock = qdisc_lock(q);
5181                                 spin_lock(root_lock);
5182                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5183                                                      &q->state))) {
5184                                 /* There is a synchronize_net() between
5185                                  * STATE_DEACTIVATED flag being set and
5186                                  * qdisc_reset()/some_qdisc_is_busy() in
5187                                  * dev_deactivate(), so we can safely bail out
5188                                  * early here to avoid data race between
5189                                  * qdisc_deactivate() and some_qdisc_is_busy()
5190                                  * for lockless qdisc.
5191                                  */
5192                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5193                                 continue;
5194                         }
5195
5196                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5197                         qdisc_run(q);
5198                         if (root_lock)
5199                                 spin_unlock(root_lock);
5200                 }
5201
5202                 rcu_read_unlock();
5203         }
5204
5205         xfrm_dev_backlog(sd);
5206 }
5207
5208 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5209 /* This hook is defined here for ATM LANE */
5210 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5211                              unsigned char *addr) __read_mostly;
5212 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5213 #endif
5214
5215 /**
5216  *      netdev_is_rx_handler_busy - check if receive handler is registered
5217  *      @dev: device to check
5218  *
5219  *      Check if a receive handler is already registered for a given device.
5220  *      Return true if there one.
5221  *
5222  *      The caller must hold the rtnl_mutex.
5223  */
5224 bool netdev_is_rx_handler_busy(struct net_device *dev)
5225 {
5226         ASSERT_RTNL();
5227         return dev && rtnl_dereference(dev->rx_handler);
5228 }
5229 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5230
5231 /**
5232  *      netdev_rx_handler_register - register receive handler
5233  *      @dev: device to register a handler for
5234  *      @rx_handler: receive handler to register
5235  *      @rx_handler_data: data pointer that is used by rx handler
5236  *
5237  *      Register a receive handler for a device. This handler will then be
5238  *      called from __netif_receive_skb. A negative errno code is returned
5239  *      on a failure.
5240  *
5241  *      The caller must hold the rtnl_mutex.
5242  *
5243  *      For a general description of rx_handler, see enum rx_handler_result.
5244  */
5245 int netdev_rx_handler_register(struct net_device *dev,
5246                                rx_handler_func_t *rx_handler,
5247                                void *rx_handler_data)
5248 {
5249         if (netdev_is_rx_handler_busy(dev))
5250                 return -EBUSY;
5251
5252         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5253                 return -EINVAL;
5254
5255         /* Note: rx_handler_data must be set before rx_handler */
5256         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5257         rcu_assign_pointer(dev->rx_handler, rx_handler);
5258
5259         return 0;
5260 }
5261 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5262
5263 /**
5264  *      netdev_rx_handler_unregister - unregister receive handler
5265  *      @dev: device to unregister a handler from
5266  *
5267  *      Unregister a receive handler from a device.
5268  *
5269  *      The caller must hold the rtnl_mutex.
5270  */
5271 void netdev_rx_handler_unregister(struct net_device *dev)
5272 {
5273
5274         ASSERT_RTNL();
5275         RCU_INIT_POINTER(dev->rx_handler, NULL);
5276         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5277          * section has a guarantee to see a non NULL rx_handler_data
5278          * as well.
5279          */
5280         synchronize_net();
5281         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5282 }
5283 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5284
5285 /*
5286  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5287  * the special handling of PFMEMALLOC skbs.
5288  */
5289 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5290 {
5291         switch (skb->protocol) {
5292         case htons(ETH_P_ARP):
5293         case htons(ETH_P_IP):
5294         case htons(ETH_P_IPV6):
5295         case htons(ETH_P_8021Q):
5296         case htons(ETH_P_8021AD):
5297                 return true;
5298         default:
5299                 return false;
5300         }
5301 }
5302
5303 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5304                              int *ret, struct net_device *orig_dev)
5305 {
5306         if (nf_hook_ingress_active(skb)) {
5307                 int ingress_retval;
5308
5309                 if (*pt_prev) {
5310                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5311                         *pt_prev = NULL;
5312                 }
5313
5314                 rcu_read_lock();
5315                 ingress_retval = nf_hook_ingress(skb);
5316                 rcu_read_unlock();
5317                 return ingress_retval;
5318         }
5319         return 0;
5320 }
5321
5322 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5323                                     struct packet_type **ppt_prev)
5324 {
5325         struct packet_type *ptype, *pt_prev;
5326         rx_handler_func_t *rx_handler;
5327         struct sk_buff *skb = *pskb;
5328         struct net_device *orig_dev;
5329         bool deliver_exact = false;
5330         int ret = NET_RX_DROP;
5331         __be16 type;
5332
5333         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5334
5335         trace_netif_receive_skb(skb);
5336
5337         orig_dev = skb->dev;
5338
5339         skb_reset_network_header(skb);
5340         if (!skb_transport_header_was_set(skb))
5341                 skb_reset_transport_header(skb);
5342         skb_reset_mac_len(skb);
5343
5344         pt_prev = NULL;
5345
5346 another_round:
5347         skb->skb_iif = skb->dev->ifindex;
5348
5349         __this_cpu_inc(softnet_data.processed);
5350
5351         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5352                 int ret2;
5353
5354                 migrate_disable();
5355                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5356                 migrate_enable();
5357
5358                 if (ret2 != XDP_PASS) {
5359                         ret = NET_RX_DROP;
5360                         goto out;
5361                 }
5362         }
5363
5364         if (eth_type_vlan(skb->protocol)) {
5365                 skb = skb_vlan_untag(skb);
5366                 if (unlikely(!skb))
5367                         goto out;
5368         }
5369
5370         if (skb_skip_tc_classify(skb))
5371                 goto skip_classify;
5372
5373         if (pfmemalloc)
5374                 goto skip_taps;
5375
5376         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5377                 if (pt_prev)
5378                         ret = deliver_skb(skb, pt_prev, orig_dev);
5379                 pt_prev = ptype;
5380         }
5381
5382         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5383                 if (pt_prev)
5384                         ret = deliver_skb(skb, pt_prev, orig_dev);
5385                 pt_prev = ptype;
5386         }
5387
5388 skip_taps:
5389 #ifdef CONFIG_NET_INGRESS
5390         if (static_branch_unlikely(&ingress_needed_key)) {
5391                 bool another = false;
5392
5393                 nf_skip_egress(skb, true);
5394                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5395                                          &another);
5396                 if (another)
5397                         goto another_round;
5398                 if (!skb)
5399                         goto out;
5400
5401                 nf_skip_egress(skb, false);
5402                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5403                         goto out;
5404         }
5405 #endif
5406         skb_reset_redirect(skb);
5407 skip_classify:
5408         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5409                 goto drop;
5410
5411         if (skb_vlan_tag_present(skb)) {
5412                 if (pt_prev) {
5413                         ret = deliver_skb(skb, pt_prev, orig_dev);
5414                         pt_prev = NULL;
5415                 }
5416                 if (vlan_do_receive(&skb))
5417                         goto another_round;
5418                 else if (unlikely(!skb))
5419                         goto out;
5420         }
5421
5422         rx_handler = rcu_dereference(skb->dev->rx_handler);
5423         if (rx_handler) {
5424                 if (pt_prev) {
5425                         ret = deliver_skb(skb, pt_prev, orig_dev);
5426                         pt_prev = NULL;
5427                 }
5428                 switch (rx_handler(&skb)) {
5429                 case RX_HANDLER_CONSUMED:
5430                         ret = NET_RX_SUCCESS;
5431                         goto out;
5432                 case RX_HANDLER_ANOTHER:
5433                         goto another_round;
5434                 case RX_HANDLER_EXACT:
5435                         deliver_exact = true;
5436                         break;
5437                 case RX_HANDLER_PASS:
5438                         break;
5439                 default:
5440                         BUG();
5441                 }
5442         }
5443
5444         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5445 check_vlan_id:
5446                 if (skb_vlan_tag_get_id(skb)) {
5447                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5448                          * find vlan device.
5449                          */
5450                         skb->pkt_type = PACKET_OTHERHOST;
5451                 } else if (eth_type_vlan(skb->protocol)) {
5452                         /* Outer header is 802.1P with vlan 0, inner header is
5453                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5454                          * not find vlan dev for vlan id 0.
5455                          */
5456                         __vlan_hwaccel_clear_tag(skb);
5457                         skb = skb_vlan_untag(skb);
5458                         if (unlikely(!skb))
5459                                 goto out;
5460                         if (vlan_do_receive(&skb))
5461                                 /* After stripping off 802.1P header with vlan 0
5462                                  * vlan dev is found for inner header.
5463                                  */
5464                                 goto another_round;
5465                         else if (unlikely(!skb))
5466                                 goto out;
5467                         else
5468                                 /* We have stripped outer 802.1P vlan 0 header.
5469                                  * But could not find vlan dev.
5470                                  * check again for vlan id to set OTHERHOST.
5471                                  */
5472                                 goto check_vlan_id;
5473                 }
5474                 /* Note: we might in the future use prio bits
5475                  * and set skb->priority like in vlan_do_receive()
5476                  * For the time being, just ignore Priority Code Point
5477                  */
5478                 __vlan_hwaccel_clear_tag(skb);
5479         }
5480
5481         type = skb->protocol;
5482
5483         /* deliver only exact match when indicated */
5484         if (likely(!deliver_exact)) {
5485                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5486                                        &ptype_base[ntohs(type) &
5487                                                    PTYPE_HASH_MASK]);
5488         }
5489
5490         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5491                                &orig_dev->ptype_specific);
5492
5493         if (unlikely(skb->dev != orig_dev)) {
5494                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5495                                        &skb->dev->ptype_specific);
5496         }
5497
5498         if (pt_prev) {
5499                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5500                         goto drop;
5501                 *ppt_prev = pt_prev;
5502         } else {
5503 drop:
5504                 if (!deliver_exact)
5505                         dev_core_stats_rx_dropped_inc(skb->dev);
5506                 else
5507                         dev_core_stats_rx_nohandler_inc(skb->dev);
5508                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5509                 /* Jamal, now you will not able to escape explaining
5510                  * me how you were going to use this. :-)
5511                  */
5512                 ret = NET_RX_DROP;
5513         }
5514
5515 out:
5516         /* The invariant here is that if *ppt_prev is not NULL
5517          * then skb should also be non-NULL.
5518          *
5519          * Apparently *ppt_prev assignment above holds this invariant due to
5520          * skb dereferencing near it.
5521          */
5522         *pskb = skb;
5523         return ret;
5524 }
5525
5526 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5527 {
5528         struct net_device *orig_dev = skb->dev;
5529         struct packet_type *pt_prev = NULL;
5530         int ret;
5531
5532         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5533         if (pt_prev)
5534                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5535                                          skb->dev, pt_prev, orig_dev);
5536         return ret;
5537 }
5538
5539 /**
5540  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5541  *      @skb: buffer to process
5542  *
5543  *      More direct receive version of netif_receive_skb().  It should
5544  *      only be used by callers that have a need to skip RPS and Generic XDP.
5545  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5546  *
5547  *      This function may only be called from softirq context and interrupts
5548  *      should be enabled.
5549  *
5550  *      Return values (usually ignored):
5551  *      NET_RX_SUCCESS: no congestion
5552  *      NET_RX_DROP: packet was dropped
5553  */
5554 int netif_receive_skb_core(struct sk_buff *skb)
5555 {
5556         int ret;
5557
5558         rcu_read_lock();
5559         ret = __netif_receive_skb_one_core(skb, false);
5560         rcu_read_unlock();
5561
5562         return ret;
5563 }
5564 EXPORT_SYMBOL(netif_receive_skb_core);
5565
5566 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5567                                                   struct packet_type *pt_prev,
5568                                                   struct net_device *orig_dev)
5569 {
5570         struct sk_buff *skb, *next;
5571
5572         if (!pt_prev)
5573                 return;
5574         if (list_empty(head))
5575                 return;
5576         if (pt_prev->list_func != NULL)
5577                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5578                                    ip_list_rcv, head, pt_prev, orig_dev);
5579         else
5580                 list_for_each_entry_safe(skb, next, head, list) {
5581                         skb_list_del_init(skb);
5582                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5583                 }
5584 }
5585
5586 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5587 {
5588         /* Fast-path assumptions:
5589          * - There is no RX handler.
5590          * - Only one packet_type matches.
5591          * If either of these fails, we will end up doing some per-packet
5592          * processing in-line, then handling the 'last ptype' for the whole
5593          * sublist.  This can't cause out-of-order delivery to any single ptype,
5594          * because the 'last ptype' must be constant across the sublist, and all
5595          * other ptypes are handled per-packet.
5596          */
5597         /* Current (common) ptype of sublist */
5598         struct packet_type *pt_curr = NULL;
5599         /* Current (common) orig_dev of sublist */
5600         struct net_device *od_curr = NULL;
5601         struct list_head sublist;
5602         struct sk_buff *skb, *next;
5603
5604         INIT_LIST_HEAD(&sublist);
5605         list_for_each_entry_safe(skb, next, head, list) {
5606                 struct net_device *orig_dev = skb->dev;
5607                 struct packet_type *pt_prev = NULL;
5608
5609                 skb_list_del_init(skb);
5610                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5611                 if (!pt_prev)
5612                         continue;
5613                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5614                         /* dispatch old sublist */
5615                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5616                         /* start new sublist */
5617                         INIT_LIST_HEAD(&sublist);
5618                         pt_curr = pt_prev;
5619                         od_curr = orig_dev;
5620                 }
5621                 list_add_tail(&skb->list, &sublist);
5622         }
5623
5624         /* dispatch final sublist */
5625         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5626 }
5627
5628 static int __netif_receive_skb(struct sk_buff *skb)
5629 {
5630         int ret;
5631
5632         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5633                 unsigned int noreclaim_flag;
5634
5635                 /*
5636                  * PFMEMALLOC skbs are special, they should
5637                  * - be delivered to SOCK_MEMALLOC sockets only
5638                  * - stay away from userspace
5639                  * - have bounded memory usage
5640                  *
5641                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5642                  * context down to all allocation sites.
5643                  */
5644                 noreclaim_flag = memalloc_noreclaim_save();
5645                 ret = __netif_receive_skb_one_core(skb, true);
5646                 memalloc_noreclaim_restore(noreclaim_flag);
5647         } else
5648                 ret = __netif_receive_skb_one_core(skb, false);
5649
5650         return ret;
5651 }
5652
5653 static void __netif_receive_skb_list(struct list_head *head)
5654 {
5655         unsigned long noreclaim_flag = 0;
5656         struct sk_buff *skb, *next;
5657         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5658
5659         list_for_each_entry_safe(skb, next, head, list) {
5660                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5661                         struct list_head sublist;
5662
5663                         /* Handle the previous sublist */
5664                         list_cut_before(&sublist, head, &skb->list);
5665                         if (!list_empty(&sublist))
5666                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5667                         pfmemalloc = !pfmemalloc;
5668                         /* See comments in __netif_receive_skb */
5669                         if (pfmemalloc)
5670                                 noreclaim_flag = memalloc_noreclaim_save();
5671                         else
5672                                 memalloc_noreclaim_restore(noreclaim_flag);
5673                 }
5674         }
5675         /* Handle the remaining sublist */
5676         if (!list_empty(head))
5677                 __netif_receive_skb_list_core(head, pfmemalloc);
5678         /* Restore pflags */
5679         if (pfmemalloc)
5680                 memalloc_noreclaim_restore(noreclaim_flag);
5681 }
5682
5683 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5684 {
5685         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5686         struct bpf_prog *new = xdp->prog;
5687         int ret = 0;
5688
5689         switch (xdp->command) {
5690         case XDP_SETUP_PROG:
5691                 rcu_assign_pointer(dev->xdp_prog, new);
5692                 if (old)
5693                         bpf_prog_put(old);
5694
5695                 if (old && !new) {
5696                         static_branch_dec(&generic_xdp_needed_key);
5697                 } else if (new && !old) {
5698                         static_branch_inc(&generic_xdp_needed_key);
5699                         dev_disable_lro(dev);
5700                         dev_disable_gro_hw(dev);
5701                 }
5702                 break;
5703
5704         default:
5705                 ret = -EINVAL;
5706                 break;
5707         }
5708
5709         return ret;
5710 }
5711
5712 static int netif_receive_skb_internal(struct sk_buff *skb)
5713 {
5714         int ret;
5715
5716         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5717
5718         if (skb_defer_rx_timestamp(skb))
5719                 return NET_RX_SUCCESS;
5720
5721         rcu_read_lock();
5722 #ifdef CONFIG_RPS
5723         if (static_branch_unlikely(&rps_needed)) {
5724                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5725                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5726
5727                 if (cpu >= 0) {
5728                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5729                         rcu_read_unlock();
5730                         return ret;
5731                 }
5732         }
5733 #endif
5734         ret = __netif_receive_skb(skb);
5735         rcu_read_unlock();
5736         return ret;
5737 }
5738
5739 void netif_receive_skb_list_internal(struct list_head *head)
5740 {
5741         struct sk_buff *skb, *next;
5742         struct list_head sublist;
5743
5744         INIT_LIST_HEAD(&sublist);
5745         list_for_each_entry_safe(skb, next, head, list) {
5746                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5747                 skb_list_del_init(skb);
5748                 if (!skb_defer_rx_timestamp(skb))
5749                         list_add_tail(&skb->list, &sublist);
5750         }
5751         list_splice_init(&sublist, head);
5752
5753         rcu_read_lock();
5754 #ifdef CONFIG_RPS
5755         if (static_branch_unlikely(&rps_needed)) {
5756                 list_for_each_entry_safe(skb, next, head, list) {
5757                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5758                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5759
5760                         if (cpu >= 0) {
5761                                 /* Will be handled, remove from list */
5762                                 skb_list_del_init(skb);
5763                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5764                         }
5765                 }
5766         }
5767 #endif
5768         __netif_receive_skb_list(head);
5769         rcu_read_unlock();
5770 }
5771
5772 /**
5773  *      netif_receive_skb - process receive buffer from network
5774  *      @skb: buffer to process
5775  *
5776  *      netif_receive_skb() is the main receive data processing function.
5777  *      It always succeeds. The buffer may be dropped during processing
5778  *      for congestion control or by the protocol layers.
5779  *
5780  *      This function may only be called from softirq context and interrupts
5781  *      should be enabled.
5782  *
5783  *      Return values (usually ignored):
5784  *      NET_RX_SUCCESS: no congestion
5785  *      NET_RX_DROP: packet was dropped
5786  */
5787 int netif_receive_skb(struct sk_buff *skb)
5788 {
5789         int ret;
5790
5791         trace_netif_receive_skb_entry(skb);
5792
5793         ret = netif_receive_skb_internal(skb);
5794         trace_netif_receive_skb_exit(ret);
5795
5796         return ret;
5797 }
5798 EXPORT_SYMBOL(netif_receive_skb);
5799
5800 /**
5801  *      netif_receive_skb_list - process many receive buffers from network
5802  *      @head: list of skbs to process.
5803  *
5804  *      Since return value of netif_receive_skb() is normally ignored, and
5805  *      wouldn't be meaningful for a list, this function returns void.
5806  *
5807  *      This function may only be called from softirq context and interrupts
5808  *      should be enabled.
5809  */
5810 void netif_receive_skb_list(struct list_head *head)
5811 {
5812         struct sk_buff *skb;
5813
5814         if (list_empty(head))
5815                 return;
5816         if (trace_netif_receive_skb_list_entry_enabled()) {
5817                 list_for_each_entry(skb, head, list)
5818                         trace_netif_receive_skb_list_entry(skb);
5819         }
5820         netif_receive_skb_list_internal(head);
5821         trace_netif_receive_skb_list_exit(0);
5822 }
5823 EXPORT_SYMBOL(netif_receive_skb_list);
5824
5825 static DEFINE_PER_CPU(struct work_struct, flush_works);
5826
5827 /* Network device is going away, flush any packets still pending */
5828 static void flush_backlog(struct work_struct *work)
5829 {
5830         struct sk_buff *skb, *tmp;
5831         struct softnet_data *sd;
5832
5833         local_bh_disable();
5834         sd = this_cpu_ptr(&softnet_data);
5835
5836         rps_lock_irq_disable(sd);
5837         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5838                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5839                         __skb_unlink(skb, &sd->input_pkt_queue);
5840                         dev_kfree_skb_irq(skb);
5841                         input_queue_head_incr(sd);
5842                 }
5843         }
5844         rps_unlock_irq_enable(sd);
5845
5846         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5847                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5848                         __skb_unlink(skb, &sd->process_queue);
5849                         kfree_skb(skb);
5850                         input_queue_head_incr(sd);
5851                 }
5852         }
5853         local_bh_enable();
5854 }
5855
5856 static bool flush_required(int cpu)
5857 {
5858 #if IS_ENABLED(CONFIG_RPS)
5859         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5860         bool do_flush;
5861
5862         rps_lock_irq_disable(sd);
5863
5864         /* as insertion into process_queue happens with the rps lock held,
5865          * process_queue access may race only with dequeue
5866          */
5867         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5868                    !skb_queue_empty_lockless(&sd->process_queue);
5869         rps_unlock_irq_enable(sd);
5870
5871         return do_flush;
5872 #endif
5873         /* without RPS we can't safely check input_pkt_queue: during a
5874          * concurrent remote skb_queue_splice() we can detect as empty both
5875          * input_pkt_queue and process_queue even if the latter could end-up
5876          * containing a lot of packets.
5877          */
5878         return true;
5879 }
5880
5881 static void flush_all_backlogs(void)
5882 {
5883         static cpumask_t flush_cpus;
5884         unsigned int cpu;
5885
5886         /* since we are under rtnl lock protection we can use static data
5887          * for the cpumask and avoid allocating on stack the possibly
5888          * large mask
5889          */
5890         ASSERT_RTNL();
5891
5892         cpus_read_lock();
5893
5894         cpumask_clear(&flush_cpus);
5895         for_each_online_cpu(cpu) {
5896                 if (flush_required(cpu)) {
5897                         queue_work_on(cpu, system_highpri_wq,
5898                                       per_cpu_ptr(&flush_works, cpu));
5899                         cpumask_set_cpu(cpu, &flush_cpus);
5900                 }
5901         }
5902
5903         /* we can have in flight packet[s] on the cpus we are not flushing,
5904          * synchronize_net() in unregister_netdevice_many() will take care of
5905          * them
5906          */
5907         for_each_cpu(cpu, &flush_cpus)
5908                 flush_work(per_cpu_ptr(&flush_works, cpu));
5909
5910         cpus_read_unlock();
5911 }
5912
5913 static void net_rps_send_ipi(struct softnet_data *remsd)
5914 {
5915 #ifdef CONFIG_RPS
5916         while (remsd) {
5917                 struct softnet_data *next = remsd->rps_ipi_next;
5918
5919                 if (cpu_online(remsd->cpu))
5920                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5921                 remsd = next;
5922         }
5923 #endif
5924 }
5925
5926 /*
5927  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5928  * Note: called with local irq disabled, but exits with local irq enabled.
5929  */
5930 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5931 {
5932 #ifdef CONFIG_RPS
5933         struct softnet_data *remsd = sd->rps_ipi_list;
5934
5935         if (remsd) {
5936                 sd->rps_ipi_list = NULL;
5937
5938                 local_irq_enable();
5939
5940                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5941                 net_rps_send_ipi(remsd);
5942         } else
5943 #endif
5944                 local_irq_enable();
5945 }
5946
5947 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5948 {
5949 #ifdef CONFIG_RPS
5950         return sd->rps_ipi_list != NULL;
5951 #else
5952         return false;
5953 #endif
5954 }
5955
5956 static int process_backlog(struct napi_struct *napi, int quota)
5957 {
5958         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5959         bool again = true;
5960         int work = 0;
5961
5962         /* Check if we have pending ipi, its better to send them now,
5963          * not waiting net_rx_action() end.
5964          */
5965         if (sd_has_rps_ipi_waiting(sd)) {
5966                 local_irq_disable();
5967                 net_rps_action_and_irq_enable(sd);
5968         }
5969
5970         napi->weight = READ_ONCE(dev_rx_weight);
5971         while (again) {
5972                 struct sk_buff *skb;
5973
5974                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5975                         rcu_read_lock();
5976                         __netif_receive_skb(skb);
5977                         rcu_read_unlock();
5978                         input_queue_head_incr(sd);
5979                         if (++work >= quota)
5980                                 return work;
5981
5982                 }
5983
5984                 rps_lock_irq_disable(sd);
5985                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5986                         /*
5987                          * Inline a custom version of __napi_complete().
5988                          * only current cpu owns and manipulates this napi,
5989                          * and NAPI_STATE_SCHED is the only possible flag set
5990                          * on backlog.
5991                          * We can use a plain write instead of clear_bit(),
5992                          * and we dont need an smp_mb() memory barrier.
5993                          */
5994                         napi->state = 0;
5995                         again = false;
5996                 } else {
5997                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5998                                                    &sd->process_queue);
5999                 }
6000                 rps_unlock_irq_enable(sd);
6001         }
6002
6003         return work;
6004 }
6005
6006 /**
6007  * __napi_schedule - schedule for receive
6008  * @n: entry to schedule
6009  *
6010  * The entry's receive function will be scheduled to run.
6011  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6012  */
6013 void __napi_schedule(struct napi_struct *n)
6014 {
6015         unsigned long flags;
6016
6017         local_irq_save(flags);
6018         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6019         local_irq_restore(flags);
6020 }
6021 EXPORT_SYMBOL(__napi_schedule);
6022
6023 /**
6024  *      napi_schedule_prep - check if napi can be scheduled
6025  *      @n: napi context
6026  *
6027  * Test if NAPI routine is already running, and if not mark
6028  * it as running.  This is used as a condition variable to
6029  * insure only one NAPI poll instance runs.  We also make
6030  * sure there is no pending NAPI disable.
6031  */
6032 bool napi_schedule_prep(struct napi_struct *n)
6033 {
6034         unsigned long new, val = READ_ONCE(n->state);
6035
6036         do {
6037                 if (unlikely(val & NAPIF_STATE_DISABLE))
6038                         return false;
6039                 new = val | NAPIF_STATE_SCHED;
6040
6041                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6042                  * This was suggested by Alexander Duyck, as compiler
6043                  * emits better code than :
6044                  * if (val & NAPIF_STATE_SCHED)
6045                  *     new |= NAPIF_STATE_MISSED;
6046                  */
6047                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6048                                                    NAPIF_STATE_MISSED;
6049         } while (!try_cmpxchg(&n->state, &val, new));
6050
6051         return !(val & NAPIF_STATE_SCHED);
6052 }
6053 EXPORT_SYMBOL(napi_schedule_prep);
6054
6055 /**
6056  * __napi_schedule_irqoff - schedule for receive
6057  * @n: entry to schedule
6058  *
6059  * Variant of __napi_schedule() assuming hard irqs are masked.
6060  *
6061  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6062  * because the interrupt disabled assumption might not be true
6063  * due to force-threaded interrupts and spinlock substitution.
6064  */
6065 void __napi_schedule_irqoff(struct napi_struct *n)
6066 {
6067         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6068                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6069         else
6070                 __napi_schedule(n);
6071 }
6072 EXPORT_SYMBOL(__napi_schedule_irqoff);
6073
6074 bool napi_complete_done(struct napi_struct *n, int work_done)
6075 {
6076         unsigned long flags, val, new, timeout = 0;
6077         bool ret = true;
6078
6079         /*
6080          * 1) Don't let napi dequeue from the cpu poll list
6081          *    just in case its running on a different cpu.
6082          * 2) If we are busy polling, do nothing here, we have
6083          *    the guarantee we will be called later.
6084          */
6085         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6086                                  NAPIF_STATE_IN_BUSY_POLL)))
6087                 return false;
6088
6089         if (work_done) {
6090                 if (n->gro_bitmask)
6091                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6092                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6093         }
6094         if (n->defer_hard_irqs_count > 0) {
6095                 n->defer_hard_irqs_count--;
6096                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6097                 if (timeout)
6098                         ret = false;
6099         }
6100         if (n->gro_bitmask) {
6101                 /* When the NAPI instance uses a timeout and keeps postponing
6102                  * it, we need to bound somehow the time packets are kept in
6103                  * the GRO layer
6104                  */
6105                 napi_gro_flush(n, !!timeout);
6106         }
6107
6108         gro_normal_list(n);
6109
6110         if (unlikely(!list_empty(&n->poll_list))) {
6111                 /* If n->poll_list is not empty, we need to mask irqs */
6112                 local_irq_save(flags);
6113                 list_del_init(&n->poll_list);
6114                 local_irq_restore(flags);
6115         }
6116         WRITE_ONCE(n->list_owner, -1);
6117
6118         val = READ_ONCE(n->state);
6119         do {
6120                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6121
6122                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6123                               NAPIF_STATE_SCHED_THREADED |
6124                               NAPIF_STATE_PREFER_BUSY_POLL);
6125
6126                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6127                  * because we will call napi->poll() one more time.
6128                  * This C code was suggested by Alexander Duyck to help gcc.
6129                  */
6130                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6131                                                     NAPIF_STATE_SCHED;
6132         } while (!try_cmpxchg(&n->state, &val, new));
6133
6134         if (unlikely(val & NAPIF_STATE_MISSED)) {
6135                 __napi_schedule(n);
6136                 return false;
6137         }
6138
6139         if (timeout)
6140                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6141                               HRTIMER_MODE_REL_PINNED);
6142         return ret;
6143 }
6144 EXPORT_SYMBOL(napi_complete_done);
6145
6146 /* must be called under rcu_read_lock(), as we dont take a reference */
6147 struct napi_struct *napi_by_id(unsigned int napi_id)
6148 {
6149         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6150         struct napi_struct *napi;
6151
6152         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6153                 if (napi->napi_id == napi_id)
6154                         return napi;
6155
6156         return NULL;
6157 }
6158
6159 #if defined(CONFIG_NET_RX_BUSY_POLL)
6160
6161 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6162 {
6163         if (!skip_schedule) {
6164                 gro_normal_list(napi);
6165                 __napi_schedule(napi);
6166                 return;
6167         }
6168
6169         if (napi->gro_bitmask) {
6170                 /* flush too old packets
6171                  * If HZ < 1000, flush all packets.
6172                  */
6173                 napi_gro_flush(napi, HZ >= 1000);
6174         }
6175
6176         gro_normal_list(napi);
6177         clear_bit(NAPI_STATE_SCHED, &napi->state);
6178 }
6179
6180 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6181                            u16 budget)
6182 {
6183         bool skip_schedule = false;
6184         unsigned long timeout;
6185         int rc;
6186
6187         /* Busy polling means there is a high chance device driver hard irq
6188          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6189          * set in napi_schedule_prep().
6190          * Since we are about to call napi->poll() once more, we can safely
6191          * clear NAPI_STATE_MISSED.
6192          *
6193          * Note: x86 could use a single "lock and ..." instruction
6194          * to perform these two clear_bit()
6195          */
6196         clear_bit(NAPI_STATE_MISSED, &napi->state);
6197         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6198
6199         local_bh_disable();
6200
6201         if (prefer_busy_poll) {
6202                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6203                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6204                 if (napi->defer_hard_irqs_count && timeout) {
6205                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6206                         skip_schedule = true;
6207                 }
6208         }
6209
6210         /* All we really want here is to re-enable device interrupts.
6211          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6212          */
6213         rc = napi->poll(napi, budget);
6214         /* We can't gro_normal_list() here, because napi->poll() might have
6215          * rearmed the napi (napi_complete_done()) in which case it could
6216          * already be running on another CPU.
6217          */
6218         trace_napi_poll(napi, rc, budget);
6219         netpoll_poll_unlock(have_poll_lock);
6220         if (rc == budget)
6221                 __busy_poll_stop(napi, skip_schedule);
6222         local_bh_enable();
6223 }
6224
6225 void napi_busy_loop(unsigned int napi_id,
6226                     bool (*loop_end)(void *, unsigned long),
6227                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6228 {
6229         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6230         int (*napi_poll)(struct napi_struct *napi, int budget);
6231         void *have_poll_lock = NULL;
6232         struct napi_struct *napi;
6233
6234 restart:
6235         napi_poll = NULL;
6236
6237         rcu_read_lock();
6238
6239         napi = napi_by_id(napi_id);
6240         if (!napi)
6241                 goto out;
6242
6243         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6244                 preempt_disable();
6245         for (;;) {
6246                 int work = 0;
6247
6248                 local_bh_disable();
6249                 if (!napi_poll) {
6250                         unsigned long val = READ_ONCE(napi->state);
6251
6252                         /* If multiple threads are competing for this napi,
6253                          * we avoid dirtying napi->state as much as we can.
6254                          */
6255                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6256                                    NAPIF_STATE_IN_BUSY_POLL)) {
6257                                 if (prefer_busy_poll)
6258                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6259                                 goto count;
6260                         }
6261                         if (cmpxchg(&napi->state, val,
6262                                     val | NAPIF_STATE_IN_BUSY_POLL |
6263                                           NAPIF_STATE_SCHED) != val) {
6264                                 if (prefer_busy_poll)
6265                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6266                                 goto count;
6267                         }
6268                         have_poll_lock = netpoll_poll_lock(napi);
6269                         napi_poll = napi->poll;
6270                 }
6271                 work = napi_poll(napi, budget);
6272                 trace_napi_poll(napi, work, budget);
6273                 gro_normal_list(napi);
6274 count:
6275                 if (work > 0)
6276                         __NET_ADD_STATS(dev_net(napi->dev),
6277                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6278                 local_bh_enable();
6279
6280                 if (!loop_end || loop_end(loop_end_arg, start_time))
6281                         break;
6282
6283                 if (unlikely(need_resched())) {
6284                         if (napi_poll)
6285                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6286                         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6287                                 preempt_enable();
6288                         rcu_read_unlock();
6289                         cond_resched();
6290                         if (loop_end(loop_end_arg, start_time))
6291                                 return;
6292                         goto restart;
6293                 }
6294                 cpu_relax();
6295         }
6296         if (napi_poll)
6297                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6298         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6299                 preempt_enable();
6300 out:
6301         rcu_read_unlock();
6302 }
6303 EXPORT_SYMBOL(napi_busy_loop);
6304
6305 #endif /* CONFIG_NET_RX_BUSY_POLL */
6306
6307 static void napi_hash_add(struct napi_struct *napi)
6308 {
6309         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6310                 return;
6311
6312         spin_lock(&napi_hash_lock);
6313
6314         /* 0..NR_CPUS range is reserved for sender_cpu use */
6315         do {
6316                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6317                         napi_gen_id = MIN_NAPI_ID;
6318         } while (napi_by_id(napi_gen_id));
6319         napi->napi_id = napi_gen_id;
6320
6321         hlist_add_head_rcu(&napi->napi_hash_node,
6322                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6323
6324         spin_unlock(&napi_hash_lock);
6325 }
6326
6327 /* Warning : caller is responsible to make sure rcu grace period
6328  * is respected before freeing memory containing @napi
6329  */
6330 static void napi_hash_del(struct napi_struct *napi)
6331 {
6332         spin_lock(&napi_hash_lock);
6333
6334         hlist_del_init_rcu(&napi->napi_hash_node);
6335
6336         spin_unlock(&napi_hash_lock);
6337 }
6338
6339 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6340 {
6341         struct napi_struct *napi;
6342
6343         napi = container_of(timer, struct napi_struct, timer);
6344
6345         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6346          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6347          */
6348         if (!napi_disable_pending(napi) &&
6349             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6350                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6351                 __napi_schedule_irqoff(napi);
6352         }
6353
6354         return HRTIMER_NORESTART;
6355 }
6356
6357 static void init_gro_hash(struct napi_struct *napi)
6358 {
6359         int i;
6360
6361         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6362                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6363                 napi->gro_hash[i].count = 0;
6364         }
6365         napi->gro_bitmask = 0;
6366 }
6367
6368 int dev_set_threaded(struct net_device *dev, bool threaded)
6369 {
6370         struct napi_struct *napi;
6371         int err = 0;
6372
6373         if (dev->threaded == threaded)
6374                 return 0;
6375
6376         if (threaded) {
6377                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6378                         if (!napi->thread) {
6379                                 err = napi_kthread_create(napi);
6380                                 if (err) {
6381                                         threaded = false;
6382                                         break;
6383                                 }
6384                         }
6385                 }
6386         }
6387
6388         dev->threaded = threaded;
6389
6390         /* Make sure kthread is created before THREADED bit
6391          * is set.
6392          */
6393         smp_mb__before_atomic();
6394
6395         /* Setting/unsetting threaded mode on a napi might not immediately
6396          * take effect, if the current napi instance is actively being
6397          * polled. In this case, the switch between threaded mode and
6398          * softirq mode will happen in the next round of napi_schedule().
6399          * This should not cause hiccups/stalls to the live traffic.
6400          */
6401         list_for_each_entry(napi, &dev->napi_list, dev_list)
6402                 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6403
6404         return err;
6405 }
6406 EXPORT_SYMBOL(dev_set_threaded);
6407
6408 /**
6409  * netif_queue_set_napi - Associate queue with the napi
6410  * @dev: device to which NAPI and queue belong
6411  * @queue_index: Index of queue
6412  * @type: queue type as RX or TX
6413  * @napi: NAPI context, pass NULL to clear previously set NAPI
6414  *
6415  * Set queue with its corresponding napi context. This should be done after
6416  * registering the NAPI handler for the queue-vector and the queues have been
6417  * mapped to the corresponding interrupt vector.
6418  */
6419 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6420                           enum netdev_queue_type type, struct napi_struct *napi)
6421 {
6422         struct netdev_rx_queue *rxq;
6423         struct netdev_queue *txq;
6424
6425         if (WARN_ON_ONCE(napi && !napi->dev))
6426                 return;
6427         if (dev->reg_state >= NETREG_REGISTERED)
6428                 ASSERT_RTNL();
6429
6430         switch (type) {
6431         case NETDEV_QUEUE_TYPE_RX:
6432                 rxq = __netif_get_rx_queue(dev, queue_index);
6433                 rxq->napi = napi;
6434                 return;
6435         case NETDEV_QUEUE_TYPE_TX:
6436                 txq = netdev_get_tx_queue(dev, queue_index);
6437                 txq->napi = napi;
6438                 return;
6439         default:
6440                 return;
6441         }
6442 }
6443 EXPORT_SYMBOL(netif_queue_set_napi);
6444
6445 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6446                            int (*poll)(struct napi_struct *, int), int weight)
6447 {
6448         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6449                 return;
6450
6451         INIT_LIST_HEAD(&napi->poll_list);
6452         INIT_HLIST_NODE(&napi->napi_hash_node);
6453         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6454         napi->timer.function = napi_watchdog;
6455         init_gro_hash(napi);
6456         napi->skb = NULL;
6457         INIT_LIST_HEAD(&napi->rx_list);
6458         napi->rx_count = 0;
6459         napi->poll = poll;
6460         if (weight > NAPI_POLL_WEIGHT)
6461                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6462                                 weight);
6463         napi->weight = weight;
6464         napi->dev = dev;
6465 #ifdef CONFIG_NETPOLL
6466         napi->poll_owner = -1;
6467 #endif
6468         napi->list_owner = -1;
6469         set_bit(NAPI_STATE_SCHED, &napi->state);
6470         set_bit(NAPI_STATE_NPSVC, &napi->state);
6471         list_add_rcu(&napi->dev_list, &dev->napi_list);
6472         napi_hash_add(napi);
6473         napi_get_frags_check(napi);
6474         /* Create kthread for this napi if dev->threaded is set.
6475          * Clear dev->threaded if kthread creation failed so that
6476          * threaded mode will not be enabled in napi_enable().
6477          */
6478         if (dev->threaded && napi_kthread_create(napi))
6479                 dev->threaded = 0;
6480         netif_napi_set_irq(napi, -1);
6481 }
6482 EXPORT_SYMBOL(netif_napi_add_weight);
6483
6484 void napi_disable(struct napi_struct *n)
6485 {
6486         unsigned long val, new;
6487
6488         might_sleep();
6489         set_bit(NAPI_STATE_DISABLE, &n->state);
6490
6491         val = READ_ONCE(n->state);
6492         do {
6493                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6494                         usleep_range(20, 200);
6495                         val = READ_ONCE(n->state);
6496                 }
6497
6498                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6499                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6500         } while (!try_cmpxchg(&n->state, &val, new));
6501
6502         hrtimer_cancel(&n->timer);
6503
6504         clear_bit(NAPI_STATE_DISABLE, &n->state);
6505 }
6506 EXPORT_SYMBOL(napi_disable);
6507
6508 /**
6509  *      napi_enable - enable NAPI scheduling
6510  *      @n: NAPI context
6511  *
6512  * Resume NAPI from being scheduled on this context.
6513  * Must be paired with napi_disable.
6514  */
6515 void napi_enable(struct napi_struct *n)
6516 {
6517         unsigned long new, val = READ_ONCE(n->state);
6518
6519         do {
6520                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6521
6522                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6523                 if (n->dev->threaded && n->thread)
6524                         new |= NAPIF_STATE_THREADED;
6525         } while (!try_cmpxchg(&n->state, &val, new));
6526 }
6527 EXPORT_SYMBOL(napi_enable);
6528
6529 static void flush_gro_hash(struct napi_struct *napi)
6530 {
6531         int i;
6532
6533         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6534                 struct sk_buff *skb, *n;
6535
6536                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6537                         kfree_skb(skb);
6538                 napi->gro_hash[i].count = 0;
6539         }
6540 }
6541
6542 /* Must be called in process context */
6543 void __netif_napi_del(struct napi_struct *napi)
6544 {
6545         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6546                 return;
6547
6548         napi_hash_del(napi);
6549         list_del_rcu(&napi->dev_list);
6550         napi_free_frags(napi);
6551
6552         flush_gro_hash(napi);
6553         napi->gro_bitmask = 0;
6554
6555         if (napi->thread) {
6556                 kthread_stop(napi->thread);
6557                 napi->thread = NULL;
6558         }
6559 }
6560 EXPORT_SYMBOL(__netif_napi_del);
6561
6562 static int __napi_poll(struct napi_struct *n, bool *repoll)
6563 {
6564         int work, weight;
6565
6566         weight = n->weight;
6567
6568         /* This NAPI_STATE_SCHED test is for avoiding a race
6569          * with netpoll's poll_napi().  Only the entity which
6570          * obtains the lock and sees NAPI_STATE_SCHED set will
6571          * actually make the ->poll() call.  Therefore we avoid
6572          * accidentally calling ->poll() when NAPI is not scheduled.
6573          */
6574         work = 0;
6575         if (napi_is_scheduled(n)) {
6576                 work = n->poll(n, weight);
6577                 trace_napi_poll(n, work, weight);
6578
6579                 xdp_do_check_flushed(n);
6580         }
6581
6582         if (unlikely(work > weight))
6583                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6584                                 n->poll, work, weight);
6585
6586         if (likely(work < weight))
6587                 return work;
6588
6589         /* Drivers must not modify the NAPI state if they
6590          * consume the entire weight.  In such cases this code
6591          * still "owns" the NAPI instance and therefore can
6592          * move the instance around on the list at-will.
6593          */
6594         if (unlikely(napi_disable_pending(n))) {
6595                 napi_complete(n);
6596                 return work;
6597         }
6598
6599         /* The NAPI context has more processing work, but busy-polling
6600          * is preferred. Exit early.
6601          */
6602         if (napi_prefer_busy_poll(n)) {
6603                 if (napi_complete_done(n, work)) {
6604                         /* If timeout is not set, we need to make sure
6605                          * that the NAPI is re-scheduled.
6606                          */
6607                         napi_schedule(n);
6608                 }
6609                 return work;
6610         }
6611
6612         if (n->gro_bitmask) {
6613                 /* flush too old packets
6614                  * If HZ < 1000, flush all packets.
6615                  */
6616                 napi_gro_flush(n, HZ >= 1000);
6617         }
6618
6619         gro_normal_list(n);
6620
6621         /* Some drivers may have called napi_schedule
6622          * prior to exhausting their budget.
6623          */
6624         if (unlikely(!list_empty(&n->poll_list))) {
6625                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6626                              n->dev ? n->dev->name : "backlog");
6627                 return work;
6628         }
6629
6630         *repoll = true;
6631
6632         return work;
6633 }
6634
6635 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6636 {
6637         bool do_repoll = false;
6638         void *have;
6639         int work;
6640
6641         list_del_init(&n->poll_list);
6642
6643         have = netpoll_poll_lock(n);
6644
6645         work = __napi_poll(n, &do_repoll);
6646
6647         if (do_repoll)
6648                 list_add_tail(&n->poll_list, repoll);
6649
6650         netpoll_poll_unlock(have);
6651
6652         return work;
6653 }
6654
6655 static int napi_thread_wait(struct napi_struct *napi)
6656 {
6657         bool woken = false;
6658
6659         set_current_state(TASK_INTERRUPTIBLE);
6660
6661         while (!kthread_should_stop()) {
6662                 /* Testing SCHED_THREADED bit here to make sure the current
6663                  * kthread owns this napi and could poll on this napi.
6664                  * Testing SCHED bit is not enough because SCHED bit might be
6665                  * set by some other busy poll thread or by napi_disable().
6666                  */
6667                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6668                         WARN_ON(!list_empty(&napi->poll_list));
6669                         __set_current_state(TASK_RUNNING);
6670                         return 0;
6671                 }
6672
6673                 schedule();
6674                 /* woken being true indicates this thread owns this napi. */
6675                 woken = true;
6676                 set_current_state(TASK_INTERRUPTIBLE);
6677         }
6678         __set_current_state(TASK_RUNNING);
6679
6680         return -1;
6681 }
6682
6683 static void skb_defer_free_flush(struct softnet_data *sd)
6684 {
6685         struct sk_buff *skb, *next;
6686
6687         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6688         if (!READ_ONCE(sd->defer_list))
6689                 return;
6690
6691         spin_lock(&sd->defer_lock);
6692         skb = sd->defer_list;
6693         sd->defer_list = NULL;
6694         sd->defer_count = 0;
6695         spin_unlock(&sd->defer_lock);
6696
6697         while (skb != NULL) {
6698                 next = skb->next;
6699                 napi_consume_skb(skb, 1);
6700                 skb = next;
6701         }
6702 }
6703
6704 static int napi_threaded_poll(void *data)
6705 {
6706         struct napi_struct *napi = data;
6707         struct softnet_data *sd;
6708         void *have;
6709
6710         while (!napi_thread_wait(napi)) {
6711                 for (;;) {
6712                         bool repoll = false;
6713
6714                         local_bh_disable();
6715                         sd = this_cpu_ptr(&softnet_data);
6716                         sd->in_napi_threaded_poll = true;
6717
6718                         have = netpoll_poll_lock(napi);
6719                         __napi_poll(napi, &repoll);
6720                         netpoll_poll_unlock(have);
6721
6722                         sd->in_napi_threaded_poll = false;
6723                         barrier();
6724
6725                         if (sd_has_rps_ipi_waiting(sd)) {
6726                                 local_irq_disable();
6727                                 net_rps_action_and_irq_enable(sd);
6728                         }
6729                         skb_defer_free_flush(sd);
6730                         local_bh_enable();
6731
6732                         if (!repoll)
6733                                 break;
6734
6735                         cond_resched();
6736                 }
6737         }
6738         return 0;
6739 }
6740
6741 static __latent_entropy void net_rx_action(struct softirq_action *h)
6742 {
6743         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6744         unsigned long time_limit = jiffies +
6745                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6746         int budget = READ_ONCE(netdev_budget);
6747         LIST_HEAD(list);
6748         LIST_HEAD(repoll);
6749
6750 start:
6751         sd->in_net_rx_action = true;
6752         local_irq_disable();
6753         list_splice_init(&sd->poll_list, &list);
6754         local_irq_enable();
6755
6756         for (;;) {
6757                 struct napi_struct *n;
6758
6759                 skb_defer_free_flush(sd);
6760
6761                 if (list_empty(&list)) {
6762                         if (list_empty(&repoll)) {
6763                                 sd->in_net_rx_action = false;
6764                                 barrier();
6765                                 /* We need to check if ____napi_schedule()
6766                                  * had refilled poll_list while
6767                                  * sd->in_net_rx_action was true.
6768                                  */
6769                                 if (!list_empty(&sd->poll_list))
6770                                         goto start;
6771                                 if (!sd_has_rps_ipi_waiting(sd))
6772                                         goto end;
6773                         }
6774                         break;
6775                 }
6776
6777                 n = list_first_entry(&list, struct napi_struct, poll_list);
6778                 budget -= napi_poll(n, &repoll);
6779
6780                 /* If softirq window is exhausted then punt.
6781                  * Allow this to run for 2 jiffies since which will allow
6782                  * an average latency of 1.5/HZ.
6783                  */
6784                 if (unlikely(budget <= 0 ||
6785                              time_after_eq(jiffies, time_limit))) {
6786                         sd->time_squeeze++;
6787                         break;
6788                 }
6789         }
6790
6791         local_irq_disable();
6792
6793         list_splice_tail_init(&sd->poll_list, &list);
6794         list_splice_tail(&repoll, &list);
6795         list_splice(&list, &sd->poll_list);
6796         if (!list_empty(&sd->poll_list))
6797                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6798         else
6799                 sd->in_net_rx_action = false;
6800
6801         net_rps_action_and_irq_enable(sd);
6802 end:;
6803 }
6804
6805 struct netdev_adjacent {
6806         struct net_device *dev;
6807         netdevice_tracker dev_tracker;
6808
6809         /* upper master flag, there can only be one master device per list */
6810         bool master;
6811
6812         /* lookup ignore flag */
6813         bool ignore;
6814
6815         /* counter for the number of times this device was added to us */
6816         u16 ref_nr;
6817
6818         /* private field for the users */
6819         void *private;
6820
6821         struct list_head list;
6822         struct rcu_head rcu;
6823 };
6824
6825 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6826                                                  struct list_head *adj_list)
6827 {
6828         struct netdev_adjacent *adj;
6829
6830         list_for_each_entry(adj, adj_list, list) {
6831                 if (adj->dev == adj_dev)
6832                         return adj;
6833         }
6834         return NULL;
6835 }
6836
6837 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6838                                     struct netdev_nested_priv *priv)
6839 {
6840         struct net_device *dev = (struct net_device *)priv->data;
6841
6842         return upper_dev == dev;
6843 }
6844
6845 /**
6846  * netdev_has_upper_dev - Check if device is linked to an upper device
6847  * @dev: device
6848  * @upper_dev: upper device to check
6849  *
6850  * Find out if a device is linked to specified upper device and return true
6851  * in case it is. Note that this checks only immediate upper device,
6852  * not through a complete stack of devices. The caller must hold the RTNL lock.
6853  */
6854 bool netdev_has_upper_dev(struct net_device *dev,
6855                           struct net_device *upper_dev)
6856 {
6857         struct netdev_nested_priv priv = {
6858                 .data = (void *)upper_dev,
6859         };
6860
6861         ASSERT_RTNL();
6862
6863         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6864                                              &priv);
6865 }
6866 EXPORT_SYMBOL(netdev_has_upper_dev);
6867
6868 /**
6869  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6870  * @dev: device
6871  * @upper_dev: upper device to check
6872  *
6873  * Find out if a device is linked to specified upper device and return true
6874  * in case it is. Note that this checks the entire upper device chain.
6875  * The caller must hold rcu lock.
6876  */
6877
6878 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6879                                   struct net_device *upper_dev)
6880 {
6881         struct netdev_nested_priv priv = {
6882                 .data = (void *)upper_dev,
6883         };
6884
6885         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6886                                                &priv);
6887 }
6888 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6889
6890 /**
6891  * netdev_has_any_upper_dev - Check if device is linked to some device
6892  * @dev: device
6893  *
6894  * Find out if a device is linked to an upper device and return true in case
6895  * it is. The caller must hold the RTNL lock.
6896  */
6897 bool netdev_has_any_upper_dev(struct net_device *dev)
6898 {
6899         ASSERT_RTNL();
6900
6901         return !list_empty(&dev->adj_list.upper);
6902 }
6903 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6904
6905 /**
6906  * netdev_master_upper_dev_get - Get master upper device
6907  * @dev: device
6908  *
6909  * Find a master upper device and return pointer to it or NULL in case
6910  * it's not there. The caller must hold the RTNL lock.
6911  */
6912 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6913 {
6914         struct netdev_adjacent *upper;
6915
6916         ASSERT_RTNL();
6917
6918         if (list_empty(&dev->adj_list.upper))
6919                 return NULL;
6920
6921         upper = list_first_entry(&dev->adj_list.upper,
6922                                  struct netdev_adjacent, list);
6923         if (likely(upper->master))
6924                 return upper->dev;
6925         return NULL;
6926 }
6927 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6928
6929 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6930 {
6931         struct netdev_adjacent *upper;
6932
6933         ASSERT_RTNL();
6934
6935         if (list_empty(&dev->adj_list.upper))
6936                 return NULL;
6937
6938         upper = list_first_entry(&dev->adj_list.upper,
6939                                  struct netdev_adjacent, list);
6940         if (likely(upper->master) && !upper->ignore)
6941                 return upper->dev;
6942         return NULL;
6943 }
6944
6945 /**
6946  * netdev_has_any_lower_dev - Check if device is linked to some device
6947  * @dev: device
6948  *
6949  * Find out if a device is linked to a lower device and return true in case
6950  * it is. The caller must hold the RTNL lock.
6951  */
6952 static bool netdev_has_any_lower_dev(struct net_device *dev)
6953 {
6954         ASSERT_RTNL();
6955
6956         return !list_empty(&dev->adj_list.lower);
6957 }
6958
6959 void *netdev_adjacent_get_private(struct list_head *adj_list)
6960 {
6961         struct netdev_adjacent *adj;
6962
6963         adj = list_entry(adj_list, struct netdev_adjacent, list);
6964
6965         return adj->private;
6966 }
6967 EXPORT_SYMBOL(netdev_adjacent_get_private);
6968
6969 /**
6970  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6971  * @dev: device
6972  * @iter: list_head ** of the current position
6973  *
6974  * Gets the next device from the dev's upper list, starting from iter
6975  * position. The caller must hold RCU read lock.
6976  */
6977 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6978                                                  struct list_head **iter)
6979 {
6980         struct netdev_adjacent *upper;
6981
6982         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6983
6984         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6985
6986         if (&upper->list == &dev->adj_list.upper)
6987                 return NULL;
6988
6989         *iter = &upper->list;
6990
6991         return upper->dev;
6992 }
6993 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6994
6995 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6996                                                   struct list_head **iter,
6997                                                   bool *ignore)
6998 {
6999         struct netdev_adjacent *upper;
7000
7001         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7002
7003         if (&upper->list == &dev->adj_list.upper)
7004                 return NULL;
7005
7006         *iter = &upper->list;
7007         *ignore = upper->ignore;
7008
7009         return upper->dev;
7010 }
7011
7012 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7013                                                     struct list_head **iter)
7014 {
7015         struct netdev_adjacent *upper;
7016
7017         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7018
7019         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7020
7021         if (&upper->list == &dev->adj_list.upper)
7022                 return NULL;
7023
7024         *iter = &upper->list;
7025
7026         return upper->dev;
7027 }
7028
7029 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7030                                        int (*fn)(struct net_device *dev,
7031                                          struct netdev_nested_priv *priv),
7032                                        struct netdev_nested_priv *priv)
7033 {
7034         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7035         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7036         int ret, cur = 0;
7037         bool ignore;
7038
7039         now = dev;
7040         iter = &dev->adj_list.upper;
7041
7042         while (1) {
7043                 if (now != dev) {
7044                         ret = fn(now, priv);
7045                         if (ret)
7046                                 return ret;
7047                 }
7048
7049                 next = NULL;
7050                 while (1) {
7051                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7052                         if (!udev)
7053                                 break;
7054                         if (ignore)
7055                                 continue;
7056
7057                         next = udev;
7058                         niter = &udev->adj_list.upper;
7059                         dev_stack[cur] = now;
7060                         iter_stack[cur++] = iter;
7061                         break;
7062                 }
7063
7064                 if (!next) {
7065                         if (!cur)
7066                                 return 0;
7067                         next = dev_stack[--cur];
7068                         niter = iter_stack[cur];
7069                 }
7070
7071                 now = next;
7072                 iter = niter;
7073         }
7074
7075         return 0;
7076 }
7077
7078 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7079                                   int (*fn)(struct net_device *dev,
7080                                             struct netdev_nested_priv *priv),
7081                                   struct netdev_nested_priv *priv)
7082 {
7083         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7084         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7085         int ret, cur = 0;
7086
7087         now = dev;
7088         iter = &dev->adj_list.upper;
7089
7090         while (1) {
7091                 if (now != dev) {
7092                         ret = fn(now, priv);
7093                         if (ret)
7094                                 return ret;
7095                 }
7096
7097                 next = NULL;
7098                 while (1) {
7099                         udev = netdev_next_upper_dev_rcu(now, &iter);
7100                         if (!udev)
7101                                 break;
7102
7103                         next = udev;
7104                         niter = &udev->adj_list.upper;
7105                         dev_stack[cur] = now;
7106                         iter_stack[cur++] = iter;
7107                         break;
7108                 }
7109
7110                 if (!next) {
7111                         if (!cur)
7112                                 return 0;
7113                         next = dev_stack[--cur];
7114                         niter = iter_stack[cur];
7115                 }
7116
7117                 now = next;
7118                 iter = niter;
7119         }
7120
7121         return 0;
7122 }
7123 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7124
7125 static bool __netdev_has_upper_dev(struct net_device *dev,
7126                                    struct net_device *upper_dev)
7127 {
7128         struct netdev_nested_priv priv = {
7129                 .flags = 0,
7130                 .data = (void *)upper_dev,
7131         };
7132
7133         ASSERT_RTNL();
7134
7135         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7136                                            &priv);
7137 }
7138
7139 /**
7140  * netdev_lower_get_next_private - Get the next ->private from the
7141  *                                 lower neighbour list
7142  * @dev: device
7143  * @iter: list_head ** of the current position
7144  *
7145  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7146  * list, starting from iter position. The caller must hold either hold the
7147  * RTNL lock or its own locking that guarantees that the neighbour lower
7148  * list will remain unchanged.
7149  */
7150 void *netdev_lower_get_next_private(struct net_device *dev,
7151                                     struct list_head **iter)
7152 {
7153         struct netdev_adjacent *lower;
7154
7155         lower = list_entry(*iter, struct netdev_adjacent, list);
7156
7157         if (&lower->list == &dev->adj_list.lower)
7158                 return NULL;
7159
7160         *iter = lower->list.next;
7161
7162         return lower->private;
7163 }
7164 EXPORT_SYMBOL(netdev_lower_get_next_private);
7165
7166 /**
7167  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7168  *                                     lower neighbour list, RCU
7169  *                                     variant
7170  * @dev: device
7171  * @iter: list_head ** of the current position
7172  *
7173  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7174  * list, starting from iter position. The caller must hold RCU read lock.
7175  */
7176 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7177                                         struct list_head **iter)
7178 {
7179         struct netdev_adjacent *lower;
7180
7181         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7182
7183         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7184
7185         if (&lower->list == &dev->adj_list.lower)
7186                 return NULL;
7187
7188         *iter = &lower->list;
7189
7190         return lower->private;
7191 }
7192 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7193
7194 /**
7195  * netdev_lower_get_next - Get the next device from the lower neighbour
7196  *                         list
7197  * @dev: device
7198  * @iter: list_head ** of the current position
7199  *
7200  * Gets the next netdev_adjacent from the dev's lower neighbour
7201  * list, starting from iter position. The caller must hold RTNL lock or
7202  * its own locking that guarantees that the neighbour lower
7203  * list will remain unchanged.
7204  */
7205 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7206 {
7207         struct netdev_adjacent *lower;
7208
7209         lower = list_entry(*iter, struct netdev_adjacent, list);
7210
7211         if (&lower->list == &dev->adj_list.lower)
7212                 return NULL;
7213
7214         *iter = lower->list.next;
7215
7216         return lower->dev;
7217 }
7218 EXPORT_SYMBOL(netdev_lower_get_next);
7219
7220 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7221                                                 struct list_head **iter)
7222 {
7223         struct netdev_adjacent *lower;
7224
7225         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7226
7227         if (&lower->list == &dev->adj_list.lower)
7228                 return NULL;
7229
7230         *iter = &lower->list;
7231
7232         return lower->dev;
7233 }
7234
7235 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7236                                                   struct list_head **iter,
7237                                                   bool *ignore)
7238 {
7239         struct netdev_adjacent *lower;
7240
7241         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7242
7243         if (&lower->list == &dev->adj_list.lower)
7244                 return NULL;
7245
7246         *iter = &lower->list;
7247         *ignore = lower->ignore;
7248
7249         return lower->dev;
7250 }
7251
7252 int netdev_walk_all_lower_dev(struct net_device *dev,
7253                               int (*fn)(struct net_device *dev,
7254                                         struct netdev_nested_priv *priv),
7255                               struct netdev_nested_priv *priv)
7256 {
7257         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7258         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7259         int ret, cur = 0;
7260
7261         now = dev;
7262         iter = &dev->adj_list.lower;
7263
7264         while (1) {
7265                 if (now != dev) {
7266                         ret = fn(now, priv);
7267                         if (ret)
7268                                 return ret;
7269                 }
7270
7271                 next = NULL;
7272                 while (1) {
7273                         ldev = netdev_next_lower_dev(now, &iter);
7274                         if (!ldev)
7275                                 break;
7276
7277                         next = ldev;
7278                         niter = &ldev->adj_list.lower;
7279                         dev_stack[cur] = now;
7280                         iter_stack[cur++] = iter;
7281                         break;
7282                 }
7283
7284                 if (!next) {
7285                         if (!cur)
7286                                 return 0;
7287                         next = dev_stack[--cur];
7288                         niter = iter_stack[cur];
7289                 }
7290
7291                 now = next;
7292                 iter = niter;
7293         }
7294
7295         return 0;
7296 }
7297 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7298
7299 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7300                                        int (*fn)(struct net_device *dev,
7301                                          struct netdev_nested_priv *priv),
7302                                        struct netdev_nested_priv *priv)
7303 {
7304         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7305         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7306         int ret, cur = 0;
7307         bool ignore;
7308
7309         now = dev;
7310         iter = &dev->adj_list.lower;
7311
7312         while (1) {
7313                 if (now != dev) {
7314                         ret = fn(now, priv);
7315                         if (ret)
7316                                 return ret;
7317                 }
7318
7319                 next = NULL;
7320                 while (1) {
7321                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7322                         if (!ldev)
7323                                 break;
7324                         if (ignore)
7325                                 continue;
7326
7327                         next = ldev;
7328                         niter = &ldev->adj_list.lower;
7329                         dev_stack[cur] = now;
7330                         iter_stack[cur++] = iter;
7331                         break;
7332                 }
7333
7334                 if (!next) {
7335                         if (!cur)
7336                                 return 0;
7337                         next = dev_stack[--cur];
7338                         niter = iter_stack[cur];
7339                 }
7340
7341                 now = next;
7342                 iter = niter;
7343         }
7344
7345         return 0;
7346 }
7347
7348 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7349                                              struct list_head **iter)
7350 {
7351         struct netdev_adjacent *lower;
7352
7353         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7354         if (&lower->list == &dev->adj_list.lower)
7355                 return NULL;
7356
7357         *iter = &lower->list;
7358
7359         return lower->dev;
7360 }
7361 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7362
7363 static u8 __netdev_upper_depth(struct net_device *dev)
7364 {
7365         struct net_device *udev;
7366         struct list_head *iter;
7367         u8 max_depth = 0;
7368         bool ignore;
7369
7370         for (iter = &dev->adj_list.upper,
7371              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7372              udev;
7373              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7374                 if (ignore)
7375                         continue;
7376                 if (max_depth < udev->upper_level)
7377                         max_depth = udev->upper_level;
7378         }
7379
7380         return max_depth;
7381 }
7382
7383 static u8 __netdev_lower_depth(struct net_device *dev)
7384 {
7385         struct net_device *ldev;
7386         struct list_head *iter;
7387         u8 max_depth = 0;
7388         bool ignore;
7389
7390         for (iter = &dev->adj_list.lower,
7391              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7392              ldev;
7393              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7394                 if (ignore)
7395                         continue;
7396                 if (max_depth < ldev->lower_level)
7397                         max_depth = ldev->lower_level;
7398         }
7399
7400         return max_depth;
7401 }
7402
7403 static int __netdev_update_upper_level(struct net_device *dev,
7404                                        struct netdev_nested_priv *__unused)
7405 {
7406         dev->upper_level = __netdev_upper_depth(dev) + 1;
7407         return 0;
7408 }
7409
7410 #ifdef CONFIG_LOCKDEP
7411 static LIST_HEAD(net_unlink_list);
7412
7413 static void net_unlink_todo(struct net_device *dev)
7414 {
7415         if (list_empty(&dev->unlink_list))
7416                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7417 }
7418 #endif
7419
7420 static int __netdev_update_lower_level(struct net_device *dev,
7421                                        struct netdev_nested_priv *priv)
7422 {
7423         dev->lower_level = __netdev_lower_depth(dev) + 1;
7424
7425 #ifdef CONFIG_LOCKDEP
7426         if (!priv)
7427                 return 0;
7428
7429         if (priv->flags & NESTED_SYNC_IMM)
7430                 dev->nested_level = dev->lower_level - 1;
7431         if (priv->flags & NESTED_SYNC_TODO)
7432                 net_unlink_todo(dev);
7433 #endif
7434         return 0;
7435 }
7436
7437 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7438                                   int (*fn)(struct net_device *dev,
7439                                             struct netdev_nested_priv *priv),
7440                                   struct netdev_nested_priv *priv)
7441 {
7442         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7443         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7444         int ret, cur = 0;
7445
7446         now = dev;
7447         iter = &dev->adj_list.lower;
7448
7449         while (1) {
7450                 if (now != dev) {
7451                         ret = fn(now, priv);
7452                         if (ret)
7453                                 return ret;
7454                 }
7455
7456                 next = NULL;
7457                 while (1) {
7458                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7459                         if (!ldev)
7460                                 break;
7461
7462                         next = ldev;
7463                         niter = &ldev->adj_list.lower;
7464                         dev_stack[cur] = now;
7465                         iter_stack[cur++] = iter;
7466                         break;
7467                 }
7468
7469                 if (!next) {
7470                         if (!cur)
7471                                 return 0;
7472                         next = dev_stack[--cur];
7473                         niter = iter_stack[cur];
7474                 }
7475
7476                 now = next;
7477                 iter = niter;
7478         }
7479
7480         return 0;
7481 }
7482 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7483
7484 /**
7485  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7486  *                                     lower neighbour list, RCU
7487  *                                     variant
7488  * @dev: device
7489  *
7490  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7491  * list. The caller must hold RCU read lock.
7492  */
7493 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7494 {
7495         struct netdev_adjacent *lower;
7496
7497         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7498                         struct netdev_adjacent, list);
7499         if (lower)
7500                 return lower->private;
7501         return NULL;
7502 }
7503 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7504
7505 /**
7506  * netdev_master_upper_dev_get_rcu - Get master upper device
7507  * @dev: device
7508  *
7509  * Find a master upper device and return pointer to it or NULL in case
7510  * it's not there. The caller must hold the RCU read lock.
7511  */
7512 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7513 {
7514         struct netdev_adjacent *upper;
7515
7516         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7517                                        struct netdev_adjacent, list);
7518         if (upper && likely(upper->master))
7519                 return upper->dev;
7520         return NULL;
7521 }
7522 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7523
7524 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7525                               struct net_device *adj_dev,
7526                               struct list_head *dev_list)
7527 {
7528         char linkname[IFNAMSIZ+7];
7529
7530         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7531                 "upper_%s" : "lower_%s", adj_dev->name);
7532         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7533                                  linkname);
7534 }
7535 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7536                                char *name,
7537                                struct list_head *dev_list)
7538 {
7539         char linkname[IFNAMSIZ+7];
7540
7541         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7542                 "upper_%s" : "lower_%s", name);
7543         sysfs_remove_link(&(dev->dev.kobj), linkname);
7544 }
7545
7546 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7547                                                  struct net_device *adj_dev,
7548                                                  struct list_head *dev_list)
7549 {
7550         return (dev_list == &dev->adj_list.upper ||
7551                 dev_list == &dev->adj_list.lower) &&
7552                 net_eq(dev_net(dev), dev_net(adj_dev));
7553 }
7554
7555 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7556                                         struct net_device *adj_dev,
7557                                         struct list_head *dev_list,
7558                                         void *private, bool master)
7559 {
7560         struct netdev_adjacent *adj;
7561         int ret;
7562
7563         adj = __netdev_find_adj(adj_dev, dev_list);
7564
7565         if (adj) {
7566                 adj->ref_nr += 1;
7567                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7568                          dev->name, adj_dev->name, adj->ref_nr);
7569
7570                 return 0;
7571         }
7572
7573         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7574         if (!adj)
7575                 return -ENOMEM;
7576
7577         adj->dev = adj_dev;
7578         adj->master = master;
7579         adj->ref_nr = 1;
7580         adj->private = private;
7581         adj->ignore = false;
7582         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7583
7584         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7585                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7586
7587         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7588                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7589                 if (ret)
7590                         goto free_adj;
7591         }
7592
7593         /* Ensure that master link is always the first item in list. */
7594         if (master) {
7595                 ret = sysfs_create_link(&(dev->dev.kobj),
7596                                         &(adj_dev->dev.kobj), "master");
7597                 if (ret)
7598                         goto remove_symlinks;
7599
7600                 list_add_rcu(&adj->list, dev_list);
7601         } else {
7602                 list_add_tail_rcu(&adj->list, dev_list);
7603         }
7604
7605         return 0;
7606
7607 remove_symlinks:
7608         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7609                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7610 free_adj:
7611         netdev_put(adj_dev, &adj->dev_tracker);
7612         kfree(adj);
7613
7614         return ret;
7615 }
7616
7617 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7618                                          struct net_device *adj_dev,
7619                                          u16 ref_nr,
7620                                          struct list_head *dev_list)
7621 {
7622         struct netdev_adjacent *adj;
7623
7624         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7625                  dev->name, adj_dev->name, ref_nr);
7626
7627         adj = __netdev_find_adj(adj_dev, dev_list);
7628
7629         if (!adj) {
7630                 pr_err("Adjacency does not exist for device %s from %s\n",
7631                        dev->name, adj_dev->name);
7632                 WARN_ON(1);
7633                 return;
7634         }
7635
7636         if (adj->ref_nr > ref_nr) {
7637                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7638                          dev->name, adj_dev->name, ref_nr,
7639                          adj->ref_nr - ref_nr);
7640                 adj->ref_nr -= ref_nr;
7641                 return;
7642         }
7643
7644         if (adj->master)
7645                 sysfs_remove_link(&(dev->dev.kobj), "master");
7646
7647         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7648                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7649
7650         list_del_rcu(&adj->list);
7651         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7652                  adj_dev->name, dev->name, adj_dev->name);
7653         netdev_put(adj_dev, &adj->dev_tracker);
7654         kfree_rcu(adj, rcu);
7655 }
7656
7657 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7658                                             struct net_device *upper_dev,
7659                                             struct list_head *up_list,
7660                                             struct list_head *down_list,
7661                                             void *private, bool master)
7662 {
7663         int ret;
7664
7665         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7666                                            private, master);
7667         if (ret)
7668                 return ret;
7669
7670         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7671                                            private, false);
7672         if (ret) {
7673                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7674                 return ret;
7675         }
7676
7677         return 0;
7678 }
7679
7680 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7681                                                struct net_device *upper_dev,
7682                                                u16 ref_nr,
7683                                                struct list_head *up_list,
7684                                                struct list_head *down_list)
7685 {
7686         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7687         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7688 }
7689
7690 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7691                                                 struct net_device *upper_dev,
7692                                                 void *private, bool master)
7693 {
7694         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7695                                                 &dev->adj_list.upper,
7696                                                 &upper_dev->adj_list.lower,
7697                                                 private, master);
7698 }
7699
7700 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7701                                                    struct net_device *upper_dev)
7702 {
7703         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7704                                            &dev->adj_list.upper,
7705                                            &upper_dev->adj_list.lower);
7706 }
7707
7708 static int __netdev_upper_dev_link(struct net_device *dev,
7709                                    struct net_device *upper_dev, bool master,
7710                                    void *upper_priv, void *upper_info,
7711                                    struct netdev_nested_priv *priv,
7712                                    struct netlink_ext_ack *extack)
7713 {
7714         struct netdev_notifier_changeupper_info changeupper_info = {
7715                 .info = {
7716                         .dev = dev,
7717                         .extack = extack,
7718                 },
7719                 .upper_dev = upper_dev,
7720                 .master = master,
7721                 .linking = true,
7722                 .upper_info = upper_info,
7723         };
7724         struct net_device *master_dev;
7725         int ret = 0;
7726
7727         ASSERT_RTNL();
7728
7729         if (dev == upper_dev)
7730                 return -EBUSY;
7731
7732         /* To prevent loops, check if dev is not upper device to upper_dev. */
7733         if (__netdev_has_upper_dev(upper_dev, dev))
7734                 return -EBUSY;
7735
7736         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7737                 return -EMLINK;
7738
7739         if (!master) {
7740                 if (__netdev_has_upper_dev(dev, upper_dev))
7741                         return -EEXIST;
7742         } else {
7743                 master_dev = __netdev_master_upper_dev_get(dev);
7744                 if (master_dev)
7745                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7746         }
7747
7748         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7749                                             &changeupper_info.info);
7750         ret = notifier_to_errno(ret);
7751         if (ret)
7752                 return ret;
7753
7754         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7755                                                    master);
7756         if (ret)
7757                 return ret;
7758
7759         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7760                                             &changeupper_info.info);
7761         ret = notifier_to_errno(ret);
7762         if (ret)
7763                 goto rollback;
7764
7765         __netdev_update_upper_level(dev, NULL);
7766         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7767
7768         __netdev_update_lower_level(upper_dev, priv);
7769         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7770                                     priv);
7771
7772         return 0;
7773
7774 rollback:
7775         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7776
7777         return ret;
7778 }
7779
7780 /**
7781  * netdev_upper_dev_link - Add a link to the upper device
7782  * @dev: device
7783  * @upper_dev: new upper device
7784  * @extack: netlink extended ack
7785  *
7786  * Adds a link to device which is upper to this one. The caller must hold
7787  * the RTNL lock. On a failure a negative errno code is returned.
7788  * On success the reference counts are adjusted and the function
7789  * returns zero.
7790  */
7791 int netdev_upper_dev_link(struct net_device *dev,
7792                           struct net_device *upper_dev,
7793                           struct netlink_ext_ack *extack)
7794 {
7795         struct netdev_nested_priv priv = {
7796                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7797                 .data = NULL,
7798         };
7799
7800         return __netdev_upper_dev_link(dev, upper_dev, false,
7801                                        NULL, NULL, &priv, extack);
7802 }
7803 EXPORT_SYMBOL(netdev_upper_dev_link);
7804
7805 /**
7806  * netdev_master_upper_dev_link - Add a master link to the upper device
7807  * @dev: device
7808  * @upper_dev: new upper device
7809  * @upper_priv: upper device private
7810  * @upper_info: upper info to be passed down via notifier
7811  * @extack: netlink extended ack
7812  *
7813  * Adds a link to device which is upper to this one. In this case, only
7814  * one master upper device can be linked, although other non-master devices
7815  * might be linked as well. The caller must hold the RTNL lock.
7816  * On a failure a negative errno code is returned. On success the reference
7817  * counts are adjusted and the function returns zero.
7818  */
7819 int netdev_master_upper_dev_link(struct net_device *dev,
7820                                  struct net_device *upper_dev,
7821                                  void *upper_priv, void *upper_info,
7822                                  struct netlink_ext_ack *extack)
7823 {
7824         struct netdev_nested_priv priv = {
7825                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7826                 .data = NULL,
7827         };
7828
7829         return __netdev_upper_dev_link(dev, upper_dev, true,
7830                                        upper_priv, upper_info, &priv, extack);
7831 }
7832 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7833
7834 static void __netdev_upper_dev_unlink(struct net_device *dev,
7835                                       struct net_device *upper_dev,
7836                                       struct netdev_nested_priv *priv)
7837 {
7838         struct netdev_notifier_changeupper_info changeupper_info = {
7839                 .info = {
7840                         .dev = dev,
7841                 },
7842                 .upper_dev = upper_dev,
7843                 .linking = false,
7844         };
7845
7846         ASSERT_RTNL();
7847
7848         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7849
7850         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7851                                       &changeupper_info.info);
7852
7853         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7854
7855         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7856                                       &changeupper_info.info);
7857
7858         __netdev_update_upper_level(dev, NULL);
7859         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7860
7861         __netdev_update_lower_level(upper_dev, priv);
7862         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7863                                     priv);
7864 }
7865
7866 /**
7867  * netdev_upper_dev_unlink - Removes a link to upper device
7868  * @dev: device
7869  * @upper_dev: new upper device
7870  *
7871  * Removes a link to device which is upper to this one. The caller must hold
7872  * the RTNL lock.
7873  */
7874 void netdev_upper_dev_unlink(struct net_device *dev,
7875                              struct net_device *upper_dev)
7876 {
7877         struct netdev_nested_priv priv = {
7878                 .flags = NESTED_SYNC_TODO,
7879                 .data = NULL,
7880         };
7881
7882         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7883 }
7884 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7885
7886 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7887                                       struct net_device *lower_dev,
7888                                       bool val)
7889 {
7890         struct netdev_adjacent *adj;
7891
7892         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7893         if (adj)
7894                 adj->ignore = val;
7895
7896         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7897         if (adj)
7898                 adj->ignore = val;
7899 }
7900
7901 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7902                                         struct net_device *lower_dev)
7903 {
7904         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7905 }
7906
7907 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7908                                        struct net_device *lower_dev)
7909 {
7910         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7911 }
7912
7913 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7914                                    struct net_device *new_dev,
7915                                    struct net_device *dev,
7916                                    struct netlink_ext_ack *extack)
7917 {
7918         struct netdev_nested_priv priv = {
7919                 .flags = 0,
7920                 .data = NULL,
7921         };
7922         int err;
7923
7924         if (!new_dev)
7925                 return 0;
7926
7927         if (old_dev && new_dev != old_dev)
7928                 netdev_adjacent_dev_disable(dev, old_dev);
7929         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7930                                       extack);
7931         if (err) {
7932                 if (old_dev && new_dev != old_dev)
7933                         netdev_adjacent_dev_enable(dev, old_dev);
7934                 return err;
7935         }
7936
7937         return 0;
7938 }
7939 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7940
7941 void netdev_adjacent_change_commit(struct net_device *old_dev,
7942                                    struct net_device *new_dev,
7943                                    struct net_device *dev)
7944 {
7945         struct netdev_nested_priv priv = {
7946                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7947                 .data = NULL,
7948         };
7949
7950         if (!new_dev || !old_dev)
7951                 return;
7952
7953         if (new_dev == old_dev)
7954                 return;
7955
7956         netdev_adjacent_dev_enable(dev, old_dev);
7957         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7958 }
7959 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7960
7961 void netdev_adjacent_change_abort(struct net_device *old_dev,
7962                                   struct net_device *new_dev,
7963                                   struct net_device *dev)
7964 {
7965         struct netdev_nested_priv priv = {
7966                 .flags = 0,
7967                 .data = NULL,
7968         };
7969
7970         if (!new_dev)
7971                 return;
7972
7973         if (old_dev && new_dev != old_dev)
7974                 netdev_adjacent_dev_enable(dev, old_dev);
7975
7976         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7977 }
7978 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7979
7980 /**
7981  * netdev_bonding_info_change - Dispatch event about slave change
7982  * @dev: device
7983  * @bonding_info: info to dispatch
7984  *
7985  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7986  * The caller must hold the RTNL lock.
7987  */
7988 void netdev_bonding_info_change(struct net_device *dev,
7989                                 struct netdev_bonding_info *bonding_info)
7990 {
7991         struct netdev_notifier_bonding_info info = {
7992                 .info.dev = dev,
7993         };
7994
7995         memcpy(&info.bonding_info, bonding_info,
7996                sizeof(struct netdev_bonding_info));
7997         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7998                                       &info.info);
7999 }
8000 EXPORT_SYMBOL(netdev_bonding_info_change);
8001
8002 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8003                                            struct netlink_ext_ack *extack)
8004 {
8005         struct netdev_notifier_offload_xstats_info info = {
8006                 .info.dev = dev,
8007                 .info.extack = extack,
8008                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8009         };
8010         int err;
8011         int rc;
8012
8013         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8014                                          GFP_KERNEL);
8015         if (!dev->offload_xstats_l3)
8016                 return -ENOMEM;
8017
8018         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8019                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
8020                                                   &info.info);
8021         err = notifier_to_errno(rc);
8022         if (err)
8023                 goto free_stats;
8024
8025         return 0;
8026
8027 free_stats:
8028         kfree(dev->offload_xstats_l3);
8029         dev->offload_xstats_l3 = NULL;
8030         return err;
8031 }
8032
8033 int netdev_offload_xstats_enable(struct net_device *dev,
8034                                  enum netdev_offload_xstats_type type,
8035                                  struct netlink_ext_ack *extack)
8036 {
8037         ASSERT_RTNL();
8038
8039         if (netdev_offload_xstats_enabled(dev, type))
8040                 return -EALREADY;
8041
8042         switch (type) {
8043         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8044                 return netdev_offload_xstats_enable_l3(dev, extack);
8045         }
8046
8047         WARN_ON(1);
8048         return -EINVAL;
8049 }
8050 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8051
8052 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8053 {
8054         struct netdev_notifier_offload_xstats_info info = {
8055                 .info.dev = dev,
8056                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8057         };
8058
8059         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8060                                       &info.info);
8061         kfree(dev->offload_xstats_l3);
8062         dev->offload_xstats_l3 = NULL;
8063 }
8064
8065 int netdev_offload_xstats_disable(struct net_device *dev,
8066                                   enum netdev_offload_xstats_type type)
8067 {
8068         ASSERT_RTNL();
8069
8070         if (!netdev_offload_xstats_enabled(dev, type))
8071                 return -EALREADY;
8072
8073         switch (type) {
8074         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8075                 netdev_offload_xstats_disable_l3(dev);
8076                 return 0;
8077         }
8078
8079         WARN_ON(1);
8080         return -EINVAL;
8081 }
8082 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8083
8084 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8085 {
8086         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8087 }
8088
8089 static struct rtnl_hw_stats64 *
8090 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8091                               enum netdev_offload_xstats_type type)
8092 {
8093         switch (type) {
8094         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8095                 return dev->offload_xstats_l3;
8096         }
8097
8098         WARN_ON(1);
8099         return NULL;
8100 }
8101
8102 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8103                                    enum netdev_offload_xstats_type type)
8104 {
8105         ASSERT_RTNL();
8106
8107         return netdev_offload_xstats_get_ptr(dev, type);
8108 }
8109 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8110
8111 struct netdev_notifier_offload_xstats_ru {
8112         bool used;
8113 };
8114
8115 struct netdev_notifier_offload_xstats_rd {
8116         struct rtnl_hw_stats64 stats;
8117         bool used;
8118 };
8119
8120 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8121                                   const struct rtnl_hw_stats64 *src)
8122 {
8123         dest->rx_packets          += src->rx_packets;
8124         dest->tx_packets          += src->tx_packets;
8125         dest->rx_bytes            += src->rx_bytes;
8126         dest->tx_bytes            += src->tx_bytes;
8127         dest->rx_errors           += src->rx_errors;
8128         dest->tx_errors           += src->tx_errors;
8129         dest->rx_dropped          += src->rx_dropped;
8130         dest->tx_dropped          += src->tx_dropped;
8131         dest->multicast           += src->multicast;
8132 }
8133
8134 static int netdev_offload_xstats_get_used(struct net_device *dev,
8135                                           enum netdev_offload_xstats_type type,
8136                                           bool *p_used,
8137                                           struct netlink_ext_ack *extack)
8138 {
8139         struct netdev_notifier_offload_xstats_ru report_used = {};
8140         struct netdev_notifier_offload_xstats_info info = {
8141                 .info.dev = dev,
8142                 .info.extack = extack,
8143                 .type = type,
8144                 .report_used = &report_used,
8145         };
8146         int rc;
8147
8148         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8149         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8150                                            &info.info);
8151         *p_used = report_used.used;
8152         return notifier_to_errno(rc);
8153 }
8154
8155 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8156                                            enum netdev_offload_xstats_type type,
8157                                            struct rtnl_hw_stats64 *p_stats,
8158                                            bool *p_used,
8159                                            struct netlink_ext_ack *extack)
8160 {
8161         struct netdev_notifier_offload_xstats_rd report_delta = {};
8162         struct netdev_notifier_offload_xstats_info info = {
8163                 .info.dev = dev,
8164                 .info.extack = extack,
8165                 .type = type,
8166                 .report_delta = &report_delta,
8167         };
8168         struct rtnl_hw_stats64 *stats;
8169         int rc;
8170
8171         stats = netdev_offload_xstats_get_ptr(dev, type);
8172         if (WARN_ON(!stats))
8173                 return -EINVAL;
8174
8175         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8176                                            &info.info);
8177
8178         /* Cache whatever we got, even if there was an error, otherwise the
8179          * successful stats retrievals would get lost.
8180          */
8181         netdev_hw_stats64_add(stats, &report_delta.stats);
8182
8183         if (p_stats)
8184                 *p_stats = *stats;
8185         *p_used = report_delta.used;
8186
8187         return notifier_to_errno(rc);
8188 }
8189
8190 int netdev_offload_xstats_get(struct net_device *dev,
8191                               enum netdev_offload_xstats_type type,
8192                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8193                               struct netlink_ext_ack *extack)
8194 {
8195         ASSERT_RTNL();
8196
8197         if (p_stats)
8198                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8199                                                        p_used, extack);
8200         else
8201                 return netdev_offload_xstats_get_used(dev, type, p_used,
8202                                                       extack);
8203 }
8204 EXPORT_SYMBOL(netdev_offload_xstats_get);
8205
8206 void
8207 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8208                                    const struct rtnl_hw_stats64 *stats)
8209 {
8210         report_delta->used = true;
8211         netdev_hw_stats64_add(&report_delta->stats, stats);
8212 }
8213 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8214
8215 void
8216 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8217 {
8218         report_used->used = true;
8219 }
8220 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8221
8222 void netdev_offload_xstats_push_delta(struct net_device *dev,
8223                                       enum netdev_offload_xstats_type type,
8224                                       const struct rtnl_hw_stats64 *p_stats)
8225 {
8226         struct rtnl_hw_stats64 *stats;
8227
8228         ASSERT_RTNL();
8229
8230         stats = netdev_offload_xstats_get_ptr(dev, type);
8231         if (WARN_ON(!stats))
8232                 return;
8233
8234         netdev_hw_stats64_add(stats, p_stats);
8235 }
8236 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8237
8238 /**
8239  * netdev_get_xmit_slave - Get the xmit slave of master device
8240  * @dev: device
8241  * @skb: The packet
8242  * @all_slaves: assume all the slaves are active
8243  *
8244  * The reference counters are not incremented so the caller must be
8245  * careful with locks. The caller must hold RCU lock.
8246  * %NULL is returned if no slave is found.
8247  */
8248
8249 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8250                                          struct sk_buff *skb,
8251                                          bool all_slaves)
8252 {
8253         const struct net_device_ops *ops = dev->netdev_ops;
8254
8255         if (!ops->ndo_get_xmit_slave)
8256                 return NULL;
8257         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8258 }
8259 EXPORT_SYMBOL(netdev_get_xmit_slave);
8260
8261 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8262                                                   struct sock *sk)
8263 {
8264         const struct net_device_ops *ops = dev->netdev_ops;
8265
8266         if (!ops->ndo_sk_get_lower_dev)
8267                 return NULL;
8268         return ops->ndo_sk_get_lower_dev(dev, sk);
8269 }
8270
8271 /**
8272  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8273  * @dev: device
8274  * @sk: the socket
8275  *
8276  * %NULL is returned if no lower device is found.
8277  */
8278
8279 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8280                                             struct sock *sk)
8281 {
8282         struct net_device *lower;
8283
8284         lower = netdev_sk_get_lower_dev(dev, sk);
8285         while (lower) {
8286                 dev = lower;
8287                 lower = netdev_sk_get_lower_dev(dev, sk);
8288         }
8289
8290         return dev;
8291 }
8292 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8293
8294 static void netdev_adjacent_add_links(struct net_device *dev)
8295 {
8296         struct netdev_adjacent *iter;
8297
8298         struct net *net = dev_net(dev);
8299
8300         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8301                 if (!net_eq(net, dev_net(iter->dev)))
8302                         continue;
8303                 netdev_adjacent_sysfs_add(iter->dev, dev,
8304                                           &iter->dev->adj_list.lower);
8305                 netdev_adjacent_sysfs_add(dev, iter->dev,
8306                                           &dev->adj_list.upper);
8307         }
8308
8309         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8310                 if (!net_eq(net, dev_net(iter->dev)))
8311                         continue;
8312                 netdev_adjacent_sysfs_add(iter->dev, dev,
8313                                           &iter->dev->adj_list.upper);
8314                 netdev_adjacent_sysfs_add(dev, iter->dev,
8315                                           &dev->adj_list.lower);
8316         }
8317 }
8318
8319 static void netdev_adjacent_del_links(struct net_device *dev)
8320 {
8321         struct netdev_adjacent *iter;
8322
8323         struct net *net = dev_net(dev);
8324
8325         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8326                 if (!net_eq(net, dev_net(iter->dev)))
8327                         continue;
8328                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8329                                           &iter->dev->adj_list.lower);
8330                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8331                                           &dev->adj_list.upper);
8332         }
8333
8334         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8335                 if (!net_eq(net, dev_net(iter->dev)))
8336                         continue;
8337                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8338                                           &iter->dev->adj_list.upper);
8339                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8340                                           &dev->adj_list.lower);
8341         }
8342 }
8343
8344 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8345 {
8346         struct netdev_adjacent *iter;
8347
8348         struct net *net = dev_net(dev);
8349
8350         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8351                 if (!net_eq(net, dev_net(iter->dev)))
8352                         continue;
8353                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8354                                           &iter->dev->adj_list.lower);
8355                 netdev_adjacent_sysfs_add(iter->dev, dev,
8356                                           &iter->dev->adj_list.lower);
8357         }
8358
8359         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8360                 if (!net_eq(net, dev_net(iter->dev)))
8361                         continue;
8362                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8363                                           &iter->dev->adj_list.upper);
8364                 netdev_adjacent_sysfs_add(iter->dev, dev,
8365                                           &iter->dev->adj_list.upper);
8366         }
8367 }
8368
8369 void *netdev_lower_dev_get_private(struct net_device *dev,
8370                                    struct net_device *lower_dev)
8371 {
8372         struct netdev_adjacent *lower;
8373
8374         if (!lower_dev)
8375                 return NULL;
8376         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8377         if (!lower)
8378                 return NULL;
8379
8380         return lower->private;
8381 }
8382 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8383
8384
8385 /**
8386  * netdev_lower_state_changed - Dispatch event about lower device state change
8387  * @lower_dev: device
8388  * @lower_state_info: state to dispatch
8389  *
8390  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8391  * The caller must hold the RTNL lock.
8392  */
8393 void netdev_lower_state_changed(struct net_device *lower_dev,
8394                                 void *lower_state_info)
8395 {
8396         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8397                 .info.dev = lower_dev,
8398         };
8399
8400         ASSERT_RTNL();
8401         changelowerstate_info.lower_state_info = lower_state_info;
8402         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8403                                       &changelowerstate_info.info);
8404 }
8405 EXPORT_SYMBOL(netdev_lower_state_changed);
8406
8407 static void dev_change_rx_flags(struct net_device *dev, int flags)
8408 {
8409         const struct net_device_ops *ops = dev->netdev_ops;
8410
8411         if (ops->ndo_change_rx_flags)
8412                 ops->ndo_change_rx_flags(dev, flags);
8413 }
8414
8415 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8416 {
8417         unsigned int old_flags = dev->flags;
8418         kuid_t uid;
8419         kgid_t gid;
8420
8421         ASSERT_RTNL();
8422
8423         dev->flags |= IFF_PROMISC;
8424         dev->promiscuity += inc;
8425         if (dev->promiscuity == 0) {
8426                 /*
8427                  * Avoid overflow.
8428                  * If inc causes overflow, untouch promisc and return error.
8429                  */
8430                 if (inc < 0)
8431                         dev->flags &= ~IFF_PROMISC;
8432                 else {
8433                         dev->promiscuity -= inc;
8434                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8435                         return -EOVERFLOW;
8436                 }
8437         }
8438         if (dev->flags != old_flags) {
8439                 netdev_info(dev, "%s promiscuous mode\n",
8440                             dev->flags & IFF_PROMISC ? "entered" : "left");
8441                 if (audit_enabled) {
8442                         current_uid_gid(&uid, &gid);
8443                         audit_log(audit_context(), GFP_ATOMIC,
8444                                   AUDIT_ANOM_PROMISCUOUS,
8445                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8446                                   dev->name, (dev->flags & IFF_PROMISC),
8447                                   (old_flags & IFF_PROMISC),
8448                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8449                                   from_kuid(&init_user_ns, uid),
8450                                   from_kgid(&init_user_ns, gid),
8451                                   audit_get_sessionid(current));
8452                 }
8453
8454                 dev_change_rx_flags(dev, IFF_PROMISC);
8455         }
8456         if (notify)
8457                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8458         return 0;
8459 }
8460
8461 /**
8462  *      dev_set_promiscuity     - update promiscuity count on a device
8463  *      @dev: device
8464  *      @inc: modifier
8465  *
8466  *      Add or remove promiscuity from a device. While the count in the device
8467  *      remains above zero the interface remains promiscuous. Once it hits zero
8468  *      the device reverts back to normal filtering operation. A negative inc
8469  *      value is used to drop promiscuity on the device.
8470  *      Return 0 if successful or a negative errno code on error.
8471  */
8472 int dev_set_promiscuity(struct net_device *dev, int inc)
8473 {
8474         unsigned int old_flags = dev->flags;
8475         int err;
8476
8477         err = __dev_set_promiscuity(dev, inc, true);
8478         if (err < 0)
8479                 return err;
8480         if (dev->flags != old_flags)
8481                 dev_set_rx_mode(dev);
8482         return err;
8483 }
8484 EXPORT_SYMBOL(dev_set_promiscuity);
8485
8486 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8487 {
8488         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8489
8490         ASSERT_RTNL();
8491
8492         dev->flags |= IFF_ALLMULTI;
8493         dev->allmulti += inc;
8494         if (dev->allmulti == 0) {
8495                 /*
8496                  * Avoid overflow.
8497                  * If inc causes overflow, untouch allmulti and return error.
8498                  */
8499                 if (inc < 0)
8500                         dev->flags &= ~IFF_ALLMULTI;
8501                 else {
8502                         dev->allmulti -= inc;
8503                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8504                         return -EOVERFLOW;
8505                 }
8506         }
8507         if (dev->flags ^ old_flags) {
8508                 netdev_info(dev, "%s allmulticast mode\n",
8509                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8510                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8511                 dev_set_rx_mode(dev);
8512                 if (notify)
8513                         __dev_notify_flags(dev, old_flags,
8514                                            dev->gflags ^ old_gflags, 0, NULL);
8515         }
8516         return 0;
8517 }
8518
8519 /**
8520  *      dev_set_allmulti        - update allmulti count on a device
8521  *      @dev: device
8522  *      @inc: modifier
8523  *
8524  *      Add or remove reception of all multicast frames to a device. While the
8525  *      count in the device remains above zero the interface remains listening
8526  *      to all interfaces. Once it hits zero the device reverts back to normal
8527  *      filtering operation. A negative @inc value is used to drop the counter
8528  *      when releasing a resource needing all multicasts.
8529  *      Return 0 if successful or a negative errno code on error.
8530  */
8531
8532 int dev_set_allmulti(struct net_device *dev, int inc)
8533 {
8534         return __dev_set_allmulti(dev, inc, true);
8535 }
8536 EXPORT_SYMBOL(dev_set_allmulti);
8537
8538 /*
8539  *      Upload unicast and multicast address lists to device and
8540  *      configure RX filtering. When the device doesn't support unicast
8541  *      filtering it is put in promiscuous mode while unicast addresses
8542  *      are present.
8543  */
8544 void __dev_set_rx_mode(struct net_device *dev)
8545 {
8546         const struct net_device_ops *ops = dev->netdev_ops;
8547
8548         /* dev_open will call this function so the list will stay sane. */
8549         if (!(dev->flags&IFF_UP))
8550                 return;
8551
8552         if (!netif_device_present(dev))
8553                 return;
8554
8555         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8556                 /* Unicast addresses changes may only happen under the rtnl,
8557                  * therefore calling __dev_set_promiscuity here is safe.
8558                  */
8559                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8560                         __dev_set_promiscuity(dev, 1, false);
8561                         dev->uc_promisc = true;
8562                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8563                         __dev_set_promiscuity(dev, -1, false);
8564                         dev->uc_promisc = false;
8565                 }
8566         }
8567
8568         if (ops->ndo_set_rx_mode)
8569                 ops->ndo_set_rx_mode(dev);
8570 }
8571
8572 void dev_set_rx_mode(struct net_device *dev)
8573 {
8574         netif_addr_lock_bh(dev);
8575         __dev_set_rx_mode(dev);
8576         netif_addr_unlock_bh(dev);
8577 }
8578
8579 /**
8580  *      dev_get_flags - get flags reported to userspace
8581  *      @dev: device
8582  *
8583  *      Get the combination of flag bits exported through APIs to userspace.
8584  */
8585 unsigned int dev_get_flags(const struct net_device *dev)
8586 {
8587         unsigned int flags;
8588
8589         flags = (dev->flags & ~(IFF_PROMISC |
8590                                 IFF_ALLMULTI |
8591                                 IFF_RUNNING |
8592                                 IFF_LOWER_UP |
8593                                 IFF_DORMANT)) |
8594                 (dev->gflags & (IFF_PROMISC |
8595                                 IFF_ALLMULTI));
8596
8597         if (netif_running(dev)) {
8598                 if (netif_oper_up(dev))
8599                         flags |= IFF_RUNNING;
8600                 if (netif_carrier_ok(dev))
8601                         flags |= IFF_LOWER_UP;
8602                 if (netif_dormant(dev))
8603                         flags |= IFF_DORMANT;
8604         }
8605
8606         return flags;
8607 }
8608 EXPORT_SYMBOL(dev_get_flags);
8609
8610 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8611                        struct netlink_ext_ack *extack)
8612 {
8613         unsigned int old_flags = dev->flags;
8614         int ret;
8615
8616         ASSERT_RTNL();
8617
8618         /*
8619          *      Set the flags on our device.
8620          */
8621
8622         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8623                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8624                                IFF_AUTOMEDIA)) |
8625                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8626                                     IFF_ALLMULTI));
8627
8628         /*
8629          *      Load in the correct multicast list now the flags have changed.
8630          */
8631
8632         if ((old_flags ^ flags) & IFF_MULTICAST)
8633                 dev_change_rx_flags(dev, IFF_MULTICAST);
8634
8635         dev_set_rx_mode(dev);
8636
8637         /*
8638          *      Have we downed the interface. We handle IFF_UP ourselves
8639          *      according to user attempts to set it, rather than blindly
8640          *      setting it.
8641          */
8642
8643         ret = 0;
8644         if ((old_flags ^ flags) & IFF_UP) {
8645                 if (old_flags & IFF_UP)
8646                         __dev_close(dev);
8647                 else
8648                         ret = __dev_open(dev, extack);
8649         }
8650
8651         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8652                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8653                 unsigned int old_flags = dev->flags;
8654
8655                 dev->gflags ^= IFF_PROMISC;
8656
8657                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8658                         if (dev->flags != old_flags)
8659                                 dev_set_rx_mode(dev);
8660         }
8661
8662         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8663          * is important. Some (broken) drivers set IFF_PROMISC, when
8664          * IFF_ALLMULTI is requested not asking us and not reporting.
8665          */
8666         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8667                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8668
8669                 dev->gflags ^= IFF_ALLMULTI;
8670                 __dev_set_allmulti(dev, inc, false);
8671         }
8672
8673         return ret;
8674 }
8675
8676 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8677                         unsigned int gchanges, u32 portid,
8678                         const struct nlmsghdr *nlh)
8679 {
8680         unsigned int changes = dev->flags ^ old_flags;
8681
8682         if (gchanges)
8683                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8684
8685         if (changes & IFF_UP) {
8686                 if (dev->flags & IFF_UP)
8687                         call_netdevice_notifiers(NETDEV_UP, dev);
8688                 else
8689                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8690         }
8691
8692         if (dev->flags & IFF_UP &&
8693             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8694                 struct netdev_notifier_change_info change_info = {
8695                         .info = {
8696                                 .dev = dev,
8697                         },
8698                         .flags_changed = changes,
8699                 };
8700
8701                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8702         }
8703 }
8704
8705 /**
8706  *      dev_change_flags - change device settings
8707  *      @dev: device
8708  *      @flags: device state flags
8709  *      @extack: netlink extended ack
8710  *
8711  *      Change settings on device based state flags. The flags are
8712  *      in the userspace exported format.
8713  */
8714 int dev_change_flags(struct net_device *dev, unsigned int flags,
8715                      struct netlink_ext_ack *extack)
8716 {
8717         int ret;
8718         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8719
8720         ret = __dev_change_flags(dev, flags, extack);
8721         if (ret < 0)
8722                 return ret;
8723
8724         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8725         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8726         return ret;
8727 }
8728 EXPORT_SYMBOL(dev_change_flags);
8729
8730 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8731 {
8732         const struct net_device_ops *ops = dev->netdev_ops;
8733
8734         if (ops->ndo_change_mtu)
8735                 return ops->ndo_change_mtu(dev, new_mtu);
8736
8737         /* Pairs with all the lockless reads of dev->mtu in the stack */
8738         WRITE_ONCE(dev->mtu, new_mtu);
8739         return 0;
8740 }
8741 EXPORT_SYMBOL(__dev_set_mtu);
8742
8743 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8744                      struct netlink_ext_ack *extack)
8745 {
8746         /* MTU must be positive, and in range */
8747         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8748                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8749                 return -EINVAL;
8750         }
8751
8752         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8753                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8754                 return -EINVAL;
8755         }
8756         return 0;
8757 }
8758
8759 /**
8760  *      dev_set_mtu_ext - Change maximum transfer unit
8761  *      @dev: device
8762  *      @new_mtu: new transfer unit
8763  *      @extack: netlink extended ack
8764  *
8765  *      Change the maximum transfer size of the network device.
8766  */
8767 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8768                     struct netlink_ext_ack *extack)
8769 {
8770         int err, orig_mtu;
8771
8772         if (new_mtu == dev->mtu)
8773                 return 0;
8774
8775         err = dev_validate_mtu(dev, new_mtu, extack);
8776         if (err)
8777                 return err;
8778
8779         if (!netif_device_present(dev))
8780                 return -ENODEV;
8781
8782         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8783         err = notifier_to_errno(err);
8784         if (err)
8785                 return err;
8786
8787         orig_mtu = dev->mtu;
8788         err = __dev_set_mtu(dev, new_mtu);
8789
8790         if (!err) {
8791                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8792                                                    orig_mtu);
8793                 err = notifier_to_errno(err);
8794                 if (err) {
8795                         /* setting mtu back and notifying everyone again,
8796                          * so that they have a chance to revert changes.
8797                          */
8798                         __dev_set_mtu(dev, orig_mtu);
8799                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8800                                                      new_mtu);
8801                 }
8802         }
8803         return err;
8804 }
8805
8806 int dev_set_mtu(struct net_device *dev, int new_mtu)
8807 {
8808         struct netlink_ext_ack extack;
8809         int err;
8810
8811         memset(&extack, 0, sizeof(extack));
8812         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8813         if (err && extack._msg)
8814                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8815         return err;
8816 }
8817 EXPORT_SYMBOL(dev_set_mtu);
8818
8819 /**
8820  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8821  *      @dev: device
8822  *      @new_len: new tx queue length
8823  */
8824 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8825 {
8826         unsigned int orig_len = dev->tx_queue_len;
8827         int res;
8828
8829         if (new_len != (unsigned int)new_len)
8830                 return -ERANGE;
8831
8832         if (new_len != orig_len) {
8833                 dev->tx_queue_len = new_len;
8834                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8835                 res = notifier_to_errno(res);
8836                 if (res)
8837                         goto err_rollback;
8838                 res = dev_qdisc_change_tx_queue_len(dev);
8839                 if (res)
8840                         goto err_rollback;
8841         }
8842
8843         return 0;
8844
8845 err_rollback:
8846         netdev_err(dev, "refused to change device tx_queue_len\n");
8847         dev->tx_queue_len = orig_len;
8848         return res;
8849 }
8850
8851 /**
8852  *      dev_set_group - Change group this device belongs to
8853  *      @dev: device
8854  *      @new_group: group this device should belong to
8855  */
8856 void dev_set_group(struct net_device *dev, int new_group)
8857 {
8858         dev->group = new_group;
8859 }
8860
8861 /**
8862  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8863  *      @dev: device
8864  *      @addr: new address
8865  *      @extack: netlink extended ack
8866  */
8867 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8868                               struct netlink_ext_ack *extack)
8869 {
8870         struct netdev_notifier_pre_changeaddr_info info = {
8871                 .info.dev = dev,
8872                 .info.extack = extack,
8873                 .dev_addr = addr,
8874         };
8875         int rc;
8876
8877         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8878         return notifier_to_errno(rc);
8879 }
8880 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8881
8882 /**
8883  *      dev_set_mac_address - Change Media Access Control Address
8884  *      @dev: device
8885  *      @sa: new address
8886  *      @extack: netlink extended ack
8887  *
8888  *      Change the hardware (MAC) address of the device
8889  */
8890 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8891                         struct netlink_ext_ack *extack)
8892 {
8893         const struct net_device_ops *ops = dev->netdev_ops;
8894         int err;
8895
8896         if (!ops->ndo_set_mac_address)
8897                 return -EOPNOTSUPP;
8898         if (sa->sa_family != dev->type)
8899                 return -EINVAL;
8900         if (!netif_device_present(dev))
8901                 return -ENODEV;
8902         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8903         if (err)
8904                 return err;
8905         if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8906                 err = ops->ndo_set_mac_address(dev, sa);
8907                 if (err)
8908                         return err;
8909         }
8910         dev->addr_assign_type = NET_ADDR_SET;
8911         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8912         add_device_randomness(dev->dev_addr, dev->addr_len);
8913         return 0;
8914 }
8915 EXPORT_SYMBOL(dev_set_mac_address);
8916
8917 static DECLARE_RWSEM(dev_addr_sem);
8918
8919 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8920                              struct netlink_ext_ack *extack)
8921 {
8922         int ret;
8923
8924         down_write(&dev_addr_sem);
8925         ret = dev_set_mac_address(dev, sa, extack);
8926         up_write(&dev_addr_sem);
8927         return ret;
8928 }
8929 EXPORT_SYMBOL(dev_set_mac_address_user);
8930
8931 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8932 {
8933         size_t size = sizeof(sa->sa_data_min);
8934         struct net_device *dev;
8935         int ret = 0;
8936
8937         down_read(&dev_addr_sem);
8938         rcu_read_lock();
8939
8940         dev = dev_get_by_name_rcu(net, dev_name);
8941         if (!dev) {
8942                 ret = -ENODEV;
8943                 goto unlock;
8944         }
8945         if (!dev->addr_len)
8946                 memset(sa->sa_data, 0, size);
8947         else
8948                 memcpy(sa->sa_data, dev->dev_addr,
8949                        min_t(size_t, size, dev->addr_len));
8950         sa->sa_family = dev->type;
8951
8952 unlock:
8953         rcu_read_unlock();
8954         up_read(&dev_addr_sem);
8955         return ret;
8956 }
8957 EXPORT_SYMBOL(dev_get_mac_address);
8958
8959 /**
8960  *      dev_change_carrier - Change device carrier
8961  *      @dev: device
8962  *      @new_carrier: new value
8963  *
8964  *      Change device carrier
8965  */
8966 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8967 {
8968         const struct net_device_ops *ops = dev->netdev_ops;
8969
8970         if (!ops->ndo_change_carrier)
8971                 return -EOPNOTSUPP;
8972         if (!netif_device_present(dev))
8973                 return -ENODEV;
8974         return ops->ndo_change_carrier(dev, new_carrier);
8975 }
8976
8977 /**
8978  *      dev_get_phys_port_id - Get device physical port ID
8979  *      @dev: device
8980  *      @ppid: port ID
8981  *
8982  *      Get device physical port ID
8983  */
8984 int dev_get_phys_port_id(struct net_device *dev,
8985                          struct netdev_phys_item_id *ppid)
8986 {
8987         const struct net_device_ops *ops = dev->netdev_ops;
8988
8989         if (!ops->ndo_get_phys_port_id)
8990                 return -EOPNOTSUPP;
8991         return ops->ndo_get_phys_port_id(dev, ppid);
8992 }
8993
8994 /**
8995  *      dev_get_phys_port_name - Get device physical port name
8996  *      @dev: device
8997  *      @name: port name
8998  *      @len: limit of bytes to copy to name
8999  *
9000  *      Get device physical port name
9001  */
9002 int dev_get_phys_port_name(struct net_device *dev,
9003                            char *name, size_t len)
9004 {
9005         const struct net_device_ops *ops = dev->netdev_ops;
9006         int err;
9007
9008         if (ops->ndo_get_phys_port_name) {
9009                 err = ops->ndo_get_phys_port_name(dev, name, len);
9010                 if (err != -EOPNOTSUPP)
9011                         return err;
9012         }
9013         return devlink_compat_phys_port_name_get(dev, name, len);
9014 }
9015
9016 /**
9017  *      dev_get_port_parent_id - Get the device's port parent identifier
9018  *      @dev: network device
9019  *      @ppid: pointer to a storage for the port's parent identifier
9020  *      @recurse: allow/disallow recursion to lower devices
9021  *
9022  *      Get the devices's port parent identifier
9023  */
9024 int dev_get_port_parent_id(struct net_device *dev,
9025                            struct netdev_phys_item_id *ppid,
9026                            bool recurse)
9027 {
9028         const struct net_device_ops *ops = dev->netdev_ops;
9029         struct netdev_phys_item_id first = { };
9030         struct net_device *lower_dev;
9031         struct list_head *iter;
9032         int err;
9033
9034         if (ops->ndo_get_port_parent_id) {
9035                 err = ops->ndo_get_port_parent_id(dev, ppid);
9036                 if (err != -EOPNOTSUPP)
9037                         return err;
9038         }
9039
9040         err = devlink_compat_switch_id_get(dev, ppid);
9041         if (!recurse || err != -EOPNOTSUPP)
9042                 return err;
9043
9044         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9045                 err = dev_get_port_parent_id(lower_dev, ppid, true);
9046                 if (err)
9047                         break;
9048                 if (!first.id_len)
9049                         first = *ppid;
9050                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9051                         return -EOPNOTSUPP;
9052         }
9053
9054         return err;
9055 }
9056 EXPORT_SYMBOL(dev_get_port_parent_id);
9057
9058 /**
9059  *      netdev_port_same_parent_id - Indicate if two network devices have
9060  *      the same port parent identifier
9061  *      @a: first network device
9062  *      @b: second network device
9063  */
9064 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9065 {
9066         struct netdev_phys_item_id a_id = { };
9067         struct netdev_phys_item_id b_id = { };
9068
9069         if (dev_get_port_parent_id(a, &a_id, true) ||
9070             dev_get_port_parent_id(b, &b_id, true))
9071                 return false;
9072
9073         return netdev_phys_item_id_same(&a_id, &b_id);
9074 }
9075 EXPORT_SYMBOL(netdev_port_same_parent_id);
9076
9077 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9078 {
9079 #if IS_ENABLED(CONFIG_DPLL)
9080         rtnl_lock();
9081         dev->dpll_pin = dpll_pin;
9082         rtnl_unlock();
9083 #endif
9084 }
9085
9086 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9087 {
9088         WARN_ON(!dpll_pin);
9089         netdev_dpll_pin_assign(dev, dpll_pin);
9090 }
9091 EXPORT_SYMBOL(netdev_dpll_pin_set);
9092
9093 void netdev_dpll_pin_clear(struct net_device *dev)
9094 {
9095         netdev_dpll_pin_assign(dev, NULL);
9096 }
9097 EXPORT_SYMBOL(netdev_dpll_pin_clear);
9098
9099 /**
9100  *      dev_change_proto_down - set carrier according to proto_down.
9101  *
9102  *      @dev: device
9103  *      @proto_down: new value
9104  */
9105 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9106 {
9107         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9108                 return -EOPNOTSUPP;
9109         if (!netif_device_present(dev))
9110                 return -ENODEV;
9111         if (proto_down)
9112                 netif_carrier_off(dev);
9113         else
9114                 netif_carrier_on(dev);
9115         dev->proto_down = proto_down;
9116         return 0;
9117 }
9118
9119 /**
9120  *      dev_change_proto_down_reason - proto down reason
9121  *
9122  *      @dev: device
9123  *      @mask: proto down mask
9124  *      @value: proto down value
9125  */
9126 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9127                                   u32 value)
9128 {
9129         int b;
9130
9131         if (!mask) {
9132                 dev->proto_down_reason = value;
9133         } else {
9134                 for_each_set_bit(b, &mask, 32) {
9135                         if (value & (1 << b))
9136                                 dev->proto_down_reason |= BIT(b);
9137                         else
9138                                 dev->proto_down_reason &= ~BIT(b);
9139                 }
9140         }
9141 }
9142
9143 struct bpf_xdp_link {
9144         struct bpf_link link;
9145         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9146         int flags;
9147 };
9148
9149 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9150 {
9151         if (flags & XDP_FLAGS_HW_MODE)
9152                 return XDP_MODE_HW;
9153         if (flags & XDP_FLAGS_DRV_MODE)
9154                 return XDP_MODE_DRV;
9155         if (flags & XDP_FLAGS_SKB_MODE)
9156                 return XDP_MODE_SKB;
9157         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9158 }
9159
9160 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9161 {
9162         switch (mode) {
9163         case XDP_MODE_SKB:
9164                 return generic_xdp_install;
9165         case XDP_MODE_DRV:
9166         case XDP_MODE_HW:
9167                 return dev->netdev_ops->ndo_bpf;
9168         default:
9169                 return NULL;
9170         }
9171 }
9172
9173 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9174                                          enum bpf_xdp_mode mode)
9175 {
9176         return dev->xdp_state[mode].link;
9177 }
9178
9179 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9180                                      enum bpf_xdp_mode mode)
9181 {
9182         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9183
9184         if (link)
9185                 return link->link.prog;
9186         return dev->xdp_state[mode].prog;
9187 }
9188
9189 u8 dev_xdp_prog_count(struct net_device *dev)
9190 {
9191         u8 count = 0;
9192         int i;
9193
9194         for (i = 0; i < __MAX_XDP_MODE; i++)
9195                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9196                         count++;
9197         return count;
9198 }
9199 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9200
9201 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9202 {
9203         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9204
9205         return prog ? prog->aux->id : 0;
9206 }
9207
9208 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9209                              struct bpf_xdp_link *link)
9210 {
9211         dev->xdp_state[mode].link = link;
9212         dev->xdp_state[mode].prog = NULL;
9213 }
9214
9215 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9216                              struct bpf_prog *prog)
9217 {
9218         dev->xdp_state[mode].link = NULL;
9219         dev->xdp_state[mode].prog = prog;
9220 }
9221
9222 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9223                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9224                            u32 flags, struct bpf_prog *prog)
9225 {
9226         struct netdev_bpf xdp;
9227         int err;
9228
9229         memset(&xdp, 0, sizeof(xdp));
9230         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9231         xdp.extack = extack;
9232         xdp.flags = flags;
9233         xdp.prog = prog;
9234
9235         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9236          * "moved" into driver), so they don't increment it on their own, but
9237          * they do decrement refcnt when program is detached or replaced.
9238          * Given net_device also owns link/prog, we need to bump refcnt here
9239          * to prevent drivers from underflowing it.
9240          */
9241         if (prog)
9242                 bpf_prog_inc(prog);
9243         err = bpf_op(dev, &xdp);
9244         if (err) {
9245                 if (prog)
9246                         bpf_prog_put(prog);
9247                 return err;
9248         }
9249
9250         if (mode != XDP_MODE_HW)
9251                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9252
9253         return 0;
9254 }
9255
9256 static void dev_xdp_uninstall(struct net_device *dev)
9257 {
9258         struct bpf_xdp_link *link;
9259         struct bpf_prog *prog;
9260         enum bpf_xdp_mode mode;
9261         bpf_op_t bpf_op;
9262
9263         ASSERT_RTNL();
9264
9265         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9266                 prog = dev_xdp_prog(dev, mode);
9267                 if (!prog)
9268                         continue;
9269
9270                 bpf_op = dev_xdp_bpf_op(dev, mode);
9271                 if (!bpf_op)
9272                         continue;
9273
9274                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9275
9276                 /* auto-detach link from net device */
9277                 link = dev_xdp_link(dev, mode);
9278                 if (link)
9279                         link->dev = NULL;
9280                 else
9281                         bpf_prog_put(prog);
9282
9283                 dev_xdp_set_link(dev, mode, NULL);
9284         }
9285 }
9286
9287 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9288                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9289                           struct bpf_prog *old_prog, u32 flags)
9290 {
9291         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9292         struct bpf_prog *cur_prog;
9293         struct net_device *upper;
9294         struct list_head *iter;
9295         enum bpf_xdp_mode mode;
9296         bpf_op_t bpf_op;
9297         int err;
9298
9299         ASSERT_RTNL();
9300
9301         /* either link or prog attachment, never both */
9302         if (link && (new_prog || old_prog))
9303                 return -EINVAL;
9304         /* link supports only XDP mode flags */
9305         if (link && (flags & ~XDP_FLAGS_MODES)) {
9306                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9307                 return -EINVAL;
9308         }
9309         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9310         if (num_modes > 1) {
9311                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9312                 return -EINVAL;
9313         }
9314         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9315         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9316                 NL_SET_ERR_MSG(extack,
9317                                "More than one program loaded, unset mode is ambiguous");
9318                 return -EINVAL;
9319         }
9320         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9321         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9322                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9323                 return -EINVAL;
9324         }
9325
9326         mode = dev_xdp_mode(dev, flags);
9327         /* can't replace attached link */
9328         if (dev_xdp_link(dev, mode)) {
9329                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9330                 return -EBUSY;
9331         }
9332
9333         /* don't allow if an upper device already has a program */
9334         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9335                 if (dev_xdp_prog_count(upper) > 0) {
9336                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9337                         return -EEXIST;
9338                 }
9339         }
9340
9341         cur_prog = dev_xdp_prog(dev, mode);
9342         /* can't replace attached prog with link */
9343         if (link && cur_prog) {
9344                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9345                 return -EBUSY;
9346         }
9347         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9348                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9349                 return -EEXIST;
9350         }
9351
9352         /* put effective new program into new_prog */
9353         if (link)
9354                 new_prog = link->link.prog;
9355
9356         if (new_prog) {
9357                 bool offload = mode == XDP_MODE_HW;
9358                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9359                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9360
9361                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9362                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9363                         return -EBUSY;
9364                 }
9365                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9366                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9367                         return -EEXIST;
9368                 }
9369                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9370                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9371                         return -EINVAL;
9372                 }
9373                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9374                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9375                         return -EINVAL;
9376                 }
9377                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9378                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9379                         return -EINVAL;
9380                 }
9381                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9382                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9383                         return -EINVAL;
9384                 }
9385         }
9386
9387         /* don't call drivers if the effective program didn't change */
9388         if (new_prog != cur_prog) {
9389                 bpf_op = dev_xdp_bpf_op(dev, mode);
9390                 if (!bpf_op) {
9391                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9392                         return -EOPNOTSUPP;
9393                 }
9394
9395                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9396                 if (err)
9397                         return err;
9398         }
9399
9400         if (link)
9401                 dev_xdp_set_link(dev, mode, link);
9402         else
9403                 dev_xdp_set_prog(dev, mode, new_prog);
9404         if (cur_prog)
9405                 bpf_prog_put(cur_prog);
9406
9407         return 0;
9408 }
9409
9410 static int dev_xdp_attach_link(struct net_device *dev,
9411                                struct netlink_ext_ack *extack,
9412                                struct bpf_xdp_link *link)
9413 {
9414         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9415 }
9416
9417 static int dev_xdp_detach_link(struct net_device *dev,
9418                                struct netlink_ext_ack *extack,
9419                                struct bpf_xdp_link *link)
9420 {
9421         enum bpf_xdp_mode mode;
9422         bpf_op_t bpf_op;
9423
9424         ASSERT_RTNL();
9425
9426         mode = dev_xdp_mode(dev, link->flags);
9427         if (dev_xdp_link(dev, mode) != link)
9428                 return -EINVAL;
9429
9430         bpf_op = dev_xdp_bpf_op(dev, mode);
9431         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9432         dev_xdp_set_link(dev, mode, NULL);
9433         return 0;
9434 }
9435
9436 static void bpf_xdp_link_release(struct bpf_link *link)
9437 {
9438         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9439
9440         rtnl_lock();
9441
9442         /* if racing with net_device's tear down, xdp_link->dev might be
9443          * already NULL, in which case link was already auto-detached
9444          */
9445         if (xdp_link->dev) {
9446                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9447                 xdp_link->dev = NULL;
9448         }
9449
9450         rtnl_unlock();
9451 }
9452
9453 static int bpf_xdp_link_detach(struct bpf_link *link)
9454 {
9455         bpf_xdp_link_release(link);
9456         return 0;
9457 }
9458
9459 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9460 {
9461         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9462
9463         kfree(xdp_link);
9464 }
9465
9466 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9467                                      struct seq_file *seq)
9468 {
9469         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9470         u32 ifindex = 0;
9471
9472         rtnl_lock();
9473         if (xdp_link->dev)
9474                 ifindex = xdp_link->dev->ifindex;
9475         rtnl_unlock();
9476
9477         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9478 }
9479
9480 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9481                                        struct bpf_link_info *info)
9482 {
9483         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9484         u32 ifindex = 0;
9485
9486         rtnl_lock();
9487         if (xdp_link->dev)
9488                 ifindex = xdp_link->dev->ifindex;
9489         rtnl_unlock();
9490
9491         info->xdp.ifindex = ifindex;
9492         return 0;
9493 }
9494
9495 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9496                                struct bpf_prog *old_prog)
9497 {
9498         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9499         enum bpf_xdp_mode mode;
9500         bpf_op_t bpf_op;
9501         int err = 0;
9502
9503         rtnl_lock();
9504
9505         /* link might have been auto-released already, so fail */
9506         if (!xdp_link->dev) {
9507                 err = -ENOLINK;
9508                 goto out_unlock;
9509         }
9510
9511         if (old_prog && link->prog != old_prog) {
9512                 err = -EPERM;
9513                 goto out_unlock;
9514         }
9515         old_prog = link->prog;
9516         if (old_prog->type != new_prog->type ||
9517             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9518                 err = -EINVAL;
9519                 goto out_unlock;
9520         }
9521
9522         if (old_prog == new_prog) {
9523                 /* no-op, don't disturb drivers */
9524                 bpf_prog_put(new_prog);
9525                 goto out_unlock;
9526         }
9527
9528         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9529         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9530         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9531                               xdp_link->flags, new_prog);
9532         if (err)
9533                 goto out_unlock;
9534
9535         old_prog = xchg(&link->prog, new_prog);
9536         bpf_prog_put(old_prog);
9537
9538 out_unlock:
9539         rtnl_unlock();
9540         return err;
9541 }
9542
9543 static const struct bpf_link_ops bpf_xdp_link_lops = {
9544         .release = bpf_xdp_link_release,
9545         .dealloc = bpf_xdp_link_dealloc,
9546         .detach = bpf_xdp_link_detach,
9547         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9548         .fill_link_info = bpf_xdp_link_fill_link_info,
9549         .update_prog = bpf_xdp_link_update,
9550 };
9551
9552 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9553 {
9554         struct net *net = current->nsproxy->net_ns;
9555         struct bpf_link_primer link_primer;
9556         struct netlink_ext_ack extack = {};
9557         struct bpf_xdp_link *link;
9558         struct net_device *dev;
9559         int err, fd;
9560
9561         rtnl_lock();
9562         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9563         if (!dev) {
9564                 rtnl_unlock();
9565                 return -EINVAL;
9566         }
9567
9568         link = kzalloc(sizeof(*link), GFP_USER);
9569         if (!link) {
9570                 err = -ENOMEM;
9571                 goto unlock;
9572         }
9573
9574         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9575         link->dev = dev;
9576         link->flags = attr->link_create.flags;
9577
9578         err = bpf_link_prime(&link->link, &link_primer);
9579         if (err) {
9580                 kfree(link);
9581                 goto unlock;
9582         }
9583
9584         err = dev_xdp_attach_link(dev, &extack, link);
9585         rtnl_unlock();
9586
9587         if (err) {
9588                 link->dev = NULL;
9589                 bpf_link_cleanup(&link_primer);
9590                 trace_bpf_xdp_link_attach_failed(extack._msg);
9591                 goto out_put_dev;
9592         }
9593
9594         fd = bpf_link_settle(&link_primer);
9595         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9596         dev_put(dev);
9597         return fd;
9598
9599 unlock:
9600         rtnl_unlock();
9601
9602 out_put_dev:
9603         dev_put(dev);
9604         return err;
9605 }
9606
9607 /**
9608  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9609  *      @dev: device
9610  *      @extack: netlink extended ack
9611  *      @fd: new program fd or negative value to clear
9612  *      @expected_fd: old program fd that userspace expects to replace or clear
9613  *      @flags: xdp-related flags
9614  *
9615  *      Set or clear a bpf program for a device
9616  */
9617 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9618                       int fd, int expected_fd, u32 flags)
9619 {
9620         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9621         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9622         int err;
9623
9624         ASSERT_RTNL();
9625
9626         if (fd >= 0) {
9627                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9628                                                  mode != XDP_MODE_SKB);
9629                 if (IS_ERR(new_prog))
9630                         return PTR_ERR(new_prog);
9631         }
9632
9633         if (expected_fd >= 0) {
9634                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9635                                                  mode != XDP_MODE_SKB);
9636                 if (IS_ERR(old_prog)) {
9637                         err = PTR_ERR(old_prog);
9638                         old_prog = NULL;
9639                         goto err_out;
9640                 }
9641         }
9642
9643         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9644
9645 err_out:
9646         if (err && new_prog)
9647                 bpf_prog_put(new_prog);
9648         if (old_prog)
9649                 bpf_prog_put(old_prog);
9650         return err;
9651 }
9652
9653 /**
9654  * dev_index_reserve() - allocate an ifindex in a namespace
9655  * @net: the applicable net namespace
9656  * @ifindex: requested ifindex, pass %0 to get one allocated
9657  *
9658  * Allocate a ifindex for a new device. Caller must either use the ifindex
9659  * to store the device (via list_netdevice()) or call dev_index_release()
9660  * to give the index up.
9661  *
9662  * Return: a suitable unique value for a new device interface number or -errno.
9663  */
9664 static int dev_index_reserve(struct net *net, u32 ifindex)
9665 {
9666         int err;
9667
9668         if (ifindex > INT_MAX) {
9669                 DEBUG_NET_WARN_ON_ONCE(1);
9670                 return -EINVAL;
9671         }
9672
9673         if (!ifindex)
9674                 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9675                                       xa_limit_31b, &net->ifindex, GFP_KERNEL);
9676         else
9677                 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9678         if (err < 0)
9679                 return err;
9680
9681         return ifindex;
9682 }
9683
9684 static void dev_index_release(struct net *net, int ifindex)
9685 {
9686         /* Expect only unused indexes, unlist_netdevice() removes the used */
9687         WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9688 }
9689
9690 /* Delayed registration/unregisteration */
9691 LIST_HEAD(net_todo_list);
9692 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9693
9694 static void net_set_todo(struct net_device *dev)
9695 {
9696         list_add_tail(&dev->todo_list, &net_todo_list);
9697         atomic_inc(&dev_net(dev)->dev_unreg_count);
9698 }
9699
9700 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9701         struct net_device *upper, netdev_features_t features)
9702 {
9703         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9704         netdev_features_t feature;
9705         int feature_bit;
9706
9707         for_each_netdev_feature(upper_disables, feature_bit) {
9708                 feature = __NETIF_F_BIT(feature_bit);
9709                 if (!(upper->wanted_features & feature)
9710                     && (features & feature)) {
9711                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9712                                    &feature, upper->name);
9713                         features &= ~feature;
9714                 }
9715         }
9716
9717         return features;
9718 }
9719
9720 static void netdev_sync_lower_features(struct net_device *upper,
9721         struct net_device *lower, netdev_features_t features)
9722 {
9723         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9724         netdev_features_t feature;
9725         int feature_bit;
9726
9727         for_each_netdev_feature(upper_disables, feature_bit) {
9728                 feature = __NETIF_F_BIT(feature_bit);
9729                 if (!(features & feature) && (lower->features & feature)) {
9730                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9731                                    &feature, lower->name);
9732                         lower->wanted_features &= ~feature;
9733                         __netdev_update_features(lower);
9734
9735                         if (unlikely(lower->features & feature))
9736                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9737                                             &feature, lower->name);
9738                         else
9739                                 netdev_features_change(lower);
9740                 }
9741         }
9742 }
9743
9744 static netdev_features_t netdev_fix_features(struct net_device *dev,
9745         netdev_features_t features)
9746 {
9747         /* Fix illegal checksum combinations */
9748         if ((features & NETIF_F_HW_CSUM) &&
9749             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9750                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9751                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9752         }
9753
9754         /* TSO requires that SG is present as well. */
9755         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9756                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9757                 features &= ~NETIF_F_ALL_TSO;
9758         }
9759
9760         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9761                                         !(features & NETIF_F_IP_CSUM)) {
9762                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9763                 features &= ~NETIF_F_TSO;
9764                 features &= ~NETIF_F_TSO_ECN;
9765         }
9766
9767         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9768                                          !(features & NETIF_F_IPV6_CSUM)) {
9769                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9770                 features &= ~NETIF_F_TSO6;
9771         }
9772
9773         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9774         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9775                 features &= ~NETIF_F_TSO_MANGLEID;
9776
9777         /* TSO ECN requires that TSO is present as well. */
9778         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9779                 features &= ~NETIF_F_TSO_ECN;
9780
9781         /* Software GSO depends on SG. */
9782         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9783                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9784                 features &= ~NETIF_F_GSO;
9785         }
9786
9787         /* GSO partial features require GSO partial be set */
9788         if ((features & dev->gso_partial_features) &&
9789             !(features & NETIF_F_GSO_PARTIAL)) {
9790                 netdev_dbg(dev,
9791                            "Dropping partially supported GSO features since no GSO partial.\n");
9792                 features &= ~dev->gso_partial_features;
9793         }
9794
9795         if (!(features & NETIF_F_RXCSUM)) {
9796                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9797                  * successfully merged by hardware must also have the
9798                  * checksum verified by hardware.  If the user does not
9799                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9800                  */
9801                 if (features & NETIF_F_GRO_HW) {
9802                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9803                         features &= ~NETIF_F_GRO_HW;
9804                 }
9805         }
9806
9807         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9808         if (features & NETIF_F_RXFCS) {
9809                 if (features & NETIF_F_LRO) {
9810                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9811                         features &= ~NETIF_F_LRO;
9812                 }
9813
9814                 if (features & NETIF_F_GRO_HW) {
9815                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9816                         features &= ~NETIF_F_GRO_HW;
9817                 }
9818         }
9819
9820         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9821                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9822                 features &= ~NETIF_F_LRO;
9823         }
9824
9825         if (features & NETIF_F_HW_TLS_TX) {
9826                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9827                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9828                 bool hw_csum = features & NETIF_F_HW_CSUM;
9829
9830                 if (!ip_csum && !hw_csum) {
9831                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9832                         features &= ~NETIF_F_HW_TLS_TX;
9833                 }
9834         }
9835
9836         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9837                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9838                 features &= ~NETIF_F_HW_TLS_RX;
9839         }
9840
9841         return features;
9842 }
9843
9844 int __netdev_update_features(struct net_device *dev)
9845 {
9846         struct net_device *upper, *lower;
9847         netdev_features_t features;
9848         struct list_head *iter;
9849         int err = -1;
9850
9851         ASSERT_RTNL();
9852
9853         features = netdev_get_wanted_features(dev);
9854
9855         if (dev->netdev_ops->ndo_fix_features)
9856                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9857
9858         /* driver might be less strict about feature dependencies */
9859         features = netdev_fix_features(dev, features);
9860
9861         /* some features can't be enabled if they're off on an upper device */
9862         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9863                 features = netdev_sync_upper_features(dev, upper, features);
9864
9865         if (dev->features == features)
9866                 goto sync_lower;
9867
9868         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9869                 &dev->features, &features);
9870
9871         if (dev->netdev_ops->ndo_set_features)
9872                 err = dev->netdev_ops->ndo_set_features(dev, features);
9873         else
9874                 err = 0;
9875
9876         if (unlikely(err < 0)) {
9877                 netdev_err(dev,
9878                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9879                         err, &features, &dev->features);
9880                 /* return non-0 since some features might have changed and
9881                  * it's better to fire a spurious notification than miss it
9882                  */
9883                 return -1;
9884         }
9885
9886 sync_lower:
9887         /* some features must be disabled on lower devices when disabled
9888          * on an upper device (think: bonding master or bridge)
9889          */
9890         netdev_for_each_lower_dev(dev, lower, iter)
9891                 netdev_sync_lower_features(dev, lower, features);
9892
9893         if (!err) {
9894                 netdev_features_t diff = features ^ dev->features;
9895
9896                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9897                         /* udp_tunnel_{get,drop}_rx_info both need
9898                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9899                          * device, or they won't do anything.
9900                          * Thus we need to update dev->features
9901                          * *before* calling udp_tunnel_get_rx_info,
9902                          * but *after* calling udp_tunnel_drop_rx_info.
9903                          */
9904                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9905                                 dev->features = features;
9906                                 udp_tunnel_get_rx_info(dev);
9907                         } else {
9908                                 udp_tunnel_drop_rx_info(dev);
9909                         }
9910                 }
9911
9912                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9913                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9914                                 dev->features = features;
9915                                 err |= vlan_get_rx_ctag_filter_info(dev);
9916                         } else {
9917                                 vlan_drop_rx_ctag_filter_info(dev);
9918                         }
9919                 }
9920
9921                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9922                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9923                                 dev->features = features;
9924                                 err |= vlan_get_rx_stag_filter_info(dev);
9925                         } else {
9926                                 vlan_drop_rx_stag_filter_info(dev);
9927                         }
9928                 }
9929
9930                 dev->features = features;
9931         }
9932
9933         return err < 0 ? 0 : 1;
9934 }
9935
9936 /**
9937  *      netdev_update_features - recalculate device features
9938  *      @dev: the device to check
9939  *
9940  *      Recalculate dev->features set and send notifications if it
9941  *      has changed. Should be called after driver or hardware dependent
9942  *      conditions might have changed that influence the features.
9943  */
9944 void netdev_update_features(struct net_device *dev)
9945 {
9946         if (__netdev_update_features(dev))
9947                 netdev_features_change(dev);
9948 }
9949 EXPORT_SYMBOL(netdev_update_features);
9950
9951 /**
9952  *      netdev_change_features - recalculate device features
9953  *      @dev: the device to check
9954  *
9955  *      Recalculate dev->features set and send notifications even
9956  *      if they have not changed. Should be called instead of
9957  *      netdev_update_features() if also dev->vlan_features might
9958  *      have changed to allow the changes to be propagated to stacked
9959  *      VLAN devices.
9960  */
9961 void netdev_change_features(struct net_device *dev)
9962 {
9963         __netdev_update_features(dev);
9964         netdev_features_change(dev);
9965 }
9966 EXPORT_SYMBOL(netdev_change_features);
9967
9968 /**
9969  *      netif_stacked_transfer_operstate -      transfer operstate
9970  *      @rootdev: the root or lower level device to transfer state from
9971  *      @dev: the device to transfer operstate to
9972  *
9973  *      Transfer operational state from root to device. This is normally
9974  *      called when a stacking relationship exists between the root
9975  *      device and the device(a leaf device).
9976  */
9977 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9978                                         struct net_device *dev)
9979 {
9980         if (rootdev->operstate == IF_OPER_DORMANT)
9981                 netif_dormant_on(dev);
9982         else
9983                 netif_dormant_off(dev);
9984
9985         if (rootdev->operstate == IF_OPER_TESTING)
9986                 netif_testing_on(dev);
9987         else
9988                 netif_testing_off(dev);
9989
9990         if (netif_carrier_ok(rootdev))
9991                 netif_carrier_on(dev);
9992         else
9993                 netif_carrier_off(dev);
9994 }
9995 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9996
9997 static int netif_alloc_rx_queues(struct net_device *dev)
9998 {
9999         unsigned int i, count = dev->num_rx_queues;
10000         struct netdev_rx_queue *rx;
10001         size_t sz = count * sizeof(*rx);
10002         int err = 0;
10003
10004         BUG_ON(count < 1);
10005
10006         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10007         if (!rx)
10008                 return -ENOMEM;
10009
10010         dev->_rx = rx;
10011
10012         for (i = 0; i < count; i++) {
10013                 rx[i].dev = dev;
10014
10015                 /* XDP RX-queue setup */
10016                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10017                 if (err < 0)
10018                         goto err_rxq_info;
10019         }
10020         return 0;
10021
10022 err_rxq_info:
10023         /* Rollback successful reg's and free other resources */
10024         while (i--)
10025                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10026         kvfree(dev->_rx);
10027         dev->_rx = NULL;
10028         return err;
10029 }
10030
10031 static void netif_free_rx_queues(struct net_device *dev)
10032 {
10033         unsigned int i, count = dev->num_rx_queues;
10034
10035         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10036         if (!dev->_rx)
10037                 return;
10038
10039         for (i = 0; i < count; i++)
10040                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10041
10042         kvfree(dev->_rx);
10043 }
10044
10045 static void netdev_init_one_queue(struct net_device *dev,
10046                                   struct netdev_queue *queue, void *_unused)
10047 {
10048         /* Initialize queue lock */
10049         spin_lock_init(&queue->_xmit_lock);
10050         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10051         queue->xmit_lock_owner = -1;
10052         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10053         queue->dev = dev;
10054 #ifdef CONFIG_BQL
10055         dql_init(&queue->dql, HZ);
10056 #endif
10057 }
10058
10059 static void netif_free_tx_queues(struct net_device *dev)
10060 {
10061         kvfree(dev->_tx);
10062 }
10063
10064 static int netif_alloc_netdev_queues(struct net_device *dev)
10065 {
10066         unsigned int count = dev->num_tx_queues;
10067         struct netdev_queue *tx;
10068         size_t sz = count * sizeof(*tx);
10069
10070         if (count < 1 || count > 0xffff)
10071                 return -EINVAL;
10072
10073         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10074         if (!tx)
10075                 return -ENOMEM;
10076
10077         dev->_tx = tx;
10078
10079         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10080         spin_lock_init(&dev->tx_global_lock);
10081
10082         return 0;
10083 }
10084
10085 void netif_tx_stop_all_queues(struct net_device *dev)
10086 {
10087         unsigned int i;
10088
10089         for (i = 0; i < dev->num_tx_queues; i++) {
10090                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10091
10092                 netif_tx_stop_queue(txq);
10093         }
10094 }
10095 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10096
10097 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10098 {
10099         void __percpu *v;
10100
10101         /* Drivers implementing ndo_get_peer_dev must support tstat
10102          * accounting, so that skb_do_redirect() can bump the dev's
10103          * RX stats upon network namespace switch.
10104          */
10105         if (dev->netdev_ops->ndo_get_peer_dev &&
10106             dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10107                 return -EOPNOTSUPP;
10108
10109         switch (dev->pcpu_stat_type) {
10110         case NETDEV_PCPU_STAT_NONE:
10111                 return 0;
10112         case NETDEV_PCPU_STAT_LSTATS:
10113                 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10114                 break;
10115         case NETDEV_PCPU_STAT_TSTATS:
10116                 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10117                 break;
10118         case NETDEV_PCPU_STAT_DSTATS:
10119                 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10120                 break;
10121         default:
10122                 return -EINVAL;
10123         }
10124
10125         return v ? 0 : -ENOMEM;
10126 }
10127
10128 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10129 {
10130         switch (dev->pcpu_stat_type) {
10131         case NETDEV_PCPU_STAT_NONE:
10132                 return;
10133         case NETDEV_PCPU_STAT_LSTATS:
10134                 free_percpu(dev->lstats);
10135                 break;
10136         case NETDEV_PCPU_STAT_TSTATS:
10137                 free_percpu(dev->tstats);
10138                 break;
10139         case NETDEV_PCPU_STAT_DSTATS:
10140                 free_percpu(dev->dstats);
10141                 break;
10142         }
10143 }
10144
10145 /**
10146  * register_netdevice() - register a network device
10147  * @dev: device to register
10148  *
10149  * Take a prepared network device structure and make it externally accessible.
10150  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10151  * Callers must hold the rtnl lock - you may want register_netdev()
10152  * instead of this.
10153  */
10154 int register_netdevice(struct net_device *dev)
10155 {
10156         int ret;
10157         struct net *net = dev_net(dev);
10158
10159         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10160                      NETDEV_FEATURE_COUNT);
10161         BUG_ON(dev_boot_phase);
10162         ASSERT_RTNL();
10163
10164         might_sleep();
10165
10166         /* When net_device's are persistent, this will be fatal. */
10167         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10168         BUG_ON(!net);
10169
10170         ret = ethtool_check_ops(dev->ethtool_ops);
10171         if (ret)
10172                 return ret;
10173
10174         spin_lock_init(&dev->addr_list_lock);
10175         netdev_set_addr_lockdep_class(dev);
10176
10177         ret = dev_get_valid_name(net, dev, dev->name);
10178         if (ret < 0)
10179                 goto out;
10180
10181         ret = -ENOMEM;
10182         dev->name_node = netdev_name_node_head_alloc(dev);
10183         if (!dev->name_node)
10184                 goto out;
10185
10186         /* Init, if this function is available */
10187         if (dev->netdev_ops->ndo_init) {
10188                 ret = dev->netdev_ops->ndo_init(dev);
10189                 if (ret) {
10190                         if (ret > 0)
10191                                 ret = -EIO;
10192                         goto err_free_name;
10193                 }
10194         }
10195
10196         if (((dev->hw_features | dev->features) &
10197              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10198             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10199              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10200                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10201                 ret = -EINVAL;
10202                 goto err_uninit;
10203         }
10204
10205         ret = netdev_do_alloc_pcpu_stats(dev);
10206         if (ret)
10207                 goto err_uninit;
10208
10209         ret = dev_index_reserve(net, dev->ifindex);
10210         if (ret < 0)
10211                 goto err_free_pcpu;
10212         dev->ifindex = ret;
10213
10214         /* Transfer changeable features to wanted_features and enable
10215          * software offloads (GSO and GRO).
10216          */
10217         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10218         dev->features |= NETIF_F_SOFT_FEATURES;
10219
10220         if (dev->udp_tunnel_nic_info) {
10221                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10222                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10223         }
10224
10225         dev->wanted_features = dev->features & dev->hw_features;
10226
10227         if (!(dev->flags & IFF_LOOPBACK))
10228                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10229
10230         /* If IPv4 TCP segmentation offload is supported we should also
10231          * allow the device to enable segmenting the frame with the option
10232          * of ignoring a static IP ID value.  This doesn't enable the
10233          * feature itself but allows the user to enable it later.
10234          */
10235         if (dev->hw_features & NETIF_F_TSO)
10236                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10237         if (dev->vlan_features & NETIF_F_TSO)
10238                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10239         if (dev->mpls_features & NETIF_F_TSO)
10240                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10241         if (dev->hw_enc_features & NETIF_F_TSO)
10242                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10243
10244         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10245          */
10246         dev->vlan_features |= NETIF_F_HIGHDMA;
10247
10248         /* Make NETIF_F_SG inheritable to tunnel devices.
10249          */
10250         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10251
10252         /* Make NETIF_F_SG inheritable to MPLS.
10253          */
10254         dev->mpls_features |= NETIF_F_SG;
10255
10256         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10257         ret = notifier_to_errno(ret);
10258         if (ret)
10259                 goto err_ifindex_release;
10260
10261         ret = netdev_register_kobject(dev);
10262         write_lock(&dev_base_lock);
10263         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10264         write_unlock(&dev_base_lock);
10265         if (ret)
10266                 goto err_uninit_notify;
10267
10268         __netdev_update_features(dev);
10269
10270         /*
10271          *      Default initial state at registry is that the
10272          *      device is present.
10273          */
10274
10275         set_bit(__LINK_STATE_PRESENT, &dev->state);
10276
10277         linkwatch_init_dev(dev);
10278
10279         dev_init_scheduler(dev);
10280
10281         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10282         list_netdevice(dev);
10283
10284         add_device_randomness(dev->dev_addr, dev->addr_len);
10285
10286         /* If the device has permanent device address, driver should
10287          * set dev_addr and also addr_assign_type should be set to
10288          * NET_ADDR_PERM (default value).
10289          */
10290         if (dev->addr_assign_type == NET_ADDR_PERM)
10291                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10292
10293         /* Notify protocols, that a new device appeared. */
10294         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10295         ret = notifier_to_errno(ret);
10296         if (ret) {
10297                 /* Expect explicit free_netdev() on failure */
10298                 dev->needs_free_netdev = false;
10299                 unregister_netdevice_queue(dev, NULL);
10300                 goto out;
10301         }
10302         /*
10303          *      Prevent userspace races by waiting until the network
10304          *      device is fully setup before sending notifications.
10305          */
10306         if (!dev->rtnl_link_ops ||
10307             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10308                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10309
10310 out:
10311         return ret;
10312
10313 err_uninit_notify:
10314         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10315 err_ifindex_release:
10316         dev_index_release(net, dev->ifindex);
10317 err_free_pcpu:
10318         netdev_do_free_pcpu_stats(dev);
10319 err_uninit:
10320         if (dev->netdev_ops->ndo_uninit)
10321                 dev->netdev_ops->ndo_uninit(dev);
10322         if (dev->priv_destructor)
10323                 dev->priv_destructor(dev);
10324 err_free_name:
10325         netdev_name_node_free(dev->name_node);
10326         goto out;
10327 }
10328 EXPORT_SYMBOL(register_netdevice);
10329
10330 /**
10331  *      init_dummy_netdev       - init a dummy network device for NAPI
10332  *      @dev: device to init
10333  *
10334  *      This takes a network device structure and initialize the minimum
10335  *      amount of fields so it can be used to schedule NAPI polls without
10336  *      registering a full blown interface. This is to be used by drivers
10337  *      that need to tie several hardware interfaces to a single NAPI
10338  *      poll scheduler due to HW limitations.
10339  */
10340 int init_dummy_netdev(struct net_device *dev)
10341 {
10342         /* Clear everything. Note we don't initialize spinlocks
10343          * are they aren't supposed to be taken by any of the
10344          * NAPI code and this dummy netdev is supposed to be
10345          * only ever used for NAPI polls
10346          */
10347         memset(dev, 0, sizeof(struct net_device));
10348
10349         /* make sure we BUG if trying to hit standard
10350          * register/unregister code path
10351          */
10352         dev->reg_state = NETREG_DUMMY;
10353
10354         /* NAPI wants this */
10355         INIT_LIST_HEAD(&dev->napi_list);
10356
10357         /* a dummy interface is started by default */
10358         set_bit(__LINK_STATE_PRESENT, &dev->state);
10359         set_bit(__LINK_STATE_START, &dev->state);
10360
10361         /* napi_busy_loop stats accounting wants this */
10362         dev_net_set(dev, &init_net);
10363
10364         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10365          * because users of this 'device' dont need to change
10366          * its refcount.
10367          */
10368
10369         return 0;
10370 }
10371 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10372
10373
10374 /**
10375  *      register_netdev - register a network device
10376  *      @dev: device to register
10377  *
10378  *      Take a completed network device structure and add it to the kernel
10379  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10380  *      chain. 0 is returned on success. A negative errno code is returned
10381  *      on a failure to set up the device, or if the name is a duplicate.
10382  *
10383  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10384  *      and expands the device name if you passed a format string to
10385  *      alloc_netdev.
10386  */
10387 int register_netdev(struct net_device *dev)
10388 {
10389         int err;
10390
10391         if (rtnl_lock_killable())
10392                 return -EINTR;
10393         err = register_netdevice(dev);
10394         rtnl_unlock();
10395         return err;
10396 }
10397 EXPORT_SYMBOL(register_netdev);
10398
10399 int netdev_refcnt_read(const struct net_device *dev)
10400 {
10401 #ifdef CONFIG_PCPU_DEV_REFCNT
10402         int i, refcnt = 0;
10403
10404         for_each_possible_cpu(i)
10405                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10406         return refcnt;
10407 #else
10408         return refcount_read(&dev->dev_refcnt);
10409 #endif
10410 }
10411 EXPORT_SYMBOL(netdev_refcnt_read);
10412
10413 int netdev_unregister_timeout_secs __read_mostly = 10;
10414
10415 #define WAIT_REFS_MIN_MSECS 1
10416 #define WAIT_REFS_MAX_MSECS 250
10417 /**
10418  * netdev_wait_allrefs_any - wait until all references are gone.
10419  * @list: list of net_devices to wait on
10420  *
10421  * This is called when unregistering network devices.
10422  *
10423  * Any protocol or device that holds a reference should register
10424  * for netdevice notification, and cleanup and put back the
10425  * reference if they receive an UNREGISTER event.
10426  * We can get stuck here if buggy protocols don't correctly
10427  * call dev_put.
10428  */
10429 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10430 {
10431         unsigned long rebroadcast_time, warning_time;
10432         struct net_device *dev;
10433         int wait = 0;
10434
10435         rebroadcast_time = warning_time = jiffies;
10436
10437         list_for_each_entry(dev, list, todo_list)
10438                 if (netdev_refcnt_read(dev) == 1)
10439                         return dev;
10440
10441         while (true) {
10442                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10443                         rtnl_lock();
10444
10445                         /* Rebroadcast unregister notification */
10446                         list_for_each_entry(dev, list, todo_list)
10447                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10448
10449                         __rtnl_unlock();
10450                         rcu_barrier();
10451                         rtnl_lock();
10452
10453                         list_for_each_entry(dev, list, todo_list)
10454                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10455                                              &dev->state)) {
10456                                         /* We must not have linkwatch events
10457                                          * pending on unregister. If this
10458                                          * happens, we simply run the queue
10459                                          * unscheduled, resulting in a noop
10460                                          * for this device.
10461                                          */
10462                                         linkwatch_run_queue();
10463                                         break;
10464                                 }
10465
10466                         __rtnl_unlock();
10467
10468                         rebroadcast_time = jiffies;
10469                 }
10470
10471                 if (!wait) {
10472                         rcu_barrier();
10473                         wait = WAIT_REFS_MIN_MSECS;
10474                 } else {
10475                         msleep(wait);
10476                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10477                 }
10478
10479                 list_for_each_entry(dev, list, todo_list)
10480                         if (netdev_refcnt_read(dev) == 1)
10481                                 return dev;
10482
10483                 if (time_after(jiffies, warning_time +
10484                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10485                         list_for_each_entry(dev, list, todo_list) {
10486                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10487                                          dev->name, netdev_refcnt_read(dev));
10488                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10489                         }
10490
10491                         warning_time = jiffies;
10492                 }
10493         }
10494 }
10495
10496 /* The sequence is:
10497  *
10498  *      rtnl_lock();
10499  *      ...
10500  *      register_netdevice(x1);
10501  *      register_netdevice(x2);
10502  *      ...
10503  *      unregister_netdevice(y1);
10504  *      unregister_netdevice(y2);
10505  *      ...
10506  *      rtnl_unlock();
10507  *      free_netdev(y1);
10508  *      free_netdev(y2);
10509  *
10510  * We are invoked by rtnl_unlock().
10511  * This allows us to deal with problems:
10512  * 1) We can delete sysfs objects which invoke hotplug
10513  *    without deadlocking with linkwatch via keventd.
10514  * 2) Since we run with the RTNL semaphore not held, we can sleep
10515  *    safely in order to wait for the netdev refcnt to drop to zero.
10516  *
10517  * We must not return until all unregister events added during
10518  * the interval the lock was held have been completed.
10519  */
10520 void netdev_run_todo(void)
10521 {
10522         struct net_device *dev, *tmp;
10523         struct list_head list;
10524 #ifdef CONFIG_LOCKDEP
10525         struct list_head unlink_list;
10526
10527         list_replace_init(&net_unlink_list, &unlink_list);
10528
10529         while (!list_empty(&unlink_list)) {
10530                 struct net_device *dev = list_first_entry(&unlink_list,
10531                                                           struct net_device,
10532                                                           unlink_list);
10533                 list_del_init(&dev->unlink_list);
10534                 dev->nested_level = dev->lower_level - 1;
10535         }
10536 #endif
10537
10538         /* Snapshot list, allow later requests */
10539         list_replace_init(&net_todo_list, &list);
10540
10541         __rtnl_unlock();
10542
10543         /* Wait for rcu callbacks to finish before next phase */
10544         if (!list_empty(&list))
10545                 rcu_barrier();
10546
10547         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10548                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10549                         netdev_WARN(dev, "run_todo but not unregistering\n");
10550                         list_del(&dev->todo_list);
10551                         continue;
10552                 }
10553
10554                 write_lock(&dev_base_lock);
10555                 dev->reg_state = NETREG_UNREGISTERED;
10556                 write_unlock(&dev_base_lock);
10557                 linkwatch_sync_dev(dev);
10558         }
10559
10560         while (!list_empty(&list)) {
10561                 dev = netdev_wait_allrefs_any(&list);
10562                 list_del(&dev->todo_list);
10563
10564                 /* paranoia */
10565                 BUG_ON(netdev_refcnt_read(dev) != 1);
10566                 BUG_ON(!list_empty(&dev->ptype_all));
10567                 BUG_ON(!list_empty(&dev->ptype_specific));
10568                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10569                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10570
10571                 netdev_do_free_pcpu_stats(dev);
10572                 if (dev->priv_destructor)
10573                         dev->priv_destructor(dev);
10574                 if (dev->needs_free_netdev)
10575                         free_netdev(dev);
10576
10577                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10578                         wake_up(&netdev_unregistering_wq);
10579
10580                 /* Free network device */
10581                 kobject_put(&dev->dev.kobj);
10582         }
10583 }
10584
10585 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10586  * all the same fields in the same order as net_device_stats, with only
10587  * the type differing, but rtnl_link_stats64 may have additional fields
10588  * at the end for newer counters.
10589  */
10590 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10591                              const struct net_device_stats *netdev_stats)
10592 {
10593         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10594         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10595         u64 *dst = (u64 *)stats64;
10596
10597         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10598         for (i = 0; i < n; i++)
10599                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10600         /* zero out counters that only exist in rtnl_link_stats64 */
10601         memset((char *)stats64 + n * sizeof(u64), 0,
10602                sizeof(*stats64) - n * sizeof(u64));
10603 }
10604 EXPORT_SYMBOL(netdev_stats_to_stats64);
10605
10606 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10607                 struct net_device *dev)
10608 {
10609         struct net_device_core_stats __percpu *p;
10610
10611         p = alloc_percpu_gfp(struct net_device_core_stats,
10612                              GFP_ATOMIC | __GFP_NOWARN);
10613
10614         if (p && cmpxchg(&dev->core_stats, NULL, p))
10615                 free_percpu(p);
10616
10617         /* This READ_ONCE() pairs with the cmpxchg() above */
10618         return READ_ONCE(dev->core_stats);
10619 }
10620
10621 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10622 {
10623         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10624         struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10625         unsigned long __percpu *field;
10626
10627         if (unlikely(!p)) {
10628                 p = netdev_core_stats_alloc(dev);
10629                 if (!p)
10630                         return;
10631         }
10632
10633         field = (__force unsigned long __percpu *)((__force void *)p + offset);
10634         this_cpu_inc(*field);
10635 }
10636 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10637
10638 /**
10639  *      dev_get_stats   - get network device statistics
10640  *      @dev: device to get statistics from
10641  *      @storage: place to store stats
10642  *
10643  *      Get network statistics from device. Return @storage.
10644  *      The device driver may provide its own method by setting
10645  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10646  *      otherwise the internal statistics structure is used.
10647  */
10648 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10649                                         struct rtnl_link_stats64 *storage)
10650 {
10651         const struct net_device_ops *ops = dev->netdev_ops;
10652         const struct net_device_core_stats __percpu *p;
10653
10654         if (ops->ndo_get_stats64) {
10655                 memset(storage, 0, sizeof(*storage));
10656                 ops->ndo_get_stats64(dev, storage);
10657         } else if (ops->ndo_get_stats) {
10658                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10659         } else {
10660                 netdev_stats_to_stats64(storage, &dev->stats);
10661         }
10662
10663         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10664         p = READ_ONCE(dev->core_stats);
10665         if (p) {
10666                 const struct net_device_core_stats *core_stats;
10667                 int i;
10668
10669                 for_each_possible_cpu(i) {
10670                         core_stats = per_cpu_ptr(p, i);
10671                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10672                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10673                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10674                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10675                 }
10676         }
10677         return storage;
10678 }
10679 EXPORT_SYMBOL(dev_get_stats);
10680
10681 /**
10682  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10683  *      @s: place to store stats
10684  *      @netstats: per-cpu network stats to read from
10685  *
10686  *      Read per-cpu network statistics and populate the related fields in @s.
10687  */
10688 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10689                            const struct pcpu_sw_netstats __percpu *netstats)
10690 {
10691         int cpu;
10692
10693         for_each_possible_cpu(cpu) {
10694                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10695                 const struct pcpu_sw_netstats *stats;
10696                 unsigned int start;
10697
10698                 stats = per_cpu_ptr(netstats, cpu);
10699                 do {
10700                         start = u64_stats_fetch_begin(&stats->syncp);
10701                         rx_packets = u64_stats_read(&stats->rx_packets);
10702                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10703                         tx_packets = u64_stats_read(&stats->tx_packets);
10704                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10705                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10706
10707                 s->rx_packets += rx_packets;
10708                 s->rx_bytes   += rx_bytes;
10709                 s->tx_packets += tx_packets;
10710                 s->tx_bytes   += tx_bytes;
10711         }
10712 }
10713 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10714
10715 /**
10716  *      dev_get_tstats64 - ndo_get_stats64 implementation
10717  *      @dev: device to get statistics from
10718  *      @s: place to store stats
10719  *
10720  *      Populate @s from dev->stats and dev->tstats. Can be used as
10721  *      ndo_get_stats64() callback.
10722  */
10723 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10724 {
10725         netdev_stats_to_stats64(s, &dev->stats);
10726         dev_fetch_sw_netstats(s, dev->tstats);
10727 }
10728 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10729
10730 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10731 {
10732         struct netdev_queue *queue = dev_ingress_queue(dev);
10733
10734 #ifdef CONFIG_NET_CLS_ACT
10735         if (queue)
10736                 return queue;
10737         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10738         if (!queue)
10739                 return NULL;
10740         netdev_init_one_queue(dev, queue, NULL);
10741         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10742         RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10743         rcu_assign_pointer(dev->ingress_queue, queue);
10744 #endif
10745         return queue;
10746 }
10747
10748 static const struct ethtool_ops default_ethtool_ops;
10749
10750 void netdev_set_default_ethtool_ops(struct net_device *dev,
10751                                     const struct ethtool_ops *ops)
10752 {
10753         if (dev->ethtool_ops == &default_ethtool_ops)
10754                 dev->ethtool_ops = ops;
10755 }
10756 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10757
10758 /**
10759  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10760  * @dev: netdev to enable the IRQ coalescing on
10761  *
10762  * Sets a conservative default for SW IRQ coalescing. Users can use
10763  * sysfs attributes to override the default values.
10764  */
10765 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10766 {
10767         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10768
10769         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10770                 dev->gro_flush_timeout = 20000;
10771                 dev->napi_defer_hard_irqs = 1;
10772         }
10773 }
10774 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10775
10776 void netdev_freemem(struct net_device *dev)
10777 {
10778         char *addr = (char *)dev - dev->padded;
10779
10780         kvfree(addr);
10781 }
10782
10783 /**
10784  * alloc_netdev_mqs - allocate network device
10785  * @sizeof_priv: size of private data to allocate space for
10786  * @name: device name format string
10787  * @name_assign_type: origin of device name
10788  * @setup: callback to initialize device
10789  * @txqs: the number of TX subqueues to allocate
10790  * @rxqs: the number of RX subqueues to allocate
10791  *
10792  * Allocates a struct net_device with private data area for driver use
10793  * and performs basic initialization.  Also allocates subqueue structs
10794  * for each queue on the device.
10795  */
10796 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10797                 unsigned char name_assign_type,
10798                 void (*setup)(struct net_device *),
10799                 unsigned int txqs, unsigned int rxqs)
10800 {
10801         struct net_device *dev;
10802         unsigned int alloc_size;
10803         struct net_device *p;
10804
10805         BUG_ON(strlen(name) >= sizeof(dev->name));
10806
10807         if (txqs < 1) {
10808                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10809                 return NULL;
10810         }
10811
10812         if (rxqs < 1) {
10813                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10814                 return NULL;
10815         }
10816
10817         alloc_size = sizeof(struct net_device);
10818         if (sizeof_priv) {
10819                 /* ensure 32-byte alignment of private area */
10820                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10821                 alloc_size += sizeof_priv;
10822         }
10823         /* ensure 32-byte alignment of whole construct */
10824         alloc_size += NETDEV_ALIGN - 1;
10825
10826         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10827         if (!p)
10828                 return NULL;
10829
10830         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10831         dev->padded = (char *)dev - (char *)p;
10832
10833         ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10834 #ifdef CONFIG_PCPU_DEV_REFCNT
10835         dev->pcpu_refcnt = alloc_percpu(int);
10836         if (!dev->pcpu_refcnt)
10837                 goto free_dev;
10838         __dev_hold(dev);
10839 #else
10840         refcount_set(&dev->dev_refcnt, 1);
10841 #endif
10842
10843         if (dev_addr_init(dev))
10844                 goto free_pcpu;
10845
10846         dev_mc_init(dev);
10847         dev_uc_init(dev);
10848
10849         dev_net_set(dev, &init_net);
10850
10851         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10852         dev->xdp_zc_max_segs = 1;
10853         dev->gso_max_segs = GSO_MAX_SEGS;
10854         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10855         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10856         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10857         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10858         dev->tso_max_segs = TSO_MAX_SEGS;
10859         dev->upper_level = 1;
10860         dev->lower_level = 1;
10861 #ifdef CONFIG_LOCKDEP
10862         dev->nested_level = 0;
10863         INIT_LIST_HEAD(&dev->unlink_list);
10864 #endif
10865
10866         INIT_LIST_HEAD(&dev->napi_list);
10867         INIT_LIST_HEAD(&dev->unreg_list);
10868         INIT_LIST_HEAD(&dev->close_list);
10869         INIT_LIST_HEAD(&dev->link_watch_list);
10870         INIT_LIST_HEAD(&dev->adj_list.upper);
10871         INIT_LIST_HEAD(&dev->adj_list.lower);
10872         INIT_LIST_HEAD(&dev->ptype_all);
10873         INIT_LIST_HEAD(&dev->ptype_specific);
10874         INIT_LIST_HEAD(&dev->net_notifier_list);
10875 #ifdef CONFIG_NET_SCHED
10876         hash_init(dev->qdisc_hash);
10877 #endif
10878         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10879         setup(dev);
10880
10881         if (!dev->tx_queue_len) {
10882                 dev->priv_flags |= IFF_NO_QUEUE;
10883                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10884         }
10885
10886         dev->num_tx_queues = txqs;
10887         dev->real_num_tx_queues = txqs;
10888         if (netif_alloc_netdev_queues(dev))
10889                 goto free_all;
10890
10891         dev->num_rx_queues = rxqs;
10892         dev->real_num_rx_queues = rxqs;
10893         if (netif_alloc_rx_queues(dev))
10894                 goto free_all;
10895
10896         strcpy(dev->name, name);
10897         dev->name_assign_type = name_assign_type;
10898         dev->group = INIT_NETDEV_GROUP;
10899         if (!dev->ethtool_ops)
10900                 dev->ethtool_ops = &default_ethtool_ops;
10901
10902         nf_hook_netdev_init(dev);
10903
10904         return dev;
10905
10906 free_all:
10907         free_netdev(dev);
10908         return NULL;
10909
10910 free_pcpu:
10911 #ifdef CONFIG_PCPU_DEV_REFCNT
10912         free_percpu(dev->pcpu_refcnt);
10913 free_dev:
10914 #endif
10915         netdev_freemem(dev);
10916         return NULL;
10917 }
10918 EXPORT_SYMBOL(alloc_netdev_mqs);
10919
10920 /**
10921  * free_netdev - free network device
10922  * @dev: device
10923  *
10924  * This function does the last stage of destroying an allocated device
10925  * interface. The reference to the device object is released. If this
10926  * is the last reference then it will be freed.Must be called in process
10927  * context.
10928  */
10929 void free_netdev(struct net_device *dev)
10930 {
10931         struct napi_struct *p, *n;
10932
10933         might_sleep();
10934
10935         /* When called immediately after register_netdevice() failed the unwind
10936          * handling may still be dismantling the device. Handle that case by
10937          * deferring the free.
10938          */
10939         if (dev->reg_state == NETREG_UNREGISTERING) {
10940                 ASSERT_RTNL();
10941                 dev->needs_free_netdev = true;
10942                 return;
10943         }
10944
10945         netif_free_tx_queues(dev);
10946         netif_free_rx_queues(dev);
10947
10948         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10949
10950         /* Flush device addresses */
10951         dev_addr_flush(dev);
10952
10953         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10954                 netif_napi_del(p);
10955
10956         ref_tracker_dir_exit(&dev->refcnt_tracker);
10957 #ifdef CONFIG_PCPU_DEV_REFCNT
10958         free_percpu(dev->pcpu_refcnt);
10959         dev->pcpu_refcnt = NULL;
10960 #endif
10961         free_percpu(dev->core_stats);
10962         dev->core_stats = NULL;
10963         free_percpu(dev->xdp_bulkq);
10964         dev->xdp_bulkq = NULL;
10965
10966         /*  Compatibility with error handling in drivers */
10967         if (dev->reg_state == NETREG_UNINITIALIZED) {
10968                 netdev_freemem(dev);
10969                 return;
10970         }
10971
10972         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10973         dev->reg_state = NETREG_RELEASED;
10974
10975         /* will free via device release */
10976         put_device(&dev->dev);
10977 }
10978 EXPORT_SYMBOL(free_netdev);
10979
10980 /**
10981  *      synchronize_net -  Synchronize with packet receive processing
10982  *
10983  *      Wait for packets currently being received to be done.
10984  *      Does not block later packets from starting.
10985  */
10986 void synchronize_net(void)
10987 {
10988         might_sleep();
10989         if (rtnl_is_locked())
10990                 synchronize_rcu_expedited();
10991         else
10992                 synchronize_rcu();
10993 }
10994 EXPORT_SYMBOL(synchronize_net);
10995
10996 /**
10997  *      unregister_netdevice_queue - remove device from the kernel
10998  *      @dev: device
10999  *      @head: list
11000  *
11001  *      This function shuts down a device interface and removes it
11002  *      from the kernel tables.
11003  *      If head not NULL, device is queued to be unregistered later.
11004  *
11005  *      Callers must hold the rtnl semaphore.  You may want
11006  *      unregister_netdev() instead of this.
11007  */
11008
11009 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11010 {
11011         ASSERT_RTNL();
11012
11013         if (head) {
11014                 list_move_tail(&dev->unreg_list, head);
11015         } else {
11016                 LIST_HEAD(single);
11017
11018                 list_add(&dev->unreg_list, &single);
11019                 unregister_netdevice_many(&single);
11020         }
11021 }
11022 EXPORT_SYMBOL(unregister_netdevice_queue);
11023
11024 void unregister_netdevice_many_notify(struct list_head *head,
11025                                       u32 portid, const struct nlmsghdr *nlh)
11026 {
11027         struct net_device *dev, *tmp;
11028         LIST_HEAD(close_head);
11029
11030         BUG_ON(dev_boot_phase);
11031         ASSERT_RTNL();
11032
11033         if (list_empty(head))
11034                 return;
11035
11036         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11037                 /* Some devices call without registering
11038                  * for initialization unwind. Remove those
11039                  * devices and proceed with the remaining.
11040                  */
11041                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11042                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11043                                  dev->name, dev);
11044
11045                         WARN_ON(1);
11046                         list_del(&dev->unreg_list);
11047                         continue;
11048                 }
11049                 dev->dismantle = true;
11050                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11051         }
11052
11053         /* If device is running, close it first. */
11054         list_for_each_entry(dev, head, unreg_list)
11055                 list_add_tail(&dev->close_list, &close_head);
11056         dev_close_many(&close_head, true);
11057
11058         list_for_each_entry(dev, head, unreg_list) {
11059                 /* And unlink it from device chain. */
11060                 write_lock(&dev_base_lock);
11061                 unlist_netdevice(dev, false);
11062                 dev->reg_state = NETREG_UNREGISTERING;
11063                 write_unlock(&dev_base_lock);
11064         }
11065         flush_all_backlogs();
11066
11067         synchronize_net();
11068
11069         list_for_each_entry(dev, head, unreg_list) {
11070                 struct sk_buff *skb = NULL;
11071
11072                 /* Shutdown queueing discipline. */
11073                 dev_shutdown(dev);
11074                 dev_tcx_uninstall(dev);
11075                 dev_xdp_uninstall(dev);
11076                 bpf_dev_bound_netdev_unregister(dev);
11077
11078                 netdev_offload_xstats_disable_all(dev);
11079
11080                 /* Notify protocols, that we are about to destroy
11081                  * this device. They should clean all the things.
11082                  */
11083                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11084
11085                 if (!dev->rtnl_link_ops ||
11086                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11087                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11088                                                      GFP_KERNEL, NULL, 0,
11089                                                      portid, nlh);
11090
11091                 /*
11092                  *      Flush the unicast and multicast chains
11093                  */
11094                 dev_uc_flush(dev);
11095                 dev_mc_flush(dev);
11096
11097                 netdev_name_node_alt_flush(dev);
11098                 netdev_name_node_free(dev->name_node);
11099
11100                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11101
11102                 if (dev->netdev_ops->ndo_uninit)
11103                         dev->netdev_ops->ndo_uninit(dev);
11104
11105                 if (skb)
11106                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11107
11108                 /* Notifier chain MUST detach us all upper devices. */
11109                 WARN_ON(netdev_has_any_upper_dev(dev));
11110                 WARN_ON(netdev_has_any_lower_dev(dev));
11111
11112                 /* Remove entries from kobject tree */
11113                 netdev_unregister_kobject(dev);
11114 #ifdef CONFIG_XPS
11115                 /* Remove XPS queueing entries */
11116                 netif_reset_xps_queues_gt(dev, 0);
11117 #endif
11118         }
11119
11120         synchronize_net();
11121
11122         list_for_each_entry(dev, head, unreg_list) {
11123                 netdev_put(dev, &dev->dev_registered_tracker);
11124                 net_set_todo(dev);
11125         }
11126
11127         list_del(head);
11128 }
11129
11130 /**
11131  *      unregister_netdevice_many - unregister many devices
11132  *      @head: list of devices
11133  *
11134  *  Note: As most callers use a stack allocated list_head,
11135  *  we force a list_del() to make sure stack wont be corrupted later.
11136  */
11137 void unregister_netdevice_many(struct list_head *head)
11138 {
11139         unregister_netdevice_many_notify(head, 0, NULL);
11140 }
11141 EXPORT_SYMBOL(unregister_netdevice_many);
11142
11143 /**
11144  *      unregister_netdev - remove device from the kernel
11145  *      @dev: device
11146  *
11147  *      This function shuts down a device interface and removes it
11148  *      from the kernel tables.
11149  *
11150  *      This is just a wrapper for unregister_netdevice that takes
11151  *      the rtnl semaphore.  In general you want to use this and not
11152  *      unregister_netdevice.
11153  */
11154 void unregister_netdev(struct net_device *dev)
11155 {
11156         rtnl_lock();
11157         unregister_netdevice(dev);
11158         rtnl_unlock();
11159 }
11160 EXPORT_SYMBOL(unregister_netdev);
11161
11162 /**
11163  *      __dev_change_net_namespace - move device to different nethost namespace
11164  *      @dev: device
11165  *      @net: network namespace
11166  *      @pat: If not NULL name pattern to try if the current device name
11167  *            is already taken in the destination network namespace.
11168  *      @new_ifindex: If not zero, specifies device index in the target
11169  *                    namespace.
11170  *
11171  *      This function shuts down a device interface and moves it
11172  *      to a new network namespace. On success 0 is returned, on
11173  *      a failure a netagive errno code is returned.
11174  *
11175  *      Callers must hold the rtnl semaphore.
11176  */
11177
11178 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11179                                const char *pat, int new_ifindex)
11180 {
11181         struct netdev_name_node *name_node;
11182         struct net *net_old = dev_net(dev);
11183         char new_name[IFNAMSIZ] = {};
11184         int err, new_nsid;
11185
11186         ASSERT_RTNL();
11187
11188         /* Don't allow namespace local devices to be moved. */
11189         err = -EINVAL;
11190         if (dev->features & NETIF_F_NETNS_LOCAL)
11191                 goto out;
11192
11193         /* Ensure the device has been registrered */
11194         if (dev->reg_state != NETREG_REGISTERED)
11195                 goto out;
11196
11197         /* Get out if there is nothing todo */
11198         err = 0;
11199         if (net_eq(net_old, net))
11200                 goto out;
11201
11202         /* Pick the destination device name, and ensure
11203          * we can use it in the destination network namespace.
11204          */
11205         err = -EEXIST;
11206         if (netdev_name_in_use(net, dev->name)) {
11207                 /* We get here if we can't use the current device name */
11208                 if (!pat)
11209                         goto out;
11210                 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11211                 if (err < 0)
11212                         goto out;
11213         }
11214         /* Check that none of the altnames conflicts. */
11215         err = -EEXIST;
11216         netdev_for_each_altname(dev, name_node)
11217                 if (netdev_name_in_use(net, name_node->name))
11218                         goto out;
11219
11220         /* Check that new_ifindex isn't used yet. */
11221         if (new_ifindex) {
11222                 err = dev_index_reserve(net, new_ifindex);
11223                 if (err < 0)
11224                         goto out;
11225         } else {
11226                 /* If there is an ifindex conflict assign a new one */
11227                 err = dev_index_reserve(net, dev->ifindex);
11228                 if (err == -EBUSY)
11229                         err = dev_index_reserve(net, 0);
11230                 if (err < 0)
11231                         goto out;
11232                 new_ifindex = err;
11233         }
11234
11235         /*
11236          * And now a mini version of register_netdevice unregister_netdevice.
11237          */
11238
11239         /* If device is running close it first. */
11240         dev_close(dev);
11241
11242         /* And unlink it from device chain */
11243         unlist_netdevice(dev, true);
11244
11245         synchronize_net();
11246
11247         /* Shutdown queueing discipline. */
11248         dev_shutdown(dev);
11249
11250         /* Notify protocols, that we are about to destroy
11251          * this device. They should clean all the things.
11252          *
11253          * Note that dev->reg_state stays at NETREG_REGISTERED.
11254          * This is wanted because this way 8021q and macvlan know
11255          * the device is just moving and can keep their slaves up.
11256          */
11257         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11258         rcu_barrier();
11259
11260         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11261
11262         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11263                             new_ifindex);
11264
11265         /*
11266          *      Flush the unicast and multicast chains
11267          */
11268         dev_uc_flush(dev);
11269         dev_mc_flush(dev);
11270
11271         /* Send a netdev-removed uevent to the old namespace */
11272         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11273         netdev_adjacent_del_links(dev);
11274
11275         /* Move per-net netdevice notifiers that are following the netdevice */
11276         move_netdevice_notifiers_dev_net(dev, net);
11277
11278         /* Actually switch the network namespace */
11279         dev_net_set(dev, net);
11280         dev->ifindex = new_ifindex;
11281
11282         if (new_name[0]) /* Rename the netdev to prepared name */
11283                 strscpy(dev->name, new_name, IFNAMSIZ);
11284
11285         /* Fixup kobjects */
11286         dev_set_uevent_suppress(&dev->dev, 1);
11287         err = device_rename(&dev->dev, dev->name);
11288         dev_set_uevent_suppress(&dev->dev, 0);
11289         WARN_ON(err);
11290
11291         /* Send a netdev-add uevent to the new namespace */
11292         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11293         netdev_adjacent_add_links(dev);
11294
11295         /* Adapt owner in case owning user namespace of target network
11296          * namespace is different from the original one.
11297          */
11298         err = netdev_change_owner(dev, net_old, net);
11299         WARN_ON(err);
11300
11301         /* Add the device back in the hashes */
11302         list_netdevice(dev);
11303
11304         /* Notify protocols, that a new device appeared. */
11305         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11306
11307         /*
11308          *      Prevent userspace races by waiting until the network
11309          *      device is fully setup before sending notifications.
11310          */
11311         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11312
11313         synchronize_net();
11314         err = 0;
11315 out:
11316         return err;
11317 }
11318 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11319
11320 static int dev_cpu_dead(unsigned int oldcpu)
11321 {
11322         struct sk_buff **list_skb;
11323         struct sk_buff *skb;
11324         unsigned int cpu;
11325         struct softnet_data *sd, *oldsd, *remsd = NULL;
11326
11327         local_irq_disable();
11328         cpu = smp_processor_id();
11329         sd = &per_cpu(softnet_data, cpu);
11330         oldsd = &per_cpu(softnet_data, oldcpu);
11331
11332         /* Find end of our completion_queue. */
11333         list_skb = &sd->completion_queue;
11334         while (*list_skb)
11335                 list_skb = &(*list_skb)->next;
11336         /* Append completion queue from offline CPU. */
11337         *list_skb = oldsd->completion_queue;
11338         oldsd->completion_queue = NULL;
11339
11340         /* Append output queue from offline CPU. */
11341         if (oldsd->output_queue) {
11342                 *sd->output_queue_tailp = oldsd->output_queue;
11343                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11344                 oldsd->output_queue = NULL;
11345                 oldsd->output_queue_tailp = &oldsd->output_queue;
11346         }
11347         /* Append NAPI poll list from offline CPU, with one exception :
11348          * process_backlog() must be called by cpu owning percpu backlog.
11349          * We properly handle process_queue & input_pkt_queue later.
11350          */
11351         while (!list_empty(&oldsd->poll_list)) {
11352                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11353                                                             struct napi_struct,
11354                                                             poll_list);
11355
11356                 list_del_init(&napi->poll_list);
11357                 if (napi->poll == process_backlog)
11358                         napi->state = 0;
11359                 else
11360                         ____napi_schedule(sd, napi);
11361         }
11362
11363         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11364         local_irq_enable();
11365
11366 #ifdef CONFIG_RPS
11367         remsd = oldsd->rps_ipi_list;
11368         oldsd->rps_ipi_list = NULL;
11369 #endif
11370         /* send out pending IPI's on offline CPU */
11371         net_rps_send_ipi(remsd);
11372
11373         /* Process offline CPU's input_pkt_queue */
11374         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11375                 netif_rx(skb);
11376                 input_queue_head_incr(oldsd);
11377         }
11378         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11379                 netif_rx(skb);
11380                 input_queue_head_incr(oldsd);
11381         }
11382
11383         return 0;
11384 }
11385
11386 /**
11387  *      netdev_increment_features - increment feature set by one
11388  *      @all: current feature set
11389  *      @one: new feature set
11390  *      @mask: mask feature set
11391  *
11392  *      Computes a new feature set after adding a device with feature set
11393  *      @one to the master device with current feature set @all.  Will not
11394  *      enable anything that is off in @mask. Returns the new feature set.
11395  */
11396 netdev_features_t netdev_increment_features(netdev_features_t all,
11397         netdev_features_t one, netdev_features_t mask)
11398 {
11399         if (mask & NETIF_F_HW_CSUM)
11400                 mask |= NETIF_F_CSUM_MASK;
11401         mask |= NETIF_F_VLAN_CHALLENGED;
11402
11403         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11404         all &= one | ~NETIF_F_ALL_FOR_ALL;
11405
11406         /* If one device supports hw checksumming, set for all. */
11407         if (all & NETIF_F_HW_CSUM)
11408                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11409
11410         return all;
11411 }
11412 EXPORT_SYMBOL(netdev_increment_features);
11413
11414 static struct hlist_head * __net_init netdev_create_hash(void)
11415 {
11416         int i;
11417         struct hlist_head *hash;
11418
11419         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11420         if (hash != NULL)
11421                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11422                         INIT_HLIST_HEAD(&hash[i]);
11423
11424         return hash;
11425 }
11426
11427 /* Initialize per network namespace state */
11428 static int __net_init netdev_init(struct net *net)
11429 {
11430         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11431                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11432
11433         INIT_LIST_HEAD(&net->dev_base_head);
11434
11435         net->dev_name_head = netdev_create_hash();
11436         if (net->dev_name_head == NULL)
11437                 goto err_name;
11438
11439         net->dev_index_head = netdev_create_hash();
11440         if (net->dev_index_head == NULL)
11441                 goto err_idx;
11442
11443         xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11444
11445         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11446
11447         return 0;
11448
11449 err_idx:
11450         kfree(net->dev_name_head);
11451 err_name:
11452         return -ENOMEM;
11453 }
11454
11455 /**
11456  *      netdev_drivername - network driver for the device
11457  *      @dev: network device
11458  *
11459  *      Determine network driver for device.
11460  */
11461 const char *netdev_drivername(const struct net_device *dev)
11462 {
11463         const struct device_driver *driver;
11464         const struct device *parent;
11465         const char *empty = "";
11466
11467         parent = dev->dev.parent;
11468         if (!parent)
11469                 return empty;
11470
11471         driver = parent->driver;
11472         if (driver && driver->name)
11473                 return driver->name;
11474         return empty;
11475 }
11476
11477 static void __netdev_printk(const char *level, const struct net_device *dev,
11478                             struct va_format *vaf)
11479 {
11480         if (dev && dev->dev.parent) {
11481                 dev_printk_emit(level[1] - '0',
11482                                 dev->dev.parent,
11483                                 "%s %s %s%s: %pV",
11484                                 dev_driver_string(dev->dev.parent),
11485                                 dev_name(dev->dev.parent),
11486                                 netdev_name(dev), netdev_reg_state(dev),
11487                                 vaf);
11488         } else if (dev) {
11489                 printk("%s%s%s: %pV",
11490                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11491         } else {
11492                 printk("%s(NULL net_device): %pV", level, vaf);
11493         }
11494 }
11495
11496 void netdev_printk(const char *level, const struct net_device *dev,
11497                    const char *format, ...)
11498 {
11499         struct va_format vaf;
11500         va_list args;
11501
11502         va_start(args, format);
11503
11504         vaf.fmt = format;
11505         vaf.va = &args;
11506
11507         __netdev_printk(level, dev, &vaf);
11508
11509         va_end(args);
11510 }
11511 EXPORT_SYMBOL(netdev_printk);
11512
11513 #define define_netdev_printk_level(func, level)                 \
11514 void func(const struct net_device *dev, const char *fmt, ...)   \
11515 {                                                               \
11516         struct va_format vaf;                                   \
11517         va_list args;                                           \
11518                                                                 \
11519         va_start(args, fmt);                                    \
11520                                                                 \
11521         vaf.fmt = fmt;                                          \
11522         vaf.va = &args;                                         \
11523                                                                 \
11524         __netdev_printk(level, dev, &vaf);                      \
11525                                                                 \
11526         va_end(args);                                           \
11527 }                                                               \
11528 EXPORT_SYMBOL(func);
11529
11530 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11531 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11532 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11533 define_netdev_printk_level(netdev_err, KERN_ERR);
11534 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11535 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11536 define_netdev_printk_level(netdev_info, KERN_INFO);
11537
11538 static void __net_exit netdev_exit(struct net *net)
11539 {
11540         kfree(net->dev_name_head);
11541         kfree(net->dev_index_head);
11542         xa_destroy(&net->dev_by_index);
11543         if (net != &init_net)
11544                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11545 }
11546
11547 static struct pernet_operations __net_initdata netdev_net_ops = {
11548         .init = netdev_init,
11549         .exit = netdev_exit,
11550 };
11551
11552 static void __net_exit default_device_exit_net(struct net *net)
11553 {
11554         struct netdev_name_node *name_node, *tmp;
11555         struct net_device *dev, *aux;
11556         /*
11557          * Push all migratable network devices back to the
11558          * initial network namespace
11559          */
11560         ASSERT_RTNL();
11561         for_each_netdev_safe(net, dev, aux) {
11562                 int err;
11563                 char fb_name[IFNAMSIZ];
11564
11565                 /* Ignore unmoveable devices (i.e. loopback) */
11566                 if (dev->features & NETIF_F_NETNS_LOCAL)
11567                         continue;
11568
11569                 /* Leave virtual devices for the generic cleanup */
11570                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11571                         continue;
11572
11573                 /* Push remaining network devices to init_net */
11574                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11575                 if (netdev_name_in_use(&init_net, fb_name))
11576                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11577
11578                 netdev_for_each_altname_safe(dev, name_node, tmp)
11579                         if (netdev_name_in_use(&init_net, name_node->name)) {
11580                                 netdev_name_node_del(name_node);
11581                                 synchronize_rcu();
11582                                 __netdev_name_node_alt_destroy(name_node);
11583                         }
11584
11585                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11586                 if (err) {
11587                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11588                                  __func__, dev->name, err);
11589                         BUG();
11590                 }
11591         }
11592 }
11593
11594 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11595 {
11596         /* At exit all network devices most be removed from a network
11597          * namespace.  Do this in the reverse order of registration.
11598          * Do this across as many network namespaces as possible to
11599          * improve batching efficiency.
11600          */
11601         struct net_device *dev;
11602         struct net *net;
11603         LIST_HEAD(dev_kill_list);
11604
11605         rtnl_lock();
11606         list_for_each_entry(net, net_list, exit_list) {
11607                 default_device_exit_net(net);
11608                 cond_resched();
11609         }
11610
11611         list_for_each_entry(net, net_list, exit_list) {
11612                 for_each_netdev_reverse(net, dev) {
11613                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11614                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11615                         else
11616                                 unregister_netdevice_queue(dev, &dev_kill_list);
11617                 }
11618         }
11619         unregister_netdevice_many(&dev_kill_list);
11620         rtnl_unlock();
11621 }
11622
11623 static struct pernet_operations __net_initdata default_device_ops = {
11624         .exit_batch = default_device_exit_batch,
11625 };
11626
11627 static void __init net_dev_struct_check(void)
11628 {
11629         /* TX read-mostly hotpath */
11630         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11631         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11632         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11633         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11634         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11635         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11636         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11637         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11638         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11639         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11640         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11641         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11642         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11643 #ifdef CONFIG_XPS
11644         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11645 #endif
11646 #ifdef CONFIG_NETFILTER_EGRESS
11647         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11648 #endif
11649 #ifdef CONFIG_NET_XGRESS
11650         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11651 #endif
11652         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11653
11654         /* TXRX read-mostly hotpath */
11655         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11656         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11657         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11658         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11659         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 30);
11660
11661         /* RX read-mostly hotpath */
11662         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11663         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11664         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11665         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11666         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11667         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11668         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11669         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11670         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11671         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11672         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11673 #ifdef CONFIG_NETPOLL
11674         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11675 #endif
11676 #ifdef CONFIG_NET_XGRESS
11677         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11678 #endif
11679         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11680 }
11681
11682 /*
11683  *      Initialize the DEV module. At boot time this walks the device list and
11684  *      unhooks any devices that fail to initialise (normally hardware not
11685  *      present) and leaves us with a valid list of present and active devices.
11686  *
11687  */
11688
11689 /*
11690  *       This is called single threaded during boot, so no need
11691  *       to take the rtnl semaphore.
11692  */
11693 static int __init net_dev_init(void)
11694 {
11695         int i, rc = -ENOMEM;
11696
11697         BUG_ON(!dev_boot_phase);
11698
11699         net_dev_struct_check();
11700
11701         if (dev_proc_init())
11702                 goto out;
11703
11704         if (netdev_kobject_init())
11705                 goto out;
11706
11707         INIT_LIST_HEAD(&ptype_all);
11708         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11709                 INIT_LIST_HEAD(&ptype_base[i]);
11710
11711         if (register_pernet_subsys(&netdev_net_ops))
11712                 goto out;
11713
11714         /*
11715          *      Initialise the packet receive queues.
11716          */
11717
11718         for_each_possible_cpu(i) {
11719                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11720                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11721
11722                 INIT_WORK(flush, flush_backlog);
11723
11724                 skb_queue_head_init(&sd->input_pkt_queue);
11725                 skb_queue_head_init(&sd->process_queue);
11726 #ifdef CONFIG_XFRM_OFFLOAD
11727                 skb_queue_head_init(&sd->xfrm_backlog);
11728 #endif
11729                 INIT_LIST_HEAD(&sd->poll_list);
11730                 sd->output_queue_tailp = &sd->output_queue;
11731 #ifdef CONFIG_RPS
11732                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11733                 sd->cpu = i;
11734 #endif
11735                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11736                 spin_lock_init(&sd->defer_lock);
11737
11738                 init_gro_hash(&sd->backlog);
11739                 sd->backlog.poll = process_backlog;
11740                 sd->backlog.weight = weight_p;
11741         }
11742
11743         dev_boot_phase = 0;
11744
11745         /* The loopback device is special if any other network devices
11746          * is present in a network namespace the loopback device must
11747          * be present. Since we now dynamically allocate and free the
11748          * loopback device ensure this invariant is maintained by
11749          * keeping the loopback device as the first device on the
11750          * list of network devices.  Ensuring the loopback devices
11751          * is the first device that appears and the last network device
11752          * that disappears.
11753          */
11754         if (register_pernet_device(&loopback_net_ops))
11755                 goto out;
11756
11757         if (register_pernet_device(&default_device_ops))
11758                 goto out;
11759
11760         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11761         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11762
11763         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11764                                        NULL, dev_cpu_dead);
11765         WARN_ON(rc < 0);
11766         rc = 0;
11767 out:
11768         return rc;
11769 }
11770
11771 subsys_initcall(net_dev_init);