Merge branches 'for-4.10/asus', 'for-4.10/cp2112', 'for-4.10/i2c-hid-nopower', 'for...
[sfrench/cifs-2.6.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144
145 #include "net-sysfs.h"
146
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct net_device *dev,
162                                          struct netdev_notifier_info *info);
163
164 /*
165  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166  * semaphore.
167  *
168  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169  *
170  * Writers must hold the rtnl semaphore while they loop through the
171  * dev_base_head list, and hold dev_base_lock for writing when they do the
172  * actual updates.  This allows pure readers to access the list even
173  * while a writer is preparing to update it.
174  *
175  * To put it another way, dev_base_lock is held for writing only to
176  * protect against pure readers; the rtnl semaphore provides the
177  * protection against other writers.
178  *
179  * See, for example usages, register_netdevice() and
180  * unregister_netdevice(), which must be called with the rtnl
181  * semaphore held.
182  */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191
192 static seqcount_t devnet_rename_seq;
193
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196         while (++net->dev_base_seq == 0);
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214         spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228         struct net *net = dev_net(dev);
229
230         ASSERT_RTNL();
231
232         write_lock_bh(&dev_base_lock);
233         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235         hlist_add_head_rcu(&dev->index_hlist,
236                            dev_index_hash(net, dev->ifindex));
237         write_unlock_bh(&dev_base_lock);
238
239         dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247         ASSERT_RTNL();
248
249         /* Unlink dev from the device chain */
250         write_lock_bh(&dev_base_lock);
251         list_del_rcu(&dev->dev_list);
252         hlist_del_rcu(&dev->name_hlist);
253         hlist_del_rcu(&dev->index_hlist);
254         write_unlock_bh(&dev_base_lock);
255
256         dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260  *      Our notifier list
261  */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266  *      Device drivers call our routines to queue packets here. We empty the
267  *      queue in the local softnet handler.
268  */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] =
279         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317         int i;
318
319         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320                 if (netdev_lock_type[i] == dev_type)
321                         return i;
322         /* the last key is used by default */
323         return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327                                                  unsigned short dev_type)
328 {
329         int i;
330
331         i = netdev_lock_pos(dev_type);
332         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333                                    netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338         int i;
339
340         i = netdev_lock_pos(dev->type);
341         lockdep_set_class_and_name(&dev->addr_list_lock,
342                                    &netdev_addr_lock_key[i],
343                                    netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347                                                  unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357                 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362  *      Add a protocol ID to the list. Now that the input handler is
363  *      smarter we can dispense with all the messy stuff that used to be
364  *      here.
365  *
366  *      BEWARE!!! Protocol handlers, mangling input packets,
367  *      MUST BE last in hash buckets and checking protocol handlers
368  *      MUST start from promiscuous ptype_all chain in net_bh.
369  *      It is true now, do not change it.
370  *      Explanation follows: if protocol handler, mangling packet, will
371  *      be the first on list, it is not able to sense, that packet
372  *      is cloned and should be copied-on-write, so that it will
373  *      change it and subsequent readers will get broken packet.
374  *                                                      --ANK (980803)
375  */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379         if (pt->type == htons(ETH_P_ALL))
380                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381         else
382                 return pt->dev ? &pt->dev->ptype_specific :
383                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387  *      dev_add_pack - add packet handler
388  *      @pt: packet type declaration
389  *
390  *      Add a protocol handler to the networking stack. The passed &packet_type
391  *      is linked into kernel lists and may not be freed until it has been
392  *      removed from the kernel lists.
393  *
394  *      This call does not sleep therefore it can not
395  *      guarantee all CPU's that are in middle of receiving packets
396  *      will see the new packet type (until the next received packet).
397  */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401         struct list_head *head = ptype_head(pt);
402
403         spin_lock(&ptype_lock);
404         list_add_rcu(&pt->list, head);
405         spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410  *      __dev_remove_pack        - remove packet handler
411  *      @pt: packet type declaration
412  *
413  *      Remove a protocol handler that was previously added to the kernel
414  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
415  *      from the kernel lists and can be freed or reused once this function
416  *      returns.
417  *
418  *      The packet type might still be in use by receivers
419  *      and must not be freed until after all the CPU's have gone
420  *      through a quiescent state.
421  */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424         struct list_head *head = ptype_head(pt);
425         struct packet_type *pt1;
426
427         spin_lock(&ptype_lock);
428
429         list_for_each_entry(pt1, head, list) {
430                 if (pt == pt1) {
431                         list_del_rcu(&pt->list);
432                         goto out;
433                 }
434         }
435
436         pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438         spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443  *      dev_remove_pack  - remove packet handler
444  *      @pt: packet type declaration
445  *
446  *      Remove a protocol handler that was previously added to the kernel
447  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
448  *      from the kernel lists and can be freed or reused once this function
449  *      returns.
450  *
451  *      This call sleeps to guarantee that no CPU is looking at the packet
452  *      type after return.
453  */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456         __dev_remove_pack(pt);
457
458         synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462
463 /**
464  *      dev_add_offload - register offload handlers
465  *      @po: protocol offload declaration
466  *
467  *      Add protocol offload handlers to the networking stack. The passed
468  *      &proto_offload is linked into kernel lists and may not be freed until
469  *      it has been removed from the kernel lists.
470  *
471  *      This call does not sleep therefore it can not
472  *      guarantee all CPU's that are in middle of receiving packets
473  *      will see the new offload handlers (until the next received packet).
474  */
475 void dev_add_offload(struct packet_offload *po)
476 {
477         struct packet_offload *elem;
478
479         spin_lock(&offload_lock);
480         list_for_each_entry(elem, &offload_base, list) {
481                 if (po->priority < elem->priority)
482                         break;
483         }
484         list_add_rcu(&po->list, elem->list.prev);
485         spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488
489 /**
490  *      __dev_remove_offload     - remove offload handler
491  *      @po: packet offload declaration
492  *
493  *      Remove a protocol offload handler that was previously added to the
494  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
495  *      is removed from the kernel lists and can be freed or reused once this
496  *      function returns.
497  *
498  *      The packet type might still be in use by receivers
499  *      and must not be freed until after all the CPU's have gone
500  *      through a quiescent state.
501  */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504         struct list_head *head = &offload_base;
505         struct packet_offload *po1;
506
507         spin_lock(&offload_lock);
508
509         list_for_each_entry(po1, head, list) {
510                 if (po == po1) {
511                         list_del_rcu(&po->list);
512                         goto out;
513                 }
514         }
515
516         pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518         spin_unlock(&offload_lock);
519 }
520
521 /**
522  *      dev_remove_offload       - remove packet offload handler
523  *      @po: packet offload declaration
524  *
525  *      Remove a packet offload handler that was previously added to the kernel
526  *      offload handlers by dev_add_offload(). The passed &offload_type is
527  *      removed from the kernel lists and can be freed or reused once this
528  *      function returns.
529  *
530  *      This call sleeps to guarantee that no CPU is looking at the packet
531  *      type after return.
532  */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535         __dev_remove_offload(po);
536
537         synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540
541 /******************************************************************************
542
543                       Device Boot-time Settings Routines
544
545 *******************************************************************************/
546
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550 /**
551  *      netdev_boot_setup_add   - add new setup entry
552  *      @name: name of the device
553  *      @map: configured settings for the device
554  *
555  *      Adds new setup entry to the dev_boot_setup list.  The function
556  *      returns 0 on error and 1 on success.  This is a generic routine to
557  *      all netdevices.
558  */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561         struct netdev_boot_setup *s;
562         int i;
563
564         s = dev_boot_setup;
565         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567                         memset(s[i].name, 0, sizeof(s[i].name));
568                         strlcpy(s[i].name, name, IFNAMSIZ);
569                         memcpy(&s[i].map, map, sizeof(s[i].map));
570                         break;
571                 }
572         }
573
574         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576
577 /**
578  *      netdev_boot_setup_check - check boot time settings
579  *      @dev: the netdevice
580  *
581  *      Check boot time settings for the device.
582  *      The found settings are set for the device to be used
583  *      later in the device probing.
584  *      Returns 0 if no settings found, 1 if they are.
585  */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588         struct netdev_boot_setup *s = dev_boot_setup;
589         int i;
590
591         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593                     !strcmp(dev->name, s[i].name)) {
594                         dev->irq        = s[i].map.irq;
595                         dev->base_addr  = s[i].map.base_addr;
596                         dev->mem_start  = s[i].map.mem_start;
597                         dev->mem_end    = s[i].map.mem_end;
598                         return 1;
599                 }
600         }
601         return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604
605
606 /**
607  *      netdev_boot_base        - get address from boot time settings
608  *      @prefix: prefix for network device
609  *      @unit: id for network device
610  *
611  *      Check boot time settings for the base address of device.
612  *      The found settings are set for the device to be used
613  *      later in the device probing.
614  *      Returns 0 if no settings found.
615  */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618         const struct netdev_boot_setup *s = dev_boot_setup;
619         char name[IFNAMSIZ];
620         int i;
621
622         sprintf(name, "%s%d", prefix, unit);
623
624         /*
625          * If device already registered then return base of 1
626          * to indicate not to probe for this interface
627          */
628         if (__dev_get_by_name(&init_net, name))
629                 return 1;
630
631         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632                 if (!strcmp(name, s[i].name))
633                         return s[i].map.base_addr;
634         return 0;
635 }
636
637 /*
638  * Saves at boot time configured settings for any netdevice.
639  */
640 int __init netdev_boot_setup(char *str)
641 {
642         int ints[5];
643         struct ifmap map;
644
645         str = get_options(str, ARRAY_SIZE(ints), ints);
646         if (!str || !*str)
647                 return 0;
648
649         /* Save settings */
650         memset(&map, 0, sizeof(map));
651         if (ints[0] > 0)
652                 map.irq = ints[1];
653         if (ints[0] > 1)
654                 map.base_addr = ints[2];
655         if (ints[0] > 2)
656                 map.mem_start = ints[3];
657         if (ints[0] > 3)
658                 map.mem_end = ints[4];
659
660         /* Add new entry to the list */
661         return netdev_boot_setup_add(str, &map);
662 }
663
664 __setup("netdev=", netdev_boot_setup);
665
666 /*******************************************************************************
667
668                             Device Interface Subroutines
669
670 *******************************************************************************/
671
672 /**
673  *      dev_get_iflink  - get 'iflink' value of a interface
674  *      @dev: targeted interface
675  *
676  *      Indicates the ifindex the interface is linked to.
677  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
678  */
679
680 int dev_get_iflink(const struct net_device *dev)
681 {
682         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683                 return dev->netdev_ops->ndo_get_iflink(dev);
684
685         return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688
689 /**
690  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
691  *      @dev: targeted interface
692  *      @skb: The packet.
693  *
694  *      For better visibility of tunnel traffic OVS needs to retrieve
695  *      egress tunnel information for a packet. Following API allows
696  *      user to get this info.
697  */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700         struct ip_tunnel_info *info;
701
702         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
703                 return -EINVAL;
704
705         info = skb_tunnel_info_unclone(skb);
706         if (!info)
707                 return -ENOMEM;
708         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709                 return -EINVAL;
710
711         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
715 /**
716  *      __dev_get_by_name       - find a device by its name
717  *      @net: the applicable net namespace
718  *      @name: name to find
719  *
720  *      Find an interface by name. Must be called under RTNL semaphore
721  *      or @dev_base_lock. If the name is found a pointer to the device
722  *      is returned. If the name is not found then %NULL is returned. The
723  *      reference counters are not incremented so the caller must be
724  *      careful with locks.
725  */
726
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729         struct net_device *dev;
730         struct hlist_head *head = dev_name_hash(net, name);
731
732         hlist_for_each_entry(dev, head, name_hlist)
733                 if (!strncmp(dev->name, name, IFNAMSIZ))
734                         return dev;
735
736         return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739
740 /**
741  *      dev_get_by_name_rcu     - find a device by its name
742  *      @net: the applicable net namespace
743  *      @name: name to find
744  *
745  *      Find an interface by name.
746  *      If the name is found a pointer to the device is returned.
747  *      If the name is not found then %NULL is returned.
748  *      The reference counters are not incremented so the caller must be
749  *      careful with locks. The caller must hold RCU lock.
750  */
751
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754         struct net_device *dev;
755         struct hlist_head *head = dev_name_hash(net, name);
756
757         hlist_for_each_entry_rcu(dev, head, name_hlist)
758                 if (!strncmp(dev->name, name, IFNAMSIZ))
759                         return dev;
760
761         return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764
765 /**
766  *      dev_get_by_name         - find a device by its name
767  *      @net: the applicable net namespace
768  *      @name: name to find
769  *
770  *      Find an interface by name. This can be called from any
771  *      context and does its own locking. The returned handle has
772  *      the usage count incremented and the caller must use dev_put() to
773  *      release it when it is no longer needed. %NULL is returned if no
774  *      matching device is found.
775  */
776
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779         struct net_device *dev;
780
781         rcu_read_lock();
782         dev = dev_get_by_name_rcu(net, name);
783         if (dev)
784                 dev_hold(dev);
785         rcu_read_unlock();
786         return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789
790 /**
791  *      __dev_get_by_index - find a device by its ifindex
792  *      @net: the applicable net namespace
793  *      @ifindex: index of device
794  *
795  *      Search for an interface by index. Returns %NULL if the device
796  *      is not found or a pointer to the device. The device has not
797  *      had its reference counter increased so the caller must be careful
798  *      about locking. The caller must hold either the RTNL semaphore
799  *      or @dev_base_lock.
800  */
801
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804         struct net_device *dev;
805         struct hlist_head *head = dev_index_hash(net, ifindex);
806
807         hlist_for_each_entry(dev, head, index_hlist)
808                 if (dev->ifindex == ifindex)
809                         return dev;
810
811         return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814
815 /**
816  *      dev_get_by_index_rcu - find a device by its ifindex
817  *      @net: the applicable net namespace
818  *      @ifindex: index of device
819  *
820  *      Search for an interface by index. Returns %NULL if the device
821  *      is not found or a pointer to the device. The device has not
822  *      had its reference counter increased so the caller must be careful
823  *      about locking. The caller must hold RCU lock.
824  */
825
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828         struct net_device *dev;
829         struct hlist_head *head = dev_index_hash(net, ifindex);
830
831         hlist_for_each_entry_rcu(dev, head, index_hlist)
832                 if (dev->ifindex == ifindex)
833                         return dev;
834
835         return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838
839
840 /**
841  *      dev_get_by_index - find a device by its ifindex
842  *      @net: the applicable net namespace
843  *      @ifindex: index of device
844  *
845  *      Search for an interface by index. Returns NULL if the device
846  *      is not found or a pointer to the device. The device returned has
847  *      had a reference added and the pointer is safe until the user calls
848  *      dev_put to indicate they have finished with it.
849  */
850
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853         struct net_device *dev;
854
855         rcu_read_lock();
856         dev = dev_get_by_index_rcu(net, ifindex);
857         if (dev)
858                 dev_hold(dev);
859         rcu_read_unlock();
860         return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863
864 /**
865  *      netdev_get_name - get a netdevice name, knowing its ifindex.
866  *      @net: network namespace
867  *      @name: a pointer to the buffer where the name will be stored.
868  *      @ifindex: the ifindex of the interface to get the name from.
869  *
870  *      The use of raw_seqcount_begin() and cond_resched() before
871  *      retrying is required as we want to give the writers a chance
872  *      to complete when CONFIG_PREEMPT is not set.
873  */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876         struct net_device *dev;
877         unsigned int seq;
878
879 retry:
880         seq = raw_seqcount_begin(&devnet_rename_seq);
881         rcu_read_lock();
882         dev = dev_get_by_index_rcu(net, ifindex);
883         if (!dev) {
884                 rcu_read_unlock();
885                 return -ENODEV;
886         }
887
888         strcpy(name, dev->name);
889         rcu_read_unlock();
890         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891                 cond_resched();
892                 goto retry;
893         }
894
895         return 0;
896 }
897
898 /**
899  *      dev_getbyhwaddr_rcu - find a device by its hardware address
900  *      @net: the applicable net namespace
901  *      @type: media type of device
902  *      @ha: hardware address
903  *
904  *      Search for an interface by MAC address. Returns NULL if the device
905  *      is not found or a pointer to the device.
906  *      The caller must hold RCU or RTNL.
907  *      The returned device has not had its ref count increased
908  *      and the caller must therefore be careful about locking
909  *
910  */
911
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913                                        const char *ha)
914 {
915         struct net_device *dev;
916
917         for_each_netdev_rcu(net, dev)
918                 if (dev->type == type &&
919                     !memcmp(dev->dev_addr, ha, dev->addr_len))
920                         return dev;
921
922         return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928         struct net_device *dev;
929
930         ASSERT_RTNL();
931         for_each_netdev(net, dev)
932                 if (dev->type == type)
933                         return dev;
934
935         return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941         struct net_device *dev, *ret = NULL;
942
943         rcu_read_lock();
944         for_each_netdev_rcu(net, dev)
945                 if (dev->type == type) {
946                         dev_hold(dev);
947                         ret = dev;
948                         break;
949                 }
950         rcu_read_unlock();
951         return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955 /**
956  *      __dev_get_by_flags - find any device with given flags
957  *      @net: the applicable net namespace
958  *      @if_flags: IFF_* values
959  *      @mask: bitmask of bits in if_flags to check
960  *
961  *      Search for any interface with the given flags. Returns NULL if a device
962  *      is not found or a pointer to the device. Must be called inside
963  *      rtnl_lock(), and result refcount is unchanged.
964  */
965
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967                                       unsigned short mask)
968 {
969         struct net_device *dev, *ret;
970
971         ASSERT_RTNL();
972
973         ret = NULL;
974         for_each_netdev(net, dev) {
975                 if (((dev->flags ^ if_flags) & mask) == 0) {
976                         ret = dev;
977                         break;
978                 }
979         }
980         return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983
984 /**
985  *      dev_valid_name - check if name is okay for network device
986  *      @name: name string
987  *
988  *      Network device names need to be valid file names to
989  *      to allow sysfs to work.  We also disallow any kind of
990  *      whitespace.
991  */
992 bool dev_valid_name(const char *name)
993 {
994         if (*name == '\0')
995                 return false;
996         if (strlen(name) >= IFNAMSIZ)
997                 return false;
998         if (!strcmp(name, ".") || !strcmp(name, ".."))
999                 return false;
1000
1001         while (*name) {
1002                 if (*name == '/' || *name == ':' || isspace(*name))
1003                         return false;
1004                 name++;
1005         }
1006         return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009
1010 /**
1011  *      __dev_alloc_name - allocate a name for a device
1012  *      @net: network namespace to allocate the device name in
1013  *      @name: name format string
1014  *      @buf:  scratch buffer and result name string
1015  *
1016  *      Passed a format string - eg "lt%d" it will try and find a suitable
1017  *      id. It scans list of devices to build up a free map, then chooses
1018  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1019  *      while allocating the name and adding the device in order to avoid
1020  *      duplicates.
1021  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022  *      Returns the number of the unit assigned or a negative errno code.
1023  */
1024
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027         int i = 0;
1028         const char *p;
1029         const int max_netdevices = 8*PAGE_SIZE;
1030         unsigned long *inuse;
1031         struct net_device *d;
1032
1033         p = strnchr(name, IFNAMSIZ-1, '%');
1034         if (p) {
1035                 /*
1036                  * Verify the string as this thing may have come from
1037                  * the user.  There must be either one "%d" and no other "%"
1038                  * characters.
1039                  */
1040                 if (p[1] != 'd' || strchr(p + 2, '%'))
1041                         return -EINVAL;
1042
1043                 /* Use one page as a bit array of possible slots */
1044                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045                 if (!inuse)
1046                         return -ENOMEM;
1047
1048                 for_each_netdev(net, d) {
1049                         if (!sscanf(d->name, name, &i))
1050                                 continue;
1051                         if (i < 0 || i >= max_netdevices)
1052                                 continue;
1053
1054                         /*  avoid cases where sscanf is not exact inverse of printf */
1055                         snprintf(buf, IFNAMSIZ, name, i);
1056                         if (!strncmp(buf, d->name, IFNAMSIZ))
1057                                 set_bit(i, inuse);
1058                 }
1059
1060                 i = find_first_zero_bit(inuse, max_netdevices);
1061                 free_page((unsigned long) inuse);
1062         }
1063
1064         if (buf != name)
1065                 snprintf(buf, IFNAMSIZ, name, i);
1066         if (!__dev_get_by_name(net, buf))
1067                 return i;
1068
1069         /* It is possible to run out of possible slots
1070          * when the name is long and there isn't enough space left
1071          * for the digits, or if all bits are used.
1072          */
1073         return -ENFILE;
1074 }
1075
1076 /**
1077  *      dev_alloc_name - allocate a name for a device
1078  *      @dev: device
1079  *      @name: name format string
1080  *
1081  *      Passed a format string - eg "lt%d" it will try and find a suitable
1082  *      id. It scans list of devices to build up a free map, then chooses
1083  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1084  *      while allocating the name and adding the device in order to avoid
1085  *      duplicates.
1086  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087  *      Returns the number of the unit assigned or a negative errno code.
1088  */
1089
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092         char buf[IFNAMSIZ];
1093         struct net *net;
1094         int ret;
1095
1096         BUG_ON(!dev_net(dev));
1097         net = dev_net(dev);
1098         ret = __dev_alloc_name(net, name, buf);
1099         if (ret >= 0)
1100                 strlcpy(dev->name, buf, IFNAMSIZ);
1101         return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104
1105 static int dev_alloc_name_ns(struct net *net,
1106                              struct net_device *dev,
1107                              const char *name)
1108 {
1109         char buf[IFNAMSIZ];
1110         int ret;
1111
1112         ret = __dev_alloc_name(net, name, buf);
1113         if (ret >= 0)
1114                 strlcpy(dev->name, buf, IFNAMSIZ);
1115         return ret;
1116 }
1117
1118 static int dev_get_valid_name(struct net *net,
1119                               struct net_device *dev,
1120                               const char *name)
1121 {
1122         BUG_ON(!net);
1123
1124         if (!dev_valid_name(name))
1125                 return -EINVAL;
1126
1127         if (strchr(name, '%'))
1128                 return dev_alloc_name_ns(net, dev, name);
1129         else if (__dev_get_by_name(net, name))
1130                 return -EEXIST;
1131         else if (dev->name != name)
1132                 strlcpy(dev->name, name, IFNAMSIZ);
1133
1134         return 0;
1135 }
1136
1137 /**
1138  *      dev_change_name - change name of a device
1139  *      @dev: device
1140  *      @newname: name (or format string) must be at least IFNAMSIZ
1141  *
1142  *      Change name of a device, can pass format strings "eth%d".
1143  *      for wildcarding.
1144  */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147         unsigned char old_assign_type;
1148         char oldname[IFNAMSIZ];
1149         int err = 0;
1150         int ret;
1151         struct net *net;
1152
1153         ASSERT_RTNL();
1154         BUG_ON(!dev_net(dev));
1155
1156         net = dev_net(dev);
1157         if (dev->flags & IFF_UP)
1158                 return -EBUSY;
1159
1160         write_seqcount_begin(&devnet_rename_seq);
1161
1162         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163                 write_seqcount_end(&devnet_rename_seq);
1164                 return 0;
1165         }
1166
1167         memcpy(oldname, dev->name, IFNAMSIZ);
1168
1169         err = dev_get_valid_name(net, dev, newname);
1170         if (err < 0) {
1171                 write_seqcount_end(&devnet_rename_seq);
1172                 return err;
1173         }
1174
1175         if (oldname[0] && !strchr(oldname, '%'))
1176                 netdev_info(dev, "renamed from %s\n", oldname);
1177
1178         old_assign_type = dev->name_assign_type;
1179         dev->name_assign_type = NET_NAME_RENAMED;
1180
1181 rollback:
1182         ret = device_rename(&dev->dev, dev->name);
1183         if (ret) {
1184                 memcpy(dev->name, oldname, IFNAMSIZ);
1185                 dev->name_assign_type = old_assign_type;
1186                 write_seqcount_end(&devnet_rename_seq);
1187                 return ret;
1188         }
1189
1190         write_seqcount_end(&devnet_rename_seq);
1191
1192         netdev_adjacent_rename_links(dev, oldname);
1193
1194         write_lock_bh(&dev_base_lock);
1195         hlist_del_rcu(&dev->name_hlist);
1196         write_unlock_bh(&dev_base_lock);
1197
1198         synchronize_rcu();
1199
1200         write_lock_bh(&dev_base_lock);
1201         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202         write_unlock_bh(&dev_base_lock);
1203
1204         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205         ret = notifier_to_errno(ret);
1206
1207         if (ret) {
1208                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209                 if (err >= 0) {
1210                         err = ret;
1211                         write_seqcount_begin(&devnet_rename_seq);
1212                         memcpy(dev->name, oldname, IFNAMSIZ);
1213                         memcpy(oldname, newname, IFNAMSIZ);
1214                         dev->name_assign_type = old_assign_type;
1215                         old_assign_type = NET_NAME_RENAMED;
1216                         goto rollback;
1217                 } else {
1218                         pr_err("%s: name change rollback failed: %d\n",
1219                                dev->name, ret);
1220                 }
1221         }
1222
1223         return err;
1224 }
1225
1226 /**
1227  *      dev_set_alias - change ifalias of a device
1228  *      @dev: device
1229  *      @alias: name up to IFALIASZ
1230  *      @len: limit of bytes to copy from info
1231  *
1232  *      Set ifalias for a device,
1233  */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236         char *new_ifalias;
1237
1238         ASSERT_RTNL();
1239
1240         if (len >= IFALIASZ)
1241                 return -EINVAL;
1242
1243         if (!len) {
1244                 kfree(dev->ifalias);
1245                 dev->ifalias = NULL;
1246                 return 0;
1247         }
1248
1249         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250         if (!new_ifalias)
1251                 return -ENOMEM;
1252         dev->ifalias = new_ifalias;
1253
1254         strlcpy(dev->ifalias, alias, len+1);
1255         return len;
1256 }
1257
1258
1259 /**
1260  *      netdev_features_change - device changes features
1261  *      @dev: device to cause notification
1262  *
1263  *      Called to indicate a device has changed features.
1264  */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270
1271 /**
1272  *      netdev_state_change - device changes state
1273  *      @dev: device to cause notification
1274  *
1275  *      Called to indicate a device has changed state. This function calls
1276  *      the notifier chains for netdev_chain and sends a NEWLINK message
1277  *      to the routing socket.
1278  */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281         if (dev->flags & IFF_UP) {
1282                 struct netdev_notifier_change_info change_info;
1283
1284                 change_info.flags_changed = 0;
1285                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286                                               &change_info.info);
1287                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288         }
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291
1292 /**
1293  *      netdev_notify_peers - notify network peers about existence of @dev
1294  *      @dev: network device
1295  *
1296  * Generate traffic such that interested network peers are aware of
1297  * @dev, such as by generating a gratuitous ARP. This may be used when
1298  * a device wants to inform the rest of the network about some sort of
1299  * reconfiguration such as a failover event or virtual machine
1300  * migration.
1301  */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304         rtnl_lock();
1305         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306         rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309
1310 static int __dev_open(struct net_device *dev)
1311 {
1312         const struct net_device_ops *ops = dev->netdev_ops;
1313         int ret;
1314
1315         ASSERT_RTNL();
1316
1317         if (!netif_device_present(dev))
1318                 return -ENODEV;
1319
1320         /* Block netpoll from trying to do any rx path servicing.
1321          * If we don't do this there is a chance ndo_poll_controller
1322          * or ndo_poll may be running while we open the device
1323          */
1324         netpoll_poll_disable(dev);
1325
1326         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327         ret = notifier_to_errno(ret);
1328         if (ret)
1329                 return ret;
1330
1331         set_bit(__LINK_STATE_START, &dev->state);
1332
1333         if (ops->ndo_validate_addr)
1334                 ret = ops->ndo_validate_addr(dev);
1335
1336         if (!ret && ops->ndo_open)
1337                 ret = ops->ndo_open(dev);
1338
1339         netpoll_poll_enable(dev);
1340
1341         if (ret)
1342                 clear_bit(__LINK_STATE_START, &dev->state);
1343         else {
1344                 dev->flags |= IFF_UP;
1345                 dev_set_rx_mode(dev);
1346                 dev_activate(dev);
1347                 add_device_randomness(dev->dev_addr, dev->addr_len);
1348         }
1349
1350         return ret;
1351 }
1352
1353 /**
1354  *      dev_open        - prepare an interface for use.
1355  *      @dev:   device to open
1356  *
1357  *      Takes a device from down to up state. The device's private open
1358  *      function is invoked and then the multicast lists are loaded. Finally
1359  *      the device is moved into the up state and a %NETDEV_UP message is
1360  *      sent to the netdev notifier chain.
1361  *
1362  *      Calling this function on an active interface is a nop. On a failure
1363  *      a negative errno code is returned.
1364  */
1365 int dev_open(struct net_device *dev)
1366 {
1367         int ret;
1368
1369         if (dev->flags & IFF_UP)
1370                 return 0;
1371
1372         ret = __dev_open(dev);
1373         if (ret < 0)
1374                 return ret;
1375
1376         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377         call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379         return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385         struct net_device *dev;
1386
1387         ASSERT_RTNL();
1388         might_sleep();
1389
1390         list_for_each_entry(dev, head, close_list) {
1391                 /* Temporarily disable netpoll until the interface is down */
1392                 netpoll_poll_disable(dev);
1393
1394                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395
1396                 clear_bit(__LINK_STATE_START, &dev->state);
1397
1398                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399                  * can be even on different cpu. So just clear netif_running().
1400                  *
1401                  * dev->stop() will invoke napi_disable() on all of it's
1402                  * napi_struct instances on this device.
1403                  */
1404                 smp_mb__after_atomic(); /* Commit netif_running(). */
1405         }
1406
1407         dev_deactivate_many(head);
1408
1409         list_for_each_entry(dev, head, close_list) {
1410                 const struct net_device_ops *ops = dev->netdev_ops;
1411
1412                 /*
1413                  *      Call the device specific close. This cannot fail.
1414                  *      Only if device is UP
1415                  *
1416                  *      We allow it to be called even after a DETACH hot-plug
1417                  *      event.
1418                  */
1419                 if (ops->ndo_stop)
1420                         ops->ndo_stop(dev);
1421
1422                 dev->flags &= ~IFF_UP;
1423                 netpoll_poll_enable(dev);
1424         }
1425
1426         return 0;
1427 }
1428
1429 static int __dev_close(struct net_device *dev)
1430 {
1431         int retval;
1432         LIST_HEAD(single);
1433
1434         list_add(&dev->close_list, &single);
1435         retval = __dev_close_many(&single);
1436         list_del(&single);
1437
1438         return retval;
1439 }
1440
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443         struct net_device *dev, *tmp;
1444
1445         /* Remove the devices that don't need to be closed */
1446         list_for_each_entry_safe(dev, tmp, head, close_list)
1447                 if (!(dev->flags & IFF_UP))
1448                         list_del_init(&dev->close_list);
1449
1450         __dev_close_many(head);
1451
1452         list_for_each_entry_safe(dev, tmp, head, close_list) {
1453                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1455                 if (unlink)
1456                         list_del_init(&dev->close_list);
1457         }
1458
1459         return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462
1463 /**
1464  *      dev_close - shutdown an interface.
1465  *      @dev: device to shutdown
1466  *
1467  *      This function moves an active device into down state. A
1468  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470  *      chain.
1471  */
1472 int dev_close(struct net_device *dev)
1473 {
1474         if (dev->flags & IFF_UP) {
1475                 LIST_HEAD(single);
1476
1477                 list_add(&dev->close_list, &single);
1478                 dev_close_many(&single, true);
1479                 list_del(&single);
1480         }
1481         return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484
1485
1486 /**
1487  *      dev_disable_lro - disable Large Receive Offload on a device
1488  *      @dev: device
1489  *
1490  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1491  *      called under RTNL.  This is needed if received packets may be
1492  *      forwarded to another interface.
1493  */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496         struct net_device *lower_dev;
1497         struct list_head *iter;
1498
1499         dev->wanted_features &= ~NETIF_F_LRO;
1500         netdev_update_features(dev);
1501
1502         if (unlikely(dev->features & NETIF_F_LRO))
1503                 netdev_WARN(dev, "failed to disable LRO!\n");
1504
1505         netdev_for_each_lower_dev(dev, lower_dev, iter)
1506                 dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511                                    struct net_device *dev)
1512 {
1513         struct netdev_notifier_info info;
1514
1515         netdev_notifier_info_init(&info, dev);
1516         return nb->notifier_call(nb, val, &info);
1517 }
1518
1519 static int dev_boot_phase = 1;
1520
1521 /**
1522  *      register_netdevice_notifier - register a network notifier block
1523  *      @nb: notifier
1524  *
1525  *      Register a notifier to be called when network device events occur.
1526  *      The notifier passed is linked into the kernel structures and must
1527  *      not be reused until it has been unregistered. A negative errno code
1528  *      is returned on a failure.
1529  *
1530  *      When registered all registration and up events are replayed
1531  *      to the new notifier to allow device to have a race free
1532  *      view of the network device list.
1533  */
1534
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537         struct net_device *dev;
1538         struct net_device *last;
1539         struct net *net;
1540         int err;
1541
1542         rtnl_lock();
1543         err = raw_notifier_chain_register(&netdev_chain, nb);
1544         if (err)
1545                 goto unlock;
1546         if (dev_boot_phase)
1547                 goto unlock;
1548         for_each_net(net) {
1549                 for_each_netdev(net, dev) {
1550                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551                         err = notifier_to_errno(err);
1552                         if (err)
1553                                 goto rollback;
1554
1555                         if (!(dev->flags & IFF_UP))
1556                                 continue;
1557
1558                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1559                 }
1560         }
1561
1562 unlock:
1563         rtnl_unlock();
1564         return err;
1565
1566 rollback:
1567         last = dev;
1568         for_each_net(net) {
1569                 for_each_netdev(net, dev) {
1570                         if (dev == last)
1571                                 goto outroll;
1572
1573                         if (dev->flags & IFF_UP) {
1574                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575                                                         dev);
1576                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577                         }
1578                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579                 }
1580         }
1581
1582 outroll:
1583         raw_notifier_chain_unregister(&netdev_chain, nb);
1584         goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587
1588 /**
1589  *      unregister_netdevice_notifier - unregister a network notifier block
1590  *      @nb: notifier
1591  *
1592  *      Unregister a notifier previously registered by
1593  *      register_netdevice_notifier(). The notifier is unlinked into the
1594  *      kernel structures and may then be reused. A negative errno code
1595  *      is returned on a failure.
1596  *
1597  *      After unregistering unregister and down device events are synthesized
1598  *      for all devices on the device list to the removed notifier to remove
1599  *      the need for special case cleanup code.
1600  */
1601
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604         struct net_device *dev;
1605         struct net *net;
1606         int err;
1607
1608         rtnl_lock();
1609         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610         if (err)
1611                 goto unlock;
1612
1613         for_each_net(net) {
1614                 for_each_netdev(net, dev) {
1615                         if (dev->flags & IFF_UP) {
1616                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617                                                         dev);
1618                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619                         }
1620                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621                 }
1622         }
1623 unlock:
1624         rtnl_unlock();
1625         return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628
1629 /**
1630  *      call_netdevice_notifiers_info - call all network notifier blocks
1631  *      @val: value passed unmodified to notifier function
1632  *      @dev: net_device pointer passed unmodified to notifier function
1633  *      @info: notifier information data
1634  *
1635  *      Call all network notifier blocks.  Parameters and return value
1636  *      are as for raw_notifier_call_chain().
1637  */
1638
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640                                          struct net_device *dev,
1641                                          struct netdev_notifier_info *info)
1642 {
1643         ASSERT_RTNL();
1644         netdev_notifier_info_init(info, dev);
1645         return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647
1648 /**
1649  *      call_netdevice_notifiers - call all network notifier blocks
1650  *      @val: value passed unmodified to notifier function
1651  *      @dev: net_device pointer passed unmodified to notifier function
1652  *
1653  *      Call all network notifier blocks.  Parameters and return value
1654  *      are as for raw_notifier_call_chain().
1655  */
1656
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659         struct netdev_notifier_info info;
1660
1661         return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667
1668 void net_inc_ingress_queue(void)
1669 {
1670         static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674 void net_dec_ingress_queue(void)
1675 {
1676         static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683
1684 void net_inc_egress_queue(void)
1685 {
1686         static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690 void net_dec_egress_queue(void)
1691 {
1692         static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700  * If net_disable_timestamp() is called from irq context, defer the
1701  * static_key_slow_dec() calls.
1702  */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711         if (deferred) {
1712                 while (--deferred)
1713                         static_key_slow_dec(&netstamp_needed);
1714                 return;
1715         }
1716 #endif
1717         static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724         if (in_interrupt()) {
1725                 atomic_inc(&netstamp_needed_deferred);
1726                 return;
1727         }
1728 #endif
1729         static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735         skb->tstamp.tv64 = 0;
1736         if (static_key_false(&netstamp_needed))
1737                 __net_timestamp(skb);
1738 }
1739
1740 #define net_timestamp_check(COND, SKB)                  \
1741         if (static_key_false(&netstamp_needed)) {               \
1742                 if ((COND) && !(SKB)->tstamp.tv64)      \
1743                         __net_timestamp(SKB);           \
1744         }                                               \
1745
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748         unsigned int len;
1749
1750         if (!(dev->flags & IFF_UP))
1751                 return false;
1752
1753         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754         if (skb->len <= len)
1755                 return true;
1756
1757         /* if TSO is enabled, we don't care about the length as the packet
1758          * could be forwarded without being segmented before
1759          */
1760         if (skb_is_gso(skb))
1761                 return true;
1762
1763         return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769         int ret = ____dev_forward_skb(dev, skb);
1770
1771         if (likely(!ret)) {
1772                 skb->protocol = eth_type_trans(skb, dev);
1773                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1774         }
1775
1776         return ret;
1777 }
1778 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1779
1780 /**
1781  * dev_forward_skb - loopback an skb to another netif
1782  *
1783  * @dev: destination network device
1784  * @skb: buffer to forward
1785  *
1786  * return values:
1787  *      NET_RX_SUCCESS  (no congestion)
1788  *      NET_RX_DROP     (packet was dropped, but freed)
1789  *
1790  * dev_forward_skb can be used for injecting an skb from the
1791  * start_xmit function of one device into the receive queue
1792  * of another device.
1793  *
1794  * The receiving device may be in another namespace, so
1795  * we have to clear all information in the skb that could
1796  * impact namespace isolation.
1797  */
1798 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1799 {
1800         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1801 }
1802 EXPORT_SYMBOL_GPL(dev_forward_skb);
1803
1804 static inline int deliver_skb(struct sk_buff *skb,
1805                               struct packet_type *pt_prev,
1806                               struct net_device *orig_dev)
1807 {
1808         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1809                 return -ENOMEM;
1810         atomic_inc(&skb->users);
1811         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1812 }
1813
1814 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1815                                           struct packet_type **pt,
1816                                           struct net_device *orig_dev,
1817                                           __be16 type,
1818                                           struct list_head *ptype_list)
1819 {
1820         struct packet_type *ptype, *pt_prev = *pt;
1821
1822         list_for_each_entry_rcu(ptype, ptype_list, list) {
1823                 if (ptype->type != type)
1824                         continue;
1825                 if (pt_prev)
1826                         deliver_skb(skb, pt_prev, orig_dev);
1827                 pt_prev = ptype;
1828         }
1829         *pt = pt_prev;
1830 }
1831
1832 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1833 {
1834         if (!ptype->af_packet_priv || !skb->sk)
1835                 return false;
1836
1837         if (ptype->id_match)
1838                 return ptype->id_match(ptype, skb->sk);
1839         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1840                 return true;
1841
1842         return false;
1843 }
1844
1845 /*
1846  *      Support routine. Sends outgoing frames to any network
1847  *      taps currently in use.
1848  */
1849
1850 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1851 {
1852         struct packet_type *ptype;
1853         struct sk_buff *skb2 = NULL;
1854         struct packet_type *pt_prev = NULL;
1855         struct list_head *ptype_list = &ptype_all;
1856
1857         rcu_read_lock();
1858 again:
1859         list_for_each_entry_rcu(ptype, ptype_list, list) {
1860                 /* Never send packets back to the socket
1861                  * they originated from - MvS (miquels@drinkel.ow.org)
1862                  */
1863                 if (skb_loop_sk(ptype, skb))
1864                         continue;
1865
1866                 if (pt_prev) {
1867                         deliver_skb(skb2, pt_prev, skb->dev);
1868                         pt_prev = ptype;
1869                         continue;
1870                 }
1871
1872                 /* need to clone skb, done only once */
1873                 skb2 = skb_clone(skb, GFP_ATOMIC);
1874                 if (!skb2)
1875                         goto out_unlock;
1876
1877                 net_timestamp_set(skb2);
1878
1879                 /* skb->nh should be correctly
1880                  * set by sender, so that the second statement is
1881                  * just protection against buggy protocols.
1882                  */
1883                 skb_reset_mac_header(skb2);
1884
1885                 if (skb_network_header(skb2) < skb2->data ||
1886                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1887                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1888                                              ntohs(skb2->protocol),
1889                                              dev->name);
1890                         skb_reset_network_header(skb2);
1891                 }
1892
1893                 skb2->transport_header = skb2->network_header;
1894                 skb2->pkt_type = PACKET_OUTGOING;
1895                 pt_prev = ptype;
1896         }
1897
1898         if (ptype_list == &ptype_all) {
1899                 ptype_list = &dev->ptype_all;
1900                 goto again;
1901         }
1902 out_unlock:
1903         if (pt_prev)
1904                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1905         rcu_read_unlock();
1906 }
1907 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1908
1909 /**
1910  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1911  * @dev: Network device
1912  * @txq: number of queues available
1913  *
1914  * If real_num_tx_queues is changed the tc mappings may no longer be
1915  * valid. To resolve this verify the tc mapping remains valid and if
1916  * not NULL the mapping. With no priorities mapping to this
1917  * offset/count pair it will no longer be used. In the worst case TC0
1918  * is invalid nothing can be done so disable priority mappings. If is
1919  * expected that drivers will fix this mapping if they can before
1920  * calling netif_set_real_num_tx_queues.
1921  */
1922 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1923 {
1924         int i;
1925         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1926
1927         /* If TC0 is invalidated disable TC mapping */
1928         if (tc->offset + tc->count > txq) {
1929                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1930                 dev->num_tc = 0;
1931                 return;
1932         }
1933
1934         /* Invalidated prio to tc mappings set to TC0 */
1935         for (i = 1; i < TC_BITMASK + 1; i++) {
1936                 int q = netdev_get_prio_tc_map(dev, i);
1937
1938                 tc = &dev->tc_to_txq[q];
1939                 if (tc->offset + tc->count > txq) {
1940                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1941                                 i, q);
1942                         netdev_set_prio_tc_map(dev, i, 0);
1943                 }
1944         }
1945 }
1946
1947 #ifdef CONFIG_XPS
1948 static DEFINE_MUTEX(xps_map_mutex);
1949 #define xmap_dereference(P)             \
1950         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1951
1952 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1953                                         int cpu, u16 index)
1954 {
1955         struct xps_map *map = NULL;
1956         int pos;
1957
1958         if (dev_maps)
1959                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1960
1961         for (pos = 0; map && pos < map->len; pos++) {
1962                 if (map->queues[pos] == index) {
1963                         if (map->len > 1) {
1964                                 map->queues[pos] = map->queues[--map->len];
1965                         } else {
1966                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1967                                 kfree_rcu(map, rcu);
1968                                 map = NULL;
1969                         }
1970                         break;
1971                 }
1972         }
1973
1974         return map;
1975 }
1976
1977 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1978 {
1979         struct xps_dev_maps *dev_maps;
1980         int cpu, i;
1981         bool active = false;
1982
1983         mutex_lock(&xps_map_mutex);
1984         dev_maps = xmap_dereference(dev->xps_maps);
1985
1986         if (!dev_maps)
1987                 goto out_no_maps;
1988
1989         for_each_possible_cpu(cpu) {
1990                 for (i = index; i < dev->num_tx_queues; i++) {
1991                         if (!remove_xps_queue(dev_maps, cpu, i))
1992                                 break;
1993                 }
1994                 if (i == dev->num_tx_queues)
1995                         active = true;
1996         }
1997
1998         if (!active) {
1999                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2000                 kfree_rcu(dev_maps, rcu);
2001         }
2002
2003         for (i = index; i < dev->num_tx_queues; i++)
2004                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2005                                              NUMA_NO_NODE);
2006
2007 out_no_maps:
2008         mutex_unlock(&xps_map_mutex);
2009 }
2010
2011 static struct xps_map *expand_xps_map(struct xps_map *map,
2012                                       int cpu, u16 index)
2013 {
2014         struct xps_map *new_map;
2015         int alloc_len = XPS_MIN_MAP_ALLOC;
2016         int i, pos;
2017
2018         for (pos = 0; map && pos < map->len; pos++) {
2019                 if (map->queues[pos] != index)
2020                         continue;
2021                 return map;
2022         }
2023
2024         /* Need to add queue to this CPU's existing map */
2025         if (map) {
2026                 if (pos < map->alloc_len)
2027                         return map;
2028
2029                 alloc_len = map->alloc_len * 2;
2030         }
2031
2032         /* Need to allocate new map to store queue on this CPU's map */
2033         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2034                                cpu_to_node(cpu));
2035         if (!new_map)
2036                 return NULL;
2037
2038         for (i = 0; i < pos; i++)
2039                 new_map->queues[i] = map->queues[i];
2040         new_map->alloc_len = alloc_len;
2041         new_map->len = pos;
2042
2043         return new_map;
2044 }
2045
2046 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2047                         u16 index)
2048 {
2049         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2050         struct xps_map *map, *new_map;
2051         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2052         int cpu, numa_node_id = -2;
2053         bool active = false;
2054
2055         mutex_lock(&xps_map_mutex);
2056
2057         dev_maps = xmap_dereference(dev->xps_maps);
2058
2059         /* allocate memory for queue storage */
2060         for_each_online_cpu(cpu) {
2061                 if (!cpumask_test_cpu(cpu, mask))
2062                         continue;
2063
2064                 if (!new_dev_maps)
2065                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2066                 if (!new_dev_maps) {
2067                         mutex_unlock(&xps_map_mutex);
2068                         return -ENOMEM;
2069                 }
2070
2071                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2072                                  NULL;
2073
2074                 map = expand_xps_map(map, cpu, index);
2075                 if (!map)
2076                         goto error;
2077
2078                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2079         }
2080
2081         if (!new_dev_maps)
2082                 goto out_no_new_maps;
2083
2084         for_each_possible_cpu(cpu) {
2085                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2086                         /* add queue to CPU maps */
2087                         int pos = 0;
2088
2089                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2090                         while ((pos < map->len) && (map->queues[pos] != index))
2091                                 pos++;
2092
2093                         if (pos == map->len)
2094                                 map->queues[map->len++] = index;
2095 #ifdef CONFIG_NUMA
2096                         if (numa_node_id == -2)
2097                                 numa_node_id = cpu_to_node(cpu);
2098                         else if (numa_node_id != cpu_to_node(cpu))
2099                                 numa_node_id = -1;
2100 #endif
2101                 } else if (dev_maps) {
2102                         /* fill in the new device map from the old device map */
2103                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2104                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2105                 }
2106
2107         }
2108
2109         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2110
2111         /* Cleanup old maps */
2112         if (dev_maps) {
2113                 for_each_possible_cpu(cpu) {
2114                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2115                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2116                         if (map && map != new_map)
2117                                 kfree_rcu(map, rcu);
2118                 }
2119
2120                 kfree_rcu(dev_maps, rcu);
2121         }
2122
2123         dev_maps = new_dev_maps;
2124         active = true;
2125
2126 out_no_new_maps:
2127         /* update Tx queue numa node */
2128         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2129                                      (numa_node_id >= 0) ? numa_node_id :
2130                                      NUMA_NO_NODE);
2131
2132         if (!dev_maps)
2133                 goto out_no_maps;
2134
2135         /* removes queue from unused CPUs */
2136         for_each_possible_cpu(cpu) {
2137                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2138                         continue;
2139
2140                 if (remove_xps_queue(dev_maps, cpu, index))
2141                         active = true;
2142         }
2143
2144         /* free map if not active */
2145         if (!active) {
2146                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2147                 kfree_rcu(dev_maps, rcu);
2148         }
2149
2150 out_no_maps:
2151         mutex_unlock(&xps_map_mutex);
2152
2153         return 0;
2154 error:
2155         /* remove any maps that we added */
2156         for_each_possible_cpu(cpu) {
2157                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2158                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2159                                  NULL;
2160                 if (new_map && new_map != map)
2161                         kfree(new_map);
2162         }
2163
2164         mutex_unlock(&xps_map_mutex);
2165
2166         kfree(new_dev_maps);
2167         return -ENOMEM;
2168 }
2169 EXPORT_SYMBOL(netif_set_xps_queue);
2170
2171 #endif
2172 /*
2173  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2174  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2175  */
2176 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2177 {
2178         int rc;
2179
2180         if (txq < 1 || txq > dev->num_tx_queues)
2181                 return -EINVAL;
2182
2183         if (dev->reg_state == NETREG_REGISTERED ||
2184             dev->reg_state == NETREG_UNREGISTERING) {
2185                 ASSERT_RTNL();
2186
2187                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2188                                                   txq);
2189                 if (rc)
2190                         return rc;
2191
2192                 if (dev->num_tc)
2193                         netif_setup_tc(dev, txq);
2194
2195                 if (txq < dev->real_num_tx_queues) {
2196                         qdisc_reset_all_tx_gt(dev, txq);
2197 #ifdef CONFIG_XPS
2198                         netif_reset_xps_queues_gt(dev, txq);
2199 #endif
2200                 }
2201         }
2202
2203         dev->real_num_tx_queues = txq;
2204         return 0;
2205 }
2206 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2207
2208 #ifdef CONFIG_SYSFS
2209 /**
2210  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2211  *      @dev: Network device
2212  *      @rxq: Actual number of RX queues
2213  *
2214  *      This must be called either with the rtnl_lock held or before
2215  *      registration of the net device.  Returns 0 on success, or a
2216  *      negative error code.  If called before registration, it always
2217  *      succeeds.
2218  */
2219 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2220 {
2221         int rc;
2222
2223         if (rxq < 1 || rxq > dev->num_rx_queues)
2224                 return -EINVAL;
2225
2226         if (dev->reg_state == NETREG_REGISTERED) {
2227                 ASSERT_RTNL();
2228
2229                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2230                                                   rxq);
2231                 if (rc)
2232                         return rc;
2233         }
2234
2235         dev->real_num_rx_queues = rxq;
2236         return 0;
2237 }
2238 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2239 #endif
2240
2241 /**
2242  * netif_get_num_default_rss_queues - default number of RSS queues
2243  *
2244  * This routine should set an upper limit on the number of RSS queues
2245  * used by default by multiqueue devices.
2246  */
2247 int netif_get_num_default_rss_queues(void)
2248 {
2249         return is_kdump_kernel() ?
2250                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2251 }
2252 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2253
2254 static void __netif_reschedule(struct Qdisc *q)
2255 {
2256         struct softnet_data *sd;
2257         unsigned long flags;
2258
2259         local_irq_save(flags);
2260         sd = this_cpu_ptr(&softnet_data);
2261         q->next_sched = NULL;
2262         *sd->output_queue_tailp = q;
2263         sd->output_queue_tailp = &q->next_sched;
2264         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2265         local_irq_restore(flags);
2266 }
2267
2268 void __netif_schedule(struct Qdisc *q)
2269 {
2270         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2271                 __netif_reschedule(q);
2272 }
2273 EXPORT_SYMBOL(__netif_schedule);
2274
2275 struct dev_kfree_skb_cb {
2276         enum skb_free_reason reason;
2277 };
2278
2279 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2280 {
2281         return (struct dev_kfree_skb_cb *)skb->cb;
2282 }
2283
2284 void netif_schedule_queue(struct netdev_queue *txq)
2285 {
2286         rcu_read_lock();
2287         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2288                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2289
2290                 __netif_schedule(q);
2291         }
2292         rcu_read_unlock();
2293 }
2294 EXPORT_SYMBOL(netif_schedule_queue);
2295
2296 /**
2297  *      netif_wake_subqueue - allow sending packets on subqueue
2298  *      @dev: network device
2299  *      @queue_index: sub queue index
2300  *
2301  * Resume individual transmit queue of a device with multiple transmit queues.
2302  */
2303 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2304 {
2305         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2306
2307         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2308                 struct Qdisc *q;
2309
2310                 rcu_read_lock();
2311                 q = rcu_dereference(txq->qdisc);
2312                 __netif_schedule(q);
2313                 rcu_read_unlock();
2314         }
2315 }
2316 EXPORT_SYMBOL(netif_wake_subqueue);
2317
2318 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2319 {
2320         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2321                 struct Qdisc *q;
2322
2323                 rcu_read_lock();
2324                 q = rcu_dereference(dev_queue->qdisc);
2325                 __netif_schedule(q);
2326                 rcu_read_unlock();
2327         }
2328 }
2329 EXPORT_SYMBOL(netif_tx_wake_queue);
2330
2331 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2332 {
2333         unsigned long flags;
2334
2335         if (likely(atomic_read(&skb->users) == 1)) {
2336                 smp_rmb();
2337                 atomic_set(&skb->users, 0);
2338         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2339                 return;
2340         }
2341         get_kfree_skb_cb(skb)->reason = reason;
2342         local_irq_save(flags);
2343         skb->next = __this_cpu_read(softnet_data.completion_queue);
2344         __this_cpu_write(softnet_data.completion_queue, skb);
2345         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2346         local_irq_restore(flags);
2347 }
2348 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2349
2350 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2351 {
2352         if (in_irq() || irqs_disabled())
2353                 __dev_kfree_skb_irq(skb, reason);
2354         else
2355                 dev_kfree_skb(skb);
2356 }
2357 EXPORT_SYMBOL(__dev_kfree_skb_any);
2358
2359
2360 /**
2361  * netif_device_detach - mark device as removed
2362  * @dev: network device
2363  *
2364  * Mark device as removed from system and therefore no longer available.
2365  */
2366 void netif_device_detach(struct net_device *dev)
2367 {
2368         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2369             netif_running(dev)) {
2370                 netif_tx_stop_all_queues(dev);
2371         }
2372 }
2373 EXPORT_SYMBOL(netif_device_detach);
2374
2375 /**
2376  * netif_device_attach - mark device as attached
2377  * @dev: network device
2378  *
2379  * Mark device as attached from system and restart if needed.
2380  */
2381 void netif_device_attach(struct net_device *dev)
2382 {
2383         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2384             netif_running(dev)) {
2385                 netif_tx_wake_all_queues(dev);
2386                 __netdev_watchdog_up(dev);
2387         }
2388 }
2389 EXPORT_SYMBOL(netif_device_attach);
2390
2391 /*
2392  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2393  * to be used as a distribution range.
2394  */
2395 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2396                   unsigned int num_tx_queues)
2397 {
2398         u32 hash;
2399         u16 qoffset = 0;
2400         u16 qcount = num_tx_queues;
2401
2402         if (skb_rx_queue_recorded(skb)) {
2403                 hash = skb_get_rx_queue(skb);
2404                 while (unlikely(hash >= num_tx_queues))
2405                         hash -= num_tx_queues;
2406                 return hash;
2407         }
2408
2409         if (dev->num_tc) {
2410                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2411                 qoffset = dev->tc_to_txq[tc].offset;
2412                 qcount = dev->tc_to_txq[tc].count;
2413         }
2414
2415         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2416 }
2417 EXPORT_SYMBOL(__skb_tx_hash);
2418
2419 static void skb_warn_bad_offload(const struct sk_buff *skb)
2420 {
2421         static const netdev_features_t null_features;
2422         struct net_device *dev = skb->dev;
2423         const char *name = "";
2424
2425         if (!net_ratelimit())
2426                 return;
2427
2428         if (dev) {
2429                 if (dev->dev.parent)
2430                         name = dev_driver_string(dev->dev.parent);
2431                 else
2432                         name = netdev_name(dev);
2433         }
2434         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2435              "gso_type=%d ip_summed=%d\n",
2436              name, dev ? &dev->features : &null_features,
2437              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2438              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2439              skb_shinfo(skb)->gso_type, skb->ip_summed);
2440 }
2441
2442 /*
2443  * Invalidate hardware checksum when packet is to be mangled, and
2444  * complete checksum manually on outgoing path.
2445  */
2446 int skb_checksum_help(struct sk_buff *skb)
2447 {
2448         __wsum csum;
2449         int ret = 0, offset;
2450
2451         if (skb->ip_summed == CHECKSUM_COMPLETE)
2452                 goto out_set_summed;
2453
2454         if (unlikely(skb_shinfo(skb)->gso_size)) {
2455                 skb_warn_bad_offload(skb);
2456                 return -EINVAL;
2457         }
2458
2459         /* Before computing a checksum, we should make sure no frag could
2460          * be modified by an external entity : checksum could be wrong.
2461          */
2462         if (skb_has_shared_frag(skb)) {
2463                 ret = __skb_linearize(skb);
2464                 if (ret)
2465                         goto out;
2466         }
2467
2468         offset = skb_checksum_start_offset(skb);
2469         BUG_ON(offset >= skb_headlen(skb));
2470         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2471
2472         offset += skb->csum_offset;
2473         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2474
2475         if (skb_cloned(skb) &&
2476             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2477                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2478                 if (ret)
2479                         goto out;
2480         }
2481
2482         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2483 out_set_summed:
2484         skb->ip_summed = CHECKSUM_NONE;
2485 out:
2486         return ret;
2487 }
2488 EXPORT_SYMBOL(skb_checksum_help);
2489
2490 /* skb_csum_offload_check - Driver helper function to determine if a device
2491  * with limited checksum offload capabilities is able to offload the checksum
2492  * for a given packet.
2493  *
2494  * Arguments:
2495  *   skb - sk_buff for the packet in question
2496  *   spec - contains the description of what device can offload
2497  *   csum_encapped - returns true if the checksum being offloaded is
2498  *            encpasulated. That is it is checksum for the transport header
2499  *            in the inner headers.
2500  *   checksum_help - when set indicates that helper function should
2501  *            call skb_checksum_help if offload checks fail
2502  *
2503  * Returns:
2504  *   true: Packet has passed the checksum checks and should be offloadable to
2505  *         the device (a driver may still need to check for additional
2506  *         restrictions of its device)
2507  *   false: Checksum is not offloadable. If checksum_help was set then
2508  *         skb_checksum_help was called to resolve checksum for non-GSO
2509  *         packets and when IP protocol is not SCTP
2510  */
2511 bool __skb_csum_offload_chk(struct sk_buff *skb,
2512                             const struct skb_csum_offl_spec *spec,
2513                             bool *csum_encapped,
2514                             bool csum_help)
2515 {
2516         struct iphdr *iph;
2517         struct ipv6hdr *ipv6;
2518         void *nhdr;
2519         int protocol;
2520         u8 ip_proto;
2521
2522         if (skb->protocol == htons(ETH_P_8021Q) ||
2523             skb->protocol == htons(ETH_P_8021AD)) {
2524                 if (!spec->vlan_okay)
2525                         goto need_help;
2526         }
2527
2528         /* We check whether the checksum refers to a transport layer checksum in
2529          * the outermost header or an encapsulated transport layer checksum that
2530          * corresponds to the inner headers of the skb. If the checksum is for
2531          * something else in the packet we need help.
2532          */
2533         if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2534                 /* Non-encapsulated checksum */
2535                 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2536                 nhdr = skb_network_header(skb);
2537                 *csum_encapped = false;
2538                 if (spec->no_not_encapped)
2539                         goto need_help;
2540         } else if (skb->encapsulation && spec->encap_okay &&
2541                    skb_checksum_start_offset(skb) ==
2542                    skb_inner_transport_offset(skb)) {
2543                 /* Encapsulated checksum */
2544                 *csum_encapped = true;
2545                 switch (skb->inner_protocol_type) {
2546                 case ENCAP_TYPE_ETHER:
2547                         protocol = eproto_to_ipproto(skb->inner_protocol);
2548                         break;
2549                 case ENCAP_TYPE_IPPROTO:
2550                         protocol = skb->inner_protocol;
2551                         break;
2552                 }
2553                 nhdr = skb_inner_network_header(skb);
2554         } else {
2555                 goto need_help;
2556         }
2557
2558         switch (protocol) {
2559         case IPPROTO_IP:
2560                 if (!spec->ipv4_okay)
2561                         goto need_help;
2562                 iph = nhdr;
2563                 ip_proto = iph->protocol;
2564                 if (iph->ihl != 5 && !spec->ip_options_okay)
2565                         goto need_help;
2566                 break;
2567         case IPPROTO_IPV6:
2568                 if (!spec->ipv6_okay)
2569                         goto need_help;
2570                 if (spec->no_encapped_ipv6 && *csum_encapped)
2571                         goto need_help;
2572                 ipv6 = nhdr;
2573                 nhdr += sizeof(*ipv6);
2574                 ip_proto = ipv6->nexthdr;
2575                 break;
2576         default:
2577                 goto need_help;
2578         }
2579
2580 ip_proto_again:
2581         switch (ip_proto) {
2582         case IPPROTO_TCP:
2583                 if (!spec->tcp_okay ||
2584                     skb->csum_offset != offsetof(struct tcphdr, check))
2585                         goto need_help;
2586                 break;
2587         case IPPROTO_UDP:
2588                 if (!spec->udp_okay ||
2589                     skb->csum_offset != offsetof(struct udphdr, check))
2590                         goto need_help;
2591                 break;
2592         case IPPROTO_SCTP:
2593                 if (!spec->sctp_okay ||
2594                     skb->csum_offset != offsetof(struct sctphdr, checksum))
2595                         goto cant_help;
2596                 break;
2597         case NEXTHDR_HOP:
2598         case NEXTHDR_ROUTING:
2599         case NEXTHDR_DEST: {
2600                 u8 *opthdr = nhdr;
2601
2602                 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2603                         goto need_help;
2604
2605                 ip_proto = opthdr[0];
2606                 nhdr += (opthdr[1] + 1) << 3;
2607
2608                 goto ip_proto_again;
2609         }
2610         default:
2611                 goto need_help;
2612         }
2613
2614         /* Passed the tests for offloading checksum */
2615         return true;
2616
2617 need_help:
2618         if (csum_help && !skb_shinfo(skb)->gso_size)
2619                 skb_checksum_help(skb);
2620 cant_help:
2621         return false;
2622 }
2623 EXPORT_SYMBOL(__skb_csum_offload_chk);
2624
2625 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2626 {
2627         __be16 type = skb->protocol;
2628
2629         /* Tunnel gso handlers can set protocol to ethernet. */
2630         if (type == htons(ETH_P_TEB)) {
2631                 struct ethhdr *eth;
2632
2633                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2634                         return 0;
2635
2636                 eth = (struct ethhdr *)skb_mac_header(skb);
2637                 type = eth->h_proto;
2638         }
2639
2640         return __vlan_get_protocol(skb, type, depth);
2641 }
2642
2643 /**
2644  *      skb_mac_gso_segment - mac layer segmentation handler.
2645  *      @skb: buffer to segment
2646  *      @features: features for the output path (see dev->features)
2647  */
2648 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2649                                     netdev_features_t features)
2650 {
2651         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2652         struct packet_offload *ptype;
2653         int vlan_depth = skb->mac_len;
2654         __be16 type = skb_network_protocol(skb, &vlan_depth);
2655
2656         if (unlikely(!type))
2657                 return ERR_PTR(-EINVAL);
2658
2659         __skb_pull(skb, vlan_depth);
2660
2661         rcu_read_lock();
2662         list_for_each_entry_rcu(ptype, &offload_base, list) {
2663                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2664                         segs = ptype->callbacks.gso_segment(skb, features);
2665                         break;
2666                 }
2667         }
2668         rcu_read_unlock();
2669
2670         __skb_push(skb, skb->data - skb_mac_header(skb));
2671
2672         return segs;
2673 }
2674 EXPORT_SYMBOL(skb_mac_gso_segment);
2675
2676
2677 /* openvswitch calls this on rx path, so we need a different check.
2678  */
2679 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2680 {
2681         if (tx_path)
2682                 return skb->ip_summed != CHECKSUM_PARTIAL;
2683         else
2684                 return skb->ip_summed == CHECKSUM_NONE;
2685 }
2686
2687 /**
2688  *      __skb_gso_segment - Perform segmentation on skb.
2689  *      @skb: buffer to segment
2690  *      @features: features for the output path (see dev->features)
2691  *      @tx_path: whether it is called in TX path
2692  *
2693  *      This function segments the given skb and returns a list of segments.
2694  *
2695  *      It may return NULL if the skb requires no segmentation.  This is
2696  *      only possible when GSO is used for verifying header integrity.
2697  *
2698  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2699  */
2700 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2701                                   netdev_features_t features, bool tx_path)
2702 {
2703         if (unlikely(skb_needs_check(skb, tx_path))) {
2704                 int err;
2705
2706                 skb_warn_bad_offload(skb);
2707
2708                 err = skb_cow_head(skb, 0);
2709                 if (err < 0)
2710                         return ERR_PTR(err);
2711         }
2712
2713         /* Only report GSO partial support if it will enable us to
2714          * support segmentation on this frame without needing additional
2715          * work.
2716          */
2717         if (features & NETIF_F_GSO_PARTIAL) {
2718                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2719                 struct net_device *dev = skb->dev;
2720
2721                 partial_features |= dev->features & dev->gso_partial_features;
2722                 if (!skb_gso_ok(skb, features | partial_features))
2723                         features &= ~NETIF_F_GSO_PARTIAL;
2724         }
2725
2726         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2727                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2728
2729         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2730         SKB_GSO_CB(skb)->encap_level = 0;
2731
2732         skb_reset_mac_header(skb);
2733         skb_reset_mac_len(skb);
2734
2735         return skb_mac_gso_segment(skb, features);
2736 }
2737 EXPORT_SYMBOL(__skb_gso_segment);
2738
2739 /* Take action when hardware reception checksum errors are detected. */
2740 #ifdef CONFIG_BUG
2741 void netdev_rx_csum_fault(struct net_device *dev)
2742 {
2743         if (net_ratelimit()) {
2744                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2745                 dump_stack();
2746         }
2747 }
2748 EXPORT_SYMBOL(netdev_rx_csum_fault);
2749 #endif
2750
2751 /* Actually, we should eliminate this check as soon as we know, that:
2752  * 1. IOMMU is present and allows to map all the memory.
2753  * 2. No high memory really exists on this machine.
2754  */
2755
2756 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2757 {
2758 #ifdef CONFIG_HIGHMEM
2759         int i;
2760         if (!(dev->features & NETIF_F_HIGHDMA)) {
2761                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2762                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763                         if (PageHighMem(skb_frag_page(frag)))
2764                                 return 1;
2765                 }
2766         }
2767
2768         if (PCI_DMA_BUS_IS_PHYS) {
2769                 struct device *pdev = dev->dev.parent;
2770
2771                 if (!pdev)
2772                         return 0;
2773                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2774                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2775                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2776                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2777                                 return 1;
2778                 }
2779         }
2780 #endif
2781         return 0;
2782 }
2783
2784 /* If MPLS offload request, verify we are testing hardware MPLS features
2785  * instead of standard features for the netdev.
2786  */
2787 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2788 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2789                                            netdev_features_t features,
2790                                            __be16 type)
2791 {
2792         if (eth_p_mpls(type))
2793                 features &= skb->dev->mpls_features;
2794
2795         return features;
2796 }
2797 #else
2798 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2799                                            netdev_features_t features,
2800                                            __be16 type)
2801 {
2802         return features;
2803 }
2804 #endif
2805
2806 static netdev_features_t harmonize_features(struct sk_buff *skb,
2807         netdev_features_t features)
2808 {
2809         int tmp;
2810         __be16 type;
2811
2812         type = skb_network_protocol(skb, &tmp);
2813         features = net_mpls_features(skb, features, type);
2814
2815         if (skb->ip_summed != CHECKSUM_NONE &&
2816             !can_checksum_protocol(features, type)) {
2817                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2818         } else if (illegal_highdma(skb->dev, skb)) {
2819                 features &= ~NETIF_F_SG;
2820         }
2821
2822         return features;
2823 }
2824
2825 netdev_features_t passthru_features_check(struct sk_buff *skb,
2826                                           struct net_device *dev,
2827                                           netdev_features_t features)
2828 {
2829         return features;
2830 }
2831 EXPORT_SYMBOL(passthru_features_check);
2832
2833 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2834                                              struct net_device *dev,
2835                                              netdev_features_t features)
2836 {
2837         return vlan_features_check(skb, features);
2838 }
2839
2840 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2841                                             struct net_device *dev,
2842                                             netdev_features_t features)
2843 {
2844         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2845
2846         if (gso_segs > dev->gso_max_segs)
2847                 return features & ~NETIF_F_GSO_MASK;
2848
2849         /* Support for GSO partial features requires software
2850          * intervention before we can actually process the packets
2851          * so we need to strip support for any partial features now
2852          * and we can pull them back in after we have partially
2853          * segmented the frame.
2854          */
2855         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2856                 features &= ~dev->gso_partial_features;
2857
2858         /* Make sure to clear the IPv4 ID mangling feature if the
2859          * IPv4 header has the potential to be fragmented.
2860          */
2861         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2862                 struct iphdr *iph = skb->encapsulation ?
2863                                     inner_ip_hdr(skb) : ip_hdr(skb);
2864
2865                 if (!(iph->frag_off & htons(IP_DF)))
2866                         features &= ~NETIF_F_TSO_MANGLEID;
2867         }
2868
2869         return features;
2870 }
2871
2872 netdev_features_t netif_skb_features(struct sk_buff *skb)
2873 {
2874         struct net_device *dev = skb->dev;
2875         netdev_features_t features = dev->features;
2876
2877         if (skb_is_gso(skb))
2878                 features = gso_features_check(skb, dev, features);
2879
2880         /* If encapsulation offload request, verify we are testing
2881          * hardware encapsulation features instead of standard
2882          * features for the netdev
2883          */
2884         if (skb->encapsulation)
2885                 features &= dev->hw_enc_features;
2886
2887         if (skb_vlan_tagged(skb))
2888                 features = netdev_intersect_features(features,
2889                                                      dev->vlan_features |
2890                                                      NETIF_F_HW_VLAN_CTAG_TX |
2891                                                      NETIF_F_HW_VLAN_STAG_TX);
2892
2893         if (dev->netdev_ops->ndo_features_check)
2894                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2895                                                                 features);
2896         else
2897                 features &= dflt_features_check(skb, dev, features);
2898
2899         return harmonize_features(skb, features);
2900 }
2901 EXPORT_SYMBOL(netif_skb_features);
2902
2903 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2904                     struct netdev_queue *txq, bool more)
2905 {
2906         unsigned int len;
2907         int rc;
2908
2909         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2910                 dev_queue_xmit_nit(skb, dev);
2911
2912         len = skb->len;
2913         trace_net_dev_start_xmit(skb, dev);
2914         rc = netdev_start_xmit(skb, dev, txq, more);
2915         trace_net_dev_xmit(skb, rc, dev, len);
2916
2917         return rc;
2918 }
2919
2920 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2921                                     struct netdev_queue *txq, int *ret)
2922 {
2923         struct sk_buff *skb = first;
2924         int rc = NETDEV_TX_OK;
2925
2926         while (skb) {
2927                 struct sk_buff *next = skb->next;
2928
2929                 skb->next = NULL;
2930                 rc = xmit_one(skb, dev, txq, next != NULL);
2931                 if (unlikely(!dev_xmit_complete(rc))) {
2932                         skb->next = next;
2933                         goto out;
2934                 }
2935
2936                 skb = next;
2937                 if (netif_xmit_stopped(txq) && skb) {
2938                         rc = NETDEV_TX_BUSY;
2939                         break;
2940                 }
2941         }
2942
2943 out:
2944         *ret = rc;
2945         return skb;
2946 }
2947
2948 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2949                                           netdev_features_t features)
2950 {
2951         if (skb_vlan_tag_present(skb) &&
2952             !vlan_hw_offload_capable(features, skb->vlan_proto))
2953                 skb = __vlan_hwaccel_push_inside(skb);
2954         return skb;
2955 }
2956
2957 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2958 {
2959         netdev_features_t features;
2960
2961         features = netif_skb_features(skb);
2962         skb = validate_xmit_vlan(skb, features);
2963         if (unlikely(!skb))
2964                 goto out_null;
2965
2966         if (netif_needs_gso(skb, features)) {
2967                 struct sk_buff *segs;
2968
2969                 segs = skb_gso_segment(skb, features);
2970                 if (IS_ERR(segs)) {
2971                         goto out_kfree_skb;
2972                 } else if (segs) {
2973                         consume_skb(skb);
2974                         skb = segs;
2975                 }
2976         } else {
2977                 if (skb_needs_linearize(skb, features) &&
2978                     __skb_linearize(skb))
2979                         goto out_kfree_skb;
2980
2981                 /* If packet is not checksummed and device does not
2982                  * support checksumming for this protocol, complete
2983                  * checksumming here.
2984                  */
2985                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2986                         if (skb->encapsulation)
2987                                 skb_set_inner_transport_header(skb,
2988                                                                skb_checksum_start_offset(skb));
2989                         else
2990                                 skb_set_transport_header(skb,
2991                                                          skb_checksum_start_offset(skb));
2992                         if (!(features & NETIF_F_CSUM_MASK) &&
2993                             skb_checksum_help(skb))
2994                                 goto out_kfree_skb;
2995                 }
2996         }
2997
2998         return skb;
2999
3000 out_kfree_skb:
3001         kfree_skb(skb);
3002 out_null:
3003         atomic_long_inc(&dev->tx_dropped);
3004         return NULL;
3005 }
3006
3007 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3008 {
3009         struct sk_buff *next, *head = NULL, *tail;
3010
3011         for (; skb != NULL; skb = next) {
3012                 next = skb->next;
3013                 skb->next = NULL;
3014
3015                 /* in case skb wont be segmented, point to itself */
3016                 skb->prev = skb;
3017
3018                 skb = validate_xmit_skb(skb, dev);
3019                 if (!skb)
3020                         continue;
3021
3022                 if (!head)
3023                         head = skb;
3024                 else
3025                         tail->next = skb;
3026                 /* If skb was segmented, skb->prev points to
3027                  * the last segment. If not, it still contains skb.
3028                  */
3029                 tail = skb->prev;
3030         }
3031         return head;
3032 }
3033 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3034
3035 static void qdisc_pkt_len_init(struct sk_buff *skb)
3036 {
3037         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3038
3039         qdisc_skb_cb(skb)->pkt_len = skb->len;
3040
3041         /* To get more precise estimation of bytes sent on wire,
3042          * we add to pkt_len the headers size of all segments
3043          */
3044         if (shinfo->gso_size)  {
3045                 unsigned int hdr_len;
3046                 u16 gso_segs = shinfo->gso_segs;
3047
3048                 /* mac layer + network layer */
3049                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3050
3051                 /* + transport layer */
3052                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3053                         hdr_len += tcp_hdrlen(skb);
3054                 else
3055                         hdr_len += sizeof(struct udphdr);
3056
3057                 if (shinfo->gso_type & SKB_GSO_DODGY)
3058                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3059                                                 shinfo->gso_size);
3060
3061                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3062         }
3063 }
3064
3065 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3066                                  struct net_device *dev,
3067                                  struct netdev_queue *txq)
3068 {
3069         spinlock_t *root_lock = qdisc_lock(q);
3070         struct sk_buff *to_free = NULL;
3071         bool contended;
3072         int rc;
3073
3074         qdisc_calculate_pkt_len(skb, q);
3075         /*
3076          * Heuristic to force contended enqueues to serialize on a
3077          * separate lock before trying to get qdisc main lock.
3078          * This permits qdisc->running owner to get the lock more
3079          * often and dequeue packets faster.
3080          */
3081         contended = qdisc_is_running(q);
3082         if (unlikely(contended))
3083                 spin_lock(&q->busylock);
3084
3085         spin_lock(root_lock);
3086         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3087                 __qdisc_drop(skb, &to_free);
3088                 rc = NET_XMIT_DROP;
3089         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3090                    qdisc_run_begin(q)) {
3091                 /*
3092                  * This is a work-conserving queue; there are no old skbs
3093                  * waiting to be sent out; and the qdisc is not running -
3094                  * xmit the skb directly.
3095                  */
3096
3097                 qdisc_bstats_update(q, skb);
3098
3099                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3100                         if (unlikely(contended)) {
3101                                 spin_unlock(&q->busylock);
3102                                 contended = false;
3103                         }
3104                         __qdisc_run(q);
3105                 } else
3106                         qdisc_run_end(q);
3107
3108                 rc = NET_XMIT_SUCCESS;
3109         } else {
3110                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3111                 if (qdisc_run_begin(q)) {
3112                         if (unlikely(contended)) {
3113                                 spin_unlock(&q->busylock);
3114                                 contended = false;
3115                         }
3116                         __qdisc_run(q);
3117                 }
3118         }
3119         spin_unlock(root_lock);
3120         if (unlikely(to_free))
3121                 kfree_skb_list(to_free);
3122         if (unlikely(contended))
3123                 spin_unlock(&q->busylock);
3124         return rc;
3125 }
3126
3127 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3128 static void skb_update_prio(struct sk_buff *skb)
3129 {
3130         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3131
3132         if (!skb->priority && skb->sk && map) {
3133                 unsigned int prioidx =
3134                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3135
3136                 if (prioidx < map->priomap_len)
3137                         skb->priority = map->priomap[prioidx];
3138         }
3139 }
3140 #else
3141 #define skb_update_prio(skb)
3142 #endif
3143
3144 DEFINE_PER_CPU(int, xmit_recursion);
3145 EXPORT_SYMBOL(xmit_recursion);
3146
3147 /**
3148  *      dev_loopback_xmit - loop back @skb
3149  *      @net: network namespace this loopback is happening in
3150  *      @sk:  sk needed to be a netfilter okfn
3151  *      @skb: buffer to transmit
3152  */
3153 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3154 {
3155         skb_reset_mac_header(skb);
3156         __skb_pull(skb, skb_network_offset(skb));
3157         skb->pkt_type = PACKET_LOOPBACK;
3158         skb->ip_summed = CHECKSUM_UNNECESSARY;
3159         WARN_ON(!skb_dst(skb));
3160         skb_dst_force(skb);
3161         netif_rx_ni(skb);
3162         return 0;
3163 }
3164 EXPORT_SYMBOL(dev_loopback_xmit);
3165
3166 #ifdef CONFIG_NET_EGRESS
3167 static struct sk_buff *
3168 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3169 {
3170         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3171         struct tcf_result cl_res;
3172
3173         if (!cl)
3174                 return skb;
3175
3176         /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3177          * earlier by the caller.
3178          */
3179         qdisc_bstats_cpu_update(cl->q, skb);
3180
3181         switch (tc_classify(skb, cl, &cl_res, false)) {
3182         case TC_ACT_OK:
3183         case TC_ACT_RECLASSIFY:
3184                 skb->tc_index = TC_H_MIN(cl_res.classid);
3185                 break;
3186         case TC_ACT_SHOT:
3187                 qdisc_qstats_cpu_drop(cl->q);
3188                 *ret = NET_XMIT_DROP;
3189                 kfree_skb(skb);
3190                 return NULL;
3191         case TC_ACT_STOLEN:
3192         case TC_ACT_QUEUED:
3193                 *ret = NET_XMIT_SUCCESS;
3194                 consume_skb(skb);
3195                 return NULL;
3196         case TC_ACT_REDIRECT:
3197                 /* No need to push/pop skb's mac_header here on egress! */
3198                 skb_do_redirect(skb);
3199                 *ret = NET_XMIT_SUCCESS;
3200                 return NULL;
3201         default:
3202                 break;
3203         }
3204
3205         return skb;
3206 }
3207 #endif /* CONFIG_NET_EGRESS */
3208
3209 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3210 {
3211 #ifdef CONFIG_XPS
3212         struct xps_dev_maps *dev_maps;
3213         struct xps_map *map;
3214         int queue_index = -1;
3215
3216         rcu_read_lock();
3217         dev_maps = rcu_dereference(dev->xps_maps);
3218         if (dev_maps) {
3219                 map = rcu_dereference(
3220                     dev_maps->cpu_map[skb->sender_cpu - 1]);
3221                 if (map) {
3222                         if (map->len == 1)
3223                                 queue_index = map->queues[0];
3224                         else
3225                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3226                                                                            map->len)];
3227                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3228                                 queue_index = -1;
3229                 }
3230         }
3231         rcu_read_unlock();
3232
3233         return queue_index;
3234 #else
3235         return -1;
3236 #endif
3237 }
3238
3239 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3240 {
3241         struct sock *sk = skb->sk;
3242         int queue_index = sk_tx_queue_get(sk);
3243
3244         if (queue_index < 0 || skb->ooo_okay ||
3245             queue_index >= dev->real_num_tx_queues) {
3246                 int new_index = get_xps_queue(dev, skb);
3247                 if (new_index < 0)
3248                         new_index = skb_tx_hash(dev, skb);
3249
3250                 if (queue_index != new_index && sk &&
3251                     sk_fullsock(sk) &&
3252                     rcu_access_pointer(sk->sk_dst_cache))
3253                         sk_tx_queue_set(sk, new_index);
3254
3255                 queue_index = new_index;
3256         }
3257
3258         return queue_index;
3259 }
3260
3261 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3262                                     struct sk_buff *skb,
3263                                     void *accel_priv)
3264 {
3265         int queue_index = 0;
3266
3267 #ifdef CONFIG_XPS
3268         u32 sender_cpu = skb->sender_cpu - 1;
3269
3270         if (sender_cpu >= (u32)NR_CPUS)
3271                 skb->sender_cpu = raw_smp_processor_id() + 1;
3272 #endif
3273
3274         if (dev->real_num_tx_queues != 1) {
3275                 const struct net_device_ops *ops = dev->netdev_ops;
3276                 if (ops->ndo_select_queue)
3277                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3278                                                             __netdev_pick_tx);
3279                 else
3280                         queue_index = __netdev_pick_tx(dev, skb);
3281
3282                 if (!accel_priv)
3283                         queue_index = netdev_cap_txqueue(dev, queue_index);
3284         }
3285
3286         skb_set_queue_mapping(skb, queue_index);
3287         return netdev_get_tx_queue(dev, queue_index);
3288 }
3289
3290 /**
3291  *      __dev_queue_xmit - transmit a buffer
3292  *      @skb: buffer to transmit
3293  *      @accel_priv: private data used for L2 forwarding offload
3294  *
3295  *      Queue a buffer for transmission to a network device. The caller must
3296  *      have set the device and priority and built the buffer before calling
3297  *      this function. The function can be called from an interrupt.
3298  *
3299  *      A negative errno code is returned on a failure. A success does not
3300  *      guarantee the frame will be transmitted as it may be dropped due
3301  *      to congestion or traffic shaping.
3302  *
3303  * -----------------------------------------------------------------------------------
3304  *      I notice this method can also return errors from the queue disciplines,
3305  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3306  *      be positive.
3307  *
3308  *      Regardless of the return value, the skb is consumed, so it is currently
3309  *      difficult to retry a send to this method.  (You can bump the ref count
3310  *      before sending to hold a reference for retry if you are careful.)
3311  *
3312  *      When calling this method, interrupts MUST be enabled.  This is because
3313  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3314  *          --BLG
3315  */
3316 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3317 {
3318         struct net_device *dev = skb->dev;
3319         struct netdev_queue *txq;
3320         struct Qdisc *q;
3321         int rc = -ENOMEM;
3322
3323         skb_reset_mac_header(skb);
3324
3325         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3326                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3327
3328         /* Disable soft irqs for various locks below. Also
3329          * stops preemption for RCU.
3330          */
3331         rcu_read_lock_bh();
3332
3333         skb_update_prio(skb);
3334
3335         qdisc_pkt_len_init(skb);
3336 #ifdef CONFIG_NET_CLS_ACT
3337         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3338 # ifdef CONFIG_NET_EGRESS
3339         if (static_key_false(&egress_needed)) {
3340                 skb = sch_handle_egress(skb, &rc, dev);
3341                 if (!skb)
3342                         goto out;
3343         }
3344 # endif
3345 #endif
3346         /* If device/qdisc don't need skb->dst, release it right now while
3347          * its hot in this cpu cache.
3348          */
3349         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3350                 skb_dst_drop(skb);
3351         else
3352                 skb_dst_force(skb);
3353
3354         txq = netdev_pick_tx(dev, skb, accel_priv);
3355         q = rcu_dereference_bh(txq->qdisc);
3356
3357         trace_net_dev_queue(skb);
3358         if (q->enqueue) {
3359                 rc = __dev_xmit_skb(skb, q, dev, txq);
3360                 goto out;
3361         }
3362
3363         /* The device has no queue. Common case for software devices:
3364            loopback, all the sorts of tunnels...
3365
3366            Really, it is unlikely that netif_tx_lock protection is necessary
3367            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3368            counters.)
3369            However, it is possible, that they rely on protection
3370            made by us here.
3371
3372            Check this and shot the lock. It is not prone from deadlocks.
3373            Either shot noqueue qdisc, it is even simpler 8)
3374          */
3375         if (dev->flags & IFF_UP) {
3376                 int cpu = smp_processor_id(); /* ok because BHs are off */
3377
3378                 if (txq->xmit_lock_owner != cpu) {
3379                         if (unlikely(__this_cpu_read(xmit_recursion) >
3380                                      XMIT_RECURSION_LIMIT))
3381                                 goto recursion_alert;
3382
3383                         skb = validate_xmit_skb(skb, dev);
3384                         if (!skb)
3385                                 goto out;
3386
3387                         HARD_TX_LOCK(dev, txq, cpu);
3388
3389                         if (!netif_xmit_stopped(txq)) {
3390                                 __this_cpu_inc(xmit_recursion);
3391                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3392                                 __this_cpu_dec(xmit_recursion);
3393                                 if (dev_xmit_complete(rc)) {
3394                                         HARD_TX_UNLOCK(dev, txq);
3395                                         goto out;
3396                                 }
3397                         }
3398                         HARD_TX_UNLOCK(dev, txq);
3399                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3400                                              dev->name);
3401                 } else {
3402                         /* Recursion is detected! It is possible,
3403                          * unfortunately
3404                          */
3405 recursion_alert:
3406                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3407                                              dev->name);
3408                 }
3409         }
3410
3411         rc = -ENETDOWN;
3412         rcu_read_unlock_bh();
3413
3414         atomic_long_inc(&dev->tx_dropped);
3415         kfree_skb_list(skb);
3416         return rc;
3417 out:
3418         rcu_read_unlock_bh();
3419         return rc;
3420 }
3421
3422 int dev_queue_xmit(struct sk_buff *skb)
3423 {
3424         return __dev_queue_xmit(skb, NULL);
3425 }
3426 EXPORT_SYMBOL(dev_queue_xmit);
3427
3428 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3429 {
3430         return __dev_queue_xmit(skb, accel_priv);
3431 }
3432 EXPORT_SYMBOL(dev_queue_xmit_accel);
3433
3434
3435 /*=======================================================================
3436                         Receiver routines
3437   =======================================================================*/
3438
3439 int netdev_max_backlog __read_mostly = 1000;
3440 EXPORT_SYMBOL(netdev_max_backlog);
3441
3442 int netdev_tstamp_prequeue __read_mostly = 1;
3443 int netdev_budget __read_mostly = 300;
3444 int weight_p __read_mostly = 64;            /* old backlog weight */
3445
3446 /* Called with irq disabled */
3447 static inline void ____napi_schedule(struct softnet_data *sd,
3448                                      struct napi_struct *napi)
3449 {
3450         list_add_tail(&napi->poll_list, &sd->poll_list);
3451         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3452 }
3453
3454 #ifdef CONFIG_RPS
3455
3456 /* One global table that all flow-based protocols share. */
3457 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3458 EXPORT_SYMBOL(rps_sock_flow_table);
3459 u32 rps_cpu_mask __read_mostly;
3460 EXPORT_SYMBOL(rps_cpu_mask);
3461
3462 struct static_key rps_needed __read_mostly;
3463 EXPORT_SYMBOL(rps_needed);
3464
3465 static struct rps_dev_flow *
3466 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3467             struct rps_dev_flow *rflow, u16 next_cpu)
3468 {
3469         if (next_cpu < nr_cpu_ids) {
3470 #ifdef CONFIG_RFS_ACCEL
3471                 struct netdev_rx_queue *rxqueue;
3472                 struct rps_dev_flow_table *flow_table;
3473                 struct rps_dev_flow *old_rflow;
3474                 u32 flow_id;
3475                 u16 rxq_index;
3476                 int rc;
3477
3478                 /* Should we steer this flow to a different hardware queue? */
3479                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3480                     !(dev->features & NETIF_F_NTUPLE))
3481                         goto out;
3482                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3483                 if (rxq_index == skb_get_rx_queue(skb))
3484                         goto out;
3485
3486                 rxqueue = dev->_rx + rxq_index;
3487                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3488                 if (!flow_table)
3489                         goto out;
3490                 flow_id = skb_get_hash(skb) & flow_table->mask;
3491                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3492                                                         rxq_index, flow_id);
3493                 if (rc < 0)
3494                         goto out;
3495                 old_rflow = rflow;
3496                 rflow = &flow_table->flows[flow_id];
3497                 rflow->filter = rc;
3498                 if (old_rflow->filter == rflow->filter)
3499                         old_rflow->filter = RPS_NO_FILTER;
3500         out:
3501 #endif
3502                 rflow->last_qtail =
3503                         per_cpu(softnet_data, next_cpu).input_queue_head;
3504         }
3505
3506         rflow->cpu = next_cpu;
3507         return rflow;
3508 }
3509
3510 /*
3511  * get_rps_cpu is called from netif_receive_skb and returns the target
3512  * CPU from the RPS map of the receiving queue for a given skb.
3513  * rcu_read_lock must be held on entry.
3514  */
3515 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3516                        struct rps_dev_flow **rflowp)
3517 {
3518         const struct rps_sock_flow_table *sock_flow_table;
3519         struct netdev_rx_queue *rxqueue = dev->_rx;
3520         struct rps_dev_flow_table *flow_table;
3521         struct rps_map *map;
3522         int cpu = -1;
3523         u32 tcpu;
3524         u32 hash;
3525
3526         if (skb_rx_queue_recorded(skb)) {
3527                 u16 index = skb_get_rx_queue(skb);
3528
3529                 if (unlikely(index >= dev->real_num_rx_queues)) {
3530                         WARN_ONCE(dev->real_num_rx_queues > 1,
3531                                   "%s received packet on queue %u, but number "
3532                                   "of RX queues is %u\n",
3533                                   dev->name, index, dev->real_num_rx_queues);
3534                         goto done;
3535                 }
3536                 rxqueue += index;
3537         }
3538
3539         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3540
3541         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3542         map = rcu_dereference(rxqueue->rps_map);
3543         if (!flow_table && !map)
3544                 goto done;
3545
3546         skb_reset_network_header(skb);
3547         hash = skb_get_hash(skb);
3548         if (!hash)
3549                 goto done;
3550
3551         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3552         if (flow_table && sock_flow_table) {
3553                 struct rps_dev_flow *rflow;
3554                 u32 next_cpu;
3555                 u32 ident;
3556
3557                 /* First check into global flow table if there is a match */
3558                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3559                 if ((ident ^ hash) & ~rps_cpu_mask)
3560                         goto try_rps;
3561
3562                 next_cpu = ident & rps_cpu_mask;
3563
3564                 /* OK, now we know there is a match,
3565                  * we can look at the local (per receive queue) flow table
3566                  */
3567                 rflow = &flow_table->flows[hash & flow_table->mask];
3568                 tcpu = rflow->cpu;
3569
3570                 /*
3571                  * If the desired CPU (where last recvmsg was done) is
3572                  * different from current CPU (one in the rx-queue flow
3573                  * table entry), switch if one of the following holds:
3574                  *   - Current CPU is unset (>= nr_cpu_ids).
3575                  *   - Current CPU is offline.
3576                  *   - The current CPU's queue tail has advanced beyond the
3577                  *     last packet that was enqueued using this table entry.
3578                  *     This guarantees that all previous packets for the flow
3579                  *     have been dequeued, thus preserving in order delivery.
3580                  */
3581                 if (unlikely(tcpu != next_cpu) &&
3582                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3583                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3584                       rflow->last_qtail)) >= 0)) {
3585                         tcpu = next_cpu;
3586                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3587                 }
3588
3589                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3590                         *rflowp = rflow;
3591                         cpu = tcpu;
3592                         goto done;
3593                 }
3594         }
3595
3596 try_rps:
3597
3598         if (map) {
3599                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3600                 if (cpu_online(tcpu)) {
3601                         cpu = tcpu;
3602                         goto done;
3603                 }
3604         }
3605
3606 done:
3607         return cpu;
3608 }
3609
3610 #ifdef CONFIG_RFS_ACCEL
3611
3612 /**
3613  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3614  * @dev: Device on which the filter was set
3615  * @rxq_index: RX queue index
3616  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3617  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3618  *
3619  * Drivers that implement ndo_rx_flow_steer() should periodically call
3620  * this function for each installed filter and remove the filters for
3621  * which it returns %true.
3622  */
3623 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3624                          u32 flow_id, u16 filter_id)
3625 {
3626         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3627         struct rps_dev_flow_table *flow_table;
3628         struct rps_dev_flow *rflow;
3629         bool expire = true;
3630         unsigned int cpu;
3631
3632         rcu_read_lock();
3633         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3634         if (flow_table && flow_id <= flow_table->mask) {
3635                 rflow = &flow_table->flows[flow_id];
3636                 cpu = ACCESS_ONCE(rflow->cpu);
3637                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3638                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3639                            rflow->last_qtail) <
3640                      (int)(10 * flow_table->mask)))
3641                         expire = false;
3642         }
3643         rcu_read_unlock();
3644         return expire;
3645 }
3646 EXPORT_SYMBOL(rps_may_expire_flow);
3647
3648 #endif /* CONFIG_RFS_ACCEL */
3649
3650 /* Called from hardirq (IPI) context */
3651 static void rps_trigger_softirq(void *data)
3652 {
3653         struct softnet_data *sd = data;
3654
3655         ____napi_schedule(sd, &sd->backlog);
3656         sd->received_rps++;
3657 }
3658
3659 #endif /* CONFIG_RPS */
3660
3661 /*
3662  * Check if this softnet_data structure is another cpu one
3663  * If yes, queue it to our IPI list and return 1
3664  * If no, return 0
3665  */
3666 static int rps_ipi_queued(struct softnet_data *sd)
3667 {
3668 #ifdef CONFIG_RPS
3669         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3670
3671         if (sd != mysd) {
3672                 sd->rps_ipi_next = mysd->rps_ipi_list;
3673                 mysd->rps_ipi_list = sd;
3674
3675                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3676                 return 1;
3677         }
3678 #endif /* CONFIG_RPS */
3679         return 0;
3680 }
3681
3682 #ifdef CONFIG_NET_FLOW_LIMIT
3683 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3684 #endif
3685
3686 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3687 {
3688 #ifdef CONFIG_NET_FLOW_LIMIT
3689         struct sd_flow_limit *fl;
3690         struct softnet_data *sd;
3691         unsigned int old_flow, new_flow;
3692
3693         if (qlen < (netdev_max_backlog >> 1))
3694                 return false;
3695
3696         sd = this_cpu_ptr(&softnet_data);
3697
3698         rcu_read_lock();
3699         fl = rcu_dereference(sd->flow_limit);
3700         if (fl) {
3701                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3702                 old_flow = fl->history[fl->history_head];
3703                 fl->history[fl->history_head] = new_flow;
3704
3705                 fl->history_head++;
3706                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3707
3708                 if (likely(fl->buckets[old_flow]))
3709                         fl->buckets[old_flow]--;
3710
3711                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3712                         fl->count++;
3713                         rcu_read_unlock();
3714                         return true;
3715                 }
3716         }
3717         rcu_read_unlock();
3718 #endif
3719         return false;
3720 }
3721
3722 /*
3723  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3724  * queue (may be a remote CPU queue).
3725  */
3726 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3727                               unsigned int *qtail)
3728 {
3729         struct softnet_data *sd;
3730         unsigned long flags;
3731         unsigned int qlen;
3732
3733         sd = &per_cpu(softnet_data, cpu);
3734
3735         local_irq_save(flags);
3736
3737         rps_lock(sd);
3738         if (!netif_running(skb->dev))
3739                 goto drop;
3740         qlen = skb_queue_len(&sd->input_pkt_queue);
3741         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3742                 if (qlen) {
3743 enqueue:
3744                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3745                         input_queue_tail_incr_save(sd, qtail);
3746                         rps_unlock(sd);
3747                         local_irq_restore(flags);
3748                         return NET_RX_SUCCESS;
3749                 }
3750
3751                 /* Schedule NAPI for backlog device
3752                  * We can use non atomic operation since we own the queue lock
3753                  */
3754                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3755                         if (!rps_ipi_queued(sd))
3756                                 ____napi_schedule(sd, &sd->backlog);
3757                 }
3758                 goto enqueue;
3759         }
3760
3761 drop:
3762         sd->dropped++;
3763         rps_unlock(sd);
3764
3765         local_irq_restore(flags);
3766
3767         atomic_long_inc(&skb->dev->rx_dropped);
3768         kfree_skb(skb);
3769         return NET_RX_DROP;
3770 }
3771
3772 static int netif_rx_internal(struct sk_buff *skb)
3773 {
3774         int ret;
3775
3776         net_timestamp_check(netdev_tstamp_prequeue, skb);
3777
3778         trace_netif_rx(skb);
3779 #ifdef CONFIG_RPS
3780         if (static_key_false(&rps_needed)) {
3781                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3782                 int cpu;
3783
3784                 preempt_disable();
3785                 rcu_read_lock();
3786
3787                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3788                 if (cpu < 0)
3789                         cpu = smp_processor_id();
3790
3791                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3792
3793                 rcu_read_unlock();
3794                 preempt_enable();
3795         } else
3796 #endif
3797         {
3798                 unsigned int qtail;
3799                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3800                 put_cpu();
3801         }
3802         return ret;
3803 }
3804
3805 /**
3806  *      netif_rx        -       post buffer to the network code
3807  *      @skb: buffer to post
3808  *
3809  *      This function receives a packet from a device driver and queues it for
3810  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3811  *      may be dropped during processing for congestion control or by the
3812  *      protocol layers.
3813  *
3814  *      return values:
3815  *      NET_RX_SUCCESS  (no congestion)
3816  *      NET_RX_DROP     (packet was dropped)
3817  *
3818  */
3819
3820 int netif_rx(struct sk_buff *skb)
3821 {
3822         trace_netif_rx_entry(skb);
3823
3824         return netif_rx_internal(skb);
3825 }
3826 EXPORT_SYMBOL(netif_rx);
3827
3828 int netif_rx_ni(struct sk_buff *skb)
3829 {
3830         int err;
3831
3832         trace_netif_rx_ni_entry(skb);
3833
3834         preempt_disable();
3835         err = netif_rx_internal(skb);
3836         if (local_softirq_pending())
3837                 do_softirq();
3838         preempt_enable();
3839
3840         return err;
3841 }
3842 EXPORT_SYMBOL(netif_rx_ni);
3843
3844 static __latent_entropy void net_tx_action(struct softirq_action *h)
3845 {
3846         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3847
3848         if (sd->completion_queue) {
3849                 struct sk_buff *clist;
3850
3851                 local_irq_disable();
3852                 clist = sd->completion_queue;
3853                 sd->completion_queue = NULL;
3854                 local_irq_enable();
3855
3856                 while (clist) {
3857                         struct sk_buff *skb = clist;
3858                         clist = clist->next;
3859
3860                         WARN_ON(atomic_read(&skb->users));
3861                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3862                                 trace_consume_skb(skb);
3863                         else
3864                                 trace_kfree_skb(skb, net_tx_action);
3865
3866                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3867                                 __kfree_skb(skb);
3868                         else
3869                                 __kfree_skb_defer(skb);
3870                 }
3871
3872                 __kfree_skb_flush();
3873         }
3874
3875         if (sd->output_queue) {
3876                 struct Qdisc *head;
3877
3878                 local_irq_disable();
3879                 head = sd->output_queue;
3880                 sd->output_queue = NULL;
3881                 sd->output_queue_tailp = &sd->output_queue;
3882                 local_irq_enable();
3883
3884                 while (head) {
3885                         struct Qdisc *q = head;
3886                         spinlock_t *root_lock;
3887
3888                         head = head->next_sched;
3889
3890                         root_lock = qdisc_lock(q);
3891                         spin_lock(root_lock);
3892                         /* We need to make sure head->next_sched is read
3893                          * before clearing __QDISC_STATE_SCHED
3894                          */
3895                         smp_mb__before_atomic();
3896                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3897                         qdisc_run(q);
3898                         spin_unlock(root_lock);
3899                 }
3900         }
3901 }
3902
3903 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3904 /* This hook is defined here for ATM LANE */
3905 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3906                              unsigned char *addr) __read_mostly;
3907 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3908 #endif
3909
3910 static inline struct sk_buff *
3911 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3912                    struct net_device *orig_dev)
3913 {
3914 #ifdef CONFIG_NET_CLS_ACT
3915         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3916         struct tcf_result cl_res;
3917
3918         /* If there's at least one ingress present somewhere (so
3919          * we get here via enabled static key), remaining devices
3920          * that are not configured with an ingress qdisc will bail
3921          * out here.
3922          */
3923         if (!cl)
3924                 return skb;
3925         if (*pt_prev) {
3926                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3927                 *pt_prev = NULL;
3928         }
3929
3930         qdisc_skb_cb(skb)->pkt_len = skb->len;
3931         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3932         qdisc_bstats_cpu_update(cl->q, skb);
3933
3934         switch (tc_classify(skb, cl, &cl_res, false)) {
3935         case TC_ACT_OK:
3936         case TC_ACT_RECLASSIFY:
3937                 skb->tc_index = TC_H_MIN(cl_res.classid);
3938                 break;
3939         case TC_ACT_SHOT:
3940                 qdisc_qstats_cpu_drop(cl->q);
3941                 kfree_skb(skb);
3942                 return NULL;
3943         case TC_ACT_STOLEN:
3944         case TC_ACT_QUEUED:
3945                 consume_skb(skb);
3946                 return NULL;
3947         case TC_ACT_REDIRECT:
3948                 /* skb_mac_header check was done by cls/act_bpf, so
3949                  * we can safely push the L2 header back before
3950                  * redirecting to another netdev
3951                  */
3952                 __skb_push(skb, skb->mac_len);
3953                 skb_do_redirect(skb);
3954                 return NULL;
3955         default:
3956                 break;
3957         }
3958 #endif /* CONFIG_NET_CLS_ACT */
3959         return skb;
3960 }
3961
3962 /**
3963  *      netdev_is_rx_handler_busy - check if receive handler is registered
3964  *      @dev: device to check
3965  *
3966  *      Check if a receive handler is already registered for a given device.
3967  *      Return true if there one.
3968  *
3969  *      The caller must hold the rtnl_mutex.
3970  */
3971 bool netdev_is_rx_handler_busy(struct net_device *dev)
3972 {
3973         ASSERT_RTNL();
3974         return dev && rtnl_dereference(dev->rx_handler);
3975 }
3976 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3977
3978 /**
3979  *      netdev_rx_handler_register - register receive handler
3980  *      @dev: device to register a handler for
3981  *      @rx_handler: receive handler to register
3982  *      @rx_handler_data: data pointer that is used by rx handler
3983  *
3984  *      Register a receive handler for a device. This handler will then be
3985  *      called from __netif_receive_skb. A negative errno code is returned
3986  *      on a failure.
3987  *
3988  *      The caller must hold the rtnl_mutex.
3989  *
3990  *      For a general description of rx_handler, see enum rx_handler_result.
3991  */
3992 int netdev_rx_handler_register(struct net_device *dev,
3993                                rx_handler_func_t *rx_handler,
3994                                void *rx_handler_data)
3995 {
3996         ASSERT_RTNL();
3997
3998         if (dev->rx_handler)
3999                 return -EBUSY;
4000
4001         /* Note: rx_handler_data must be set before rx_handler */
4002         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4003         rcu_assign_pointer(dev->rx_handler, rx_handler);
4004
4005         return 0;
4006 }
4007 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4008
4009 /**
4010  *      netdev_rx_handler_unregister - unregister receive handler
4011  *      @dev: device to unregister a handler from
4012  *
4013  *      Unregister a receive handler from a device.
4014  *
4015  *      The caller must hold the rtnl_mutex.
4016  */
4017 void netdev_rx_handler_unregister(struct net_device *dev)
4018 {
4019
4020         ASSERT_RTNL();
4021         RCU_INIT_POINTER(dev->rx_handler, NULL);
4022         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4023          * section has a guarantee to see a non NULL rx_handler_data
4024          * as well.
4025          */
4026         synchronize_net();
4027         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4028 }
4029 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4030
4031 /*
4032  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4033  * the special handling of PFMEMALLOC skbs.
4034  */
4035 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4036 {
4037         switch (skb->protocol) {
4038         case htons(ETH_P_ARP):
4039         case htons(ETH_P_IP):
4040         case htons(ETH_P_IPV6):
4041         case htons(ETH_P_8021Q):
4042         case htons(ETH_P_8021AD):
4043                 return true;
4044         default:
4045                 return false;
4046         }
4047 }
4048
4049 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4050                              int *ret, struct net_device *orig_dev)
4051 {
4052 #ifdef CONFIG_NETFILTER_INGRESS
4053         if (nf_hook_ingress_active(skb)) {
4054                 int ingress_retval;
4055
4056                 if (*pt_prev) {
4057                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4058                         *pt_prev = NULL;
4059                 }
4060
4061                 rcu_read_lock();
4062                 ingress_retval = nf_hook_ingress(skb);
4063                 rcu_read_unlock();
4064                 return ingress_retval;
4065         }
4066 #endif /* CONFIG_NETFILTER_INGRESS */
4067         return 0;
4068 }
4069
4070 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4071 {
4072         struct packet_type *ptype, *pt_prev;
4073         rx_handler_func_t *rx_handler;
4074         struct net_device *orig_dev;
4075         bool deliver_exact = false;
4076         int ret = NET_RX_DROP;
4077         __be16 type;
4078
4079         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4080
4081         trace_netif_receive_skb(skb);
4082
4083         orig_dev = skb->dev;
4084
4085         skb_reset_network_header(skb);
4086         if (!skb_transport_header_was_set(skb))
4087                 skb_reset_transport_header(skb);
4088         skb_reset_mac_len(skb);
4089
4090         pt_prev = NULL;
4091
4092 another_round:
4093         skb->skb_iif = skb->dev->ifindex;
4094
4095         __this_cpu_inc(softnet_data.processed);
4096
4097         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4098             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4099                 skb = skb_vlan_untag(skb);
4100                 if (unlikely(!skb))
4101                         goto out;
4102         }
4103
4104 #ifdef CONFIG_NET_CLS_ACT
4105         if (skb->tc_verd & TC_NCLS) {
4106                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4107                 goto ncls;
4108         }
4109 #endif
4110
4111         if (pfmemalloc)
4112                 goto skip_taps;
4113
4114         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4115                 if (pt_prev)
4116                         ret = deliver_skb(skb, pt_prev, orig_dev);
4117                 pt_prev = ptype;
4118         }
4119
4120         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4121                 if (pt_prev)
4122                         ret = deliver_skb(skb, pt_prev, orig_dev);
4123                 pt_prev = ptype;
4124         }
4125
4126 skip_taps:
4127 #ifdef CONFIG_NET_INGRESS
4128         if (static_key_false(&ingress_needed)) {
4129                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4130                 if (!skb)
4131                         goto out;
4132
4133                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4134                         goto out;
4135         }
4136 #endif
4137 #ifdef CONFIG_NET_CLS_ACT
4138         skb->tc_verd = 0;
4139 ncls:
4140 #endif
4141         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4142                 goto drop;
4143
4144         if (skb_vlan_tag_present(skb)) {
4145                 if (pt_prev) {
4146                         ret = deliver_skb(skb, pt_prev, orig_dev);
4147                         pt_prev = NULL;
4148                 }
4149                 if (vlan_do_receive(&skb))
4150                         goto another_round;
4151                 else if (unlikely(!skb))
4152                         goto out;
4153         }
4154
4155         rx_handler = rcu_dereference(skb->dev->rx_handler);
4156         if (rx_handler) {
4157                 if (pt_prev) {
4158                         ret = deliver_skb(skb, pt_prev, orig_dev);
4159                         pt_prev = NULL;
4160                 }
4161                 switch (rx_handler(&skb)) {
4162                 case RX_HANDLER_CONSUMED:
4163                         ret = NET_RX_SUCCESS;
4164                         goto out;
4165                 case RX_HANDLER_ANOTHER:
4166                         goto another_round;
4167                 case RX_HANDLER_EXACT:
4168                         deliver_exact = true;
4169                 case RX_HANDLER_PASS:
4170                         break;
4171                 default:
4172                         BUG();
4173                 }
4174         }
4175
4176         if (unlikely(skb_vlan_tag_present(skb))) {
4177                 if (skb_vlan_tag_get_id(skb))
4178                         skb->pkt_type = PACKET_OTHERHOST;
4179                 /* Note: we might in the future use prio bits
4180                  * and set skb->priority like in vlan_do_receive()
4181                  * For the time being, just ignore Priority Code Point
4182                  */
4183                 skb->vlan_tci = 0;
4184         }
4185
4186         type = skb->protocol;
4187
4188         /* deliver only exact match when indicated */
4189         if (likely(!deliver_exact)) {
4190                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4191                                        &ptype_base[ntohs(type) &
4192                                                    PTYPE_HASH_MASK]);
4193         }
4194
4195         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4196                                &orig_dev->ptype_specific);
4197
4198         if (unlikely(skb->dev != orig_dev)) {
4199                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200                                        &skb->dev->ptype_specific);
4201         }
4202
4203         if (pt_prev) {
4204                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4205                         goto drop;
4206                 else
4207                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4208         } else {
4209 drop:
4210                 if (!deliver_exact)
4211                         atomic_long_inc(&skb->dev->rx_dropped);
4212                 else
4213                         atomic_long_inc(&skb->dev->rx_nohandler);
4214                 kfree_skb(skb);
4215                 /* Jamal, now you will not able to escape explaining
4216                  * me how you were going to use this. :-)
4217                  */
4218                 ret = NET_RX_DROP;
4219         }
4220
4221 out:
4222         return ret;
4223 }
4224
4225 static int __netif_receive_skb(struct sk_buff *skb)
4226 {
4227         int ret;
4228
4229         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4230                 unsigned long pflags = current->flags;
4231
4232                 /*
4233                  * PFMEMALLOC skbs are special, they should
4234                  * - be delivered to SOCK_MEMALLOC sockets only
4235                  * - stay away from userspace
4236                  * - have bounded memory usage
4237                  *
4238                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4239                  * context down to all allocation sites.
4240                  */
4241                 current->flags |= PF_MEMALLOC;
4242                 ret = __netif_receive_skb_core(skb, true);
4243                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4244         } else
4245                 ret = __netif_receive_skb_core(skb, false);
4246
4247         return ret;
4248 }
4249
4250 static int netif_receive_skb_internal(struct sk_buff *skb)
4251 {
4252         int ret;
4253
4254         net_timestamp_check(netdev_tstamp_prequeue, skb);
4255
4256         if (skb_defer_rx_timestamp(skb))
4257                 return NET_RX_SUCCESS;
4258
4259         rcu_read_lock();
4260
4261 #ifdef CONFIG_RPS
4262         if (static_key_false(&rps_needed)) {
4263                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4264                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4265
4266                 if (cpu >= 0) {
4267                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4268                         rcu_read_unlock();
4269                         return ret;
4270                 }
4271         }
4272 #endif
4273         ret = __netif_receive_skb(skb);
4274         rcu_read_unlock();
4275         return ret;
4276 }
4277
4278 /**
4279  *      netif_receive_skb - process receive buffer from network
4280  *      @skb: buffer to process
4281  *
4282  *      netif_receive_skb() is the main receive data processing function.
4283  *      It always succeeds. The buffer may be dropped during processing
4284  *      for congestion control or by the protocol layers.
4285  *
4286  *      This function may only be called from softirq context and interrupts
4287  *      should be enabled.
4288  *
4289  *      Return values (usually ignored):
4290  *      NET_RX_SUCCESS: no congestion
4291  *      NET_RX_DROP: packet was dropped
4292  */
4293 int netif_receive_skb(struct sk_buff *skb)
4294 {
4295         trace_netif_receive_skb_entry(skb);
4296
4297         return netif_receive_skb_internal(skb);
4298 }
4299 EXPORT_SYMBOL(netif_receive_skb);
4300
4301 DEFINE_PER_CPU(struct work_struct, flush_works);
4302
4303 /* Network device is going away, flush any packets still pending */
4304 static void flush_backlog(struct work_struct *work)
4305 {
4306         struct sk_buff *skb, *tmp;
4307         struct softnet_data *sd;
4308
4309         local_bh_disable();
4310         sd = this_cpu_ptr(&softnet_data);
4311
4312         local_irq_disable();
4313         rps_lock(sd);
4314         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4315                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4316                         __skb_unlink(skb, &sd->input_pkt_queue);
4317                         kfree_skb(skb);
4318                         input_queue_head_incr(sd);
4319                 }
4320         }
4321         rps_unlock(sd);
4322         local_irq_enable();
4323
4324         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4325                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4326                         __skb_unlink(skb, &sd->process_queue);
4327                         kfree_skb(skb);
4328                         input_queue_head_incr(sd);
4329                 }
4330         }
4331         local_bh_enable();
4332 }
4333
4334 static void flush_all_backlogs(void)
4335 {
4336         unsigned int cpu;
4337
4338         get_online_cpus();
4339
4340         for_each_online_cpu(cpu)
4341                 queue_work_on(cpu, system_highpri_wq,
4342                               per_cpu_ptr(&flush_works, cpu));
4343
4344         for_each_online_cpu(cpu)
4345                 flush_work(per_cpu_ptr(&flush_works, cpu));
4346
4347         put_online_cpus();
4348 }
4349
4350 static int napi_gro_complete(struct sk_buff *skb)
4351 {
4352         struct packet_offload *ptype;
4353         __be16 type = skb->protocol;
4354         struct list_head *head = &offload_base;
4355         int err = -ENOENT;
4356
4357         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4358
4359         if (NAPI_GRO_CB(skb)->count == 1) {
4360                 skb_shinfo(skb)->gso_size = 0;
4361                 goto out;
4362         }
4363
4364         rcu_read_lock();
4365         list_for_each_entry_rcu(ptype, head, list) {
4366                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4367                         continue;
4368
4369                 err = ptype->callbacks.gro_complete(skb, 0);
4370                 break;
4371         }
4372         rcu_read_unlock();
4373
4374         if (err) {
4375                 WARN_ON(&ptype->list == head);
4376                 kfree_skb(skb);
4377                 return NET_RX_SUCCESS;
4378         }
4379
4380 out:
4381         return netif_receive_skb_internal(skb);
4382 }
4383
4384 /* napi->gro_list contains packets ordered by age.
4385  * youngest packets at the head of it.
4386  * Complete skbs in reverse order to reduce latencies.
4387  */
4388 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4389 {
4390         struct sk_buff *skb, *prev = NULL;
4391
4392         /* scan list and build reverse chain */
4393         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4394                 skb->prev = prev;
4395                 prev = skb;
4396         }
4397
4398         for (skb = prev; skb; skb = prev) {
4399                 skb->next = NULL;
4400
4401                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4402                         return;
4403
4404                 prev = skb->prev;
4405                 napi_gro_complete(skb);
4406                 napi->gro_count--;
4407         }
4408
4409         napi->gro_list = NULL;
4410 }
4411 EXPORT_SYMBOL(napi_gro_flush);
4412
4413 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4414 {
4415         struct sk_buff *p;
4416         unsigned int maclen = skb->dev->hard_header_len;
4417         u32 hash = skb_get_hash_raw(skb);
4418
4419         for (p = napi->gro_list; p; p = p->next) {
4420                 unsigned long diffs;
4421
4422                 NAPI_GRO_CB(p)->flush = 0;
4423
4424                 if (hash != skb_get_hash_raw(p)) {
4425                         NAPI_GRO_CB(p)->same_flow = 0;
4426                         continue;
4427                 }
4428
4429                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4430                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4431                 diffs |= skb_metadata_dst_cmp(p, skb);
4432                 if (maclen == ETH_HLEN)
4433                         diffs |= compare_ether_header(skb_mac_header(p),
4434                                                       skb_mac_header(skb));
4435                 else if (!diffs)
4436                         diffs = memcmp(skb_mac_header(p),
4437                                        skb_mac_header(skb),
4438                                        maclen);
4439                 NAPI_GRO_CB(p)->same_flow = !diffs;
4440         }
4441 }
4442
4443 static void skb_gro_reset_offset(struct sk_buff *skb)
4444 {
4445         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4446         const skb_frag_t *frag0 = &pinfo->frags[0];
4447
4448         NAPI_GRO_CB(skb)->data_offset = 0;
4449         NAPI_GRO_CB(skb)->frag0 = NULL;
4450         NAPI_GRO_CB(skb)->frag0_len = 0;
4451
4452         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4453             pinfo->nr_frags &&
4454             !PageHighMem(skb_frag_page(frag0))) {
4455                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4456                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4457         }
4458 }
4459
4460 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4461 {
4462         struct skb_shared_info *pinfo = skb_shinfo(skb);
4463
4464         BUG_ON(skb->end - skb->tail < grow);
4465
4466         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4467
4468         skb->data_len -= grow;
4469         skb->tail += grow;
4470
4471         pinfo->frags[0].page_offset += grow;
4472         skb_frag_size_sub(&pinfo->frags[0], grow);
4473
4474         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4475                 skb_frag_unref(skb, 0);
4476                 memmove(pinfo->frags, pinfo->frags + 1,
4477                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4478         }
4479 }
4480
4481 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4482 {
4483         struct sk_buff **pp = NULL;
4484         struct packet_offload *ptype;
4485         __be16 type = skb->protocol;
4486         struct list_head *head = &offload_base;
4487         int same_flow;
4488         enum gro_result ret;
4489         int grow;
4490
4491         if (!(skb->dev->features & NETIF_F_GRO))
4492                 goto normal;
4493
4494         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4495                 goto normal;
4496
4497         gro_list_prepare(napi, skb);
4498
4499         rcu_read_lock();
4500         list_for_each_entry_rcu(ptype, head, list) {
4501                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4502                         continue;
4503
4504                 skb_set_network_header(skb, skb_gro_offset(skb));
4505                 skb_reset_mac_len(skb);
4506                 NAPI_GRO_CB(skb)->same_flow = 0;
4507                 NAPI_GRO_CB(skb)->flush = 0;
4508                 NAPI_GRO_CB(skb)->free = 0;
4509                 NAPI_GRO_CB(skb)->encap_mark = 0;
4510                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4511                 NAPI_GRO_CB(skb)->is_fou = 0;
4512                 NAPI_GRO_CB(skb)->is_atomic = 1;
4513                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4514
4515                 /* Setup for GRO checksum validation */
4516                 switch (skb->ip_summed) {
4517                 case CHECKSUM_COMPLETE:
4518                         NAPI_GRO_CB(skb)->csum = skb->csum;
4519                         NAPI_GRO_CB(skb)->csum_valid = 1;
4520                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4521                         break;
4522                 case CHECKSUM_UNNECESSARY:
4523                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4524                         NAPI_GRO_CB(skb)->csum_valid = 0;
4525                         break;
4526                 default:
4527                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4528                         NAPI_GRO_CB(skb)->csum_valid = 0;
4529                 }
4530
4531                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4532                 break;
4533         }
4534         rcu_read_unlock();
4535
4536         if (&ptype->list == head)
4537                 goto normal;
4538
4539         same_flow = NAPI_GRO_CB(skb)->same_flow;
4540         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4541
4542         if (pp) {
4543                 struct sk_buff *nskb = *pp;
4544
4545                 *pp = nskb->next;
4546                 nskb->next = NULL;
4547                 napi_gro_complete(nskb);
4548                 napi->gro_count--;
4549         }
4550
4551         if (same_flow)
4552                 goto ok;
4553
4554         if (NAPI_GRO_CB(skb)->flush)
4555                 goto normal;
4556
4557         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4558                 struct sk_buff *nskb = napi->gro_list;
4559
4560                 /* locate the end of the list to select the 'oldest' flow */
4561                 while (nskb->next) {
4562                         pp = &nskb->next;
4563                         nskb = *pp;
4564                 }
4565                 *pp = NULL;
4566                 nskb->next = NULL;
4567                 napi_gro_complete(nskb);
4568         } else {
4569                 napi->gro_count++;
4570         }
4571         NAPI_GRO_CB(skb)->count = 1;
4572         NAPI_GRO_CB(skb)->age = jiffies;
4573         NAPI_GRO_CB(skb)->last = skb;
4574         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4575         skb->next = napi->gro_list;
4576         napi->gro_list = skb;
4577         ret = GRO_HELD;
4578
4579 pull:
4580         grow = skb_gro_offset(skb) - skb_headlen(skb);
4581         if (grow > 0)
4582                 gro_pull_from_frag0(skb, grow);
4583 ok:
4584         return ret;
4585
4586 normal:
4587         ret = GRO_NORMAL;
4588         goto pull;
4589 }
4590
4591 struct packet_offload *gro_find_receive_by_type(__be16 type)
4592 {
4593         struct list_head *offload_head = &offload_base;
4594         struct packet_offload *ptype;
4595
4596         list_for_each_entry_rcu(ptype, offload_head, list) {
4597                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4598                         continue;
4599                 return ptype;
4600         }
4601         return NULL;
4602 }
4603 EXPORT_SYMBOL(gro_find_receive_by_type);
4604
4605 struct packet_offload *gro_find_complete_by_type(__be16 type)
4606 {
4607         struct list_head *offload_head = &offload_base;
4608         struct packet_offload *ptype;
4609
4610         list_for_each_entry_rcu(ptype, offload_head, list) {
4611                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4612                         continue;
4613                 return ptype;
4614         }
4615         return NULL;
4616 }
4617 EXPORT_SYMBOL(gro_find_complete_by_type);
4618
4619 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4620 {
4621         switch (ret) {
4622         case GRO_NORMAL:
4623                 if (netif_receive_skb_internal(skb))
4624                         ret = GRO_DROP;
4625                 break;
4626
4627         case GRO_DROP:
4628                 kfree_skb(skb);
4629                 break;
4630
4631         case GRO_MERGED_FREE:
4632                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4633                         skb_dst_drop(skb);
4634                         kmem_cache_free(skbuff_head_cache, skb);
4635                 } else {
4636                         __kfree_skb(skb);
4637                 }
4638                 break;
4639
4640         case GRO_HELD:
4641         case GRO_MERGED:
4642                 break;
4643         }
4644
4645         return ret;
4646 }
4647
4648 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4649 {
4650         skb_mark_napi_id(skb, napi);
4651         trace_napi_gro_receive_entry(skb);
4652
4653         skb_gro_reset_offset(skb);
4654
4655         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4656 }
4657 EXPORT_SYMBOL(napi_gro_receive);
4658
4659 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4660 {
4661         if (unlikely(skb->pfmemalloc)) {
4662                 consume_skb(skb);
4663                 return;
4664         }
4665         __skb_pull(skb, skb_headlen(skb));
4666         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4667         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4668         skb->vlan_tci = 0;
4669         skb->dev = napi->dev;
4670         skb->skb_iif = 0;
4671         skb->encapsulation = 0;
4672         skb_shinfo(skb)->gso_type = 0;
4673         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4674
4675         napi->skb = skb;
4676 }
4677
4678 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4679 {
4680         struct sk_buff *skb = napi->skb;
4681
4682         if (!skb) {
4683                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4684                 if (skb) {
4685                         napi->skb = skb;
4686                         skb_mark_napi_id(skb, napi);
4687                 }
4688         }
4689         return skb;
4690 }
4691 EXPORT_SYMBOL(napi_get_frags);
4692
4693 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4694                                       struct sk_buff *skb,
4695                                       gro_result_t ret)
4696 {
4697         switch (ret) {
4698         case GRO_NORMAL:
4699         case GRO_HELD:
4700                 __skb_push(skb, ETH_HLEN);
4701                 skb->protocol = eth_type_trans(skb, skb->dev);
4702                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4703                         ret = GRO_DROP;
4704                 break;
4705
4706         case GRO_DROP:
4707         case GRO_MERGED_FREE:
4708                 napi_reuse_skb(napi, skb);
4709                 break;
4710
4711         case GRO_MERGED:
4712                 break;
4713         }
4714
4715         return ret;
4716 }
4717
4718 /* Upper GRO stack assumes network header starts at gro_offset=0
4719  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4720  * We copy ethernet header into skb->data to have a common layout.
4721  */
4722 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4723 {
4724         struct sk_buff *skb = napi->skb;
4725         const struct ethhdr *eth;
4726         unsigned int hlen = sizeof(*eth);
4727
4728         napi->skb = NULL;
4729
4730         skb_reset_mac_header(skb);
4731         skb_gro_reset_offset(skb);
4732
4733         eth = skb_gro_header_fast(skb, 0);
4734         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4735                 eth = skb_gro_header_slow(skb, hlen, 0);
4736                 if (unlikely(!eth)) {
4737                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4738                                              __func__, napi->dev->name);
4739                         napi_reuse_skb(napi, skb);
4740                         return NULL;
4741                 }
4742         } else {
4743                 gro_pull_from_frag0(skb, hlen);
4744                 NAPI_GRO_CB(skb)->frag0 += hlen;
4745                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4746         }
4747         __skb_pull(skb, hlen);
4748
4749         /*
4750          * This works because the only protocols we care about don't require
4751          * special handling.
4752          * We'll fix it up properly in napi_frags_finish()
4753          */
4754         skb->protocol = eth->h_proto;
4755
4756         return skb;
4757 }
4758
4759 gro_result_t napi_gro_frags(struct napi_struct *napi)
4760 {
4761         struct sk_buff *skb = napi_frags_skb(napi);
4762
4763         if (!skb)
4764                 return GRO_DROP;
4765
4766         trace_napi_gro_frags_entry(skb);
4767
4768         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4769 }
4770 EXPORT_SYMBOL(napi_gro_frags);
4771
4772 /* Compute the checksum from gro_offset and return the folded value
4773  * after adding in any pseudo checksum.
4774  */
4775 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4776 {
4777         __wsum wsum;
4778         __sum16 sum;
4779
4780         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4781
4782         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4783         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4784         if (likely(!sum)) {
4785                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4786                     !skb->csum_complete_sw)
4787                         netdev_rx_csum_fault(skb->dev);
4788         }
4789
4790         NAPI_GRO_CB(skb)->csum = wsum;
4791         NAPI_GRO_CB(skb)->csum_valid = 1;
4792
4793         return sum;
4794 }
4795 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4796
4797 /*
4798  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4799  * Note: called with local irq disabled, but exits with local irq enabled.
4800  */
4801 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4802 {
4803 #ifdef CONFIG_RPS
4804         struct softnet_data *remsd = sd->rps_ipi_list;
4805
4806         if (remsd) {
4807                 sd->rps_ipi_list = NULL;
4808
4809                 local_irq_enable();
4810
4811                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4812                 while (remsd) {
4813                         struct softnet_data *next = remsd->rps_ipi_next;
4814
4815                         if (cpu_online(remsd->cpu))
4816                                 smp_call_function_single_async(remsd->cpu,
4817                                                            &remsd->csd);
4818                         remsd = next;
4819                 }
4820         } else
4821 #endif
4822                 local_irq_enable();
4823 }
4824
4825 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4826 {
4827 #ifdef CONFIG_RPS
4828         return sd->rps_ipi_list != NULL;
4829 #else
4830         return false;
4831 #endif
4832 }
4833
4834 static int process_backlog(struct napi_struct *napi, int quota)
4835 {
4836         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4837         bool again = true;
4838         int work = 0;
4839
4840         /* Check if we have pending ipi, its better to send them now,
4841          * not waiting net_rx_action() end.
4842          */
4843         if (sd_has_rps_ipi_waiting(sd)) {
4844                 local_irq_disable();
4845                 net_rps_action_and_irq_enable(sd);
4846         }
4847
4848         napi->weight = weight_p;
4849         while (again) {
4850                 struct sk_buff *skb;
4851
4852                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4853                         rcu_read_lock();
4854                         __netif_receive_skb(skb);
4855                         rcu_read_unlock();
4856                         input_queue_head_incr(sd);
4857                         if (++work >= quota)
4858                                 return work;
4859
4860                 }
4861
4862                 local_irq_disable();
4863                 rps_lock(sd);
4864                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4865                         /*
4866                          * Inline a custom version of __napi_complete().
4867                          * only current cpu owns and manipulates this napi,
4868                          * and NAPI_STATE_SCHED is the only possible flag set
4869                          * on backlog.
4870                          * We can use a plain write instead of clear_bit(),
4871                          * and we dont need an smp_mb() memory barrier.
4872                          */
4873                         napi->state = 0;
4874                         again = false;
4875                 } else {
4876                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4877                                                    &sd->process_queue);
4878                 }
4879                 rps_unlock(sd);
4880                 local_irq_enable();
4881         }
4882
4883         return work;
4884 }
4885
4886 /**
4887  * __napi_schedule - schedule for receive
4888  * @n: entry to schedule
4889  *
4890  * The entry's receive function will be scheduled to run.
4891  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4892  */
4893 void __napi_schedule(struct napi_struct *n)
4894 {
4895         unsigned long flags;
4896
4897         local_irq_save(flags);
4898         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4899         local_irq_restore(flags);
4900 }
4901 EXPORT_SYMBOL(__napi_schedule);
4902
4903 /**
4904  * __napi_schedule_irqoff - schedule for receive
4905  * @n: entry to schedule
4906  *
4907  * Variant of __napi_schedule() assuming hard irqs are masked
4908  */
4909 void __napi_schedule_irqoff(struct napi_struct *n)
4910 {
4911         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4912 }
4913 EXPORT_SYMBOL(__napi_schedule_irqoff);
4914
4915 void __napi_complete(struct napi_struct *n)
4916 {
4917         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4918
4919         list_del_init(&n->poll_list);
4920         smp_mb__before_atomic();
4921         clear_bit(NAPI_STATE_SCHED, &n->state);
4922 }
4923 EXPORT_SYMBOL(__napi_complete);
4924
4925 void napi_complete_done(struct napi_struct *n, int work_done)
4926 {
4927         unsigned long flags;
4928
4929         /*
4930          * don't let napi dequeue from the cpu poll list
4931          * just in case its running on a different cpu
4932          */
4933         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4934                 return;
4935
4936         if (n->gro_list) {
4937                 unsigned long timeout = 0;
4938
4939                 if (work_done)
4940                         timeout = n->dev->gro_flush_timeout;
4941
4942                 if (timeout)
4943                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4944                                       HRTIMER_MODE_REL_PINNED);
4945                 else
4946                         napi_gro_flush(n, false);
4947         }
4948         if (likely(list_empty(&n->poll_list))) {
4949                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4950         } else {
4951                 /* If n->poll_list is not empty, we need to mask irqs */
4952                 local_irq_save(flags);
4953                 __napi_complete(n);
4954                 local_irq_restore(flags);
4955         }
4956 }
4957 EXPORT_SYMBOL(napi_complete_done);
4958
4959 /* must be called under rcu_read_lock(), as we dont take a reference */
4960 static struct napi_struct *napi_by_id(unsigned int napi_id)
4961 {
4962         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4963         struct napi_struct *napi;
4964
4965         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4966                 if (napi->napi_id == napi_id)
4967                         return napi;
4968
4969         return NULL;
4970 }
4971
4972 #if defined(CONFIG_NET_RX_BUSY_POLL)
4973 #define BUSY_POLL_BUDGET 8
4974 bool sk_busy_loop(struct sock *sk, int nonblock)
4975 {
4976         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4977         int (*busy_poll)(struct napi_struct *dev);
4978         struct napi_struct *napi;
4979         int rc = false;
4980
4981         rcu_read_lock();
4982
4983         napi = napi_by_id(sk->sk_napi_id);
4984         if (!napi)
4985                 goto out;
4986
4987         /* Note: ndo_busy_poll method is optional in linux-4.5 */
4988         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4989
4990         do {
4991                 rc = 0;
4992                 local_bh_disable();
4993                 if (busy_poll) {
4994                         rc = busy_poll(napi);
4995                 } else if (napi_schedule_prep(napi)) {
4996                         void *have = netpoll_poll_lock(napi);
4997
4998                         if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4999                                 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5000                                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5001                                 if (rc == BUSY_POLL_BUDGET) {
5002                                         napi_complete_done(napi, rc);
5003                                         napi_schedule(napi);
5004                                 }
5005                         }
5006                         netpoll_poll_unlock(have);
5007                 }
5008                 if (rc > 0)
5009                         __NET_ADD_STATS(sock_net(sk),
5010                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5011                 local_bh_enable();
5012
5013                 if (rc == LL_FLUSH_FAILED)
5014                         break; /* permanent failure */
5015
5016                 cpu_relax();
5017         } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5018                  !need_resched() && !busy_loop_timeout(end_time));
5019
5020         rc = !skb_queue_empty(&sk->sk_receive_queue);
5021 out:
5022         rcu_read_unlock();
5023         return rc;
5024 }
5025 EXPORT_SYMBOL(sk_busy_loop);
5026
5027 #endif /* CONFIG_NET_RX_BUSY_POLL */
5028
5029 void napi_hash_add(struct napi_struct *napi)
5030 {
5031         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5032             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5033                 return;
5034
5035         spin_lock(&napi_hash_lock);
5036
5037         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5038         do {
5039                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5040                         napi_gen_id = NR_CPUS + 1;
5041         } while (napi_by_id(napi_gen_id));
5042         napi->napi_id = napi_gen_id;
5043
5044         hlist_add_head_rcu(&napi->napi_hash_node,
5045                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5046
5047         spin_unlock(&napi_hash_lock);
5048 }
5049 EXPORT_SYMBOL_GPL(napi_hash_add);
5050
5051 /* Warning : caller is responsible to make sure rcu grace period
5052  * is respected before freeing memory containing @napi
5053  */
5054 bool napi_hash_del(struct napi_struct *napi)
5055 {
5056         bool rcu_sync_needed = false;
5057
5058         spin_lock(&napi_hash_lock);
5059
5060         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5061                 rcu_sync_needed = true;
5062                 hlist_del_rcu(&napi->napi_hash_node);
5063         }
5064         spin_unlock(&napi_hash_lock);
5065         return rcu_sync_needed;
5066 }
5067 EXPORT_SYMBOL_GPL(napi_hash_del);
5068
5069 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5070 {
5071         struct napi_struct *napi;
5072
5073         napi = container_of(timer, struct napi_struct, timer);
5074         if (napi->gro_list)
5075                 napi_schedule(napi);
5076
5077         return HRTIMER_NORESTART;
5078 }
5079
5080 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5081                     int (*poll)(struct napi_struct *, int), int weight)
5082 {
5083         INIT_LIST_HEAD(&napi->poll_list);
5084         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5085         napi->timer.function = napi_watchdog;
5086         napi->gro_count = 0;
5087         napi->gro_list = NULL;
5088         napi->skb = NULL;
5089         napi->poll = poll;
5090         if (weight > NAPI_POLL_WEIGHT)
5091                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5092                             weight, dev->name);
5093         napi->weight = weight;
5094         list_add(&napi->dev_list, &dev->napi_list);
5095         napi->dev = dev;
5096 #ifdef CONFIG_NETPOLL
5097         spin_lock_init(&napi->poll_lock);
5098         napi->poll_owner = -1;
5099 #endif
5100         set_bit(NAPI_STATE_SCHED, &napi->state);
5101         napi_hash_add(napi);
5102 }
5103 EXPORT_SYMBOL(netif_napi_add);
5104
5105 void napi_disable(struct napi_struct *n)
5106 {
5107         might_sleep();
5108         set_bit(NAPI_STATE_DISABLE, &n->state);
5109
5110         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5111                 msleep(1);
5112         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5113                 msleep(1);
5114
5115         hrtimer_cancel(&n->timer);
5116
5117         clear_bit(NAPI_STATE_DISABLE, &n->state);
5118 }
5119 EXPORT_SYMBOL(napi_disable);
5120
5121 /* Must be called in process context */
5122 void netif_napi_del(struct napi_struct *napi)
5123 {
5124         might_sleep();
5125         if (napi_hash_del(napi))
5126                 synchronize_net();
5127         list_del_init(&napi->dev_list);
5128         napi_free_frags(napi);
5129
5130         kfree_skb_list(napi->gro_list);
5131         napi->gro_list = NULL;
5132         napi->gro_count = 0;
5133 }
5134 EXPORT_SYMBOL(netif_napi_del);
5135
5136 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5137 {
5138         void *have;
5139         int work, weight;
5140
5141         list_del_init(&n->poll_list);
5142
5143         have = netpoll_poll_lock(n);
5144
5145         weight = n->weight;
5146
5147         /* This NAPI_STATE_SCHED test is for avoiding a race
5148          * with netpoll's poll_napi().  Only the entity which
5149          * obtains the lock and sees NAPI_STATE_SCHED set will
5150          * actually make the ->poll() call.  Therefore we avoid
5151          * accidentally calling ->poll() when NAPI is not scheduled.
5152          */
5153         work = 0;
5154         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5155                 work = n->poll(n, weight);
5156                 trace_napi_poll(n, work, weight);
5157         }
5158
5159         WARN_ON_ONCE(work > weight);
5160
5161         if (likely(work < weight))
5162                 goto out_unlock;
5163
5164         /* Drivers must not modify the NAPI state if they
5165          * consume the entire weight.  In such cases this code
5166          * still "owns" the NAPI instance and therefore can
5167          * move the instance around on the list at-will.
5168          */
5169         if (unlikely(napi_disable_pending(n))) {
5170                 napi_complete(n);
5171                 goto out_unlock;
5172         }
5173
5174         if (n->gro_list) {
5175                 /* flush too old packets
5176                  * If HZ < 1000, flush all packets.
5177                  */
5178                 napi_gro_flush(n, HZ >= 1000);
5179         }
5180
5181         /* Some drivers may have called napi_schedule
5182          * prior to exhausting their budget.
5183          */
5184         if (unlikely(!list_empty(&n->poll_list))) {
5185                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5186                              n->dev ? n->dev->name : "backlog");
5187                 goto out_unlock;
5188         }
5189
5190         list_add_tail(&n->poll_list, repoll);
5191
5192 out_unlock:
5193         netpoll_poll_unlock(have);
5194
5195         return work;
5196 }
5197
5198 static __latent_entropy void net_rx_action(struct softirq_action *h)
5199 {
5200         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5201         unsigned long time_limit = jiffies + 2;
5202         int budget = netdev_budget;
5203         LIST_HEAD(list);
5204         LIST_HEAD(repoll);
5205
5206         local_irq_disable();
5207         list_splice_init(&sd->poll_list, &list);
5208         local_irq_enable();
5209
5210         for (;;) {
5211                 struct napi_struct *n;
5212
5213                 if (list_empty(&list)) {
5214                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5215                                 return;
5216                         break;
5217                 }
5218
5219                 n = list_first_entry(&list, struct napi_struct, poll_list);
5220                 budget -= napi_poll(n, &repoll);
5221
5222                 /* If softirq window is exhausted then punt.
5223                  * Allow this to run for 2 jiffies since which will allow
5224                  * an average latency of 1.5/HZ.
5225                  */
5226                 if (unlikely(budget <= 0 ||
5227                              time_after_eq(jiffies, time_limit))) {
5228                         sd->time_squeeze++;
5229                         break;
5230                 }
5231         }
5232
5233         __kfree_skb_flush();
5234         local_irq_disable();
5235
5236         list_splice_tail_init(&sd->poll_list, &list);
5237         list_splice_tail(&repoll, &list);
5238         list_splice(&list, &sd->poll_list);
5239         if (!list_empty(&sd->poll_list))
5240                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5241
5242         net_rps_action_and_irq_enable(sd);
5243 }
5244
5245 struct netdev_adjacent {
5246         struct net_device *dev;
5247
5248         /* upper master flag, there can only be one master device per list */
5249         bool master;
5250
5251         /* counter for the number of times this device was added to us */
5252         u16 ref_nr;
5253
5254         /* private field for the users */
5255         void *private;
5256
5257         struct list_head list;
5258         struct rcu_head rcu;
5259 };
5260
5261 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5262                                                  struct list_head *adj_list)
5263 {
5264         struct netdev_adjacent *adj;
5265
5266         list_for_each_entry(adj, adj_list, list) {
5267                 if (adj->dev == adj_dev)
5268                         return adj;
5269         }
5270         return NULL;
5271 }
5272
5273 /**
5274  * netdev_has_upper_dev - Check if device is linked to an upper device
5275  * @dev: device
5276  * @upper_dev: upper device to check
5277  *
5278  * Find out if a device is linked to specified upper device and return true
5279  * in case it is. Note that this checks only immediate upper device,
5280  * not through a complete stack of devices. The caller must hold the RTNL lock.
5281  */
5282 bool netdev_has_upper_dev(struct net_device *dev,
5283                           struct net_device *upper_dev)
5284 {
5285         ASSERT_RTNL();
5286
5287         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5288 }
5289 EXPORT_SYMBOL(netdev_has_upper_dev);
5290
5291 /**
5292  * netdev_has_any_upper_dev - Check if device is linked to some device
5293  * @dev: device
5294  *
5295  * Find out if a device is linked to an upper device and return true in case
5296  * it is. The caller must hold the RTNL lock.
5297  */
5298 static bool netdev_has_any_upper_dev(struct net_device *dev)
5299 {
5300         ASSERT_RTNL();
5301
5302         return !list_empty(&dev->all_adj_list.upper);
5303 }
5304
5305 /**
5306  * netdev_master_upper_dev_get - Get master upper device
5307  * @dev: device
5308  *
5309  * Find a master upper device and return pointer to it or NULL in case
5310  * it's not there. The caller must hold the RTNL lock.
5311  */
5312 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5313 {
5314         struct netdev_adjacent *upper;
5315
5316         ASSERT_RTNL();
5317
5318         if (list_empty(&dev->adj_list.upper))
5319                 return NULL;
5320
5321         upper = list_first_entry(&dev->adj_list.upper,
5322                                  struct netdev_adjacent, list);
5323         if (likely(upper->master))
5324                 return upper->dev;
5325         return NULL;
5326 }
5327 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5328
5329 void *netdev_adjacent_get_private(struct list_head *adj_list)
5330 {
5331         struct netdev_adjacent *adj;
5332
5333         adj = list_entry(adj_list, struct netdev_adjacent, list);
5334
5335         return adj->private;
5336 }
5337 EXPORT_SYMBOL(netdev_adjacent_get_private);
5338
5339 /**
5340  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5341  * @dev: device
5342  * @iter: list_head ** of the current position
5343  *
5344  * Gets the next device from the dev's upper list, starting from iter
5345  * position. The caller must hold RCU read lock.
5346  */
5347 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5348                                                  struct list_head **iter)
5349 {
5350         struct netdev_adjacent *upper;
5351
5352         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5353
5354         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5355
5356         if (&upper->list == &dev->adj_list.upper)
5357                 return NULL;
5358
5359         *iter = &upper->list;
5360
5361         return upper->dev;
5362 }
5363 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5364
5365 /**
5366  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5367  * @dev: device
5368  * @iter: list_head ** of the current position
5369  *
5370  * Gets the next device from the dev's upper list, starting from iter
5371  * position. The caller must hold RCU read lock.
5372  */
5373 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5374                                                      struct list_head **iter)
5375 {
5376         struct netdev_adjacent *upper;
5377
5378         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5379
5380         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5381
5382         if (&upper->list == &dev->all_adj_list.upper)
5383                 return NULL;
5384
5385         *iter = &upper->list;
5386
5387         return upper->dev;
5388 }
5389 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5390
5391 /**
5392  * netdev_lower_get_next_private - Get the next ->private from the
5393  *                                 lower neighbour list
5394  * @dev: device
5395  * @iter: list_head ** of the current position
5396  *
5397  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5398  * list, starting from iter position. The caller must hold either hold the
5399  * RTNL lock or its own locking that guarantees that the neighbour lower
5400  * list will remain unchanged.
5401  */
5402 void *netdev_lower_get_next_private(struct net_device *dev,
5403                                     struct list_head **iter)
5404 {
5405         struct netdev_adjacent *lower;
5406
5407         lower = list_entry(*iter, struct netdev_adjacent, list);
5408
5409         if (&lower->list == &dev->adj_list.lower)
5410                 return NULL;
5411
5412         *iter = lower->list.next;
5413
5414         return lower->private;
5415 }
5416 EXPORT_SYMBOL(netdev_lower_get_next_private);
5417
5418 /**
5419  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5420  *                                     lower neighbour list, RCU
5421  *                                     variant
5422  * @dev: device
5423  * @iter: list_head ** of the current position
5424  *
5425  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5426  * list, starting from iter position. The caller must hold RCU read lock.
5427  */
5428 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5429                                         struct list_head **iter)
5430 {
5431         struct netdev_adjacent *lower;
5432
5433         WARN_ON_ONCE(!rcu_read_lock_held());
5434
5435         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5436
5437         if (&lower->list == &dev->adj_list.lower)
5438                 return NULL;
5439
5440         *iter = &lower->list;
5441
5442         return lower->private;
5443 }
5444 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5445
5446 /**
5447  * netdev_lower_get_next - Get the next device from the lower neighbour
5448  *                         list
5449  * @dev: device
5450  * @iter: list_head ** of the current position
5451  *
5452  * Gets the next netdev_adjacent from the dev's lower neighbour
5453  * list, starting from iter position. The caller must hold RTNL lock or
5454  * its own locking that guarantees that the neighbour lower
5455  * list will remain unchanged.
5456  */
5457 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5458 {
5459         struct netdev_adjacent *lower;
5460
5461         lower = list_entry(*iter, struct netdev_adjacent, list);
5462
5463         if (&lower->list == &dev->adj_list.lower)
5464                 return NULL;
5465
5466         *iter = lower->list.next;
5467
5468         return lower->dev;
5469 }
5470 EXPORT_SYMBOL(netdev_lower_get_next);
5471
5472 /**
5473  * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5474  * @dev: device
5475  * @iter: list_head ** of the current position
5476  *
5477  * Gets the next netdev_adjacent from the dev's all lower neighbour
5478  * list, starting from iter position. The caller must hold RTNL lock or
5479  * its own locking that guarantees that the neighbour all lower
5480  * list will remain unchanged.
5481  */
5482 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5483 {
5484         struct netdev_adjacent *lower;
5485
5486         lower = list_entry(*iter, struct netdev_adjacent, list);
5487
5488         if (&lower->list == &dev->all_adj_list.lower)
5489                 return NULL;
5490
5491         *iter = lower->list.next;
5492
5493         return lower->dev;
5494 }
5495 EXPORT_SYMBOL(netdev_all_lower_get_next);
5496
5497 /**
5498  * netdev_all_lower_get_next_rcu - Get the next device from all
5499  *                                 lower neighbour list, RCU variant
5500  * @dev: device
5501  * @iter: list_head ** of the current position
5502  *
5503  * Gets the next netdev_adjacent from the dev's all lower neighbour
5504  * list, starting from iter position. The caller must hold RCU read lock.
5505  */
5506 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5507                                                  struct list_head **iter)
5508 {
5509         struct netdev_adjacent *lower;
5510
5511         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5512
5513         if (&lower->list == &dev->all_adj_list.lower)
5514                 return NULL;
5515
5516         *iter = &lower->list;
5517
5518         return lower->dev;
5519 }
5520 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5521
5522 /**
5523  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5524  *                                     lower neighbour list, RCU
5525  *                                     variant
5526  * @dev: device
5527  *
5528  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5529  * list. The caller must hold RCU read lock.
5530  */
5531 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5532 {
5533         struct netdev_adjacent *lower;
5534
5535         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5536                         struct netdev_adjacent, list);
5537         if (lower)
5538                 return lower->private;
5539         return NULL;
5540 }
5541 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5542
5543 /**
5544  * netdev_master_upper_dev_get_rcu - Get master upper device
5545  * @dev: device
5546  *
5547  * Find a master upper device and return pointer to it or NULL in case
5548  * it's not there. The caller must hold the RCU read lock.
5549  */
5550 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5551 {
5552         struct netdev_adjacent *upper;
5553
5554         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5555                                        struct netdev_adjacent, list);
5556         if (upper && likely(upper->master))
5557                 return upper->dev;
5558         return NULL;
5559 }
5560 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5561
5562 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5563                               struct net_device *adj_dev,
5564                               struct list_head *dev_list)
5565 {
5566         char linkname[IFNAMSIZ+7];
5567         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5568                 "upper_%s" : "lower_%s", adj_dev->name);
5569         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5570                                  linkname);
5571 }
5572 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5573                                char *name,
5574                                struct list_head *dev_list)
5575 {
5576         char linkname[IFNAMSIZ+7];
5577         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5578                 "upper_%s" : "lower_%s", name);
5579         sysfs_remove_link(&(dev->dev.kobj), linkname);
5580 }
5581
5582 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5583                                                  struct net_device *adj_dev,
5584                                                  struct list_head *dev_list)
5585 {
5586         return (dev_list == &dev->adj_list.upper ||
5587                 dev_list == &dev->adj_list.lower) &&
5588                 net_eq(dev_net(dev), dev_net(adj_dev));
5589 }
5590
5591 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5592                                         struct net_device *adj_dev,
5593                                         u16 ref_nr,
5594                                         struct list_head *dev_list,
5595                                         void *private, bool master)
5596 {
5597         struct netdev_adjacent *adj;
5598         int ret;
5599
5600         adj = __netdev_find_adj(adj_dev, dev_list);
5601
5602         if (adj) {
5603                 adj->ref_nr += ref_nr;
5604                 return 0;
5605         }
5606
5607         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5608         if (!adj)
5609                 return -ENOMEM;
5610
5611         adj->dev = adj_dev;
5612         adj->master = master;
5613         adj->ref_nr = ref_nr;
5614         adj->private = private;
5615         dev_hold(adj_dev);
5616
5617         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5618                  adj_dev->name, dev->name, adj_dev->name);
5619
5620         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5621                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5622                 if (ret)
5623                         goto free_adj;
5624         }
5625
5626         /* Ensure that master link is always the first item in list. */
5627         if (master) {
5628                 ret = sysfs_create_link(&(dev->dev.kobj),
5629                                         &(adj_dev->dev.kobj), "master");
5630                 if (ret)
5631                         goto remove_symlinks;
5632
5633                 list_add_rcu(&adj->list, dev_list);
5634         } else {
5635                 list_add_tail_rcu(&adj->list, dev_list);
5636         }
5637
5638         return 0;
5639
5640 remove_symlinks:
5641         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5642                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5643 free_adj:
5644         kfree(adj);
5645         dev_put(adj_dev);
5646
5647         return ret;
5648 }
5649
5650 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5651                                          struct net_device *adj_dev,
5652                                          u16 ref_nr,
5653                                          struct list_head *dev_list)
5654 {
5655         struct netdev_adjacent *adj;
5656
5657         adj = __netdev_find_adj(adj_dev, dev_list);
5658
5659         if (!adj) {
5660                 pr_err("tried to remove device %s from %s\n",
5661                        dev->name, adj_dev->name);
5662                 BUG();
5663         }
5664
5665         if (adj->ref_nr > ref_nr) {
5666                 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5667                          ref_nr, adj->ref_nr-ref_nr);
5668                 adj->ref_nr -= ref_nr;
5669                 return;
5670         }
5671
5672         if (adj->master)
5673                 sysfs_remove_link(&(dev->dev.kobj), "master");
5674
5675         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5676                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5677
5678         list_del_rcu(&adj->list);
5679         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5680                  adj_dev->name, dev->name, adj_dev->name);
5681         dev_put(adj_dev);
5682         kfree_rcu(adj, rcu);
5683 }
5684
5685 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5686                                             struct net_device *upper_dev,
5687                                             u16 ref_nr,
5688                                             struct list_head *up_list,
5689                                             struct list_head *down_list,
5690                                             void *private, bool master)
5691 {
5692         int ret;
5693
5694         ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5695                                            private, master);
5696         if (ret)
5697                 return ret;
5698
5699         ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5700                                            private, false);
5701         if (ret) {
5702                 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5703                 return ret;
5704         }
5705
5706         return 0;
5707 }
5708
5709 static int __netdev_adjacent_dev_link(struct net_device *dev,
5710                                       struct net_device *upper_dev,
5711                                       u16 ref_nr)
5712 {
5713         return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
5714                                                 &dev->all_adj_list.upper,
5715                                                 &upper_dev->all_adj_list.lower,
5716                                                 NULL, false);
5717 }
5718
5719 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5720                                                struct net_device *upper_dev,
5721                                                u16 ref_nr,
5722                                                struct list_head *up_list,
5723                                                struct list_head *down_list)
5724 {
5725         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5726         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5727 }
5728
5729 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5730                                          struct net_device *upper_dev,
5731                                          u16 ref_nr)
5732 {
5733         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
5734                                            &dev->all_adj_list.upper,
5735                                            &upper_dev->all_adj_list.lower);
5736 }
5737
5738 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5739                                                 struct net_device *upper_dev,
5740                                                 void *private, bool master)
5741 {
5742         int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
5743
5744         if (ret)
5745                 return ret;
5746
5747         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
5748                                                &dev->adj_list.upper,
5749                                                &upper_dev->adj_list.lower,
5750                                                private, master);
5751         if (ret) {
5752                 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5753                 return ret;
5754         }
5755
5756         return 0;
5757 }
5758
5759 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5760                                                    struct net_device *upper_dev)
5761 {
5762         __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5763         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5764                                            &dev->adj_list.upper,
5765                                            &upper_dev->adj_list.lower);
5766 }
5767
5768 static int __netdev_upper_dev_link(struct net_device *dev,
5769                                    struct net_device *upper_dev, bool master,
5770                                    void *upper_priv, void *upper_info)
5771 {
5772         struct netdev_notifier_changeupper_info changeupper_info;
5773         struct netdev_adjacent *i, *j, *to_i, *to_j;
5774         int ret = 0;
5775
5776         ASSERT_RTNL();
5777
5778         if (dev == upper_dev)
5779                 return -EBUSY;
5780
5781         /* To prevent loops, check if dev is not upper device to upper_dev. */
5782         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5783                 return -EBUSY;
5784
5785         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5786                 return -EEXIST;
5787
5788         if (master && netdev_master_upper_dev_get(dev))
5789                 return -EBUSY;
5790
5791         changeupper_info.upper_dev = upper_dev;
5792         changeupper_info.master = master;
5793         changeupper_info.linking = true;
5794         changeupper_info.upper_info = upper_info;
5795
5796         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5797                                             &changeupper_info.info);
5798         ret = notifier_to_errno(ret);
5799         if (ret)
5800                 return ret;
5801
5802         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5803                                                    master);
5804         if (ret)
5805                 return ret;
5806
5807         /* Now that we linked these devs, make all the upper_dev's
5808          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5809          * versa, and don't forget the devices itself. All of these
5810          * links are non-neighbours.
5811          */
5812         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5813                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5814                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5815                                  i->dev->name, j->dev->name);
5816                         ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5817                         if (ret)
5818                                 goto rollback_mesh;
5819                 }
5820         }
5821
5822         /* add dev to every upper_dev's upper device */
5823         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5824                 pr_debug("linking %s's upper device %s with %s\n",
5825                          upper_dev->name, i->dev->name, dev->name);
5826                 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5827                 if (ret)
5828                         goto rollback_upper_mesh;
5829         }
5830
5831         /* add upper_dev to every dev's lower device */
5832         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5833                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5834                          i->dev->name, upper_dev->name);
5835                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5836                 if (ret)
5837                         goto rollback_lower_mesh;
5838         }
5839
5840         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5841                                             &changeupper_info.info);
5842         ret = notifier_to_errno(ret);
5843         if (ret)
5844                 goto rollback_lower_mesh;
5845
5846         return 0;
5847
5848 rollback_lower_mesh:
5849         to_i = i;
5850         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5851                 if (i == to_i)
5852                         break;
5853                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5854         }
5855
5856         i = NULL;
5857
5858 rollback_upper_mesh:
5859         to_i = i;
5860         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5861                 if (i == to_i)
5862                         break;
5863                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5864         }
5865
5866         i = j = NULL;
5867
5868 rollback_mesh:
5869         to_i = i;
5870         to_j = j;
5871         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5872                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5873                         if (i == to_i && j == to_j)
5874                                 break;
5875                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5876                 }
5877                 if (i == to_i)
5878                         break;
5879         }
5880
5881         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5882
5883         return ret;
5884 }
5885
5886 /**
5887  * netdev_upper_dev_link - Add a link to the upper device
5888  * @dev: device
5889  * @upper_dev: new upper device
5890  *
5891  * Adds a link to device which is upper to this one. The caller must hold
5892  * the RTNL lock. On a failure a negative errno code is returned.
5893  * On success the reference counts are adjusted and the function
5894  * returns zero.
5895  */
5896 int netdev_upper_dev_link(struct net_device *dev,
5897                           struct net_device *upper_dev)
5898 {
5899         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5900 }
5901 EXPORT_SYMBOL(netdev_upper_dev_link);
5902
5903 /**
5904  * netdev_master_upper_dev_link - Add a master link to the upper device
5905  * @dev: device
5906  * @upper_dev: new upper device
5907  * @upper_priv: upper device private
5908  * @upper_info: upper info to be passed down via notifier
5909  *
5910  * Adds a link to device which is upper to this one. In this case, only
5911  * one master upper device can be linked, although other non-master devices
5912  * might be linked as well. The caller must hold the RTNL lock.
5913  * On a failure a negative errno code is returned. On success the reference
5914  * counts are adjusted and the function returns zero.
5915  */
5916 int netdev_master_upper_dev_link(struct net_device *dev,
5917                                  struct net_device *upper_dev,
5918                                  void *upper_priv, void *upper_info)
5919 {
5920         return __netdev_upper_dev_link(dev, upper_dev, true,
5921                                        upper_priv, upper_info);
5922 }
5923 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5924
5925 /**
5926  * netdev_upper_dev_unlink - Removes a link to upper device
5927  * @dev: device
5928  * @upper_dev: new upper device
5929  *
5930  * Removes a link to device which is upper to this one. The caller must hold
5931  * the RTNL lock.
5932  */
5933 void netdev_upper_dev_unlink(struct net_device *dev,
5934                              struct net_device *upper_dev)
5935 {
5936         struct netdev_notifier_changeupper_info changeupper_info;
5937         struct netdev_adjacent *i, *j;
5938         ASSERT_RTNL();
5939
5940         changeupper_info.upper_dev = upper_dev;
5941         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5942         changeupper_info.linking = false;
5943
5944         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5945                                       &changeupper_info.info);
5946
5947         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5948
5949         /* Here is the tricky part. We must remove all dev's lower
5950          * devices from all upper_dev's upper devices and vice
5951          * versa, to maintain the graph relationship.
5952          */
5953         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5954                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5955                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5956
5957         /* remove also the devices itself from lower/upper device
5958          * list
5959          */
5960         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5961                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5962
5963         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5964                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5965
5966         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5967                                       &changeupper_info.info);
5968 }
5969 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5970
5971 /**
5972  * netdev_bonding_info_change - Dispatch event about slave change
5973  * @dev: device
5974  * @bonding_info: info to dispatch
5975  *
5976  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5977  * The caller must hold the RTNL lock.
5978  */
5979 void netdev_bonding_info_change(struct net_device *dev,
5980                                 struct netdev_bonding_info *bonding_info)
5981 {
5982         struct netdev_notifier_bonding_info     info;
5983
5984         memcpy(&info.bonding_info, bonding_info,
5985                sizeof(struct netdev_bonding_info));
5986         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5987                                       &info.info);
5988 }
5989 EXPORT_SYMBOL(netdev_bonding_info_change);
5990
5991 static void netdev_adjacent_add_links(struct net_device *dev)
5992 {
5993         struct netdev_adjacent *iter;
5994
5995         struct net *net = dev_net(dev);
5996
5997         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5998                 if (!net_eq(net, dev_net(iter->dev)))
5999                         continue;
6000                 netdev_adjacent_sysfs_add(iter->dev, dev,
6001                                           &iter->dev->adj_list.lower);
6002                 netdev_adjacent_sysfs_add(dev, iter->dev,
6003                                           &dev->adj_list.upper);
6004         }
6005
6006         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6007                 if (!net_eq(net, dev_net(iter->dev)))
6008                         continue;
6009                 netdev_adjacent_sysfs_add(iter->dev, dev,
6010                                           &iter->dev->adj_list.upper);
6011                 netdev_adjacent_sysfs_add(dev, iter->dev,
6012                                           &dev->adj_list.lower);
6013         }
6014 }
6015
6016 static void netdev_adjacent_del_links(struct net_device *dev)
6017 {
6018         struct netdev_adjacent *iter;
6019
6020         struct net *net = dev_net(dev);
6021
6022         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6023                 if (!net_eq(net, dev_net(iter->dev)))
6024                         continue;
6025                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6026                                           &iter->dev->adj_list.lower);
6027                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6028                                           &dev->adj_list.upper);
6029         }
6030
6031         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6032                 if (!net_eq(net, dev_net(iter->dev)))
6033                         continue;
6034                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6035                                           &iter->dev->adj_list.upper);
6036                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6037                                           &dev->adj_list.lower);
6038         }
6039 }
6040
6041 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6042 {
6043         struct netdev_adjacent *iter;
6044
6045         struct net *net = dev_net(dev);
6046
6047         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6048                 if (!net_eq(net, dev_net(iter->dev)))
6049                         continue;
6050                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6051                                           &iter->dev->adj_list.lower);
6052                 netdev_adjacent_sysfs_add(iter->dev, dev,
6053                                           &iter->dev->adj_list.lower);
6054         }
6055
6056         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6057                 if (!net_eq(net, dev_net(iter->dev)))
6058                         continue;
6059                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6060                                           &iter->dev->adj_list.upper);
6061                 netdev_adjacent_sysfs_add(iter->dev, dev,
6062                                           &iter->dev->adj_list.upper);
6063         }
6064 }
6065
6066 void *netdev_lower_dev_get_private(struct net_device *dev,
6067                                    struct net_device *lower_dev)
6068 {
6069         struct netdev_adjacent *lower;
6070
6071         if (!lower_dev)
6072                 return NULL;
6073         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6074         if (!lower)
6075                 return NULL;
6076
6077         return lower->private;
6078 }
6079 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6080
6081
6082 int dev_get_nest_level(struct net_device *dev)
6083 {
6084         struct net_device *lower = NULL;
6085         struct list_head *iter;
6086         int max_nest = -1;
6087         int nest;
6088
6089         ASSERT_RTNL();
6090
6091         netdev_for_each_lower_dev(dev, lower, iter) {
6092                 nest = dev_get_nest_level(lower);
6093                 if (max_nest < nest)
6094                         max_nest = nest;
6095         }
6096
6097         return max_nest + 1;
6098 }
6099 EXPORT_SYMBOL(dev_get_nest_level);
6100
6101 /**
6102  * netdev_lower_change - Dispatch event about lower device state change
6103  * @lower_dev: device
6104  * @lower_state_info: state to dispatch
6105  *
6106  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6107  * The caller must hold the RTNL lock.
6108  */
6109 void netdev_lower_state_changed(struct net_device *lower_dev,
6110                                 void *lower_state_info)
6111 {
6112         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6113
6114         ASSERT_RTNL();
6115         changelowerstate_info.lower_state_info = lower_state_info;
6116         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6117                                       &changelowerstate_info.info);
6118 }
6119 EXPORT_SYMBOL(netdev_lower_state_changed);
6120
6121 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6122                                            struct neighbour *n)
6123 {
6124         struct net_device *lower_dev, *stop_dev;
6125         struct list_head *iter;
6126         int err;
6127
6128         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6129                 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6130                         continue;
6131                 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6132                 if (err) {
6133                         stop_dev = lower_dev;
6134                         goto rollback;
6135                 }
6136         }
6137         return 0;
6138
6139 rollback:
6140         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6141                 if (lower_dev == stop_dev)
6142                         break;
6143                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6144                         continue;
6145                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6146         }
6147         return err;
6148 }
6149 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6150
6151 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6152                                           struct neighbour *n)
6153 {
6154         struct net_device *lower_dev;
6155         struct list_head *iter;
6156
6157         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6158                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6159                         continue;
6160                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6161         }
6162 }
6163 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6164
6165 static void dev_change_rx_flags(struct net_device *dev, int flags)
6166 {
6167         const struct net_device_ops *ops = dev->netdev_ops;
6168
6169         if (ops->ndo_change_rx_flags)
6170                 ops->ndo_change_rx_flags(dev, flags);
6171 }
6172
6173 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6174 {
6175         unsigned int old_flags = dev->flags;
6176         kuid_t uid;
6177         kgid_t gid;
6178
6179         ASSERT_RTNL();
6180
6181         dev->flags |= IFF_PROMISC;
6182         dev->promiscuity += inc;
6183         if (dev->promiscuity == 0) {
6184                 /*
6185                  * Avoid overflow.
6186                  * If inc causes overflow, untouch promisc and return error.
6187                  */
6188                 if (inc < 0)
6189                         dev->flags &= ~IFF_PROMISC;
6190                 else {
6191                         dev->promiscuity -= inc;
6192                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6193                                 dev->name);
6194                         return -EOVERFLOW;
6195                 }
6196         }
6197         if (dev->flags != old_flags) {
6198                 pr_info("device %s %s promiscuous mode\n",
6199                         dev->name,
6200                         dev->flags & IFF_PROMISC ? "entered" : "left");
6201                 if (audit_enabled) {
6202                         current_uid_gid(&uid, &gid);
6203                         audit_log(current->audit_context, GFP_ATOMIC,
6204                                 AUDIT_ANOM_PROMISCUOUS,
6205                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6206                                 dev->name, (dev->flags & IFF_PROMISC),
6207                                 (old_flags & IFF_PROMISC),
6208                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6209                                 from_kuid(&init_user_ns, uid),
6210                                 from_kgid(&init_user_ns, gid),
6211                                 audit_get_sessionid(current));
6212                 }
6213
6214                 dev_change_rx_flags(dev, IFF_PROMISC);
6215         }
6216         if (notify)
6217                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6218         return 0;
6219 }
6220
6221 /**
6222  *      dev_set_promiscuity     - update promiscuity count on a device
6223  *      @dev: device
6224  *      @inc: modifier
6225  *
6226  *      Add or remove promiscuity from a device. While the count in the device
6227  *      remains above zero the interface remains promiscuous. Once it hits zero
6228  *      the device reverts back to normal filtering operation. A negative inc
6229  *      value is used to drop promiscuity on the device.
6230  *      Return 0 if successful or a negative errno code on error.
6231  */
6232 int dev_set_promiscuity(struct net_device *dev, int inc)
6233 {
6234         unsigned int old_flags = dev->flags;
6235         int err;
6236
6237         err = __dev_set_promiscuity(dev, inc, true);
6238         if (err < 0)
6239                 return err;
6240         if (dev->flags != old_flags)
6241                 dev_set_rx_mode(dev);
6242         return err;
6243 }
6244 EXPORT_SYMBOL(dev_set_promiscuity);
6245
6246 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6247 {
6248         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6249
6250         ASSERT_RTNL();
6251
6252         dev->flags |= IFF_ALLMULTI;
6253         dev->allmulti += inc;
6254         if (dev->allmulti == 0) {
6255                 /*
6256                  * Avoid overflow.
6257                  * If inc causes overflow, untouch allmulti and return error.
6258                  */
6259                 if (inc < 0)
6260                         dev->flags &= ~IFF_ALLMULTI;
6261                 else {
6262                         dev->allmulti -= inc;
6263                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6264                                 dev->name);
6265                         return -EOVERFLOW;
6266                 }
6267         }
6268         if (dev->flags ^ old_flags) {
6269                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6270                 dev_set_rx_mode(dev);
6271                 if (notify)
6272                         __dev_notify_flags(dev, old_flags,
6273                                            dev->gflags ^ old_gflags);
6274         }
6275         return 0;
6276 }
6277
6278 /**
6279  *      dev_set_allmulti        - update allmulti count on a device
6280  *      @dev: device
6281  *      @inc: modifier
6282  *
6283  *      Add or remove reception of all multicast frames to a device. While the
6284  *      count in the device remains above zero the interface remains listening
6285  *      to all interfaces. Once it hits zero the device reverts back to normal
6286  *      filtering operation. A negative @inc value is used to drop the counter
6287  *      when releasing a resource needing all multicasts.
6288  *      Return 0 if successful or a negative errno code on error.
6289  */
6290
6291 int dev_set_allmulti(struct net_device *dev, int inc)
6292 {
6293         return __dev_set_allmulti(dev, inc, true);
6294 }
6295 EXPORT_SYMBOL(dev_set_allmulti);
6296
6297 /*
6298  *      Upload unicast and multicast address lists to device and
6299  *      configure RX filtering. When the device doesn't support unicast
6300  *      filtering it is put in promiscuous mode while unicast addresses
6301  *      are present.
6302  */
6303 void __dev_set_rx_mode(struct net_device *dev)
6304 {
6305         const struct net_device_ops *ops = dev->netdev_ops;
6306
6307         /* dev_open will call this function so the list will stay sane. */
6308         if (!(dev->flags&IFF_UP))
6309                 return;
6310
6311         if (!netif_device_present(dev))
6312                 return;
6313
6314         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6315                 /* Unicast addresses changes may only happen under the rtnl,
6316                  * therefore calling __dev_set_promiscuity here is safe.
6317                  */
6318                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6319                         __dev_set_promiscuity(dev, 1, false);
6320                         dev->uc_promisc = true;
6321                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6322                         __dev_set_promiscuity(dev, -1, false);
6323                         dev->uc_promisc = false;
6324                 }
6325         }
6326
6327         if (ops->ndo_set_rx_mode)
6328                 ops->ndo_set_rx_mode(dev);
6329 }
6330
6331 void dev_set_rx_mode(struct net_device *dev)
6332 {
6333         netif_addr_lock_bh(dev);
6334         __dev_set_rx_mode(dev);
6335         netif_addr_unlock_bh(dev);
6336 }
6337
6338 /**
6339  *      dev_get_flags - get flags reported to userspace
6340  *      @dev: device
6341  *
6342  *      Get the combination of flag bits exported through APIs to userspace.
6343  */
6344 unsigned int dev_get_flags(const struct net_device *dev)
6345 {
6346         unsigned int flags;
6347
6348         flags = (dev->flags & ~(IFF_PROMISC |
6349                                 IFF_ALLMULTI |
6350                                 IFF_RUNNING |
6351                                 IFF_LOWER_UP |
6352                                 IFF_DORMANT)) |
6353                 (dev->gflags & (IFF_PROMISC |
6354                                 IFF_ALLMULTI));
6355
6356         if (netif_running(dev)) {
6357                 if (netif_oper_up(dev))
6358                         flags |= IFF_RUNNING;
6359                 if (netif_carrier_ok(dev))
6360                         flags |= IFF_LOWER_UP;
6361                 if (netif_dormant(dev))
6362                         flags |= IFF_DORMANT;
6363         }
6364
6365         return flags;
6366 }
6367 EXPORT_SYMBOL(dev_get_flags);
6368
6369 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6370 {
6371         unsigned int old_flags = dev->flags;
6372         int ret;
6373
6374         ASSERT_RTNL();
6375
6376         /*
6377          *      Set the flags on our device.
6378          */
6379
6380         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6381                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6382                                IFF_AUTOMEDIA)) |
6383                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6384                                     IFF_ALLMULTI));
6385
6386         /*
6387          *      Load in the correct multicast list now the flags have changed.
6388          */
6389
6390         if ((old_flags ^ flags) & IFF_MULTICAST)
6391                 dev_change_rx_flags(dev, IFF_MULTICAST);
6392
6393         dev_set_rx_mode(dev);
6394
6395         /*
6396          *      Have we downed the interface. We handle IFF_UP ourselves
6397          *      according to user attempts to set it, rather than blindly
6398          *      setting it.
6399          */
6400
6401         ret = 0;
6402         if ((old_flags ^ flags) & IFF_UP)
6403                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6404
6405         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6406                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6407                 unsigned int old_flags = dev->flags;
6408
6409                 dev->gflags ^= IFF_PROMISC;
6410
6411                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6412                         if (dev->flags != old_flags)
6413                                 dev_set_rx_mode(dev);
6414         }
6415
6416         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6417            is important. Some (broken) drivers set IFF_PROMISC, when
6418            IFF_ALLMULTI is requested not asking us and not reporting.
6419          */
6420         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6421                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6422
6423                 dev->gflags ^= IFF_ALLMULTI;
6424                 __dev_set_allmulti(dev, inc, false);
6425         }
6426
6427         return ret;
6428 }
6429
6430 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6431                         unsigned int gchanges)
6432 {
6433         unsigned int changes = dev->flags ^ old_flags;
6434
6435         if (gchanges)
6436                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6437
6438         if (changes & IFF_UP) {
6439                 if (dev->flags & IFF_UP)
6440                         call_netdevice_notifiers(NETDEV_UP, dev);
6441                 else
6442                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6443         }
6444
6445         if (dev->flags & IFF_UP &&
6446             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6447                 struct netdev_notifier_change_info change_info;
6448
6449                 change_info.flags_changed = changes;
6450                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6451                                               &change_info.info);
6452         }
6453 }
6454
6455 /**
6456  *      dev_change_flags - change device settings
6457  *      @dev: device
6458  *      @flags: device state flags
6459  *
6460  *      Change settings on device based state flags. The flags are
6461  *      in the userspace exported format.
6462  */
6463 int dev_change_flags(struct net_device *dev, unsigned int flags)
6464 {
6465         int ret;
6466         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6467
6468         ret = __dev_change_flags(dev, flags);
6469         if (ret < 0)
6470                 return ret;
6471
6472         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6473         __dev_notify_flags(dev, old_flags, changes);
6474         return ret;
6475 }
6476 EXPORT_SYMBOL(dev_change_flags);
6477
6478 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6479 {
6480         const struct net_device_ops *ops = dev->netdev_ops;
6481
6482         if (ops->ndo_change_mtu)
6483                 return ops->ndo_change_mtu(dev, new_mtu);
6484
6485         dev->mtu = new_mtu;
6486         return 0;
6487 }
6488
6489 /**
6490  *      dev_set_mtu - Change maximum transfer unit
6491  *      @dev: device
6492  *      @new_mtu: new transfer unit
6493  *
6494  *      Change the maximum transfer size of the network device.
6495  */
6496 int dev_set_mtu(struct net_device *dev, int new_mtu)
6497 {
6498         int err, orig_mtu;
6499
6500         if (new_mtu == dev->mtu)
6501                 return 0;
6502
6503         /*      MTU must be positive.    */
6504         if (new_mtu < 0)
6505                 return -EINVAL;
6506
6507         if (!netif_device_present(dev))
6508                 return -ENODEV;
6509
6510         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6511         err = notifier_to_errno(err);
6512         if (err)
6513                 return err;
6514
6515         orig_mtu = dev->mtu;
6516         err = __dev_set_mtu(dev, new_mtu);
6517
6518         if (!err) {
6519                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6520                 err = notifier_to_errno(err);
6521                 if (err) {
6522                         /* setting mtu back and notifying everyone again,
6523                          * so that they have a chance to revert changes.
6524                          */
6525                         __dev_set_mtu(dev, orig_mtu);
6526                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6527                 }
6528         }
6529         return err;
6530 }
6531 EXPORT_SYMBOL(dev_set_mtu);
6532
6533 /**
6534  *      dev_set_group - Change group this device belongs to
6535  *      @dev: device
6536  *      @new_group: group this device should belong to
6537  */
6538 void dev_set_group(struct net_device *dev, int new_group)
6539 {
6540         dev->group = new_group;
6541 }
6542 EXPORT_SYMBOL(dev_set_group);
6543
6544 /**
6545  *      dev_set_mac_address - Change Media Access Control Address
6546  *      @dev: device
6547  *      @sa: new address
6548  *
6549  *      Change the hardware (MAC) address of the device
6550  */
6551 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6552 {
6553         const struct net_device_ops *ops = dev->netdev_ops;
6554         int err;
6555
6556         if (!ops->ndo_set_mac_address)
6557                 return -EOPNOTSUPP;
6558         if (sa->sa_family != dev->type)
6559                 return -EINVAL;
6560         if (!netif_device_present(dev))
6561                 return -ENODEV;
6562         err = ops->ndo_set_mac_address(dev, sa);
6563         if (err)
6564                 return err;
6565         dev->addr_assign_type = NET_ADDR_SET;
6566         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6567         add_device_randomness(dev->dev_addr, dev->addr_len);
6568         return 0;
6569 }
6570 EXPORT_SYMBOL(dev_set_mac_address);
6571
6572 /**
6573  *      dev_change_carrier - Change device carrier
6574  *      @dev: device
6575  *      @new_carrier: new value
6576  *
6577  *      Change device carrier
6578  */
6579 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6580 {
6581         const struct net_device_ops *ops = dev->netdev_ops;
6582
6583         if (!ops->ndo_change_carrier)
6584                 return -EOPNOTSUPP;
6585         if (!netif_device_present(dev))
6586                 return -ENODEV;
6587         return ops->ndo_change_carrier(dev, new_carrier);
6588 }
6589 EXPORT_SYMBOL(dev_change_carrier);
6590
6591 /**
6592  *      dev_get_phys_port_id - Get device physical port ID
6593  *      @dev: device
6594  *      @ppid: port ID
6595  *
6596  *      Get device physical port ID
6597  */
6598 int dev_get_phys_port_id(struct net_device *dev,
6599                          struct netdev_phys_item_id *ppid)
6600 {
6601         const struct net_device_ops *ops = dev->netdev_ops;
6602
6603         if (!ops->ndo_get_phys_port_id)
6604                 return -EOPNOTSUPP;
6605         return ops->ndo_get_phys_port_id(dev, ppid);
6606 }
6607 EXPORT_SYMBOL(dev_get_phys_port_id);
6608
6609 /**
6610  *      dev_get_phys_port_name - Get device physical port name
6611  *      @dev: device
6612  *      @name: port name
6613  *      @len: limit of bytes to copy to name
6614  *
6615  *      Get device physical port name
6616  */
6617 int dev_get_phys_port_name(struct net_device *dev,
6618                            char *name, size_t len)
6619 {
6620         const struct net_device_ops *ops = dev->netdev_ops;
6621
6622         if (!ops->ndo_get_phys_port_name)
6623                 return -EOPNOTSUPP;
6624         return ops->ndo_get_phys_port_name(dev, name, len);
6625 }
6626 EXPORT_SYMBOL(dev_get_phys_port_name);
6627
6628 /**
6629  *      dev_change_proto_down - update protocol port state information
6630  *      @dev: device
6631  *      @proto_down: new value
6632  *
6633  *      This info can be used by switch drivers to set the phys state of the
6634  *      port.
6635  */
6636 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6637 {
6638         const struct net_device_ops *ops = dev->netdev_ops;
6639
6640         if (!ops->ndo_change_proto_down)
6641                 return -EOPNOTSUPP;
6642         if (!netif_device_present(dev))
6643                 return -ENODEV;
6644         return ops->ndo_change_proto_down(dev, proto_down);
6645 }
6646 EXPORT_SYMBOL(dev_change_proto_down);
6647
6648 /**
6649  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6650  *      @dev: device
6651  *      @fd: new program fd or negative value to clear
6652  *
6653  *      Set or clear a bpf program for a device
6654  */
6655 int dev_change_xdp_fd(struct net_device *dev, int fd)
6656 {
6657         const struct net_device_ops *ops = dev->netdev_ops;
6658         struct bpf_prog *prog = NULL;
6659         struct netdev_xdp xdp = {};
6660         int err;
6661
6662         if (!ops->ndo_xdp)
6663                 return -EOPNOTSUPP;
6664         if (fd >= 0) {
6665                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6666                 if (IS_ERR(prog))
6667                         return PTR_ERR(prog);
6668         }
6669
6670         xdp.command = XDP_SETUP_PROG;
6671         xdp.prog = prog;
6672         err = ops->ndo_xdp(dev, &xdp);
6673         if (err < 0 && prog)
6674                 bpf_prog_put(prog);
6675
6676         return err;
6677 }
6678 EXPORT_SYMBOL(dev_change_xdp_fd);
6679
6680 /**
6681  *      dev_new_index   -       allocate an ifindex
6682  *      @net: the applicable net namespace
6683  *
6684  *      Returns a suitable unique value for a new device interface
6685  *      number.  The caller must hold the rtnl semaphore or the
6686  *      dev_base_lock to be sure it remains unique.
6687  */
6688 static int dev_new_index(struct net *net)
6689 {
6690         int ifindex = net->ifindex;
6691         for (;;) {
6692                 if (++ifindex <= 0)
6693                         ifindex = 1;
6694                 if (!__dev_get_by_index(net, ifindex))
6695                         return net->ifindex = ifindex;
6696         }
6697 }
6698
6699 /* Delayed registration/unregisteration */
6700 static LIST_HEAD(net_todo_list);
6701 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6702
6703 static void net_set_todo(struct net_device *dev)
6704 {
6705         list_add_tail(&dev->todo_list, &net_todo_list);
6706         dev_net(dev)->dev_unreg_count++;
6707 }
6708
6709 static void rollback_registered_many(struct list_head *head)
6710 {
6711         struct net_device *dev, *tmp;
6712         LIST_HEAD(close_head);
6713
6714         BUG_ON(dev_boot_phase);
6715         ASSERT_RTNL();
6716
6717         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6718                 /* Some devices call without registering
6719                  * for initialization unwind. Remove those
6720                  * devices and proceed with the remaining.
6721                  */
6722                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6723                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6724                                  dev->name, dev);
6725
6726                         WARN_ON(1);
6727                         list_del(&dev->unreg_list);
6728                         continue;
6729                 }
6730                 dev->dismantle = true;
6731                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6732         }
6733
6734         /* If device is running, close it first. */
6735         list_for_each_entry(dev, head, unreg_list)
6736                 list_add_tail(&dev->close_list, &close_head);
6737         dev_close_many(&close_head, true);
6738
6739         list_for_each_entry(dev, head, unreg_list) {
6740                 /* And unlink it from device chain. */
6741                 unlist_netdevice(dev);
6742
6743                 dev->reg_state = NETREG_UNREGISTERING;
6744         }
6745         flush_all_backlogs();
6746
6747         synchronize_net();
6748
6749         list_for_each_entry(dev, head, unreg_list) {
6750                 struct sk_buff *skb = NULL;
6751
6752                 /* Shutdown queueing discipline. */
6753                 dev_shutdown(dev);
6754
6755
6756                 /* Notify protocols, that we are about to destroy
6757                    this device. They should clean all the things.
6758                 */
6759                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6760
6761                 if (!dev->rtnl_link_ops ||
6762                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6763                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6764                                                      GFP_KERNEL);
6765
6766                 /*
6767                  *      Flush the unicast and multicast chains
6768                  */
6769                 dev_uc_flush(dev);
6770                 dev_mc_flush(dev);
6771
6772                 if (dev->netdev_ops->ndo_uninit)
6773                         dev->netdev_ops->ndo_uninit(dev);
6774
6775                 if (skb)
6776                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6777
6778                 /* Notifier chain MUST detach us all upper devices. */
6779                 WARN_ON(netdev_has_any_upper_dev(dev));
6780
6781                 /* Remove entries from kobject tree */
6782                 netdev_unregister_kobject(dev);
6783 #ifdef CONFIG_XPS
6784                 /* Remove XPS queueing entries */
6785                 netif_reset_xps_queues_gt(dev, 0);
6786 #endif
6787         }
6788
6789         synchronize_net();
6790
6791         list_for_each_entry(dev, head, unreg_list)
6792                 dev_put(dev);
6793 }
6794
6795 static void rollback_registered(struct net_device *dev)
6796 {
6797         LIST_HEAD(single);
6798
6799         list_add(&dev->unreg_list, &single);
6800         rollback_registered_many(&single);
6801         list_del(&single);
6802 }
6803
6804 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6805         struct net_device *upper, netdev_features_t features)
6806 {
6807         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6808         netdev_features_t feature;
6809         int feature_bit;
6810
6811         for_each_netdev_feature(&upper_disables, feature_bit) {
6812                 feature = __NETIF_F_BIT(feature_bit);
6813                 if (!(upper->wanted_features & feature)
6814                     && (features & feature)) {
6815                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6816                                    &feature, upper->name);
6817                         features &= ~feature;
6818                 }
6819         }
6820
6821         return features;
6822 }
6823
6824 static void netdev_sync_lower_features(struct net_device *upper,
6825         struct net_device *lower, netdev_features_t features)
6826 {
6827         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6828         netdev_features_t feature;
6829         int feature_bit;
6830
6831         for_each_netdev_feature(&upper_disables, feature_bit) {
6832                 feature = __NETIF_F_BIT(feature_bit);
6833                 if (!(features & feature) && (lower->features & feature)) {
6834                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6835                                    &feature, lower->name);
6836                         lower->wanted_features &= ~feature;
6837                         netdev_update_features(lower);
6838
6839                         if (unlikely(lower->features & feature))
6840                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6841                                             &feature, lower->name);
6842                 }
6843         }
6844 }
6845
6846 static netdev_features_t netdev_fix_features(struct net_device *dev,
6847         netdev_features_t features)
6848 {
6849         /* Fix illegal checksum combinations */
6850         if ((features & NETIF_F_HW_CSUM) &&
6851             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6852                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6853                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6854         }
6855
6856         /* TSO requires that SG is present as well. */
6857         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6858                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6859                 features &= ~NETIF_F_ALL_TSO;
6860         }
6861
6862         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6863                                         !(features & NETIF_F_IP_CSUM)) {
6864                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6865                 features &= ~NETIF_F_TSO;
6866                 features &= ~NETIF_F_TSO_ECN;
6867         }
6868
6869         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6870                                          !(features & NETIF_F_IPV6_CSUM)) {
6871                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6872                 features &= ~NETIF_F_TSO6;
6873         }
6874
6875         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6876         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6877                 features &= ~NETIF_F_TSO_MANGLEID;
6878
6879         /* TSO ECN requires that TSO is present as well. */
6880         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6881                 features &= ~NETIF_F_TSO_ECN;
6882
6883         /* Software GSO depends on SG. */
6884         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6885                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6886                 features &= ~NETIF_F_GSO;
6887         }
6888
6889         /* UFO needs SG and checksumming */
6890         if (features & NETIF_F_UFO) {
6891                 /* maybe split UFO into V4 and V6? */
6892                 if (!(features & NETIF_F_HW_CSUM) &&
6893                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6894                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6895                         netdev_dbg(dev,
6896                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6897                         features &= ~NETIF_F_UFO;
6898                 }
6899
6900                 if (!(features & NETIF_F_SG)) {
6901                         netdev_dbg(dev,
6902                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6903                         features &= ~NETIF_F_UFO;
6904                 }
6905         }
6906
6907         /* GSO partial features require GSO partial be set */
6908         if ((features & dev->gso_partial_features) &&
6909             !(features & NETIF_F_GSO_PARTIAL)) {
6910                 netdev_dbg(dev,
6911                            "Dropping partially supported GSO features since no GSO partial.\n");
6912                 features &= ~dev->gso_partial_features;
6913         }
6914
6915 #ifdef CONFIG_NET_RX_BUSY_POLL
6916         if (dev->netdev_ops->ndo_busy_poll)
6917                 features |= NETIF_F_BUSY_POLL;
6918         else
6919 #endif
6920                 features &= ~NETIF_F_BUSY_POLL;
6921
6922         return features;
6923 }
6924
6925 int __netdev_update_features(struct net_device *dev)
6926 {
6927         struct net_device *upper, *lower;
6928         netdev_features_t features;
6929         struct list_head *iter;
6930         int err = -1;
6931
6932         ASSERT_RTNL();
6933
6934         features = netdev_get_wanted_features(dev);
6935
6936         if (dev->netdev_ops->ndo_fix_features)
6937                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6938
6939         /* driver might be less strict about feature dependencies */
6940         features = netdev_fix_features(dev, features);
6941
6942         /* some features can't be enabled if they're off an an upper device */
6943         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6944                 features = netdev_sync_upper_features(dev, upper, features);
6945
6946         if (dev->features == features)
6947                 goto sync_lower;
6948
6949         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6950                 &dev->features, &features);
6951
6952         if (dev->netdev_ops->ndo_set_features)
6953                 err = dev->netdev_ops->ndo_set_features(dev, features);
6954         else
6955                 err = 0;
6956
6957         if (unlikely(err < 0)) {
6958                 netdev_err(dev,
6959                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6960                         err, &features, &dev->features);
6961                 /* return non-0 since some features might have changed and
6962                  * it's better to fire a spurious notification than miss it
6963                  */
6964                 return -1;
6965         }
6966
6967 sync_lower:
6968         /* some features must be disabled on lower devices when disabled
6969          * on an upper device (think: bonding master or bridge)
6970          */
6971         netdev_for_each_lower_dev(dev, lower, iter)
6972                 netdev_sync_lower_features(dev, lower, features);
6973
6974         if (!err)
6975                 dev->features = features;
6976
6977         return err < 0 ? 0 : 1;
6978 }
6979
6980 /**
6981  *      netdev_update_features - recalculate device features
6982  *      @dev: the device to check
6983  *
6984  *      Recalculate dev->features set and send notifications if it
6985  *      has changed. Should be called after driver or hardware dependent
6986  *      conditions might have changed that influence the features.
6987  */
6988 void netdev_update_features(struct net_device *dev)
6989 {
6990         if (__netdev_update_features(dev))
6991                 netdev_features_change(dev);
6992 }
6993 EXPORT_SYMBOL(netdev_update_features);
6994
6995 /**
6996  *      netdev_change_features - recalculate device features
6997  *      @dev: the device to check
6998  *
6999  *      Recalculate dev->features set and send notifications even
7000  *      if they have not changed. Should be called instead of
7001  *      netdev_update_features() if also dev->vlan_features might
7002  *      have changed to allow the changes to be propagated to stacked
7003  *      VLAN devices.
7004  */
7005 void netdev_change_features(struct net_device *dev)
7006 {
7007         __netdev_update_features(dev);
7008         netdev_features_change(dev);
7009 }
7010 EXPORT_SYMBOL(netdev_change_features);
7011
7012 /**
7013  *      netif_stacked_transfer_operstate -      transfer operstate
7014  *      @rootdev: the root or lower level device to transfer state from
7015  *      @dev: the device to transfer operstate to
7016  *
7017  *      Transfer operational state from root to device. This is normally
7018  *      called when a stacking relationship exists between the root
7019  *      device and the device(a leaf device).
7020  */
7021 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7022                                         struct net_device *dev)
7023 {
7024         if (rootdev->operstate == IF_OPER_DORMANT)
7025                 netif_dormant_on(dev);
7026         else
7027                 netif_dormant_off(dev);
7028
7029         if (netif_carrier_ok(rootdev)) {
7030                 if (!netif_carrier_ok(dev))
7031                         netif_carrier_on(dev);
7032         } else {
7033                 if (netif_carrier_ok(dev))
7034                         netif_carrier_off(dev);
7035         }
7036 }
7037 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7038
7039 #ifdef CONFIG_SYSFS
7040 static int netif_alloc_rx_queues(struct net_device *dev)
7041 {
7042         unsigned int i, count = dev->num_rx_queues;
7043         struct netdev_rx_queue *rx;
7044         size_t sz = count * sizeof(*rx);
7045
7046         BUG_ON(count < 1);
7047
7048         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7049         if (!rx) {
7050                 rx = vzalloc(sz);
7051                 if (!rx)
7052                         return -ENOMEM;
7053         }
7054         dev->_rx = rx;
7055
7056         for (i = 0; i < count; i++)
7057                 rx[i].dev = dev;
7058         return 0;
7059 }
7060 #endif
7061
7062 static void netdev_init_one_queue(struct net_device *dev,
7063                                   struct netdev_queue *queue, void *_unused)
7064 {
7065         /* Initialize queue lock */
7066         spin_lock_init(&queue->_xmit_lock);
7067         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7068         queue->xmit_lock_owner = -1;
7069         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7070         queue->dev = dev;
7071 #ifdef CONFIG_BQL
7072         dql_init(&queue->dql, HZ);
7073 #endif
7074 }
7075
7076 static void netif_free_tx_queues(struct net_device *dev)
7077 {
7078         kvfree(dev->_tx);
7079 }
7080
7081 static int netif_alloc_netdev_queues(struct net_device *dev)
7082 {
7083         unsigned int count = dev->num_tx_queues;
7084         struct netdev_queue *tx;
7085         size_t sz = count * sizeof(*tx);
7086
7087         if (count < 1 || count > 0xffff)
7088                 return -EINVAL;
7089
7090         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7091         if (!tx) {
7092                 tx = vzalloc(sz);
7093                 if (!tx)
7094                         return -ENOMEM;
7095         }
7096         dev->_tx = tx;
7097
7098         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7099         spin_lock_init(&dev->tx_global_lock);
7100
7101         return 0;
7102 }
7103
7104 void netif_tx_stop_all_queues(struct net_device *dev)
7105 {
7106         unsigned int i;
7107
7108         for (i = 0; i < dev->num_tx_queues; i++) {
7109                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7110                 netif_tx_stop_queue(txq);
7111         }
7112 }
7113 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7114
7115 /**
7116  *      register_netdevice      - register a network device
7117  *      @dev: device to register
7118  *
7119  *      Take a completed network device structure and add it to the kernel
7120  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7121  *      chain. 0 is returned on success. A negative errno code is returned
7122  *      on a failure to set up the device, or if the name is a duplicate.
7123  *
7124  *      Callers must hold the rtnl semaphore. You may want
7125  *      register_netdev() instead of this.
7126  *
7127  *      BUGS:
7128  *      The locking appears insufficient to guarantee two parallel registers
7129  *      will not get the same name.
7130  */
7131
7132 int register_netdevice(struct net_device *dev)
7133 {
7134         int ret;
7135         struct net *net = dev_net(dev);
7136
7137         BUG_ON(dev_boot_phase);
7138         ASSERT_RTNL();
7139
7140         might_sleep();
7141
7142         /* When net_device's are persistent, this will be fatal. */
7143         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7144         BUG_ON(!net);
7145
7146         spin_lock_init(&dev->addr_list_lock);
7147         netdev_set_addr_lockdep_class(dev);
7148
7149         ret = dev_get_valid_name(net, dev, dev->name);
7150         if (ret < 0)
7151                 goto out;
7152
7153         /* Init, if this function is available */
7154         if (dev->netdev_ops->ndo_init) {
7155                 ret = dev->netdev_ops->ndo_init(dev);
7156                 if (ret) {
7157                         if (ret > 0)
7158                                 ret = -EIO;
7159                         goto out;
7160                 }
7161         }
7162
7163         if (((dev->hw_features | dev->features) &
7164              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7165             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7166              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7167                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7168                 ret = -EINVAL;
7169                 goto err_uninit;
7170         }
7171
7172         ret = -EBUSY;
7173         if (!dev->ifindex)
7174                 dev->ifindex = dev_new_index(net);
7175         else if (__dev_get_by_index(net, dev->ifindex))
7176                 goto err_uninit;
7177
7178         /* Transfer changeable features to wanted_features and enable
7179          * software offloads (GSO and GRO).
7180          */
7181         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7182         dev->features |= NETIF_F_SOFT_FEATURES;
7183         dev->wanted_features = dev->features & dev->hw_features;
7184
7185         if (!(dev->flags & IFF_LOOPBACK))
7186                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7187
7188         /* If IPv4 TCP segmentation offload is supported we should also
7189          * allow the device to enable segmenting the frame with the option
7190          * of ignoring a static IP ID value.  This doesn't enable the
7191          * feature itself but allows the user to enable it later.
7192          */
7193         if (dev->hw_features & NETIF_F_TSO)
7194                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7195         if (dev->vlan_features & NETIF_F_TSO)
7196                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7197         if (dev->mpls_features & NETIF_F_TSO)
7198                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7199         if (dev->hw_enc_features & NETIF_F_TSO)
7200                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7201
7202         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7203          */
7204         dev->vlan_features |= NETIF_F_HIGHDMA;
7205
7206         /* Make NETIF_F_SG inheritable to tunnel devices.
7207          */
7208         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7209
7210         /* Make NETIF_F_SG inheritable to MPLS.
7211          */
7212         dev->mpls_features |= NETIF_F_SG;
7213
7214         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7215         ret = notifier_to_errno(ret);
7216         if (ret)
7217                 goto err_uninit;
7218
7219         ret = netdev_register_kobject(dev);
7220         if (ret)
7221                 goto err_uninit;
7222         dev->reg_state = NETREG_REGISTERED;
7223
7224         __netdev_update_features(dev);
7225
7226         /*
7227          *      Default initial state at registry is that the
7228          *      device is present.
7229          */
7230
7231         set_bit(__LINK_STATE_PRESENT, &dev->state);
7232
7233         linkwatch_init_dev(dev);
7234
7235         dev_init_scheduler(dev);
7236         dev_hold(dev);
7237         list_netdevice(dev);
7238         add_device_randomness(dev->dev_addr, dev->addr_len);
7239
7240         /* If the device has permanent device address, driver should
7241          * set dev_addr and also addr_assign_type should be set to
7242          * NET_ADDR_PERM (default value).
7243          */
7244         if (dev->addr_assign_type == NET_ADDR_PERM)
7245                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7246
7247         /* Notify protocols, that a new device appeared. */
7248         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7249         ret = notifier_to_errno(ret);
7250         if (ret) {
7251                 rollback_registered(dev);
7252                 dev->reg_state = NETREG_UNREGISTERED;
7253         }
7254         /*
7255          *      Prevent userspace races by waiting until the network
7256          *      device is fully setup before sending notifications.
7257          */
7258         if (!dev->rtnl_link_ops ||
7259             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7260                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7261
7262 out:
7263         return ret;
7264
7265 err_uninit:
7266         if (dev->netdev_ops->ndo_uninit)
7267                 dev->netdev_ops->ndo_uninit(dev);
7268         goto out;
7269 }
7270 EXPORT_SYMBOL(register_netdevice);
7271
7272 /**
7273  *      init_dummy_netdev       - init a dummy network device for NAPI
7274  *      @dev: device to init
7275  *
7276  *      This takes a network device structure and initialize the minimum
7277  *      amount of fields so it can be used to schedule NAPI polls without
7278  *      registering a full blown interface. This is to be used by drivers
7279  *      that need to tie several hardware interfaces to a single NAPI
7280  *      poll scheduler due to HW limitations.
7281  */
7282 int init_dummy_netdev(struct net_device *dev)
7283 {
7284         /* Clear everything. Note we don't initialize spinlocks
7285          * are they aren't supposed to be taken by any of the
7286          * NAPI code and this dummy netdev is supposed to be
7287          * only ever used for NAPI polls
7288          */
7289         memset(dev, 0, sizeof(struct net_device));
7290
7291         /* make sure we BUG if trying to hit standard
7292          * register/unregister code path
7293          */
7294         dev->reg_state = NETREG_DUMMY;
7295
7296         /* NAPI wants this */
7297         INIT_LIST_HEAD(&dev->napi_list);
7298
7299         /* a dummy interface is started by default */
7300         set_bit(__LINK_STATE_PRESENT, &dev->state);
7301         set_bit(__LINK_STATE_START, &dev->state);
7302
7303         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7304          * because users of this 'device' dont need to change
7305          * its refcount.
7306          */
7307
7308         return 0;
7309 }
7310 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7311
7312
7313 /**
7314  *      register_netdev - register a network device
7315  *      @dev: device to register
7316  *
7317  *      Take a completed network device structure and add it to the kernel
7318  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7319  *      chain. 0 is returned on success. A negative errno code is returned
7320  *      on a failure to set up the device, or if the name is a duplicate.
7321  *
7322  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7323  *      and expands the device name if you passed a format string to
7324  *      alloc_netdev.
7325  */
7326 int register_netdev(struct net_device *dev)
7327 {
7328         int err;
7329
7330         rtnl_lock();
7331         err = register_netdevice(dev);
7332         rtnl_unlock();
7333         return err;
7334 }
7335 EXPORT_SYMBOL(register_netdev);
7336
7337 int netdev_refcnt_read(const struct net_device *dev)
7338 {
7339         int i, refcnt = 0;
7340
7341         for_each_possible_cpu(i)
7342                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7343         return refcnt;
7344 }
7345 EXPORT_SYMBOL(netdev_refcnt_read);
7346
7347 /**
7348  * netdev_wait_allrefs - wait until all references are gone.
7349  * @dev: target net_device
7350  *
7351  * This is called when unregistering network devices.
7352  *
7353  * Any protocol or device that holds a reference should register
7354  * for netdevice notification, and cleanup and put back the
7355  * reference if they receive an UNREGISTER event.
7356  * We can get stuck here if buggy protocols don't correctly
7357  * call dev_put.
7358  */
7359 static void netdev_wait_allrefs(struct net_device *dev)
7360 {
7361         unsigned long rebroadcast_time, warning_time;
7362         int refcnt;
7363
7364         linkwatch_forget_dev(dev);
7365
7366         rebroadcast_time = warning_time = jiffies;
7367         refcnt = netdev_refcnt_read(dev);
7368
7369         while (refcnt != 0) {
7370                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7371                         rtnl_lock();
7372
7373                         /* Rebroadcast unregister notification */
7374                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7375
7376                         __rtnl_unlock();
7377                         rcu_barrier();
7378                         rtnl_lock();
7379
7380                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7381                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7382                                      &dev->state)) {
7383                                 /* We must not have linkwatch events
7384                                  * pending on unregister. If this
7385                                  * happens, we simply run the queue
7386                                  * unscheduled, resulting in a noop
7387                                  * for this device.
7388                                  */
7389                                 linkwatch_run_queue();
7390                         }
7391
7392                         __rtnl_unlock();
7393
7394                         rebroadcast_time = jiffies;
7395                 }
7396
7397                 msleep(250);
7398
7399                 refcnt = netdev_refcnt_read(dev);
7400
7401                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7402                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7403                                  dev->name, refcnt);
7404                         warning_time = jiffies;
7405                 }
7406         }
7407 }
7408
7409 /* The sequence is:
7410  *
7411  *      rtnl_lock();
7412  *      ...
7413  *      register_netdevice(x1);
7414  *      register_netdevice(x2);
7415  *      ...
7416  *      unregister_netdevice(y1);
7417  *      unregister_netdevice(y2);
7418  *      ...
7419  *      rtnl_unlock();
7420  *      free_netdev(y1);
7421  *      free_netdev(y2);
7422  *
7423  * We are invoked by rtnl_unlock().
7424  * This allows us to deal with problems:
7425  * 1) We can delete sysfs objects which invoke hotplug
7426  *    without deadlocking with linkwatch via keventd.
7427  * 2) Since we run with the RTNL semaphore not held, we can sleep
7428  *    safely in order to wait for the netdev refcnt to drop to zero.
7429  *
7430  * We must not return until all unregister events added during
7431  * the interval the lock was held have been completed.
7432  */
7433 void netdev_run_todo(void)
7434 {
7435         struct list_head list;
7436
7437         /* Snapshot list, allow later requests */
7438         list_replace_init(&net_todo_list, &list);
7439
7440         __rtnl_unlock();
7441
7442
7443         /* Wait for rcu callbacks to finish before next phase */
7444         if (!list_empty(&list))
7445                 rcu_barrier();
7446
7447         while (!list_empty(&list)) {
7448                 struct net_device *dev
7449                         = list_first_entry(&list, struct net_device, todo_list);
7450                 list_del(&dev->todo_list);
7451
7452                 rtnl_lock();
7453                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7454                 __rtnl_unlock();
7455
7456                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7457                         pr_err("network todo '%s' but state %d\n",
7458                                dev->name, dev->reg_state);
7459                         dump_stack();
7460                         continue;
7461                 }
7462
7463                 dev->reg_state = NETREG_UNREGISTERED;
7464
7465                 netdev_wait_allrefs(dev);
7466
7467                 /* paranoia */
7468                 BUG_ON(netdev_refcnt_read(dev));
7469                 BUG_ON(!list_empty(&dev->ptype_all));
7470                 BUG_ON(!list_empty(&dev->ptype_specific));
7471                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7472                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7473                 WARN_ON(dev->dn_ptr);
7474
7475                 if (dev->destructor)
7476                         dev->destructor(dev);
7477
7478                 /* Report a network device has been unregistered */
7479                 rtnl_lock();
7480                 dev_net(dev)->dev_unreg_count--;
7481                 __rtnl_unlock();
7482                 wake_up(&netdev_unregistering_wq);
7483
7484                 /* Free network device */
7485                 kobject_put(&dev->dev.kobj);
7486         }
7487 }
7488
7489 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7490  * all the same fields in the same order as net_device_stats, with only
7491  * the type differing, but rtnl_link_stats64 may have additional fields
7492  * at the end for newer counters.
7493  */
7494 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7495                              const struct net_device_stats *netdev_stats)
7496 {
7497 #if BITS_PER_LONG == 64
7498         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7499         memcpy(stats64, netdev_stats, sizeof(*stats64));
7500         /* zero out counters that only exist in rtnl_link_stats64 */
7501         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7502                sizeof(*stats64) - sizeof(*netdev_stats));
7503 #else
7504         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7505         const unsigned long *src = (const unsigned long *)netdev_stats;
7506         u64 *dst = (u64 *)stats64;
7507
7508         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7509         for (i = 0; i < n; i++)
7510                 dst[i] = src[i];
7511         /* zero out counters that only exist in rtnl_link_stats64 */
7512         memset((char *)stats64 + n * sizeof(u64), 0,
7513                sizeof(*stats64) - n * sizeof(u64));
7514 #endif
7515 }
7516 EXPORT_SYMBOL(netdev_stats_to_stats64);
7517
7518 /**
7519  *      dev_get_stats   - get network device statistics
7520  *      @dev: device to get statistics from
7521  *      @storage: place to store stats
7522  *
7523  *      Get network statistics from device. Return @storage.
7524  *      The device driver may provide its own method by setting
7525  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7526  *      otherwise the internal statistics structure is used.
7527  */
7528 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7529                                         struct rtnl_link_stats64 *storage)
7530 {
7531         const struct net_device_ops *ops = dev->netdev_ops;
7532
7533         if (ops->ndo_get_stats64) {
7534                 memset(storage, 0, sizeof(*storage));
7535                 ops->ndo_get_stats64(dev, storage);
7536         } else if (ops->ndo_get_stats) {
7537                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7538         } else {
7539                 netdev_stats_to_stats64(storage, &dev->stats);
7540         }
7541         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7542         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7543         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7544         return storage;
7545 }
7546 EXPORT_SYMBOL(dev_get_stats);
7547
7548 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7549 {
7550         struct netdev_queue *queue = dev_ingress_queue(dev);
7551
7552 #ifdef CONFIG_NET_CLS_ACT
7553         if (queue)
7554                 return queue;
7555         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7556         if (!queue)
7557                 return NULL;
7558         netdev_init_one_queue(dev, queue, NULL);
7559         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7560         queue->qdisc_sleeping = &noop_qdisc;
7561         rcu_assign_pointer(dev->ingress_queue, queue);
7562 #endif
7563         return queue;
7564 }
7565
7566 static const struct ethtool_ops default_ethtool_ops;
7567
7568 void netdev_set_default_ethtool_ops(struct net_device *dev,
7569                                     const struct ethtool_ops *ops)
7570 {
7571         if (dev->ethtool_ops == &default_ethtool_ops)
7572                 dev->ethtool_ops = ops;
7573 }
7574 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7575
7576 void netdev_freemem(struct net_device *dev)
7577 {
7578         char *addr = (char *)dev - dev->padded;
7579
7580         kvfree(addr);
7581 }
7582
7583 /**
7584  *      alloc_netdev_mqs - allocate network device
7585  *      @sizeof_priv:           size of private data to allocate space for
7586  *      @name:                  device name format string
7587  *      @name_assign_type:      origin of device name
7588  *      @setup:                 callback to initialize device
7589  *      @txqs:                  the number of TX subqueues to allocate
7590  *      @rxqs:                  the number of RX subqueues to allocate
7591  *
7592  *      Allocates a struct net_device with private data area for driver use
7593  *      and performs basic initialization.  Also allocates subqueue structs
7594  *      for each queue on the device.
7595  */
7596 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7597                 unsigned char name_assign_type,
7598                 void (*setup)(struct net_device *),
7599                 unsigned int txqs, unsigned int rxqs)
7600 {
7601         struct net_device *dev;
7602         size_t alloc_size;
7603         struct net_device *p;
7604
7605         BUG_ON(strlen(name) >= sizeof(dev->name));
7606
7607         if (txqs < 1) {
7608                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7609                 return NULL;
7610         }
7611
7612 #ifdef CONFIG_SYSFS
7613         if (rxqs < 1) {
7614                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7615                 return NULL;
7616         }
7617 #endif
7618
7619         alloc_size = sizeof(struct net_device);
7620         if (sizeof_priv) {
7621                 /* ensure 32-byte alignment of private area */
7622                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7623                 alloc_size += sizeof_priv;
7624         }
7625         /* ensure 32-byte alignment of whole construct */
7626         alloc_size += NETDEV_ALIGN - 1;
7627
7628         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7629         if (!p)
7630                 p = vzalloc(alloc_size);
7631         if (!p)
7632                 return NULL;
7633
7634         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7635         dev->padded = (char *)dev - (char *)p;
7636
7637         dev->pcpu_refcnt = alloc_percpu(int);
7638         if (!dev->pcpu_refcnt)
7639                 goto free_dev;
7640
7641         if (dev_addr_init(dev))
7642                 goto free_pcpu;
7643
7644         dev_mc_init(dev);
7645         dev_uc_init(dev);
7646
7647         dev_net_set(dev, &init_net);
7648
7649         dev->gso_max_size = GSO_MAX_SIZE;
7650         dev->gso_max_segs = GSO_MAX_SEGS;
7651
7652         INIT_LIST_HEAD(&dev->napi_list);
7653         INIT_LIST_HEAD(&dev->unreg_list);
7654         INIT_LIST_HEAD(&dev->close_list);
7655         INIT_LIST_HEAD(&dev->link_watch_list);
7656         INIT_LIST_HEAD(&dev->adj_list.upper);
7657         INIT_LIST_HEAD(&dev->adj_list.lower);
7658         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7659         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7660         INIT_LIST_HEAD(&dev->ptype_all);
7661         INIT_LIST_HEAD(&dev->ptype_specific);
7662 #ifdef CONFIG_NET_SCHED
7663         hash_init(dev->qdisc_hash);
7664 #endif
7665         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7666         setup(dev);
7667
7668         if (!dev->tx_queue_len) {
7669                 dev->priv_flags |= IFF_NO_QUEUE;
7670                 dev->tx_queue_len = 1;
7671         }
7672
7673         dev->num_tx_queues = txqs;
7674         dev->real_num_tx_queues = txqs;
7675         if (netif_alloc_netdev_queues(dev))
7676                 goto free_all;
7677
7678 #ifdef CONFIG_SYSFS
7679         dev->num_rx_queues = rxqs;
7680         dev->real_num_rx_queues = rxqs;
7681         if (netif_alloc_rx_queues(dev))
7682                 goto free_all;
7683 #endif
7684
7685         strcpy(dev->name, name);
7686         dev->name_assign_type = name_assign_type;
7687         dev->group = INIT_NETDEV_GROUP;
7688         if (!dev->ethtool_ops)
7689                 dev->ethtool_ops = &default_ethtool_ops;
7690
7691         nf_hook_ingress_init(dev);
7692
7693         return dev;
7694
7695 free_all:
7696         free_netdev(dev);
7697         return NULL;
7698
7699 free_pcpu:
7700         free_percpu(dev->pcpu_refcnt);
7701 free_dev:
7702         netdev_freemem(dev);
7703         return NULL;
7704 }
7705 EXPORT_SYMBOL(alloc_netdev_mqs);
7706
7707 /**
7708  *      free_netdev - free network device
7709  *      @dev: device
7710  *
7711  *      This function does the last stage of destroying an allocated device
7712  *      interface. The reference to the device object is released.
7713  *      If this is the last reference then it will be freed.
7714  *      Must be called in process context.
7715  */
7716 void free_netdev(struct net_device *dev)
7717 {
7718         struct napi_struct *p, *n;
7719
7720         might_sleep();
7721         netif_free_tx_queues(dev);
7722 #ifdef CONFIG_SYSFS
7723         kvfree(dev->_rx);
7724 #endif
7725
7726         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7727
7728         /* Flush device addresses */
7729         dev_addr_flush(dev);
7730
7731         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7732                 netif_napi_del(p);
7733
7734         free_percpu(dev->pcpu_refcnt);
7735         dev->pcpu_refcnt = NULL;
7736
7737         /*  Compatibility with error handling in drivers */
7738         if (dev->reg_state == NETREG_UNINITIALIZED) {
7739                 netdev_freemem(dev);
7740                 return;
7741         }
7742
7743         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7744         dev->reg_state = NETREG_RELEASED;
7745
7746         /* will free via device release */
7747         put_device(&dev->dev);
7748 }
7749 EXPORT_SYMBOL(free_netdev);
7750
7751 /**
7752  *      synchronize_net -  Synchronize with packet receive processing
7753  *
7754  *      Wait for packets currently being received to be done.
7755  *      Does not block later packets from starting.
7756  */
7757 void synchronize_net(void)
7758 {
7759         might_sleep();
7760         if (rtnl_is_locked())
7761                 synchronize_rcu_expedited();
7762         else
7763                 synchronize_rcu();
7764 }
7765 EXPORT_SYMBOL(synchronize_net);
7766
7767 /**
7768  *      unregister_netdevice_queue - remove device from the kernel
7769  *      @dev: device
7770  *      @head: list
7771  *
7772  *      This function shuts down a device interface and removes it
7773  *      from the kernel tables.
7774  *      If head not NULL, device is queued to be unregistered later.
7775  *
7776  *      Callers must hold the rtnl semaphore.  You may want
7777  *      unregister_netdev() instead of this.
7778  */
7779
7780 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7781 {
7782         ASSERT_RTNL();
7783
7784         if (head) {
7785                 list_move_tail(&dev->unreg_list, head);
7786         } else {
7787                 rollback_registered(dev);
7788                 /* Finish processing unregister after unlock */
7789                 net_set_todo(dev);
7790         }
7791 }
7792 EXPORT_SYMBOL(unregister_netdevice_queue);
7793
7794 /**
7795  *      unregister_netdevice_many - unregister many devices
7796  *      @head: list of devices
7797  *
7798  *  Note: As most callers use a stack allocated list_head,
7799  *  we force a list_del() to make sure stack wont be corrupted later.
7800  */
7801 void unregister_netdevice_many(struct list_head *head)
7802 {
7803         struct net_device *dev;
7804
7805         if (!list_empty(head)) {
7806                 rollback_registered_many(head);
7807                 list_for_each_entry(dev, head, unreg_list)
7808                         net_set_todo(dev);
7809                 list_del(head);
7810         }
7811 }
7812 EXPORT_SYMBOL(unregister_netdevice_many);
7813
7814 /**
7815  *      unregister_netdev - remove device from the kernel
7816  *      @dev: device
7817  *
7818  *      This function shuts down a device interface and removes it
7819  *      from the kernel tables.
7820  *
7821  *      This is just a wrapper for unregister_netdevice that takes
7822  *      the rtnl semaphore.  In general you want to use this and not
7823  *      unregister_netdevice.
7824  */
7825 void unregister_netdev(struct net_device *dev)
7826 {
7827         rtnl_lock();
7828         unregister_netdevice(dev);
7829         rtnl_unlock();
7830 }
7831 EXPORT_SYMBOL(unregister_netdev);
7832
7833 /**
7834  *      dev_change_net_namespace - move device to different nethost namespace
7835  *      @dev: device
7836  *      @net: network namespace
7837  *      @pat: If not NULL name pattern to try if the current device name
7838  *            is already taken in the destination network namespace.
7839  *
7840  *      This function shuts down a device interface and moves it
7841  *      to a new network namespace. On success 0 is returned, on
7842  *      a failure a netagive errno code is returned.
7843  *
7844  *      Callers must hold the rtnl semaphore.
7845  */
7846
7847 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7848 {
7849         int err;
7850
7851         ASSERT_RTNL();
7852
7853         /* Don't allow namespace local devices to be moved. */
7854         err = -EINVAL;
7855         if (dev->features & NETIF_F_NETNS_LOCAL)
7856                 goto out;
7857
7858         /* Ensure the device has been registrered */
7859         if (dev->reg_state != NETREG_REGISTERED)
7860                 goto out;
7861
7862         /* Get out if there is nothing todo */
7863         err = 0;
7864         if (net_eq(dev_net(dev), net))
7865                 goto out;
7866
7867         /* Pick the destination device name, and ensure
7868          * we can use it in the destination network namespace.
7869          */
7870         err = -EEXIST;
7871         if (__dev_get_by_name(net, dev->name)) {
7872                 /* We get here if we can't use the current device name */
7873                 if (!pat)
7874                         goto out;
7875                 if (dev_get_valid_name(net, dev, pat) < 0)
7876                         goto out;
7877         }
7878
7879         /*
7880          * And now a mini version of register_netdevice unregister_netdevice.
7881          */
7882
7883         /* If device is running close it first. */
7884         dev_close(dev);
7885
7886         /* And unlink it from device chain */
7887         err = -ENODEV;
7888         unlist_netdevice(dev);
7889
7890         synchronize_net();
7891
7892         /* Shutdown queueing discipline. */
7893         dev_shutdown(dev);
7894
7895         /* Notify protocols, that we are about to destroy
7896            this device. They should clean all the things.
7897
7898            Note that dev->reg_state stays at NETREG_REGISTERED.
7899            This is wanted because this way 8021q and macvlan know
7900            the device is just moving and can keep their slaves up.
7901         */
7902         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7903         rcu_barrier();
7904         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7905         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7906
7907         /*
7908          *      Flush the unicast and multicast chains
7909          */
7910         dev_uc_flush(dev);
7911         dev_mc_flush(dev);
7912
7913         /* Send a netdev-removed uevent to the old namespace */
7914         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7915         netdev_adjacent_del_links(dev);
7916
7917         /* Actually switch the network namespace */
7918         dev_net_set(dev, net);
7919
7920         /* If there is an ifindex conflict assign a new one */
7921         if (__dev_get_by_index(net, dev->ifindex))
7922                 dev->ifindex = dev_new_index(net);
7923
7924         /* Send a netdev-add uevent to the new namespace */
7925         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7926         netdev_adjacent_add_links(dev);
7927
7928         /* Fixup kobjects */
7929         err = device_rename(&dev->dev, dev->name);
7930         WARN_ON(err);
7931
7932         /* Add the device back in the hashes */
7933         list_netdevice(dev);
7934
7935         /* Notify protocols, that a new device appeared. */
7936         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7937
7938         /*
7939          *      Prevent userspace races by waiting until the network
7940          *      device is fully setup before sending notifications.
7941          */
7942         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7943
7944         synchronize_net();
7945         err = 0;
7946 out:
7947         return err;
7948 }
7949 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7950
7951 static int dev_cpu_callback(struct notifier_block *nfb,
7952                             unsigned long action,
7953                             void *ocpu)
7954 {
7955         struct sk_buff **list_skb;
7956         struct sk_buff *skb;
7957         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7958         struct softnet_data *sd, *oldsd;
7959
7960         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7961                 return NOTIFY_OK;
7962
7963         local_irq_disable();
7964         cpu = smp_processor_id();
7965         sd = &per_cpu(softnet_data, cpu);
7966         oldsd = &per_cpu(softnet_data, oldcpu);
7967
7968         /* Find end of our completion_queue. */
7969         list_skb = &sd->completion_queue;
7970         while (*list_skb)
7971                 list_skb = &(*list_skb)->next;
7972         /* Append completion queue from offline CPU. */
7973         *list_skb = oldsd->completion_queue;
7974         oldsd->completion_queue = NULL;
7975
7976         /* Append output queue from offline CPU. */
7977         if (oldsd->output_queue) {
7978                 *sd->output_queue_tailp = oldsd->output_queue;
7979                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7980                 oldsd->output_queue = NULL;
7981                 oldsd->output_queue_tailp = &oldsd->output_queue;
7982         }
7983         /* Append NAPI poll list from offline CPU, with one exception :
7984          * process_backlog() must be called by cpu owning percpu backlog.
7985          * We properly handle process_queue & input_pkt_queue later.
7986          */
7987         while (!list_empty(&oldsd->poll_list)) {
7988                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7989                                                             struct napi_struct,
7990                                                             poll_list);
7991
7992                 list_del_init(&napi->poll_list);
7993                 if (napi->poll == process_backlog)
7994                         napi->state = 0;
7995                 else
7996                         ____napi_schedule(sd, napi);
7997         }
7998
7999         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8000         local_irq_enable();
8001
8002         /* Process offline CPU's input_pkt_queue */
8003         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8004                 netif_rx_ni(skb);
8005                 input_queue_head_incr(oldsd);
8006         }
8007         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8008                 netif_rx_ni(skb);
8009                 input_queue_head_incr(oldsd);
8010         }
8011
8012         return NOTIFY_OK;
8013 }
8014
8015
8016 /**
8017  *      netdev_increment_features - increment feature set by one
8018  *      @all: current feature set
8019  *      @one: new feature set
8020  *      @mask: mask feature set
8021  *
8022  *      Computes a new feature set after adding a device with feature set
8023  *      @one to the master device with current feature set @all.  Will not
8024  *      enable anything that is off in @mask. Returns the new feature set.
8025  */
8026 netdev_features_t netdev_increment_features(netdev_features_t all,
8027         netdev_features_t one, netdev_features_t mask)
8028 {
8029         if (mask & NETIF_F_HW_CSUM)
8030                 mask |= NETIF_F_CSUM_MASK;
8031         mask |= NETIF_F_VLAN_CHALLENGED;
8032
8033         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8034         all &= one | ~NETIF_F_ALL_FOR_ALL;
8035
8036         /* If one device supports hw checksumming, set for all. */
8037         if (all & NETIF_F_HW_CSUM)
8038                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8039
8040         return all;
8041 }
8042 EXPORT_SYMBOL(netdev_increment_features);
8043
8044 static struct hlist_head * __net_init netdev_create_hash(void)
8045 {
8046         int i;
8047         struct hlist_head *hash;
8048
8049         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8050         if (hash != NULL)
8051                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8052                         INIT_HLIST_HEAD(&hash[i]);
8053
8054         return hash;
8055 }
8056
8057 /* Initialize per network namespace state */
8058 static int __net_init netdev_init(struct net *net)
8059 {
8060         if (net != &init_net)
8061                 INIT_LIST_HEAD(&net->dev_base_head);
8062
8063         net->dev_name_head = netdev_create_hash();
8064         if (net->dev_name_head == NULL)
8065                 goto err_name;
8066
8067         net->dev_index_head = netdev_create_hash();
8068         if (net->dev_index_head == NULL)
8069                 goto err_idx;
8070
8071         return 0;
8072
8073 err_idx:
8074         kfree(net->dev_name_head);
8075 err_name:
8076         return -ENOMEM;
8077 }
8078
8079 /**
8080  *      netdev_drivername - network driver for the device
8081  *      @dev: network device
8082  *
8083  *      Determine network driver for device.
8084  */
8085 const char *netdev_drivername(const struct net_device *dev)
8086 {
8087         const struct device_driver *driver;
8088         const struct device *parent;
8089         const char *empty = "";
8090
8091         parent = dev->dev.parent;
8092         if (!parent)
8093                 return empty;
8094
8095         driver = parent->driver;
8096         if (driver && driver->name)
8097                 return driver->name;
8098         return empty;
8099 }
8100
8101 static void __netdev_printk(const char *level, const struct net_device *dev,
8102                             struct va_format *vaf)
8103 {
8104         if (dev && dev->dev.parent) {
8105                 dev_printk_emit(level[1] - '0',
8106                                 dev->dev.parent,
8107                                 "%s %s %s%s: %pV",
8108                                 dev_driver_string(dev->dev.parent),
8109                                 dev_name(dev->dev.parent),
8110                                 netdev_name(dev), netdev_reg_state(dev),
8111                                 vaf);
8112         } else if (dev) {
8113                 printk("%s%s%s: %pV",
8114                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8115         } else {
8116                 printk("%s(NULL net_device): %pV", level, vaf);
8117         }
8118 }
8119
8120 void netdev_printk(const char *level, const struct net_device *dev,
8121                    const char *format, ...)
8122 {
8123         struct va_format vaf;
8124         va_list args;
8125
8126         va_start(args, format);
8127
8128         vaf.fmt = format;
8129         vaf.va = &args;
8130
8131         __netdev_printk(level, dev, &vaf);
8132
8133         va_end(args);
8134 }
8135 EXPORT_SYMBOL(netdev_printk);
8136
8137 #define define_netdev_printk_level(func, level)                 \
8138 void func(const struct net_device *dev, const char *fmt, ...)   \
8139 {                                                               \
8140         struct va_format vaf;                                   \
8141         va_list args;                                           \
8142                                                                 \
8143         va_start(args, fmt);                                    \
8144                                                                 \
8145         vaf.fmt = fmt;                                          \
8146         vaf.va = &args;                                         \
8147                                                                 \
8148         __netdev_printk(level, dev, &vaf);                      \
8149                                                                 \
8150         va_end(args);                                           \
8151 }                                                               \
8152 EXPORT_SYMBOL(func);
8153
8154 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8155 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8156 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8157 define_netdev_printk_level(netdev_err, KERN_ERR);
8158 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8159 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8160 define_netdev_printk_level(netdev_info, KERN_INFO);
8161
8162 static void __net_exit netdev_exit(struct net *net)
8163 {
8164         kfree(net->dev_name_head);
8165         kfree(net->dev_index_head);
8166 }
8167
8168 static struct pernet_operations __net_initdata netdev_net_ops = {
8169         .init = netdev_init,
8170         .exit = netdev_exit,
8171 };
8172
8173 static void __net_exit default_device_exit(struct net *net)
8174 {
8175         struct net_device *dev, *aux;
8176         /*
8177          * Push all migratable network devices back to the
8178          * initial network namespace
8179          */
8180         rtnl_lock();
8181         for_each_netdev_safe(net, dev, aux) {
8182                 int err;
8183                 char fb_name[IFNAMSIZ];
8184
8185                 /* Ignore unmoveable devices (i.e. loopback) */
8186                 if (dev->features & NETIF_F_NETNS_LOCAL)
8187                         continue;
8188
8189                 /* Leave virtual devices for the generic cleanup */
8190                 if (dev->rtnl_link_ops)
8191                         continue;
8192
8193                 /* Push remaining network devices to init_net */
8194                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8195                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8196                 if (err) {
8197                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8198                                  __func__, dev->name, err);
8199                         BUG();
8200                 }
8201         }
8202         rtnl_unlock();
8203 }
8204
8205 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8206 {
8207         /* Return with the rtnl_lock held when there are no network
8208          * devices unregistering in any network namespace in net_list.
8209          */
8210         struct net *net;
8211         bool unregistering;
8212         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8213
8214         add_wait_queue(&netdev_unregistering_wq, &wait);
8215         for (;;) {
8216                 unregistering = false;
8217                 rtnl_lock();
8218                 list_for_each_entry(net, net_list, exit_list) {
8219                         if (net->dev_unreg_count > 0) {
8220                                 unregistering = true;
8221                                 break;
8222                         }
8223                 }
8224                 if (!unregistering)
8225                         break;
8226                 __rtnl_unlock();
8227
8228                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8229         }
8230         remove_wait_queue(&netdev_unregistering_wq, &wait);
8231 }
8232
8233 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8234 {
8235         /* At exit all network devices most be removed from a network
8236          * namespace.  Do this in the reverse order of registration.
8237          * Do this across as many network namespaces as possible to
8238          * improve batching efficiency.
8239          */
8240         struct net_device *dev;
8241         struct net *net;
8242         LIST_HEAD(dev_kill_list);
8243
8244         /* To prevent network device cleanup code from dereferencing
8245          * loopback devices or network devices that have been freed
8246          * wait here for all pending unregistrations to complete,
8247          * before unregistring the loopback device and allowing the
8248          * network namespace be freed.
8249          *
8250          * The netdev todo list containing all network devices
8251          * unregistrations that happen in default_device_exit_batch
8252          * will run in the rtnl_unlock() at the end of
8253          * default_device_exit_batch.
8254          */
8255         rtnl_lock_unregistering(net_list);
8256         list_for_each_entry(net, net_list, exit_list) {
8257                 for_each_netdev_reverse(net, dev) {
8258                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8259                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8260                         else
8261                                 unregister_netdevice_queue(dev, &dev_kill_list);
8262                 }
8263         }
8264         unregister_netdevice_many(&dev_kill_list);
8265         rtnl_unlock();
8266 }
8267
8268 static struct pernet_operations __net_initdata default_device_ops = {
8269         .exit = default_device_exit,
8270         .exit_batch = default_device_exit_batch,
8271 };
8272
8273 /*
8274  *      Initialize the DEV module. At boot time this walks the device list and
8275  *      unhooks any devices that fail to initialise (normally hardware not
8276  *      present) and leaves us with a valid list of present and active devices.
8277  *
8278  */
8279
8280 /*
8281  *       This is called single threaded during boot, so no need
8282  *       to take the rtnl semaphore.
8283  */
8284 static int __init net_dev_init(void)
8285 {
8286         int i, rc = -ENOMEM;
8287
8288         BUG_ON(!dev_boot_phase);
8289
8290         if (dev_proc_init())
8291                 goto out;
8292
8293         if (netdev_kobject_init())
8294                 goto out;
8295
8296         INIT_LIST_HEAD(&ptype_all);
8297         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8298                 INIT_LIST_HEAD(&ptype_base[i]);
8299
8300         INIT_LIST_HEAD(&offload_base);
8301
8302         if (register_pernet_subsys(&netdev_net_ops))
8303                 goto out;
8304
8305         /*
8306          *      Initialise the packet receive queues.
8307          */
8308
8309         for_each_possible_cpu(i) {
8310                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8311                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8312
8313                 INIT_WORK(flush, flush_backlog);
8314
8315                 skb_queue_head_init(&sd->input_pkt_queue);
8316                 skb_queue_head_init(&sd->process_queue);
8317                 INIT_LIST_HEAD(&sd->poll_list);
8318                 sd->output_queue_tailp = &sd->output_queue;
8319 #ifdef CONFIG_RPS
8320                 sd->csd.func = rps_trigger_softirq;
8321                 sd->csd.info = sd;
8322                 sd->cpu = i;
8323 #endif
8324
8325                 sd->backlog.poll = process_backlog;
8326                 sd->backlog.weight = weight_p;
8327         }
8328
8329         dev_boot_phase = 0;
8330
8331         /* The loopback device is special if any other network devices
8332          * is present in a network namespace the loopback device must
8333          * be present. Since we now dynamically allocate and free the
8334          * loopback device ensure this invariant is maintained by
8335          * keeping the loopback device as the first device on the
8336          * list of network devices.  Ensuring the loopback devices
8337          * is the first device that appears and the last network device
8338          * that disappears.
8339          */
8340         if (register_pernet_device(&loopback_net_ops))
8341                 goto out;
8342
8343         if (register_pernet_device(&default_device_ops))
8344                 goto out;
8345
8346         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8347         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8348
8349         hotcpu_notifier(dev_cpu_callback, 0);
8350         dst_subsys_init();
8351         rc = 0;
8352 out:
8353         return rc;
8354 }
8355
8356 subsys_initcall(net_dev_init);