Merge branch 'for-6.9/amd-sfh' into for-linus
[sfrench/cifs-2.6.git] / mm / zswap.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a cache that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/rbtree.h>
24 #include <linux/swap.h>
25 #include <linux/crypto.h>
26 #include <linux/scatterlist.h>
27 #include <linux/mempolicy.h>
28 #include <linux/mempool.h>
29 #include <linux/zpool.h>
30 #include <crypto/acompress.h>
31 #include <linux/zswap.h>
32 #include <linux/mm_types.h>
33 #include <linux/page-flags.h>
34 #include <linux/swapops.h>
35 #include <linux/writeback.h>
36 #include <linux/pagemap.h>
37 #include <linux/workqueue.h>
38 #include <linux/list_lru.h>
39
40 #include "swap.h"
41 #include "internal.h"
42
43 /*********************************
44 * statistics
45 **********************************/
46 /* Total bytes used by the compressed storage */
47 u64 zswap_pool_total_size;
48 /* The number of compressed pages currently stored in zswap */
49 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
50 /* The number of same-value filled pages currently stored in zswap */
51 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
52
53 /*
54  * The statistics below are not protected from concurrent access for
55  * performance reasons so they may not be a 100% accurate.  However,
56  * they do provide useful information on roughly how many times a
57  * certain event is occurring.
58 */
59
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Store failed due to compression algorithm failure */
67 static u64 zswap_reject_compress_fail;
68 /* Compressed page was too big for the allocator to (optimally) store */
69 static u64 zswap_reject_compress_poor;
70 /* Store failed because underlying allocator could not get memory */
71 static u64 zswap_reject_alloc_fail;
72 /* Store failed because the entry metadata could not be allocated (rare) */
73 static u64 zswap_reject_kmemcache_fail;
74 /* Duplicate store was encountered (rare) */
75 static u64 zswap_duplicate_entry;
76
77 /* Shrinker work queue */
78 static struct workqueue_struct *shrink_wq;
79 /* Pool limit was hit, we need to calm down */
80 static bool zswap_pool_reached_full;
81
82 /*********************************
83 * tunables
84 **********************************/
85
86 #define ZSWAP_PARAM_UNSET ""
87
88 static int zswap_setup(void);
89
90 /* Enable/disable zswap */
91 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
92 static int zswap_enabled_param_set(const char *,
93                                    const struct kernel_param *);
94 static const struct kernel_param_ops zswap_enabled_param_ops = {
95         .set =          zswap_enabled_param_set,
96         .get =          param_get_bool,
97 };
98 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
99
100 /* Crypto compressor to use */
101 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
102 static int zswap_compressor_param_set(const char *,
103                                       const struct kernel_param *);
104 static const struct kernel_param_ops zswap_compressor_param_ops = {
105         .set =          zswap_compressor_param_set,
106         .get =          param_get_charp,
107         .free =         param_free_charp,
108 };
109 module_param_cb(compressor, &zswap_compressor_param_ops,
110                 &zswap_compressor, 0644);
111
112 /* Compressed storage zpool to use */
113 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
114 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
115 static const struct kernel_param_ops zswap_zpool_param_ops = {
116         .set =          zswap_zpool_param_set,
117         .get =          param_get_charp,
118         .free =         param_free_charp,
119 };
120 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
121
122 /* The maximum percentage of memory that the compressed pool can occupy */
123 static unsigned int zswap_max_pool_percent = 20;
124 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
125
126 /* The threshold for accepting new pages after the max_pool_percent was hit */
127 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
128 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
129                    uint, 0644);
130
131 /*
132  * Enable/disable handling same-value filled pages (enabled by default).
133  * If disabled every page is considered non-same-value filled.
134  */
135 static bool zswap_same_filled_pages_enabled = true;
136 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
137                    bool, 0644);
138
139 /* Enable/disable handling non-same-value filled pages (enabled by default) */
140 static bool zswap_non_same_filled_pages_enabled = true;
141 module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
142                    bool, 0644);
143
144 static bool zswap_exclusive_loads_enabled = IS_ENABLED(
145                 CONFIG_ZSWAP_EXCLUSIVE_LOADS_DEFAULT_ON);
146 module_param_named(exclusive_loads, zswap_exclusive_loads_enabled, bool, 0644);
147
148 /* Number of zpools in zswap_pool (empirically determined for scalability) */
149 #define ZSWAP_NR_ZPOOLS 32
150
151 /* Enable/disable memory pressure-based shrinker. */
152 static bool zswap_shrinker_enabled = IS_ENABLED(
153                 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
154 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
155
156 bool is_zswap_enabled(void)
157 {
158         return zswap_enabled;
159 }
160
161 /*********************************
162 * data structures
163 **********************************/
164
165 struct crypto_acomp_ctx {
166         struct crypto_acomp *acomp;
167         struct acomp_req *req;
168         struct crypto_wait wait;
169         u8 *buffer;
170         struct mutex mutex;
171 };
172
173 /*
174  * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
175  * The only case where lru_lock is not acquired while holding tree.lock is
176  * when a zswap_entry is taken off the lru for writeback, in that case it
177  * needs to be verified that it's still valid in the tree.
178  */
179 struct zswap_pool {
180         struct zpool *zpools[ZSWAP_NR_ZPOOLS];
181         struct crypto_acomp_ctx __percpu *acomp_ctx;
182         struct kref kref;
183         struct list_head list;
184         struct work_struct release_work;
185         struct work_struct shrink_work;
186         struct hlist_node node;
187         char tfm_name[CRYPTO_MAX_ALG_NAME];
188         struct list_lru list_lru;
189         struct mem_cgroup *next_shrink;
190         struct shrinker *shrinker;
191         atomic_t nr_stored;
192 };
193
194 /*
195  * struct zswap_entry
196  *
197  * This structure contains the metadata for tracking a single compressed
198  * page within zswap.
199  *
200  * rbnode - links the entry into red-black tree for the appropriate swap type
201  * swpentry - associated swap entry, the offset indexes into the red-black tree
202  * refcount - the number of outstanding reference to the entry. This is needed
203  *            to protect against premature freeing of the entry by code
204  *            concurrent calls to load, invalidate, and writeback.  The lock
205  *            for the zswap_tree structure that contains the entry must
206  *            be held while changing the refcount.  Since the lock must
207  *            be held, there is no reason to also make refcount atomic.
208  * length - the length in bytes of the compressed page data.  Needed during
209  *          decompression. For a same value filled page length is 0, and both
210  *          pool and lru are invalid and must be ignored.
211  * pool - the zswap_pool the entry's data is in
212  * handle - zpool allocation handle that stores the compressed page data
213  * value - value of the same-value filled pages which have same content
214  * objcg - the obj_cgroup that the compressed memory is charged to
215  * lru - handle to the pool's lru used to evict pages.
216  */
217 struct zswap_entry {
218         struct rb_node rbnode;
219         swp_entry_t swpentry;
220         int refcount;
221         unsigned int length;
222         struct zswap_pool *pool;
223         union {
224                 unsigned long handle;
225                 unsigned long value;
226         };
227         struct obj_cgroup *objcg;
228         struct list_head lru;
229 };
230
231 /*
232  * The tree lock in the zswap_tree struct protects a few things:
233  * - the rbtree
234  * - the refcount field of each entry in the tree
235  */
236 struct zswap_tree {
237         struct rb_root rbroot;
238         spinlock_t lock;
239 };
240
241 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
242
243 /* RCU-protected iteration */
244 static LIST_HEAD(zswap_pools);
245 /* protects zswap_pools list modification */
246 static DEFINE_SPINLOCK(zswap_pools_lock);
247 /* pool counter to provide unique names to zpool */
248 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
249
250 enum zswap_init_type {
251         ZSWAP_UNINIT,
252         ZSWAP_INIT_SUCCEED,
253         ZSWAP_INIT_FAILED
254 };
255
256 static enum zswap_init_type zswap_init_state;
257
258 /* used to ensure the integrity of initialization */
259 static DEFINE_MUTEX(zswap_init_lock);
260
261 /* init completed, but couldn't create the initial pool */
262 static bool zswap_has_pool;
263
264 /*********************************
265 * helpers and fwd declarations
266 **********************************/
267
268 #define zswap_pool_debug(msg, p)                                \
269         pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,         \
270                  zpool_get_type((p)->zpools[0]))
271
272 static int zswap_writeback_entry(struct zswap_entry *entry,
273                                  struct zswap_tree *tree);
274 static int zswap_pool_get(struct zswap_pool *pool);
275 static void zswap_pool_put(struct zswap_pool *pool);
276
277 static bool zswap_is_full(void)
278 {
279         return totalram_pages() * zswap_max_pool_percent / 100 <
280                         DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
281 }
282
283 static bool zswap_can_accept(void)
284 {
285         return totalram_pages() * zswap_accept_thr_percent / 100 *
286                                 zswap_max_pool_percent / 100 >
287                         DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
288 }
289
290 static u64 get_zswap_pool_size(struct zswap_pool *pool)
291 {
292         u64 pool_size = 0;
293         int i;
294
295         for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
296                 pool_size += zpool_get_total_size(pool->zpools[i]);
297
298         return pool_size;
299 }
300
301 static void zswap_update_total_size(void)
302 {
303         struct zswap_pool *pool;
304         u64 total = 0;
305
306         rcu_read_lock();
307
308         list_for_each_entry_rcu(pool, &zswap_pools, list)
309                 total += get_zswap_pool_size(pool);
310
311         rcu_read_unlock();
312
313         zswap_pool_total_size = total;
314 }
315
316 /* should be called under RCU */
317 #ifdef CONFIG_MEMCG
318 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
319 {
320         return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
321 }
322 #else
323 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
324 {
325         return NULL;
326 }
327 #endif
328
329 static inline int entry_to_nid(struct zswap_entry *entry)
330 {
331         return page_to_nid(virt_to_page(entry));
332 }
333
334 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
335 {
336         struct zswap_pool *pool;
337
338         /* lock out zswap pools list modification */
339         spin_lock(&zswap_pools_lock);
340         list_for_each_entry(pool, &zswap_pools, list) {
341                 if (pool->next_shrink == memcg)
342                         pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
343         }
344         spin_unlock(&zswap_pools_lock);
345 }
346
347 /*********************************
348 * zswap entry functions
349 **********************************/
350 static struct kmem_cache *zswap_entry_cache;
351
352 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
353 {
354         struct zswap_entry *entry;
355         entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
356         if (!entry)
357                 return NULL;
358         entry->refcount = 1;
359         RB_CLEAR_NODE(&entry->rbnode);
360         return entry;
361 }
362
363 static void zswap_entry_cache_free(struct zswap_entry *entry)
364 {
365         kmem_cache_free(zswap_entry_cache, entry);
366 }
367
368 /*********************************
369 * zswap lruvec functions
370 **********************************/
371 void zswap_lruvec_state_init(struct lruvec *lruvec)
372 {
373         atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0);
374 }
375
376 void zswap_folio_swapin(struct folio *folio)
377 {
378         struct lruvec *lruvec;
379
380         if (folio) {
381                 lruvec = folio_lruvec(folio);
382                 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
383         }
384 }
385
386 /*********************************
387 * lru functions
388 **********************************/
389 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
390 {
391         atomic_long_t *nr_zswap_protected;
392         unsigned long lru_size, old, new;
393         int nid = entry_to_nid(entry);
394         struct mem_cgroup *memcg;
395         struct lruvec *lruvec;
396
397         /*
398          * Note that it is safe to use rcu_read_lock() here, even in the face of
399          * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
400          * used in list_lru lookup, only two scenarios are possible:
401          *
402          * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
403          *    new entry will be reparented to memcg's parent's list_lru.
404          * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
405          *    new entry will be added directly to memcg's parent's list_lru.
406          *
407          * Similar reasoning holds for list_lru_del() and list_lru_putback().
408          */
409         rcu_read_lock();
410         memcg = mem_cgroup_from_entry(entry);
411         /* will always succeed */
412         list_lru_add(list_lru, &entry->lru, nid, memcg);
413
414         /* Update the protection area */
415         lru_size = list_lru_count_one(list_lru, nid, memcg);
416         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
417         nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected;
418         old = atomic_long_inc_return(nr_zswap_protected);
419         /*
420          * Decay to avoid overflow and adapt to changing workloads.
421          * This is based on LRU reclaim cost decaying heuristics.
422          */
423         do {
424                 new = old > lru_size / 4 ? old / 2 : old;
425         } while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new));
426         rcu_read_unlock();
427 }
428
429 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
430 {
431         int nid = entry_to_nid(entry);
432         struct mem_cgroup *memcg;
433
434         rcu_read_lock();
435         memcg = mem_cgroup_from_entry(entry);
436         /* will always succeed */
437         list_lru_del(list_lru, &entry->lru, nid, memcg);
438         rcu_read_unlock();
439 }
440
441 static void zswap_lru_putback(struct list_lru *list_lru,
442                 struct zswap_entry *entry)
443 {
444         int nid = entry_to_nid(entry);
445         spinlock_t *lock = &list_lru->node[nid].lock;
446         struct mem_cgroup *memcg;
447         struct lruvec *lruvec;
448
449         rcu_read_lock();
450         memcg = mem_cgroup_from_entry(entry);
451         spin_lock(lock);
452         /* we cannot use list_lru_add here, because it increments node's lru count */
453         list_lru_putback(list_lru, &entry->lru, nid, memcg);
454         spin_unlock(lock);
455
456         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(entry_to_nid(entry)));
457         /* increment the protection area to account for the LRU rotation. */
458         atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
459         rcu_read_unlock();
460 }
461
462 /*********************************
463 * rbtree functions
464 **********************************/
465 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
466 {
467         struct rb_node *node = root->rb_node;
468         struct zswap_entry *entry;
469         pgoff_t entry_offset;
470
471         while (node) {
472                 entry = rb_entry(node, struct zswap_entry, rbnode);
473                 entry_offset = swp_offset(entry->swpentry);
474                 if (entry_offset > offset)
475                         node = node->rb_left;
476                 else if (entry_offset < offset)
477                         node = node->rb_right;
478                 else
479                         return entry;
480         }
481         return NULL;
482 }
483
484 /*
485  * In the case that a entry with the same offset is found, a pointer to
486  * the existing entry is stored in dupentry and the function returns -EEXIST
487  */
488 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
489                         struct zswap_entry **dupentry)
490 {
491         struct rb_node **link = &root->rb_node, *parent = NULL;
492         struct zswap_entry *myentry;
493         pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry);
494
495         while (*link) {
496                 parent = *link;
497                 myentry = rb_entry(parent, struct zswap_entry, rbnode);
498                 myentry_offset = swp_offset(myentry->swpentry);
499                 if (myentry_offset > entry_offset)
500                         link = &(*link)->rb_left;
501                 else if (myentry_offset < entry_offset)
502                         link = &(*link)->rb_right;
503                 else {
504                         *dupentry = myentry;
505                         return -EEXIST;
506                 }
507         }
508         rb_link_node(&entry->rbnode, parent, link);
509         rb_insert_color(&entry->rbnode, root);
510         return 0;
511 }
512
513 static bool zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
514 {
515         if (!RB_EMPTY_NODE(&entry->rbnode)) {
516                 rb_erase(&entry->rbnode, root);
517                 RB_CLEAR_NODE(&entry->rbnode);
518                 return true;
519         }
520         return false;
521 }
522
523 static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
524 {
525         int i = 0;
526
527         if (ZSWAP_NR_ZPOOLS > 1)
528                 i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS));
529
530         return entry->pool->zpools[i];
531 }
532
533 /*
534  * Carries out the common pattern of freeing and entry's zpool allocation,
535  * freeing the entry itself, and decrementing the number of stored pages.
536  */
537 static void zswap_free_entry(struct zswap_entry *entry)
538 {
539         if (!entry->length)
540                 atomic_dec(&zswap_same_filled_pages);
541         else {
542                 zswap_lru_del(&entry->pool->list_lru, entry);
543                 zpool_free(zswap_find_zpool(entry), entry->handle);
544                 atomic_dec(&entry->pool->nr_stored);
545                 zswap_pool_put(entry->pool);
546         }
547         if (entry->objcg) {
548                 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
549                 obj_cgroup_put(entry->objcg);
550         }
551         zswap_entry_cache_free(entry);
552         atomic_dec(&zswap_stored_pages);
553         zswap_update_total_size();
554 }
555
556 /* caller must hold the tree lock */
557 static void zswap_entry_get(struct zswap_entry *entry)
558 {
559         entry->refcount++;
560 }
561
562 /* caller must hold the tree lock
563 * remove from the tree and free it, if nobody reference the entry
564 */
565 static void zswap_entry_put(struct zswap_tree *tree,
566                         struct zswap_entry *entry)
567 {
568         int refcount = --entry->refcount;
569
570         WARN_ON_ONCE(refcount < 0);
571         if (refcount == 0) {
572                 WARN_ON_ONCE(!RB_EMPTY_NODE(&entry->rbnode));
573                 zswap_free_entry(entry);
574         }
575 }
576
577 /* caller must hold the tree lock */
578 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
579                                 pgoff_t offset)
580 {
581         struct zswap_entry *entry;
582
583         entry = zswap_rb_search(root, offset);
584         if (entry)
585                 zswap_entry_get(entry);
586
587         return entry;
588 }
589
590 /*********************************
591 * shrinker functions
592 **********************************/
593 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
594                                        spinlock_t *lock, void *arg);
595
596 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
597                 struct shrink_control *sc)
598 {
599         struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
600         unsigned long shrink_ret, nr_protected, lru_size;
601         struct zswap_pool *pool = shrinker->private_data;
602         bool encountered_page_in_swapcache = false;
603
604         if (!zswap_shrinker_enabled ||
605                         !mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
606                 sc->nr_scanned = 0;
607                 return SHRINK_STOP;
608         }
609
610         nr_protected =
611                 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
612         lru_size = list_lru_shrink_count(&pool->list_lru, sc);
613
614         /*
615          * Abort if we are shrinking into the protected region.
616          *
617          * This short-circuiting is necessary because if we have too many multiple
618          * concurrent reclaimers getting the freeable zswap object counts at the
619          * same time (before any of them made reasonable progress), the total
620          * number of reclaimed objects might be more than the number of unprotected
621          * objects (i.e the reclaimers will reclaim into the protected area of the
622          * zswap LRU).
623          */
624         if (nr_protected >= lru_size - sc->nr_to_scan) {
625                 sc->nr_scanned = 0;
626                 return SHRINK_STOP;
627         }
628
629         shrink_ret = list_lru_shrink_walk(&pool->list_lru, sc, &shrink_memcg_cb,
630                 &encountered_page_in_swapcache);
631
632         if (encountered_page_in_swapcache)
633                 return SHRINK_STOP;
634
635         return shrink_ret ? shrink_ret : SHRINK_STOP;
636 }
637
638 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
639                 struct shrink_control *sc)
640 {
641         struct zswap_pool *pool = shrinker->private_data;
642         struct mem_cgroup *memcg = sc->memcg;
643         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
644         unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
645
646         if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
647                 return 0;
648
649 #ifdef CONFIG_MEMCG_KMEM
650         mem_cgroup_flush_stats(memcg);
651         nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
652         nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
653 #else
654         /* use pool stats instead of memcg stats */
655         nr_backing = get_zswap_pool_size(pool) >> PAGE_SHIFT;
656         nr_stored = atomic_read(&pool->nr_stored);
657 #endif
658
659         if (!nr_stored)
660                 return 0;
661
662         nr_protected =
663                 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
664         nr_freeable = list_lru_shrink_count(&pool->list_lru, sc);
665         /*
666          * Subtract the lru size by an estimate of the number of pages
667          * that should be protected.
668          */
669         nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0;
670
671         /*
672          * Scale the number of freeable pages by the memory saving factor.
673          * This ensures that the better zswap compresses memory, the fewer
674          * pages we will evict to swap (as it will otherwise incur IO for
675          * relatively small memory saving).
676          */
677         return mult_frac(nr_freeable, nr_backing, nr_stored);
678 }
679
680 static void zswap_alloc_shrinker(struct zswap_pool *pool)
681 {
682         pool->shrinker =
683                 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
684         if (!pool->shrinker)
685                 return;
686
687         pool->shrinker->private_data = pool;
688         pool->shrinker->scan_objects = zswap_shrinker_scan;
689         pool->shrinker->count_objects = zswap_shrinker_count;
690         pool->shrinker->batch = 0;
691         pool->shrinker->seeks = DEFAULT_SEEKS;
692 }
693
694 /*********************************
695 * per-cpu code
696 **********************************/
697 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
698 {
699         struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
700         struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
701         struct crypto_acomp *acomp;
702         struct acomp_req *req;
703         int ret;
704
705         mutex_init(&acomp_ctx->mutex);
706
707         acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
708         if (!acomp_ctx->buffer)
709                 return -ENOMEM;
710
711         acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
712         if (IS_ERR(acomp)) {
713                 pr_err("could not alloc crypto acomp %s : %ld\n",
714                                 pool->tfm_name, PTR_ERR(acomp));
715                 ret = PTR_ERR(acomp);
716                 goto acomp_fail;
717         }
718         acomp_ctx->acomp = acomp;
719
720         req = acomp_request_alloc(acomp_ctx->acomp);
721         if (!req) {
722                 pr_err("could not alloc crypto acomp_request %s\n",
723                        pool->tfm_name);
724                 ret = -ENOMEM;
725                 goto req_fail;
726         }
727         acomp_ctx->req = req;
728
729         crypto_init_wait(&acomp_ctx->wait);
730         /*
731          * if the backend of acomp is async zip, crypto_req_done() will wakeup
732          * crypto_wait_req(); if the backend of acomp is scomp, the callback
733          * won't be called, crypto_wait_req() will return without blocking.
734          */
735         acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
736                                    crypto_req_done, &acomp_ctx->wait);
737
738         return 0;
739
740 req_fail:
741         crypto_free_acomp(acomp_ctx->acomp);
742 acomp_fail:
743         kfree(acomp_ctx->buffer);
744         return ret;
745 }
746
747 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
748 {
749         struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
750         struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
751
752         if (!IS_ERR_OR_NULL(acomp_ctx)) {
753                 if (!IS_ERR_OR_NULL(acomp_ctx->req))
754                         acomp_request_free(acomp_ctx->req);
755                 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
756                         crypto_free_acomp(acomp_ctx->acomp);
757                 kfree(acomp_ctx->buffer);
758         }
759
760         return 0;
761 }
762
763 /*********************************
764 * pool functions
765 **********************************/
766
767 static struct zswap_pool *__zswap_pool_current(void)
768 {
769         struct zswap_pool *pool;
770
771         pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
772         WARN_ONCE(!pool && zswap_has_pool,
773                   "%s: no page storage pool!\n", __func__);
774
775         return pool;
776 }
777
778 static struct zswap_pool *zswap_pool_current(void)
779 {
780         assert_spin_locked(&zswap_pools_lock);
781
782         return __zswap_pool_current();
783 }
784
785 static struct zswap_pool *zswap_pool_current_get(void)
786 {
787         struct zswap_pool *pool;
788
789         rcu_read_lock();
790
791         pool = __zswap_pool_current();
792         if (!zswap_pool_get(pool))
793                 pool = NULL;
794
795         rcu_read_unlock();
796
797         return pool;
798 }
799
800 static struct zswap_pool *zswap_pool_last_get(void)
801 {
802         struct zswap_pool *pool, *last = NULL;
803
804         rcu_read_lock();
805
806         list_for_each_entry_rcu(pool, &zswap_pools, list)
807                 last = pool;
808         WARN_ONCE(!last && zswap_has_pool,
809                   "%s: no page storage pool!\n", __func__);
810         if (!zswap_pool_get(last))
811                 last = NULL;
812
813         rcu_read_unlock();
814
815         return last;
816 }
817
818 /* type and compressor must be null-terminated */
819 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
820 {
821         struct zswap_pool *pool;
822
823         assert_spin_locked(&zswap_pools_lock);
824
825         list_for_each_entry_rcu(pool, &zswap_pools, list) {
826                 if (strcmp(pool->tfm_name, compressor))
827                         continue;
828                 /* all zpools share the same type */
829                 if (strcmp(zpool_get_type(pool->zpools[0]), type))
830                         continue;
831                 /* if we can't get it, it's about to be destroyed */
832                 if (!zswap_pool_get(pool))
833                         continue;
834                 return pool;
835         }
836
837         return NULL;
838 }
839
840 /*
841  * If the entry is still valid in the tree, drop the initial ref and remove it
842  * from the tree. This function must be called with an additional ref held,
843  * otherwise it may race with another invalidation freeing the entry.
844  */
845 static void zswap_invalidate_entry(struct zswap_tree *tree,
846                                    struct zswap_entry *entry)
847 {
848         if (zswap_rb_erase(&tree->rbroot, entry))
849                 zswap_entry_put(tree, entry);
850 }
851
852 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
853                                        spinlock_t *lock, void *arg)
854 {
855         struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
856         bool *encountered_page_in_swapcache = (bool *)arg;
857         struct zswap_tree *tree;
858         pgoff_t swpoffset;
859         enum lru_status ret = LRU_REMOVED_RETRY;
860         int writeback_result;
861
862         /*
863          * Once the lru lock is dropped, the entry might get freed. The
864          * swpoffset is copied to the stack, and entry isn't deref'd again
865          * until the entry is verified to still be alive in the tree.
866          */
867         swpoffset = swp_offset(entry->swpentry);
868         tree = zswap_trees[swp_type(entry->swpentry)];
869         list_lru_isolate(l, item);
870         /*
871          * It's safe to drop the lock here because we return either
872          * LRU_REMOVED_RETRY or LRU_RETRY.
873          */
874         spin_unlock(lock);
875
876         /* Check for invalidate() race */
877         spin_lock(&tree->lock);
878         if (entry != zswap_rb_search(&tree->rbroot, swpoffset))
879                 goto unlock;
880
881         /* Hold a reference to prevent a free during writeback */
882         zswap_entry_get(entry);
883         spin_unlock(&tree->lock);
884
885         writeback_result = zswap_writeback_entry(entry, tree);
886
887         spin_lock(&tree->lock);
888         if (writeback_result) {
889                 zswap_reject_reclaim_fail++;
890                 zswap_lru_putback(&entry->pool->list_lru, entry);
891                 ret = LRU_RETRY;
892
893                 /*
894                  * Encountering a page already in swap cache is a sign that we are shrinking
895                  * into the warmer region. We should terminate shrinking (if we're in the dynamic
896                  * shrinker context).
897                  */
898                 if (writeback_result == -EEXIST && encountered_page_in_swapcache)
899                         *encountered_page_in_swapcache = true;
900
901                 goto put_unlock;
902         }
903         zswap_written_back_pages++;
904
905         if (entry->objcg)
906                 count_objcg_event(entry->objcg, ZSWPWB);
907
908         count_vm_event(ZSWPWB);
909         /*
910          * Writeback started successfully, the page now belongs to the
911          * swapcache. Drop the entry from zswap - unless invalidate already
912          * took it out while we had the tree->lock released for IO.
913          */
914         zswap_invalidate_entry(tree, entry);
915
916 put_unlock:
917         /* Drop local reference */
918         zswap_entry_put(tree, entry);
919 unlock:
920         spin_unlock(&tree->lock);
921         spin_lock(lock);
922         return ret;
923 }
924
925 static int shrink_memcg(struct mem_cgroup *memcg)
926 {
927         struct zswap_pool *pool;
928         int nid, shrunk = 0;
929
930         if (!mem_cgroup_zswap_writeback_enabled(memcg))
931                 return -EINVAL;
932
933         /*
934          * Skip zombies because their LRUs are reparented and we would be
935          * reclaiming from the parent instead of the dead memcg.
936          */
937         if (memcg && !mem_cgroup_online(memcg))
938                 return -ENOENT;
939
940         pool = zswap_pool_current_get();
941         if (!pool)
942                 return -EINVAL;
943
944         for_each_node_state(nid, N_NORMAL_MEMORY) {
945                 unsigned long nr_to_walk = 1;
946
947                 shrunk += list_lru_walk_one(&pool->list_lru, nid, memcg,
948                                             &shrink_memcg_cb, NULL, &nr_to_walk);
949         }
950         zswap_pool_put(pool);
951         return shrunk ? 0 : -EAGAIN;
952 }
953
954 static void shrink_worker(struct work_struct *w)
955 {
956         struct zswap_pool *pool = container_of(w, typeof(*pool),
957                                                 shrink_work);
958         struct mem_cgroup *memcg;
959         int ret, failures = 0;
960
961         /* global reclaim will select cgroup in a round-robin fashion. */
962         do {
963                 spin_lock(&zswap_pools_lock);
964                 pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
965                 memcg = pool->next_shrink;
966
967                 /*
968                  * We need to retry if we have gone through a full round trip, or if we
969                  * got an offline memcg (or else we risk undoing the effect of the
970                  * zswap memcg offlining cleanup callback). This is not catastrophic
971                  * per se, but it will keep the now offlined memcg hostage for a while.
972                  *
973                  * Note that if we got an online memcg, we will keep the extra
974                  * reference in case the original reference obtained by mem_cgroup_iter
975                  * is dropped by the zswap memcg offlining callback, ensuring that the
976                  * memcg is not killed when we are reclaiming.
977                  */
978                 if (!memcg) {
979                         spin_unlock(&zswap_pools_lock);
980                         if (++failures == MAX_RECLAIM_RETRIES)
981                                 break;
982
983                         goto resched;
984                 }
985
986                 if (!mem_cgroup_tryget_online(memcg)) {
987                         /* drop the reference from mem_cgroup_iter() */
988                         mem_cgroup_iter_break(NULL, memcg);
989                         pool->next_shrink = NULL;
990                         spin_unlock(&zswap_pools_lock);
991
992                         if (++failures == MAX_RECLAIM_RETRIES)
993                                 break;
994
995                         goto resched;
996                 }
997                 spin_unlock(&zswap_pools_lock);
998
999                 ret = shrink_memcg(memcg);
1000                 /* drop the extra reference */
1001                 mem_cgroup_put(memcg);
1002
1003                 if (ret == -EINVAL)
1004                         break;
1005                 if (ret && ++failures == MAX_RECLAIM_RETRIES)
1006                         break;
1007
1008 resched:
1009                 cond_resched();
1010         } while (!zswap_can_accept());
1011         zswap_pool_put(pool);
1012 }
1013
1014 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
1015 {
1016         int i;
1017         struct zswap_pool *pool;
1018         char name[38]; /* 'zswap' + 32 char (max) num + \0 */
1019         gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1020         int ret;
1021
1022         if (!zswap_has_pool) {
1023                 /* if either are unset, pool initialization failed, and we
1024                  * need both params to be set correctly before trying to
1025                  * create a pool.
1026                  */
1027                 if (!strcmp(type, ZSWAP_PARAM_UNSET))
1028                         return NULL;
1029                 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
1030                         return NULL;
1031         }
1032
1033         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1034         if (!pool)
1035                 return NULL;
1036
1037         for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
1038                 /* unique name for each pool specifically required by zsmalloc */
1039                 snprintf(name, 38, "zswap%x",
1040                          atomic_inc_return(&zswap_pools_count));
1041
1042                 pool->zpools[i] = zpool_create_pool(type, name, gfp);
1043                 if (!pool->zpools[i]) {
1044                         pr_err("%s zpool not available\n", type);
1045                         goto error;
1046                 }
1047         }
1048         pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
1049
1050         strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
1051
1052         pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
1053         if (!pool->acomp_ctx) {
1054                 pr_err("percpu alloc failed\n");
1055                 goto error;
1056         }
1057
1058         ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
1059                                        &pool->node);
1060         if (ret)
1061                 goto error;
1062
1063         zswap_alloc_shrinker(pool);
1064         if (!pool->shrinker)
1065                 goto error;
1066
1067         pr_debug("using %s compressor\n", pool->tfm_name);
1068
1069         /* being the current pool takes 1 ref; this func expects the
1070          * caller to always add the new pool as the current pool
1071          */
1072         kref_init(&pool->kref);
1073         INIT_LIST_HEAD(&pool->list);
1074         if (list_lru_init_memcg(&pool->list_lru, pool->shrinker))
1075                 goto lru_fail;
1076         shrinker_register(pool->shrinker);
1077         INIT_WORK(&pool->shrink_work, shrink_worker);
1078         atomic_set(&pool->nr_stored, 0);
1079
1080         zswap_pool_debug("created", pool);
1081
1082         return pool;
1083
1084 lru_fail:
1085         list_lru_destroy(&pool->list_lru);
1086         shrinker_free(pool->shrinker);
1087 error:
1088         if (pool->acomp_ctx)
1089                 free_percpu(pool->acomp_ctx);
1090         while (i--)
1091                 zpool_destroy_pool(pool->zpools[i]);
1092         kfree(pool);
1093         return NULL;
1094 }
1095
1096 static struct zswap_pool *__zswap_pool_create_fallback(void)
1097 {
1098         bool has_comp, has_zpool;
1099
1100         has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1101         if (!has_comp && strcmp(zswap_compressor,
1102                                 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
1103                 pr_err("compressor %s not available, using default %s\n",
1104                        zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
1105                 param_free_charp(&zswap_compressor);
1106                 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
1107                 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1108         }
1109         if (!has_comp) {
1110                 pr_err("default compressor %s not available\n",
1111                        zswap_compressor);
1112                 param_free_charp(&zswap_compressor);
1113                 zswap_compressor = ZSWAP_PARAM_UNSET;
1114         }
1115
1116         has_zpool = zpool_has_pool(zswap_zpool_type);
1117         if (!has_zpool && strcmp(zswap_zpool_type,
1118                                  CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
1119                 pr_err("zpool %s not available, using default %s\n",
1120                        zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
1121                 param_free_charp(&zswap_zpool_type);
1122                 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
1123                 has_zpool = zpool_has_pool(zswap_zpool_type);
1124         }
1125         if (!has_zpool) {
1126                 pr_err("default zpool %s not available\n",
1127                        zswap_zpool_type);
1128                 param_free_charp(&zswap_zpool_type);
1129                 zswap_zpool_type = ZSWAP_PARAM_UNSET;
1130         }
1131
1132         if (!has_comp || !has_zpool)
1133                 return NULL;
1134
1135         return zswap_pool_create(zswap_zpool_type, zswap_compressor);
1136 }
1137
1138 static void zswap_pool_destroy(struct zswap_pool *pool)
1139 {
1140         int i;
1141
1142         zswap_pool_debug("destroying", pool);
1143
1144         shrinker_free(pool->shrinker);
1145         cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
1146         free_percpu(pool->acomp_ctx);
1147         list_lru_destroy(&pool->list_lru);
1148
1149         spin_lock(&zswap_pools_lock);
1150         mem_cgroup_iter_break(NULL, pool->next_shrink);
1151         pool->next_shrink = NULL;
1152         spin_unlock(&zswap_pools_lock);
1153
1154         for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
1155                 zpool_destroy_pool(pool->zpools[i]);
1156         kfree(pool);
1157 }
1158
1159 static int __must_check zswap_pool_get(struct zswap_pool *pool)
1160 {
1161         if (!pool)
1162                 return 0;
1163
1164         return kref_get_unless_zero(&pool->kref);
1165 }
1166
1167 static void __zswap_pool_release(struct work_struct *work)
1168 {
1169         struct zswap_pool *pool = container_of(work, typeof(*pool),
1170                                                 release_work);
1171
1172         synchronize_rcu();
1173
1174         /* nobody should have been able to get a kref... */
1175         WARN_ON(kref_get_unless_zero(&pool->kref));
1176
1177         /* pool is now off zswap_pools list and has no references. */
1178         zswap_pool_destroy(pool);
1179 }
1180
1181 static void __zswap_pool_empty(struct kref *kref)
1182 {
1183         struct zswap_pool *pool;
1184
1185         pool = container_of(kref, typeof(*pool), kref);
1186
1187         spin_lock(&zswap_pools_lock);
1188
1189         WARN_ON(pool == zswap_pool_current());
1190
1191         list_del_rcu(&pool->list);
1192
1193         INIT_WORK(&pool->release_work, __zswap_pool_release);
1194         schedule_work(&pool->release_work);
1195
1196         spin_unlock(&zswap_pools_lock);
1197 }
1198
1199 static void zswap_pool_put(struct zswap_pool *pool)
1200 {
1201         kref_put(&pool->kref, __zswap_pool_empty);
1202 }
1203
1204 /*********************************
1205 * param callbacks
1206 **********************************/
1207
1208 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
1209 {
1210         /* no change required */
1211         if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
1212                 return false;
1213         return true;
1214 }
1215
1216 /* val must be a null-terminated string */
1217 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
1218                              char *type, char *compressor)
1219 {
1220         struct zswap_pool *pool, *put_pool = NULL;
1221         char *s = strstrip((char *)val);
1222         int ret = 0;
1223         bool new_pool = false;
1224
1225         mutex_lock(&zswap_init_lock);
1226         switch (zswap_init_state) {
1227         case ZSWAP_UNINIT:
1228                 /* if this is load-time (pre-init) param setting,
1229                  * don't create a pool; that's done during init.
1230                  */
1231                 ret = param_set_charp(s, kp);
1232                 break;
1233         case ZSWAP_INIT_SUCCEED:
1234                 new_pool = zswap_pool_changed(s, kp);
1235                 break;
1236         case ZSWAP_INIT_FAILED:
1237                 pr_err("can't set param, initialization failed\n");
1238                 ret = -ENODEV;
1239         }
1240         mutex_unlock(&zswap_init_lock);
1241
1242         /* no need to create a new pool, return directly */
1243         if (!new_pool)
1244                 return ret;
1245
1246         if (!type) {
1247                 if (!zpool_has_pool(s)) {
1248                         pr_err("zpool %s not available\n", s);
1249                         return -ENOENT;
1250                 }
1251                 type = s;
1252         } else if (!compressor) {
1253                 if (!crypto_has_acomp(s, 0, 0)) {
1254                         pr_err("compressor %s not available\n", s);
1255                         return -ENOENT;
1256                 }
1257                 compressor = s;
1258         } else {
1259                 WARN_ON(1);
1260                 return -EINVAL;
1261         }
1262
1263         spin_lock(&zswap_pools_lock);
1264
1265         pool = zswap_pool_find_get(type, compressor);
1266         if (pool) {
1267                 zswap_pool_debug("using existing", pool);
1268                 WARN_ON(pool == zswap_pool_current());
1269                 list_del_rcu(&pool->list);
1270         }
1271
1272         spin_unlock(&zswap_pools_lock);
1273
1274         if (!pool)
1275                 pool = zswap_pool_create(type, compressor);
1276
1277         if (pool)
1278                 ret = param_set_charp(s, kp);
1279         else
1280                 ret = -EINVAL;
1281
1282         spin_lock(&zswap_pools_lock);
1283
1284         if (!ret) {
1285                 put_pool = zswap_pool_current();
1286                 list_add_rcu(&pool->list, &zswap_pools);
1287                 zswap_has_pool = true;
1288         } else if (pool) {
1289                 /* add the possibly pre-existing pool to the end of the pools
1290                  * list; if it's new (and empty) then it'll be removed and
1291                  * destroyed by the put after we drop the lock
1292                  */
1293                 list_add_tail_rcu(&pool->list, &zswap_pools);
1294                 put_pool = pool;
1295         }
1296
1297         spin_unlock(&zswap_pools_lock);
1298
1299         if (!zswap_has_pool && !pool) {
1300                 /* if initial pool creation failed, and this pool creation also
1301                  * failed, maybe both compressor and zpool params were bad.
1302                  * Allow changing this param, so pool creation will succeed
1303                  * when the other param is changed. We already verified this
1304                  * param is ok in the zpool_has_pool() or crypto_has_acomp()
1305                  * checks above.
1306                  */
1307                 ret = param_set_charp(s, kp);
1308         }
1309
1310         /* drop the ref from either the old current pool,
1311          * or the new pool we failed to add
1312          */
1313         if (put_pool)
1314                 zswap_pool_put(put_pool);
1315
1316         return ret;
1317 }
1318
1319 static int zswap_compressor_param_set(const char *val,
1320                                       const struct kernel_param *kp)
1321 {
1322         return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
1323 }
1324
1325 static int zswap_zpool_param_set(const char *val,
1326                                  const struct kernel_param *kp)
1327 {
1328         return __zswap_param_set(val, kp, NULL, zswap_compressor);
1329 }
1330
1331 static int zswap_enabled_param_set(const char *val,
1332                                    const struct kernel_param *kp)
1333 {
1334         int ret = -ENODEV;
1335
1336         /* if this is load-time (pre-init) param setting, only set param. */
1337         if (system_state != SYSTEM_RUNNING)
1338                 return param_set_bool(val, kp);
1339
1340         mutex_lock(&zswap_init_lock);
1341         switch (zswap_init_state) {
1342         case ZSWAP_UNINIT:
1343                 if (zswap_setup())
1344                         break;
1345                 fallthrough;
1346         case ZSWAP_INIT_SUCCEED:
1347                 if (!zswap_has_pool)
1348                         pr_err("can't enable, no pool configured\n");
1349                 else
1350                         ret = param_set_bool(val, kp);
1351                 break;
1352         case ZSWAP_INIT_FAILED:
1353                 pr_err("can't enable, initialization failed\n");
1354         }
1355         mutex_unlock(&zswap_init_lock);
1356
1357         return ret;
1358 }
1359
1360 static void __zswap_load(struct zswap_entry *entry, struct page *page)
1361 {
1362         struct zpool *zpool = zswap_find_zpool(entry);
1363         struct scatterlist input, output;
1364         struct crypto_acomp_ctx *acomp_ctx;
1365         u8 *src;
1366
1367         acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1368         mutex_lock(&acomp_ctx->mutex);
1369
1370         src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1371         if (!zpool_can_sleep_mapped(zpool)) {
1372                 memcpy(acomp_ctx->buffer, src, entry->length);
1373                 src = acomp_ctx->buffer;
1374                 zpool_unmap_handle(zpool, entry->handle);
1375         }
1376
1377         sg_init_one(&input, src, entry->length);
1378         sg_init_table(&output, 1);
1379         sg_set_page(&output, page, PAGE_SIZE, 0);
1380         acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1381         BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1382         BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1383         mutex_unlock(&acomp_ctx->mutex);
1384
1385         if (zpool_can_sleep_mapped(zpool))
1386                 zpool_unmap_handle(zpool, entry->handle);
1387 }
1388
1389 /*********************************
1390 * writeback code
1391 **********************************/
1392 /*
1393  * Attempts to free an entry by adding a folio to the swap cache,
1394  * decompressing the entry data into the folio, and issuing a
1395  * bio write to write the folio back to the swap device.
1396  *
1397  * This can be thought of as a "resumed writeback" of the folio
1398  * to the swap device.  We are basically resuming the same swap
1399  * writeback path that was intercepted with the zswap_store()
1400  * in the first place.  After the folio has been decompressed into
1401  * the swap cache, the compressed version stored by zswap can be
1402  * freed.
1403  */
1404 static int zswap_writeback_entry(struct zswap_entry *entry,
1405                                  struct zswap_tree *tree)
1406 {
1407         swp_entry_t swpentry = entry->swpentry;
1408         struct folio *folio;
1409         struct mempolicy *mpol;
1410         bool folio_was_allocated;
1411         struct writeback_control wbc = {
1412                 .sync_mode = WB_SYNC_NONE,
1413         };
1414
1415         /* try to allocate swap cache folio */
1416         mpol = get_task_policy(current);
1417         folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1418                                 NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1419         if (!folio)
1420                 return -ENOMEM;
1421
1422         /*
1423          * Found an existing folio, we raced with load/swapin. We generally
1424          * writeback cold folios from zswap, and swapin means the folio just
1425          * became hot. Skip this folio and let the caller find another one.
1426          */
1427         if (!folio_was_allocated) {
1428                 folio_put(folio);
1429                 return -EEXIST;
1430         }
1431
1432         /*
1433          * folio is locked, and the swapcache is now secured against
1434          * concurrent swapping to and from the slot. Verify that the
1435          * swap entry hasn't been invalidated and recycled behind our
1436          * backs (our zswap_entry reference doesn't prevent that), to
1437          * avoid overwriting a new swap folio with old compressed data.
1438          */
1439         spin_lock(&tree->lock);
1440         if (zswap_rb_search(&tree->rbroot, swp_offset(entry->swpentry)) != entry) {
1441                 spin_unlock(&tree->lock);
1442                 delete_from_swap_cache(folio);
1443                 return -ENOMEM;
1444         }
1445         spin_unlock(&tree->lock);
1446
1447         __zswap_load(entry, &folio->page);
1448
1449         /* folio is up to date */
1450         folio_mark_uptodate(folio);
1451
1452         /* move it to the tail of the inactive list after end_writeback */
1453         folio_set_reclaim(folio);
1454
1455         /* start writeback */
1456         __swap_writepage(folio, &wbc);
1457         folio_put(folio);
1458
1459         return 0;
1460 }
1461
1462 static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1463 {
1464         unsigned long *page;
1465         unsigned long val;
1466         unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1467
1468         page = (unsigned long *)ptr;
1469         val = page[0];
1470
1471         if (val != page[last_pos])
1472                 return 0;
1473
1474         for (pos = 1; pos < last_pos; pos++) {
1475                 if (val != page[pos])
1476                         return 0;
1477         }
1478
1479         *value = val;
1480
1481         return 1;
1482 }
1483
1484 static void zswap_fill_page(void *ptr, unsigned long value)
1485 {
1486         unsigned long *page;
1487
1488         page = (unsigned long *)ptr;
1489         memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1490 }
1491
1492 bool zswap_store(struct folio *folio)
1493 {
1494         swp_entry_t swp = folio->swap;
1495         int type = swp_type(swp);
1496         pgoff_t offset = swp_offset(swp);
1497         struct page *page = &folio->page;
1498         struct zswap_tree *tree = zswap_trees[type];
1499         struct zswap_entry *entry, *dupentry;
1500         struct scatterlist input, output;
1501         struct crypto_acomp_ctx *acomp_ctx;
1502         struct obj_cgroup *objcg = NULL;
1503         struct mem_cgroup *memcg = NULL;
1504         struct zswap_pool *pool;
1505         struct zpool *zpool;
1506         unsigned int dlen = PAGE_SIZE;
1507         unsigned long handle, value;
1508         char *buf;
1509         u8 *src, *dst;
1510         gfp_t gfp;
1511         int ret;
1512
1513         VM_WARN_ON_ONCE(!folio_test_locked(folio));
1514         VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1515
1516         /* Large folios aren't supported */
1517         if (folio_test_large(folio))
1518                 return false;
1519
1520         if (!zswap_enabled || !tree)
1521                 return false;
1522
1523         /*
1524          * If this is a duplicate, it must be removed before attempting to store
1525          * it, otherwise, if the store fails the old page won't be removed from
1526          * the tree, and it might be written back overriding the new data.
1527          */
1528         spin_lock(&tree->lock);
1529         dupentry = zswap_rb_search(&tree->rbroot, offset);
1530         if (dupentry) {
1531                 zswap_duplicate_entry++;
1532                 zswap_invalidate_entry(tree, dupentry);
1533         }
1534         spin_unlock(&tree->lock);
1535         objcg = get_obj_cgroup_from_folio(folio);
1536         if (objcg && !obj_cgroup_may_zswap(objcg)) {
1537                 memcg = get_mem_cgroup_from_objcg(objcg);
1538                 if (shrink_memcg(memcg)) {
1539                         mem_cgroup_put(memcg);
1540                         goto reject;
1541                 }
1542                 mem_cgroup_put(memcg);
1543         }
1544
1545         /* reclaim space if needed */
1546         if (zswap_is_full()) {
1547                 zswap_pool_limit_hit++;
1548                 zswap_pool_reached_full = true;
1549                 goto shrink;
1550         }
1551
1552         if (zswap_pool_reached_full) {
1553                if (!zswap_can_accept())
1554                         goto shrink;
1555                 else
1556                         zswap_pool_reached_full = false;
1557         }
1558
1559         /* allocate entry */
1560         entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1561         if (!entry) {
1562                 zswap_reject_kmemcache_fail++;
1563                 goto reject;
1564         }
1565
1566         if (zswap_same_filled_pages_enabled) {
1567                 src = kmap_local_page(page);
1568                 if (zswap_is_page_same_filled(src, &value)) {
1569                         kunmap_local(src);
1570                         entry->swpentry = swp_entry(type, offset);
1571                         entry->length = 0;
1572                         entry->value = value;
1573                         atomic_inc(&zswap_same_filled_pages);
1574                         goto insert_entry;
1575                 }
1576                 kunmap_local(src);
1577         }
1578
1579         if (!zswap_non_same_filled_pages_enabled)
1580                 goto freepage;
1581
1582         /* if entry is successfully added, it keeps the reference */
1583         entry->pool = zswap_pool_current_get();
1584         if (!entry->pool)
1585                 goto freepage;
1586
1587         if (objcg) {
1588                 memcg = get_mem_cgroup_from_objcg(objcg);
1589                 if (memcg_list_lru_alloc(memcg, &entry->pool->list_lru, GFP_KERNEL)) {
1590                         mem_cgroup_put(memcg);
1591                         goto put_pool;
1592                 }
1593                 mem_cgroup_put(memcg);
1594         }
1595
1596         /* compress */
1597         acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1598
1599         mutex_lock(&acomp_ctx->mutex);
1600
1601         dst = acomp_ctx->buffer;
1602         sg_init_table(&input, 1);
1603         sg_set_page(&input, &folio->page, PAGE_SIZE, 0);
1604
1605         /*
1606          * We need PAGE_SIZE * 2 here since there maybe over-compression case,
1607          * and hardware-accelerators may won't check the dst buffer size, so
1608          * giving the dst buffer with enough length to avoid buffer overflow.
1609          */
1610         sg_init_one(&output, dst, PAGE_SIZE * 2);
1611         acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1612         /*
1613          * it maybe looks a little bit silly that we send an asynchronous request,
1614          * then wait for its completion synchronously. This makes the process look
1615          * synchronous in fact.
1616          * Theoretically, acomp supports users send multiple acomp requests in one
1617          * acomp instance, then get those requests done simultaneously. but in this
1618          * case, zswap actually does store and load page by page, there is no
1619          * existing method to send the second page before the first page is done
1620          * in one thread doing zwap.
1621          * but in different threads running on different cpu, we have different
1622          * acomp instance, so multiple threads can do (de)compression in parallel.
1623          */
1624         ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1625         dlen = acomp_ctx->req->dlen;
1626
1627         if (ret) {
1628                 zswap_reject_compress_fail++;
1629                 goto put_dstmem;
1630         }
1631
1632         /* store */
1633         zpool = zswap_find_zpool(entry);
1634         gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1635         if (zpool_malloc_support_movable(zpool))
1636                 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1637         ret = zpool_malloc(zpool, dlen, gfp, &handle);
1638         if (ret == -ENOSPC) {
1639                 zswap_reject_compress_poor++;
1640                 goto put_dstmem;
1641         }
1642         if (ret) {
1643                 zswap_reject_alloc_fail++;
1644                 goto put_dstmem;
1645         }
1646         buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
1647         memcpy(buf, dst, dlen);
1648         zpool_unmap_handle(zpool, handle);
1649         mutex_unlock(&acomp_ctx->mutex);
1650
1651         /* populate entry */
1652         entry->swpentry = swp_entry(type, offset);
1653         entry->handle = handle;
1654         entry->length = dlen;
1655
1656 insert_entry:
1657         entry->objcg = objcg;
1658         if (objcg) {
1659                 obj_cgroup_charge_zswap(objcg, entry->length);
1660                 /* Account before objcg ref is moved to tree */
1661                 count_objcg_event(objcg, ZSWPOUT);
1662         }
1663
1664         /* map */
1665         spin_lock(&tree->lock);
1666         /*
1667          * A duplicate entry should have been removed at the beginning of this
1668          * function. Since the swap entry should be pinned, if a duplicate is
1669          * found again here it means that something went wrong in the swap
1670          * cache.
1671          */
1672         while (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) {
1673                 WARN_ON(1);
1674                 zswap_duplicate_entry++;
1675                 zswap_invalidate_entry(tree, dupentry);
1676         }
1677         if (entry->length) {
1678                 INIT_LIST_HEAD(&entry->lru);
1679                 zswap_lru_add(&entry->pool->list_lru, entry);
1680                 atomic_inc(&entry->pool->nr_stored);
1681         }
1682         spin_unlock(&tree->lock);
1683
1684         /* update stats */
1685         atomic_inc(&zswap_stored_pages);
1686         zswap_update_total_size();
1687         count_vm_event(ZSWPOUT);
1688
1689         return true;
1690
1691 put_dstmem:
1692         mutex_unlock(&acomp_ctx->mutex);
1693 put_pool:
1694         zswap_pool_put(entry->pool);
1695 freepage:
1696         zswap_entry_cache_free(entry);
1697 reject:
1698         if (objcg)
1699                 obj_cgroup_put(objcg);
1700         return false;
1701
1702 shrink:
1703         pool = zswap_pool_last_get();
1704         if (pool && !queue_work(shrink_wq, &pool->shrink_work))
1705                 zswap_pool_put(pool);
1706         goto reject;
1707 }
1708
1709 bool zswap_load(struct folio *folio)
1710 {
1711         swp_entry_t swp = folio->swap;
1712         int type = swp_type(swp);
1713         pgoff_t offset = swp_offset(swp);
1714         struct page *page = &folio->page;
1715         struct zswap_tree *tree = zswap_trees[type];
1716         struct zswap_entry *entry;
1717         u8 *dst;
1718
1719         VM_WARN_ON_ONCE(!folio_test_locked(folio));
1720
1721         /* find */
1722         spin_lock(&tree->lock);
1723         entry = zswap_entry_find_get(&tree->rbroot, offset);
1724         if (!entry) {
1725                 spin_unlock(&tree->lock);
1726                 return false;
1727         }
1728         spin_unlock(&tree->lock);
1729
1730         if (entry->length)
1731                 __zswap_load(entry, page);
1732         else {
1733                 dst = kmap_local_page(page);
1734                 zswap_fill_page(dst, entry->value);
1735                 kunmap_local(dst);
1736         }
1737
1738         count_vm_event(ZSWPIN);
1739         if (entry->objcg)
1740                 count_objcg_event(entry->objcg, ZSWPIN);
1741
1742         spin_lock(&tree->lock);
1743         if (zswap_exclusive_loads_enabled) {
1744                 zswap_invalidate_entry(tree, entry);
1745                 folio_mark_dirty(folio);
1746         } else if (entry->length) {
1747                 zswap_lru_del(&entry->pool->list_lru, entry);
1748                 zswap_lru_add(&entry->pool->list_lru, entry);
1749         }
1750         zswap_entry_put(tree, entry);
1751         spin_unlock(&tree->lock);
1752
1753         return true;
1754 }
1755
1756 void zswap_invalidate(int type, pgoff_t offset)
1757 {
1758         struct zswap_tree *tree = zswap_trees[type];
1759         struct zswap_entry *entry;
1760
1761         /* find */
1762         spin_lock(&tree->lock);
1763         entry = zswap_rb_search(&tree->rbroot, offset);
1764         if (!entry) {
1765                 /* entry was written back */
1766                 spin_unlock(&tree->lock);
1767                 return;
1768         }
1769         zswap_invalidate_entry(tree, entry);
1770         spin_unlock(&tree->lock);
1771 }
1772
1773 void zswap_swapon(int type)
1774 {
1775         struct zswap_tree *tree;
1776
1777         tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1778         if (!tree) {
1779                 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1780                 return;
1781         }
1782
1783         tree->rbroot = RB_ROOT;
1784         spin_lock_init(&tree->lock);
1785         zswap_trees[type] = tree;
1786 }
1787
1788 void zswap_swapoff(int type)
1789 {
1790         struct zswap_tree *tree = zswap_trees[type];
1791         struct zswap_entry *entry, *n;
1792
1793         if (!tree)
1794                 return;
1795
1796         /* walk the tree and free everything */
1797         spin_lock(&tree->lock);
1798         rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1799                 zswap_free_entry(entry);
1800         tree->rbroot = RB_ROOT;
1801         spin_unlock(&tree->lock);
1802         kfree(tree);
1803         zswap_trees[type] = NULL;
1804 }
1805
1806 /*********************************
1807 * debugfs functions
1808 **********************************/
1809 #ifdef CONFIG_DEBUG_FS
1810 #include <linux/debugfs.h>
1811
1812 static struct dentry *zswap_debugfs_root;
1813
1814 static int zswap_debugfs_init(void)
1815 {
1816         if (!debugfs_initialized())
1817                 return -ENODEV;
1818
1819         zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1820
1821         debugfs_create_u64("pool_limit_hit", 0444,
1822                            zswap_debugfs_root, &zswap_pool_limit_hit);
1823         debugfs_create_u64("reject_reclaim_fail", 0444,
1824                            zswap_debugfs_root, &zswap_reject_reclaim_fail);
1825         debugfs_create_u64("reject_alloc_fail", 0444,
1826                            zswap_debugfs_root, &zswap_reject_alloc_fail);
1827         debugfs_create_u64("reject_kmemcache_fail", 0444,
1828                            zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1829         debugfs_create_u64("reject_compress_fail", 0444,
1830                            zswap_debugfs_root, &zswap_reject_compress_fail);
1831         debugfs_create_u64("reject_compress_poor", 0444,
1832                            zswap_debugfs_root, &zswap_reject_compress_poor);
1833         debugfs_create_u64("written_back_pages", 0444,
1834                            zswap_debugfs_root, &zswap_written_back_pages);
1835         debugfs_create_u64("duplicate_entry", 0444,
1836                            zswap_debugfs_root, &zswap_duplicate_entry);
1837         debugfs_create_u64("pool_total_size", 0444,
1838                            zswap_debugfs_root, &zswap_pool_total_size);
1839         debugfs_create_atomic_t("stored_pages", 0444,
1840                                 zswap_debugfs_root, &zswap_stored_pages);
1841         debugfs_create_atomic_t("same_filled_pages", 0444,
1842                                 zswap_debugfs_root, &zswap_same_filled_pages);
1843
1844         return 0;
1845 }
1846 #else
1847 static int zswap_debugfs_init(void)
1848 {
1849         return 0;
1850 }
1851 #endif
1852
1853 /*********************************
1854 * module init and exit
1855 **********************************/
1856 static int zswap_setup(void)
1857 {
1858         struct zswap_pool *pool;
1859         int ret;
1860
1861         zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1862         if (!zswap_entry_cache) {
1863                 pr_err("entry cache creation failed\n");
1864                 goto cache_fail;
1865         }
1866
1867         ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1868                                       "mm/zswap_pool:prepare",
1869                                       zswap_cpu_comp_prepare,
1870                                       zswap_cpu_comp_dead);
1871         if (ret)
1872                 goto hp_fail;
1873
1874         pool = __zswap_pool_create_fallback();
1875         if (pool) {
1876                 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1877                         zpool_get_type(pool->zpools[0]));
1878                 list_add(&pool->list, &zswap_pools);
1879                 zswap_has_pool = true;
1880         } else {
1881                 pr_err("pool creation failed\n");
1882                 zswap_enabled = false;
1883         }
1884
1885         shrink_wq = create_workqueue("zswap-shrink");
1886         if (!shrink_wq)
1887                 goto fallback_fail;
1888
1889         if (zswap_debugfs_init())
1890                 pr_warn("debugfs initialization failed\n");
1891         zswap_init_state = ZSWAP_INIT_SUCCEED;
1892         return 0;
1893
1894 fallback_fail:
1895         if (pool)
1896                 zswap_pool_destroy(pool);
1897 hp_fail:
1898         kmem_cache_destroy(zswap_entry_cache);
1899 cache_fail:
1900         /* if built-in, we aren't unloaded on failure; don't allow use */
1901         zswap_init_state = ZSWAP_INIT_FAILED;
1902         zswap_enabled = false;
1903         return -ENOMEM;
1904 }
1905
1906 static int __init zswap_init(void)
1907 {
1908         if (!zswap_enabled)
1909                 return 0;
1910         return zswap_setup();
1911 }
1912 /* must be late so crypto has time to come up */
1913 late_initcall(zswap_init);
1914
1915 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1916 MODULE_DESCRIPTION("Compressed cache for swap pages");