]> git.samba.org - sfrench/cifs-2.6.git/blob - mm/swapfile.c
Merge tag 'zonefs-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dlemoal...
[sfrench/cifs-2.6.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
46
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
50 #include "internal.h"
51 #include "swap.h"
52
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54                                  unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56
57 static DEFINE_SPINLOCK(swap_lock);
58 static unsigned int nr_swapfiles;
59 atomic_long_t nr_swap_pages;
60 /*
61  * Some modules use swappable objects and may try to swap them out under
62  * memory pressure (via the shrinker). Before doing so, they may wish to
63  * check to see if any swap space is available.
64  */
65 EXPORT_SYMBOL_GPL(nr_swap_pages);
66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
67 long total_swap_pages;
68 static int least_priority = -1;
69 unsigned long swapfile_maximum_size;
70 #ifdef CONFIG_MIGRATION
71 bool swap_migration_ad_supported;
72 #endif  /* CONFIG_MIGRATION */
73
74 static const char Bad_file[] = "Bad swap file entry ";
75 static const char Unused_file[] = "Unused swap file entry ";
76 static const char Bad_offset[] = "Bad swap offset entry ";
77 static const char Unused_offset[] = "Unused swap offset entry ";
78
79 /*
80  * all active swap_info_structs
81  * protected with swap_lock, and ordered by priority.
82  */
83 static PLIST_HEAD(swap_active_head);
84
85 /*
86  * all available (active, not full) swap_info_structs
87  * protected with swap_avail_lock, ordered by priority.
88  * This is used by folio_alloc_swap() instead of swap_active_head
89  * because swap_active_head includes all swap_info_structs,
90  * but folio_alloc_swap() doesn't need to look at full ones.
91  * This uses its own lock instead of swap_lock because when a
92  * swap_info_struct changes between not-full/full, it needs to
93  * add/remove itself to/from this list, but the swap_info_struct->lock
94  * is held and the locking order requires swap_lock to be taken
95  * before any swap_info_struct->lock.
96  */
97 static struct plist_head *swap_avail_heads;
98 static DEFINE_SPINLOCK(swap_avail_lock);
99
100 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
101
102 static DEFINE_MUTEX(swapon_mutex);
103
104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
105 /* Activity counter to indicate that a swapon or swapoff has occurred */
106 static atomic_t proc_poll_event = ATOMIC_INIT(0);
107
108 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
109
110 static struct swap_info_struct *swap_type_to_swap_info(int type)
111 {
112         if (type >= MAX_SWAPFILES)
113                 return NULL;
114
115         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
116 }
117
118 static inline unsigned char swap_count(unsigned char ent)
119 {
120         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
121 }
122
123 /* Reclaim the swap entry anyway if possible */
124 #define TTRS_ANYWAY             0x1
125 /*
126  * Reclaim the swap entry if there are no more mappings of the
127  * corresponding page
128  */
129 #define TTRS_UNMAPPED           0x2
130 /* Reclaim the swap entry if swap is getting full*/
131 #define TTRS_FULL               0x4
132
133 /* returns 1 if swap entry is freed */
134 static int __try_to_reclaim_swap(struct swap_info_struct *si,
135                                  unsigned long offset, unsigned long flags)
136 {
137         swp_entry_t entry = swp_entry(si->type, offset);
138         struct folio *folio;
139         int ret = 0;
140
141         folio = filemap_get_folio(swap_address_space(entry), offset);
142         if (IS_ERR(folio))
143                 return 0;
144         /*
145          * When this function is called from scan_swap_map_slots() and it's
146          * called by vmscan.c at reclaiming folios. So we hold a folio lock
147          * here. We have to use trylock for avoiding deadlock. This is a special
148          * case and you should use folio_free_swap() with explicit folio_lock()
149          * in usual operations.
150          */
151         if (folio_trylock(folio)) {
152                 if ((flags & TTRS_ANYWAY) ||
153                     ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
154                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
155                         ret = folio_free_swap(folio);
156                 folio_unlock(folio);
157         }
158         folio_put(folio);
159         return ret;
160 }
161
162 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
163 {
164         struct rb_node *rb = rb_first(&sis->swap_extent_root);
165         return rb_entry(rb, struct swap_extent, rb_node);
166 }
167
168 static inline struct swap_extent *next_se(struct swap_extent *se)
169 {
170         struct rb_node *rb = rb_next(&se->rb_node);
171         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
172 }
173
174 /*
175  * swapon tell device that all the old swap contents can be discarded,
176  * to allow the swap device to optimize its wear-levelling.
177  */
178 static int discard_swap(struct swap_info_struct *si)
179 {
180         struct swap_extent *se;
181         sector_t start_block;
182         sector_t nr_blocks;
183         int err = 0;
184
185         /* Do not discard the swap header page! */
186         se = first_se(si);
187         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
188         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
189         if (nr_blocks) {
190                 err = blkdev_issue_discard(si->bdev, start_block,
191                                 nr_blocks, GFP_KERNEL);
192                 if (err)
193                         return err;
194                 cond_resched();
195         }
196
197         for (se = next_se(se); se; se = next_se(se)) {
198                 start_block = se->start_block << (PAGE_SHIFT - 9);
199                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
200
201                 err = blkdev_issue_discard(si->bdev, start_block,
202                                 nr_blocks, GFP_KERNEL);
203                 if (err)
204                         break;
205
206                 cond_resched();
207         }
208         return err;             /* That will often be -EOPNOTSUPP */
209 }
210
211 static struct swap_extent *
212 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
213 {
214         struct swap_extent *se;
215         struct rb_node *rb;
216
217         rb = sis->swap_extent_root.rb_node;
218         while (rb) {
219                 se = rb_entry(rb, struct swap_extent, rb_node);
220                 if (offset < se->start_page)
221                         rb = rb->rb_left;
222                 else if (offset >= se->start_page + se->nr_pages)
223                         rb = rb->rb_right;
224                 else
225                         return se;
226         }
227         /* It *must* be present */
228         BUG();
229 }
230
231 sector_t swap_folio_sector(struct folio *folio)
232 {
233         struct swap_info_struct *sis = swp_swap_info(folio->swap);
234         struct swap_extent *se;
235         sector_t sector;
236         pgoff_t offset;
237
238         offset = swp_offset(folio->swap);
239         se = offset_to_swap_extent(sis, offset);
240         sector = se->start_block + (offset - se->start_page);
241         return sector << (PAGE_SHIFT - 9);
242 }
243
244 /*
245  * swap allocation tell device that a cluster of swap can now be discarded,
246  * to allow the swap device to optimize its wear-levelling.
247  */
248 static void discard_swap_cluster(struct swap_info_struct *si,
249                                  pgoff_t start_page, pgoff_t nr_pages)
250 {
251         struct swap_extent *se = offset_to_swap_extent(si, start_page);
252
253         while (nr_pages) {
254                 pgoff_t offset = start_page - se->start_page;
255                 sector_t start_block = se->start_block + offset;
256                 sector_t nr_blocks = se->nr_pages - offset;
257
258                 if (nr_blocks > nr_pages)
259                         nr_blocks = nr_pages;
260                 start_page += nr_blocks;
261                 nr_pages -= nr_blocks;
262
263                 start_block <<= PAGE_SHIFT - 9;
264                 nr_blocks <<= PAGE_SHIFT - 9;
265                 if (blkdev_issue_discard(si->bdev, start_block,
266                                         nr_blocks, GFP_NOIO))
267                         break;
268
269                 se = next_se(se);
270         }
271 }
272
273 #ifdef CONFIG_THP_SWAP
274 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
275
276 #define swap_entry_size(size)   (size)
277 #else
278 #define SWAPFILE_CLUSTER        256
279
280 /*
281  * Define swap_entry_size() as constant to let compiler to optimize
282  * out some code if !CONFIG_THP_SWAP
283  */
284 #define swap_entry_size(size)   1
285 #endif
286 #define LATENCY_LIMIT           256
287
288 static inline void cluster_set_flag(struct swap_cluster_info *info,
289         unsigned int flag)
290 {
291         info->flags = flag;
292 }
293
294 static inline unsigned int cluster_count(struct swap_cluster_info *info)
295 {
296         return info->data;
297 }
298
299 static inline void cluster_set_count(struct swap_cluster_info *info,
300                                      unsigned int c)
301 {
302         info->data = c;
303 }
304
305 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
306                                          unsigned int c, unsigned int f)
307 {
308         info->flags = f;
309         info->data = c;
310 }
311
312 static inline unsigned int cluster_next(struct swap_cluster_info *info)
313 {
314         return info->data;
315 }
316
317 static inline void cluster_set_next(struct swap_cluster_info *info,
318                                     unsigned int n)
319 {
320         info->data = n;
321 }
322
323 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
324                                          unsigned int n, unsigned int f)
325 {
326         info->flags = f;
327         info->data = n;
328 }
329
330 static inline bool cluster_is_free(struct swap_cluster_info *info)
331 {
332         return info->flags & CLUSTER_FLAG_FREE;
333 }
334
335 static inline bool cluster_is_null(struct swap_cluster_info *info)
336 {
337         return info->flags & CLUSTER_FLAG_NEXT_NULL;
338 }
339
340 static inline void cluster_set_null(struct swap_cluster_info *info)
341 {
342         info->flags = CLUSTER_FLAG_NEXT_NULL;
343         info->data = 0;
344 }
345
346 static inline bool cluster_is_huge(struct swap_cluster_info *info)
347 {
348         if (IS_ENABLED(CONFIG_THP_SWAP))
349                 return info->flags & CLUSTER_FLAG_HUGE;
350         return false;
351 }
352
353 static inline void cluster_clear_huge(struct swap_cluster_info *info)
354 {
355         info->flags &= ~CLUSTER_FLAG_HUGE;
356 }
357
358 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
359                                                      unsigned long offset)
360 {
361         struct swap_cluster_info *ci;
362
363         ci = si->cluster_info;
364         if (ci) {
365                 ci += offset / SWAPFILE_CLUSTER;
366                 spin_lock(&ci->lock);
367         }
368         return ci;
369 }
370
371 static inline void unlock_cluster(struct swap_cluster_info *ci)
372 {
373         if (ci)
374                 spin_unlock(&ci->lock);
375 }
376
377 /*
378  * Determine the locking method in use for this device.  Return
379  * swap_cluster_info if SSD-style cluster-based locking is in place.
380  */
381 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
382                 struct swap_info_struct *si, unsigned long offset)
383 {
384         struct swap_cluster_info *ci;
385
386         /* Try to use fine-grained SSD-style locking if available: */
387         ci = lock_cluster(si, offset);
388         /* Otherwise, fall back to traditional, coarse locking: */
389         if (!ci)
390                 spin_lock(&si->lock);
391
392         return ci;
393 }
394
395 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
396                                                struct swap_cluster_info *ci)
397 {
398         if (ci)
399                 unlock_cluster(ci);
400         else
401                 spin_unlock(&si->lock);
402 }
403
404 static inline bool cluster_list_empty(struct swap_cluster_list *list)
405 {
406         return cluster_is_null(&list->head);
407 }
408
409 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
410 {
411         return cluster_next(&list->head);
412 }
413
414 static void cluster_list_init(struct swap_cluster_list *list)
415 {
416         cluster_set_null(&list->head);
417         cluster_set_null(&list->tail);
418 }
419
420 static void cluster_list_add_tail(struct swap_cluster_list *list,
421                                   struct swap_cluster_info *ci,
422                                   unsigned int idx)
423 {
424         if (cluster_list_empty(list)) {
425                 cluster_set_next_flag(&list->head, idx, 0);
426                 cluster_set_next_flag(&list->tail, idx, 0);
427         } else {
428                 struct swap_cluster_info *ci_tail;
429                 unsigned int tail = cluster_next(&list->tail);
430
431                 /*
432                  * Nested cluster lock, but both cluster locks are
433                  * only acquired when we held swap_info_struct->lock
434                  */
435                 ci_tail = ci + tail;
436                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
437                 cluster_set_next(ci_tail, idx);
438                 spin_unlock(&ci_tail->lock);
439                 cluster_set_next_flag(&list->tail, idx, 0);
440         }
441 }
442
443 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
444                                            struct swap_cluster_info *ci)
445 {
446         unsigned int idx;
447
448         idx = cluster_next(&list->head);
449         if (cluster_next(&list->tail) == idx) {
450                 cluster_set_null(&list->head);
451                 cluster_set_null(&list->tail);
452         } else
453                 cluster_set_next_flag(&list->head,
454                                       cluster_next(&ci[idx]), 0);
455
456         return idx;
457 }
458
459 /* Add a cluster to discard list and schedule it to do discard */
460 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
461                 unsigned int idx)
462 {
463         /*
464          * If scan_swap_map_slots() can't find a free cluster, it will check
465          * si->swap_map directly. To make sure the discarding cluster isn't
466          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
467          * It will be cleared after discard
468          */
469         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
470                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
471
472         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
473
474         schedule_work(&si->discard_work);
475 }
476
477 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
478 {
479         struct swap_cluster_info *ci = si->cluster_info;
480
481         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
482         cluster_list_add_tail(&si->free_clusters, ci, idx);
483 }
484
485 /*
486  * Doing discard actually. After a cluster discard is finished, the cluster
487  * will be added to free cluster list. caller should hold si->lock.
488 */
489 static void swap_do_scheduled_discard(struct swap_info_struct *si)
490 {
491         struct swap_cluster_info *info, *ci;
492         unsigned int idx;
493
494         info = si->cluster_info;
495
496         while (!cluster_list_empty(&si->discard_clusters)) {
497                 idx = cluster_list_del_first(&si->discard_clusters, info);
498                 spin_unlock(&si->lock);
499
500                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
501                                 SWAPFILE_CLUSTER);
502
503                 spin_lock(&si->lock);
504                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
505                 __free_cluster(si, idx);
506                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
507                                 0, SWAPFILE_CLUSTER);
508                 unlock_cluster(ci);
509         }
510 }
511
512 static void swap_discard_work(struct work_struct *work)
513 {
514         struct swap_info_struct *si;
515
516         si = container_of(work, struct swap_info_struct, discard_work);
517
518         spin_lock(&si->lock);
519         swap_do_scheduled_discard(si);
520         spin_unlock(&si->lock);
521 }
522
523 static void swap_users_ref_free(struct percpu_ref *ref)
524 {
525         struct swap_info_struct *si;
526
527         si = container_of(ref, struct swap_info_struct, users);
528         complete(&si->comp);
529 }
530
531 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533         struct swap_cluster_info *ci = si->cluster_info;
534
535         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
536         cluster_list_del_first(&si->free_clusters, ci);
537         cluster_set_count_flag(ci + idx, 0, 0);
538 }
539
540 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
541 {
542         struct swap_cluster_info *ci = si->cluster_info + idx;
543
544         VM_BUG_ON(cluster_count(ci) != 0);
545         /*
546          * If the swap is discardable, prepare discard the cluster
547          * instead of free it immediately. The cluster will be freed
548          * after discard.
549          */
550         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
551             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
552                 swap_cluster_schedule_discard(si, idx);
553                 return;
554         }
555
556         __free_cluster(si, idx);
557 }
558
559 /*
560  * The cluster corresponding to page_nr will be used. The cluster will be
561  * removed from free cluster list and its usage counter will be increased.
562  */
563 static void inc_cluster_info_page(struct swap_info_struct *p,
564         struct swap_cluster_info *cluster_info, unsigned long page_nr)
565 {
566         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
567
568         if (!cluster_info)
569                 return;
570         if (cluster_is_free(&cluster_info[idx]))
571                 alloc_cluster(p, idx);
572
573         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
574         cluster_set_count(&cluster_info[idx],
575                 cluster_count(&cluster_info[idx]) + 1);
576 }
577
578 /*
579  * The cluster corresponding to page_nr decreases one usage. If the usage
580  * counter becomes 0, which means no page in the cluster is in using, we can
581  * optionally discard the cluster and add it to free cluster list.
582  */
583 static void dec_cluster_info_page(struct swap_info_struct *p,
584         struct swap_cluster_info *cluster_info, unsigned long page_nr)
585 {
586         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
587
588         if (!cluster_info)
589                 return;
590
591         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
592         cluster_set_count(&cluster_info[idx],
593                 cluster_count(&cluster_info[idx]) - 1);
594
595         if (cluster_count(&cluster_info[idx]) == 0)
596                 free_cluster(p, idx);
597 }
598
599 /*
600  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
601  * cluster list. Avoiding such abuse to avoid list corruption.
602  */
603 static bool
604 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
605         unsigned long offset)
606 {
607         struct percpu_cluster *percpu_cluster;
608         bool conflict;
609
610         offset /= SWAPFILE_CLUSTER;
611         conflict = !cluster_list_empty(&si->free_clusters) &&
612                 offset != cluster_list_first(&si->free_clusters) &&
613                 cluster_is_free(&si->cluster_info[offset]);
614
615         if (!conflict)
616                 return false;
617
618         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
619         cluster_set_null(&percpu_cluster->index);
620         return true;
621 }
622
623 /*
624  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
625  * might involve allocating a new cluster for current CPU too.
626  */
627 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
628         unsigned long *offset, unsigned long *scan_base)
629 {
630         struct percpu_cluster *cluster;
631         struct swap_cluster_info *ci;
632         unsigned long tmp, max;
633
634 new_cluster:
635         cluster = this_cpu_ptr(si->percpu_cluster);
636         if (cluster_is_null(&cluster->index)) {
637                 if (!cluster_list_empty(&si->free_clusters)) {
638                         cluster->index = si->free_clusters.head;
639                         cluster->next = cluster_next(&cluster->index) *
640                                         SWAPFILE_CLUSTER;
641                 } else if (!cluster_list_empty(&si->discard_clusters)) {
642                         /*
643                          * we don't have free cluster but have some clusters in
644                          * discarding, do discard now and reclaim them, then
645                          * reread cluster_next_cpu since we dropped si->lock
646                          */
647                         swap_do_scheduled_discard(si);
648                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
649                         *offset = *scan_base;
650                         goto new_cluster;
651                 } else
652                         return false;
653         }
654
655         /*
656          * Other CPUs can use our cluster if they can't find a free cluster,
657          * check if there is still free entry in the cluster
658          */
659         tmp = cluster->next;
660         max = min_t(unsigned long, si->max,
661                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
662         if (tmp < max) {
663                 ci = lock_cluster(si, tmp);
664                 while (tmp < max) {
665                         if (!si->swap_map[tmp])
666                                 break;
667                         tmp++;
668                 }
669                 unlock_cluster(ci);
670         }
671         if (tmp >= max) {
672                 cluster_set_null(&cluster->index);
673                 goto new_cluster;
674         }
675         cluster->next = tmp + 1;
676         *offset = tmp;
677         *scan_base = tmp;
678         return true;
679 }
680
681 static void __del_from_avail_list(struct swap_info_struct *p)
682 {
683         int nid;
684
685         assert_spin_locked(&p->lock);
686         for_each_node(nid)
687                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
688 }
689
690 static void del_from_avail_list(struct swap_info_struct *p)
691 {
692         spin_lock(&swap_avail_lock);
693         __del_from_avail_list(p);
694         spin_unlock(&swap_avail_lock);
695 }
696
697 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
698                              unsigned int nr_entries)
699 {
700         unsigned int end = offset + nr_entries - 1;
701
702         if (offset == si->lowest_bit)
703                 si->lowest_bit += nr_entries;
704         if (end == si->highest_bit)
705                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
706         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
707         if (si->inuse_pages == si->pages) {
708                 si->lowest_bit = si->max;
709                 si->highest_bit = 0;
710                 del_from_avail_list(si);
711         }
712 }
713
714 static void add_to_avail_list(struct swap_info_struct *p)
715 {
716         int nid;
717
718         spin_lock(&swap_avail_lock);
719         for_each_node(nid)
720                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
721         spin_unlock(&swap_avail_lock);
722 }
723
724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
725                             unsigned int nr_entries)
726 {
727         unsigned long begin = offset;
728         unsigned long end = offset + nr_entries - 1;
729         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
730
731         if (offset < si->lowest_bit)
732                 si->lowest_bit = offset;
733         if (end > si->highest_bit) {
734                 bool was_full = !si->highest_bit;
735
736                 WRITE_ONCE(si->highest_bit, end);
737                 if (was_full && (si->flags & SWP_WRITEOK))
738                         add_to_avail_list(si);
739         }
740         atomic_long_add(nr_entries, &nr_swap_pages);
741         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
742         if (si->flags & SWP_BLKDEV)
743                 swap_slot_free_notify =
744                         si->bdev->bd_disk->fops->swap_slot_free_notify;
745         else
746                 swap_slot_free_notify = NULL;
747         while (offset <= end) {
748                 arch_swap_invalidate_page(si->type, offset);
749                 zswap_invalidate(si->type, offset);
750                 if (swap_slot_free_notify)
751                         swap_slot_free_notify(si->bdev, offset);
752                 offset++;
753         }
754         clear_shadow_from_swap_cache(si->type, begin, end);
755 }
756
757 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
758 {
759         unsigned long prev;
760
761         if (!(si->flags & SWP_SOLIDSTATE)) {
762                 si->cluster_next = next;
763                 return;
764         }
765
766         prev = this_cpu_read(*si->cluster_next_cpu);
767         /*
768          * Cross the swap address space size aligned trunk, choose
769          * another trunk randomly to avoid lock contention on swap
770          * address space if possible.
771          */
772         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
773             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
774                 /* No free swap slots available */
775                 if (si->highest_bit <= si->lowest_bit)
776                         return;
777                 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
778                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
779                 next = max_t(unsigned int, next, si->lowest_bit);
780         }
781         this_cpu_write(*si->cluster_next_cpu, next);
782 }
783
784 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
785                                              unsigned long offset)
786 {
787         if (data_race(!si->swap_map[offset])) {
788                 spin_lock(&si->lock);
789                 return true;
790         }
791
792         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
793                 spin_lock(&si->lock);
794                 return true;
795         }
796
797         return false;
798 }
799
800 static int scan_swap_map_slots(struct swap_info_struct *si,
801                                unsigned char usage, int nr,
802                                swp_entry_t slots[])
803 {
804         struct swap_cluster_info *ci;
805         unsigned long offset;
806         unsigned long scan_base;
807         unsigned long last_in_cluster = 0;
808         int latency_ration = LATENCY_LIMIT;
809         int n_ret = 0;
810         bool scanned_many = false;
811
812         /*
813          * We try to cluster swap pages by allocating them sequentially
814          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
815          * way, however, we resort to first-free allocation, starting
816          * a new cluster.  This prevents us from scattering swap pages
817          * all over the entire swap partition, so that we reduce
818          * overall disk seek times between swap pages.  -- sct
819          * But we do now try to find an empty cluster.  -Andrea
820          * And we let swap pages go all over an SSD partition.  Hugh
821          */
822
823         si->flags += SWP_SCANNING;
824         /*
825          * Use percpu scan base for SSD to reduce lock contention on
826          * cluster and swap cache.  For HDD, sequential access is more
827          * important.
828          */
829         if (si->flags & SWP_SOLIDSTATE)
830                 scan_base = this_cpu_read(*si->cluster_next_cpu);
831         else
832                 scan_base = si->cluster_next;
833         offset = scan_base;
834
835         /* SSD algorithm */
836         if (si->cluster_info) {
837                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
838                         goto scan;
839         } else if (unlikely(!si->cluster_nr--)) {
840                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
841                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
842                         goto checks;
843                 }
844
845                 spin_unlock(&si->lock);
846
847                 /*
848                  * If seek is expensive, start searching for new cluster from
849                  * start of partition, to minimize the span of allocated swap.
850                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
851                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
852                  */
853                 scan_base = offset = si->lowest_bit;
854                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
855
856                 /* Locate the first empty (unaligned) cluster */
857                 for (; last_in_cluster <= si->highest_bit; offset++) {
858                         if (si->swap_map[offset])
859                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
860                         else if (offset == last_in_cluster) {
861                                 spin_lock(&si->lock);
862                                 offset -= SWAPFILE_CLUSTER - 1;
863                                 si->cluster_next = offset;
864                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
865                                 goto checks;
866                         }
867                         if (unlikely(--latency_ration < 0)) {
868                                 cond_resched();
869                                 latency_ration = LATENCY_LIMIT;
870                         }
871                 }
872
873                 offset = scan_base;
874                 spin_lock(&si->lock);
875                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
876         }
877
878 checks:
879         if (si->cluster_info) {
880                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
881                 /* take a break if we already got some slots */
882                         if (n_ret)
883                                 goto done;
884                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
885                                                         &scan_base))
886                                 goto scan;
887                 }
888         }
889         if (!(si->flags & SWP_WRITEOK))
890                 goto no_page;
891         if (!si->highest_bit)
892                 goto no_page;
893         if (offset > si->highest_bit)
894                 scan_base = offset = si->lowest_bit;
895
896         ci = lock_cluster(si, offset);
897         /* reuse swap entry of cache-only swap if not busy. */
898         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
899                 int swap_was_freed;
900                 unlock_cluster(ci);
901                 spin_unlock(&si->lock);
902                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
903                 spin_lock(&si->lock);
904                 /* entry was freed successfully, try to use this again */
905                 if (swap_was_freed)
906                         goto checks;
907                 goto scan; /* check next one */
908         }
909
910         if (si->swap_map[offset]) {
911                 unlock_cluster(ci);
912                 if (!n_ret)
913                         goto scan;
914                 else
915                         goto done;
916         }
917         WRITE_ONCE(si->swap_map[offset], usage);
918         inc_cluster_info_page(si, si->cluster_info, offset);
919         unlock_cluster(ci);
920
921         swap_range_alloc(si, offset, 1);
922         slots[n_ret++] = swp_entry(si->type, offset);
923
924         /* got enough slots or reach max slots? */
925         if ((n_ret == nr) || (offset >= si->highest_bit))
926                 goto done;
927
928         /* search for next available slot */
929
930         /* time to take a break? */
931         if (unlikely(--latency_ration < 0)) {
932                 if (n_ret)
933                         goto done;
934                 spin_unlock(&si->lock);
935                 cond_resched();
936                 spin_lock(&si->lock);
937                 latency_ration = LATENCY_LIMIT;
938         }
939
940         /* try to get more slots in cluster */
941         if (si->cluster_info) {
942                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
943                         goto checks;
944         } else if (si->cluster_nr && !si->swap_map[++offset]) {
945                 /* non-ssd case, still more slots in cluster? */
946                 --si->cluster_nr;
947                 goto checks;
948         }
949
950         /*
951          * Even if there's no free clusters available (fragmented),
952          * try to scan a little more quickly with lock held unless we
953          * have scanned too many slots already.
954          */
955         if (!scanned_many) {
956                 unsigned long scan_limit;
957
958                 if (offset < scan_base)
959                         scan_limit = scan_base;
960                 else
961                         scan_limit = si->highest_bit;
962                 for (; offset <= scan_limit && --latency_ration > 0;
963                      offset++) {
964                         if (!si->swap_map[offset])
965                                 goto checks;
966                 }
967         }
968
969 done:
970         set_cluster_next(si, offset + 1);
971         si->flags -= SWP_SCANNING;
972         return n_ret;
973
974 scan:
975         spin_unlock(&si->lock);
976         while (++offset <= READ_ONCE(si->highest_bit)) {
977                 if (unlikely(--latency_ration < 0)) {
978                         cond_resched();
979                         latency_ration = LATENCY_LIMIT;
980                         scanned_many = true;
981                 }
982                 if (swap_offset_available_and_locked(si, offset))
983                         goto checks;
984         }
985         offset = si->lowest_bit;
986         while (offset < scan_base) {
987                 if (unlikely(--latency_ration < 0)) {
988                         cond_resched();
989                         latency_ration = LATENCY_LIMIT;
990                         scanned_many = true;
991                 }
992                 if (swap_offset_available_and_locked(si, offset))
993                         goto checks;
994                 offset++;
995         }
996         spin_lock(&si->lock);
997
998 no_page:
999         si->flags -= SWP_SCANNING;
1000         return n_ret;
1001 }
1002
1003 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1004 {
1005         unsigned long idx;
1006         struct swap_cluster_info *ci;
1007         unsigned long offset;
1008
1009         /*
1010          * Should not even be attempting cluster allocations when huge
1011          * page swap is disabled.  Warn and fail the allocation.
1012          */
1013         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1014                 VM_WARN_ON_ONCE(1);
1015                 return 0;
1016         }
1017
1018         if (cluster_list_empty(&si->free_clusters))
1019                 return 0;
1020
1021         idx = cluster_list_first(&si->free_clusters);
1022         offset = idx * SWAPFILE_CLUSTER;
1023         ci = lock_cluster(si, offset);
1024         alloc_cluster(si, idx);
1025         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1026
1027         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1028         unlock_cluster(ci);
1029         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1030         *slot = swp_entry(si->type, offset);
1031
1032         return 1;
1033 }
1034
1035 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1036 {
1037         unsigned long offset = idx * SWAPFILE_CLUSTER;
1038         struct swap_cluster_info *ci;
1039
1040         ci = lock_cluster(si, offset);
1041         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1042         cluster_set_count_flag(ci, 0, 0);
1043         free_cluster(si, idx);
1044         unlock_cluster(ci);
1045         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1046 }
1047
1048 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1049 {
1050         unsigned long size = swap_entry_size(entry_size);
1051         struct swap_info_struct *si, *next;
1052         long avail_pgs;
1053         int n_ret = 0;
1054         int node;
1055
1056         /* Only single cluster request supported */
1057         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1058
1059         spin_lock(&swap_avail_lock);
1060
1061         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1062         if (avail_pgs <= 0) {
1063                 spin_unlock(&swap_avail_lock);
1064                 goto noswap;
1065         }
1066
1067         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1068
1069         atomic_long_sub(n_goal * size, &nr_swap_pages);
1070
1071 start_over:
1072         node = numa_node_id();
1073         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1074                 /* requeue si to after same-priority siblings */
1075                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1076                 spin_unlock(&swap_avail_lock);
1077                 spin_lock(&si->lock);
1078                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1079                         spin_lock(&swap_avail_lock);
1080                         if (plist_node_empty(&si->avail_lists[node])) {
1081                                 spin_unlock(&si->lock);
1082                                 goto nextsi;
1083                         }
1084                         WARN(!si->highest_bit,
1085                              "swap_info %d in list but !highest_bit\n",
1086                              si->type);
1087                         WARN(!(si->flags & SWP_WRITEOK),
1088                              "swap_info %d in list but !SWP_WRITEOK\n",
1089                              si->type);
1090                         __del_from_avail_list(si);
1091                         spin_unlock(&si->lock);
1092                         goto nextsi;
1093                 }
1094                 if (size == SWAPFILE_CLUSTER) {
1095                         if (si->flags & SWP_BLKDEV)
1096                                 n_ret = swap_alloc_cluster(si, swp_entries);
1097                 } else
1098                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1099                                                     n_goal, swp_entries);
1100                 spin_unlock(&si->lock);
1101                 if (n_ret || size == SWAPFILE_CLUSTER)
1102                         goto check_out;
1103                 cond_resched();
1104
1105                 spin_lock(&swap_avail_lock);
1106 nextsi:
1107                 /*
1108                  * if we got here, it's likely that si was almost full before,
1109                  * and since scan_swap_map_slots() can drop the si->lock,
1110                  * multiple callers probably all tried to get a page from the
1111                  * same si and it filled up before we could get one; or, the si
1112                  * filled up between us dropping swap_avail_lock and taking
1113                  * si->lock. Since we dropped the swap_avail_lock, the
1114                  * swap_avail_head list may have been modified; so if next is
1115                  * still in the swap_avail_head list then try it, otherwise
1116                  * start over if we have not gotten any slots.
1117                  */
1118                 if (plist_node_empty(&next->avail_lists[node]))
1119                         goto start_over;
1120         }
1121
1122         spin_unlock(&swap_avail_lock);
1123
1124 check_out:
1125         if (n_ret < n_goal)
1126                 atomic_long_add((long)(n_goal - n_ret) * size,
1127                                 &nr_swap_pages);
1128 noswap:
1129         return n_ret;
1130 }
1131
1132 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1133 {
1134         struct swap_info_struct *p;
1135         unsigned long offset;
1136
1137         if (!entry.val)
1138                 goto out;
1139         p = swp_swap_info(entry);
1140         if (!p)
1141                 goto bad_nofile;
1142         if (data_race(!(p->flags & SWP_USED)))
1143                 goto bad_device;
1144         offset = swp_offset(entry);
1145         if (offset >= p->max)
1146                 goto bad_offset;
1147         if (data_race(!p->swap_map[swp_offset(entry)]))
1148                 goto bad_free;
1149         return p;
1150
1151 bad_free:
1152         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1153         goto out;
1154 bad_offset:
1155         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1156         goto out;
1157 bad_device:
1158         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1159         goto out;
1160 bad_nofile:
1161         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1162 out:
1163         return NULL;
1164 }
1165
1166 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1167                                         struct swap_info_struct *q)
1168 {
1169         struct swap_info_struct *p;
1170
1171         p = _swap_info_get(entry);
1172
1173         if (p != q) {
1174                 if (q != NULL)
1175                         spin_unlock(&q->lock);
1176                 if (p != NULL)
1177                         spin_lock(&p->lock);
1178         }
1179         return p;
1180 }
1181
1182 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1183                                               unsigned long offset,
1184                                               unsigned char usage)
1185 {
1186         unsigned char count;
1187         unsigned char has_cache;
1188
1189         count = p->swap_map[offset];
1190
1191         has_cache = count & SWAP_HAS_CACHE;
1192         count &= ~SWAP_HAS_CACHE;
1193
1194         if (usage == SWAP_HAS_CACHE) {
1195                 VM_BUG_ON(!has_cache);
1196                 has_cache = 0;
1197         } else if (count == SWAP_MAP_SHMEM) {
1198                 /*
1199                  * Or we could insist on shmem.c using a special
1200                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1201                  */
1202                 count = 0;
1203         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1204                 if (count == COUNT_CONTINUED) {
1205                         if (swap_count_continued(p, offset, count))
1206                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1207                         else
1208                                 count = SWAP_MAP_MAX;
1209                 } else
1210                         count--;
1211         }
1212
1213         usage = count | has_cache;
1214         if (usage)
1215                 WRITE_ONCE(p->swap_map[offset], usage);
1216         else
1217                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1218
1219         return usage;
1220 }
1221
1222 /*
1223  * When we get a swap entry, if there aren't some other ways to
1224  * prevent swapoff, such as the folio in swap cache is locked, page
1225  * table lock is held, etc., the swap entry may become invalid because
1226  * of swapoff.  Then, we need to enclose all swap related functions
1227  * with get_swap_device() and put_swap_device(), unless the swap
1228  * functions call get/put_swap_device() by themselves.
1229  *
1230  * Check whether swap entry is valid in the swap device.  If so,
1231  * return pointer to swap_info_struct, and keep the swap entry valid
1232  * via preventing the swap device from being swapoff, until
1233  * put_swap_device() is called.  Otherwise return NULL.
1234  *
1235  * Notice that swapoff or swapoff+swapon can still happen before the
1236  * percpu_ref_tryget_live() in get_swap_device() or after the
1237  * percpu_ref_put() in put_swap_device() if there isn't any other way
1238  * to prevent swapoff.  The caller must be prepared for that.  For
1239  * example, the following situation is possible.
1240  *
1241  *   CPU1                               CPU2
1242  *   do_swap_page()
1243  *     ...                              swapoff+swapon
1244  *     __read_swap_cache_async()
1245  *       swapcache_prepare()
1246  *         __swap_duplicate()
1247  *           // check swap_map
1248  *     // verify PTE not changed
1249  *
1250  * In __swap_duplicate(), the swap_map need to be checked before
1251  * changing partly because the specified swap entry may be for another
1252  * swap device which has been swapoff.  And in do_swap_page(), after
1253  * the page is read from the swap device, the PTE is verified not
1254  * changed with the page table locked to check whether the swap device
1255  * has been swapoff or swapoff+swapon.
1256  */
1257 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1258 {
1259         struct swap_info_struct *si;
1260         unsigned long offset;
1261
1262         if (!entry.val)
1263                 goto out;
1264         si = swp_swap_info(entry);
1265         if (!si)
1266                 goto bad_nofile;
1267         if (!percpu_ref_tryget_live(&si->users))
1268                 goto out;
1269         /*
1270          * Guarantee the si->users are checked before accessing other
1271          * fields of swap_info_struct.
1272          *
1273          * Paired with the spin_unlock() after setup_swap_info() in
1274          * enable_swap_info().
1275          */
1276         smp_rmb();
1277         offset = swp_offset(entry);
1278         if (offset >= si->max)
1279                 goto put_out;
1280
1281         return si;
1282 bad_nofile:
1283         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1284 out:
1285         return NULL;
1286 put_out:
1287         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1288         percpu_ref_put(&si->users);
1289         return NULL;
1290 }
1291
1292 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1293                                        swp_entry_t entry)
1294 {
1295         struct swap_cluster_info *ci;
1296         unsigned long offset = swp_offset(entry);
1297         unsigned char usage;
1298
1299         ci = lock_cluster_or_swap_info(p, offset);
1300         usage = __swap_entry_free_locked(p, offset, 1);
1301         unlock_cluster_or_swap_info(p, ci);
1302         if (!usage)
1303                 free_swap_slot(entry);
1304
1305         return usage;
1306 }
1307
1308 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1309 {
1310         struct swap_cluster_info *ci;
1311         unsigned long offset = swp_offset(entry);
1312         unsigned char count;
1313
1314         ci = lock_cluster(p, offset);
1315         count = p->swap_map[offset];
1316         VM_BUG_ON(count != SWAP_HAS_CACHE);
1317         p->swap_map[offset] = 0;
1318         dec_cluster_info_page(p, p->cluster_info, offset);
1319         unlock_cluster(ci);
1320
1321         mem_cgroup_uncharge_swap(entry, 1);
1322         swap_range_free(p, offset, 1);
1323 }
1324
1325 /*
1326  * Caller has made sure that the swap device corresponding to entry
1327  * is still around or has not been recycled.
1328  */
1329 void swap_free(swp_entry_t entry)
1330 {
1331         struct swap_info_struct *p;
1332
1333         p = _swap_info_get(entry);
1334         if (p)
1335                 __swap_entry_free(p, entry);
1336 }
1337
1338 /*
1339  * Called after dropping swapcache to decrease refcnt to swap entries.
1340  */
1341 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1342 {
1343         unsigned long offset = swp_offset(entry);
1344         unsigned long idx = offset / SWAPFILE_CLUSTER;
1345         struct swap_cluster_info *ci;
1346         struct swap_info_struct *si;
1347         unsigned char *map;
1348         unsigned int i, free_entries = 0;
1349         unsigned char val;
1350         int size = swap_entry_size(folio_nr_pages(folio));
1351
1352         si = _swap_info_get(entry);
1353         if (!si)
1354                 return;
1355
1356         ci = lock_cluster_or_swap_info(si, offset);
1357         if (size == SWAPFILE_CLUSTER) {
1358                 VM_BUG_ON(!cluster_is_huge(ci));
1359                 map = si->swap_map + offset;
1360                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1361                         val = map[i];
1362                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1363                         if (val == SWAP_HAS_CACHE)
1364                                 free_entries++;
1365                 }
1366                 cluster_clear_huge(ci);
1367                 if (free_entries == SWAPFILE_CLUSTER) {
1368                         unlock_cluster_or_swap_info(si, ci);
1369                         spin_lock(&si->lock);
1370                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1371                         swap_free_cluster(si, idx);
1372                         spin_unlock(&si->lock);
1373                         return;
1374                 }
1375         }
1376         for (i = 0; i < size; i++, entry.val++) {
1377                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1378                         unlock_cluster_or_swap_info(si, ci);
1379                         free_swap_slot(entry);
1380                         if (i == size - 1)
1381                                 return;
1382                         lock_cluster_or_swap_info(si, offset);
1383                 }
1384         }
1385         unlock_cluster_or_swap_info(si, ci);
1386 }
1387
1388 #ifdef CONFIG_THP_SWAP
1389 int split_swap_cluster(swp_entry_t entry)
1390 {
1391         struct swap_info_struct *si;
1392         struct swap_cluster_info *ci;
1393         unsigned long offset = swp_offset(entry);
1394
1395         si = _swap_info_get(entry);
1396         if (!si)
1397                 return -EBUSY;
1398         ci = lock_cluster(si, offset);
1399         cluster_clear_huge(ci);
1400         unlock_cluster(ci);
1401         return 0;
1402 }
1403 #endif
1404
1405 static int swp_entry_cmp(const void *ent1, const void *ent2)
1406 {
1407         const swp_entry_t *e1 = ent1, *e2 = ent2;
1408
1409         return (int)swp_type(*e1) - (int)swp_type(*e2);
1410 }
1411
1412 void swapcache_free_entries(swp_entry_t *entries, int n)
1413 {
1414         struct swap_info_struct *p, *prev;
1415         int i;
1416
1417         if (n <= 0)
1418                 return;
1419
1420         prev = NULL;
1421         p = NULL;
1422
1423         /*
1424          * Sort swap entries by swap device, so each lock is only taken once.
1425          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1426          * so low that it isn't necessary to optimize further.
1427          */
1428         if (nr_swapfiles > 1)
1429                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1430         for (i = 0; i < n; ++i) {
1431                 p = swap_info_get_cont(entries[i], prev);
1432                 if (p)
1433                         swap_entry_free(p, entries[i]);
1434                 prev = p;
1435         }
1436         if (p)
1437                 spin_unlock(&p->lock);
1438 }
1439
1440 int __swap_count(swp_entry_t entry)
1441 {
1442         struct swap_info_struct *si = swp_swap_info(entry);
1443         pgoff_t offset = swp_offset(entry);
1444
1445         return swap_count(si->swap_map[offset]);
1446 }
1447
1448 /*
1449  * How many references to @entry are currently swapped out?
1450  * This does not give an exact answer when swap count is continued,
1451  * but does include the high COUNT_CONTINUED flag to allow for that.
1452  */
1453 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1454 {
1455         pgoff_t offset = swp_offset(entry);
1456         struct swap_cluster_info *ci;
1457         int count;
1458
1459         ci = lock_cluster_or_swap_info(si, offset);
1460         count = swap_count(si->swap_map[offset]);
1461         unlock_cluster_or_swap_info(si, ci);
1462         return count;
1463 }
1464
1465 /*
1466  * How many references to @entry are currently swapped out?
1467  * This considers COUNT_CONTINUED so it returns exact answer.
1468  */
1469 int swp_swapcount(swp_entry_t entry)
1470 {
1471         int count, tmp_count, n;
1472         struct swap_info_struct *p;
1473         struct swap_cluster_info *ci;
1474         struct page *page;
1475         pgoff_t offset;
1476         unsigned char *map;
1477
1478         p = _swap_info_get(entry);
1479         if (!p)
1480                 return 0;
1481
1482         offset = swp_offset(entry);
1483
1484         ci = lock_cluster_or_swap_info(p, offset);
1485
1486         count = swap_count(p->swap_map[offset]);
1487         if (!(count & COUNT_CONTINUED))
1488                 goto out;
1489
1490         count &= ~COUNT_CONTINUED;
1491         n = SWAP_MAP_MAX + 1;
1492
1493         page = vmalloc_to_page(p->swap_map + offset);
1494         offset &= ~PAGE_MASK;
1495         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1496
1497         do {
1498                 page = list_next_entry(page, lru);
1499                 map = kmap_local_page(page);
1500                 tmp_count = map[offset];
1501                 kunmap_local(map);
1502
1503                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1504                 n *= (SWAP_CONT_MAX + 1);
1505         } while (tmp_count & COUNT_CONTINUED);
1506 out:
1507         unlock_cluster_or_swap_info(p, ci);
1508         return count;
1509 }
1510
1511 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1512                                          swp_entry_t entry)
1513 {
1514         struct swap_cluster_info *ci;
1515         unsigned char *map = si->swap_map;
1516         unsigned long roffset = swp_offset(entry);
1517         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1518         int i;
1519         bool ret = false;
1520
1521         ci = lock_cluster_or_swap_info(si, offset);
1522         if (!ci || !cluster_is_huge(ci)) {
1523                 if (swap_count(map[roffset]))
1524                         ret = true;
1525                 goto unlock_out;
1526         }
1527         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1528                 if (swap_count(map[offset + i])) {
1529                         ret = true;
1530                         break;
1531                 }
1532         }
1533 unlock_out:
1534         unlock_cluster_or_swap_info(si, ci);
1535         return ret;
1536 }
1537
1538 static bool folio_swapped(struct folio *folio)
1539 {
1540         swp_entry_t entry = folio->swap;
1541         struct swap_info_struct *si = _swap_info_get(entry);
1542
1543         if (!si)
1544                 return false;
1545
1546         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1547                 return swap_swapcount(si, entry) != 0;
1548
1549         return swap_page_trans_huge_swapped(si, entry);
1550 }
1551
1552 /**
1553  * folio_free_swap() - Free the swap space used for this folio.
1554  * @folio: The folio to remove.
1555  *
1556  * If swap is getting full, or if there are no more mappings of this folio,
1557  * then call folio_free_swap to free its swap space.
1558  *
1559  * Return: true if we were able to release the swap space.
1560  */
1561 bool folio_free_swap(struct folio *folio)
1562 {
1563         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1564
1565         if (!folio_test_swapcache(folio))
1566                 return false;
1567         if (folio_test_writeback(folio))
1568                 return false;
1569         if (folio_swapped(folio))
1570                 return false;
1571
1572         /*
1573          * Once hibernation has begun to create its image of memory,
1574          * there's a danger that one of the calls to folio_free_swap()
1575          * - most probably a call from __try_to_reclaim_swap() while
1576          * hibernation is allocating its own swap pages for the image,
1577          * but conceivably even a call from memory reclaim - will free
1578          * the swap from a folio which has already been recorded in the
1579          * image as a clean swapcache folio, and then reuse its swap for
1580          * another page of the image.  On waking from hibernation, the
1581          * original folio might be freed under memory pressure, then
1582          * later read back in from swap, now with the wrong data.
1583          *
1584          * Hibernation suspends storage while it is writing the image
1585          * to disk so check that here.
1586          */
1587         if (pm_suspended_storage())
1588                 return false;
1589
1590         delete_from_swap_cache(folio);
1591         folio_set_dirty(folio);
1592         return true;
1593 }
1594
1595 /*
1596  * Free the swap entry like above, but also try to
1597  * free the page cache entry if it is the last user.
1598  */
1599 int free_swap_and_cache(swp_entry_t entry)
1600 {
1601         struct swap_info_struct *p;
1602         unsigned char count;
1603
1604         if (non_swap_entry(entry))
1605                 return 1;
1606
1607         p = _swap_info_get(entry);
1608         if (p) {
1609                 count = __swap_entry_free(p, entry);
1610                 if (count == SWAP_HAS_CACHE &&
1611                     !swap_page_trans_huge_swapped(p, entry))
1612                         __try_to_reclaim_swap(p, swp_offset(entry),
1613                                               TTRS_UNMAPPED | TTRS_FULL);
1614         }
1615         return p != NULL;
1616 }
1617
1618 #ifdef CONFIG_HIBERNATION
1619
1620 swp_entry_t get_swap_page_of_type(int type)
1621 {
1622         struct swap_info_struct *si = swap_type_to_swap_info(type);
1623         swp_entry_t entry = {0};
1624
1625         if (!si)
1626                 goto fail;
1627
1628         /* This is called for allocating swap entry, not cache */
1629         spin_lock(&si->lock);
1630         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1631                 atomic_long_dec(&nr_swap_pages);
1632         spin_unlock(&si->lock);
1633 fail:
1634         return entry;
1635 }
1636
1637 /*
1638  * Find the swap type that corresponds to given device (if any).
1639  *
1640  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1641  * from 0, in which the swap header is expected to be located.
1642  *
1643  * This is needed for the suspend to disk (aka swsusp).
1644  */
1645 int swap_type_of(dev_t device, sector_t offset)
1646 {
1647         int type;
1648
1649         if (!device)
1650                 return -1;
1651
1652         spin_lock(&swap_lock);
1653         for (type = 0; type < nr_swapfiles; type++) {
1654                 struct swap_info_struct *sis = swap_info[type];
1655
1656                 if (!(sis->flags & SWP_WRITEOK))
1657                         continue;
1658
1659                 if (device == sis->bdev->bd_dev) {
1660                         struct swap_extent *se = first_se(sis);
1661
1662                         if (se->start_block == offset) {
1663                                 spin_unlock(&swap_lock);
1664                                 return type;
1665                         }
1666                 }
1667         }
1668         spin_unlock(&swap_lock);
1669         return -ENODEV;
1670 }
1671
1672 int find_first_swap(dev_t *device)
1673 {
1674         int type;
1675
1676         spin_lock(&swap_lock);
1677         for (type = 0; type < nr_swapfiles; type++) {
1678                 struct swap_info_struct *sis = swap_info[type];
1679
1680                 if (!(sis->flags & SWP_WRITEOK))
1681                         continue;
1682                 *device = sis->bdev->bd_dev;
1683                 spin_unlock(&swap_lock);
1684                 return type;
1685         }
1686         spin_unlock(&swap_lock);
1687         return -ENODEV;
1688 }
1689
1690 /*
1691  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1692  * corresponding to given index in swap_info (swap type).
1693  */
1694 sector_t swapdev_block(int type, pgoff_t offset)
1695 {
1696         struct swap_info_struct *si = swap_type_to_swap_info(type);
1697         struct swap_extent *se;
1698
1699         if (!si || !(si->flags & SWP_WRITEOK))
1700                 return 0;
1701         se = offset_to_swap_extent(si, offset);
1702         return se->start_block + (offset - se->start_page);
1703 }
1704
1705 /*
1706  * Return either the total number of swap pages of given type, or the number
1707  * of free pages of that type (depending on @free)
1708  *
1709  * This is needed for software suspend
1710  */
1711 unsigned int count_swap_pages(int type, int free)
1712 {
1713         unsigned int n = 0;
1714
1715         spin_lock(&swap_lock);
1716         if ((unsigned int)type < nr_swapfiles) {
1717                 struct swap_info_struct *sis = swap_info[type];
1718
1719                 spin_lock(&sis->lock);
1720                 if (sis->flags & SWP_WRITEOK) {
1721                         n = sis->pages;
1722                         if (free)
1723                                 n -= sis->inuse_pages;
1724                 }
1725                 spin_unlock(&sis->lock);
1726         }
1727         spin_unlock(&swap_lock);
1728         return n;
1729 }
1730 #endif /* CONFIG_HIBERNATION */
1731
1732 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1733 {
1734         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1735 }
1736
1737 /*
1738  * No need to decide whether this PTE shares the swap entry with others,
1739  * just let do_wp_page work it out if a write is requested later - to
1740  * force COW, vm_page_prot omits write permission from any private vma.
1741  */
1742 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1743                 unsigned long addr, swp_entry_t entry, struct folio *folio)
1744 {
1745         struct page *page;
1746         struct folio *swapcache;
1747         spinlock_t *ptl;
1748         pte_t *pte, new_pte, old_pte;
1749         bool hwpoisoned = false;
1750         int ret = 1;
1751
1752         swapcache = folio;
1753         folio = ksm_might_need_to_copy(folio, vma, addr);
1754         if (unlikely(!folio))
1755                 return -ENOMEM;
1756         else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1757                 hwpoisoned = true;
1758                 folio = swapcache;
1759         }
1760
1761         page = folio_file_page(folio, swp_offset(entry));
1762         if (PageHWPoison(page))
1763                 hwpoisoned = true;
1764
1765         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1766         if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1767                                                 swp_entry_to_pte(entry)))) {
1768                 ret = 0;
1769                 goto out;
1770         }
1771
1772         old_pte = ptep_get(pte);
1773
1774         if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1775                 swp_entry_t swp_entry;
1776
1777                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1778                 if (hwpoisoned) {
1779                         swp_entry = make_hwpoison_entry(page);
1780                 } else {
1781                         swp_entry = make_poisoned_swp_entry();
1782                 }
1783                 new_pte = swp_entry_to_pte(swp_entry);
1784                 ret = 0;
1785                 goto setpte;
1786         }
1787
1788         /*
1789          * Some architectures may have to restore extra metadata to the page
1790          * when reading from swap. This metadata may be indexed by swap entry
1791          * so this must be called before swap_free().
1792          */
1793         arch_swap_restore(entry, folio);
1794
1795         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1796         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1797         folio_get(folio);
1798         if (folio == swapcache) {
1799                 rmap_t rmap_flags = RMAP_NONE;
1800
1801                 /*
1802                  * See do_swap_page(): writeback would be problematic.
1803                  * However, we do a folio_wait_writeback() just before this
1804                  * call and have the folio locked.
1805                  */
1806                 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1807                 if (pte_swp_exclusive(old_pte))
1808                         rmap_flags |= RMAP_EXCLUSIVE;
1809
1810                 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1811         } else { /* ksm created a completely new copy */
1812                 folio_add_new_anon_rmap(folio, vma, addr);
1813                 folio_add_lru_vma(folio, vma);
1814         }
1815         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1816         if (pte_swp_soft_dirty(old_pte))
1817                 new_pte = pte_mksoft_dirty(new_pte);
1818         if (pte_swp_uffd_wp(old_pte))
1819                 new_pte = pte_mkuffd_wp(new_pte);
1820 setpte:
1821         set_pte_at(vma->vm_mm, addr, pte, new_pte);
1822         swap_free(entry);
1823 out:
1824         if (pte)
1825                 pte_unmap_unlock(pte, ptl);
1826         if (folio != swapcache) {
1827                 folio_unlock(folio);
1828                 folio_put(folio);
1829         }
1830         return ret;
1831 }
1832
1833 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1834                         unsigned long addr, unsigned long end,
1835                         unsigned int type)
1836 {
1837         pte_t *pte = NULL;
1838         struct swap_info_struct *si;
1839
1840         si = swap_info[type];
1841         do {
1842                 struct folio *folio;
1843                 unsigned long offset;
1844                 unsigned char swp_count;
1845                 swp_entry_t entry;
1846                 int ret;
1847                 pte_t ptent;
1848
1849                 if (!pte++) {
1850                         pte = pte_offset_map(pmd, addr);
1851                         if (!pte)
1852                                 break;
1853                 }
1854
1855                 ptent = ptep_get_lockless(pte);
1856
1857                 if (!is_swap_pte(ptent))
1858                         continue;
1859
1860                 entry = pte_to_swp_entry(ptent);
1861                 if (swp_type(entry) != type)
1862                         continue;
1863
1864                 offset = swp_offset(entry);
1865                 pte_unmap(pte);
1866                 pte = NULL;
1867
1868                 folio = swap_cache_get_folio(entry, vma, addr);
1869                 if (!folio) {
1870                         struct page *page;
1871                         struct vm_fault vmf = {
1872                                 .vma = vma,
1873                                 .address = addr,
1874                                 .real_address = addr,
1875                                 .pmd = pmd,
1876                         };
1877
1878                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1879                                                 &vmf);
1880                         if (page)
1881                                 folio = page_folio(page);
1882                 }
1883                 if (!folio) {
1884                         swp_count = READ_ONCE(si->swap_map[offset]);
1885                         if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1886                                 continue;
1887                         return -ENOMEM;
1888                 }
1889
1890                 folio_lock(folio);
1891                 folio_wait_writeback(folio);
1892                 ret = unuse_pte(vma, pmd, addr, entry, folio);
1893                 if (ret < 0) {
1894                         folio_unlock(folio);
1895                         folio_put(folio);
1896                         return ret;
1897                 }
1898
1899                 folio_free_swap(folio);
1900                 folio_unlock(folio);
1901                 folio_put(folio);
1902         } while (addr += PAGE_SIZE, addr != end);
1903
1904         if (pte)
1905                 pte_unmap(pte);
1906         return 0;
1907 }
1908
1909 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1910                                 unsigned long addr, unsigned long end,
1911                                 unsigned int type)
1912 {
1913         pmd_t *pmd;
1914         unsigned long next;
1915         int ret;
1916
1917         pmd = pmd_offset(pud, addr);
1918         do {
1919                 cond_resched();
1920                 next = pmd_addr_end(addr, end);
1921                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1922                 if (ret)
1923                         return ret;
1924         } while (pmd++, addr = next, addr != end);
1925         return 0;
1926 }
1927
1928 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1929                                 unsigned long addr, unsigned long end,
1930                                 unsigned int type)
1931 {
1932         pud_t *pud;
1933         unsigned long next;
1934         int ret;
1935
1936         pud = pud_offset(p4d, addr);
1937         do {
1938                 next = pud_addr_end(addr, end);
1939                 if (pud_none_or_clear_bad(pud))
1940                         continue;
1941                 ret = unuse_pmd_range(vma, pud, addr, next, type);
1942                 if (ret)
1943                         return ret;
1944         } while (pud++, addr = next, addr != end);
1945         return 0;
1946 }
1947
1948 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1949                                 unsigned long addr, unsigned long end,
1950                                 unsigned int type)
1951 {
1952         p4d_t *p4d;
1953         unsigned long next;
1954         int ret;
1955
1956         p4d = p4d_offset(pgd, addr);
1957         do {
1958                 next = p4d_addr_end(addr, end);
1959                 if (p4d_none_or_clear_bad(p4d))
1960                         continue;
1961                 ret = unuse_pud_range(vma, p4d, addr, next, type);
1962                 if (ret)
1963                         return ret;
1964         } while (p4d++, addr = next, addr != end);
1965         return 0;
1966 }
1967
1968 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1969 {
1970         pgd_t *pgd;
1971         unsigned long addr, end, next;
1972         int ret;
1973
1974         addr = vma->vm_start;
1975         end = vma->vm_end;
1976
1977         pgd = pgd_offset(vma->vm_mm, addr);
1978         do {
1979                 next = pgd_addr_end(addr, end);
1980                 if (pgd_none_or_clear_bad(pgd))
1981                         continue;
1982                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1983                 if (ret)
1984                         return ret;
1985         } while (pgd++, addr = next, addr != end);
1986         return 0;
1987 }
1988
1989 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1990 {
1991         struct vm_area_struct *vma;
1992         int ret = 0;
1993         VMA_ITERATOR(vmi, mm, 0);
1994
1995         mmap_read_lock(mm);
1996         for_each_vma(vmi, vma) {
1997                 if (vma->anon_vma) {
1998                         ret = unuse_vma(vma, type);
1999                         if (ret)
2000                                 break;
2001                 }
2002
2003                 cond_resched();
2004         }
2005         mmap_read_unlock(mm);
2006         return ret;
2007 }
2008
2009 /*
2010  * Scan swap_map from current position to next entry still in use.
2011  * Return 0 if there are no inuse entries after prev till end of
2012  * the map.
2013  */
2014 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2015                                         unsigned int prev)
2016 {
2017         unsigned int i;
2018         unsigned char count;
2019
2020         /*
2021          * No need for swap_lock here: we're just looking
2022          * for whether an entry is in use, not modifying it; false
2023          * hits are okay, and sys_swapoff() has already prevented new
2024          * allocations from this area (while holding swap_lock).
2025          */
2026         for (i = prev + 1; i < si->max; i++) {
2027                 count = READ_ONCE(si->swap_map[i]);
2028                 if (count && swap_count(count) != SWAP_MAP_BAD)
2029                         break;
2030                 if ((i % LATENCY_LIMIT) == 0)
2031                         cond_resched();
2032         }
2033
2034         if (i == si->max)
2035                 i = 0;
2036
2037         return i;
2038 }
2039
2040 static int try_to_unuse(unsigned int type)
2041 {
2042         struct mm_struct *prev_mm;
2043         struct mm_struct *mm;
2044         struct list_head *p;
2045         int retval = 0;
2046         struct swap_info_struct *si = swap_info[type];
2047         struct folio *folio;
2048         swp_entry_t entry;
2049         unsigned int i;
2050
2051         if (!READ_ONCE(si->inuse_pages))
2052                 return 0;
2053
2054 retry:
2055         retval = shmem_unuse(type);
2056         if (retval)
2057                 return retval;
2058
2059         prev_mm = &init_mm;
2060         mmget(prev_mm);
2061
2062         spin_lock(&mmlist_lock);
2063         p = &init_mm.mmlist;
2064         while (READ_ONCE(si->inuse_pages) &&
2065                !signal_pending(current) &&
2066                (p = p->next) != &init_mm.mmlist) {
2067
2068                 mm = list_entry(p, struct mm_struct, mmlist);
2069                 if (!mmget_not_zero(mm))
2070                         continue;
2071                 spin_unlock(&mmlist_lock);
2072                 mmput(prev_mm);
2073                 prev_mm = mm;
2074                 retval = unuse_mm(mm, type);
2075                 if (retval) {
2076                         mmput(prev_mm);
2077                         return retval;
2078                 }
2079
2080                 /*
2081                  * Make sure that we aren't completely killing
2082                  * interactive performance.
2083                  */
2084                 cond_resched();
2085                 spin_lock(&mmlist_lock);
2086         }
2087         spin_unlock(&mmlist_lock);
2088
2089         mmput(prev_mm);
2090
2091         i = 0;
2092         while (READ_ONCE(si->inuse_pages) &&
2093                !signal_pending(current) &&
2094                (i = find_next_to_unuse(si, i)) != 0) {
2095
2096                 entry = swp_entry(type, i);
2097                 folio = filemap_get_folio(swap_address_space(entry), i);
2098                 if (IS_ERR(folio))
2099                         continue;
2100
2101                 /*
2102                  * It is conceivable that a racing task removed this folio from
2103                  * swap cache just before we acquired the page lock. The folio
2104                  * might even be back in swap cache on another swap area. But
2105                  * that is okay, folio_free_swap() only removes stale folios.
2106                  */
2107                 folio_lock(folio);
2108                 folio_wait_writeback(folio);
2109                 folio_free_swap(folio);
2110                 folio_unlock(folio);
2111                 folio_put(folio);
2112         }
2113
2114         /*
2115          * Lets check again to see if there are still swap entries in the map.
2116          * If yes, we would need to do retry the unuse logic again.
2117          * Under global memory pressure, swap entries can be reinserted back
2118          * into process space after the mmlist loop above passes over them.
2119          *
2120          * Limit the number of retries? No: when mmget_not_zero()
2121          * above fails, that mm is likely to be freeing swap from
2122          * exit_mmap(), which proceeds at its own independent pace;
2123          * and even shmem_writepage() could have been preempted after
2124          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2125          * and robust (though cpu-intensive) just to keep retrying.
2126          */
2127         if (READ_ONCE(si->inuse_pages)) {
2128                 if (!signal_pending(current))
2129                         goto retry;
2130                 return -EINTR;
2131         }
2132
2133         return 0;
2134 }
2135
2136 /*
2137  * After a successful try_to_unuse, if no swap is now in use, we know
2138  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2139  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2140  * added to the mmlist just after page_duplicate - before would be racy.
2141  */
2142 static void drain_mmlist(void)
2143 {
2144         struct list_head *p, *next;
2145         unsigned int type;
2146
2147         for (type = 0; type < nr_swapfiles; type++)
2148                 if (swap_info[type]->inuse_pages)
2149                         return;
2150         spin_lock(&mmlist_lock);
2151         list_for_each_safe(p, next, &init_mm.mmlist)
2152                 list_del_init(p);
2153         spin_unlock(&mmlist_lock);
2154 }
2155
2156 /*
2157  * Free all of a swapdev's extent information
2158  */
2159 static void destroy_swap_extents(struct swap_info_struct *sis)
2160 {
2161         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2162                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2163                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2164
2165                 rb_erase(rb, &sis->swap_extent_root);
2166                 kfree(se);
2167         }
2168
2169         if (sis->flags & SWP_ACTIVATED) {
2170                 struct file *swap_file = sis->swap_file;
2171                 struct address_space *mapping = swap_file->f_mapping;
2172
2173                 sis->flags &= ~SWP_ACTIVATED;
2174                 if (mapping->a_ops->swap_deactivate)
2175                         mapping->a_ops->swap_deactivate(swap_file);
2176         }
2177 }
2178
2179 /*
2180  * Add a block range (and the corresponding page range) into this swapdev's
2181  * extent tree.
2182  *
2183  * This function rather assumes that it is called in ascending page order.
2184  */
2185 int
2186 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2187                 unsigned long nr_pages, sector_t start_block)
2188 {
2189         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2190         struct swap_extent *se;
2191         struct swap_extent *new_se;
2192
2193         /*
2194          * place the new node at the right most since the
2195          * function is called in ascending page order.
2196          */
2197         while (*link) {
2198                 parent = *link;
2199                 link = &parent->rb_right;
2200         }
2201
2202         if (parent) {
2203                 se = rb_entry(parent, struct swap_extent, rb_node);
2204                 BUG_ON(se->start_page + se->nr_pages != start_page);
2205                 if (se->start_block + se->nr_pages == start_block) {
2206                         /* Merge it */
2207                         se->nr_pages += nr_pages;
2208                         return 0;
2209                 }
2210         }
2211
2212         /* No merge, insert a new extent. */
2213         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2214         if (new_se == NULL)
2215                 return -ENOMEM;
2216         new_se->start_page = start_page;
2217         new_se->nr_pages = nr_pages;
2218         new_se->start_block = start_block;
2219
2220         rb_link_node(&new_se->rb_node, parent, link);
2221         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2222         return 1;
2223 }
2224 EXPORT_SYMBOL_GPL(add_swap_extent);
2225
2226 /*
2227  * A `swap extent' is a simple thing which maps a contiguous range of pages
2228  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2229  * built at swapon time and is then used at swap_writepage/swap_read_folio
2230  * time for locating where on disk a page belongs.
2231  *
2232  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2233  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2234  * swap files identically.
2235  *
2236  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2237  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2238  * swapfiles are handled *identically* after swapon time.
2239  *
2240  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2241  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2242  * blocks are found which do not fall within the PAGE_SIZE alignment
2243  * requirements, they are simply tossed out - we will never use those blocks
2244  * for swapping.
2245  *
2246  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2247  * prevents users from writing to the swap device, which will corrupt memory.
2248  *
2249  * The amount of disk space which a single swap extent represents varies.
2250  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2251  * extents in the rbtree. - akpm.
2252  */
2253 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2254 {
2255         struct file *swap_file = sis->swap_file;
2256         struct address_space *mapping = swap_file->f_mapping;
2257         struct inode *inode = mapping->host;
2258         int ret;
2259
2260         if (S_ISBLK(inode->i_mode)) {
2261                 ret = add_swap_extent(sis, 0, sis->max, 0);
2262                 *span = sis->pages;
2263                 return ret;
2264         }
2265
2266         if (mapping->a_ops->swap_activate) {
2267                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2268                 if (ret < 0)
2269                         return ret;
2270                 sis->flags |= SWP_ACTIVATED;
2271                 if ((sis->flags & SWP_FS_OPS) &&
2272                     sio_pool_init() != 0) {
2273                         destroy_swap_extents(sis);
2274                         return -ENOMEM;
2275                 }
2276                 return ret;
2277         }
2278
2279         return generic_swapfile_activate(sis, swap_file, span);
2280 }
2281
2282 static int swap_node(struct swap_info_struct *p)
2283 {
2284         struct block_device *bdev;
2285
2286         if (p->bdev)
2287                 bdev = p->bdev;
2288         else
2289                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2290
2291         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2292 }
2293
2294 static void setup_swap_info(struct swap_info_struct *p, int prio,
2295                             unsigned char *swap_map,
2296                             struct swap_cluster_info *cluster_info)
2297 {
2298         int i;
2299
2300         if (prio >= 0)
2301                 p->prio = prio;
2302         else
2303                 p->prio = --least_priority;
2304         /*
2305          * the plist prio is negated because plist ordering is
2306          * low-to-high, while swap ordering is high-to-low
2307          */
2308         p->list.prio = -p->prio;
2309         for_each_node(i) {
2310                 if (p->prio >= 0)
2311                         p->avail_lists[i].prio = -p->prio;
2312                 else {
2313                         if (swap_node(p) == i)
2314                                 p->avail_lists[i].prio = 1;
2315                         else
2316                                 p->avail_lists[i].prio = -p->prio;
2317                 }
2318         }
2319         p->swap_map = swap_map;
2320         p->cluster_info = cluster_info;
2321 }
2322
2323 static void _enable_swap_info(struct swap_info_struct *p)
2324 {
2325         p->flags |= SWP_WRITEOK;
2326         atomic_long_add(p->pages, &nr_swap_pages);
2327         total_swap_pages += p->pages;
2328
2329         assert_spin_locked(&swap_lock);
2330         /*
2331          * both lists are plists, and thus priority ordered.
2332          * swap_active_head needs to be priority ordered for swapoff(),
2333          * which on removal of any swap_info_struct with an auto-assigned
2334          * (i.e. negative) priority increments the auto-assigned priority
2335          * of any lower-priority swap_info_structs.
2336          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2337          * which allocates swap pages from the highest available priority
2338          * swap_info_struct.
2339          */
2340         plist_add(&p->list, &swap_active_head);
2341
2342         /* add to available list iff swap device is not full */
2343         if (p->highest_bit)
2344                 add_to_avail_list(p);
2345 }
2346
2347 static void enable_swap_info(struct swap_info_struct *p, int prio,
2348                                 unsigned char *swap_map,
2349                                 struct swap_cluster_info *cluster_info)
2350 {
2351         zswap_swapon(p->type);
2352
2353         spin_lock(&swap_lock);
2354         spin_lock(&p->lock);
2355         setup_swap_info(p, prio, swap_map, cluster_info);
2356         spin_unlock(&p->lock);
2357         spin_unlock(&swap_lock);
2358         /*
2359          * Finished initializing swap device, now it's safe to reference it.
2360          */
2361         percpu_ref_resurrect(&p->users);
2362         spin_lock(&swap_lock);
2363         spin_lock(&p->lock);
2364         _enable_swap_info(p);
2365         spin_unlock(&p->lock);
2366         spin_unlock(&swap_lock);
2367 }
2368
2369 static void reinsert_swap_info(struct swap_info_struct *p)
2370 {
2371         spin_lock(&swap_lock);
2372         spin_lock(&p->lock);
2373         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2374         _enable_swap_info(p);
2375         spin_unlock(&p->lock);
2376         spin_unlock(&swap_lock);
2377 }
2378
2379 bool has_usable_swap(void)
2380 {
2381         bool ret = true;
2382
2383         spin_lock(&swap_lock);
2384         if (plist_head_empty(&swap_active_head))
2385                 ret = false;
2386         spin_unlock(&swap_lock);
2387         return ret;
2388 }
2389
2390 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2391 {
2392         struct swap_info_struct *p = NULL;
2393         unsigned char *swap_map;
2394         struct swap_cluster_info *cluster_info;
2395         struct file *swap_file, *victim;
2396         struct address_space *mapping;
2397         struct inode *inode;
2398         struct filename *pathname;
2399         int err, found = 0;
2400         unsigned int old_block_size;
2401
2402         if (!capable(CAP_SYS_ADMIN))
2403                 return -EPERM;
2404
2405         BUG_ON(!current->mm);
2406
2407         pathname = getname(specialfile);
2408         if (IS_ERR(pathname))
2409                 return PTR_ERR(pathname);
2410
2411         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2412         err = PTR_ERR(victim);
2413         if (IS_ERR(victim))
2414                 goto out;
2415
2416         mapping = victim->f_mapping;
2417         spin_lock(&swap_lock);
2418         plist_for_each_entry(p, &swap_active_head, list) {
2419                 if (p->flags & SWP_WRITEOK) {
2420                         if (p->swap_file->f_mapping == mapping) {
2421                                 found = 1;
2422                                 break;
2423                         }
2424                 }
2425         }
2426         if (!found) {
2427                 err = -EINVAL;
2428                 spin_unlock(&swap_lock);
2429                 goto out_dput;
2430         }
2431         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2432                 vm_unacct_memory(p->pages);
2433         else {
2434                 err = -ENOMEM;
2435                 spin_unlock(&swap_lock);
2436                 goto out_dput;
2437         }
2438         spin_lock(&p->lock);
2439         del_from_avail_list(p);
2440         if (p->prio < 0) {
2441                 struct swap_info_struct *si = p;
2442                 int nid;
2443
2444                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2445                         si->prio++;
2446                         si->list.prio--;
2447                         for_each_node(nid) {
2448                                 if (si->avail_lists[nid].prio != 1)
2449                                         si->avail_lists[nid].prio--;
2450                         }
2451                 }
2452                 least_priority++;
2453         }
2454         plist_del(&p->list, &swap_active_head);
2455         atomic_long_sub(p->pages, &nr_swap_pages);
2456         total_swap_pages -= p->pages;
2457         p->flags &= ~SWP_WRITEOK;
2458         spin_unlock(&p->lock);
2459         spin_unlock(&swap_lock);
2460
2461         disable_swap_slots_cache_lock();
2462
2463         set_current_oom_origin();
2464         err = try_to_unuse(p->type);
2465         clear_current_oom_origin();
2466
2467         if (err) {
2468                 /* re-insert swap space back into swap_list */
2469                 reinsert_swap_info(p);
2470                 reenable_swap_slots_cache_unlock();
2471                 goto out_dput;
2472         }
2473
2474         reenable_swap_slots_cache_unlock();
2475
2476         /*
2477          * Wait for swap operations protected by get/put_swap_device()
2478          * to complete.
2479          *
2480          * We need synchronize_rcu() here to protect the accessing to
2481          * the swap cache data structure.
2482          */
2483         percpu_ref_kill(&p->users);
2484         synchronize_rcu();
2485         wait_for_completion(&p->comp);
2486
2487         flush_work(&p->discard_work);
2488
2489         destroy_swap_extents(p);
2490         if (p->flags & SWP_CONTINUED)
2491                 free_swap_count_continuations(p);
2492
2493         if (!p->bdev || !bdev_nonrot(p->bdev))
2494                 atomic_dec(&nr_rotate_swap);
2495
2496         mutex_lock(&swapon_mutex);
2497         spin_lock(&swap_lock);
2498         spin_lock(&p->lock);
2499         drain_mmlist();
2500
2501         /* wait for anyone still in scan_swap_map_slots */
2502         p->highest_bit = 0;             /* cuts scans short */
2503         while (p->flags >= SWP_SCANNING) {
2504                 spin_unlock(&p->lock);
2505                 spin_unlock(&swap_lock);
2506                 schedule_timeout_uninterruptible(1);
2507                 spin_lock(&swap_lock);
2508                 spin_lock(&p->lock);
2509         }
2510
2511         swap_file = p->swap_file;
2512         old_block_size = p->old_block_size;
2513         p->swap_file = NULL;
2514         p->max = 0;
2515         swap_map = p->swap_map;
2516         p->swap_map = NULL;
2517         cluster_info = p->cluster_info;
2518         p->cluster_info = NULL;
2519         spin_unlock(&p->lock);
2520         spin_unlock(&swap_lock);
2521         arch_swap_invalidate_area(p->type);
2522         zswap_swapoff(p->type);
2523         mutex_unlock(&swapon_mutex);
2524         free_percpu(p->percpu_cluster);
2525         p->percpu_cluster = NULL;
2526         free_percpu(p->cluster_next_cpu);
2527         p->cluster_next_cpu = NULL;
2528         vfree(swap_map);
2529         kvfree(cluster_info);
2530         /* Destroy swap account information */
2531         swap_cgroup_swapoff(p->type);
2532         exit_swap_address_space(p->type);
2533
2534         inode = mapping->host;
2535         if (p->bdev_file) {
2536                 set_blocksize(p->bdev, old_block_size);
2537                 fput(p->bdev_file);
2538                 p->bdev_file = NULL;
2539         }
2540
2541         inode_lock(inode);
2542         inode->i_flags &= ~S_SWAPFILE;
2543         inode_unlock(inode);
2544         filp_close(swap_file, NULL);
2545
2546         /*
2547          * Clear the SWP_USED flag after all resources are freed so that swapon
2548          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2549          * not hold p->lock after we cleared its SWP_WRITEOK.
2550          */
2551         spin_lock(&swap_lock);
2552         p->flags = 0;
2553         spin_unlock(&swap_lock);
2554
2555         err = 0;
2556         atomic_inc(&proc_poll_event);
2557         wake_up_interruptible(&proc_poll_wait);
2558
2559 out_dput:
2560         filp_close(victim, NULL);
2561 out:
2562         putname(pathname);
2563         return err;
2564 }
2565
2566 #ifdef CONFIG_PROC_FS
2567 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2568 {
2569         struct seq_file *seq = file->private_data;
2570
2571         poll_wait(file, &proc_poll_wait, wait);
2572
2573         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2574                 seq->poll_event = atomic_read(&proc_poll_event);
2575                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2576         }
2577
2578         return EPOLLIN | EPOLLRDNORM;
2579 }
2580
2581 /* iterator */
2582 static void *swap_start(struct seq_file *swap, loff_t *pos)
2583 {
2584         struct swap_info_struct *si;
2585         int type;
2586         loff_t l = *pos;
2587
2588         mutex_lock(&swapon_mutex);
2589
2590         if (!l)
2591                 return SEQ_START_TOKEN;
2592
2593         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2594                 if (!(si->flags & SWP_USED) || !si->swap_map)
2595                         continue;
2596                 if (!--l)
2597                         return si;
2598         }
2599
2600         return NULL;
2601 }
2602
2603 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2604 {
2605         struct swap_info_struct *si = v;
2606         int type;
2607
2608         if (v == SEQ_START_TOKEN)
2609                 type = 0;
2610         else
2611                 type = si->type + 1;
2612
2613         ++(*pos);
2614         for (; (si = swap_type_to_swap_info(type)); type++) {
2615                 if (!(si->flags & SWP_USED) || !si->swap_map)
2616                         continue;
2617                 return si;
2618         }
2619
2620         return NULL;
2621 }
2622
2623 static void swap_stop(struct seq_file *swap, void *v)
2624 {
2625         mutex_unlock(&swapon_mutex);
2626 }
2627
2628 static int swap_show(struct seq_file *swap, void *v)
2629 {
2630         struct swap_info_struct *si = v;
2631         struct file *file;
2632         int len;
2633         unsigned long bytes, inuse;
2634
2635         if (si == SEQ_START_TOKEN) {
2636                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2637                 return 0;
2638         }
2639
2640         bytes = K(si->pages);
2641         inuse = K(READ_ONCE(si->inuse_pages));
2642
2643         file = si->swap_file;
2644         len = seq_file_path(swap, file, " \t\n\\");
2645         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2646                         len < 40 ? 40 - len : 1, " ",
2647                         S_ISBLK(file_inode(file)->i_mode) ?
2648                                 "partition" : "file\t",
2649                         bytes, bytes < 10000000 ? "\t" : "",
2650                         inuse, inuse < 10000000 ? "\t" : "",
2651                         si->prio);
2652         return 0;
2653 }
2654
2655 static const struct seq_operations swaps_op = {
2656         .start =        swap_start,
2657         .next =         swap_next,
2658         .stop =         swap_stop,
2659         .show =         swap_show
2660 };
2661
2662 static int swaps_open(struct inode *inode, struct file *file)
2663 {
2664         struct seq_file *seq;
2665         int ret;
2666
2667         ret = seq_open(file, &swaps_op);
2668         if (ret)
2669                 return ret;
2670
2671         seq = file->private_data;
2672         seq->poll_event = atomic_read(&proc_poll_event);
2673         return 0;
2674 }
2675
2676 static const struct proc_ops swaps_proc_ops = {
2677         .proc_flags     = PROC_ENTRY_PERMANENT,
2678         .proc_open      = swaps_open,
2679         .proc_read      = seq_read,
2680         .proc_lseek     = seq_lseek,
2681         .proc_release   = seq_release,
2682         .proc_poll      = swaps_poll,
2683 };
2684
2685 static int __init procswaps_init(void)
2686 {
2687         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2688         return 0;
2689 }
2690 __initcall(procswaps_init);
2691 #endif /* CONFIG_PROC_FS */
2692
2693 #ifdef MAX_SWAPFILES_CHECK
2694 static int __init max_swapfiles_check(void)
2695 {
2696         MAX_SWAPFILES_CHECK();
2697         return 0;
2698 }
2699 late_initcall(max_swapfiles_check);
2700 #endif
2701
2702 static struct swap_info_struct *alloc_swap_info(void)
2703 {
2704         struct swap_info_struct *p;
2705         struct swap_info_struct *defer = NULL;
2706         unsigned int type;
2707         int i;
2708
2709         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2710         if (!p)
2711                 return ERR_PTR(-ENOMEM);
2712
2713         if (percpu_ref_init(&p->users, swap_users_ref_free,
2714                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2715                 kvfree(p);
2716                 return ERR_PTR(-ENOMEM);
2717         }
2718
2719         spin_lock(&swap_lock);
2720         for (type = 0; type < nr_swapfiles; type++) {
2721                 if (!(swap_info[type]->flags & SWP_USED))
2722                         break;
2723         }
2724         if (type >= MAX_SWAPFILES) {
2725                 spin_unlock(&swap_lock);
2726                 percpu_ref_exit(&p->users);
2727                 kvfree(p);
2728                 return ERR_PTR(-EPERM);
2729         }
2730         if (type >= nr_swapfiles) {
2731                 p->type = type;
2732                 /*
2733                  * Publish the swap_info_struct after initializing it.
2734                  * Note that kvzalloc() above zeroes all its fields.
2735                  */
2736                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2737                 nr_swapfiles++;
2738         } else {
2739                 defer = p;
2740                 p = swap_info[type];
2741                 /*
2742                  * Do not memset this entry: a racing procfs swap_next()
2743                  * would be relying on p->type to remain valid.
2744                  */
2745         }
2746         p->swap_extent_root = RB_ROOT;
2747         plist_node_init(&p->list, 0);
2748         for_each_node(i)
2749                 plist_node_init(&p->avail_lists[i], 0);
2750         p->flags = SWP_USED;
2751         spin_unlock(&swap_lock);
2752         if (defer) {
2753                 percpu_ref_exit(&defer->users);
2754                 kvfree(defer);
2755         }
2756         spin_lock_init(&p->lock);
2757         spin_lock_init(&p->cont_lock);
2758         init_completion(&p->comp);
2759
2760         return p;
2761 }
2762
2763 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2764 {
2765         int error;
2766
2767         if (S_ISBLK(inode->i_mode)) {
2768                 p->bdev_file = bdev_file_open_by_dev(inode->i_rdev,
2769                                 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2770                 if (IS_ERR(p->bdev_file)) {
2771                         error = PTR_ERR(p->bdev_file);
2772                         p->bdev_file = NULL;
2773                         return error;
2774                 }
2775                 p->bdev = file_bdev(p->bdev_file);
2776                 p->old_block_size = block_size(p->bdev);
2777                 error = set_blocksize(p->bdev, PAGE_SIZE);
2778                 if (error < 0)
2779                         return error;
2780                 /*
2781                  * Zoned block devices contain zones that have a sequential
2782                  * write only restriction.  Hence zoned block devices are not
2783                  * suitable for swapping.  Disallow them here.
2784                  */
2785                 if (bdev_is_zoned(p->bdev))
2786                         return -EINVAL;
2787                 p->flags |= SWP_BLKDEV;
2788         } else if (S_ISREG(inode->i_mode)) {
2789                 p->bdev = inode->i_sb->s_bdev;
2790         }
2791
2792         return 0;
2793 }
2794
2795
2796 /*
2797  * Find out how many pages are allowed for a single swap device. There
2798  * are two limiting factors:
2799  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2800  * 2) the number of bits in the swap pte, as defined by the different
2801  * architectures.
2802  *
2803  * In order to find the largest possible bit mask, a swap entry with
2804  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2805  * decoded to a swp_entry_t again, and finally the swap offset is
2806  * extracted.
2807  *
2808  * This will mask all the bits from the initial ~0UL mask that can't
2809  * be encoded in either the swp_entry_t or the architecture definition
2810  * of a swap pte.
2811  */
2812 unsigned long generic_max_swapfile_size(void)
2813 {
2814         return swp_offset(pte_to_swp_entry(
2815                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2816 }
2817
2818 /* Can be overridden by an architecture for additional checks. */
2819 __weak unsigned long arch_max_swapfile_size(void)
2820 {
2821         return generic_max_swapfile_size();
2822 }
2823
2824 static unsigned long read_swap_header(struct swap_info_struct *p,
2825                                         union swap_header *swap_header,
2826                                         struct inode *inode)
2827 {
2828         int i;
2829         unsigned long maxpages;
2830         unsigned long swapfilepages;
2831         unsigned long last_page;
2832
2833         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2834                 pr_err("Unable to find swap-space signature\n");
2835                 return 0;
2836         }
2837
2838         /* swap partition endianness hack... */
2839         if (swab32(swap_header->info.version) == 1) {
2840                 swab32s(&swap_header->info.version);
2841                 swab32s(&swap_header->info.last_page);
2842                 swab32s(&swap_header->info.nr_badpages);
2843                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2844                         return 0;
2845                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2846                         swab32s(&swap_header->info.badpages[i]);
2847         }
2848         /* Check the swap header's sub-version */
2849         if (swap_header->info.version != 1) {
2850                 pr_warn("Unable to handle swap header version %d\n",
2851                         swap_header->info.version);
2852                 return 0;
2853         }
2854
2855         p->lowest_bit  = 1;
2856         p->cluster_next = 1;
2857         p->cluster_nr = 0;
2858
2859         maxpages = swapfile_maximum_size;
2860         last_page = swap_header->info.last_page;
2861         if (!last_page) {
2862                 pr_warn("Empty swap-file\n");
2863                 return 0;
2864         }
2865         if (last_page > maxpages) {
2866                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2867                         K(maxpages), K(last_page));
2868         }
2869         if (maxpages > last_page) {
2870                 maxpages = last_page + 1;
2871                 /* p->max is an unsigned int: don't overflow it */
2872                 if ((unsigned int)maxpages == 0)
2873                         maxpages = UINT_MAX;
2874         }
2875         p->highest_bit = maxpages - 1;
2876
2877         if (!maxpages)
2878                 return 0;
2879         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2880         if (swapfilepages && maxpages > swapfilepages) {
2881                 pr_warn("Swap area shorter than signature indicates\n");
2882                 return 0;
2883         }
2884         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2885                 return 0;
2886         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2887                 return 0;
2888
2889         return maxpages;
2890 }
2891
2892 #define SWAP_CLUSTER_INFO_COLS                                          \
2893         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2894 #define SWAP_CLUSTER_SPACE_COLS                                         \
2895         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2896 #define SWAP_CLUSTER_COLS                                               \
2897         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2898
2899 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2900                                         union swap_header *swap_header,
2901                                         unsigned char *swap_map,
2902                                         struct swap_cluster_info *cluster_info,
2903                                         unsigned long maxpages,
2904                                         sector_t *span)
2905 {
2906         unsigned int j, k;
2907         unsigned int nr_good_pages;
2908         int nr_extents;
2909         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2910         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2911         unsigned long i, idx;
2912
2913         nr_good_pages = maxpages - 1;   /* omit header page */
2914
2915         cluster_list_init(&p->free_clusters);
2916         cluster_list_init(&p->discard_clusters);
2917
2918         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2919                 unsigned int page_nr = swap_header->info.badpages[i];
2920                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2921                         return -EINVAL;
2922                 if (page_nr < maxpages) {
2923                         swap_map[page_nr] = SWAP_MAP_BAD;
2924                         nr_good_pages--;
2925                         /*
2926                          * Haven't marked the cluster free yet, no list
2927                          * operation involved
2928                          */
2929                         inc_cluster_info_page(p, cluster_info, page_nr);
2930                 }
2931         }
2932
2933         /* Haven't marked the cluster free yet, no list operation involved */
2934         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2935                 inc_cluster_info_page(p, cluster_info, i);
2936
2937         if (nr_good_pages) {
2938                 swap_map[0] = SWAP_MAP_BAD;
2939                 /*
2940                  * Not mark the cluster free yet, no list
2941                  * operation involved
2942                  */
2943                 inc_cluster_info_page(p, cluster_info, 0);
2944                 p->max = maxpages;
2945                 p->pages = nr_good_pages;
2946                 nr_extents = setup_swap_extents(p, span);
2947                 if (nr_extents < 0)
2948                         return nr_extents;
2949                 nr_good_pages = p->pages;
2950         }
2951         if (!nr_good_pages) {
2952                 pr_warn("Empty swap-file\n");
2953                 return -EINVAL;
2954         }
2955
2956         if (!cluster_info)
2957                 return nr_extents;
2958
2959
2960         /*
2961          * Reduce false cache line sharing between cluster_info and
2962          * sharing same address space.
2963          */
2964         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2965                 j = (k + col) % SWAP_CLUSTER_COLS;
2966                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2967                         idx = i * SWAP_CLUSTER_COLS + j;
2968                         if (idx >= nr_clusters)
2969                                 continue;
2970                         if (cluster_count(&cluster_info[idx]))
2971                                 continue;
2972                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2973                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2974                                               idx);
2975                 }
2976         }
2977         return nr_extents;
2978 }
2979
2980 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2981 {
2982         struct swap_info_struct *p;
2983         struct filename *name;
2984         struct file *swap_file = NULL;
2985         struct address_space *mapping;
2986         struct dentry *dentry;
2987         int prio;
2988         int error;
2989         union swap_header *swap_header;
2990         int nr_extents;
2991         sector_t span;
2992         unsigned long maxpages;
2993         unsigned char *swap_map = NULL;
2994         struct swap_cluster_info *cluster_info = NULL;
2995         struct page *page = NULL;
2996         struct inode *inode = NULL;
2997         bool inced_nr_rotate_swap = false;
2998
2999         if (swap_flags & ~SWAP_FLAGS_VALID)
3000                 return -EINVAL;
3001
3002         if (!capable(CAP_SYS_ADMIN))
3003                 return -EPERM;
3004
3005         if (!swap_avail_heads)
3006                 return -ENOMEM;
3007
3008         p = alloc_swap_info();
3009         if (IS_ERR(p))
3010                 return PTR_ERR(p);
3011
3012         INIT_WORK(&p->discard_work, swap_discard_work);
3013
3014         name = getname(specialfile);
3015         if (IS_ERR(name)) {
3016                 error = PTR_ERR(name);
3017                 name = NULL;
3018                 goto bad_swap;
3019         }
3020         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3021         if (IS_ERR(swap_file)) {
3022                 error = PTR_ERR(swap_file);
3023                 swap_file = NULL;
3024                 goto bad_swap;
3025         }
3026
3027         p->swap_file = swap_file;
3028         mapping = swap_file->f_mapping;
3029         dentry = swap_file->f_path.dentry;
3030         inode = mapping->host;
3031
3032         error = claim_swapfile(p, inode);
3033         if (unlikely(error))
3034                 goto bad_swap;
3035
3036         inode_lock(inode);
3037         if (d_unlinked(dentry) || cant_mount(dentry)) {
3038                 error = -ENOENT;
3039                 goto bad_swap_unlock_inode;
3040         }
3041         if (IS_SWAPFILE(inode)) {
3042                 error = -EBUSY;
3043                 goto bad_swap_unlock_inode;
3044         }
3045
3046         /*
3047          * Read the swap header.
3048          */
3049         if (!mapping->a_ops->read_folio) {
3050                 error = -EINVAL;
3051                 goto bad_swap_unlock_inode;
3052         }
3053         page = read_mapping_page(mapping, 0, swap_file);
3054         if (IS_ERR(page)) {
3055                 error = PTR_ERR(page);
3056                 goto bad_swap_unlock_inode;
3057         }
3058         swap_header = kmap(page);
3059
3060         maxpages = read_swap_header(p, swap_header, inode);
3061         if (unlikely(!maxpages)) {
3062                 error = -EINVAL;
3063                 goto bad_swap_unlock_inode;
3064         }
3065
3066         /* OK, set up the swap map and apply the bad block list */
3067         swap_map = vzalloc(maxpages);
3068         if (!swap_map) {
3069                 error = -ENOMEM;
3070                 goto bad_swap_unlock_inode;
3071         }
3072
3073         if (p->bdev && bdev_stable_writes(p->bdev))
3074                 p->flags |= SWP_STABLE_WRITES;
3075
3076         if (p->bdev && bdev_synchronous(p->bdev))
3077                 p->flags |= SWP_SYNCHRONOUS_IO;
3078
3079         if (p->bdev && bdev_nonrot(p->bdev)) {
3080                 int cpu;
3081                 unsigned long ci, nr_cluster;
3082
3083                 p->flags |= SWP_SOLIDSTATE;
3084                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3085                 if (!p->cluster_next_cpu) {
3086                         error = -ENOMEM;
3087                         goto bad_swap_unlock_inode;
3088                 }
3089                 /*
3090                  * select a random position to start with to help wear leveling
3091                  * SSD
3092                  */
3093                 for_each_possible_cpu(cpu) {
3094                         per_cpu(*p->cluster_next_cpu, cpu) =
3095                                 get_random_u32_inclusive(1, p->highest_bit);
3096                 }
3097                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3098
3099                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3100                                         GFP_KERNEL);
3101                 if (!cluster_info) {
3102                         error = -ENOMEM;
3103                         goto bad_swap_unlock_inode;
3104                 }
3105
3106                 for (ci = 0; ci < nr_cluster; ci++)
3107                         spin_lock_init(&((cluster_info + ci)->lock));
3108
3109                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3110                 if (!p->percpu_cluster) {
3111                         error = -ENOMEM;
3112                         goto bad_swap_unlock_inode;
3113                 }
3114                 for_each_possible_cpu(cpu) {
3115                         struct percpu_cluster *cluster;
3116                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3117                         cluster_set_null(&cluster->index);
3118                 }
3119         } else {
3120                 atomic_inc(&nr_rotate_swap);
3121                 inced_nr_rotate_swap = true;
3122         }
3123
3124         error = swap_cgroup_swapon(p->type, maxpages);
3125         if (error)
3126                 goto bad_swap_unlock_inode;
3127
3128         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3129                 cluster_info, maxpages, &span);
3130         if (unlikely(nr_extents < 0)) {
3131                 error = nr_extents;
3132                 goto bad_swap_unlock_inode;
3133         }
3134
3135         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3136             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3137                 /*
3138                  * When discard is enabled for swap with no particular
3139                  * policy flagged, we set all swap discard flags here in
3140                  * order to sustain backward compatibility with older
3141                  * swapon(8) releases.
3142                  */
3143                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3144                              SWP_PAGE_DISCARD);
3145
3146                 /*
3147                  * By flagging sys_swapon, a sysadmin can tell us to
3148                  * either do single-time area discards only, or to just
3149                  * perform discards for released swap page-clusters.
3150                  * Now it's time to adjust the p->flags accordingly.
3151                  */
3152                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3153                         p->flags &= ~SWP_PAGE_DISCARD;
3154                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3155                         p->flags &= ~SWP_AREA_DISCARD;
3156
3157                 /* issue a swapon-time discard if it's still required */
3158                 if (p->flags & SWP_AREA_DISCARD) {
3159                         int err = discard_swap(p);
3160                         if (unlikely(err))
3161                                 pr_err("swapon: discard_swap(%p): %d\n",
3162                                         p, err);
3163                 }
3164         }
3165
3166         error = init_swap_address_space(p->type, maxpages);
3167         if (error)
3168                 goto bad_swap_unlock_inode;
3169
3170         /*
3171          * Flush any pending IO and dirty mappings before we start using this
3172          * swap device.
3173          */
3174         inode->i_flags |= S_SWAPFILE;
3175         error = inode_drain_writes(inode);
3176         if (error) {
3177                 inode->i_flags &= ~S_SWAPFILE;
3178                 goto free_swap_address_space;
3179         }
3180
3181         mutex_lock(&swapon_mutex);
3182         prio = -1;
3183         if (swap_flags & SWAP_FLAG_PREFER)
3184                 prio =
3185                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3186         enable_swap_info(p, prio, swap_map, cluster_info);
3187
3188         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3189                 K(p->pages), name->name, p->prio, nr_extents,
3190                 K((unsigned long long)span),
3191                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3192                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3193                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3194                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3195
3196         mutex_unlock(&swapon_mutex);
3197         atomic_inc(&proc_poll_event);
3198         wake_up_interruptible(&proc_poll_wait);
3199
3200         error = 0;
3201         goto out;
3202 free_swap_address_space:
3203         exit_swap_address_space(p->type);
3204 bad_swap_unlock_inode:
3205         inode_unlock(inode);
3206 bad_swap:
3207         free_percpu(p->percpu_cluster);
3208         p->percpu_cluster = NULL;
3209         free_percpu(p->cluster_next_cpu);
3210         p->cluster_next_cpu = NULL;
3211         if (p->bdev_file) {
3212                 set_blocksize(p->bdev, p->old_block_size);
3213                 fput(p->bdev_file);
3214                 p->bdev_file = NULL;
3215         }
3216         inode = NULL;
3217         destroy_swap_extents(p);
3218         swap_cgroup_swapoff(p->type);
3219         spin_lock(&swap_lock);
3220         p->swap_file = NULL;
3221         p->flags = 0;
3222         spin_unlock(&swap_lock);
3223         vfree(swap_map);
3224         kvfree(cluster_info);
3225         if (inced_nr_rotate_swap)
3226                 atomic_dec(&nr_rotate_swap);
3227         if (swap_file)
3228                 filp_close(swap_file, NULL);
3229 out:
3230         if (page && !IS_ERR(page)) {
3231                 kunmap(page);
3232                 put_page(page);
3233         }
3234         if (name)
3235                 putname(name);
3236         if (inode)
3237                 inode_unlock(inode);
3238         if (!error)
3239                 enable_swap_slots_cache();
3240         return error;
3241 }
3242
3243 void si_swapinfo(struct sysinfo *val)
3244 {
3245         unsigned int type;
3246         unsigned long nr_to_be_unused = 0;
3247
3248         spin_lock(&swap_lock);
3249         for (type = 0; type < nr_swapfiles; type++) {
3250                 struct swap_info_struct *si = swap_info[type];
3251
3252                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3253                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
3254         }
3255         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3256         val->totalswap = total_swap_pages + nr_to_be_unused;
3257         spin_unlock(&swap_lock);
3258 }
3259
3260 /*
3261  * Verify that a swap entry is valid and increment its swap map count.
3262  *
3263  * Returns error code in following case.
3264  * - success -> 0
3265  * - swp_entry is invalid -> EINVAL
3266  * - swp_entry is migration entry -> EINVAL
3267  * - swap-cache reference is requested but there is already one. -> EEXIST
3268  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3269  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3270  */
3271 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3272 {
3273         struct swap_info_struct *p;
3274         struct swap_cluster_info *ci;
3275         unsigned long offset;
3276         unsigned char count;
3277         unsigned char has_cache;
3278         int err;
3279
3280         p = swp_swap_info(entry);
3281
3282         offset = swp_offset(entry);
3283         ci = lock_cluster_or_swap_info(p, offset);
3284
3285         count = p->swap_map[offset];
3286
3287         /*
3288          * swapin_readahead() doesn't check if a swap entry is valid, so the
3289          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3290          */
3291         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3292                 err = -ENOENT;
3293                 goto unlock_out;
3294         }
3295
3296         has_cache = count & SWAP_HAS_CACHE;
3297         count &= ~SWAP_HAS_CACHE;
3298         err = 0;
3299
3300         if (usage == SWAP_HAS_CACHE) {
3301
3302                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3303                 if (!has_cache && count)
3304                         has_cache = SWAP_HAS_CACHE;
3305                 else if (has_cache)             /* someone else added cache */
3306                         err = -EEXIST;
3307                 else                            /* no users remaining */
3308                         err = -ENOENT;
3309
3310         } else if (count || has_cache) {
3311
3312                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3313                         count += usage;
3314                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3315                         err = -EINVAL;
3316                 else if (swap_count_continued(p, offset, count))
3317                         count = COUNT_CONTINUED;
3318                 else
3319                         err = -ENOMEM;
3320         } else
3321                 err = -ENOENT;                  /* unused swap entry */
3322
3323         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3324
3325 unlock_out:
3326         unlock_cluster_or_swap_info(p, ci);
3327         return err;
3328 }
3329
3330 /*
3331  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3332  * (in which case its reference count is never incremented).
3333  */
3334 void swap_shmem_alloc(swp_entry_t entry)
3335 {
3336         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3337 }
3338
3339 /*
3340  * Increase reference count of swap entry by 1.
3341  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3342  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3343  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3344  * might occur if a page table entry has got corrupted.
3345  */
3346 int swap_duplicate(swp_entry_t entry)
3347 {
3348         int err = 0;
3349
3350         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3351                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3352         return err;
3353 }
3354
3355 /*
3356  * @entry: swap entry for which we allocate swap cache.
3357  *
3358  * Called when allocating swap cache for existing swap entry,
3359  * This can return error codes. Returns 0 at success.
3360  * -EEXIST means there is a swap cache.
3361  * Note: return code is different from swap_duplicate().
3362  */
3363 int swapcache_prepare(swp_entry_t entry)
3364 {
3365         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3366 }
3367
3368 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3369 {
3370         struct swap_cluster_info *ci;
3371         unsigned long offset = swp_offset(entry);
3372         unsigned char usage;
3373
3374         ci = lock_cluster_or_swap_info(si, offset);
3375         usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3376         unlock_cluster_or_swap_info(si, ci);
3377         if (!usage)
3378                 free_swap_slot(entry);
3379 }
3380
3381 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3382 {
3383         return swap_type_to_swap_info(swp_type(entry));
3384 }
3385
3386 /*
3387  * out-of-line methods to avoid include hell.
3388  */
3389 struct address_space *swapcache_mapping(struct folio *folio)
3390 {
3391         return swp_swap_info(folio->swap)->swap_file->f_mapping;
3392 }
3393 EXPORT_SYMBOL_GPL(swapcache_mapping);
3394
3395 pgoff_t __page_file_index(struct page *page)
3396 {
3397         swp_entry_t swap = page_swap_entry(page);
3398         return swp_offset(swap);
3399 }
3400 EXPORT_SYMBOL_GPL(__page_file_index);
3401
3402 /*
3403  * add_swap_count_continuation - called when a swap count is duplicated
3404  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3405  * page of the original vmalloc'ed swap_map, to hold the continuation count
3406  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3407  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3408  *
3409  * These continuation pages are seldom referenced: the common paths all work
3410  * on the original swap_map, only referring to a continuation page when the
3411  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3412  *
3413  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3414  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3415  * can be called after dropping locks.
3416  */
3417 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3418 {
3419         struct swap_info_struct *si;
3420         struct swap_cluster_info *ci;
3421         struct page *head;
3422         struct page *page;
3423         struct page *list_page;
3424         pgoff_t offset;
3425         unsigned char count;
3426         int ret = 0;
3427
3428         /*
3429          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3430          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3431          */
3432         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3433
3434         si = get_swap_device(entry);
3435         if (!si) {
3436                 /*
3437                  * An acceptable race has occurred since the failing
3438                  * __swap_duplicate(): the swap device may be swapoff
3439                  */
3440                 goto outer;
3441         }
3442         spin_lock(&si->lock);
3443
3444         offset = swp_offset(entry);
3445
3446         ci = lock_cluster(si, offset);
3447
3448         count = swap_count(si->swap_map[offset]);
3449
3450         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3451                 /*
3452                  * The higher the swap count, the more likely it is that tasks
3453                  * will race to add swap count continuation: we need to avoid
3454                  * over-provisioning.
3455                  */
3456                 goto out;
3457         }
3458
3459         if (!page) {
3460                 ret = -ENOMEM;
3461                 goto out;
3462         }
3463
3464         head = vmalloc_to_page(si->swap_map + offset);
3465         offset &= ~PAGE_MASK;
3466
3467         spin_lock(&si->cont_lock);
3468         /*
3469          * Page allocation does not initialize the page's lru field,
3470          * but it does always reset its private field.
3471          */
3472         if (!page_private(head)) {
3473                 BUG_ON(count & COUNT_CONTINUED);
3474                 INIT_LIST_HEAD(&head->lru);
3475                 set_page_private(head, SWP_CONTINUED);
3476                 si->flags |= SWP_CONTINUED;
3477         }
3478
3479         list_for_each_entry(list_page, &head->lru, lru) {
3480                 unsigned char *map;
3481
3482                 /*
3483                  * If the previous map said no continuation, but we've found
3484                  * a continuation page, free our allocation and use this one.
3485                  */
3486                 if (!(count & COUNT_CONTINUED))
3487                         goto out_unlock_cont;
3488
3489                 map = kmap_local_page(list_page) + offset;
3490                 count = *map;
3491                 kunmap_local(map);
3492
3493                 /*
3494                  * If this continuation count now has some space in it,
3495                  * free our allocation and use this one.
3496                  */
3497                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3498                         goto out_unlock_cont;
3499         }
3500
3501         list_add_tail(&page->lru, &head->lru);
3502         page = NULL;                    /* now it's attached, don't free it */
3503 out_unlock_cont:
3504         spin_unlock(&si->cont_lock);
3505 out:
3506         unlock_cluster(ci);
3507         spin_unlock(&si->lock);
3508         put_swap_device(si);
3509 outer:
3510         if (page)
3511                 __free_page(page);
3512         return ret;
3513 }
3514
3515 /*
3516  * swap_count_continued - when the original swap_map count is incremented
3517  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3518  * into, carry if so, or else fail until a new continuation page is allocated;
3519  * when the original swap_map count is decremented from 0 with continuation,
3520  * borrow from the continuation and report whether it still holds more.
3521  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3522  * lock.
3523  */
3524 static bool swap_count_continued(struct swap_info_struct *si,
3525                                  pgoff_t offset, unsigned char count)
3526 {
3527         struct page *head;
3528         struct page *page;
3529         unsigned char *map;
3530         bool ret;
3531
3532         head = vmalloc_to_page(si->swap_map + offset);
3533         if (page_private(head) != SWP_CONTINUED) {
3534                 BUG_ON(count & COUNT_CONTINUED);
3535                 return false;           /* need to add count continuation */
3536         }
3537
3538         spin_lock(&si->cont_lock);
3539         offset &= ~PAGE_MASK;
3540         page = list_next_entry(head, lru);
3541         map = kmap_local_page(page) + offset;
3542
3543         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3544                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3545
3546         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3547                 /*
3548                  * Think of how you add 1 to 999
3549                  */
3550                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3551                         kunmap_local(map);
3552                         page = list_next_entry(page, lru);
3553                         BUG_ON(page == head);
3554                         map = kmap_local_page(page) + offset;
3555                 }
3556                 if (*map == SWAP_CONT_MAX) {
3557                         kunmap_local(map);
3558                         page = list_next_entry(page, lru);
3559                         if (page == head) {
3560                                 ret = false;    /* add count continuation */
3561                                 goto out;
3562                         }
3563                         map = kmap_local_page(page) + offset;
3564 init_map:               *map = 0;               /* we didn't zero the page */
3565                 }
3566                 *map += 1;
3567                 kunmap_local(map);
3568                 while ((page = list_prev_entry(page, lru)) != head) {
3569                         map = kmap_local_page(page) + offset;
3570                         *map = COUNT_CONTINUED;
3571                         kunmap_local(map);
3572                 }
3573                 ret = true;                     /* incremented */
3574
3575         } else {                                /* decrementing */
3576                 /*
3577                  * Think of how you subtract 1 from 1000
3578                  */
3579                 BUG_ON(count != COUNT_CONTINUED);
3580                 while (*map == COUNT_CONTINUED) {
3581                         kunmap_local(map);
3582                         page = list_next_entry(page, lru);
3583                         BUG_ON(page == head);
3584                         map = kmap_local_page(page) + offset;
3585                 }
3586                 BUG_ON(*map == 0);
3587                 *map -= 1;
3588                 if (*map == 0)
3589                         count = 0;
3590                 kunmap_local(map);
3591                 while ((page = list_prev_entry(page, lru)) != head) {
3592                         map = kmap_local_page(page) + offset;
3593                         *map = SWAP_CONT_MAX | count;
3594                         count = COUNT_CONTINUED;
3595                         kunmap_local(map);
3596                 }
3597                 ret = count == COUNT_CONTINUED;
3598         }
3599 out:
3600         spin_unlock(&si->cont_lock);
3601         return ret;
3602 }
3603
3604 /*
3605  * free_swap_count_continuations - swapoff free all the continuation pages
3606  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3607  */
3608 static void free_swap_count_continuations(struct swap_info_struct *si)
3609 {
3610         pgoff_t offset;
3611
3612         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3613                 struct page *head;
3614                 head = vmalloc_to_page(si->swap_map + offset);
3615                 if (page_private(head)) {
3616                         struct page *page, *next;
3617
3618                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3619                                 list_del(&page->lru);
3620                                 __free_page(page);
3621                         }
3622                 }
3623         }
3624 }
3625
3626 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3627 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3628 {
3629         struct swap_info_struct *si, *next;
3630         int nid = folio_nid(folio);
3631
3632         if (!(gfp & __GFP_IO))
3633                 return;
3634
3635         if (!blk_cgroup_congested())
3636                 return;
3637
3638         /*
3639          * We've already scheduled a throttle, avoid taking the global swap
3640          * lock.
3641          */
3642         if (current->throttle_disk)
3643                 return;
3644
3645         spin_lock(&swap_avail_lock);
3646         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3647                                   avail_lists[nid]) {
3648                 if (si->bdev) {
3649                         blkcg_schedule_throttle(si->bdev->bd_disk, true);
3650                         break;
3651                 }
3652         }
3653         spin_unlock(&swap_avail_lock);
3654 }
3655 #endif
3656
3657 static int __init swapfile_init(void)
3658 {
3659         int nid;
3660
3661         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3662                                          GFP_KERNEL);
3663         if (!swap_avail_heads) {
3664                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3665                 return -ENOMEM;
3666         }
3667
3668         for_each_node(nid)
3669                 plist_head_init(&swap_avail_heads[nid]);
3670
3671         swapfile_maximum_size = arch_max_swapfile_size();
3672
3673 #ifdef CONFIG_MIGRATION
3674         if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3675                 swap_migration_ad_supported = true;
3676 #endif  /* CONFIG_MIGRATION */
3677
3678         return 0;
3679 }
3680 subsys_initcall(swapfile_init);