fix short copy handling in copy_mc_pipe_to_iter()
[sfrench/cifs-2.6.git] / mm / slob.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLOB Allocator: Simple List Of Blocks
4  *
5  * Matt Mackall <mpm@selenic.com> 12/30/03
6  *
7  * NUMA support by Paul Mundt, 2007.
8  *
9  * How SLOB works:
10  *
11  * The core of SLOB is a traditional K&R style heap allocator, with
12  * support for returning aligned objects. The granularity of this
13  * allocator is as little as 2 bytes, however typically most architectures
14  * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
15  *
16  * The slob heap is a set of linked list of pages from alloc_pages(),
17  * and within each page, there is a singly-linked list of free blocks
18  * (slob_t). The heap is grown on demand. To reduce fragmentation,
19  * heap pages are segregated into three lists, with objects less than
20  * 256 bytes, objects less than 1024 bytes, and all other objects.
21  *
22  * Allocation from heap involves first searching for a page with
23  * sufficient free blocks (using a next-fit-like approach) followed by
24  * a first-fit scan of the page. Deallocation inserts objects back
25  * into the free list in address order, so this is effectively an
26  * address-ordered first fit.
27  *
28  * Above this is an implementation of kmalloc/kfree. Blocks returned
29  * from kmalloc are prepended with a 4-byte header with the kmalloc size.
30  * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
31  * alloc_pages() directly, allocating compound pages so the page order
32  * does not have to be separately tracked.
33  * These objects are detected in kfree() because folio_test_slab()
34  * is false for them.
35  *
36  * SLAB is emulated on top of SLOB by simply calling constructors and
37  * destructors for every SLAB allocation. Objects are returned with the
38  * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39  * case the low-level allocator will fragment blocks to create the proper
40  * alignment. Again, objects of page-size or greater are allocated by
41  * calling alloc_pages(). As SLAB objects know their size, no separate
42  * size bookkeeping is necessary and there is essentially no allocation
43  * space overhead, and compound pages aren't needed for multi-page
44  * allocations.
45  *
46  * NUMA support in SLOB is fairly simplistic, pushing most of the real
47  * logic down to the page allocator, and simply doing the node accounting
48  * on the upper levels. In the event that a node id is explicitly
49  * provided, __alloc_pages_node() with the specified node id is used
50  * instead. The common case (or when the node id isn't explicitly provided)
51  * will default to the current node, as per numa_node_id().
52  *
53  * Node aware pages are still inserted in to the global freelist, and
54  * these are scanned for by matching against the node id encoded in the
55  * page flags. As a result, block allocations that can be satisfied from
56  * the freelist will only be done so on pages residing on the same node,
57  * in order to prevent random node placement.
58  */
59
60 #include <linux/kernel.h>
61 #include <linux/slab.h>
62
63 #include <linux/mm.h>
64 #include <linux/swap.h> /* struct reclaim_state */
65 #include <linux/cache.h>
66 #include <linux/init.h>
67 #include <linux/export.h>
68 #include <linux/rcupdate.h>
69 #include <linux/list.h>
70 #include <linux/kmemleak.h>
71
72 #include <trace/events/kmem.h>
73
74 #include <linux/atomic.h>
75
76 #include "slab.h"
77 /*
78  * slob_block has a field 'units', which indicates size of block if +ve,
79  * or offset of next block if -ve (in SLOB_UNITs).
80  *
81  * Free blocks of size 1 unit simply contain the offset of the next block.
82  * Those with larger size contain their size in the first SLOB_UNIT of
83  * memory, and the offset of the next free block in the second SLOB_UNIT.
84  */
85 #if PAGE_SIZE <= (32767 * 2)
86 typedef s16 slobidx_t;
87 #else
88 typedef s32 slobidx_t;
89 #endif
90
91 struct slob_block {
92         slobidx_t units;
93 };
94 typedef struct slob_block slob_t;
95
96 /*
97  * All partially free slob pages go on these lists.
98  */
99 #define SLOB_BREAK1 256
100 #define SLOB_BREAK2 1024
101 static LIST_HEAD(free_slob_small);
102 static LIST_HEAD(free_slob_medium);
103 static LIST_HEAD(free_slob_large);
104
105 /*
106  * slob_page_free: true for pages on free_slob_pages list.
107  */
108 static inline int slob_page_free(struct slab *slab)
109 {
110         return PageSlobFree(slab_page(slab));
111 }
112
113 static void set_slob_page_free(struct slab *slab, struct list_head *list)
114 {
115         list_add(&slab->slab_list, list);
116         __SetPageSlobFree(slab_page(slab));
117 }
118
119 static inline void clear_slob_page_free(struct slab *slab)
120 {
121         list_del(&slab->slab_list);
122         __ClearPageSlobFree(slab_page(slab));
123 }
124
125 #define SLOB_UNIT sizeof(slob_t)
126 #define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
127
128 /*
129  * struct slob_rcu is inserted at the tail of allocated slob blocks, which
130  * were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free
131  * the block using call_rcu.
132  */
133 struct slob_rcu {
134         struct rcu_head head;
135         int size;
136 };
137
138 /*
139  * slob_lock protects all slob allocator structures.
140  */
141 static DEFINE_SPINLOCK(slob_lock);
142
143 /*
144  * Encode the given size and next info into a free slob block s.
145  */
146 static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
147 {
148         slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
149         slobidx_t offset = next - base;
150
151         if (size > 1) {
152                 s[0].units = size;
153                 s[1].units = offset;
154         } else
155                 s[0].units = -offset;
156 }
157
158 /*
159  * Return the size of a slob block.
160  */
161 static slobidx_t slob_units(slob_t *s)
162 {
163         if (s->units > 0)
164                 return s->units;
165         return 1;
166 }
167
168 /*
169  * Return the next free slob block pointer after this one.
170  */
171 static slob_t *slob_next(slob_t *s)
172 {
173         slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
174         slobidx_t next;
175
176         if (s[0].units < 0)
177                 next = -s[0].units;
178         else
179                 next = s[1].units;
180         return base+next;
181 }
182
183 /*
184  * Returns true if s is the last free block in its page.
185  */
186 static int slob_last(slob_t *s)
187 {
188         return !((unsigned long)slob_next(s) & ~PAGE_MASK);
189 }
190
191 static void *slob_new_pages(gfp_t gfp, int order, int node)
192 {
193         struct page *page;
194
195 #ifdef CONFIG_NUMA
196         if (node != NUMA_NO_NODE)
197                 page = __alloc_pages_node(node, gfp, order);
198         else
199 #endif
200                 page = alloc_pages(gfp, order);
201
202         if (!page)
203                 return NULL;
204
205         mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
206                             PAGE_SIZE << order);
207         return page_address(page);
208 }
209
210 static void slob_free_pages(void *b, int order)
211 {
212         struct page *sp = virt_to_page(b);
213
214         if (current->reclaim_state)
215                 current->reclaim_state->reclaimed_slab += 1 << order;
216
217         mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
218                             -(PAGE_SIZE << order));
219         __free_pages(sp, order);
220 }
221
222 /*
223  * slob_page_alloc() - Allocate a slob block within a given slob_page sp.
224  * @sp: Page to look in.
225  * @size: Size of the allocation.
226  * @align: Allocation alignment.
227  * @align_offset: Offset in the allocated block that will be aligned.
228  * @page_removed_from_list: Return parameter.
229  *
230  * Tries to find a chunk of memory at least @size bytes big within @page.
231  *
232  * Return: Pointer to memory if allocated, %NULL otherwise.  If the
233  *         allocation fills up @page then the page is removed from the
234  *         freelist, in this case @page_removed_from_list will be set to
235  *         true (set to false otherwise).
236  */
237 static void *slob_page_alloc(struct slab *sp, size_t size, int align,
238                               int align_offset, bool *page_removed_from_list)
239 {
240         slob_t *prev, *cur, *aligned = NULL;
241         int delta = 0, units = SLOB_UNITS(size);
242
243         *page_removed_from_list = false;
244         for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
245                 slobidx_t avail = slob_units(cur);
246
247                 /*
248                  * 'aligned' will hold the address of the slob block so that the
249                  * address 'aligned'+'align_offset' is aligned according to the
250                  * 'align' parameter. This is for kmalloc() which prepends the
251                  * allocated block with its size, so that the block itself is
252                  * aligned when needed.
253                  */
254                 if (align) {
255                         aligned = (slob_t *)
256                                 (ALIGN((unsigned long)cur + align_offset, align)
257                                  - align_offset);
258                         delta = aligned - cur;
259                 }
260                 if (avail >= units + delta) { /* room enough? */
261                         slob_t *next;
262
263                         if (delta) { /* need to fragment head to align? */
264                                 next = slob_next(cur);
265                                 set_slob(aligned, avail - delta, next);
266                                 set_slob(cur, delta, aligned);
267                                 prev = cur;
268                                 cur = aligned;
269                                 avail = slob_units(cur);
270                         }
271
272                         next = slob_next(cur);
273                         if (avail == units) { /* exact fit? unlink. */
274                                 if (prev)
275                                         set_slob(prev, slob_units(prev), next);
276                                 else
277                                         sp->freelist = next;
278                         } else { /* fragment */
279                                 if (prev)
280                                         set_slob(prev, slob_units(prev), cur + units);
281                                 else
282                                         sp->freelist = cur + units;
283                                 set_slob(cur + units, avail - units, next);
284                         }
285
286                         sp->units -= units;
287                         if (!sp->units) {
288                                 clear_slob_page_free(sp);
289                                 *page_removed_from_list = true;
290                         }
291                         return cur;
292                 }
293                 if (slob_last(cur))
294                         return NULL;
295         }
296 }
297
298 /*
299  * slob_alloc: entry point into the slob allocator.
300  */
301 static void *slob_alloc(size_t size, gfp_t gfp, int align, int node,
302                                                         int align_offset)
303 {
304         struct folio *folio;
305         struct slab *sp;
306         struct list_head *slob_list;
307         slob_t *b = NULL;
308         unsigned long flags;
309         bool _unused;
310
311         if (size < SLOB_BREAK1)
312                 slob_list = &free_slob_small;
313         else if (size < SLOB_BREAK2)
314                 slob_list = &free_slob_medium;
315         else
316                 slob_list = &free_slob_large;
317
318         spin_lock_irqsave(&slob_lock, flags);
319         /* Iterate through each partially free page, try to find room */
320         list_for_each_entry(sp, slob_list, slab_list) {
321                 bool page_removed_from_list = false;
322 #ifdef CONFIG_NUMA
323                 /*
324                  * If there's a node specification, search for a partial
325                  * page with a matching node id in the freelist.
326                  */
327                 if (node != NUMA_NO_NODE && slab_nid(sp) != node)
328                         continue;
329 #endif
330                 /* Enough room on this page? */
331                 if (sp->units < SLOB_UNITS(size))
332                         continue;
333
334                 b = slob_page_alloc(sp, size, align, align_offset, &page_removed_from_list);
335                 if (!b)
336                         continue;
337
338                 /*
339                  * If slob_page_alloc() removed sp from the list then we
340                  * cannot call list functions on sp.  If so allocation
341                  * did not fragment the page anyway so optimisation is
342                  * unnecessary.
343                  */
344                 if (!page_removed_from_list) {
345                         /*
346                          * Improve fragment distribution and reduce our average
347                          * search time by starting our next search here. (see
348                          * Knuth vol 1, sec 2.5, pg 449)
349                          */
350                         if (!list_is_first(&sp->slab_list, slob_list))
351                                 list_rotate_to_front(&sp->slab_list, slob_list);
352                 }
353                 break;
354         }
355         spin_unlock_irqrestore(&slob_lock, flags);
356
357         /* Not enough space: must allocate a new page */
358         if (!b) {
359                 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
360                 if (!b)
361                         return NULL;
362                 folio = virt_to_folio(b);
363                 __folio_set_slab(folio);
364                 sp = folio_slab(folio);
365
366                 spin_lock_irqsave(&slob_lock, flags);
367                 sp->units = SLOB_UNITS(PAGE_SIZE);
368                 sp->freelist = b;
369                 INIT_LIST_HEAD(&sp->slab_list);
370                 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
371                 set_slob_page_free(sp, slob_list);
372                 b = slob_page_alloc(sp, size, align, align_offset, &_unused);
373                 BUG_ON(!b);
374                 spin_unlock_irqrestore(&slob_lock, flags);
375         }
376         if (unlikely(gfp & __GFP_ZERO))
377                 memset(b, 0, size);
378         return b;
379 }
380
381 /*
382  * slob_free: entry point into the slob allocator.
383  */
384 static void slob_free(void *block, int size)
385 {
386         struct slab *sp;
387         slob_t *prev, *next, *b = (slob_t *)block;
388         slobidx_t units;
389         unsigned long flags;
390         struct list_head *slob_list;
391
392         if (unlikely(ZERO_OR_NULL_PTR(block)))
393                 return;
394         BUG_ON(!size);
395
396         sp = virt_to_slab(block);
397         units = SLOB_UNITS(size);
398
399         spin_lock_irqsave(&slob_lock, flags);
400
401         if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
402                 /* Go directly to page allocator. Do not pass slob allocator */
403                 if (slob_page_free(sp))
404                         clear_slob_page_free(sp);
405                 spin_unlock_irqrestore(&slob_lock, flags);
406                 __folio_clear_slab(slab_folio(sp));
407                 slob_free_pages(b, 0);
408                 return;
409         }
410
411         if (!slob_page_free(sp)) {
412                 /* This slob page is about to become partially free. Easy! */
413                 sp->units = units;
414                 sp->freelist = b;
415                 set_slob(b, units,
416                         (void *)((unsigned long)(b +
417                                         SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
418                 if (size < SLOB_BREAK1)
419                         slob_list = &free_slob_small;
420                 else if (size < SLOB_BREAK2)
421                         slob_list = &free_slob_medium;
422                 else
423                         slob_list = &free_slob_large;
424                 set_slob_page_free(sp, slob_list);
425                 goto out;
426         }
427
428         /*
429          * Otherwise the page is already partially free, so find reinsertion
430          * point.
431          */
432         sp->units += units;
433
434         if (b < (slob_t *)sp->freelist) {
435                 if (b + units == sp->freelist) {
436                         units += slob_units(sp->freelist);
437                         sp->freelist = slob_next(sp->freelist);
438                 }
439                 set_slob(b, units, sp->freelist);
440                 sp->freelist = b;
441         } else {
442                 prev = sp->freelist;
443                 next = slob_next(prev);
444                 while (b > next) {
445                         prev = next;
446                         next = slob_next(prev);
447                 }
448
449                 if (!slob_last(prev) && b + units == next) {
450                         units += slob_units(next);
451                         set_slob(b, units, slob_next(next));
452                 } else
453                         set_slob(b, units, next);
454
455                 if (prev + slob_units(prev) == b) {
456                         units = slob_units(b) + slob_units(prev);
457                         set_slob(prev, units, slob_next(b));
458                 } else
459                         set_slob(prev, slob_units(prev), b);
460         }
461 out:
462         spin_unlock_irqrestore(&slob_lock, flags);
463 }
464
465 #ifdef CONFIG_PRINTK
466 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
467 {
468         kpp->kp_ptr = object;
469         kpp->kp_slab = slab;
470 }
471 #endif
472
473 /*
474  * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
475  */
476
477 static __always_inline void *
478 __do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
479 {
480         unsigned int *m;
481         unsigned int minalign;
482         void *ret;
483
484         minalign = max_t(unsigned int, ARCH_KMALLOC_MINALIGN,
485                          arch_slab_minalign());
486         gfp &= gfp_allowed_mask;
487
488         might_alloc(gfp);
489
490         if (size < PAGE_SIZE - minalign) {
491                 int align = minalign;
492
493                 /*
494                  * For power of two sizes, guarantee natural alignment for
495                  * kmalloc()'d objects.
496                  */
497                 if (is_power_of_2(size))
498                         align = max_t(unsigned int, minalign, size);
499
500                 if (!size)
501                         return ZERO_SIZE_PTR;
502
503                 m = slob_alloc(size + minalign, gfp, align, node, minalign);
504
505                 if (!m)
506                         return NULL;
507                 *m = size;
508                 ret = (void *)m + minalign;
509
510                 trace_kmalloc_node(caller, ret,
511                                    size, size + minalign, gfp, node);
512         } else {
513                 unsigned int order = get_order(size);
514
515                 if (likely(order))
516                         gfp |= __GFP_COMP;
517                 ret = slob_new_pages(gfp, order, node);
518
519                 trace_kmalloc_node(caller, ret,
520                                    size, PAGE_SIZE << order, gfp, node);
521         }
522
523         kmemleak_alloc(ret, size, 1, gfp);
524         return ret;
525 }
526
527 void *__kmalloc(size_t size, gfp_t gfp)
528 {
529         return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
530 }
531 EXPORT_SYMBOL(__kmalloc);
532
533 void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
534 {
535         return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
536 }
537 EXPORT_SYMBOL(__kmalloc_track_caller);
538
539 #ifdef CONFIG_NUMA
540 void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
541                                         int node, unsigned long caller)
542 {
543         return __do_kmalloc_node(size, gfp, node, caller);
544 }
545 EXPORT_SYMBOL(__kmalloc_node_track_caller);
546 #endif
547
548 void kfree(const void *block)
549 {
550         struct folio *sp;
551
552         trace_kfree(_RET_IP_, block);
553
554         if (unlikely(ZERO_OR_NULL_PTR(block)))
555                 return;
556         kmemleak_free(block);
557
558         sp = virt_to_folio(block);
559         if (folio_test_slab(sp)) {
560                 unsigned int align = max_t(unsigned int,
561                                            ARCH_KMALLOC_MINALIGN,
562                                            arch_slab_minalign());
563                 unsigned int *m = (unsigned int *)(block - align);
564
565                 slob_free(m, *m + align);
566         } else {
567                 unsigned int order = folio_order(sp);
568
569                 mod_node_page_state(folio_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
570                                     -(PAGE_SIZE << order));
571                 __free_pages(folio_page(sp, 0), order);
572
573         }
574 }
575 EXPORT_SYMBOL(kfree);
576
577 /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
578 size_t __ksize(const void *block)
579 {
580         struct folio *folio;
581         unsigned int align;
582         unsigned int *m;
583
584         BUG_ON(!block);
585         if (unlikely(block == ZERO_SIZE_PTR))
586                 return 0;
587
588         folio = virt_to_folio(block);
589         if (unlikely(!folio_test_slab(folio)))
590                 return folio_size(folio);
591
592         align = max_t(unsigned int, ARCH_KMALLOC_MINALIGN,
593                       arch_slab_minalign());
594         m = (unsigned int *)(block - align);
595         return SLOB_UNITS(*m) * SLOB_UNIT;
596 }
597 EXPORT_SYMBOL(__ksize);
598
599 int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags)
600 {
601         if (flags & SLAB_TYPESAFE_BY_RCU) {
602                 /* leave room for rcu footer at the end of object */
603                 c->size += sizeof(struct slob_rcu);
604         }
605         c->flags = flags;
606         return 0;
607 }
608
609 static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
610 {
611         void *b;
612
613         flags &= gfp_allowed_mask;
614
615         might_alloc(flags);
616
617         if (c->size < PAGE_SIZE) {
618                 b = slob_alloc(c->size, flags, c->align, node, 0);
619                 trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
620                                             SLOB_UNITS(c->size) * SLOB_UNIT,
621                                             flags, node);
622         } else {
623                 b = slob_new_pages(flags, get_order(c->size), node);
624                 trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
625                                             PAGE_SIZE << get_order(c->size),
626                                             flags, node);
627         }
628
629         if (b && c->ctor) {
630                 WARN_ON_ONCE(flags & __GFP_ZERO);
631                 c->ctor(b);
632         }
633
634         kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
635         return b;
636 }
637
638 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
639 {
640         return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
641 }
642 EXPORT_SYMBOL(kmem_cache_alloc);
643
644
645 void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags)
646 {
647         return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
648 }
649 EXPORT_SYMBOL(kmem_cache_alloc_lru);
650 #ifdef CONFIG_NUMA
651 void *__kmalloc_node(size_t size, gfp_t gfp, int node)
652 {
653         return __do_kmalloc_node(size, gfp, node, _RET_IP_);
654 }
655 EXPORT_SYMBOL(__kmalloc_node);
656
657 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
658 {
659         return slob_alloc_node(cachep, gfp, node);
660 }
661 EXPORT_SYMBOL(kmem_cache_alloc_node);
662 #endif
663
664 static void __kmem_cache_free(void *b, int size)
665 {
666         if (size < PAGE_SIZE)
667                 slob_free(b, size);
668         else
669                 slob_free_pages(b, get_order(size));
670 }
671
672 static void kmem_rcu_free(struct rcu_head *head)
673 {
674         struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
675         void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
676
677         __kmem_cache_free(b, slob_rcu->size);
678 }
679
680 void kmem_cache_free(struct kmem_cache *c, void *b)
681 {
682         kmemleak_free_recursive(b, c->flags);
683         trace_kmem_cache_free(_RET_IP_, b, c->name);
684         if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) {
685                 struct slob_rcu *slob_rcu;
686                 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
687                 slob_rcu->size = c->size;
688                 call_rcu(&slob_rcu->head, kmem_rcu_free);
689         } else {
690                 __kmem_cache_free(b, c->size);
691         }
692 }
693 EXPORT_SYMBOL(kmem_cache_free);
694
695 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
696 {
697         __kmem_cache_free_bulk(s, size, p);
698 }
699 EXPORT_SYMBOL(kmem_cache_free_bulk);
700
701 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
702                                                                 void **p)
703 {
704         return __kmem_cache_alloc_bulk(s, flags, size, p);
705 }
706 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
707
708 int __kmem_cache_shutdown(struct kmem_cache *c)
709 {
710         /* No way to check for remaining objects */
711         return 0;
712 }
713
714 void __kmem_cache_release(struct kmem_cache *c)
715 {
716 }
717
718 int __kmem_cache_shrink(struct kmem_cache *d)
719 {
720         return 0;
721 }
722
723 static struct kmem_cache kmem_cache_boot = {
724         .name = "kmem_cache",
725         .size = sizeof(struct kmem_cache),
726         .flags = SLAB_PANIC,
727         .align = ARCH_KMALLOC_MINALIGN,
728 };
729
730 void __init kmem_cache_init(void)
731 {
732         kmem_cache = &kmem_cache_boot;
733         slab_state = UP;
734 }
735
736 void __init kmem_cache_init_late(void)
737 {
738         slab_state = FULL;
739 }