Merge tag 'landlock-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mic...
[sfrench/cifs-2.6.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 struct vm_area_struct *next, unsigned long start,
82                 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92         unsigned long vm_flags = vma->vm_flags;
93         pgprot_t vm_page_prot;
94
95         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96         if (vma_wants_writenotify(vma, vm_page_prot)) {
97                 vm_flags &= ~VM_SHARED;
98                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99         }
100         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108                 struct file *file, struct address_space *mapping)
109 {
110         if (vma_is_shared_maywrite(vma))
111                 mapping_unmap_writable(mapping);
112
113         flush_dcache_mmap_lock(mapping);
114         vma_interval_tree_remove(vma, &mapping->i_mmap);
115         flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124         struct file *file = vma->vm_file;
125
126         if (file) {
127                 struct address_space *mapping = file->f_mapping;
128                 i_mmap_lock_write(mapping);
129                 __remove_shared_vm_struct(vma, file, mapping);
130                 i_mmap_unlock_write(mapping);
131         }
132 }
133
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139         might_sleep();
140         if (vma->vm_ops && vma->vm_ops->close)
141                 vma->vm_ops->close(vma);
142         if (vma->vm_file)
143                 fput(vma->vm_file);
144         mpol_put(vma_policy(vma));
145         if (unreachable)
146                 __vm_area_free(vma);
147         else
148                 vm_area_free(vma);
149 }
150
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152                                                     unsigned long min)
153 {
154         return mas_prev(&vmi->mas, min);
155 }
156
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167         unsigned long mapped_addr;
168
169         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170         if (IS_ERR_VALUE(mapped_addr))
171                 return mapped_addr;
172
173         return mlock_future_ok(current->mm, current->mm->def_flags, len)
174                 ? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177                 unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180         unsigned long newbrk, oldbrk, origbrk;
181         struct mm_struct *mm = current->mm;
182         struct vm_area_struct *brkvma, *next = NULL;
183         unsigned long min_brk;
184         bool populate = false;
185         LIST_HEAD(uf);
186         struct vma_iterator vmi;
187
188         if (mmap_write_lock_killable(mm))
189                 return -EINTR;
190
191         origbrk = mm->brk;
192
193 #ifdef CONFIG_COMPAT_BRK
194         /*
195          * CONFIG_COMPAT_BRK can still be overridden by setting
196          * randomize_va_space to 2, which will still cause mm->start_brk
197          * to be arbitrarily shifted
198          */
199         if (current->brk_randomized)
200                 min_brk = mm->start_brk;
201         else
202                 min_brk = mm->end_data;
203 #else
204         min_brk = mm->start_brk;
205 #endif
206         if (brk < min_brk)
207                 goto out;
208
209         /*
210          * Check against rlimit here. If this check is done later after the test
211          * of oldbrk with newbrk then it can escape the test and let the data
212          * segment grow beyond its set limit the in case where the limit is
213          * not page aligned -Ram Gupta
214          */
215         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216                               mm->end_data, mm->start_data))
217                 goto out;
218
219         newbrk = PAGE_ALIGN(brk);
220         oldbrk = PAGE_ALIGN(mm->brk);
221         if (oldbrk == newbrk) {
222                 mm->brk = brk;
223                 goto success;
224         }
225
226         /* Always allow shrinking brk. */
227         if (brk <= mm->brk) {
228                 /* Search one past newbrk */
229                 vma_iter_init(&vmi, mm, newbrk);
230                 brkvma = vma_find(&vmi, oldbrk);
231                 if (!brkvma || brkvma->vm_start >= oldbrk)
232                         goto out; /* mapping intersects with an existing non-brk vma. */
233                 /*
234                  * mm->brk must be protected by write mmap_lock.
235                  * do_vma_munmap() will drop the lock on success,  so update it
236                  * before calling do_vma_munmap().
237                  */
238                 mm->brk = brk;
239                 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240                         goto out;
241
242                 goto success_unlocked;
243         }
244
245         if (check_brk_limits(oldbrk, newbrk - oldbrk))
246                 goto out;
247
248         /*
249          * Only check if the next VMA is within the stack_guard_gap of the
250          * expansion area
251          */
252         vma_iter_init(&vmi, mm, oldbrk);
253         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255                 goto out;
256
257         brkvma = vma_prev_limit(&vmi, mm->start_brk);
258         /* Ok, looks good - let it rip. */
259         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260                 goto out;
261
262         mm->brk = brk;
263         if (mm->def_flags & VM_LOCKED)
264                 populate = true;
265
266 success:
267         mmap_write_unlock(mm);
268 success_unlocked:
269         userfaultfd_unmap_complete(mm, &uf);
270         if (populate)
271                 mm_populate(oldbrk, newbrk - oldbrk);
272         return brk;
273
274 out:
275         mm->brk = origbrk;
276         mmap_write_unlock(mm);
277         return origbrk;
278 }
279
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283         int bug = 0;
284         int i = 0;
285         struct vm_area_struct *vma;
286         VMA_ITERATOR(vmi, mm, 0);
287
288         mt_validate(&mm->mm_mt);
289         for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291                 struct anon_vma *anon_vma = vma->anon_vma;
292                 struct anon_vma_chain *avc;
293 #endif
294                 unsigned long vmi_start, vmi_end;
295                 bool warn = 0;
296
297                 vmi_start = vma_iter_addr(&vmi);
298                 vmi_end = vma_iter_end(&vmi);
299                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300                         warn = 1;
301
302                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303                         warn = 1;
304
305                 if (warn) {
306                         pr_emerg("issue in %s\n", current->comm);
307                         dump_stack();
308                         dump_vma(vma);
309                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
310                                  vmi_start, vmi_end - 1);
311                         vma_iter_dump_tree(&vmi);
312                 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
315                 if (anon_vma) {
316                         anon_vma_lock_read(anon_vma);
317                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318                                 anon_vma_interval_tree_verify(avc);
319                         anon_vma_unlock_read(anon_vma);
320                 }
321 #endif
322                 i++;
323         }
324         if (i != mm->map_count) {
325                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326                 bug = 1;
327         }
328         VM_BUG_ON_MM(bug, mm);
329 }
330
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352         struct anon_vma_chain *avc;
353
354         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361         struct anon_vma_chain *avc;
362
363         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368                 unsigned long addr, unsigned long end)
369 {
370         VMA_ITERATOR(vmi, mm, addr);
371         struct vm_area_struct *vma;
372         unsigned long nr_pages = 0;
373
374         for_each_vma_range(vmi, vma, end) {
375                 unsigned long vm_start = max(addr, vma->vm_start);
376                 unsigned long vm_end = min(end, vma->vm_end);
377
378                 nr_pages += PHYS_PFN(vm_end - vm_start);
379         }
380
381         return nr_pages;
382 }
383
384 static void __vma_link_file(struct vm_area_struct *vma,
385                             struct address_space *mapping)
386 {
387         if (vma_is_shared_maywrite(vma))
388                 mapping_allow_writable(mapping);
389
390         flush_dcache_mmap_lock(mapping);
391         vma_interval_tree_insert(vma, &mapping->i_mmap);
392         flush_dcache_mmap_unlock(mapping);
393 }
394
395 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
396 {
397         VMA_ITERATOR(vmi, mm, 0);
398         struct address_space *mapping = NULL;
399
400         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
401         if (vma_iter_prealloc(&vmi, vma))
402                 return -ENOMEM;
403
404         vma_start_write(vma);
405
406         vma_iter_store(&vmi, vma);
407
408         if (vma->vm_file) {
409                 mapping = vma->vm_file->f_mapping;
410                 i_mmap_lock_write(mapping);
411                 __vma_link_file(vma, mapping);
412                 i_mmap_unlock_write(mapping);
413         }
414
415         mm->map_count++;
416         validate_mm(mm);
417         return 0;
418 }
419
420 /*
421  * init_multi_vma_prep() - Initializer for struct vma_prepare
422  * @vp: The vma_prepare struct
423  * @vma: The vma that will be altered once locked
424  * @next: The next vma if it is to be adjusted
425  * @remove: The first vma to be removed
426  * @remove2: The second vma to be removed
427  */
428 static inline void init_multi_vma_prep(struct vma_prepare *vp,
429                 struct vm_area_struct *vma, struct vm_area_struct *next,
430                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
431 {
432         memset(vp, 0, sizeof(struct vma_prepare));
433         vp->vma = vma;
434         vp->anon_vma = vma->anon_vma;
435         vp->remove = remove;
436         vp->remove2 = remove2;
437         vp->adj_next = next;
438         if (!vp->anon_vma && next)
439                 vp->anon_vma = next->anon_vma;
440
441         vp->file = vma->vm_file;
442         if (vp->file)
443                 vp->mapping = vma->vm_file->f_mapping;
444
445 }
446
447 /*
448  * init_vma_prep() - Initializer wrapper for vma_prepare struct
449  * @vp: The vma_prepare struct
450  * @vma: The vma that will be altered once locked
451  */
452 static inline void init_vma_prep(struct vma_prepare *vp,
453                                  struct vm_area_struct *vma)
454 {
455         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
456 }
457
458
459 /*
460  * vma_prepare() - Helper function for handling locking VMAs prior to altering
461  * @vp: The initialized vma_prepare struct
462  */
463 static inline void vma_prepare(struct vma_prepare *vp)
464 {
465         if (vp->file) {
466                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
467
468                 if (vp->adj_next)
469                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
470                                       vp->adj_next->vm_end);
471
472                 i_mmap_lock_write(vp->mapping);
473                 if (vp->insert && vp->insert->vm_file) {
474                         /*
475                          * Put into interval tree now, so instantiated pages
476                          * are visible to arm/parisc __flush_dcache_page
477                          * throughout; but we cannot insert into address
478                          * space until vma start or end is updated.
479                          */
480                         __vma_link_file(vp->insert,
481                                         vp->insert->vm_file->f_mapping);
482                 }
483         }
484
485         if (vp->anon_vma) {
486                 anon_vma_lock_write(vp->anon_vma);
487                 anon_vma_interval_tree_pre_update_vma(vp->vma);
488                 if (vp->adj_next)
489                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
490         }
491
492         if (vp->file) {
493                 flush_dcache_mmap_lock(vp->mapping);
494                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
495                 if (vp->adj_next)
496                         vma_interval_tree_remove(vp->adj_next,
497                                                  &vp->mapping->i_mmap);
498         }
499
500 }
501
502 /*
503  * vma_complete- Helper function for handling the unlocking after altering VMAs,
504  * or for inserting a VMA.
505  *
506  * @vp: The vma_prepare struct
507  * @vmi: The vma iterator
508  * @mm: The mm_struct
509  */
510 static inline void vma_complete(struct vma_prepare *vp,
511                                 struct vma_iterator *vmi, struct mm_struct *mm)
512 {
513         if (vp->file) {
514                 if (vp->adj_next)
515                         vma_interval_tree_insert(vp->adj_next,
516                                                  &vp->mapping->i_mmap);
517                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
518                 flush_dcache_mmap_unlock(vp->mapping);
519         }
520
521         if (vp->remove && vp->file) {
522                 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
523                 if (vp->remove2)
524                         __remove_shared_vm_struct(vp->remove2, vp->file,
525                                                   vp->mapping);
526         } else if (vp->insert) {
527                 /*
528                  * split_vma has split insert from vma, and needs
529                  * us to insert it before dropping the locks
530                  * (it may either follow vma or precede it).
531                  */
532                 vma_iter_store(vmi, vp->insert);
533                 mm->map_count++;
534         }
535
536         if (vp->anon_vma) {
537                 anon_vma_interval_tree_post_update_vma(vp->vma);
538                 if (vp->adj_next)
539                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
540                 anon_vma_unlock_write(vp->anon_vma);
541         }
542
543         if (vp->file) {
544                 i_mmap_unlock_write(vp->mapping);
545                 uprobe_mmap(vp->vma);
546
547                 if (vp->adj_next)
548                         uprobe_mmap(vp->adj_next);
549         }
550
551         if (vp->remove) {
552 again:
553                 vma_mark_detached(vp->remove, true);
554                 if (vp->file) {
555                         uprobe_munmap(vp->remove, vp->remove->vm_start,
556                                       vp->remove->vm_end);
557                         fput(vp->file);
558                 }
559                 if (vp->remove->anon_vma)
560                         anon_vma_merge(vp->vma, vp->remove);
561                 mm->map_count--;
562                 mpol_put(vma_policy(vp->remove));
563                 if (!vp->remove2)
564                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
565                 vm_area_free(vp->remove);
566
567                 /*
568                  * In mprotect's case 6 (see comments on vma_merge),
569                  * we are removing both mid and next vmas
570                  */
571                 if (vp->remove2) {
572                         vp->remove = vp->remove2;
573                         vp->remove2 = NULL;
574                         goto again;
575                 }
576         }
577         if (vp->insert && vp->file)
578                 uprobe_mmap(vp->insert);
579         validate_mm(mm);
580 }
581
582 /*
583  * dup_anon_vma() - Helper function to duplicate anon_vma
584  * @dst: The destination VMA
585  * @src: The source VMA
586  * @dup: Pointer to the destination VMA when successful.
587  *
588  * Returns: 0 on success.
589  */
590 static inline int dup_anon_vma(struct vm_area_struct *dst,
591                 struct vm_area_struct *src, struct vm_area_struct **dup)
592 {
593         /*
594          * Easily overlooked: when mprotect shifts the boundary, make sure the
595          * expanding vma has anon_vma set if the shrinking vma had, to cover any
596          * anon pages imported.
597          */
598         if (src->anon_vma && !dst->anon_vma) {
599                 int ret;
600
601                 vma_assert_write_locked(dst);
602                 dst->anon_vma = src->anon_vma;
603                 ret = anon_vma_clone(dst, src);
604                 if (ret)
605                         return ret;
606
607                 *dup = dst;
608         }
609
610         return 0;
611 }
612
613 /*
614  * vma_expand - Expand an existing VMA
615  *
616  * @vmi: The vma iterator
617  * @vma: The vma to expand
618  * @start: The start of the vma
619  * @end: The exclusive end of the vma
620  * @pgoff: The page offset of vma
621  * @next: The current of next vma.
622  *
623  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
624  * expand over @next if it's different from @vma and @end == @next->vm_end.
625  * Checking if the @vma can expand and merge with @next needs to be handled by
626  * the caller.
627  *
628  * Returns: 0 on success
629  */
630 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
631                unsigned long start, unsigned long end, pgoff_t pgoff,
632                struct vm_area_struct *next)
633 {
634         struct vm_area_struct *anon_dup = NULL;
635         bool remove_next = false;
636         struct vma_prepare vp;
637
638         vma_start_write(vma);
639         if (next && (vma != next) && (end == next->vm_end)) {
640                 int ret;
641
642                 remove_next = true;
643                 vma_start_write(next);
644                 ret = dup_anon_vma(vma, next, &anon_dup);
645                 if (ret)
646                         return ret;
647         }
648
649         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
650         /* Not merging but overwriting any part of next is not handled. */
651         VM_WARN_ON(next && !vp.remove &&
652                   next != vma && end > next->vm_start);
653         /* Only handles expanding */
654         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
655
656         /* Note: vma iterator must be pointing to 'start' */
657         vma_iter_config(vmi, start, end);
658         if (vma_iter_prealloc(vmi, vma))
659                 goto nomem;
660
661         vma_prepare(&vp);
662         vma_adjust_trans_huge(vma, start, end, 0);
663         vma->vm_start = start;
664         vma->vm_end = end;
665         vma->vm_pgoff = pgoff;
666         vma_iter_store(vmi, vma);
667
668         vma_complete(&vp, vmi, vma->vm_mm);
669         return 0;
670
671 nomem:
672         if (anon_dup)
673                 unlink_anon_vmas(anon_dup);
674         return -ENOMEM;
675 }
676
677 /*
678  * vma_shrink() - Reduce an existing VMAs memory area
679  * @vmi: The vma iterator
680  * @vma: The VMA to modify
681  * @start: The new start
682  * @end: The new end
683  *
684  * Returns: 0 on success, -ENOMEM otherwise
685  */
686 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
687                unsigned long start, unsigned long end, pgoff_t pgoff)
688 {
689         struct vma_prepare vp;
690
691         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
692
693         if (vma->vm_start < start)
694                 vma_iter_config(vmi, vma->vm_start, start);
695         else
696                 vma_iter_config(vmi, end, vma->vm_end);
697
698         if (vma_iter_prealloc(vmi, NULL))
699                 return -ENOMEM;
700
701         vma_start_write(vma);
702
703         init_vma_prep(&vp, vma);
704         vma_prepare(&vp);
705         vma_adjust_trans_huge(vma, start, end, 0);
706
707         vma_iter_clear(vmi);
708         vma->vm_start = start;
709         vma->vm_end = end;
710         vma->vm_pgoff = pgoff;
711         vma_complete(&vp, vmi, vma->vm_mm);
712         return 0;
713 }
714
715 /*
716  * If the vma has a ->close operation then the driver probably needs to release
717  * per-vma resources, so we don't attempt to merge those if the caller indicates
718  * the current vma may be removed as part of the merge.
719  */
720 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
721                 struct file *file, unsigned long vm_flags,
722                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
723                 struct anon_vma_name *anon_name, bool may_remove_vma)
724 {
725         /*
726          * VM_SOFTDIRTY should not prevent from VMA merging, if we
727          * match the flags but dirty bit -- the caller should mark
728          * merged VMA as dirty. If dirty bit won't be excluded from
729          * comparison, we increase pressure on the memory system forcing
730          * the kernel to generate new VMAs when old one could be
731          * extended instead.
732          */
733         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
734                 return false;
735         if (vma->vm_file != file)
736                 return false;
737         if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
738                 return false;
739         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
740                 return false;
741         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
742                 return false;
743         return true;
744 }
745
746 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
747                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
748 {
749         /*
750          * The list_is_singular() test is to avoid merging VMA cloned from
751          * parents. This can improve scalability caused by anon_vma lock.
752          */
753         if ((!anon_vma1 || !anon_vma2) && (!vma ||
754                 list_is_singular(&vma->anon_vma_chain)))
755                 return true;
756         return anon_vma1 == anon_vma2;
757 }
758
759 /*
760  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
761  * in front of (at a lower virtual address and file offset than) the vma.
762  *
763  * We cannot merge two vmas if they have differently assigned (non-NULL)
764  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
765  *
766  * We don't check here for the merged mmap wrapping around the end of pagecache
767  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
768  * wrap, nor mmaps which cover the final page at index -1UL.
769  *
770  * We assume the vma may be removed as part of the merge.
771  */
772 static bool
773 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
774                 struct anon_vma *anon_vma, struct file *file,
775                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
776                 struct anon_vma_name *anon_name)
777 {
778         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
779             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
780                 if (vma->vm_pgoff == vm_pgoff)
781                         return true;
782         }
783         return false;
784 }
785
786 /*
787  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
788  * beyond (at a higher virtual address and file offset than) the vma.
789  *
790  * We cannot merge two vmas if they have differently assigned (non-NULL)
791  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
792  *
793  * We assume that vma is not removed as part of the merge.
794  */
795 static bool
796 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
797                 struct anon_vma *anon_vma, struct file *file,
798                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
799                 struct anon_vma_name *anon_name)
800 {
801         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
802             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
803                 pgoff_t vm_pglen;
804                 vm_pglen = vma_pages(vma);
805                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
806                         return true;
807         }
808         return false;
809 }
810
811 /*
812  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
813  * figure out whether that can be merged with its predecessor or its
814  * successor.  Or both (it neatly fills a hole).
815  *
816  * In most cases - when called for mmap, brk or mremap - [addr,end) is
817  * certain not to be mapped by the time vma_merge is called; but when
818  * called for mprotect, it is certain to be already mapped (either at
819  * an offset within prev, or at the start of next), and the flags of
820  * this area are about to be changed to vm_flags - and the no-change
821  * case has already been eliminated.
822  *
823  * The following mprotect cases have to be considered, where **** is
824  * the area passed down from mprotect_fixup, never extending beyond one
825  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
826  * at the same address as **** and is of the same or larger span, and
827  * NNNN the next vma after ****:
828  *
829  *     ****             ****                   ****
830  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
831  *    cannot merge    might become       might become
832  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
833  *    mmap, brk or    case 4 below       case 5 below
834  *    mremap move:
835  *                        ****               ****
836  *                    PPPP    NNNN       PPPPCCCCNNNN
837  *                    might become       might become
838  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
839  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
840  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
841  *
842  * It is important for case 8 that the vma CCCC overlapping the
843  * region **** is never going to extended over NNNN. Instead NNNN must
844  * be extended in region **** and CCCC must be removed. This way in
845  * all cases where vma_merge succeeds, the moment vma_merge drops the
846  * rmap_locks, the properties of the merged vma will be already
847  * correct for the whole merged range. Some of those properties like
848  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
849  * be correct for the whole merged range immediately after the
850  * rmap_locks are released. Otherwise if NNNN would be removed and
851  * CCCC would be extended over the NNNN range, remove_migration_ptes
852  * or other rmap walkers (if working on addresses beyond the "end"
853  * parameter) may establish ptes with the wrong permissions of CCCC
854  * instead of the right permissions of NNNN.
855  *
856  * In the code below:
857  * PPPP is represented by *prev
858  * CCCC is represented by *curr or not represented at all (NULL)
859  * NNNN is represented by *next or not represented at all (NULL)
860  * **** is not represented - it will be merged and the vma containing the
861  *      area is returned, or the function will return NULL
862  */
863 static struct vm_area_struct
864 *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
865            struct vm_area_struct *prev, unsigned long addr, unsigned long end,
866            unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file,
867            pgoff_t pgoff, struct mempolicy *policy,
868            struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
869            struct anon_vma_name *anon_name)
870 {
871         struct vm_area_struct *curr, *next, *res;
872         struct vm_area_struct *vma, *adjust, *remove, *remove2;
873         struct vm_area_struct *anon_dup = NULL;
874         struct vma_prepare vp;
875         pgoff_t vma_pgoff;
876         int err = 0;
877         bool merge_prev = false;
878         bool merge_next = false;
879         bool vma_expanded = false;
880         unsigned long vma_start = addr;
881         unsigned long vma_end = end;
882         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
883         long adj_start = 0;
884
885         /*
886          * We later require that vma->vm_flags == vm_flags,
887          * so this tests vma->vm_flags & VM_SPECIAL, too.
888          */
889         if (vm_flags & VM_SPECIAL)
890                 return NULL;
891
892         /* Does the input range span an existing VMA? (cases 5 - 8) */
893         curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
894
895         if (!curr ||                    /* cases 1 - 4 */
896             end == curr->vm_end)        /* cases 6 - 8, adjacent VMA */
897                 next = vma_lookup(mm, end);
898         else
899                 next = NULL;            /* case 5 */
900
901         if (prev) {
902                 vma_start = prev->vm_start;
903                 vma_pgoff = prev->vm_pgoff;
904
905                 /* Can we merge the predecessor? */
906                 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
907                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
908                                            pgoff, vm_userfaultfd_ctx, anon_name)) {
909                         merge_prev = true;
910                         vma_prev(vmi);
911                 }
912         }
913
914         /* Can we merge the successor? */
915         if (next && mpol_equal(policy, vma_policy(next)) &&
916             can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
917                                  vm_userfaultfd_ctx, anon_name)) {
918                 merge_next = true;
919         }
920
921         /* Verify some invariant that must be enforced by the caller. */
922         VM_WARN_ON(prev && addr <= prev->vm_start);
923         VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
924         VM_WARN_ON(addr >= end);
925
926         if (!merge_prev && !merge_next)
927                 return NULL; /* Not mergeable. */
928
929         if (merge_prev)
930                 vma_start_write(prev);
931
932         res = vma = prev;
933         remove = remove2 = adjust = NULL;
934
935         /* Can we merge both the predecessor and the successor? */
936         if (merge_prev && merge_next &&
937             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
938                 vma_start_write(next);
939                 remove = next;                          /* case 1 */
940                 vma_end = next->vm_end;
941                 err = dup_anon_vma(prev, next, &anon_dup);
942                 if (curr) {                             /* case 6 */
943                         vma_start_write(curr);
944                         remove = curr;
945                         remove2 = next;
946                         /*
947                          * Note that the dup_anon_vma below cannot overwrite err
948                          * since the first caller would do nothing unless next
949                          * has an anon_vma.
950                          */
951                         if (!next->anon_vma)
952                                 err = dup_anon_vma(prev, curr, &anon_dup);
953                 }
954         } else if (merge_prev) {                        /* case 2 */
955                 if (curr) {
956                         vma_start_write(curr);
957                         if (end == curr->vm_end) {      /* case 7 */
958                                 /*
959                                  * can_vma_merge_after() assumed we would not be
960                                  * removing prev vma, so it skipped the check
961                                  * for vm_ops->close, but we are removing curr
962                                  */
963                                 if (curr->vm_ops && curr->vm_ops->close)
964                                         err = -EINVAL;
965                                 remove = curr;
966                         } else {                        /* case 5 */
967                                 adjust = curr;
968                                 adj_start = (end - curr->vm_start);
969                         }
970                         if (!err)
971                                 err = dup_anon_vma(prev, curr, &anon_dup);
972                 }
973         } else { /* merge_next */
974                 vma_start_write(next);
975                 res = next;
976                 if (prev && addr < prev->vm_end) {      /* case 4 */
977                         vma_start_write(prev);
978                         vma_end = addr;
979                         adjust = next;
980                         adj_start = -(prev->vm_end - addr);
981                         err = dup_anon_vma(next, prev, &anon_dup);
982                 } else {
983                         /*
984                          * Note that cases 3 and 8 are the ONLY ones where prev
985                          * is permitted to be (but is not necessarily) NULL.
986                          */
987                         vma = next;                     /* case 3 */
988                         vma_start = addr;
989                         vma_end = next->vm_end;
990                         vma_pgoff = next->vm_pgoff - pglen;
991                         if (curr) {                     /* case 8 */
992                                 vma_pgoff = curr->vm_pgoff;
993                                 vma_start_write(curr);
994                                 remove = curr;
995                                 err = dup_anon_vma(next, curr, &anon_dup);
996                         }
997                 }
998         }
999
1000         /* Error in anon_vma clone. */
1001         if (err)
1002                 goto anon_vma_fail;
1003
1004         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1005                 vma_expanded = true;
1006
1007         if (vma_expanded) {
1008                 vma_iter_config(vmi, vma_start, vma_end);
1009         } else {
1010                 vma_iter_config(vmi, adjust->vm_start + adj_start,
1011                                 adjust->vm_end);
1012         }
1013
1014         if (vma_iter_prealloc(vmi, vma))
1015                 goto prealloc_fail;
1016
1017         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1018         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1019                    vp.anon_vma != adjust->anon_vma);
1020
1021         vma_prepare(&vp);
1022         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1023
1024         vma->vm_start = vma_start;
1025         vma->vm_end = vma_end;
1026         vma->vm_pgoff = vma_pgoff;
1027
1028         if (vma_expanded)
1029                 vma_iter_store(vmi, vma);
1030
1031         if (adj_start) {
1032                 adjust->vm_start += adj_start;
1033                 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1034                 if (adj_start < 0) {
1035                         WARN_ON(vma_expanded);
1036                         vma_iter_store(vmi, next);
1037                 }
1038         }
1039
1040         vma_complete(&vp, vmi, mm);
1041         khugepaged_enter_vma(res, vm_flags);
1042         return res;
1043
1044 prealloc_fail:
1045         if (anon_dup)
1046                 unlink_anon_vmas(anon_dup);
1047
1048 anon_vma_fail:
1049         vma_iter_set(vmi, addr);
1050         vma_iter_load(vmi);
1051         return NULL;
1052 }
1053
1054 /*
1055  * Rough compatibility check to quickly see if it's even worth looking
1056  * at sharing an anon_vma.
1057  *
1058  * They need to have the same vm_file, and the flags can only differ
1059  * in things that mprotect may change.
1060  *
1061  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1062  * we can merge the two vma's. For example, we refuse to merge a vma if
1063  * there is a vm_ops->close() function, because that indicates that the
1064  * driver is doing some kind of reference counting. But that doesn't
1065  * really matter for the anon_vma sharing case.
1066  */
1067 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1068 {
1069         return a->vm_end == b->vm_start &&
1070                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1071                 a->vm_file == b->vm_file &&
1072                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1073                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1074 }
1075
1076 /*
1077  * Do some basic sanity checking to see if we can re-use the anon_vma
1078  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1079  * the same as 'old', the other will be the new one that is trying
1080  * to share the anon_vma.
1081  *
1082  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1083  * the anon_vma of 'old' is concurrently in the process of being set up
1084  * by another page fault trying to merge _that_. But that's ok: if it
1085  * is being set up, that automatically means that it will be a singleton
1086  * acceptable for merging, so we can do all of this optimistically. But
1087  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1088  *
1089  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1090  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1091  * is to return an anon_vma that is "complex" due to having gone through
1092  * a fork).
1093  *
1094  * We also make sure that the two vma's are compatible (adjacent,
1095  * and with the same memory policies). That's all stable, even with just
1096  * a read lock on the mmap_lock.
1097  */
1098 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1099 {
1100         if (anon_vma_compatible(a, b)) {
1101                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1102
1103                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1104                         return anon_vma;
1105         }
1106         return NULL;
1107 }
1108
1109 /*
1110  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1111  * neighbouring vmas for a suitable anon_vma, before it goes off
1112  * to allocate a new anon_vma.  It checks because a repetitive
1113  * sequence of mprotects and faults may otherwise lead to distinct
1114  * anon_vmas being allocated, preventing vma merge in subsequent
1115  * mprotect.
1116  */
1117 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1118 {
1119         MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1120         struct anon_vma *anon_vma = NULL;
1121         struct vm_area_struct *prev, *next;
1122
1123         /* Try next first. */
1124         next = mas_walk(&mas);
1125         if (next) {
1126                 anon_vma = reusable_anon_vma(next, vma, next);
1127                 if (anon_vma)
1128                         return anon_vma;
1129         }
1130
1131         prev = mas_prev(&mas, 0);
1132         VM_BUG_ON_VMA(prev != vma, vma);
1133         prev = mas_prev(&mas, 0);
1134         /* Try prev next. */
1135         if (prev)
1136                 anon_vma = reusable_anon_vma(prev, prev, vma);
1137
1138         /*
1139          * We might reach here with anon_vma == NULL if we can't find
1140          * any reusable anon_vma.
1141          * There's no absolute need to look only at touching neighbours:
1142          * we could search further afield for "compatible" anon_vmas.
1143          * But it would probably just be a waste of time searching,
1144          * or lead to too many vmas hanging off the same anon_vma.
1145          * We're trying to allow mprotect remerging later on,
1146          * not trying to minimize memory used for anon_vmas.
1147          */
1148         return anon_vma;
1149 }
1150
1151 /*
1152  * If a hint addr is less than mmap_min_addr change hint to be as
1153  * low as possible but still greater than mmap_min_addr
1154  */
1155 static inline unsigned long round_hint_to_min(unsigned long hint)
1156 {
1157         hint &= PAGE_MASK;
1158         if (((void *)hint != NULL) &&
1159             (hint < mmap_min_addr))
1160                 return PAGE_ALIGN(mmap_min_addr);
1161         return hint;
1162 }
1163
1164 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1165                         unsigned long bytes)
1166 {
1167         unsigned long locked_pages, limit_pages;
1168
1169         if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1170                 return true;
1171
1172         locked_pages = bytes >> PAGE_SHIFT;
1173         locked_pages += mm->locked_vm;
1174
1175         limit_pages = rlimit(RLIMIT_MEMLOCK);
1176         limit_pages >>= PAGE_SHIFT;
1177
1178         return locked_pages <= limit_pages;
1179 }
1180
1181 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1182 {
1183         if (S_ISREG(inode->i_mode))
1184                 return MAX_LFS_FILESIZE;
1185
1186         if (S_ISBLK(inode->i_mode))
1187                 return MAX_LFS_FILESIZE;
1188
1189         if (S_ISSOCK(inode->i_mode))
1190                 return MAX_LFS_FILESIZE;
1191
1192         /* Special "we do even unsigned file positions" case */
1193         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1194                 return 0;
1195
1196         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1197         return ULONG_MAX;
1198 }
1199
1200 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1201                                 unsigned long pgoff, unsigned long len)
1202 {
1203         u64 maxsize = file_mmap_size_max(file, inode);
1204
1205         if (maxsize && len > maxsize)
1206                 return false;
1207         maxsize -= len;
1208         if (pgoff > maxsize >> PAGE_SHIFT)
1209                 return false;
1210         return true;
1211 }
1212
1213 /*
1214  * The caller must write-lock current->mm->mmap_lock.
1215  */
1216 unsigned long do_mmap(struct file *file, unsigned long addr,
1217                         unsigned long len, unsigned long prot,
1218                         unsigned long flags, vm_flags_t vm_flags,
1219                         unsigned long pgoff, unsigned long *populate,
1220                         struct list_head *uf)
1221 {
1222         struct mm_struct *mm = current->mm;
1223         int pkey = 0;
1224
1225         *populate = 0;
1226
1227         if (!len)
1228                 return -EINVAL;
1229
1230         /*
1231          * Does the application expect PROT_READ to imply PROT_EXEC?
1232          *
1233          * (the exception is when the underlying filesystem is noexec
1234          *  mounted, in which case we don't add PROT_EXEC.)
1235          */
1236         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1237                 if (!(file && path_noexec(&file->f_path)))
1238                         prot |= PROT_EXEC;
1239
1240         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1241         if (flags & MAP_FIXED_NOREPLACE)
1242                 flags |= MAP_FIXED;
1243
1244         if (!(flags & MAP_FIXED))
1245                 addr = round_hint_to_min(addr);
1246
1247         /* Careful about overflows.. */
1248         len = PAGE_ALIGN(len);
1249         if (!len)
1250                 return -ENOMEM;
1251
1252         /* offset overflow? */
1253         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1254                 return -EOVERFLOW;
1255
1256         /* Too many mappings? */
1257         if (mm->map_count > sysctl_max_map_count)
1258                 return -ENOMEM;
1259
1260         /* Obtain the address to map to. we verify (or select) it and ensure
1261          * that it represents a valid section of the address space.
1262          */
1263         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1264         if (IS_ERR_VALUE(addr))
1265                 return addr;
1266
1267         if (flags & MAP_FIXED_NOREPLACE) {
1268                 if (find_vma_intersection(mm, addr, addr + len))
1269                         return -EEXIST;
1270         }
1271
1272         if (prot == PROT_EXEC) {
1273                 pkey = execute_only_pkey(mm);
1274                 if (pkey < 0)
1275                         pkey = 0;
1276         }
1277
1278         /* Do simple checking here so the lower-level routines won't have
1279          * to. we assume access permissions have been handled by the open
1280          * of the memory object, so we don't do any here.
1281          */
1282         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1283                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1284
1285         if (flags & MAP_LOCKED)
1286                 if (!can_do_mlock())
1287                         return -EPERM;
1288
1289         if (!mlock_future_ok(mm, vm_flags, len))
1290                 return -EAGAIN;
1291
1292         if (file) {
1293                 struct inode *inode = file_inode(file);
1294                 unsigned long flags_mask;
1295
1296                 if (!file_mmap_ok(file, inode, pgoff, len))
1297                         return -EOVERFLOW;
1298
1299                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1300
1301                 switch (flags & MAP_TYPE) {
1302                 case MAP_SHARED:
1303                         /*
1304                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1305                          * flags. E.g. MAP_SYNC is dangerous to use with
1306                          * MAP_SHARED as you don't know which consistency model
1307                          * you will get. We silently ignore unsupported flags
1308                          * with MAP_SHARED to preserve backward compatibility.
1309                          */
1310                         flags &= LEGACY_MAP_MASK;
1311                         fallthrough;
1312                 case MAP_SHARED_VALIDATE:
1313                         if (flags & ~flags_mask)
1314                                 return -EOPNOTSUPP;
1315                         if (prot & PROT_WRITE) {
1316                                 if (!(file->f_mode & FMODE_WRITE))
1317                                         return -EACCES;
1318                                 if (IS_SWAPFILE(file->f_mapping->host))
1319                                         return -ETXTBSY;
1320                         }
1321
1322                         /*
1323                          * Make sure we don't allow writing to an append-only
1324                          * file..
1325                          */
1326                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1327                                 return -EACCES;
1328
1329                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1330                         if (!(file->f_mode & FMODE_WRITE))
1331                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1332                         fallthrough;
1333                 case MAP_PRIVATE:
1334                         if (!(file->f_mode & FMODE_READ))
1335                                 return -EACCES;
1336                         if (path_noexec(&file->f_path)) {
1337                                 if (vm_flags & VM_EXEC)
1338                                         return -EPERM;
1339                                 vm_flags &= ~VM_MAYEXEC;
1340                         }
1341
1342                         if (!file->f_op->mmap)
1343                                 return -ENODEV;
1344                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1345                                 return -EINVAL;
1346                         break;
1347
1348                 default:
1349                         return -EINVAL;
1350                 }
1351         } else {
1352                 switch (flags & MAP_TYPE) {
1353                 case MAP_SHARED:
1354                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355                                 return -EINVAL;
1356                         /*
1357                          * Ignore pgoff.
1358                          */
1359                         pgoff = 0;
1360                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1361                         break;
1362                 case MAP_PRIVATE:
1363                         /*
1364                          * Set pgoff according to addr for anon_vma.
1365                          */
1366                         pgoff = addr >> PAGE_SHIFT;
1367                         break;
1368                 default:
1369                         return -EINVAL;
1370                 }
1371         }
1372
1373         /*
1374          * Set 'VM_NORESERVE' if we should not account for the
1375          * memory use of this mapping.
1376          */
1377         if (flags & MAP_NORESERVE) {
1378                 /* We honor MAP_NORESERVE if allowed to overcommit */
1379                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1380                         vm_flags |= VM_NORESERVE;
1381
1382                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1383                 if (file && is_file_hugepages(file))
1384                         vm_flags |= VM_NORESERVE;
1385         }
1386
1387         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1388         if (!IS_ERR_VALUE(addr) &&
1389             ((vm_flags & VM_LOCKED) ||
1390              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1391                 *populate = len;
1392         return addr;
1393 }
1394
1395 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1396                               unsigned long prot, unsigned long flags,
1397                               unsigned long fd, unsigned long pgoff)
1398 {
1399         struct file *file = NULL;
1400         unsigned long retval;
1401
1402         if (!(flags & MAP_ANONYMOUS)) {
1403                 audit_mmap_fd(fd, flags);
1404                 file = fget(fd);
1405                 if (!file)
1406                         return -EBADF;
1407                 if (is_file_hugepages(file)) {
1408                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1409                 } else if (unlikely(flags & MAP_HUGETLB)) {
1410                         retval = -EINVAL;
1411                         goto out_fput;
1412                 }
1413         } else if (flags & MAP_HUGETLB) {
1414                 struct hstate *hs;
1415
1416                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1417                 if (!hs)
1418                         return -EINVAL;
1419
1420                 len = ALIGN(len, huge_page_size(hs));
1421                 /*
1422                  * VM_NORESERVE is used because the reservations will be
1423                  * taken when vm_ops->mmap() is called
1424                  */
1425                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1426                                 VM_NORESERVE,
1427                                 HUGETLB_ANONHUGE_INODE,
1428                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1429                 if (IS_ERR(file))
1430                         return PTR_ERR(file);
1431         }
1432
1433         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1434 out_fput:
1435         if (file)
1436                 fput(file);
1437         return retval;
1438 }
1439
1440 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1441                 unsigned long, prot, unsigned long, flags,
1442                 unsigned long, fd, unsigned long, pgoff)
1443 {
1444         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1445 }
1446
1447 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1448 struct mmap_arg_struct {
1449         unsigned long addr;
1450         unsigned long len;
1451         unsigned long prot;
1452         unsigned long flags;
1453         unsigned long fd;
1454         unsigned long offset;
1455 };
1456
1457 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1458 {
1459         struct mmap_arg_struct a;
1460
1461         if (copy_from_user(&a, arg, sizeof(a)))
1462                 return -EFAULT;
1463         if (offset_in_page(a.offset))
1464                 return -EINVAL;
1465
1466         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1467                                a.offset >> PAGE_SHIFT);
1468 }
1469 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1470
1471 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1472 {
1473         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1474 }
1475
1476 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1477 {
1478         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1479                 (VM_WRITE | VM_SHARED);
1480 }
1481
1482 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1483 {
1484         /* No managed pages to writeback. */
1485         if (vma->vm_flags & VM_PFNMAP)
1486                 return false;
1487
1488         return vma->vm_file && vma->vm_file->f_mapping &&
1489                 mapping_can_writeback(vma->vm_file->f_mapping);
1490 }
1491
1492 /*
1493  * Does this VMA require the underlying folios to have their dirty state
1494  * tracked?
1495  */
1496 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1497 {
1498         /* Only shared, writable VMAs require dirty tracking. */
1499         if (!vma_is_shared_writable(vma))
1500                 return false;
1501
1502         /* Does the filesystem need to be notified? */
1503         if (vm_ops_needs_writenotify(vma->vm_ops))
1504                 return true;
1505
1506         /*
1507          * Even if the filesystem doesn't indicate a need for writenotify, if it
1508          * can writeback, dirty tracking is still required.
1509          */
1510         return vma_fs_can_writeback(vma);
1511 }
1512
1513 /*
1514  * Some shared mappings will want the pages marked read-only
1515  * to track write events. If so, we'll downgrade vm_page_prot
1516  * to the private version (using protection_map[] without the
1517  * VM_SHARED bit).
1518  */
1519 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1520 {
1521         /* If it was private or non-writable, the write bit is already clear */
1522         if (!vma_is_shared_writable(vma))
1523                 return 0;
1524
1525         /* The backer wishes to know when pages are first written to? */
1526         if (vm_ops_needs_writenotify(vma->vm_ops))
1527                 return 1;
1528
1529         /* The open routine did something to the protections that pgprot_modify
1530          * won't preserve? */
1531         if (pgprot_val(vm_page_prot) !=
1532             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1533                 return 0;
1534
1535         /*
1536          * Do we need to track softdirty? hugetlb does not support softdirty
1537          * tracking yet.
1538          */
1539         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1540                 return 1;
1541
1542         /* Do we need write faults for uffd-wp tracking? */
1543         if (userfaultfd_wp(vma))
1544                 return 1;
1545
1546         /* Can the mapping track the dirty pages? */
1547         return vma_fs_can_writeback(vma);
1548 }
1549
1550 /*
1551  * We account for memory if it's a private writeable mapping,
1552  * not hugepages and VM_NORESERVE wasn't set.
1553  */
1554 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1555 {
1556         /*
1557          * hugetlb has its own accounting separate from the core VM
1558          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1559          */
1560         if (file && is_file_hugepages(file))
1561                 return 0;
1562
1563         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1564 }
1565
1566 /**
1567  * unmapped_area() - Find an area between the low_limit and the high_limit with
1568  * the correct alignment and offset, all from @info. Note: current->mm is used
1569  * for the search.
1570  *
1571  * @info: The unmapped area information including the range [low_limit -
1572  * high_limit), the alignment offset and mask.
1573  *
1574  * Return: A memory address or -ENOMEM.
1575  */
1576 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1577 {
1578         unsigned long length, gap;
1579         unsigned long low_limit, high_limit;
1580         struct vm_area_struct *tmp;
1581
1582         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1583
1584         /* Adjust search length to account for worst case alignment overhead */
1585         length = info->length + info->align_mask;
1586         if (length < info->length)
1587                 return -ENOMEM;
1588
1589         low_limit = info->low_limit;
1590         if (low_limit < mmap_min_addr)
1591                 low_limit = mmap_min_addr;
1592         high_limit = info->high_limit;
1593 retry:
1594         if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1595                 return -ENOMEM;
1596
1597         gap = mas.index;
1598         gap += (info->align_offset - gap) & info->align_mask;
1599         tmp = mas_next(&mas, ULONG_MAX);
1600         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1601                 if (vm_start_gap(tmp) < gap + length - 1) {
1602                         low_limit = tmp->vm_end;
1603                         mas_reset(&mas);
1604                         goto retry;
1605                 }
1606         } else {
1607                 tmp = mas_prev(&mas, 0);
1608                 if (tmp && vm_end_gap(tmp) > gap) {
1609                         low_limit = vm_end_gap(tmp);
1610                         mas_reset(&mas);
1611                         goto retry;
1612                 }
1613         }
1614
1615         return gap;
1616 }
1617
1618 /**
1619  * unmapped_area_topdown() - Find an area between the low_limit and the
1620  * high_limit with the correct alignment and offset at the highest available
1621  * address, all from @info. Note: current->mm is used for the search.
1622  *
1623  * @info: The unmapped area information including the range [low_limit -
1624  * high_limit), the alignment offset and mask.
1625  *
1626  * Return: A memory address or -ENOMEM.
1627  */
1628 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1629 {
1630         unsigned long length, gap, gap_end;
1631         unsigned long low_limit, high_limit;
1632         struct vm_area_struct *tmp;
1633
1634         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1635         /* Adjust search length to account for worst case alignment overhead */
1636         length = info->length + info->align_mask;
1637         if (length < info->length)
1638                 return -ENOMEM;
1639
1640         low_limit = info->low_limit;
1641         if (low_limit < mmap_min_addr)
1642                 low_limit = mmap_min_addr;
1643         high_limit = info->high_limit;
1644 retry:
1645         if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1646                 return -ENOMEM;
1647
1648         gap = mas.last + 1 - info->length;
1649         gap -= (gap - info->align_offset) & info->align_mask;
1650         gap_end = mas.last;
1651         tmp = mas_next(&mas, ULONG_MAX);
1652         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1653                 if (vm_start_gap(tmp) <= gap_end) {
1654                         high_limit = vm_start_gap(tmp);
1655                         mas_reset(&mas);
1656                         goto retry;
1657                 }
1658         } else {
1659                 tmp = mas_prev(&mas, 0);
1660                 if (tmp && vm_end_gap(tmp) > gap) {
1661                         high_limit = tmp->vm_start;
1662                         mas_reset(&mas);
1663                         goto retry;
1664                 }
1665         }
1666
1667         return gap;
1668 }
1669
1670 /*
1671  * Search for an unmapped address range.
1672  *
1673  * We are looking for a range that:
1674  * - does not intersect with any VMA;
1675  * - is contained within the [low_limit, high_limit) interval;
1676  * - is at least the desired size.
1677  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1678  */
1679 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1680 {
1681         unsigned long addr;
1682
1683         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1684                 addr = unmapped_area_topdown(info);
1685         else
1686                 addr = unmapped_area(info);
1687
1688         trace_vm_unmapped_area(addr, info);
1689         return addr;
1690 }
1691
1692 /* Get an address range which is currently unmapped.
1693  * For shmat() with addr=0.
1694  *
1695  * Ugly calling convention alert:
1696  * Return value with the low bits set means error value,
1697  * ie
1698  *      if (ret & ~PAGE_MASK)
1699  *              error = ret;
1700  *
1701  * This function "knows" that -ENOMEM has the bits set.
1702  */
1703 unsigned long
1704 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1705                           unsigned long len, unsigned long pgoff,
1706                           unsigned long flags)
1707 {
1708         struct mm_struct *mm = current->mm;
1709         struct vm_area_struct *vma, *prev;
1710         struct vm_unmapped_area_info info;
1711         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1712
1713         if (len > mmap_end - mmap_min_addr)
1714                 return -ENOMEM;
1715
1716         if (flags & MAP_FIXED)
1717                 return addr;
1718
1719         if (addr) {
1720                 addr = PAGE_ALIGN(addr);
1721                 vma = find_vma_prev(mm, addr, &prev);
1722                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1723                     (!vma || addr + len <= vm_start_gap(vma)) &&
1724                     (!prev || addr >= vm_end_gap(prev)))
1725                         return addr;
1726         }
1727
1728         info.flags = 0;
1729         info.length = len;
1730         info.low_limit = mm->mmap_base;
1731         info.high_limit = mmap_end;
1732         info.align_mask = 0;
1733         info.align_offset = 0;
1734         return vm_unmapped_area(&info);
1735 }
1736
1737 #ifndef HAVE_ARCH_UNMAPPED_AREA
1738 unsigned long
1739 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1740                        unsigned long len, unsigned long pgoff,
1741                        unsigned long flags)
1742 {
1743         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1744 }
1745 #endif
1746
1747 /*
1748  * This mmap-allocator allocates new areas top-down from below the
1749  * stack's low limit (the base):
1750  */
1751 unsigned long
1752 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1753                                   unsigned long len, unsigned long pgoff,
1754                                   unsigned long flags)
1755 {
1756         struct vm_area_struct *vma, *prev;
1757         struct mm_struct *mm = current->mm;
1758         struct vm_unmapped_area_info info;
1759         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1760
1761         /* requested length too big for entire address space */
1762         if (len > mmap_end - mmap_min_addr)
1763                 return -ENOMEM;
1764
1765         if (flags & MAP_FIXED)
1766                 return addr;
1767
1768         /* requesting a specific address */
1769         if (addr) {
1770                 addr = PAGE_ALIGN(addr);
1771                 vma = find_vma_prev(mm, addr, &prev);
1772                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1773                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1774                                 (!prev || addr >= vm_end_gap(prev)))
1775                         return addr;
1776         }
1777
1778         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1779         info.length = len;
1780         info.low_limit = PAGE_SIZE;
1781         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1782         info.align_mask = 0;
1783         info.align_offset = 0;
1784         addr = vm_unmapped_area(&info);
1785
1786         /*
1787          * A failed mmap() very likely causes application failure,
1788          * so fall back to the bottom-up function here. This scenario
1789          * can happen with large stack limits and large mmap()
1790          * allocations.
1791          */
1792         if (offset_in_page(addr)) {
1793                 VM_BUG_ON(addr != -ENOMEM);
1794                 info.flags = 0;
1795                 info.low_limit = TASK_UNMAPPED_BASE;
1796                 info.high_limit = mmap_end;
1797                 addr = vm_unmapped_area(&info);
1798         }
1799
1800         return addr;
1801 }
1802
1803 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1804 unsigned long
1805 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1806                                unsigned long len, unsigned long pgoff,
1807                                unsigned long flags)
1808 {
1809         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1810 }
1811 #endif
1812
1813 unsigned long
1814 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1815                 unsigned long pgoff, unsigned long flags)
1816 {
1817         unsigned long (*get_area)(struct file *, unsigned long,
1818                                   unsigned long, unsigned long, unsigned long);
1819
1820         unsigned long error = arch_mmap_check(addr, len, flags);
1821         if (error)
1822                 return error;
1823
1824         /* Careful about overflows.. */
1825         if (len > TASK_SIZE)
1826                 return -ENOMEM;
1827
1828         get_area = current->mm->get_unmapped_area;
1829         if (file) {
1830                 if (file->f_op->get_unmapped_area)
1831                         get_area = file->f_op->get_unmapped_area;
1832         } else if (flags & MAP_SHARED) {
1833                 /*
1834                  * mmap_region() will call shmem_zero_setup() to create a file,
1835                  * so use shmem's get_unmapped_area in case it can be huge.
1836                  */
1837                 get_area = shmem_get_unmapped_area;
1838         } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1839                 /* Ensures that larger anonymous mappings are THP aligned. */
1840                 get_area = thp_get_unmapped_area;
1841         }
1842
1843         /* Always treat pgoff as zero for anonymous memory. */
1844         if (!file)
1845                 pgoff = 0;
1846
1847         addr = get_area(file, addr, len, pgoff, flags);
1848         if (IS_ERR_VALUE(addr))
1849                 return addr;
1850
1851         if (addr > TASK_SIZE - len)
1852                 return -ENOMEM;
1853         if (offset_in_page(addr))
1854                 return -EINVAL;
1855
1856         error = security_mmap_addr(addr);
1857         return error ? error : addr;
1858 }
1859
1860 EXPORT_SYMBOL(get_unmapped_area);
1861
1862 /**
1863  * find_vma_intersection() - Look up the first VMA which intersects the interval
1864  * @mm: The process address space.
1865  * @start_addr: The inclusive start user address.
1866  * @end_addr: The exclusive end user address.
1867  *
1868  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1869  * start_addr < end_addr.
1870  */
1871 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1872                                              unsigned long start_addr,
1873                                              unsigned long end_addr)
1874 {
1875         unsigned long index = start_addr;
1876
1877         mmap_assert_locked(mm);
1878         return mt_find(&mm->mm_mt, &index, end_addr - 1);
1879 }
1880 EXPORT_SYMBOL(find_vma_intersection);
1881
1882 /**
1883  * find_vma() - Find the VMA for a given address, or the next VMA.
1884  * @mm: The mm_struct to check
1885  * @addr: The address
1886  *
1887  * Returns: The VMA associated with addr, or the next VMA.
1888  * May return %NULL in the case of no VMA at addr or above.
1889  */
1890 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1891 {
1892         unsigned long index = addr;
1893
1894         mmap_assert_locked(mm);
1895         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1896 }
1897 EXPORT_SYMBOL(find_vma);
1898
1899 /**
1900  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1901  * set %pprev to the previous VMA, if any.
1902  * @mm: The mm_struct to check
1903  * @addr: The address
1904  * @pprev: The pointer to set to the previous VMA
1905  *
1906  * Note that RCU lock is missing here since the external mmap_lock() is used
1907  * instead.
1908  *
1909  * Returns: The VMA associated with @addr, or the next vma.
1910  * May return %NULL in the case of no vma at addr or above.
1911  */
1912 struct vm_area_struct *
1913 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1914                         struct vm_area_struct **pprev)
1915 {
1916         struct vm_area_struct *vma;
1917         MA_STATE(mas, &mm->mm_mt, addr, addr);
1918
1919         vma = mas_walk(&mas);
1920         *pprev = mas_prev(&mas, 0);
1921         if (!vma)
1922                 vma = mas_next(&mas, ULONG_MAX);
1923         return vma;
1924 }
1925
1926 /*
1927  * Verify that the stack growth is acceptable and
1928  * update accounting. This is shared with both the
1929  * grow-up and grow-down cases.
1930  */
1931 static int acct_stack_growth(struct vm_area_struct *vma,
1932                              unsigned long size, unsigned long grow)
1933 {
1934         struct mm_struct *mm = vma->vm_mm;
1935         unsigned long new_start;
1936
1937         /* address space limit tests */
1938         if (!may_expand_vm(mm, vma->vm_flags, grow))
1939                 return -ENOMEM;
1940
1941         /* Stack limit test */
1942         if (size > rlimit(RLIMIT_STACK))
1943                 return -ENOMEM;
1944
1945         /* mlock limit tests */
1946         if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1947                 return -ENOMEM;
1948
1949         /* Check to ensure the stack will not grow into a hugetlb-only region */
1950         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1951                         vma->vm_end - size;
1952         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1953                 return -EFAULT;
1954
1955         /*
1956          * Overcommit..  This must be the final test, as it will
1957          * update security statistics.
1958          */
1959         if (security_vm_enough_memory_mm(mm, grow))
1960                 return -ENOMEM;
1961
1962         return 0;
1963 }
1964
1965 #if defined(CONFIG_STACK_GROWSUP)
1966 /*
1967  * PA-RISC uses this for its stack.
1968  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1969  */
1970 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1971 {
1972         struct mm_struct *mm = vma->vm_mm;
1973         struct vm_area_struct *next;
1974         unsigned long gap_addr;
1975         int error = 0;
1976         MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1977
1978         if (!(vma->vm_flags & VM_GROWSUP))
1979                 return -EFAULT;
1980
1981         /* Guard against exceeding limits of the address space. */
1982         address &= PAGE_MASK;
1983         if (address >= (TASK_SIZE & PAGE_MASK))
1984                 return -ENOMEM;
1985         address += PAGE_SIZE;
1986
1987         /* Enforce stack_guard_gap */
1988         gap_addr = address + stack_guard_gap;
1989
1990         /* Guard against overflow */
1991         if (gap_addr < address || gap_addr > TASK_SIZE)
1992                 gap_addr = TASK_SIZE;
1993
1994         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1995         if (next && vma_is_accessible(next)) {
1996                 if (!(next->vm_flags & VM_GROWSUP))
1997                         return -ENOMEM;
1998                 /* Check that both stack segments have the same anon_vma? */
1999         }
2000
2001         if (next)
2002                 mas_prev_range(&mas, address);
2003
2004         __mas_set_range(&mas, vma->vm_start, address - 1);
2005         if (mas_preallocate(&mas, vma, GFP_KERNEL))
2006                 return -ENOMEM;
2007
2008         /* We must make sure the anon_vma is allocated. */
2009         if (unlikely(anon_vma_prepare(vma))) {
2010                 mas_destroy(&mas);
2011                 return -ENOMEM;
2012         }
2013
2014         /* Lock the VMA before expanding to prevent concurrent page faults */
2015         vma_start_write(vma);
2016         /*
2017          * vma->vm_start/vm_end cannot change under us because the caller
2018          * is required to hold the mmap_lock in read mode.  We need the
2019          * anon_vma lock to serialize against concurrent expand_stacks.
2020          */
2021         anon_vma_lock_write(vma->anon_vma);
2022
2023         /* Somebody else might have raced and expanded it already */
2024         if (address > vma->vm_end) {
2025                 unsigned long size, grow;
2026
2027                 size = address - vma->vm_start;
2028                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2029
2030                 error = -ENOMEM;
2031                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2032                         error = acct_stack_growth(vma, size, grow);
2033                         if (!error) {
2034                                 /*
2035                                  * We only hold a shared mmap_lock lock here, so
2036                                  * we need to protect against concurrent vma
2037                                  * expansions.  anon_vma_lock_write() doesn't
2038                                  * help here, as we don't guarantee that all
2039                                  * growable vmas in a mm share the same root
2040                                  * anon vma.  So, we reuse mm->page_table_lock
2041                                  * to guard against concurrent vma expansions.
2042                                  */
2043                                 spin_lock(&mm->page_table_lock);
2044                                 if (vma->vm_flags & VM_LOCKED)
2045                                         mm->locked_vm += grow;
2046                                 vm_stat_account(mm, vma->vm_flags, grow);
2047                                 anon_vma_interval_tree_pre_update_vma(vma);
2048                                 vma->vm_end = address;
2049                                 /* Overwrite old entry in mtree. */
2050                                 mas_store_prealloc(&mas, vma);
2051                                 anon_vma_interval_tree_post_update_vma(vma);
2052                                 spin_unlock(&mm->page_table_lock);
2053
2054                                 perf_event_mmap(vma);
2055                         }
2056                 }
2057         }
2058         anon_vma_unlock_write(vma->anon_vma);
2059         khugepaged_enter_vma(vma, vma->vm_flags);
2060         mas_destroy(&mas);
2061         validate_mm(mm);
2062         return error;
2063 }
2064 #endif /* CONFIG_STACK_GROWSUP */
2065
2066 /*
2067  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2068  * mmap_lock held for writing.
2069  */
2070 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2071 {
2072         struct mm_struct *mm = vma->vm_mm;
2073         MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2074         struct vm_area_struct *prev;
2075         int error = 0;
2076
2077         if (!(vma->vm_flags & VM_GROWSDOWN))
2078                 return -EFAULT;
2079
2080         address &= PAGE_MASK;
2081         if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2082                 return -EPERM;
2083
2084         /* Enforce stack_guard_gap */
2085         prev = mas_prev(&mas, 0);
2086         /* Check that both stack segments have the same anon_vma? */
2087         if (prev) {
2088                 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2089                     vma_is_accessible(prev) &&
2090                     (address - prev->vm_end < stack_guard_gap))
2091                         return -ENOMEM;
2092         }
2093
2094         if (prev)
2095                 mas_next_range(&mas, vma->vm_start);
2096
2097         __mas_set_range(&mas, address, vma->vm_end - 1);
2098         if (mas_preallocate(&mas, vma, GFP_KERNEL))
2099                 return -ENOMEM;
2100
2101         /* We must make sure the anon_vma is allocated. */
2102         if (unlikely(anon_vma_prepare(vma))) {
2103                 mas_destroy(&mas);
2104                 return -ENOMEM;
2105         }
2106
2107         /* Lock the VMA before expanding to prevent concurrent page faults */
2108         vma_start_write(vma);
2109         /*
2110          * vma->vm_start/vm_end cannot change under us because the caller
2111          * is required to hold the mmap_lock in read mode.  We need the
2112          * anon_vma lock to serialize against concurrent expand_stacks.
2113          */
2114         anon_vma_lock_write(vma->anon_vma);
2115
2116         /* Somebody else might have raced and expanded it already */
2117         if (address < vma->vm_start) {
2118                 unsigned long size, grow;
2119
2120                 size = vma->vm_end - address;
2121                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2122
2123                 error = -ENOMEM;
2124                 if (grow <= vma->vm_pgoff) {
2125                         error = acct_stack_growth(vma, size, grow);
2126                         if (!error) {
2127                                 /*
2128                                  * We only hold a shared mmap_lock lock here, so
2129                                  * we need to protect against concurrent vma
2130                                  * expansions.  anon_vma_lock_write() doesn't
2131                                  * help here, as we don't guarantee that all
2132                                  * growable vmas in a mm share the same root
2133                                  * anon vma.  So, we reuse mm->page_table_lock
2134                                  * to guard against concurrent vma expansions.
2135                                  */
2136                                 spin_lock(&mm->page_table_lock);
2137                                 if (vma->vm_flags & VM_LOCKED)
2138                                         mm->locked_vm += grow;
2139                                 vm_stat_account(mm, vma->vm_flags, grow);
2140                                 anon_vma_interval_tree_pre_update_vma(vma);
2141                                 vma->vm_start = address;
2142                                 vma->vm_pgoff -= grow;
2143                                 /* Overwrite old entry in mtree. */
2144                                 mas_store_prealloc(&mas, vma);
2145                                 anon_vma_interval_tree_post_update_vma(vma);
2146                                 spin_unlock(&mm->page_table_lock);
2147
2148                                 perf_event_mmap(vma);
2149                         }
2150                 }
2151         }
2152         anon_vma_unlock_write(vma->anon_vma);
2153         khugepaged_enter_vma(vma, vma->vm_flags);
2154         mas_destroy(&mas);
2155         validate_mm(mm);
2156         return error;
2157 }
2158
2159 /* enforced gap between the expanding stack and other mappings. */
2160 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2161
2162 static int __init cmdline_parse_stack_guard_gap(char *p)
2163 {
2164         unsigned long val;
2165         char *endptr;
2166
2167         val = simple_strtoul(p, &endptr, 10);
2168         if (!*endptr)
2169                 stack_guard_gap = val << PAGE_SHIFT;
2170
2171         return 1;
2172 }
2173 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2174
2175 #ifdef CONFIG_STACK_GROWSUP
2176 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2177 {
2178         return expand_upwards(vma, address);
2179 }
2180
2181 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2182 {
2183         struct vm_area_struct *vma, *prev;
2184
2185         addr &= PAGE_MASK;
2186         vma = find_vma_prev(mm, addr, &prev);
2187         if (vma && (vma->vm_start <= addr))
2188                 return vma;
2189         if (!prev)
2190                 return NULL;
2191         if (expand_stack_locked(prev, addr))
2192                 return NULL;
2193         if (prev->vm_flags & VM_LOCKED)
2194                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2195         return prev;
2196 }
2197 #else
2198 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2199 {
2200         return expand_downwards(vma, address);
2201 }
2202
2203 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2204 {
2205         struct vm_area_struct *vma;
2206         unsigned long start;
2207
2208         addr &= PAGE_MASK;
2209         vma = find_vma(mm, addr);
2210         if (!vma)
2211                 return NULL;
2212         if (vma->vm_start <= addr)
2213                 return vma;
2214         start = vma->vm_start;
2215         if (expand_stack_locked(vma, addr))
2216                 return NULL;
2217         if (vma->vm_flags & VM_LOCKED)
2218                 populate_vma_page_range(vma, addr, start, NULL);
2219         return vma;
2220 }
2221 #endif
2222
2223 #if defined(CONFIG_STACK_GROWSUP)
2224
2225 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2226 #define vma_expand_down(vma, addr) (-EFAULT)
2227
2228 #else
2229
2230 #define vma_expand_up(vma,addr) (-EFAULT)
2231 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2232
2233 #endif
2234
2235 /*
2236  * expand_stack(): legacy interface for page faulting. Don't use unless
2237  * you have to.
2238  *
2239  * This is called with the mm locked for reading, drops the lock, takes
2240  * the lock for writing, tries to look up a vma again, expands it if
2241  * necessary, and downgrades the lock to reading again.
2242  *
2243  * If no vma is found or it can't be expanded, it returns NULL and has
2244  * dropped the lock.
2245  */
2246 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2247 {
2248         struct vm_area_struct *vma, *prev;
2249
2250         mmap_read_unlock(mm);
2251         if (mmap_write_lock_killable(mm))
2252                 return NULL;
2253
2254         vma = find_vma_prev(mm, addr, &prev);
2255         if (vma && vma->vm_start <= addr)
2256                 goto success;
2257
2258         if (prev && !vma_expand_up(prev, addr)) {
2259                 vma = prev;
2260                 goto success;
2261         }
2262
2263         if (vma && !vma_expand_down(vma, addr))
2264                 goto success;
2265
2266         mmap_write_unlock(mm);
2267         return NULL;
2268
2269 success:
2270         mmap_write_downgrade(mm);
2271         return vma;
2272 }
2273
2274 /*
2275  * Ok - we have the memory areas we should free on a maple tree so release them,
2276  * and do the vma updates.
2277  *
2278  * Called with the mm semaphore held.
2279  */
2280 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2281 {
2282         unsigned long nr_accounted = 0;
2283         struct vm_area_struct *vma;
2284
2285         /* Update high watermark before we lower total_vm */
2286         update_hiwater_vm(mm);
2287         mas_for_each(mas, vma, ULONG_MAX) {
2288                 long nrpages = vma_pages(vma);
2289
2290                 if (vma->vm_flags & VM_ACCOUNT)
2291                         nr_accounted += nrpages;
2292                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2293                 remove_vma(vma, false);
2294         }
2295         vm_unacct_memory(nr_accounted);
2296 }
2297
2298 /*
2299  * Get rid of page table information in the indicated region.
2300  *
2301  * Called with the mm semaphore held.
2302  */
2303 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2304                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2305                 struct vm_area_struct *next, unsigned long start,
2306                 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2307 {
2308         struct mmu_gather tlb;
2309         unsigned long mt_start = mas->index;
2310
2311         lru_add_drain();
2312         tlb_gather_mmu(&tlb, mm);
2313         update_hiwater_rss(mm);
2314         unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2315         mas_set(mas, mt_start);
2316         free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2317                                  next ? next->vm_start : USER_PGTABLES_CEILING,
2318                                  mm_wr_locked);
2319         tlb_finish_mmu(&tlb);
2320 }
2321
2322 /*
2323  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2324  * has already been checked or doesn't make sense to fail.
2325  * VMA Iterator will point to the end VMA.
2326  */
2327 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2328                        unsigned long addr, int new_below)
2329 {
2330         struct vma_prepare vp;
2331         struct vm_area_struct *new;
2332         int err;
2333
2334         WARN_ON(vma->vm_start >= addr);
2335         WARN_ON(vma->vm_end <= addr);
2336
2337         if (vma->vm_ops && vma->vm_ops->may_split) {
2338                 err = vma->vm_ops->may_split(vma, addr);
2339                 if (err)
2340                         return err;
2341         }
2342
2343         new = vm_area_dup(vma);
2344         if (!new)
2345                 return -ENOMEM;
2346
2347         if (new_below) {
2348                 new->vm_end = addr;
2349         } else {
2350                 new->vm_start = addr;
2351                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2352         }
2353
2354         err = -ENOMEM;
2355         vma_iter_config(vmi, new->vm_start, new->vm_end);
2356         if (vma_iter_prealloc(vmi, new))
2357                 goto out_free_vma;
2358
2359         err = vma_dup_policy(vma, new);
2360         if (err)
2361                 goto out_free_vmi;
2362
2363         err = anon_vma_clone(new, vma);
2364         if (err)
2365                 goto out_free_mpol;
2366
2367         if (new->vm_file)
2368                 get_file(new->vm_file);
2369
2370         if (new->vm_ops && new->vm_ops->open)
2371                 new->vm_ops->open(new);
2372
2373         vma_start_write(vma);
2374         vma_start_write(new);
2375
2376         init_vma_prep(&vp, vma);
2377         vp.insert = new;
2378         vma_prepare(&vp);
2379         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2380
2381         if (new_below) {
2382                 vma->vm_start = addr;
2383                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2384         } else {
2385                 vma->vm_end = addr;
2386         }
2387
2388         /* vma_complete stores the new vma */
2389         vma_complete(&vp, vmi, vma->vm_mm);
2390
2391         /* Success. */
2392         if (new_below)
2393                 vma_next(vmi);
2394         return 0;
2395
2396 out_free_mpol:
2397         mpol_put(vma_policy(new));
2398 out_free_vmi:
2399         vma_iter_free(vmi);
2400 out_free_vma:
2401         vm_area_free(new);
2402         return err;
2403 }
2404
2405 /*
2406  * Split a vma into two pieces at address 'addr', a new vma is allocated
2407  * either for the first part or the tail.
2408  */
2409 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2410                      unsigned long addr, int new_below)
2411 {
2412         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2413                 return -ENOMEM;
2414
2415         return __split_vma(vmi, vma, addr, new_below);
2416 }
2417
2418 /*
2419  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2420  * context and anonymous VMA name within the range [start, end).
2421  *
2422  * As a result, we might be able to merge the newly modified VMA range with an
2423  * adjacent VMA with identical properties.
2424  *
2425  * If no merge is possible and the range does not span the entirety of the VMA,
2426  * we then need to split the VMA to accommodate the change.
2427  *
2428  * The function returns either the merged VMA, the original VMA if a split was
2429  * required instead, or an error if the split failed.
2430  */
2431 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2432                                   struct vm_area_struct *prev,
2433                                   struct vm_area_struct *vma,
2434                                   unsigned long start, unsigned long end,
2435                                   unsigned long vm_flags,
2436                                   struct mempolicy *policy,
2437                                   struct vm_userfaultfd_ctx uffd_ctx,
2438                                   struct anon_vma_name *anon_name)
2439 {
2440         pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2441         struct vm_area_struct *merged;
2442
2443         merged = vma_merge(vmi, vma->vm_mm, prev, start, end, vm_flags,
2444                            vma->anon_vma, vma->vm_file, pgoff, policy,
2445                            uffd_ctx, anon_name);
2446         if (merged)
2447                 return merged;
2448
2449         if (vma->vm_start < start) {
2450                 int err = split_vma(vmi, vma, start, 1);
2451
2452                 if (err)
2453                         return ERR_PTR(err);
2454         }
2455
2456         if (vma->vm_end > end) {
2457                 int err = split_vma(vmi, vma, end, 0);
2458
2459                 if (err)
2460                         return ERR_PTR(err);
2461         }
2462
2463         return vma;
2464 }
2465
2466 /*
2467  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2468  * must ensure that [start, end) does not overlap any existing VMA.
2469  */
2470 static struct vm_area_struct
2471 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2472                    struct vm_area_struct *vma, unsigned long start,
2473                    unsigned long end, pgoff_t pgoff)
2474 {
2475         return vma_merge(vmi, vma->vm_mm, prev, start, end, vma->vm_flags,
2476                          vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2477                          vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2478 }
2479
2480 /*
2481  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2482  * VMA with identical properties.
2483  */
2484 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2485                                         struct vm_area_struct *vma,
2486                                         unsigned long delta)
2487 {
2488         pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2489
2490         /* vma is specified as prev, so case 1 or 2 will apply. */
2491         return vma_merge(vmi, vma->vm_mm, vma, vma->vm_end, vma->vm_end + delta,
2492                          vma->vm_flags, vma->anon_vma, vma->vm_file, pgoff,
2493                          vma_policy(vma), vma->vm_userfaultfd_ctx,
2494                          anon_vma_name(vma));
2495 }
2496
2497 /*
2498  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2499  * @vmi: The vma iterator
2500  * @vma: The starting vm_area_struct
2501  * @mm: The mm_struct
2502  * @start: The aligned start address to munmap.
2503  * @end: The aligned end address to munmap.
2504  * @uf: The userfaultfd list_head
2505  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2506  * success.
2507  *
2508  * Return: 0 on success and drops the lock if so directed, error and leaves the
2509  * lock held otherwise.
2510  */
2511 static int
2512 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2513                     struct mm_struct *mm, unsigned long start,
2514                     unsigned long end, struct list_head *uf, bool unlock)
2515 {
2516         struct vm_area_struct *prev, *next = NULL;
2517         struct maple_tree mt_detach;
2518         int count = 0;
2519         int error = -ENOMEM;
2520         unsigned long locked_vm = 0;
2521         MA_STATE(mas_detach, &mt_detach, 0, 0);
2522         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2523         mt_on_stack(mt_detach);
2524
2525         /*
2526          * If we need to split any vma, do it now to save pain later.
2527          *
2528          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2529          * unmapped vm_area_struct will remain in use: so lower split_vma
2530          * places tmp vma above, and higher split_vma places tmp vma below.
2531          */
2532
2533         /* Does it split the first one? */
2534         if (start > vma->vm_start) {
2535
2536                 /*
2537                  * Make sure that map_count on return from munmap() will
2538                  * not exceed its limit; but let map_count go just above
2539                  * its limit temporarily, to help free resources as expected.
2540                  */
2541                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2542                         goto map_count_exceeded;
2543
2544                 error = __split_vma(vmi, vma, start, 1);
2545                 if (error)
2546                         goto start_split_failed;
2547         }
2548
2549         /*
2550          * Detach a range of VMAs from the mm. Using next as a temp variable as
2551          * it is always overwritten.
2552          */
2553         next = vma;
2554         do {
2555                 /* Does it split the end? */
2556                 if (next->vm_end > end) {
2557                         error = __split_vma(vmi, next, end, 0);
2558                         if (error)
2559                                 goto end_split_failed;
2560                 }
2561                 vma_start_write(next);
2562                 mas_set(&mas_detach, count);
2563                 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2564                 if (error)
2565                         goto munmap_gather_failed;
2566                 vma_mark_detached(next, true);
2567                 if (next->vm_flags & VM_LOCKED)
2568                         locked_vm += vma_pages(next);
2569
2570                 count++;
2571                 if (unlikely(uf)) {
2572                         /*
2573                          * If userfaultfd_unmap_prep returns an error the vmas
2574                          * will remain split, but userland will get a
2575                          * highly unexpected error anyway. This is no
2576                          * different than the case where the first of the two
2577                          * __split_vma fails, but we don't undo the first
2578                          * split, despite we could. This is unlikely enough
2579                          * failure that it's not worth optimizing it for.
2580                          */
2581                         error = userfaultfd_unmap_prep(next, start, end, uf);
2582
2583                         if (error)
2584                                 goto userfaultfd_error;
2585                 }
2586 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2587                 BUG_ON(next->vm_start < start);
2588                 BUG_ON(next->vm_start > end);
2589 #endif
2590         } for_each_vma_range(*vmi, next, end);
2591
2592 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2593         /* Make sure no VMAs are about to be lost. */
2594         {
2595                 MA_STATE(test, &mt_detach, 0, 0);
2596                 struct vm_area_struct *vma_mas, *vma_test;
2597                 int test_count = 0;
2598
2599                 vma_iter_set(vmi, start);
2600                 rcu_read_lock();
2601                 vma_test = mas_find(&test, count - 1);
2602                 for_each_vma_range(*vmi, vma_mas, end) {
2603                         BUG_ON(vma_mas != vma_test);
2604                         test_count++;
2605                         vma_test = mas_next(&test, count - 1);
2606                 }
2607                 rcu_read_unlock();
2608                 BUG_ON(count != test_count);
2609         }
2610 #endif
2611
2612         while (vma_iter_addr(vmi) > start)
2613                 vma_iter_prev_range(vmi);
2614
2615         error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2616         if (error)
2617                 goto clear_tree_failed;
2618
2619         /* Point of no return */
2620         mm->locked_vm -= locked_vm;
2621         mm->map_count -= count;
2622         if (unlock)
2623                 mmap_write_downgrade(mm);
2624
2625         prev = vma_iter_prev_range(vmi);
2626         next = vma_next(vmi);
2627         if (next)
2628                 vma_iter_prev_range(vmi);
2629
2630         /*
2631          * We can free page tables without write-locking mmap_lock because VMAs
2632          * were isolated before we downgraded mmap_lock.
2633          */
2634         mas_set(&mas_detach, 1);
2635         unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2636                      !unlock);
2637         /* Statistics and freeing VMAs */
2638         mas_set(&mas_detach, 0);
2639         remove_mt(mm, &mas_detach);
2640         validate_mm(mm);
2641         if (unlock)
2642                 mmap_read_unlock(mm);
2643
2644         __mt_destroy(&mt_detach);
2645         return 0;
2646
2647 clear_tree_failed:
2648 userfaultfd_error:
2649 munmap_gather_failed:
2650 end_split_failed:
2651         mas_set(&mas_detach, 0);
2652         mas_for_each(&mas_detach, next, end)
2653                 vma_mark_detached(next, false);
2654
2655         __mt_destroy(&mt_detach);
2656 start_split_failed:
2657 map_count_exceeded:
2658         validate_mm(mm);
2659         return error;
2660 }
2661
2662 /*
2663  * do_vmi_munmap() - munmap a given range.
2664  * @vmi: The vma iterator
2665  * @mm: The mm_struct
2666  * @start: The start address to munmap
2667  * @len: The length of the range to munmap
2668  * @uf: The userfaultfd list_head
2669  * @unlock: set to true if the user wants to drop the mmap_lock on success
2670  *
2671  * This function takes a @mas that is either pointing to the previous VMA or set
2672  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2673  * aligned and any arch_unmap work will be preformed.
2674  *
2675  * Return: 0 on success and drops the lock if so directed, error and leaves the
2676  * lock held otherwise.
2677  */
2678 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2679                   unsigned long start, size_t len, struct list_head *uf,
2680                   bool unlock)
2681 {
2682         unsigned long end;
2683         struct vm_area_struct *vma;
2684
2685         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2686                 return -EINVAL;
2687
2688         end = start + PAGE_ALIGN(len);
2689         if (end == start)
2690                 return -EINVAL;
2691
2692          /* arch_unmap() might do unmaps itself.  */
2693         arch_unmap(mm, start, end);
2694
2695         /* Find the first overlapping VMA */
2696         vma = vma_find(vmi, end);
2697         if (!vma) {
2698                 if (unlock)
2699                         mmap_write_unlock(mm);
2700                 return 0;
2701         }
2702
2703         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2704 }
2705
2706 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2707  * @mm: The mm_struct
2708  * @start: The start address to munmap
2709  * @len: The length to be munmapped.
2710  * @uf: The userfaultfd list_head
2711  *
2712  * Return: 0 on success, error otherwise.
2713  */
2714 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2715               struct list_head *uf)
2716 {
2717         VMA_ITERATOR(vmi, mm, start);
2718
2719         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2720 }
2721
2722 unsigned long mmap_region(struct file *file, unsigned long addr,
2723                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2724                 struct list_head *uf)
2725 {
2726         struct mm_struct *mm = current->mm;
2727         struct vm_area_struct *vma = NULL;
2728         struct vm_area_struct *next, *prev, *merge;
2729         pgoff_t pglen = len >> PAGE_SHIFT;
2730         unsigned long charged = 0;
2731         unsigned long end = addr + len;
2732         unsigned long merge_start = addr, merge_end = end;
2733         bool writable_file_mapping = false;
2734         pgoff_t vm_pgoff;
2735         int error;
2736         VMA_ITERATOR(vmi, mm, addr);
2737
2738         /* Check against address space limit. */
2739         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2740                 unsigned long nr_pages;
2741
2742                 /*
2743                  * MAP_FIXED may remove pages of mappings that intersects with
2744                  * requested mapping. Account for the pages it would unmap.
2745                  */
2746                 nr_pages = count_vma_pages_range(mm, addr, end);
2747
2748                 if (!may_expand_vm(mm, vm_flags,
2749                                         (len >> PAGE_SHIFT) - nr_pages))
2750                         return -ENOMEM;
2751         }
2752
2753         /* Unmap any existing mapping in the area */
2754         if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2755                 return -ENOMEM;
2756
2757         /*
2758          * Private writable mapping: check memory availability
2759          */
2760         if (accountable_mapping(file, vm_flags)) {
2761                 charged = len >> PAGE_SHIFT;
2762                 if (security_vm_enough_memory_mm(mm, charged))
2763                         return -ENOMEM;
2764                 vm_flags |= VM_ACCOUNT;
2765         }
2766
2767         next = vma_next(&vmi);
2768         prev = vma_prev(&vmi);
2769         if (vm_flags & VM_SPECIAL) {
2770                 if (prev)
2771                         vma_iter_next_range(&vmi);
2772                 goto cannot_expand;
2773         }
2774
2775         /* Attempt to expand an old mapping */
2776         /* Check next */
2777         if (next && next->vm_start == end && !vma_policy(next) &&
2778             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2779                                  NULL_VM_UFFD_CTX, NULL)) {
2780                 merge_end = next->vm_end;
2781                 vma = next;
2782                 vm_pgoff = next->vm_pgoff - pglen;
2783         }
2784
2785         /* Check prev */
2786         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2787             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2788                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2789                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2790                                        NULL_VM_UFFD_CTX, NULL))) {
2791                 merge_start = prev->vm_start;
2792                 vma = prev;
2793                 vm_pgoff = prev->vm_pgoff;
2794         } else if (prev) {
2795                 vma_iter_next_range(&vmi);
2796         }
2797
2798         /* Actually expand, if possible */
2799         if (vma &&
2800             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2801                 khugepaged_enter_vma(vma, vm_flags);
2802                 goto expanded;
2803         }
2804
2805         if (vma == prev)
2806                 vma_iter_set(&vmi, addr);
2807 cannot_expand:
2808
2809         /*
2810          * Determine the object being mapped and call the appropriate
2811          * specific mapper. the address has already been validated, but
2812          * not unmapped, but the maps are removed from the list.
2813          */
2814         vma = vm_area_alloc(mm);
2815         if (!vma) {
2816                 error = -ENOMEM;
2817                 goto unacct_error;
2818         }
2819
2820         vma_iter_config(&vmi, addr, end);
2821         vma->vm_start = addr;
2822         vma->vm_end = end;
2823         vm_flags_init(vma, vm_flags);
2824         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2825         vma->vm_pgoff = pgoff;
2826
2827         if (file) {
2828                 vma->vm_file = get_file(file);
2829                 error = call_mmap(file, vma);
2830                 if (error)
2831                         goto unmap_and_free_vma;
2832
2833                 if (vma_is_shared_maywrite(vma)) {
2834                         error = mapping_map_writable(file->f_mapping);
2835                         if (error)
2836                                 goto close_and_free_vma;
2837
2838                         writable_file_mapping = true;
2839                 }
2840
2841                 /*
2842                  * Expansion is handled above, merging is handled below.
2843                  * Drivers should not alter the address of the VMA.
2844                  */
2845                 error = -EINVAL;
2846                 if (WARN_ON((addr != vma->vm_start)))
2847                         goto close_and_free_vma;
2848
2849                 vma_iter_config(&vmi, addr, end);
2850                 /*
2851                  * If vm_flags changed after call_mmap(), we should try merge
2852                  * vma again as we may succeed this time.
2853                  */
2854                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2855                         merge = vma_merge_new_vma(&vmi, prev, vma,
2856                                                   vma->vm_start, vma->vm_end,
2857                                                   vma->vm_pgoff);
2858                         if (merge) {
2859                                 /*
2860                                  * ->mmap() can change vma->vm_file and fput
2861                                  * the original file. So fput the vma->vm_file
2862                                  * here or we would add an extra fput for file
2863                                  * and cause general protection fault
2864                                  * ultimately.
2865                                  */
2866                                 fput(vma->vm_file);
2867                                 vm_area_free(vma);
2868                                 vma = merge;
2869                                 /* Update vm_flags to pick up the change. */
2870                                 vm_flags = vma->vm_flags;
2871                                 goto unmap_writable;
2872                         }
2873                 }
2874
2875                 vm_flags = vma->vm_flags;
2876         } else if (vm_flags & VM_SHARED) {
2877                 error = shmem_zero_setup(vma);
2878                 if (error)
2879                         goto free_vma;
2880         } else {
2881                 vma_set_anonymous(vma);
2882         }
2883
2884         if (map_deny_write_exec(vma, vma->vm_flags)) {
2885                 error = -EACCES;
2886                 goto close_and_free_vma;
2887         }
2888
2889         /* Allow architectures to sanity-check the vm_flags */
2890         error = -EINVAL;
2891         if (!arch_validate_flags(vma->vm_flags))
2892                 goto close_and_free_vma;
2893
2894         error = -ENOMEM;
2895         if (vma_iter_prealloc(&vmi, vma))
2896                 goto close_and_free_vma;
2897
2898         /* Lock the VMA since it is modified after insertion into VMA tree */
2899         vma_start_write(vma);
2900         vma_iter_store(&vmi, vma);
2901         mm->map_count++;
2902         if (vma->vm_file) {
2903                 i_mmap_lock_write(vma->vm_file->f_mapping);
2904                 if (vma_is_shared_maywrite(vma))
2905                         mapping_allow_writable(vma->vm_file->f_mapping);
2906
2907                 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2908                 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2909                 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2910                 i_mmap_unlock_write(vma->vm_file->f_mapping);
2911         }
2912
2913         /*
2914          * vma_merge() calls khugepaged_enter_vma() either, the below
2915          * call covers the non-merge case.
2916          */
2917         khugepaged_enter_vma(vma, vma->vm_flags);
2918
2919         /* Once vma denies write, undo our temporary denial count */
2920 unmap_writable:
2921         if (writable_file_mapping)
2922                 mapping_unmap_writable(file->f_mapping);
2923         file = vma->vm_file;
2924         ksm_add_vma(vma);
2925 expanded:
2926         perf_event_mmap(vma);
2927
2928         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2929         if (vm_flags & VM_LOCKED) {
2930                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2931                                         is_vm_hugetlb_page(vma) ||
2932                                         vma == get_gate_vma(current->mm))
2933                         vm_flags_clear(vma, VM_LOCKED_MASK);
2934                 else
2935                         mm->locked_vm += (len >> PAGE_SHIFT);
2936         }
2937
2938         if (file)
2939                 uprobe_mmap(vma);
2940
2941         /*
2942          * New (or expanded) vma always get soft dirty status.
2943          * Otherwise user-space soft-dirty page tracker won't
2944          * be able to distinguish situation when vma area unmapped,
2945          * then new mapped in-place (which must be aimed as
2946          * a completely new data area).
2947          */
2948         vm_flags_set(vma, VM_SOFTDIRTY);
2949
2950         vma_set_page_prot(vma);
2951
2952         validate_mm(mm);
2953         return addr;
2954
2955 close_and_free_vma:
2956         if (file && vma->vm_ops && vma->vm_ops->close)
2957                 vma->vm_ops->close(vma);
2958
2959         if (file || vma->vm_file) {
2960 unmap_and_free_vma:
2961                 fput(vma->vm_file);
2962                 vma->vm_file = NULL;
2963
2964                 vma_iter_set(&vmi, vma->vm_end);
2965                 /* Undo any partial mapping done by a device driver. */
2966                 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2967                              vma->vm_end, vma->vm_end, true);
2968         }
2969         if (writable_file_mapping)
2970                 mapping_unmap_writable(file->f_mapping);
2971 free_vma:
2972         vm_area_free(vma);
2973 unacct_error:
2974         if (charged)
2975                 vm_unacct_memory(charged);
2976         validate_mm(mm);
2977         return error;
2978 }
2979
2980 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2981 {
2982         int ret;
2983         struct mm_struct *mm = current->mm;
2984         LIST_HEAD(uf);
2985         VMA_ITERATOR(vmi, mm, start);
2986
2987         if (mmap_write_lock_killable(mm))
2988                 return -EINTR;
2989
2990         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2991         if (ret || !unlock)
2992                 mmap_write_unlock(mm);
2993
2994         userfaultfd_unmap_complete(mm, &uf);
2995         return ret;
2996 }
2997
2998 int vm_munmap(unsigned long start, size_t len)
2999 {
3000         return __vm_munmap(start, len, false);
3001 }
3002 EXPORT_SYMBOL(vm_munmap);
3003
3004 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3005 {
3006         addr = untagged_addr(addr);
3007         return __vm_munmap(addr, len, true);
3008 }
3009
3010
3011 /*
3012  * Emulation of deprecated remap_file_pages() syscall.
3013  */
3014 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3015                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3016 {
3017
3018         struct mm_struct *mm = current->mm;
3019         struct vm_area_struct *vma;
3020         unsigned long populate = 0;
3021         unsigned long ret = -EINVAL;
3022         struct file *file;
3023
3024         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3025                      current->comm, current->pid);
3026
3027         if (prot)
3028                 return ret;
3029         start = start & PAGE_MASK;
3030         size = size & PAGE_MASK;
3031
3032         if (start + size <= start)
3033                 return ret;
3034
3035         /* Does pgoff wrap? */
3036         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3037                 return ret;
3038
3039         if (mmap_write_lock_killable(mm))
3040                 return -EINTR;
3041
3042         vma = vma_lookup(mm, start);
3043
3044         if (!vma || !(vma->vm_flags & VM_SHARED))
3045                 goto out;
3046
3047         if (start + size > vma->vm_end) {
3048                 VMA_ITERATOR(vmi, mm, vma->vm_end);
3049                 struct vm_area_struct *next, *prev = vma;
3050
3051                 for_each_vma_range(vmi, next, start + size) {
3052                         /* hole between vmas ? */
3053                         if (next->vm_start != prev->vm_end)
3054                                 goto out;
3055
3056                         if (next->vm_file != vma->vm_file)
3057                                 goto out;
3058
3059                         if (next->vm_flags != vma->vm_flags)
3060                                 goto out;
3061
3062                         if (start + size <= next->vm_end)
3063                                 break;
3064
3065                         prev = next;
3066                 }
3067
3068                 if (!next)
3069                         goto out;
3070         }
3071
3072         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3073         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3074         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3075
3076         flags &= MAP_NONBLOCK;
3077         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3078         if (vma->vm_flags & VM_LOCKED)
3079                 flags |= MAP_LOCKED;
3080
3081         file = get_file(vma->vm_file);
3082         ret = do_mmap(vma->vm_file, start, size,
3083                         prot, flags, 0, pgoff, &populate, NULL);
3084         fput(file);
3085 out:
3086         mmap_write_unlock(mm);
3087         if (populate)
3088                 mm_populate(ret, populate);
3089         if (!IS_ERR_VALUE(ret))
3090                 ret = 0;
3091         return ret;
3092 }
3093
3094 /*
3095  * do_vma_munmap() - Unmap a full or partial vma.
3096  * @vmi: The vma iterator pointing at the vma
3097  * @vma: The first vma to be munmapped
3098  * @start: the start of the address to unmap
3099  * @end: The end of the address to unmap
3100  * @uf: The userfaultfd list_head
3101  * @unlock: Drop the lock on success
3102  *
3103  * unmaps a VMA mapping when the vma iterator is already in position.
3104  * Does not handle alignment.
3105  *
3106  * Return: 0 on success drops the lock of so directed, error on failure and will
3107  * still hold the lock.
3108  */
3109 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3110                 unsigned long start, unsigned long end, struct list_head *uf,
3111                 bool unlock)
3112 {
3113         struct mm_struct *mm = vma->vm_mm;
3114
3115         arch_unmap(mm, start, end);
3116         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3117 }
3118
3119 /*
3120  * do_brk_flags() - Increase the brk vma if the flags match.
3121  * @vmi: The vma iterator
3122  * @addr: The start address
3123  * @len: The length of the increase
3124  * @vma: The vma,
3125  * @flags: The VMA Flags
3126  *
3127  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3128  * do not match then create a new anonymous VMA.  Eventually we may be able to
3129  * do some brk-specific accounting here.
3130  */
3131 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3132                 unsigned long addr, unsigned long len, unsigned long flags)
3133 {
3134         struct mm_struct *mm = current->mm;
3135         struct vma_prepare vp;
3136
3137         /*
3138          * Check against address space limits by the changed size
3139          * Note: This happens *after* clearing old mappings in some code paths.
3140          */
3141         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3142         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3143                 return -ENOMEM;
3144
3145         if (mm->map_count > sysctl_max_map_count)
3146                 return -ENOMEM;
3147
3148         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3149                 return -ENOMEM;
3150
3151         /*
3152          * Expand the existing vma if possible; Note that singular lists do not
3153          * occur after forking, so the expand will only happen on new VMAs.
3154          */
3155         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3156             can_vma_merge_after(vma, flags, NULL, NULL,
3157                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3158                 vma_iter_config(vmi, vma->vm_start, addr + len);
3159                 if (vma_iter_prealloc(vmi, vma))
3160                         goto unacct_fail;
3161
3162                 vma_start_write(vma);
3163
3164                 init_vma_prep(&vp, vma);
3165                 vma_prepare(&vp);
3166                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3167                 vma->vm_end = addr + len;
3168                 vm_flags_set(vma, VM_SOFTDIRTY);
3169                 vma_iter_store(vmi, vma);
3170
3171                 vma_complete(&vp, vmi, mm);
3172                 khugepaged_enter_vma(vma, flags);
3173                 goto out;
3174         }
3175
3176         if (vma)
3177                 vma_iter_next_range(vmi);
3178         /* create a vma struct for an anonymous mapping */
3179         vma = vm_area_alloc(mm);
3180         if (!vma)
3181                 goto unacct_fail;
3182
3183         vma_set_anonymous(vma);
3184         vma->vm_start = addr;
3185         vma->vm_end = addr + len;
3186         vma->vm_pgoff = addr >> PAGE_SHIFT;
3187         vm_flags_init(vma, flags);
3188         vma->vm_page_prot = vm_get_page_prot(flags);
3189         vma_start_write(vma);
3190         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3191                 goto mas_store_fail;
3192
3193         mm->map_count++;
3194         validate_mm(mm);
3195         ksm_add_vma(vma);
3196 out:
3197         perf_event_mmap(vma);
3198         mm->total_vm += len >> PAGE_SHIFT;
3199         mm->data_vm += len >> PAGE_SHIFT;
3200         if (flags & VM_LOCKED)
3201                 mm->locked_vm += (len >> PAGE_SHIFT);
3202         vm_flags_set(vma, VM_SOFTDIRTY);
3203         return 0;
3204
3205 mas_store_fail:
3206         vm_area_free(vma);
3207 unacct_fail:
3208         vm_unacct_memory(len >> PAGE_SHIFT);
3209         return -ENOMEM;
3210 }
3211
3212 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3213 {
3214         struct mm_struct *mm = current->mm;
3215         struct vm_area_struct *vma = NULL;
3216         unsigned long len;
3217         int ret;
3218         bool populate;
3219         LIST_HEAD(uf);
3220         VMA_ITERATOR(vmi, mm, addr);
3221
3222         len = PAGE_ALIGN(request);
3223         if (len < request)
3224                 return -ENOMEM;
3225         if (!len)
3226                 return 0;
3227
3228         /* Until we need other flags, refuse anything except VM_EXEC. */
3229         if ((flags & (~VM_EXEC)) != 0)
3230                 return -EINVAL;
3231
3232         if (mmap_write_lock_killable(mm))
3233                 return -EINTR;
3234
3235         ret = check_brk_limits(addr, len);
3236         if (ret)
3237                 goto limits_failed;
3238
3239         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3240         if (ret)
3241                 goto munmap_failed;
3242
3243         vma = vma_prev(&vmi);
3244         ret = do_brk_flags(&vmi, vma, addr, len, flags);
3245         populate = ((mm->def_flags & VM_LOCKED) != 0);
3246         mmap_write_unlock(mm);
3247         userfaultfd_unmap_complete(mm, &uf);
3248         if (populate && !ret)
3249                 mm_populate(addr, len);
3250         return ret;
3251
3252 munmap_failed:
3253 limits_failed:
3254         mmap_write_unlock(mm);
3255         return ret;
3256 }
3257 EXPORT_SYMBOL(vm_brk_flags);
3258
3259 /* Release all mmaps. */
3260 void exit_mmap(struct mm_struct *mm)
3261 {
3262         struct mmu_gather tlb;
3263         struct vm_area_struct *vma;
3264         unsigned long nr_accounted = 0;
3265         MA_STATE(mas, &mm->mm_mt, 0, 0);
3266         int count = 0;
3267
3268         /* mm's last user has gone, and its about to be pulled down */
3269         mmu_notifier_release(mm);
3270
3271         mmap_read_lock(mm);
3272         arch_exit_mmap(mm);
3273
3274         vma = mas_find(&mas, ULONG_MAX);
3275         if (!vma || unlikely(xa_is_zero(vma))) {
3276                 /* Can happen if dup_mmap() received an OOM */
3277                 mmap_read_unlock(mm);
3278                 mmap_write_lock(mm);
3279                 goto destroy;
3280         }
3281
3282         lru_add_drain();
3283         flush_cache_mm(mm);
3284         tlb_gather_mmu_fullmm(&tlb, mm);
3285         /* update_hiwater_rss(mm) here? but nobody should be looking */
3286         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3287         unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3288         mmap_read_unlock(mm);
3289
3290         /*
3291          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3292          * because the memory has been already freed.
3293          */
3294         set_bit(MMF_OOM_SKIP, &mm->flags);
3295         mmap_write_lock(mm);
3296         mt_clear_in_rcu(&mm->mm_mt);
3297         mas_set(&mas, vma->vm_end);
3298         free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3299                       USER_PGTABLES_CEILING, true);
3300         tlb_finish_mmu(&tlb);
3301
3302         /*
3303          * Walk the list again, actually closing and freeing it, with preemption
3304          * enabled, without holding any MM locks besides the unreachable
3305          * mmap_write_lock.
3306          */
3307         mas_set(&mas, vma->vm_end);
3308         do {
3309                 if (vma->vm_flags & VM_ACCOUNT)
3310                         nr_accounted += vma_pages(vma);
3311                 remove_vma(vma, true);
3312                 count++;
3313                 cond_resched();
3314                 vma = mas_find(&mas, ULONG_MAX);
3315         } while (vma && likely(!xa_is_zero(vma)));
3316
3317         BUG_ON(count != mm->map_count);
3318
3319         trace_exit_mmap(mm);
3320 destroy:
3321         __mt_destroy(&mm->mm_mt);
3322         mmap_write_unlock(mm);
3323         vm_unacct_memory(nr_accounted);
3324 }
3325
3326 /* Insert vm structure into process list sorted by address
3327  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3328  * then i_mmap_rwsem is taken here.
3329  */
3330 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3331 {
3332         unsigned long charged = vma_pages(vma);
3333
3334
3335         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3336                 return -ENOMEM;
3337
3338         if ((vma->vm_flags & VM_ACCOUNT) &&
3339              security_vm_enough_memory_mm(mm, charged))
3340                 return -ENOMEM;
3341
3342         /*
3343          * The vm_pgoff of a purely anonymous vma should be irrelevant
3344          * until its first write fault, when page's anon_vma and index
3345          * are set.  But now set the vm_pgoff it will almost certainly
3346          * end up with (unless mremap moves it elsewhere before that
3347          * first wfault), so /proc/pid/maps tells a consistent story.
3348          *
3349          * By setting it to reflect the virtual start address of the
3350          * vma, merges and splits can happen in a seamless way, just
3351          * using the existing file pgoff checks and manipulations.
3352          * Similarly in do_mmap and in do_brk_flags.
3353          */
3354         if (vma_is_anonymous(vma)) {
3355                 BUG_ON(vma->anon_vma);
3356                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3357         }
3358
3359         if (vma_link(mm, vma)) {
3360                 if (vma->vm_flags & VM_ACCOUNT)
3361                         vm_unacct_memory(charged);
3362                 return -ENOMEM;
3363         }
3364
3365         return 0;
3366 }
3367
3368 /*
3369  * Copy the vma structure to a new location in the same mm,
3370  * prior to moving page table entries, to effect an mremap move.
3371  */
3372 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3373         unsigned long addr, unsigned long len, pgoff_t pgoff,
3374         bool *need_rmap_locks)
3375 {
3376         struct vm_area_struct *vma = *vmap;
3377         unsigned long vma_start = vma->vm_start;
3378         struct mm_struct *mm = vma->vm_mm;
3379         struct vm_area_struct *new_vma, *prev;
3380         bool faulted_in_anon_vma = true;
3381         VMA_ITERATOR(vmi, mm, addr);
3382
3383         /*
3384          * If anonymous vma has not yet been faulted, update new pgoff
3385          * to match new location, to increase its chance of merging.
3386          */
3387         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3388                 pgoff = addr >> PAGE_SHIFT;
3389                 faulted_in_anon_vma = false;
3390         }
3391
3392         new_vma = find_vma_prev(mm, addr, &prev);
3393         if (new_vma && new_vma->vm_start < addr + len)
3394                 return NULL;    /* should never get here */
3395
3396         new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3397         if (new_vma) {
3398                 /*
3399                  * Source vma may have been merged into new_vma
3400                  */
3401                 if (unlikely(vma_start >= new_vma->vm_start &&
3402                              vma_start < new_vma->vm_end)) {
3403                         /*
3404                          * The only way we can get a vma_merge with
3405                          * self during an mremap is if the vma hasn't
3406                          * been faulted in yet and we were allowed to
3407                          * reset the dst vma->vm_pgoff to the
3408                          * destination address of the mremap to allow
3409                          * the merge to happen. mremap must change the
3410                          * vm_pgoff linearity between src and dst vmas
3411                          * (in turn preventing a vma_merge) to be
3412                          * safe. It is only safe to keep the vm_pgoff
3413                          * linear if there are no pages mapped yet.
3414                          */
3415                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3416                         *vmap = vma = new_vma;
3417                 }
3418                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3419         } else {
3420                 new_vma = vm_area_dup(vma);
3421                 if (!new_vma)
3422                         goto out;
3423                 new_vma->vm_start = addr;
3424                 new_vma->vm_end = addr + len;
3425                 new_vma->vm_pgoff = pgoff;
3426                 if (vma_dup_policy(vma, new_vma))
3427                         goto out_free_vma;
3428                 if (anon_vma_clone(new_vma, vma))
3429                         goto out_free_mempol;
3430                 if (new_vma->vm_file)
3431                         get_file(new_vma->vm_file);
3432                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3433                         new_vma->vm_ops->open(new_vma);
3434                 if (vma_link(mm, new_vma))
3435                         goto out_vma_link;
3436                 *need_rmap_locks = false;
3437         }
3438         return new_vma;
3439
3440 out_vma_link:
3441         if (new_vma->vm_ops && new_vma->vm_ops->close)
3442                 new_vma->vm_ops->close(new_vma);
3443
3444         if (new_vma->vm_file)
3445                 fput(new_vma->vm_file);
3446
3447         unlink_anon_vmas(new_vma);
3448 out_free_mempol:
3449         mpol_put(vma_policy(new_vma));
3450 out_free_vma:
3451         vm_area_free(new_vma);
3452 out:
3453         return NULL;
3454 }
3455
3456 /*
3457  * Return true if the calling process may expand its vm space by the passed
3458  * number of pages
3459  */
3460 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3461 {
3462         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3463                 return false;
3464
3465         if (is_data_mapping(flags) &&
3466             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3467                 /* Workaround for Valgrind */
3468                 if (rlimit(RLIMIT_DATA) == 0 &&
3469                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3470                         return true;
3471
3472                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3473                              current->comm, current->pid,
3474                              (mm->data_vm + npages) << PAGE_SHIFT,
3475                              rlimit(RLIMIT_DATA),
3476                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3477
3478                 if (!ignore_rlimit_data)
3479                         return false;
3480         }
3481
3482         return true;
3483 }
3484
3485 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3486 {
3487         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3488
3489         if (is_exec_mapping(flags))
3490                 mm->exec_vm += npages;
3491         else if (is_stack_mapping(flags))
3492                 mm->stack_vm += npages;
3493         else if (is_data_mapping(flags))
3494                 mm->data_vm += npages;
3495 }
3496
3497 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3498
3499 /*
3500  * Having a close hook prevents vma merging regardless of flags.
3501  */
3502 static void special_mapping_close(struct vm_area_struct *vma)
3503 {
3504 }
3505
3506 static const char *special_mapping_name(struct vm_area_struct *vma)
3507 {
3508         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3509 }
3510
3511 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3512 {
3513         struct vm_special_mapping *sm = new_vma->vm_private_data;
3514
3515         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3516                 return -EFAULT;
3517
3518         if (sm->mremap)
3519                 return sm->mremap(sm, new_vma);
3520
3521         return 0;
3522 }
3523
3524 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3525 {
3526         /*
3527          * Forbid splitting special mappings - kernel has expectations over
3528          * the number of pages in mapping. Together with VM_DONTEXPAND
3529          * the size of vma should stay the same over the special mapping's
3530          * lifetime.
3531          */
3532         return -EINVAL;
3533 }
3534
3535 static const struct vm_operations_struct special_mapping_vmops = {
3536         .close = special_mapping_close,
3537         .fault = special_mapping_fault,
3538         .mremap = special_mapping_mremap,
3539         .name = special_mapping_name,
3540         /* vDSO code relies that VVAR can't be accessed remotely */
3541         .access = NULL,
3542         .may_split = special_mapping_split,
3543 };
3544
3545 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3546         .close = special_mapping_close,
3547         .fault = special_mapping_fault,
3548 };
3549
3550 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3551 {
3552         struct vm_area_struct *vma = vmf->vma;
3553         pgoff_t pgoff;
3554         struct page **pages;
3555
3556         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3557                 pages = vma->vm_private_data;
3558         } else {
3559                 struct vm_special_mapping *sm = vma->vm_private_data;
3560
3561                 if (sm->fault)
3562                         return sm->fault(sm, vmf->vma, vmf);
3563
3564                 pages = sm->pages;
3565         }
3566
3567         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3568                 pgoff--;
3569
3570         if (*pages) {
3571                 struct page *page = *pages;
3572                 get_page(page);
3573                 vmf->page = page;
3574                 return 0;
3575         }
3576
3577         return VM_FAULT_SIGBUS;
3578 }
3579
3580 static struct vm_area_struct *__install_special_mapping(
3581         struct mm_struct *mm,
3582         unsigned long addr, unsigned long len,
3583         unsigned long vm_flags, void *priv,
3584         const struct vm_operations_struct *ops)
3585 {
3586         int ret;
3587         struct vm_area_struct *vma;
3588
3589         vma = vm_area_alloc(mm);
3590         if (unlikely(vma == NULL))
3591                 return ERR_PTR(-ENOMEM);
3592
3593         vma->vm_start = addr;
3594         vma->vm_end = addr + len;
3595
3596         vm_flags_init(vma, (vm_flags | mm->def_flags |
3597                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3598         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3599
3600         vma->vm_ops = ops;
3601         vma->vm_private_data = priv;
3602
3603         ret = insert_vm_struct(mm, vma);
3604         if (ret)
3605                 goto out;
3606
3607         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3608
3609         perf_event_mmap(vma);
3610
3611         return vma;
3612
3613 out:
3614         vm_area_free(vma);
3615         return ERR_PTR(ret);
3616 }
3617
3618 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3619         const struct vm_special_mapping *sm)
3620 {
3621         return vma->vm_private_data == sm &&
3622                 (vma->vm_ops == &special_mapping_vmops ||
3623                  vma->vm_ops == &legacy_special_mapping_vmops);
3624 }
3625
3626 /*
3627  * Called with mm->mmap_lock held for writing.
3628  * Insert a new vma covering the given region, with the given flags.
3629  * Its pages are supplied by the given array of struct page *.
3630  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3631  * The region past the last page supplied will always produce SIGBUS.
3632  * The array pointer and the pages it points to are assumed to stay alive
3633  * for as long as this mapping might exist.
3634  */
3635 struct vm_area_struct *_install_special_mapping(
3636         struct mm_struct *mm,
3637         unsigned long addr, unsigned long len,
3638         unsigned long vm_flags, const struct vm_special_mapping *spec)
3639 {
3640         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3641                                         &special_mapping_vmops);
3642 }
3643
3644 int install_special_mapping(struct mm_struct *mm,
3645                             unsigned long addr, unsigned long len,
3646                             unsigned long vm_flags, struct page **pages)
3647 {
3648         struct vm_area_struct *vma = __install_special_mapping(
3649                 mm, addr, len, vm_flags, (void *)pages,
3650                 &legacy_special_mapping_vmops);
3651
3652         return PTR_ERR_OR_ZERO(vma);
3653 }
3654
3655 static DEFINE_MUTEX(mm_all_locks_mutex);
3656
3657 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3658 {
3659         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3660                 /*
3661                  * The LSB of head.next can't change from under us
3662                  * because we hold the mm_all_locks_mutex.
3663                  */
3664                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3665                 /*
3666                  * We can safely modify head.next after taking the
3667                  * anon_vma->root->rwsem. If some other vma in this mm shares
3668                  * the same anon_vma we won't take it again.
3669                  *
3670                  * No need of atomic instructions here, head.next
3671                  * can't change from under us thanks to the
3672                  * anon_vma->root->rwsem.
3673                  */
3674                 if (__test_and_set_bit(0, (unsigned long *)
3675                                        &anon_vma->root->rb_root.rb_root.rb_node))
3676                         BUG();
3677         }
3678 }
3679
3680 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3681 {
3682         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3683                 /*
3684                  * AS_MM_ALL_LOCKS can't change from under us because
3685                  * we hold the mm_all_locks_mutex.
3686                  *
3687                  * Operations on ->flags have to be atomic because
3688                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3689                  * mm_all_locks_mutex, there may be other cpus
3690                  * changing other bitflags in parallel to us.
3691                  */
3692                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3693                         BUG();
3694                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3695         }
3696 }
3697
3698 /*
3699  * This operation locks against the VM for all pte/vma/mm related
3700  * operations that could ever happen on a certain mm. This includes
3701  * vmtruncate, try_to_unmap, and all page faults.
3702  *
3703  * The caller must take the mmap_lock in write mode before calling
3704  * mm_take_all_locks(). The caller isn't allowed to release the
3705  * mmap_lock until mm_drop_all_locks() returns.
3706  *
3707  * mmap_lock in write mode is required in order to block all operations
3708  * that could modify pagetables and free pages without need of
3709  * altering the vma layout. It's also needed in write mode to avoid new
3710  * anon_vmas to be associated with existing vmas.
3711  *
3712  * A single task can't take more than one mm_take_all_locks() in a row
3713  * or it would deadlock.
3714  *
3715  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3716  * mapping->flags avoid to take the same lock twice, if more than one
3717  * vma in this mm is backed by the same anon_vma or address_space.
3718  *
3719  * We take locks in following order, accordingly to comment at beginning
3720  * of mm/rmap.c:
3721  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3722  *     hugetlb mapping);
3723  *   - all vmas marked locked
3724  *   - all i_mmap_rwsem locks;
3725  *   - all anon_vma->rwseml
3726  *
3727  * We can take all locks within these types randomly because the VM code
3728  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3729  * mm_all_locks_mutex.
3730  *
3731  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3732  * that may have to take thousand of locks.
3733  *
3734  * mm_take_all_locks() can fail if it's interrupted by signals.
3735  */
3736 int mm_take_all_locks(struct mm_struct *mm)
3737 {
3738         struct vm_area_struct *vma;
3739         struct anon_vma_chain *avc;
3740         MA_STATE(mas, &mm->mm_mt, 0, 0);
3741
3742         mmap_assert_write_locked(mm);
3743
3744         mutex_lock(&mm_all_locks_mutex);
3745
3746         /*
3747          * vma_start_write() does not have a complement in mm_drop_all_locks()
3748          * because vma_start_write() is always asymmetrical; it marks a VMA as
3749          * being written to until mmap_write_unlock() or mmap_write_downgrade()
3750          * is reached.
3751          */
3752         mas_for_each(&mas, vma, ULONG_MAX) {
3753                 if (signal_pending(current))
3754                         goto out_unlock;
3755                 vma_start_write(vma);
3756         }
3757
3758         mas_set(&mas, 0);
3759         mas_for_each(&mas, vma, ULONG_MAX) {
3760                 if (signal_pending(current))
3761                         goto out_unlock;
3762                 if (vma->vm_file && vma->vm_file->f_mapping &&
3763                                 is_vm_hugetlb_page(vma))
3764                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3765         }
3766
3767         mas_set(&mas, 0);
3768         mas_for_each(&mas, vma, ULONG_MAX) {
3769                 if (signal_pending(current))
3770                         goto out_unlock;
3771                 if (vma->vm_file && vma->vm_file->f_mapping &&
3772                                 !is_vm_hugetlb_page(vma))
3773                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3774         }
3775
3776         mas_set(&mas, 0);
3777         mas_for_each(&mas, vma, ULONG_MAX) {
3778                 if (signal_pending(current))
3779                         goto out_unlock;
3780                 if (vma->anon_vma)
3781                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3782                                 vm_lock_anon_vma(mm, avc->anon_vma);
3783         }
3784
3785         return 0;
3786
3787 out_unlock:
3788         mm_drop_all_locks(mm);
3789         return -EINTR;
3790 }
3791
3792 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3793 {
3794         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3795                 /*
3796                  * The LSB of head.next can't change to 0 from under
3797                  * us because we hold the mm_all_locks_mutex.
3798                  *
3799                  * We must however clear the bitflag before unlocking
3800                  * the vma so the users using the anon_vma->rb_root will
3801                  * never see our bitflag.
3802                  *
3803                  * No need of atomic instructions here, head.next
3804                  * can't change from under us until we release the
3805                  * anon_vma->root->rwsem.
3806                  */
3807                 if (!__test_and_clear_bit(0, (unsigned long *)
3808                                           &anon_vma->root->rb_root.rb_root.rb_node))
3809                         BUG();
3810                 anon_vma_unlock_write(anon_vma);
3811         }
3812 }
3813
3814 static void vm_unlock_mapping(struct address_space *mapping)
3815 {
3816         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3817                 /*
3818                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3819                  * because we hold the mm_all_locks_mutex.
3820                  */
3821                 i_mmap_unlock_write(mapping);
3822                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3823                                         &mapping->flags))
3824                         BUG();
3825         }
3826 }
3827
3828 /*
3829  * The mmap_lock cannot be released by the caller until
3830  * mm_drop_all_locks() returns.
3831  */
3832 void mm_drop_all_locks(struct mm_struct *mm)
3833 {
3834         struct vm_area_struct *vma;
3835         struct anon_vma_chain *avc;
3836         MA_STATE(mas, &mm->mm_mt, 0, 0);
3837
3838         mmap_assert_write_locked(mm);
3839         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3840
3841         mas_for_each(&mas, vma, ULONG_MAX) {
3842                 if (vma->anon_vma)
3843                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3844                                 vm_unlock_anon_vma(avc->anon_vma);
3845                 if (vma->vm_file && vma->vm_file->f_mapping)
3846                         vm_unlock_mapping(vma->vm_file->f_mapping);
3847         }
3848
3849         mutex_unlock(&mm_all_locks_mutex);
3850 }
3851
3852 /*
3853  * initialise the percpu counter for VM
3854  */
3855 void __init mmap_init(void)
3856 {
3857         int ret;
3858
3859         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3860         VM_BUG_ON(ret);
3861 }
3862
3863 /*
3864  * Initialise sysctl_user_reserve_kbytes.
3865  *
3866  * This is intended to prevent a user from starting a single memory hogging
3867  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3868  * mode.
3869  *
3870  * The default value is min(3% of free memory, 128MB)
3871  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3872  */
3873 static int init_user_reserve(void)
3874 {
3875         unsigned long free_kbytes;
3876
3877         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3878
3879         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3880         return 0;
3881 }
3882 subsys_initcall(init_user_reserve);
3883
3884 /*
3885  * Initialise sysctl_admin_reserve_kbytes.
3886  *
3887  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3888  * to log in and kill a memory hogging process.
3889  *
3890  * Systems with more than 256MB will reserve 8MB, enough to recover
3891  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3892  * only reserve 3% of free pages by default.
3893  */
3894 static int init_admin_reserve(void)
3895 {
3896         unsigned long free_kbytes;
3897
3898         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3899
3900         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3901         return 0;
3902 }
3903 subsys_initcall(init_admin_reserve);
3904
3905 /*
3906  * Reinititalise user and admin reserves if memory is added or removed.
3907  *
3908  * The default user reserve max is 128MB, and the default max for the
3909  * admin reserve is 8MB. These are usually, but not always, enough to
3910  * enable recovery from a memory hogging process using login/sshd, a shell,
3911  * and tools like top. It may make sense to increase or even disable the
3912  * reserve depending on the existence of swap or variations in the recovery
3913  * tools. So, the admin may have changed them.
3914  *
3915  * If memory is added and the reserves have been eliminated or increased above
3916  * the default max, then we'll trust the admin.
3917  *
3918  * If memory is removed and there isn't enough free memory, then we
3919  * need to reset the reserves.
3920  *
3921  * Otherwise keep the reserve set by the admin.
3922  */
3923 static int reserve_mem_notifier(struct notifier_block *nb,
3924                              unsigned long action, void *data)
3925 {
3926         unsigned long tmp, free_kbytes;
3927
3928         switch (action) {
3929         case MEM_ONLINE:
3930                 /* Default max is 128MB. Leave alone if modified by operator. */
3931                 tmp = sysctl_user_reserve_kbytes;
3932                 if (0 < tmp && tmp < (1UL << 17))
3933                         init_user_reserve();
3934
3935                 /* Default max is 8MB.  Leave alone if modified by operator. */
3936                 tmp = sysctl_admin_reserve_kbytes;
3937                 if (0 < tmp && tmp < (1UL << 13))
3938                         init_admin_reserve();
3939
3940                 break;
3941         case MEM_OFFLINE:
3942                 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3943
3944                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3945                         init_user_reserve();
3946                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3947                                 sysctl_user_reserve_kbytes);
3948                 }
3949
3950                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3951                         init_admin_reserve();
3952                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3953                                 sysctl_admin_reserve_kbytes);
3954                 }
3955                 break;
3956         default:
3957                 break;
3958         }
3959         return NOTIFY_OK;
3960 }
3961
3962 static int __meminit init_reserve_notifier(void)
3963 {
3964         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3965                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3966
3967         return 0;
3968 }
3969 subsys_initcall(init_reserve_notifier);