Input: wm97xx: add new AC97 bus support
[sfrench/cifs-2.6.git] / kernel / time / posix-cpu-timers.c
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4
5 #include <linux/sched/signal.h>
6 #include <linux/sched/cputime.h>
7 #include <linux/posix-timers.h>
8 #include <linux/errno.h>
9 #include <linux/math64.h>
10 #include <linux/uaccess.h>
11 #include <linux/kernel_stat.h>
12 #include <trace/events/timer.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15 #include <linux/compat.h>
16
17 #include "posix-timers.h"
18
19 static void posix_cpu_timer_rearm(struct k_itimer *timer);
20
21 /*
22  * Called after updating RLIMIT_CPU to run cpu timer and update
23  * tsk->signal->cputime_expires expiration cache if necessary. Needs
24  * siglock protection since other code may update expiration cache as
25  * well.
26  */
27 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
28 {
29         u64 nsecs = rlim_new * NSEC_PER_SEC;
30
31         spin_lock_irq(&task->sighand->siglock);
32         set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
33         spin_unlock_irq(&task->sighand->siglock);
34 }
35
36 static int check_clock(const clockid_t which_clock)
37 {
38         int error = 0;
39         struct task_struct *p;
40         const pid_t pid = CPUCLOCK_PID(which_clock);
41
42         if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
43                 return -EINVAL;
44
45         if (pid == 0)
46                 return 0;
47
48         rcu_read_lock();
49         p = find_task_by_vpid(pid);
50         if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
51                    same_thread_group(p, current) : has_group_leader_pid(p))) {
52                 error = -EINVAL;
53         }
54         rcu_read_unlock();
55
56         return error;
57 }
58
59 /*
60  * Update expiry time from increment, and increase overrun count,
61  * given the current clock sample.
62  */
63 static void bump_cpu_timer(struct k_itimer *timer, u64 now)
64 {
65         int i;
66         u64 delta, incr;
67
68         if (timer->it.cpu.incr == 0)
69                 return;
70
71         if (now < timer->it.cpu.expires)
72                 return;
73
74         incr = timer->it.cpu.incr;
75         delta = now + incr - timer->it.cpu.expires;
76
77         /* Don't use (incr*2 < delta), incr*2 might overflow. */
78         for (i = 0; incr < delta - incr; i++)
79                 incr = incr << 1;
80
81         for (; i >= 0; incr >>= 1, i--) {
82                 if (delta < incr)
83                         continue;
84
85                 timer->it.cpu.expires += incr;
86                 timer->it_overrun += 1 << i;
87                 delta -= incr;
88         }
89 }
90
91 /**
92  * task_cputime_zero - Check a task_cputime struct for all zero fields.
93  *
94  * @cputime:    The struct to compare.
95  *
96  * Checks @cputime to see if all fields are zero.  Returns true if all fields
97  * are zero, false if any field is nonzero.
98  */
99 static inline int task_cputime_zero(const struct task_cputime *cputime)
100 {
101         if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
102                 return 1;
103         return 0;
104 }
105
106 static inline u64 prof_ticks(struct task_struct *p)
107 {
108         u64 utime, stime;
109
110         task_cputime(p, &utime, &stime);
111
112         return utime + stime;
113 }
114 static inline u64 virt_ticks(struct task_struct *p)
115 {
116         u64 utime, stime;
117
118         task_cputime(p, &utime, &stime);
119
120         return utime;
121 }
122
123 static int
124 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
125 {
126         int error = check_clock(which_clock);
127         if (!error) {
128                 tp->tv_sec = 0;
129                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
130                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
131                         /*
132                          * If sched_clock is using a cycle counter, we
133                          * don't have any idea of its true resolution
134                          * exported, but it is much more than 1s/HZ.
135                          */
136                         tp->tv_nsec = 1;
137                 }
138         }
139         return error;
140 }
141
142 static int
143 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
144 {
145         /*
146          * You can never reset a CPU clock, but we check for other errors
147          * in the call before failing with EPERM.
148          */
149         int error = check_clock(which_clock);
150         if (error == 0) {
151                 error = -EPERM;
152         }
153         return error;
154 }
155
156
157 /*
158  * Sample a per-thread clock for the given task.
159  */
160 static int cpu_clock_sample(const clockid_t which_clock,
161                             struct task_struct *p, u64 *sample)
162 {
163         switch (CPUCLOCK_WHICH(which_clock)) {
164         default:
165                 return -EINVAL;
166         case CPUCLOCK_PROF:
167                 *sample = prof_ticks(p);
168                 break;
169         case CPUCLOCK_VIRT:
170                 *sample = virt_ticks(p);
171                 break;
172         case CPUCLOCK_SCHED:
173                 *sample = task_sched_runtime(p);
174                 break;
175         }
176         return 0;
177 }
178
179 /*
180  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
181  * to avoid race conditions with concurrent updates to cputime.
182  */
183 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
184 {
185         u64 curr_cputime;
186 retry:
187         curr_cputime = atomic64_read(cputime);
188         if (sum_cputime > curr_cputime) {
189                 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
190                         goto retry;
191         }
192 }
193
194 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
195 {
196         __update_gt_cputime(&cputime_atomic->utime, sum->utime);
197         __update_gt_cputime(&cputime_atomic->stime, sum->stime);
198         __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
199 }
200
201 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
202 static inline void sample_cputime_atomic(struct task_cputime *times,
203                                          struct task_cputime_atomic *atomic_times)
204 {
205         times->utime = atomic64_read(&atomic_times->utime);
206         times->stime = atomic64_read(&atomic_times->stime);
207         times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
208 }
209
210 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
211 {
212         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
213         struct task_cputime sum;
214
215         /* Check if cputimer isn't running. This is accessed without locking. */
216         if (!READ_ONCE(cputimer->running)) {
217                 /*
218                  * The POSIX timer interface allows for absolute time expiry
219                  * values through the TIMER_ABSTIME flag, therefore we have
220                  * to synchronize the timer to the clock every time we start it.
221                  */
222                 thread_group_cputime(tsk, &sum);
223                 update_gt_cputime(&cputimer->cputime_atomic, &sum);
224
225                 /*
226                  * We're setting cputimer->running without a lock. Ensure
227                  * this only gets written to in one operation. We set
228                  * running after update_gt_cputime() as a small optimization,
229                  * but barriers are not required because update_gt_cputime()
230                  * can handle concurrent updates.
231                  */
232                 WRITE_ONCE(cputimer->running, true);
233         }
234         sample_cputime_atomic(times, &cputimer->cputime_atomic);
235 }
236
237 /*
238  * Sample a process (thread group) clock for the given group_leader task.
239  * Must be called with task sighand lock held for safe while_each_thread()
240  * traversal.
241  */
242 static int cpu_clock_sample_group(const clockid_t which_clock,
243                                   struct task_struct *p,
244                                   u64 *sample)
245 {
246         struct task_cputime cputime;
247
248         switch (CPUCLOCK_WHICH(which_clock)) {
249         default:
250                 return -EINVAL;
251         case CPUCLOCK_PROF:
252                 thread_group_cputime(p, &cputime);
253                 *sample = cputime.utime + cputime.stime;
254                 break;
255         case CPUCLOCK_VIRT:
256                 thread_group_cputime(p, &cputime);
257                 *sample = cputime.utime;
258                 break;
259         case CPUCLOCK_SCHED:
260                 thread_group_cputime(p, &cputime);
261                 *sample = cputime.sum_exec_runtime;
262                 break;
263         }
264         return 0;
265 }
266
267 static int posix_cpu_clock_get_task(struct task_struct *tsk,
268                                     const clockid_t which_clock,
269                                     struct timespec64 *tp)
270 {
271         int err = -EINVAL;
272         u64 rtn;
273
274         if (CPUCLOCK_PERTHREAD(which_clock)) {
275                 if (same_thread_group(tsk, current))
276                         err = cpu_clock_sample(which_clock, tsk, &rtn);
277         } else {
278                 if (tsk == current || thread_group_leader(tsk))
279                         err = cpu_clock_sample_group(which_clock, tsk, &rtn);
280         }
281
282         if (!err)
283                 *tp = ns_to_timespec64(rtn);
284
285         return err;
286 }
287
288
289 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
290 {
291         const pid_t pid = CPUCLOCK_PID(which_clock);
292         int err = -EINVAL;
293
294         if (pid == 0) {
295                 /*
296                  * Special case constant value for our own clocks.
297                  * We don't have to do any lookup to find ourselves.
298                  */
299                 err = posix_cpu_clock_get_task(current, which_clock, tp);
300         } else {
301                 /*
302                  * Find the given PID, and validate that the caller
303                  * should be able to see it.
304                  */
305                 struct task_struct *p;
306                 rcu_read_lock();
307                 p = find_task_by_vpid(pid);
308                 if (p)
309                         err = posix_cpu_clock_get_task(p, which_clock, tp);
310                 rcu_read_unlock();
311         }
312
313         return err;
314 }
315
316 /*
317  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
318  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
319  * new timer already all-zeros initialized.
320  */
321 static int posix_cpu_timer_create(struct k_itimer *new_timer)
322 {
323         int ret = 0;
324         const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
325         struct task_struct *p;
326
327         if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
328                 return -EINVAL;
329
330         new_timer->kclock = &clock_posix_cpu;
331
332         INIT_LIST_HEAD(&new_timer->it.cpu.entry);
333
334         rcu_read_lock();
335         if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
336                 if (pid == 0) {
337                         p = current;
338                 } else {
339                         p = find_task_by_vpid(pid);
340                         if (p && !same_thread_group(p, current))
341                                 p = NULL;
342                 }
343         } else {
344                 if (pid == 0) {
345                         p = current->group_leader;
346                 } else {
347                         p = find_task_by_vpid(pid);
348                         if (p && !has_group_leader_pid(p))
349                                 p = NULL;
350                 }
351         }
352         new_timer->it.cpu.task = p;
353         if (p) {
354                 get_task_struct(p);
355         } else {
356                 ret = -EINVAL;
357         }
358         rcu_read_unlock();
359
360         return ret;
361 }
362
363 /*
364  * Clean up a CPU-clock timer that is about to be destroyed.
365  * This is called from timer deletion with the timer already locked.
366  * If we return TIMER_RETRY, it's necessary to release the timer's lock
367  * and try again.  (This happens when the timer is in the middle of firing.)
368  */
369 static int posix_cpu_timer_del(struct k_itimer *timer)
370 {
371         int ret = 0;
372         unsigned long flags;
373         struct sighand_struct *sighand;
374         struct task_struct *p = timer->it.cpu.task;
375
376         WARN_ON_ONCE(p == NULL);
377
378         /*
379          * Protect against sighand release/switch in exit/exec and process/
380          * thread timer list entry concurrent read/writes.
381          */
382         sighand = lock_task_sighand(p, &flags);
383         if (unlikely(sighand == NULL)) {
384                 /*
385                  * We raced with the reaping of the task.
386                  * The deletion should have cleared us off the list.
387                  */
388                 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
389         } else {
390                 if (timer->it.cpu.firing)
391                         ret = TIMER_RETRY;
392                 else
393                         list_del(&timer->it.cpu.entry);
394
395                 unlock_task_sighand(p, &flags);
396         }
397
398         if (!ret)
399                 put_task_struct(p);
400
401         return ret;
402 }
403
404 static void cleanup_timers_list(struct list_head *head)
405 {
406         struct cpu_timer_list *timer, *next;
407
408         list_for_each_entry_safe(timer, next, head, entry)
409                 list_del_init(&timer->entry);
410 }
411
412 /*
413  * Clean out CPU timers still ticking when a thread exited.  The task
414  * pointer is cleared, and the expiry time is replaced with the residual
415  * time for later timer_gettime calls to return.
416  * This must be called with the siglock held.
417  */
418 static void cleanup_timers(struct list_head *head)
419 {
420         cleanup_timers_list(head);
421         cleanup_timers_list(++head);
422         cleanup_timers_list(++head);
423 }
424
425 /*
426  * These are both called with the siglock held, when the current thread
427  * is being reaped.  When the final (leader) thread in the group is reaped,
428  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
429  */
430 void posix_cpu_timers_exit(struct task_struct *tsk)
431 {
432         cleanup_timers(tsk->cpu_timers);
433 }
434 void posix_cpu_timers_exit_group(struct task_struct *tsk)
435 {
436         cleanup_timers(tsk->signal->cpu_timers);
437 }
438
439 static inline int expires_gt(u64 expires, u64 new_exp)
440 {
441         return expires == 0 || expires > new_exp;
442 }
443
444 /*
445  * Insert the timer on the appropriate list before any timers that
446  * expire later.  This must be called with the sighand lock held.
447  */
448 static void arm_timer(struct k_itimer *timer)
449 {
450         struct task_struct *p = timer->it.cpu.task;
451         struct list_head *head, *listpos;
452         struct task_cputime *cputime_expires;
453         struct cpu_timer_list *const nt = &timer->it.cpu;
454         struct cpu_timer_list *next;
455
456         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
457                 head = p->cpu_timers;
458                 cputime_expires = &p->cputime_expires;
459         } else {
460                 head = p->signal->cpu_timers;
461                 cputime_expires = &p->signal->cputime_expires;
462         }
463         head += CPUCLOCK_WHICH(timer->it_clock);
464
465         listpos = head;
466         list_for_each_entry(next, head, entry) {
467                 if (nt->expires < next->expires)
468                         break;
469                 listpos = &next->entry;
470         }
471         list_add(&nt->entry, listpos);
472
473         if (listpos == head) {
474                 u64 exp = nt->expires;
475
476                 /*
477                  * We are the new earliest-expiring POSIX 1.b timer, hence
478                  * need to update expiration cache. Take into account that
479                  * for process timers we share expiration cache with itimers
480                  * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
481                  */
482
483                 switch (CPUCLOCK_WHICH(timer->it_clock)) {
484                 case CPUCLOCK_PROF:
485                         if (expires_gt(cputime_expires->prof_exp, exp))
486                                 cputime_expires->prof_exp = exp;
487                         break;
488                 case CPUCLOCK_VIRT:
489                         if (expires_gt(cputime_expires->virt_exp, exp))
490                                 cputime_expires->virt_exp = exp;
491                         break;
492                 case CPUCLOCK_SCHED:
493                         if (expires_gt(cputime_expires->sched_exp, exp))
494                                 cputime_expires->sched_exp = exp;
495                         break;
496                 }
497                 if (CPUCLOCK_PERTHREAD(timer->it_clock))
498                         tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
499                 else
500                         tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
501         }
502 }
503
504 /*
505  * The timer is locked, fire it and arrange for its reload.
506  */
507 static void cpu_timer_fire(struct k_itimer *timer)
508 {
509         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
510                 /*
511                  * User don't want any signal.
512                  */
513                 timer->it.cpu.expires = 0;
514         } else if (unlikely(timer->sigq == NULL)) {
515                 /*
516                  * This a special case for clock_nanosleep,
517                  * not a normal timer from sys_timer_create.
518                  */
519                 wake_up_process(timer->it_process);
520                 timer->it.cpu.expires = 0;
521         } else if (timer->it.cpu.incr == 0) {
522                 /*
523                  * One-shot timer.  Clear it as soon as it's fired.
524                  */
525                 posix_timer_event(timer, 0);
526                 timer->it.cpu.expires = 0;
527         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
528                 /*
529                  * The signal did not get queued because the signal
530                  * was ignored, so we won't get any callback to
531                  * reload the timer.  But we need to keep it
532                  * ticking in case the signal is deliverable next time.
533                  */
534                 posix_cpu_timer_rearm(timer);
535                 ++timer->it_requeue_pending;
536         }
537 }
538
539 /*
540  * Sample a process (thread group) timer for the given group_leader task.
541  * Must be called with task sighand lock held for safe while_each_thread()
542  * traversal.
543  */
544 static int cpu_timer_sample_group(const clockid_t which_clock,
545                                   struct task_struct *p, u64 *sample)
546 {
547         struct task_cputime cputime;
548
549         thread_group_cputimer(p, &cputime);
550         switch (CPUCLOCK_WHICH(which_clock)) {
551         default:
552                 return -EINVAL;
553         case CPUCLOCK_PROF:
554                 *sample = cputime.utime + cputime.stime;
555                 break;
556         case CPUCLOCK_VIRT:
557                 *sample = cputime.utime;
558                 break;
559         case CPUCLOCK_SCHED:
560                 *sample = cputime.sum_exec_runtime;
561                 break;
562         }
563         return 0;
564 }
565
566 /*
567  * Guts of sys_timer_settime for CPU timers.
568  * This is called with the timer locked and interrupts disabled.
569  * If we return TIMER_RETRY, it's necessary to release the timer's lock
570  * and try again.  (This happens when the timer is in the middle of firing.)
571  */
572 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
573                                struct itimerspec64 *new, struct itimerspec64 *old)
574 {
575         unsigned long flags;
576         struct sighand_struct *sighand;
577         struct task_struct *p = timer->it.cpu.task;
578         u64 old_expires, new_expires, old_incr, val;
579         int ret;
580
581         WARN_ON_ONCE(p == NULL);
582
583         /*
584          * Use the to_ktime conversion because that clamps the maximum
585          * value to KTIME_MAX and avoid multiplication overflows.
586          */
587         new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
588
589         /*
590          * Protect against sighand release/switch in exit/exec and p->cpu_timers
591          * and p->signal->cpu_timers read/write in arm_timer()
592          */
593         sighand = lock_task_sighand(p, &flags);
594         /*
595          * If p has just been reaped, we can no
596          * longer get any information about it at all.
597          */
598         if (unlikely(sighand == NULL)) {
599                 return -ESRCH;
600         }
601
602         /*
603          * Disarm any old timer after extracting its expiry time.
604          */
605         WARN_ON_ONCE(!irqs_disabled());
606
607         ret = 0;
608         old_incr = timer->it.cpu.incr;
609         old_expires = timer->it.cpu.expires;
610         if (unlikely(timer->it.cpu.firing)) {
611                 timer->it.cpu.firing = -1;
612                 ret = TIMER_RETRY;
613         } else
614                 list_del_init(&timer->it.cpu.entry);
615
616         /*
617          * We need to sample the current value to convert the new
618          * value from to relative and absolute, and to convert the
619          * old value from absolute to relative.  To set a process
620          * timer, we need a sample to balance the thread expiry
621          * times (in arm_timer).  With an absolute time, we must
622          * check if it's already passed.  In short, we need a sample.
623          */
624         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
625                 cpu_clock_sample(timer->it_clock, p, &val);
626         } else {
627                 cpu_timer_sample_group(timer->it_clock, p, &val);
628         }
629
630         if (old) {
631                 if (old_expires == 0) {
632                         old->it_value.tv_sec = 0;
633                         old->it_value.tv_nsec = 0;
634                 } else {
635                         /*
636                          * Update the timer in case it has
637                          * overrun already.  If it has,
638                          * we'll report it as having overrun
639                          * and with the next reloaded timer
640                          * already ticking, though we are
641                          * swallowing that pending
642                          * notification here to install the
643                          * new setting.
644                          */
645                         bump_cpu_timer(timer, val);
646                         if (val < timer->it.cpu.expires) {
647                                 old_expires = timer->it.cpu.expires - val;
648                                 old->it_value = ns_to_timespec64(old_expires);
649                         } else {
650                                 old->it_value.tv_nsec = 1;
651                                 old->it_value.tv_sec = 0;
652                         }
653                 }
654         }
655
656         if (unlikely(ret)) {
657                 /*
658                  * We are colliding with the timer actually firing.
659                  * Punt after filling in the timer's old value, and
660                  * disable this firing since we are already reporting
661                  * it as an overrun (thanks to bump_cpu_timer above).
662                  */
663                 unlock_task_sighand(p, &flags);
664                 goto out;
665         }
666
667         if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
668                 new_expires += val;
669         }
670
671         /*
672          * Install the new expiry time (or zero).
673          * For a timer with no notification action, we don't actually
674          * arm the timer (we'll just fake it for timer_gettime).
675          */
676         timer->it.cpu.expires = new_expires;
677         if (new_expires != 0 && val < new_expires) {
678                 arm_timer(timer);
679         }
680
681         unlock_task_sighand(p, &flags);
682         /*
683          * Install the new reload setting, and
684          * set up the signal and overrun bookkeeping.
685          */
686         timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
687
688         /*
689          * This acts as a modification timestamp for the timer,
690          * so any automatic reload attempt will punt on seeing
691          * that we have reset the timer manually.
692          */
693         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
694                 ~REQUEUE_PENDING;
695         timer->it_overrun_last = 0;
696         timer->it_overrun = -1;
697
698         if (new_expires != 0 && !(val < new_expires)) {
699                 /*
700                  * The designated time already passed, so we notify
701                  * immediately, even if the thread never runs to
702                  * accumulate more time on this clock.
703                  */
704                 cpu_timer_fire(timer);
705         }
706
707         ret = 0;
708  out:
709         if (old)
710                 old->it_interval = ns_to_timespec64(old_incr);
711
712         return ret;
713 }
714
715 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
716 {
717         u64 now;
718         struct task_struct *p = timer->it.cpu.task;
719
720         WARN_ON_ONCE(p == NULL);
721
722         /*
723          * Easy part: convert the reload time.
724          */
725         itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
726
727         if (!timer->it.cpu.expires)
728                 return;
729
730         /*
731          * Sample the clock to take the difference with the expiry time.
732          */
733         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
734                 cpu_clock_sample(timer->it_clock, p, &now);
735         } else {
736                 struct sighand_struct *sighand;
737                 unsigned long flags;
738
739                 /*
740                  * Protect against sighand release/switch in exit/exec and
741                  * also make timer sampling safe if it ends up calling
742                  * thread_group_cputime().
743                  */
744                 sighand = lock_task_sighand(p, &flags);
745                 if (unlikely(sighand == NULL)) {
746                         /*
747                          * The process has been reaped.
748                          * We can't even collect a sample any more.
749                          * Call the timer disarmed, nothing else to do.
750                          */
751                         timer->it.cpu.expires = 0;
752                         return;
753                 } else {
754                         cpu_timer_sample_group(timer->it_clock, p, &now);
755                         unlock_task_sighand(p, &flags);
756                 }
757         }
758
759         if (now < timer->it.cpu.expires) {
760                 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
761         } else {
762                 /*
763                  * The timer should have expired already, but the firing
764                  * hasn't taken place yet.  Say it's just about to expire.
765                  */
766                 itp->it_value.tv_nsec = 1;
767                 itp->it_value.tv_sec = 0;
768         }
769 }
770
771 static unsigned long long
772 check_timers_list(struct list_head *timers,
773                   struct list_head *firing,
774                   unsigned long long curr)
775 {
776         int maxfire = 20;
777
778         while (!list_empty(timers)) {
779                 struct cpu_timer_list *t;
780
781                 t = list_first_entry(timers, struct cpu_timer_list, entry);
782
783                 if (!--maxfire || curr < t->expires)
784                         return t->expires;
785
786                 t->firing = 1;
787                 list_move_tail(&t->entry, firing);
788         }
789
790         return 0;
791 }
792
793 /*
794  * Check for any per-thread CPU timers that have fired and move them off
795  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
796  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
797  */
798 static void check_thread_timers(struct task_struct *tsk,
799                                 struct list_head *firing)
800 {
801         struct list_head *timers = tsk->cpu_timers;
802         struct task_cputime *tsk_expires = &tsk->cputime_expires;
803         u64 expires;
804         unsigned long soft;
805
806         /*
807          * If cputime_expires is zero, then there are no active
808          * per thread CPU timers.
809          */
810         if (task_cputime_zero(&tsk->cputime_expires))
811                 return;
812
813         expires = check_timers_list(timers, firing, prof_ticks(tsk));
814         tsk_expires->prof_exp = expires;
815
816         expires = check_timers_list(++timers, firing, virt_ticks(tsk));
817         tsk_expires->virt_exp = expires;
818
819         tsk_expires->sched_exp = check_timers_list(++timers, firing,
820                                                    tsk->se.sum_exec_runtime);
821
822         /*
823          * Check for the special case thread timers.
824          */
825         soft = task_rlimit(tsk, RLIMIT_RTTIME);
826         if (soft != RLIM_INFINITY) {
827                 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
828
829                 if (hard != RLIM_INFINITY &&
830                     tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
831                         /*
832                          * At the hard limit, we just die.
833                          * No need to calculate anything else now.
834                          */
835                         if (print_fatal_signals) {
836                                 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
837                                         tsk->comm, task_pid_nr(tsk));
838                         }
839                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
840                         return;
841                 }
842                 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
843                         /*
844                          * At the soft limit, send a SIGXCPU every second.
845                          */
846                         if (soft < hard) {
847                                 soft += USEC_PER_SEC;
848                                 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
849                                         soft;
850                         }
851                         if (print_fatal_signals) {
852                                 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
853                                         tsk->comm, task_pid_nr(tsk));
854                         }
855                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
856                 }
857         }
858         if (task_cputime_zero(tsk_expires))
859                 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
860 }
861
862 static inline void stop_process_timers(struct signal_struct *sig)
863 {
864         struct thread_group_cputimer *cputimer = &sig->cputimer;
865
866         /* Turn off cputimer->running. This is done without locking. */
867         WRITE_ONCE(cputimer->running, false);
868         tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
869 }
870
871 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
872                              u64 *expires, u64 cur_time, int signo)
873 {
874         if (!it->expires)
875                 return;
876
877         if (cur_time >= it->expires) {
878                 if (it->incr)
879                         it->expires += it->incr;
880                 else
881                         it->expires = 0;
882
883                 trace_itimer_expire(signo == SIGPROF ?
884                                     ITIMER_PROF : ITIMER_VIRTUAL,
885                                     tsk->signal->leader_pid, cur_time);
886                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
887         }
888
889         if (it->expires && (!*expires || it->expires < *expires))
890                 *expires = it->expires;
891 }
892
893 /*
894  * Check for any per-thread CPU timers that have fired and move them
895  * off the tsk->*_timers list onto the firing list.  Per-thread timers
896  * have already been taken off.
897  */
898 static void check_process_timers(struct task_struct *tsk,
899                                  struct list_head *firing)
900 {
901         struct signal_struct *const sig = tsk->signal;
902         u64 utime, ptime, virt_expires, prof_expires;
903         u64 sum_sched_runtime, sched_expires;
904         struct list_head *timers = sig->cpu_timers;
905         struct task_cputime cputime;
906         unsigned long soft;
907
908         /*
909          * If cputimer is not running, then there are no active
910          * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
911          */
912         if (!READ_ONCE(tsk->signal->cputimer.running))
913                 return;
914
915         /*
916          * Signify that a thread is checking for process timers.
917          * Write access to this field is protected by the sighand lock.
918          */
919         sig->cputimer.checking_timer = true;
920
921         /*
922          * Collect the current process totals.
923          */
924         thread_group_cputimer(tsk, &cputime);
925         utime = cputime.utime;
926         ptime = utime + cputime.stime;
927         sum_sched_runtime = cputime.sum_exec_runtime;
928
929         prof_expires = check_timers_list(timers, firing, ptime);
930         virt_expires = check_timers_list(++timers, firing, utime);
931         sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
932
933         /*
934          * Check for the special case process timers.
935          */
936         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
937                          SIGPROF);
938         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
939                          SIGVTALRM);
940         soft = task_rlimit(tsk, RLIMIT_CPU);
941         if (soft != RLIM_INFINITY) {
942                 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
943                 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
944                 u64 x;
945                 if (psecs >= hard) {
946                         /*
947                          * At the hard limit, we just die.
948                          * No need to calculate anything else now.
949                          */
950                         if (print_fatal_signals) {
951                                 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
952                                         tsk->comm, task_pid_nr(tsk));
953                         }
954                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
955                         return;
956                 }
957                 if (psecs >= soft) {
958                         /*
959                          * At the soft limit, send a SIGXCPU every second.
960                          */
961                         if (print_fatal_signals) {
962                                 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
963                                         tsk->comm, task_pid_nr(tsk));
964                         }
965                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
966                         if (soft < hard) {
967                                 soft++;
968                                 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
969                         }
970                 }
971                 x = soft * NSEC_PER_SEC;
972                 if (!prof_expires || x < prof_expires)
973                         prof_expires = x;
974         }
975
976         sig->cputime_expires.prof_exp = prof_expires;
977         sig->cputime_expires.virt_exp = virt_expires;
978         sig->cputime_expires.sched_exp = sched_expires;
979         if (task_cputime_zero(&sig->cputime_expires))
980                 stop_process_timers(sig);
981
982         sig->cputimer.checking_timer = false;
983 }
984
985 /*
986  * This is called from the signal code (via posixtimer_rearm)
987  * when the last timer signal was delivered and we have to reload the timer.
988  */
989 static void posix_cpu_timer_rearm(struct k_itimer *timer)
990 {
991         struct sighand_struct *sighand;
992         unsigned long flags;
993         struct task_struct *p = timer->it.cpu.task;
994         u64 now;
995
996         WARN_ON_ONCE(p == NULL);
997
998         /*
999          * Fetch the current sample and update the timer's expiry time.
1000          */
1001         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1002                 cpu_clock_sample(timer->it_clock, p, &now);
1003                 bump_cpu_timer(timer, now);
1004                 if (unlikely(p->exit_state))
1005                         return;
1006
1007                 /* Protect timer list r/w in arm_timer() */
1008                 sighand = lock_task_sighand(p, &flags);
1009                 if (!sighand)
1010                         return;
1011         } else {
1012                 /*
1013                  * Protect arm_timer() and timer sampling in case of call to
1014                  * thread_group_cputime().
1015                  */
1016                 sighand = lock_task_sighand(p, &flags);
1017                 if (unlikely(sighand == NULL)) {
1018                         /*
1019                          * The process has been reaped.
1020                          * We can't even collect a sample any more.
1021                          */
1022                         timer->it.cpu.expires = 0;
1023                         return;
1024                 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1025                         /* If the process is dying, no need to rearm */
1026                         goto unlock;
1027                 }
1028                 cpu_timer_sample_group(timer->it_clock, p, &now);
1029                 bump_cpu_timer(timer, now);
1030                 /* Leave the sighand locked for the call below.  */
1031         }
1032
1033         /*
1034          * Now re-arm for the new expiry time.
1035          */
1036         WARN_ON_ONCE(!irqs_disabled());
1037         arm_timer(timer);
1038 unlock:
1039         unlock_task_sighand(p, &flags);
1040 }
1041
1042 /**
1043  * task_cputime_expired - Compare two task_cputime entities.
1044  *
1045  * @sample:     The task_cputime structure to be checked for expiration.
1046  * @expires:    Expiration times, against which @sample will be checked.
1047  *
1048  * Checks @sample against @expires to see if any field of @sample has expired.
1049  * Returns true if any field of the former is greater than the corresponding
1050  * field of the latter if the latter field is set.  Otherwise returns false.
1051  */
1052 static inline int task_cputime_expired(const struct task_cputime *sample,
1053                                         const struct task_cputime *expires)
1054 {
1055         if (expires->utime && sample->utime >= expires->utime)
1056                 return 1;
1057         if (expires->stime && sample->utime + sample->stime >= expires->stime)
1058                 return 1;
1059         if (expires->sum_exec_runtime != 0 &&
1060             sample->sum_exec_runtime >= expires->sum_exec_runtime)
1061                 return 1;
1062         return 0;
1063 }
1064
1065 /**
1066  * fastpath_timer_check - POSIX CPU timers fast path.
1067  *
1068  * @tsk:        The task (thread) being checked.
1069  *
1070  * Check the task and thread group timers.  If both are zero (there are no
1071  * timers set) return false.  Otherwise snapshot the task and thread group
1072  * timers and compare them with the corresponding expiration times.  Return
1073  * true if a timer has expired, else return false.
1074  */
1075 static inline int fastpath_timer_check(struct task_struct *tsk)
1076 {
1077         struct signal_struct *sig;
1078
1079         if (!task_cputime_zero(&tsk->cputime_expires)) {
1080                 struct task_cputime task_sample;
1081
1082                 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1083                 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1084                 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1085                         return 1;
1086         }
1087
1088         sig = tsk->signal;
1089         /*
1090          * Check if thread group timers expired when the cputimer is
1091          * running and no other thread in the group is already checking
1092          * for thread group cputimers. These fields are read without the
1093          * sighand lock. However, this is fine because this is meant to
1094          * be a fastpath heuristic to determine whether we should try to
1095          * acquire the sighand lock to check/handle timers.
1096          *
1097          * In the worst case scenario, if 'running' or 'checking_timer' gets
1098          * set but the current thread doesn't see the change yet, we'll wait
1099          * until the next thread in the group gets a scheduler interrupt to
1100          * handle the timer. This isn't an issue in practice because these
1101          * types of delays with signals actually getting sent are expected.
1102          */
1103         if (READ_ONCE(sig->cputimer.running) &&
1104             !READ_ONCE(sig->cputimer.checking_timer)) {
1105                 struct task_cputime group_sample;
1106
1107                 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1108
1109                 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1110                         return 1;
1111         }
1112
1113         return 0;
1114 }
1115
1116 /*
1117  * This is called from the timer interrupt handler.  The irq handler has
1118  * already updated our counts.  We need to check if any timers fire now.
1119  * Interrupts are disabled.
1120  */
1121 void run_posix_cpu_timers(struct task_struct *tsk)
1122 {
1123         LIST_HEAD(firing);
1124         struct k_itimer *timer, *next;
1125         unsigned long flags;
1126
1127         WARN_ON_ONCE(!irqs_disabled());
1128
1129         /*
1130          * The fast path checks that there are no expired thread or thread
1131          * group timers.  If that's so, just return.
1132          */
1133         if (!fastpath_timer_check(tsk))
1134                 return;
1135
1136         if (!lock_task_sighand(tsk, &flags))
1137                 return;
1138         /*
1139          * Here we take off tsk->signal->cpu_timers[N] and
1140          * tsk->cpu_timers[N] all the timers that are firing, and
1141          * put them on the firing list.
1142          */
1143         check_thread_timers(tsk, &firing);
1144
1145         check_process_timers(tsk, &firing);
1146
1147         /*
1148          * We must release these locks before taking any timer's lock.
1149          * There is a potential race with timer deletion here, as the
1150          * siglock now protects our private firing list.  We have set
1151          * the firing flag in each timer, so that a deletion attempt
1152          * that gets the timer lock before we do will give it up and
1153          * spin until we've taken care of that timer below.
1154          */
1155         unlock_task_sighand(tsk, &flags);
1156
1157         /*
1158          * Now that all the timers on our list have the firing flag,
1159          * no one will touch their list entries but us.  We'll take
1160          * each timer's lock before clearing its firing flag, so no
1161          * timer call will interfere.
1162          */
1163         list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1164                 int cpu_firing;
1165
1166                 spin_lock(&timer->it_lock);
1167                 list_del_init(&timer->it.cpu.entry);
1168                 cpu_firing = timer->it.cpu.firing;
1169                 timer->it.cpu.firing = 0;
1170                 /*
1171                  * The firing flag is -1 if we collided with a reset
1172                  * of the timer, which already reported this
1173                  * almost-firing as an overrun.  So don't generate an event.
1174                  */
1175                 if (likely(cpu_firing >= 0))
1176                         cpu_timer_fire(timer);
1177                 spin_unlock(&timer->it_lock);
1178         }
1179 }
1180
1181 /*
1182  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1183  * The tsk->sighand->siglock must be held by the caller.
1184  */
1185 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1186                            u64 *newval, u64 *oldval)
1187 {
1188         u64 now;
1189
1190         WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1191         cpu_timer_sample_group(clock_idx, tsk, &now);
1192
1193         if (oldval) {
1194                 /*
1195                  * We are setting itimer. The *oldval is absolute and we update
1196                  * it to be relative, *newval argument is relative and we update
1197                  * it to be absolute.
1198                  */
1199                 if (*oldval) {
1200                         if (*oldval <= now) {
1201                                 /* Just about to fire. */
1202                                 *oldval = TICK_NSEC;
1203                         } else {
1204                                 *oldval -= now;
1205                         }
1206                 }
1207
1208                 if (!*newval)
1209                         return;
1210                 *newval += now;
1211         }
1212
1213         /*
1214          * Update expiration cache if we are the earliest timer, or eventually
1215          * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1216          */
1217         switch (clock_idx) {
1218         case CPUCLOCK_PROF:
1219                 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1220                         tsk->signal->cputime_expires.prof_exp = *newval;
1221                 break;
1222         case CPUCLOCK_VIRT:
1223                 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1224                         tsk->signal->cputime_expires.virt_exp = *newval;
1225                 break;
1226         }
1227
1228         tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1229 }
1230
1231 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1232                             const struct timespec64 *rqtp)
1233 {
1234         struct itimerspec64 it;
1235         struct k_itimer timer;
1236         u64 expires;
1237         int error;
1238
1239         /*
1240          * Set up a temporary timer and then wait for it to go off.
1241          */
1242         memset(&timer, 0, sizeof timer);
1243         spin_lock_init(&timer.it_lock);
1244         timer.it_clock = which_clock;
1245         timer.it_overrun = -1;
1246         error = posix_cpu_timer_create(&timer);
1247         timer.it_process = current;
1248         if (!error) {
1249                 static struct itimerspec64 zero_it;
1250                 struct restart_block *restart;
1251
1252                 memset(&it, 0, sizeof(it));
1253                 it.it_value = *rqtp;
1254
1255                 spin_lock_irq(&timer.it_lock);
1256                 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1257                 if (error) {
1258                         spin_unlock_irq(&timer.it_lock);
1259                         return error;
1260                 }
1261
1262                 while (!signal_pending(current)) {
1263                         if (timer.it.cpu.expires == 0) {
1264                                 /*
1265                                  * Our timer fired and was reset, below
1266                                  * deletion can not fail.
1267                                  */
1268                                 posix_cpu_timer_del(&timer);
1269                                 spin_unlock_irq(&timer.it_lock);
1270                                 return 0;
1271                         }
1272
1273                         /*
1274                          * Block until cpu_timer_fire (or a signal) wakes us.
1275                          */
1276                         __set_current_state(TASK_INTERRUPTIBLE);
1277                         spin_unlock_irq(&timer.it_lock);
1278                         schedule();
1279                         spin_lock_irq(&timer.it_lock);
1280                 }
1281
1282                 /*
1283                  * We were interrupted by a signal.
1284                  */
1285                 expires = timer.it.cpu.expires;
1286                 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1287                 if (!error) {
1288                         /*
1289                          * Timer is now unarmed, deletion can not fail.
1290                          */
1291                         posix_cpu_timer_del(&timer);
1292                 }
1293                 spin_unlock_irq(&timer.it_lock);
1294
1295                 while (error == TIMER_RETRY) {
1296                         /*
1297                          * We need to handle case when timer was or is in the
1298                          * middle of firing. In other cases we already freed
1299                          * resources.
1300                          */
1301                         spin_lock_irq(&timer.it_lock);
1302                         error = posix_cpu_timer_del(&timer);
1303                         spin_unlock_irq(&timer.it_lock);
1304                 }
1305
1306                 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1307                         /*
1308                          * It actually did fire already.
1309                          */
1310                         return 0;
1311                 }
1312
1313                 error = -ERESTART_RESTARTBLOCK;
1314                 /*
1315                  * Report back to the user the time still remaining.
1316                  */
1317                 restart = &current->restart_block;
1318                 restart->nanosleep.expires = expires;
1319                 if (restart->nanosleep.type != TT_NONE)
1320                         error = nanosleep_copyout(restart, &it.it_value);
1321         }
1322
1323         return error;
1324 }
1325
1326 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1327
1328 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1329                             const struct timespec64 *rqtp)
1330 {
1331         struct restart_block *restart_block = &current->restart_block;
1332         int error;
1333
1334         /*
1335          * Diagnose required errors first.
1336          */
1337         if (CPUCLOCK_PERTHREAD(which_clock) &&
1338             (CPUCLOCK_PID(which_clock) == 0 ||
1339              CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1340                 return -EINVAL;
1341
1342         error = do_cpu_nanosleep(which_clock, flags, rqtp);
1343
1344         if (error == -ERESTART_RESTARTBLOCK) {
1345
1346                 if (flags & TIMER_ABSTIME)
1347                         return -ERESTARTNOHAND;
1348
1349                 restart_block->fn = posix_cpu_nsleep_restart;
1350                 restart_block->nanosleep.clockid = which_clock;
1351         }
1352         return error;
1353 }
1354
1355 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1356 {
1357         clockid_t which_clock = restart_block->nanosleep.clockid;
1358         struct timespec64 t;
1359
1360         t = ns_to_timespec64(restart_block->nanosleep.expires);
1361
1362         return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1363 }
1364
1365 #define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1366 #define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1367
1368 static int process_cpu_clock_getres(const clockid_t which_clock,
1369                                     struct timespec64 *tp)
1370 {
1371         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1372 }
1373 static int process_cpu_clock_get(const clockid_t which_clock,
1374                                  struct timespec64 *tp)
1375 {
1376         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1377 }
1378 static int process_cpu_timer_create(struct k_itimer *timer)
1379 {
1380         timer->it_clock = PROCESS_CLOCK;
1381         return posix_cpu_timer_create(timer);
1382 }
1383 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1384                               const struct timespec64 *rqtp)
1385 {
1386         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1387 }
1388 static int thread_cpu_clock_getres(const clockid_t which_clock,
1389                                    struct timespec64 *tp)
1390 {
1391         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1392 }
1393 static int thread_cpu_clock_get(const clockid_t which_clock,
1394                                 struct timespec64 *tp)
1395 {
1396         return posix_cpu_clock_get(THREAD_CLOCK, tp);
1397 }
1398 static int thread_cpu_timer_create(struct k_itimer *timer)
1399 {
1400         timer->it_clock = THREAD_CLOCK;
1401         return posix_cpu_timer_create(timer);
1402 }
1403
1404 const struct k_clock clock_posix_cpu = {
1405         .clock_getres   = posix_cpu_clock_getres,
1406         .clock_set      = posix_cpu_clock_set,
1407         .clock_get      = posix_cpu_clock_get,
1408         .timer_create   = posix_cpu_timer_create,
1409         .nsleep         = posix_cpu_nsleep,
1410         .timer_set      = posix_cpu_timer_set,
1411         .timer_del      = posix_cpu_timer_del,
1412         .timer_get      = posix_cpu_timer_get,
1413         .timer_rearm    = posix_cpu_timer_rearm,
1414 };
1415
1416 const struct k_clock clock_process = {
1417         .clock_getres   = process_cpu_clock_getres,
1418         .clock_get      = process_cpu_clock_get,
1419         .timer_create   = process_cpu_timer_create,
1420         .nsleep         = process_cpu_nsleep,
1421 };
1422
1423 const struct k_clock clock_thread = {
1424         .clock_getres   = thread_cpu_clock_getres,
1425         .clock_get      = thread_cpu_clock_get,
1426         .timer_create   = thread_cpu_timer_create,
1427 };