Merge remote-tracking branches 'asoc/topic/ac97', 'asoc/topic/ac97-mfd', 'asoc/topic...
[sfrench/cifs-2.6.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6
7 #include "sched.h"
8
9 #include <linux/slab.h>
10 #include <linux/irq_work.h>
11
12 int sched_rr_timeslice = RR_TIMESLICE;
13 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
14
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16
17 struct rt_bandwidth def_rt_bandwidth;
18
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21         struct rt_bandwidth *rt_b =
22                 container_of(timer, struct rt_bandwidth, rt_period_timer);
23         int idle = 0;
24         int overrun;
25
26         raw_spin_lock(&rt_b->rt_runtime_lock);
27         for (;;) {
28                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29                 if (!overrun)
30                         break;
31
32                 raw_spin_unlock(&rt_b->rt_runtime_lock);
33                 idle = do_sched_rt_period_timer(rt_b, overrun);
34                 raw_spin_lock(&rt_b->rt_runtime_lock);
35         }
36         if (idle)
37                 rt_b->rt_period_active = 0;
38         raw_spin_unlock(&rt_b->rt_runtime_lock);
39
40         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45         rt_b->rt_period = ns_to_ktime(period);
46         rt_b->rt_runtime = runtime;
47
48         raw_spin_lock_init(&rt_b->rt_runtime_lock);
49
50         hrtimer_init(&rt_b->rt_period_timer,
51                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
52         rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54
55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58                 return;
59
60         raw_spin_lock(&rt_b->rt_runtime_lock);
61         if (!rt_b->rt_period_active) {
62                 rt_b->rt_period_active = 1;
63                 /*
64                  * SCHED_DEADLINE updates the bandwidth, as a run away
65                  * RT task with a DL task could hog a CPU. But DL does
66                  * not reset the period. If a deadline task was running
67                  * without an RT task running, it can cause RT tasks to
68                  * throttle when they start up. Kick the timer right away
69                  * to update the period.
70                  */
71                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
72                 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
73         }
74         raw_spin_unlock(&rt_b->rt_runtime_lock);
75 }
76
77 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
78 static void push_irq_work_func(struct irq_work *work);
79 #endif
80
81 void init_rt_rq(struct rt_rq *rt_rq)
82 {
83         struct rt_prio_array *array;
84         int i;
85
86         array = &rt_rq->active;
87         for (i = 0; i < MAX_RT_PRIO; i++) {
88                 INIT_LIST_HEAD(array->queue + i);
89                 __clear_bit(i, array->bitmap);
90         }
91         /* delimiter for bitsearch: */
92         __set_bit(MAX_RT_PRIO, array->bitmap);
93
94 #if defined CONFIG_SMP
95         rt_rq->highest_prio.curr = MAX_RT_PRIO;
96         rt_rq->highest_prio.next = MAX_RT_PRIO;
97         rt_rq->rt_nr_migratory = 0;
98         rt_rq->overloaded = 0;
99         plist_head_init(&rt_rq->pushable_tasks);
100
101 #ifdef HAVE_RT_PUSH_IPI
102         rt_rq->push_flags = 0;
103         rt_rq->push_cpu = nr_cpu_ids;
104         raw_spin_lock_init(&rt_rq->push_lock);
105         init_irq_work(&rt_rq->push_work, push_irq_work_func);
106 #endif
107 #endif /* CONFIG_SMP */
108         /* We start is dequeued state, because no RT tasks are queued */
109         rt_rq->rt_queued = 0;
110
111         rt_rq->rt_time = 0;
112         rt_rq->rt_throttled = 0;
113         rt_rq->rt_runtime = 0;
114         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
115 }
116
117 #ifdef CONFIG_RT_GROUP_SCHED
118 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
119 {
120         hrtimer_cancel(&rt_b->rt_period_timer);
121 }
122
123 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
124
125 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
126 {
127 #ifdef CONFIG_SCHED_DEBUG
128         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
129 #endif
130         return container_of(rt_se, struct task_struct, rt);
131 }
132
133 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
134 {
135         return rt_rq->rq;
136 }
137
138 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
139 {
140         return rt_se->rt_rq;
141 }
142
143 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
144 {
145         struct rt_rq *rt_rq = rt_se->rt_rq;
146
147         return rt_rq->rq;
148 }
149
150 void free_rt_sched_group(struct task_group *tg)
151 {
152         int i;
153
154         if (tg->rt_se)
155                 destroy_rt_bandwidth(&tg->rt_bandwidth);
156
157         for_each_possible_cpu(i) {
158                 if (tg->rt_rq)
159                         kfree(tg->rt_rq[i]);
160                 if (tg->rt_se)
161                         kfree(tg->rt_se[i]);
162         }
163
164         kfree(tg->rt_rq);
165         kfree(tg->rt_se);
166 }
167
168 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
169                 struct sched_rt_entity *rt_se, int cpu,
170                 struct sched_rt_entity *parent)
171 {
172         struct rq *rq = cpu_rq(cpu);
173
174         rt_rq->highest_prio.curr = MAX_RT_PRIO;
175         rt_rq->rt_nr_boosted = 0;
176         rt_rq->rq = rq;
177         rt_rq->tg = tg;
178
179         tg->rt_rq[cpu] = rt_rq;
180         tg->rt_se[cpu] = rt_se;
181
182         if (!rt_se)
183                 return;
184
185         if (!parent)
186                 rt_se->rt_rq = &rq->rt;
187         else
188                 rt_se->rt_rq = parent->my_q;
189
190         rt_se->my_q = rt_rq;
191         rt_se->parent = parent;
192         INIT_LIST_HEAD(&rt_se->run_list);
193 }
194
195 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
196 {
197         struct rt_rq *rt_rq;
198         struct sched_rt_entity *rt_se;
199         int i;
200
201         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
202         if (!tg->rt_rq)
203                 goto err;
204         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
205         if (!tg->rt_se)
206                 goto err;
207
208         init_rt_bandwidth(&tg->rt_bandwidth,
209                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
210
211         for_each_possible_cpu(i) {
212                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
213                                      GFP_KERNEL, cpu_to_node(i));
214                 if (!rt_rq)
215                         goto err;
216
217                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
218                                      GFP_KERNEL, cpu_to_node(i));
219                 if (!rt_se)
220                         goto err_free_rq;
221
222                 init_rt_rq(rt_rq);
223                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
224                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
225         }
226
227         return 1;
228
229 err_free_rq:
230         kfree(rt_rq);
231 err:
232         return 0;
233 }
234
235 #else /* CONFIG_RT_GROUP_SCHED */
236
237 #define rt_entity_is_task(rt_se) (1)
238
239 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
240 {
241         return container_of(rt_se, struct task_struct, rt);
242 }
243
244 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
245 {
246         return container_of(rt_rq, struct rq, rt);
247 }
248
249 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
250 {
251         struct task_struct *p = rt_task_of(rt_se);
252
253         return task_rq(p);
254 }
255
256 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
257 {
258         struct rq *rq = rq_of_rt_se(rt_se);
259
260         return &rq->rt;
261 }
262
263 void free_rt_sched_group(struct task_group *tg) { }
264
265 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
266 {
267         return 1;
268 }
269 #endif /* CONFIG_RT_GROUP_SCHED */
270
271 #ifdef CONFIG_SMP
272
273 static void pull_rt_task(struct rq *this_rq);
274
275 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
276 {
277         /* Try to pull RT tasks here if we lower this rq's prio */
278         return rq->rt.highest_prio.curr > prev->prio;
279 }
280
281 static inline int rt_overloaded(struct rq *rq)
282 {
283         return atomic_read(&rq->rd->rto_count);
284 }
285
286 static inline void rt_set_overload(struct rq *rq)
287 {
288         if (!rq->online)
289                 return;
290
291         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
292         /*
293          * Make sure the mask is visible before we set
294          * the overload count. That is checked to determine
295          * if we should look at the mask. It would be a shame
296          * if we looked at the mask, but the mask was not
297          * updated yet.
298          *
299          * Matched by the barrier in pull_rt_task().
300          */
301         smp_wmb();
302         atomic_inc(&rq->rd->rto_count);
303 }
304
305 static inline void rt_clear_overload(struct rq *rq)
306 {
307         if (!rq->online)
308                 return;
309
310         /* the order here really doesn't matter */
311         atomic_dec(&rq->rd->rto_count);
312         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
313 }
314
315 static void update_rt_migration(struct rt_rq *rt_rq)
316 {
317         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
318                 if (!rt_rq->overloaded) {
319                         rt_set_overload(rq_of_rt_rq(rt_rq));
320                         rt_rq->overloaded = 1;
321                 }
322         } else if (rt_rq->overloaded) {
323                 rt_clear_overload(rq_of_rt_rq(rt_rq));
324                 rt_rq->overloaded = 0;
325         }
326 }
327
328 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
329 {
330         struct task_struct *p;
331
332         if (!rt_entity_is_task(rt_se))
333                 return;
334
335         p = rt_task_of(rt_se);
336         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
337
338         rt_rq->rt_nr_total++;
339         if (p->nr_cpus_allowed > 1)
340                 rt_rq->rt_nr_migratory++;
341
342         update_rt_migration(rt_rq);
343 }
344
345 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
346 {
347         struct task_struct *p;
348
349         if (!rt_entity_is_task(rt_se))
350                 return;
351
352         p = rt_task_of(rt_se);
353         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
354
355         rt_rq->rt_nr_total--;
356         if (p->nr_cpus_allowed > 1)
357                 rt_rq->rt_nr_migratory--;
358
359         update_rt_migration(rt_rq);
360 }
361
362 static inline int has_pushable_tasks(struct rq *rq)
363 {
364         return !plist_head_empty(&rq->rt.pushable_tasks);
365 }
366
367 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
368 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
369
370 static void push_rt_tasks(struct rq *);
371 static void pull_rt_task(struct rq *);
372
373 static inline void queue_push_tasks(struct rq *rq)
374 {
375         if (!has_pushable_tasks(rq))
376                 return;
377
378         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
379 }
380
381 static inline void queue_pull_task(struct rq *rq)
382 {
383         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
384 }
385
386 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
387 {
388         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
389         plist_node_init(&p->pushable_tasks, p->prio);
390         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
391
392         /* Update the highest prio pushable task */
393         if (p->prio < rq->rt.highest_prio.next)
394                 rq->rt.highest_prio.next = p->prio;
395 }
396
397 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
398 {
399         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
400
401         /* Update the new highest prio pushable task */
402         if (has_pushable_tasks(rq)) {
403                 p = plist_first_entry(&rq->rt.pushable_tasks,
404                                       struct task_struct, pushable_tasks);
405                 rq->rt.highest_prio.next = p->prio;
406         } else
407                 rq->rt.highest_prio.next = MAX_RT_PRIO;
408 }
409
410 #else
411
412 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
413 {
414 }
415
416 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
417 {
418 }
419
420 static inline
421 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
422 {
423 }
424
425 static inline
426 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
427 {
428 }
429
430 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
431 {
432         return false;
433 }
434
435 static inline void pull_rt_task(struct rq *this_rq)
436 {
437 }
438
439 static inline void queue_push_tasks(struct rq *rq)
440 {
441 }
442 #endif /* CONFIG_SMP */
443
444 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
445 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
446
447 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
448 {
449         return rt_se->on_rq;
450 }
451
452 #ifdef CONFIG_RT_GROUP_SCHED
453
454 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
455 {
456         if (!rt_rq->tg)
457                 return RUNTIME_INF;
458
459         return rt_rq->rt_runtime;
460 }
461
462 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
463 {
464         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
465 }
466
467 typedef struct task_group *rt_rq_iter_t;
468
469 static inline struct task_group *next_task_group(struct task_group *tg)
470 {
471         do {
472                 tg = list_entry_rcu(tg->list.next,
473                         typeof(struct task_group), list);
474         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
475
476         if (&tg->list == &task_groups)
477                 tg = NULL;
478
479         return tg;
480 }
481
482 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
483         for (iter = container_of(&task_groups, typeof(*iter), list);    \
484                 (iter = next_task_group(iter)) &&                       \
485                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
486
487 #define for_each_sched_rt_entity(rt_se) \
488         for (; rt_se; rt_se = rt_se->parent)
489
490 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
491 {
492         return rt_se->my_q;
493 }
494
495 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
496 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
497
498 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
499 {
500         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
501         struct rq *rq = rq_of_rt_rq(rt_rq);
502         struct sched_rt_entity *rt_se;
503
504         int cpu = cpu_of(rq);
505
506         rt_se = rt_rq->tg->rt_se[cpu];
507
508         if (rt_rq->rt_nr_running) {
509                 if (!rt_se)
510                         enqueue_top_rt_rq(rt_rq);
511                 else if (!on_rt_rq(rt_se))
512                         enqueue_rt_entity(rt_se, 0);
513
514                 if (rt_rq->highest_prio.curr < curr->prio)
515                         resched_curr(rq);
516         }
517 }
518
519 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
520 {
521         struct sched_rt_entity *rt_se;
522         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
523
524         rt_se = rt_rq->tg->rt_se[cpu];
525
526         if (!rt_se)
527                 dequeue_top_rt_rq(rt_rq);
528         else if (on_rt_rq(rt_se))
529                 dequeue_rt_entity(rt_se, 0);
530 }
531
532 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
533 {
534         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
535 }
536
537 static int rt_se_boosted(struct sched_rt_entity *rt_se)
538 {
539         struct rt_rq *rt_rq = group_rt_rq(rt_se);
540         struct task_struct *p;
541
542         if (rt_rq)
543                 return !!rt_rq->rt_nr_boosted;
544
545         p = rt_task_of(rt_se);
546         return p->prio != p->normal_prio;
547 }
548
549 #ifdef CONFIG_SMP
550 static inline const struct cpumask *sched_rt_period_mask(void)
551 {
552         return this_rq()->rd->span;
553 }
554 #else
555 static inline const struct cpumask *sched_rt_period_mask(void)
556 {
557         return cpu_online_mask;
558 }
559 #endif
560
561 static inline
562 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
563 {
564         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
565 }
566
567 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
568 {
569         return &rt_rq->tg->rt_bandwidth;
570 }
571
572 #else /* !CONFIG_RT_GROUP_SCHED */
573
574 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
575 {
576         return rt_rq->rt_runtime;
577 }
578
579 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
580 {
581         return ktime_to_ns(def_rt_bandwidth.rt_period);
582 }
583
584 typedef struct rt_rq *rt_rq_iter_t;
585
586 #define for_each_rt_rq(rt_rq, iter, rq) \
587         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
588
589 #define for_each_sched_rt_entity(rt_se) \
590         for (; rt_se; rt_se = NULL)
591
592 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
593 {
594         return NULL;
595 }
596
597 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
598 {
599         struct rq *rq = rq_of_rt_rq(rt_rq);
600
601         if (!rt_rq->rt_nr_running)
602                 return;
603
604         enqueue_top_rt_rq(rt_rq);
605         resched_curr(rq);
606 }
607
608 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
609 {
610         dequeue_top_rt_rq(rt_rq);
611 }
612
613 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
614 {
615         return rt_rq->rt_throttled;
616 }
617
618 static inline const struct cpumask *sched_rt_period_mask(void)
619 {
620         return cpu_online_mask;
621 }
622
623 static inline
624 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
625 {
626         return &cpu_rq(cpu)->rt;
627 }
628
629 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
630 {
631         return &def_rt_bandwidth;
632 }
633
634 #endif /* CONFIG_RT_GROUP_SCHED */
635
636 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
637 {
638         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
639
640         return (hrtimer_active(&rt_b->rt_period_timer) ||
641                 rt_rq->rt_time < rt_b->rt_runtime);
642 }
643
644 #ifdef CONFIG_SMP
645 /*
646  * We ran out of runtime, see if we can borrow some from our neighbours.
647  */
648 static void do_balance_runtime(struct rt_rq *rt_rq)
649 {
650         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
651         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
652         int i, weight;
653         u64 rt_period;
654
655         weight = cpumask_weight(rd->span);
656
657         raw_spin_lock(&rt_b->rt_runtime_lock);
658         rt_period = ktime_to_ns(rt_b->rt_period);
659         for_each_cpu(i, rd->span) {
660                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
661                 s64 diff;
662
663                 if (iter == rt_rq)
664                         continue;
665
666                 raw_spin_lock(&iter->rt_runtime_lock);
667                 /*
668                  * Either all rqs have inf runtime and there's nothing to steal
669                  * or __disable_runtime() below sets a specific rq to inf to
670                  * indicate its been disabled and disalow stealing.
671                  */
672                 if (iter->rt_runtime == RUNTIME_INF)
673                         goto next;
674
675                 /*
676                  * From runqueues with spare time, take 1/n part of their
677                  * spare time, but no more than our period.
678                  */
679                 diff = iter->rt_runtime - iter->rt_time;
680                 if (diff > 0) {
681                         diff = div_u64((u64)diff, weight);
682                         if (rt_rq->rt_runtime + diff > rt_period)
683                                 diff = rt_period - rt_rq->rt_runtime;
684                         iter->rt_runtime -= diff;
685                         rt_rq->rt_runtime += diff;
686                         if (rt_rq->rt_runtime == rt_period) {
687                                 raw_spin_unlock(&iter->rt_runtime_lock);
688                                 break;
689                         }
690                 }
691 next:
692                 raw_spin_unlock(&iter->rt_runtime_lock);
693         }
694         raw_spin_unlock(&rt_b->rt_runtime_lock);
695 }
696
697 /*
698  * Ensure this RQ takes back all the runtime it lend to its neighbours.
699  */
700 static void __disable_runtime(struct rq *rq)
701 {
702         struct root_domain *rd = rq->rd;
703         rt_rq_iter_t iter;
704         struct rt_rq *rt_rq;
705
706         if (unlikely(!scheduler_running))
707                 return;
708
709         for_each_rt_rq(rt_rq, iter, rq) {
710                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
711                 s64 want;
712                 int i;
713
714                 raw_spin_lock(&rt_b->rt_runtime_lock);
715                 raw_spin_lock(&rt_rq->rt_runtime_lock);
716                 /*
717                  * Either we're all inf and nobody needs to borrow, or we're
718                  * already disabled and thus have nothing to do, or we have
719                  * exactly the right amount of runtime to take out.
720                  */
721                 if (rt_rq->rt_runtime == RUNTIME_INF ||
722                                 rt_rq->rt_runtime == rt_b->rt_runtime)
723                         goto balanced;
724                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
725
726                 /*
727                  * Calculate the difference between what we started out with
728                  * and what we current have, that's the amount of runtime
729                  * we lend and now have to reclaim.
730                  */
731                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
732
733                 /*
734                  * Greedy reclaim, take back as much as we can.
735                  */
736                 for_each_cpu(i, rd->span) {
737                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
738                         s64 diff;
739
740                         /*
741                          * Can't reclaim from ourselves or disabled runqueues.
742                          */
743                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
744                                 continue;
745
746                         raw_spin_lock(&iter->rt_runtime_lock);
747                         if (want > 0) {
748                                 diff = min_t(s64, iter->rt_runtime, want);
749                                 iter->rt_runtime -= diff;
750                                 want -= diff;
751                         } else {
752                                 iter->rt_runtime -= want;
753                                 want -= want;
754                         }
755                         raw_spin_unlock(&iter->rt_runtime_lock);
756
757                         if (!want)
758                                 break;
759                 }
760
761                 raw_spin_lock(&rt_rq->rt_runtime_lock);
762                 /*
763                  * We cannot be left wanting - that would mean some runtime
764                  * leaked out of the system.
765                  */
766                 BUG_ON(want);
767 balanced:
768                 /*
769                  * Disable all the borrow logic by pretending we have inf
770                  * runtime - in which case borrowing doesn't make sense.
771                  */
772                 rt_rq->rt_runtime = RUNTIME_INF;
773                 rt_rq->rt_throttled = 0;
774                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
775                 raw_spin_unlock(&rt_b->rt_runtime_lock);
776
777                 /* Make rt_rq available for pick_next_task() */
778                 sched_rt_rq_enqueue(rt_rq);
779         }
780 }
781
782 static void __enable_runtime(struct rq *rq)
783 {
784         rt_rq_iter_t iter;
785         struct rt_rq *rt_rq;
786
787         if (unlikely(!scheduler_running))
788                 return;
789
790         /*
791          * Reset each runqueue's bandwidth settings
792          */
793         for_each_rt_rq(rt_rq, iter, rq) {
794                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
795
796                 raw_spin_lock(&rt_b->rt_runtime_lock);
797                 raw_spin_lock(&rt_rq->rt_runtime_lock);
798                 rt_rq->rt_runtime = rt_b->rt_runtime;
799                 rt_rq->rt_time = 0;
800                 rt_rq->rt_throttled = 0;
801                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
802                 raw_spin_unlock(&rt_b->rt_runtime_lock);
803         }
804 }
805
806 static void balance_runtime(struct rt_rq *rt_rq)
807 {
808         if (!sched_feat(RT_RUNTIME_SHARE))
809                 return;
810
811         if (rt_rq->rt_time > rt_rq->rt_runtime) {
812                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
813                 do_balance_runtime(rt_rq);
814                 raw_spin_lock(&rt_rq->rt_runtime_lock);
815         }
816 }
817 #else /* !CONFIG_SMP */
818 static inline void balance_runtime(struct rt_rq *rt_rq) {}
819 #endif /* CONFIG_SMP */
820
821 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
822 {
823         int i, idle = 1, throttled = 0;
824         const struct cpumask *span;
825
826         span = sched_rt_period_mask();
827 #ifdef CONFIG_RT_GROUP_SCHED
828         /*
829          * FIXME: isolated CPUs should really leave the root task group,
830          * whether they are isolcpus or were isolated via cpusets, lest
831          * the timer run on a CPU which does not service all runqueues,
832          * potentially leaving other CPUs indefinitely throttled.  If
833          * isolation is really required, the user will turn the throttle
834          * off to kill the perturbations it causes anyway.  Meanwhile,
835          * this maintains functionality for boot and/or troubleshooting.
836          */
837         if (rt_b == &root_task_group.rt_bandwidth)
838                 span = cpu_online_mask;
839 #endif
840         for_each_cpu(i, span) {
841                 int enqueue = 0;
842                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
843                 struct rq *rq = rq_of_rt_rq(rt_rq);
844                 int skip;
845
846                 /*
847                  * When span == cpu_online_mask, taking each rq->lock
848                  * can be time-consuming. Try to avoid it when possible.
849                  */
850                 raw_spin_lock(&rt_rq->rt_runtime_lock);
851                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
852                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
853                 if (skip)
854                         continue;
855
856                 raw_spin_lock(&rq->lock);
857                 if (rt_rq->rt_time) {
858                         u64 runtime;
859
860                         raw_spin_lock(&rt_rq->rt_runtime_lock);
861                         if (rt_rq->rt_throttled)
862                                 balance_runtime(rt_rq);
863                         runtime = rt_rq->rt_runtime;
864                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
865                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
866                                 rt_rq->rt_throttled = 0;
867                                 enqueue = 1;
868
869                                 /*
870                                  * When we're idle and a woken (rt) task is
871                                  * throttled check_preempt_curr() will set
872                                  * skip_update and the time between the wakeup
873                                  * and this unthrottle will get accounted as
874                                  * 'runtime'.
875                                  */
876                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
877                                         rq_clock_skip_update(rq, false);
878                         }
879                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
880                                 idle = 0;
881                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
882                 } else if (rt_rq->rt_nr_running) {
883                         idle = 0;
884                         if (!rt_rq_throttled(rt_rq))
885                                 enqueue = 1;
886                 }
887                 if (rt_rq->rt_throttled)
888                         throttled = 1;
889
890                 if (enqueue)
891                         sched_rt_rq_enqueue(rt_rq);
892                 raw_spin_unlock(&rq->lock);
893         }
894
895         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
896                 return 1;
897
898         return idle;
899 }
900
901 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
902 {
903 #ifdef CONFIG_RT_GROUP_SCHED
904         struct rt_rq *rt_rq = group_rt_rq(rt_se);
905
906         if (rt_rq)
907                 return rt_rq->highest_prio.curr;
908 #endif
909
910         return rt_task_of(rt_se)->prio;
911 }
912
913 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
914 {
915         u64 runtime = sched_rt_runtime(rt_rq);
916
917         if (rt_rq->rt_throttled)
918                 return rt_rq_throttled(rt_rq);
919
920         if (runtime >= sched_rt_period(rt_rq))
921                 return 0;
922
923         balance_runtime(rt_rq);
924         runtime = sched_rt_runtime(rt_rq);
925         if (runtime == RUNTIME_INF)
926                 return 0;
927
928         if (rt_rq->rt_time > runtime) {
929                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
930
931                 /*
932                  * Don't actually throttle groups that have no runtime assigned
933                  * but accrue some time due to boosting.
934                  */
935                 if (likely(rt_b->rt_runtime)) {
936                         rt_rq->rt_throttled = 1;
937                         printk_deferred_once("sched: RT throttling activated\n");
938                 } else {
939                         /*
940                          * In case we did anyway, make it go away,
941                          * replenishment is a joke, since it will replenish us
942                          * with exactly 0 ns.
943                          */
944                         rt_rq->rt_time = 0;
945                 }
946
947                 if (rt_rq_throttled(rt_rq)) {
948                         sched_rt_rq_dequeue(rt_rq);
949                         return 1;
950                 }
951         }
952
953         return 0;
954 }
955
956 /*
957  * Update the current task's runtime statistics. Skip current tasks that
958  * are not in our scheduling class.
959  */
960 static void update_curr_rt(struct rq *rq)
961 {
962         struct task_struct *curr = rq->curr;
963         struct sched_rt_entity *rt_se = &curr->rt;
964         u64 delta_exec;
965
966         if (curr->sched_class != &rt_sched_class)
967                 return;
968
969         delta_exec = rq_clock_task(rq) - curr->se.exec_start;
970         if (unlikely((s64)delta_exec <= 0))
971                 return;
972
973         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
974         cpufreq_update_util(rq, SCHED_CPUFREQ_RT);
975
976         schedstat_set(curr->se.statistics.exec_max,
977                       max(curr->se.statistics.exec_max, delta_exec));
978
979         curr->se.sum_exec_runtime += delta_exec;
980         account_group_exec_runtime(curr, delta_exec);
981
982         curr->se.exec_start = rq_clock_task(rq);
983         cpuacct_charge(curr, delta_exec);
984
985         sched_rt_avg_update(rq, delta_exec);
986
987         if (!rt_bandwidth_enabled())
988                 return;
989
990         for_each_sched_rt_entity(rt_se) {
991                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
992
993                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
994                         raw_spin_lock(&rt_rq->rt_runtime_lock);
995                         rt_rq->rt_time += delta_exec;
996                         if (sched_rt_runtime_exceeded(rt_rq))
997                                 resched_curr(rq);
998                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
999                 }
1000         }
1001 }
1002
1003 static void
1004 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1005 {
1006         struct rq *rq = rq_of_rt_rq(rt_rq);
1007
1008         BUG_ON(&rq->rt != rt_rq);
1009
1010         if (!rt_rq->rt_queued)
1011                 return;
1012
1013         BUG_ON(!rq->nr_running);
1014
1015         sub_nr_running(rq, rt_rq->rt_nr_running);
1016         rt_rq->rt_queued = 0;
1017 }
1018
1019 static void
1020 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1021 {
1022         struct rq *rq = rq_of_rt_rq(rt_rq);
1023
1024         BUG_ON(&rq->rt != rt_rq);
1025
1026         if (rt_rq->rt_queued)
1027                 return;
1028         if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1029                 return;
1030
1031         add_nr_running(rq, rt_rq->rt_nr_running);
1032         rt_rq->rt_queued = 1;
1033 }
1034
1035 #if defined CONFIG_SMP
1036
1037 static void
1038 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1039 {
1040         struct rq *rq = rq_of_rt_rq(rt_rq);
1041
1042 #ifdef CONFIG_RT_GROUP_SCHED
1043         /*
1044          * Change rq's cpupri only if rt_rq is the top queue.
1045          */
1046         if (&rq->rt != rt_rq)
1047                 return;
1048 #endif
1049         if (rq->online && prio < prev_prio)
1050                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1051 }
1052
1053 static void
1054 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1055 {
1056         struct rq *rq = rq_of_rt_rq(rt_rq);
1057
1058 #ifdef CONFIG_RT_GROUP_SCHED
1059         /*
1060          * Change rq's cpupri only if rt_rq is the top queue.
1061          */
1062         if (&rq->rt != rt_rq)
1063                 return;
1064 #endif
1065         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1066                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1067 }
1068
1069 #else /* CONFIG_SMP */
1070
1071 static inline
1072 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1073 static inline
1074 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1075
1076 #endif /* CONFIG_SMP */
1077
1078 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1079 static void
1080 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1081 {
1082         int prev_prio = rt_rq->highest_prio.curr;
1083
1084         if (prio < prev_prio)
1085                 rt_rq->highest_prio.curr = prio;
1086
1087         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1088 }
1089
1090 static void
1091 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1092 {
1093         int prev_prio = rt_rq->highest_prio.curr;
1094
1095         if (rt_rq->rt_nr_running) {
1096
1097                 WARN_ON(prio < prev_prio);
1098
1099                 /*
1100                  * This may have been our highest task, and therefore
1101                  * we may have some recomputation to do
1102                  */
1103                 if (prio == prev_prio) {
1104                         struct rt_prio_array *array = &rt_rq->active;
1105
1106                         rt_rq->highest_prio.curr =
1107                                 sched_find_first_bit(array->bitmap);
1108                 }
1109
1110         } else
1111                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1112
1113         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1114 }
1115
1116 #else
1117
1118 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1119 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1120
1121 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1122
1123 #ifdef CONFIG_RT_GROUP_SCHED
1124
1125 static void
1126 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1127 {
1128         if (rt_se_boosted(rt_se))
1129                 rt_rq->rt_nr_boosted++;
1130
1131         if (rt_rq->tg)
1132                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1133 }
1134
1135 static void
1136 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1137 {
1138         if (rt_se_boosted(rt_se))
1139                 rt_rq->rt_nr_boosted--;
1140
1141         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1142 }
1143
1144 #else /* CONFIG_RT_GROUP_SCHED */
1145
1146 static void
1147 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1148 {
1149         start_rt_bandwidth(&def_rt_bandwidth);
1150 }
1151
1152 static inline
1153 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1154
1155 #endif /* CONFIG_RT_GROUP_SCHED */
1156
1157 static inline
1158 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1159 {
1160         struct rt_rq *group_rq = group_rt_rq(rt_se);
1161
1162         if (group_rq)
1163                 return group_rq->rt_nr_running;
1164         else
1165                 return 1;
1166 }
1167
1168 static inline
1169 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1170 {
1171         struct rt_rq *group_rq = group_rt_rq(rt_se);
1172         struct task_struct *tsk;
1173
1174         if (group_rq)
1175                 return group_rq->rr_nr_running;
1176
1177         tsk = rt_task_of(rt_se);
1178
1179         return (tsk->policy == SCHED_RR) ? 1 : 0;
1180 }
1181
1182 static inline
1183 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1184 {
1185         int prio = rt_se_prio(rt_se);
1186
1187         WARN_ON(!rt_prio(prio));
1188         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1189         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1190
1191         inc_rt_prio(rt_rq, prio);
1192         inc_rt_migration(rt_se, rt_rq);
1193         inc_rt_group(rt_se, rt_rq);
1194 }
1195
1196 static inline
1197 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1198 {
1199         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1200         WARN_ON(!rt_rq->rt_nr_running);
1201         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1202         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1203
1204         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1205         dec_rt_migration(rt_se, rt_rq);
1206         dec_rt_group(rt_se, rt_rq);
1207 }
1208
1209 /*
1210  * Change rt_se->run_list location unless SAVE && !MOVE
1211  *
1212  * assumes ENQUEUE/DEQUEUE flags match
1213  */
1214 static inline bool move_entity(unsigned int flags)
1215 {
1216         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1217                 return false;
1218
1219         return true;
1220 }
1221
1222 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1223 {
1224         list_del_init(&rt_se->run_list);
1225
1226         if (list_empty(array->queue + rt_se_prio(rt_se)))
1227                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1228
1229         rt_se->on_list = 0;
1230 }
1231
1232 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1233 {
1234         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1235         struct rt_prio_array *array = &rt_rq->active;
1236         struct rt_rq *group_rq = group_rt_rq(rt_se);
1237         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1238
1239         /*
1240          * Don't enqueue the group if its throttled, or when empty.
1241          * The latter is a consequence of the former when a child group
1242          * get throttled and the current group doesn't have any other
1243          * active members.
1244          */
1245         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1246                 if (rt_se->on_list)
1247                         __delist_rt_entity(rt_se, array);
1248                 return;
1249         }
1250
1251         if (move_entity(flags)) {
1252                 WARN_ON_ONCE(rt_se->on_list);
1253                 if (flags & ENQUEUE_HEAD)
1254                         list_add(&rt_se->run_list, queue);
1255                 else
1256                         list_add_tail(&rt_se->run_list, queue);
1257
1258                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1259                 rt_se->on_list = 1;
1260         }
1261         rt_se->on_rq = 1;
1262
1263         inc_rt_tasks(rt_se, rt_rq);
1264 }
1265
1266 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1267 {
1268         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1269         struct rt_prio_array *array = &rt_rq->active;
1270
1271         if (move_entity(flags)) {
1272                 WARN_ON_ONCE(!rt_se->on_list);
1273                 __delist_rt_entity(rt_se, array);
1274         }
1275         rt_se->on_rq = 0;
1276
1277         dec_rt_tasks(rt_se, rt_rq);
1278 }
1279
1280 /*
1281  * Because the prio of an upper entry depends on the lower
1282  * entries, we must remove entries top - down.
1283  */
1284 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1285 {
1286         struct sched_rt_entity *back = NULL;
1287
1288         for_each_sched_rt_entity(rt_se) {
1289                 rt_se->back = back;
1290                 back = rt_se;
1291         }
1292
1293         dequeue_top_rt_rq(rt_rq_of_se(back));
1294
1295         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1296                 if (on_rt_rq(rt_se))
1297                         __dequeue_rt_entity(rt_se, flags);
1298         }
1299 }
1300
1301 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1302 {
1303         struct rq *rq = rq_of_rt_se(rt_se);
1304
1305         dequeue_rt_stack(rt_se, flags);
1306         for_each_sched_rt_entity(rt_se)
1307                 __enqueue_rt_entity(rt_se, flags);
1308         enqueue_top_rt_rq(&rq->rt);
1309 }
1310
1311 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1312 {
1313         struct rq *rq = rq_of_rt_se(rt_se);
1314
1315         dequeue_rt_stack(rt_se, flags);
1316
1317         for_each_sched_rt_entity(rt_se) {
1318                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1319
1320                 if (rt_rq && rt_rq->rt_nr_running)
1321                         __enqueue_rt_entity(rt_se, flags);
1322         }
1323         enqueue_top_rt_rq(&rq->rt);
1324 }
1325
1326 /*
1327  * Adding/removing a task to/from a priority array:
1328  */
1329 static void
1330 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1331 {
1332         struct sched_rt_entity *rt_se = &p->rt;
1333
1334         if (flags & ENQUEUE_WAKEUP)
1335                 rt_se->timeout = 0;
1336
1337         enqueue_rt_entity(rt_se, flags);
1338
1339         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1340                 enqueue_pushable_task(rq, p);
1341 }
1342
1343 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1344 {
1345         struct sched_rt_entity *rt_se = &p->rt;
1346
1347         update_curr_rt(rq);
1348         dequeue_rt_entity(rt_se, flags);
1349
1350         dequeue_pushable_task(rq, p);
1351 }
1352
1353 /*
1354  * Put task to the head or the end of the run list without the overhead of
1355  * dequeue followed by enqueue.
1356  */
1357 static void
1358 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1359 {
1360         if (on_rt_rq(rt_se)) {
1361                 struct rt_prio_array *array = &rt_rq->active;
1362                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1363
1364                 if (head)
1365                         list_move(&rt_se->run_list, queue);
1366                 else
1367                         list_move_tail(&rt_se->run_list, queue);
1368         }
1369 }
1370
1371 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1372 {
1373         struct sched_rt_entity *rt_se = &p->rt;
1374         struct rt_rq *rt_rq;
1375
1376         for_each_sched_rt_entity(rt_se) {
1377                 rt_rq = rt_rq_of_se(rt_se);
1378                 requeue_rt_entity(rt_rq, rt_se, head);
1379         }
1380 }
1381
1382 static void yield_task_rt(struct rq *rq)
1383 {
1384         requeue_task_rt(rq, rq->curr, 0);
1385 }
1386
1387 #ifdef CONFIG_SMP
1388 static int find_lowest_rq(struct task_struct *task);
1389
1390 static int
1391 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1392 {
1393         struct task_struct *curr;
1394         struct rq *rq;
1395
1396         /* For anything but wake ups, just return the task_cpu */
1397         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1398                 goto out;
1399
1400         rq = cpu_rq(cpu);
1401
1402         rcu_read_lock();
1403         curr = READ_ONCE(rq->curr); /* unlocked access */
1404
1405         /*
1406          * If the current task on @p's runqueue is an RT task, then
1407          * try to see if we can wake this RT task up on another
1408          * runqueue. Otherwise simply start this RT task
1409          * on its current runqueue.
1410          *
1411          * We want to avoid overloading runqueues. If the woken
1412          * task is a higher priority, then it will stay on this CPU
1413          * and the lower prio task should be moved to another CPU.
1414          * Even though this will probably make the lower prio task
1415          * lose its cache, we do not want to bounce a higher task
1416          * around just because it gave up its CPU, perhaps for a
1417          * lock?
1418          *
1419          * For equal prio tasks, we just let the scheduler sort it out.
1420          *
1421          * Otherwise, just let it ride on the affined RQ and the
1422          * post-schedule router will push the preempted task away
1423          *
1424          * This test is optimistic, if we get it wrong the load-balancer
1425          * will have to sort it out.
1426          */
1427         if (curr && unlikely(rt_task(curr)) &&
1428             (curr->nr_cpus_allowed < 2 ||
1429              curr->prio <= p->prio)) {
1430                 int target = find_lowest_rq(p);
1431
1432                 /*
1433                  * Don't bother moving it if the destination CPU is
1434                  * not running a lower priority task.
1435                  */
1436                 if (target != -1 &&
1437                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1438                         cpu = target;
1439         }
1440         rcu_read_unlock();
1441
1442 out:
1443         return cpu;
1444 }
1445
1446 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1447 {
1448         /*
1449          * Current can't be migrated, useless to reschedule,
1450          * let's hope p can move out.
1451          */
1452         if (rq->curr->nr_cpus_allowed == 1 ||
1453             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1454                 return;
1455
1456         /*
1457          * p is migratable, so let's not schedule it and
1458          * see if it is pushed or pulled somewhere else.
1459          */
1460         if (p->nr_cpus_allowed != 1
1461             && cpupri_find(&rq->rd->cpupri, p, NULL))
1462                 return;
1463
1464         /*
1465          * There appears to be other cpus that can accept
1466          * current and none to run 'p', so lets reschedule
1467          * to try and push current away:
1468          */
1469         requeue_task_rt(rq, p, 1);
1470         resched_curr(rq);
1471 }
1472
1473 #endif /* CONFIG_SMP */
1474
1475 /*
1476  * Preempt the current task with a newly woken task if needed:
1477  */
1478 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1479 {
1480         if (p->prio < rq->curr->prio) {
1481                 resched_curr(rq);
1482                 return;
1483         }
1484
1485 #ifdef CONFIG_SMP
1486         /*
1487          * If:
1488          *
1489          * - the newly woken task is of equal priority to the current task
1490          * - the newly woken task is non-migratable while current is migratable
1491          * - current will be preempted on the next reschedule
1492          *
1493          * we should check to see if current can readily move to a different
1494          * cpu.  If so, we will reschedule to allow the push logic to try
1495          * to move current somewhere else, making room for our non-migratable
1496          * task.
1497          */
1498         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1499                 check_preempt_equal_prio(rq, p);
1500 #endif
1501 }
1502
1503 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1504                                                    struct rt_rq *rt_rq)
1505 {
1506         struct rt_prio_array *array = &rt_rq->active;
1507         struct sched_rt_entity *next = NULL;
1508         struct list_head *queue;
1509         int idx;
1510
1511         idx = sched_find_first_bit(array->bitmap);
1512         BUG_ON(idx >= MAX_RT_PRIO);
1513
1514         queue = array->queue + idx;
1515         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1516
1517         return next;
1518 }
1519
1520 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1521 {
1522         struct sched_rt_entity *rt_se;
1523         struct task_struct *p;
1524         struct rt_rq *rt_rq  = &rq->rt;
1525
1526         do {
1527                 rt_se = pick_next_rt_entity(rq, rt_rq);
1528                 BUG_ON(!rt_se);
1529                 rt_rq = group_rt_rq(rt_se);
1530         } while (rt_rq);
1531
1532         p = rt_task_of(rt_se);
1533         p->se.exec_start = rq_clock_task(rq);
1534
1535         return p;
1536 }
1537
1538 static struct task_struct *
1539 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1540 {
1541         struct task_struct *p;
1542         struct rt_rq *rt_rq = &rq->rt;
1543
1544         if (need_pull_rt_task(rq, prev)) {
1545                 /*
1546                  * This is OK, because current is on_cpu, which avoids it being
1547                  * picked for load-balance and preemption/IRQs are still
1548                  * disabled avoiding further scheduler activity on it and we're
1549                  * being very careful to re-start the picking loop.
1550                  */
1551                 rq_unpin_lock(rq, rf);
1552                 pull_rt_task(rq);
1553                 rq_repin_lock(rq, rf);
1554                 /*
1555                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1556                  * means a dl or stop task can slip in, in which case we need
1557                  * to re-start task selection.
1558                  */
1559                 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1560                              rq->dl.dl_nr_running))
1561                         return RETRY_TASK;
1562         }
1563
1564         /*
1565          * We may dequeue prev's rt_rq in put_prev_task().
1566          * So, we update time before rt_nr_running check.
1567          */
1568         if (prev->sched_class == &rt_sched_class)
1569                 update_curr_rt(rq);
1570
1571         if (!rt_rq->rt_queued)
1572                 return NULL;
1573
1574         put_prev_task(rq, prev);
1575
1576         p = _pick_next_task_rt(rq);
1577
1578         /* The running task is never eligible for pushing */
1579         dequeue_pushable_task(rq, p);
1580
1581         queue_push_tasks(rq);
1582
1583         return p;
1584 }
1585
1586 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1587 {
1588         update_curr_rt(rq);
1589
1590         /*
1591          * The previous task needs to be made eligible for pushing
1592          * if it is still active
1593          */
1594         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1595                 enqueue_pushable_task(rq, p);
1596 }
1597
1598 #ifdef CONFIG_SMP
1599
1600 /* Only try algorithms three times */
1601 #define RT_MAX_TRIES 3
1602
1603 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1604 {
1605         if (!task_running(rq, p) &&
1606             cpumask_test_cpu(cpu, &p->cpus_allowed))
1607                 return 1;
1608         return 0;
1609 }
1610
1611 /*
1612  * Return the highest pushable rq's task, which is suitable to be executed
1613  * on the cpu, NULL otherwise
1614  */
1615 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1616 {
1617         struct plist_head *head = &rq->rt.pushable_tasks;
1618         struct task_struct *p;
1619
1620         if (!has_pushable_tasks(rq))
1621                 return NULL;
1622
1623         plist_for_each_entry(p, head, pushable_tasks) {
1624                 if (pick_rt_task(rq, p, cpu))
1625                         return p;
1626         }
1627
1628         return NULL;
1629 }
1630
1631 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1632
1633 static int find_lowest_rq(struct task_struct *task)
1634 {
1635         struct sched_domain *sd;
1636         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1637         int this_cpu = smp_processor_id();
1638         int cpu      = task_cpu(task);
1639
1640         /* Make sure the mask is initialized first */
1641         if (unlikely(!lowest_mask))
1642                 return -1;
1643
1644         if (task->nr_cpus_allowed == 1)
1645                 return -1; /* No other targets possible */
1646
1647         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1648                 return -1; /* No targets found */
1649
1650         /*
1651          * At this point we have built a mask of cpus representing the
1652          * lowest priority tasks in the system.  Now we want to elect
1653          * the best one based on our affinity and topology.
1654          *
1655          * We prioritize the last cpu that the task executed on since
1656          * it is most likely cache-hot in that location.
1657          */
1658         if (cpumask_test_cpu(cpu, lowest_mask))
1659                 return cpu;
1660
1661         /*
1662          * Otherwise, we consult the sched_domains span maps to figure
1663          * out which cpu is logically closest to our hot cache data.
1664          */
1665         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1666                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1667
1668         rcu_read_lock();
1669         for_each_domain(cpu, sd) {
1670                 if (sd->flags & SD_WAKE_AFFINE) {
1671                         int best_cpu;
1672
1673                         /*
1674                          * "this_cpu" is cheaper to preempt than a
1675                          * remote processor.
1676                          */
1677                         if (this_cpu != -1 &&
1678                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1679                                 rcu_read_unlock();
1680                                 return this_cpu;
1681                         }
1682
1683                         best_cpu = cpumask_first_and(lowest_mask,
1684                                                      sched_domain_span(sd));
1685                         if (best_cpu < nr_cpu_ids) {
1686                                 rcu_read_unlock();
1687                                 return best_cpu;
1688                         }
1689                 }
1690         }
1691         rcu_read_unlock();
1692
1693         /*
1694          * And finally, if there were no matches within the domains
1695          * just give the caller *something* to work with from the compatible
1696          * locations.
1697          */
1698         if (this_cpu != -1)
1699                 return this_cpu;
1700
1701         cpu = cpumask_any(lowest_mask);
1702         if (cpu < nr_cpu_ids)
1703                 return cpu;
1704         return -1;
1705 }
1706
1707 /* Will lock the rq it finds */
1708 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1709 {
1710         struct rq *lowest_rq = NULL;
1711         int tries;
1712         int cpu;
1713
1714         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1715                 cpu = find_lowest_rq(task);
1716
1717                 if ((cpu == -1) || (cpu == rq->cpu))
1718                         break;
1719
1720                 lowest_rq = cpu_rq(cpu);
1721
1722                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1723                         /*
1724                          * Target rq has tasks of equal or higher priority,
1725                          * retrying does not release any lock and is unlikely
1726                          * to yield a different result.
1727                          */
1728                         lowest_rq = NULL;
1729                         break;
1730                 }
1731
1732                 /* if the prio of this runqueue changed, try again */
1733                 if (double_lock_balance(rq, lowest_rq)) {
1734                         /*
1735                          * We had to unlock the run queue. In
1736                          * the mean time, task could have
1737                          * migrated already or had its affinity changed.
1738                          * Also make sure that it wasn't scheduled on its rq.
1739                          */
1740                         if (unlikely(task_rq(task) != rq ||
1741                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1742                                      task_running(rq, task) ||
1743                                      !rt_task(task) ||
1744                                      !task_on_rq_queued(task))) {
1745
1746                                 double_unlock_balance(rq, lowest_rq);
1747                                 lowest_rq = NULL;
1748                                 break;
1749                         }
1750                 }
1751
1752                 /* If this rq is still suitable use it. */
1753                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1754                         break;
1755
1756                 /* try again */
1757                 double_unlock_balance(rq, lowest_rq);
1758                 lowest_rq = NULL;
1759         }
1760
1761         return lowest_rq;
1762 }
1763
1764 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1765 {
1766         struct task_struct *p;
1767
1768         if (!has_pushable_tasks(rq))
1769                 return NULL;
1770
1771         p = plist_first_entry(&rq->rt.pushable_tasks,
1772                               struct task_struct, pushable_tasks);
1773
1774         BUG_ON(rq->cpu != task_cpu(p));
1775         BUG_ON(task_current(rq, p));
1776         BUG_ON(p->nr_cpus_allowed <= 1);
1777
1778         BUG_ON(!task_on_rq_queued(p));
1779         BUG_ON(!rt_task(p));
1780
1781         return p;
1782 }
1783
1784 /*
1785  * If the current CPU has more than one RT task, see if the non
1786  * running task can migrate over to a CPU that is running a task
1787  * of lesser priority.
1788  */
1789 static int push_rt_task(struct rq *rq)
1790 {
1791         struct task_struct *next_task;
1792         struct rq *lowest_rq;
1793         int ret = 0;
1794
1795         if (!rq->rt.overloaded)
1796                 return 0;
1797
1798         next_task = pick_next_pushable_task(rq);
1799         if (!next_task)
1800                 return 0;
1801
1802 retry:
1803         if (unlikely(next_task == rq->curr)) {
1804                 WARN_ON(1);
1805                 return 0;
1806         }
1807
1808         /*
1809          * It's possible that the next_task slipped in of
1810          * higher priority than current. If that's the case
1811          * just reschedule current.
1812          */
1813         if (unlikely(next_task->prio < rq->curr->prio)) {
1814                 resched_curr(rq);
1815                 return 0;
1816         }
1817
1818         /* We might release rq lock */
1819         get_task_struct(next_task);
1820
1821         /* find_lock_lowest_rq locks the rq if found */
1822         lowest_rq = find_lock_lowest_rq(next_task, rq);
1823         if (!lowest_rq) {
1824                 struct task_struct *task;
1825                 /*
1826                  * find_lock_lowest_rq releases rq->lock
1827                  * so it is possible that next_task has migrated.
1828                  *
1829                  * We need to make sure that the task is still on the same
1830                  * run-queue and is also still the next task eligible for
1831                  * pushing.
1832                  */
1833                 task = pick_next_pushable_task(rq);
1834                 if (task == next_task) {
1835                         /*
1836                          * The task hasn't migrated, and is still the next
1837                          * eligible task, but we failed to find a run-queue
1838                          * to push it to.  Do not retry in this case, since
1839                          * other cpus will pull from us when ready.
1840                          */
1841                         goto out;
1842                 }
1843
1844                 if (!task)
1845                         /* No more tasks, just exit */
1846                         goto out;
1847
1848                 /*
1849                  * Something has shifted, try again.
1850                  */
1851                 put_task_struct(next_task);
1852                 next_task = task;
1853                 goto retry;
1854         }
1855
1856         deactivate_task(rq, next_task, 0);
1857         set_task_cpu(next_task, lowest_rq->cpu);
1858         activate_task(lowest_rq, next_task, 0);
1859         ret = 1;
1860
1861         resched_curr(lowest_rq);
1862
1863         double_unlock_balance(rq, lowest_rq);
1864
1865 out:
1866         put_task_struct(next_task);
1867
1868         return ret;
1869 }
1870
1871 static void push_rt_tasks(struct rq *rq)
1872 {
1873         /* push_rt_task will return true if it moved an RT */
1874         while (push_rt_task(rq))
1875                 ;
1876 }
1877
1878 #ifdef HAVE_RT_PUSH_IPI
1879 /*
1880  * The search for the next cpu always starts at rq->cpu and ends
1881  * when we reach rq->cpu again. It will never return rq->cpu.
1882  * This returns the next cpu to check, or nr_cpu_ids if the loop
1883  * is complete.
1884  *
1885  * rq->rt.push_cpu holds the last cpu returned by this function,
1886  * or if this is the first instance, it must hold rq->cpu.
1887  */
1888 static int rto_next_cpu(struct rq *rq)
1889 {
1890         int prev_cpu = rq->rt.push_cpu;
1891         int cpu;
1892
1893         cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1894
1895         /*
1896          * If the previous cpu is less than the rq's CPU, then it already
1897          * passed the end of the mask, and has started from the beginning.
1898          * We end if the next CPU is greater or equal to rq's CPU.
1899          */
1900         if (prev_cpu < rq->cpu) {
1901                 if (cpu >= rq->cpu)
1902                         return nr_cpu_ids;
1903
1904         } else if (cpu >= nr_cpu_ids) {
1905                 /*
1906                  * We passed the end of the mask, start at the beginning.
1907                  * If the result is greater or equal to the rq's CPU, then
1908                  * the loop is finished.
1909                  */
1910                 cpu = cpumask_first(rq->rd->rto_mask);
1911                 if (cpu >= rq->cpu)
1912                         return nr_cpu_ids;
1913         }
1914         rq->rt.push_cpu = cpu;
1915
1916         /* Return cpu to let the caller know if the loop is finished or not */
1917         return cpu;
1918 }
1919
1920 static int find_next_push_cpu(struct rq *rq)
1921 {
1922         struct rq *next_rq;
1923         int cpu;
1924
1925         while (1) {
1926                 cpu = rto_next_cpu(rq);
1927                 if (cpu >= nr_cpu_ids)
1928                         break;
1929                 next_rq = cpu_rq(cpu);
1930
1931                 /* Make sure the next rq can push to this rq */
1932                 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1933                         break;
1934         }
1935
1936         return cpu;
1937 }
1938
1939 #define RT_PUSH_IPI_EXECUTING           1
1940 #define RT_PUSH_IPI_RESTART             2
1941
1942 /*
1943  * When a high priority task schedules out from a CPU and a lower priority
1944  * task is scheduled in, a check is made to see if there's any RT tasks
1945  * on other CPUs that are waiting to run because a higher priority RT task
1946  * is currently running on its CPU. In this case, the CPU with multiple RT
1947  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1948  * up that may be able to run one of its non-running queued RT tasks.
1949  *
1950  * On large CPU boxes, there's the case that several CPUs could schedule
1951  * a lower priority task at the same time, in which case it will look for
1952  * any overloaded CPUs that it could pull a task from. To do this, the runqueue
1953  * lock must be taken from that overloaded CPU. Having 10s of CPUs all fighting
1954  * for a single overloaded CPU's runqueue lock can produce a large latency.
1955  * (This has actually been observed on large boxes running cyclictest).
1956  * Instead of taking the runqueue lock of the overloaded CPU, each of the
1957  * CPUs that scheduled a lower priority task simply sends an IPI to the
1958  * overloaded CPU. An IPI is much cheaper than taking an runqueue lock with
1959  * lots of contention. The overloaded CPU will look to push its non-running
1960  * RT task off, and if it does, it can then ignore the other IPIs coming
1961  * in, and just pass those IPIs off to any other overloaded CPU.
1962  *
1963  * When a CPU schedules a lower priority task, it only sends an IPI to
1964  * the "next" CPU that has overloaded RT tasks. This prevents IPI storms,
1965  * as having 10 CPUs scheduling lower priority tasks and 10 CPUs with
1966  * RT overloaded tasks, would cause 100 IPIs to go out at once.
1967  *
1968  * The overloaded RT CPU, when receiving an IPI, will try to push off its
1969  * overloaded RT tasks and then send an IPI to the next CPU that has
1970  * overloaded RT tasks. This stops when all CPUs with overloaded RT tasks
1971  * have completed. Just because a CPU may have pushed off its own overloaded
1972  * RT task does not mean it should stop sending the IPI around to other
1973  * overloaded CPUs. There may be another RT task waiting to run on one of
1974  * those CPUs that are of higher priority than the one that was just
1975  * pushed.
1976  *
1977  * An optimization that could possibly be made is to make a CPU array similar
1978  * to the cpupri array mask of all running RT tasks, but for the overloaded
1979  * case, then the IPI could be sent to only the CPU with the highest priority
1980  * RT task waiting, and that CPU could send off further IPIs to the CPU with
1981  * the next highest waiting task. Since the overloaded case is much less likely
1982  * to happen, the complexity of this implementation may not be worth it.
1983  * Instead, just send an IPI around to all overloaded CPUs.
1984  *
1985  * The rq->rt.push_flags holds the status of the IPI that is going around.
1986  * A run queue can only send out a single IPI at a time. The possible flags
1987  * for rq->rt.push_flags are:
1988  *
1989  *    (None or zero):           No IPI is going around for the current rq
1990  *    RT_PUSH_IPI_EXECUTING:    An IPI for the rq is being passed around
1991  *    RT_PUSH_IPI_RESTART:      The priority of the running task for the rq
1992  *                              has changed, and the IPI should restart
1993  *                              circulating the overloaded CPUs again.
1994  *
1995  * rq->rt.push_cpu contains the CPU that is being sent the IPI. It is updated
1996  * before sending to the next CPU.
1997  *
1998  * Instead of having all CPUs that schedule a lower priority task send
1999  * an IPI to the same "first" CPU in the RT overload mask, they send it
2000  * to the next overloaded CPU after their own CPU. This helps distribute
2001  * the work when there's more than one overloaded CPU and multiple CPUs
2002  * scheduling in lower priority tasks.
2003  *
2004  * When a rq schedules a lower priority task than what was currently
2005  * running, the next CPU with overloaded RT tasks is examined first.
2006  * That is, if CPU 1 and 5 are overloaded, and CPU 3 schedules a lower
2007  * priority task, it will send an IPI first to CPU 5, then CPU 5 will
2008  * send to CPU 1 if it is still overloaded. CPU 1 will clear the
2009  * rq->rt.push_flags if RT_PUSH_IPI_RESTART is not set.
2010  *
2011  * The first CPU to notice IPI_RESTART is set, will clear that flag and then
2012  * send an IPI to the next overloaded CPU after the rq->cpu and not the next
2013  * CPU after push_cpu. That is, if CPU 1, 4 and 5 are overloaded when CPU 3
2014  * schedules a lower priority task, and the IPI_RESTART gets set while the
2015  * handling is being done on CPU 5, it will clear the flag and send it back to
2016  * CPU 4 instead of CPU 1.
2017  *
2018  * Note, the above logic can be disabled by turning off the sched_feature
2019  * RT_PUSH_IPI. Then the rq lock of the overloaded CPU will simply be
2020  * taken by the CPU requesting a pull and the waiting RT task will be pulled
2021  * by that CPU. This may be fine for machines with few CPUs.
2022  */
2023 static void tell_cpu_to_push(struct rq *rq)
2024 {
2025         int cpu;
2026
2027         if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
2028                 raw_spin_lock(&rq->rt.push_lock);
2029                 /* Make sure it's still executing */
2030                 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
2031                         /*
2032                          * Tell the IPI to restart the loop as things have
2033                          * changed since it started.
2034                          */
2035                         rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
2036                         raw_spin_unlock(&rq->rt.push_lock);
2037                         return;
2038                 }
2039                 raw_spin_unlock(&rq->rt.push_lock);
2040         }
2041
2042         /* When here, there's no IPI going around */
2043
2044         rq->rt.push_cpu = rq->cpu;
2045         cpu = find_next_push_cpu(rq);
2046         if (cpu >= nr_cpu_ids)
2047                 return;
2048
2049         rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
2050
2051         irq_work_queue_on(&rq->rt.push_work, cpu);
2052 }
2053
2054 /* Called from hardirq context */
2055 static void try_to_push_tasks(void *arg)
2056 {
2057         struct rt_rq *rt_rq = arg;
2058         struct rq *rq, *src_rq;
2059         int this_cpu;
2060         int cpu;
2061
2062         this_cpu = rt_rq->push_cpu;
2063
2064         /* Paranoid check */
2065         BUG_ON(this_cpu != smp_processor_id());
2066
2067         rq = cpu_rq(this_cpu);
2068         src_rq = rq_of_rt_rq(rt_rq);
2069
2070 again:
2071         if (has_pushable_tasks(rq)) {
2072                 raw_spin_lock(&rq->lock);
2073                 push_rt_task(rq);
2074                 raw_spin_unlock(&rq->lock);
2075         }
2076
2077         /* Pass the IPI to the next rt overloaded queue */
2078         raw_spin_lock(&rt_rq->push_lock);
2079         /*
2080          * If the source queue changed since the IPI went out,
2081          * we need to restart the search from that CPU again.
2082          */
2083         if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
2084                 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
2085                 rt_rq->push_cpu = src_rq->cpu;
2086         }
2087
2088         cpu = find_next_push_cpu(src_rq);
2089
2090         if (cpu >= nr_cpu_ids)
2091                 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
2092         raw_spin_unlock(&rt_rq->push_lock);
2093
2094         if (cpu >= nr_cpu_ids)
2095                 return;
2096
2097         /*
2098          * It is possible that a restart caused this CPU to be
2099          * chosen again. Don't bother with an IPI, just see if we
2100          * have more to push.
2101          */
2102         if (unlikely(cpu == rq->cpu))
2103                 goto again;
2104
2105         /* Try the next RT overloaded CPU */
2106         irq_work_queue_on(&rt_rq->push_work, cpu);
2107 }
2108
2109 static void push_irq_work_func(struct irq_work *work)
2110 {
2111         struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2112
2113         try_to_push_tasks(rt_rq);
2114 }
2115 #endif /* HAVE_RT_PUSH_IPI */
2116
2117 static void pull_rt_task(struct rq *this_rq)
2118 {
2119         int this_cpu = this_rq->cpu, cpu;
2120         bool resched = false;
2121         struct task_struct *p;
2122         struct rq *src_rq;
2123
2124         if (likely(!rt_overloaded(this_rq)))
2125                 return;
2126
2127         /*
2128          * Match the barrier from rt_set_overloaded; this guarantees that if we
2129          * see overloaded we must also see the rto_mask bit.
2130          */
2131         smp_rmb();
2132
2133 #ifdef HAVE_RT_PUSH_IPI
2134         if (sched_feat(RT_PUSH_IPI)) {
2135                 tell_cpu_to_push(this_rq);
2136                 return;
2137         }
2138 #endif
2139
2140         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2141                 if (this_cpu == cpu)
2142                         continue;
2143
2144                 src_rq = cpu_rq(cpu);
2145
2146                 /*
2147                  * Don't bother taking the src_rq->lock if the next highest
2148                  * task is known to be lower-priority than our current task.
2149                  * This may look racy, but if this value is about to go
2150                  * logically higher, the src_rq will push this task away.
2151                  * And if its going logically lower, we do not care
2152                  */
2153                 if (src_rq->rt.highest_prio.next >=
2154                     this_rq->rt.highest_prio.curr)
2155                         continue;
2156
2157                 /*
2158                  * We can potentially drop this_rq's lock in
2159                  * double_lock_balance, and another CPU could
2160                  * alter this_rq
2161                  */
2162                 double_lock_balance(this_rq, src_rq);
2163
2164                 /*
2165                  * We can pull only a task, which is pushable
2166                  * on its rq, and no others.
2167                  */
2168                 p = pick_highest_pushable_task(src_rq, this_cpu);
2169
2170                 /*
2171                  * Do we have an RT task that preempts
2172                  * the to-be-scheduled task?
2173                  */
2174                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2175                         WARN_ON(p == src_rq->curr);
2176                         WARN_ON(!task_on_rq_queued(p));
2177
2178                         /*
2179                          * There's a chance that p is higher in priority
2180                          * than what's currently running on its cpu.
2181                          * This is just that p is wakeing up and hasn't
2182                          * had a chance to schedule. We only pull
2183                          * p if it is lower in priority than the
2184                          * current task on the run queue
2185                          */
2186                         if (p->prio < src_rq->curr->prio)
2187                                 goto skip;
2188
2189                         resched = true;
2190
2191                         deactivate_task(src_rq, p, 0);
2192                         set_task_cpu(p, this_cpu);
2193                         activate_task(this_rq, p, 0);
2194                         /*
2195                          * We continue with the search, just in
2196                          * case there's an even higher prio task
2197                          * in another runqueue. (low likelihood
2198                          * but possible)
2199                          */
2200                 }
2201 skip:
2202                 double_unlock_balance(this_rq, src_rq);
2203         }
2204
2205         if (resched)
2206                 resched_curr(this_rq);
2207 }
2208
2209 /*
2210  * If we are not running and we are not going to reschedule soon, we should
2211  * try to push tasks away now
2212  */
2213 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2214 {
2215         if (!task_running(rq, p) &&
2216             !test_tsk_need_resched(rq->curr) &&
2217             p->nr_cpus_allowed > 1 &&
2218             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2219             (rq->curr->nr_cpus_allowed < 2 ||
2220              rq->curr->prio <= p->prio))
2221                 push_rt_tasks(rq);
2222 }
2223
2224 /* Assumes rq->lock is held */
2225 static void rq_online_rt(struct rq *rq)
2226 {
2227         if (rq->rt.overloaded)
2228                 rt_set_overload(rq);
2229
2230         __enable_runtime(rq);
2231
2232         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2233 }
2234
2235 /* Assumes rq->lock is held */
2236 static void rq_offline_rt(struct rq *rq)
2237 {
2238         if (rq->rt.overloaded)
2239                 rt_clear_overload(rq);
2240
2241         __disable_runtime(rq);
2242
2243         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2244 }
2245
2246 /*
2247  * When switch from the rt queue, we bring ourselves to a position
2248  * that we might want to pull RT tasks from other runqueues.
2249  */
2250 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2251 {
2252         /*
2253          * If there are other RT tasks then we will reschedule
2254          * and the scheduling of the other RT tasks will handle
2255          * the balancing. But if we are the last RT task
2256          * we may need to handle the pulling of RT tasks
2257          * now.
2258          */
2259         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2260                 return;
2261
2262         queue_pull_task(rq);
2263 }
2264
2265 void __init init_sched_rt_class(void)
2266 {
2267         unsigned int i;
2268
2269         for_each_possible_cpu(i) {
2270                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2271                                         GFP_KERNEL, cpu_to_node(i));
2272         }
2273 }
2274 #endif /* CONFIG_SMP */
2275
2276 /*
2277  * When switching a task to RT, we may overload the runqueue
2278  * with RT tasks. In this case we try to push them off to
2279  * other runqueues.
2280  */
2281 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2282 {
2283         /*
2284          * If we are already running, then there's nothing
2285          * that needs to be done. But if we are not running
2286          * we may need to preempt the current running task.
2287          * If that current running task is also an RT task
2288          * then see if we can move to another run queue.
2289          */
2290         if (task_on_rq_queued(p) && rq->curr != p) {
2291 #ifdef CONFIG_SMP
2292                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2293                         queue_push_tasks(rq);
2294 #endif /* CONFIG_SMP */
2295                 if (p->prio < rq->curr->prio)
2296                         resched_curr(rq);
2297         }
2298 }
2299
2300 /*
2301  * Priority of the task has changed. This may cause
2302  * us to initiate a push or pull.
2303  */
2304 static void
2305 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2306 {
2307         if (!task_on_rq_queued(p))
2308                 return;
2309
2310         if (rq->curr == p) {
2311 #ifdef CONFIG_SMP
2312                 /*
2313                  * If our priority decreases while running, we
2314                  * may need to pull tasks to this runqueue.
2315                  */
2316                 if (oldprio < p->prio)
2317                         queue_pull_task(rq);
2318
2319                 /*
2320                  * If there's a higher priority task waiting to run
2321                  * then reschedule.
2322                  */
2323                 if (p->prio > rq->rt.highest_prio.curr)
2324                         resched_curr(rq);
2325 #else
2326                 /* For UP simply resched on drop of prio */
2327                 if (oldprio < p->prio)
2328                         resched_curr(rq);
2329 #endif /* CONFIG_SMP */
2330         } else {
2331                 /*
2332                  * This task is not running, but if it is
2333                  * greater than the current running task
2334                  * then reschedule.
2335                  */
2336                 if (p->prio < rq->curr->prio)
2337                         resched_curr(rq);
2338         }
2339 }
2340
2341 #ifdef CONFIG_POSIX_TIMERS
2342 static void watchdog(struct rq *rq, struct task_struct *p)
2343 {
2344         unsigned long soft, hard;
2345
2346         /* max may change after cur was read, this will be fixed next tick */
2347         soft = task_rlimit(p, RLIMIT_RTTIME);
2348         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2349
2350         if (soft != RLIM_INFINITY) {
2351                 unsigned long next;
2352
2353                 if (p->rt.watchdog_stamp != jiffies) {
2354                         p->rt.timeout++;
2355                         p->rt.watchdog_stamp = jiffies;
2356                 }
2357
2358                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2359                 if (p->rt.timeout > next)
2360                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2361         }
2362 }
2363 #else
2364 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2365 #endif
2366
2367 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2368 {
2369         struct sched_rt_entity *rt_se = &p->rt;
2370
2371         update_curr_rt(rq);
2372
2373         watchdog(rq, p);
2374
2375         /*
2376          * RR tasks need a special form of timeslice management.
2377          * FIFO tasks have no timeslices.
2378          */
2379         if (p->policy != SCHED_RR)
2380                 return;
2381
2382         if (--p->rt.time_slice)
2383                 return;
2384
2385         p->rt.time_slice = sched_rr_timeslice;
2386
2387         /*
2388          * Requeue to the end of queue if we (and all of our ancestors) are not
2389          * the only element on the queue
2390          */
2391         for_each_sched_rt_entity(rt_se) {
2392                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2393                         requeue_task_rt(rq, p, 0);
2394                         resched_curr(rq);
2395                         return;
2396                 }
2397         }
2398 }
2399
2400 static void set_curr_task_rt(struct rq *rq)
2401 {
2402         struct task_struct *p = rq->curr;
2403
2404         p->se.exec_start = rq_clock_task(rq);
2405
2406         /* The running task is never eligible for pushing */
2407         dequeue_pushable_task(rq, p);
2408 }
2409
2410 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2411 {
2412         /*
2413          * Time slice is 0 for SCHED_FIFO tasks
2414          */
2415         if (task->policy == SCHED_RR)
2416                 return sched_rr_timeslice;
2417         else
2418                 return 0;
2419 }
2420
2421 const struct sched_class rt_sched_class = {
2422         .next                   = &fair_sched_class,
2423         .enqueue_task           = enqueue_task_rt,
2424         .dequeue_task           = dequeue_task_rt,
2425         .yield_task             = yield_task_rt,
2426
2427         .check_preempt_curr     = check_preempt_curr_rt,
2428
2429         .pick_next_task         = pick_next_task_rt,
2430         .put_prev_task          = put_prev_task_rt,
2431
2432 #ifdef CONFIG_SMP
2433         .select_task_rq         = select_task_rq_rt,
2434
2435         .set_cpus_allowed       = set_cpus_allowed_common,
2436         .rq_online              = rq_online_rt,
2437         .rq_offline             = rq_offline_rt,
2438         .task_woken             = task_woken_rt,
2439         .switched_from          = switched_from_rt,
2440 #endif
2441
2442         .set_curr_task          = set_curr_task_rt,
2443         .task_tick              = task_tick_rt,
2444
2445         .get_rr_interval        = get_rr_interval_rt,
2446
2447         .prio_changed           = prio_changed_rt,
2448         .switched_to            = switched_to_rt,
2449
2450         .update_curr            = update_curr_rt,
2451 };
2452
2453 #ifdef CONFIG_RT_GROUP_SCHED
2454 /*
2455  * Ensure that the real time constraints are schedulable.
2456  */
2457 static DEFINE_MUTEX(rt_constraints_mutex);
2458
2459 /* Must be called with tasklist_lock held */
2460 static inline int tg_has_rt_tasks(struct task_group *tg)
2461 {
2462         struct task_struct *g, *p;
2463
2464         /*
2465          * Autogroups do not have RT tasks; see autogroup_create().
2466          */
2467         if (task_group_is_autogroup(tg))
2468                 return 0;
2469
2470         for_each_process_thread(g, p) {
2471                 if (rt_task(p) && task_group(p) == tg)
2472                         return 1;
2473         }
2474
2475         return 0;
2476 }
2477
2478 struct rt_schedulable_data {
2479         struct task_group *tg;
2480         u64 rt_period;
2481         u64 rt_runtime;
2482 };
2483
2484 static int tg_rt_schedulable(struct task_group *tg, void *data)
2485 {
2486         struct rt_schedulable_data *d = data;
2487         struct task_group *child;
2488         unsigned long total, sum = 0;
2489         u64 period, runtime;
2490
2491         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2492         runtime = tg->rt_bandwidth.rt_runtime;
2493
2494         if (tg == d->tg) {
2495                 period = d->rt_period;
2496                 runtime = d->rt_runtime;
2497         }
2498
2499         /*
2500          * Cannot have more runtime than the period.
2501          */
2502         if (runtime > period && runtime != RUNTIME_INF)
2503                 return -EINVAL;
2504
2505         /*
2506          * Ensure we don't starve existing RT tasks.
2507          */
2508         if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2509                 return -EBUSY;
2510
2511         total = to_ratio(period, runtime);
2512
2513         /*
2514          * Nobody can have more than the global setting allows.
2515          */
2516         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2517                 return -EINVAL;
2518
2519         /*
2520          * The sum of our children's runtime should not exceed our own.
2521          */
2522         list_for_each_entry_rcu(child, &tg->children, siblings) {
2523                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2524                 runtime = child->rt_bandwidth.rt_runtime;
2525
2526                 if (child == d->tg) {
2527                         period = d->rt_period;
2528                         runtime = d->rt_runtime;
2529                 }
2530
2531                 sum += to_ratio(period, runtime);
2532         }
2533
2534         if (sum > total)
2535                 return -EINVAL;
2536
2537         return 0;
2538 }
2539
2540 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2541 {
2542         int ret;
2543
2544         struct rt_schedulable_data data = {
2545                 .tg = tg,
2546                 .rt_period = period,
2547                 .rt_runtime = runtime,
2548         };
2549
2550         rcu_read_lock();
2551         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2552         rcu_read_unlock();
2553
2554         return ret;
2555 }
2556
2557 static int tg_set_rt_bandwidth(struct task_group *tg,
2558                 u64 rt_period, u64 rt_runtime)
2559 {
2560         int i, err = 0;
2561
2562         /*
2563          * Disallowing the root group RT runtime is BAD, it would disallow the
2564          * kernel creating (and or operating) RT threads.
2565          */
2566         if (tg == &root_task_group && rt_runtime == 0)
2567                 return -EINVAL;
2568
2569         /* No period doesn't make any sense. */
2570         if (rt_period == 0)
2571                 return -EINVAL;
2572
2573         mutex_lock(&rt_constraints_mutex);
2574         read_lock(&tasklist_lock);
2575         err = __rt_schedulable(tg, rt_period, rt_runtime);
2576         if (err)
2577                 goto unlock;
2578
2579         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2580         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2581         tg->rt_bandwidth.rt_runtime = rt_runtime;
2582
2583         for_each_possible_cpu(i) {
2584                 struct rt_rq *rt_rq = tg->rt_rq[i];
2585
2586                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2587                 rt_rq->rt_runtime = rt_runtime;
2588                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2589         }
2590         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2591 unlock:
2592         read_unlock(&tasklist_lock);
2593         mutex_unlock(&rt_constraints_mutex);
2594
2595         return err;
2596 }
2597
2598 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2599 {
2600         u64 rt_runtime, rt_period;
2601
2602         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2603         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2604         if (rt_runtime_us < 0)
2605                 rt_runtime = RUNTIME_INF;
2606
2607         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2608 }
2609
2610 long sched_group_rt_runtime(struct task_group *tg)
2611 {
2612         u64 rt_runtime_us;
2613
2614         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2615                 return -1;
2616
2617         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2618         do_div(rt_runtime_us, NSEC_PER_USEC);
2619         return rt_runtime_us;
2620 }
2621
2622 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2623 {
2624         u64 rt_runtime, rt_period;
2625
2626         rt_period = rt_period_us * NSEC_PER_USEC;
2627         rt_runtime = tg->rt_bandwidth.rt_runtime;
2628
2629         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2630 }
2631
2632 long sched_group_rt_period(struct task_group *tg)
2633 {
2634         u64 rt_period_us;
2635
2636         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2637         do_div(rt_period_us, NSEC_PER_USEC);
2638         return rt_period_us;
2639 }
2640
2641 static int sched_rt_global_constraints(void)
2642 {
2643         int ret = 0;
2644
2645         mutex_lock(&rt_constraints_mutex);
2646         read_lock(&tasklist_lock);
2647         ret = __rt_schedulable(NULL, 0, 0);
2648         read_unlock(&tasklist_lock);
2649         mutex_unlock(&rt_constraints_mutex);
2650
2651         return ret;
2652 }
2653
2654 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2655 {
2656         /* Don't accept realtime tasks when there is no way for them to run */
2657         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2658                 return 0;
2659
2660         return 1;
2661 }
2662
2663 #else /* !CONFIG_RT_GROUP_SCHED */
2664 static int sched_rt_global_constraints(void)
2665 {
2666         unsigned long flags;
2667         int i;
2668
2669         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2670         for_each_possible_cpu(i) {
2671                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2672
2673                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2674                 rt_rq->rt_runtime = global_rt_runtime();
2675                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2676         }
2677         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2678
2679         return 0;
2680 }
2681 #endif /* CONFIG_RT_GROUP_SCHED */
2682
2683 static int sched_rt_global_validate(void)
2684 {
2685         if (sysctl_sched_rt_period <= 0)
2686                 return -EINVAL;
2687
2688         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2689                 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2690                 return -EINVAL;
2691
2692         return 0;
2693 }
2694
2695 static void sched_rt_do_global(void)
2696 {
2697         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2698         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2699 }
2700
2701 int sched_rt_handler(struct ctl_table *table, int write,
2702                 void __user *buffer, size_t *lenp,
2703                 loff_t *ppos)
2704 {
2705         int old_period, old_runtime;
2706         static DEFINE_MUTEX(mutex);
2707         int ret;
2708
2709         mutex_lock(&mutex);
2710         old_period = sysctl_sched_rt_period;
2711         old_runtime = sysctl_sched_rt_runtime;
2712
2713         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2714
2715         if (!ret && write) {
2716                 ret = sched_rt_global_validate();
2717                 if (ret)
2718                         goto undo;
2719
2720                 ret = sched_dl_global_validate();
2721                 if (ret)
2722                         goto undo;
2723
2724                 ret = sched_rt_global_constraints();
2725                 if (ret)
2726                         goto undo;
2727
2728                 sched_rt_do_global();
2729                 sched_dl_do_global();
2730         }
2731         if (0) {
2732 undo:
2733                 sysctl_sched_rt_period = old_period;
2734                 sysctl_sched_rt_runtime = old_runtime;
2735         }
2736         mutex_unlock(&mutex);
2737
2738         return ret;
2739 }
2740
2741 int sched_rr_handler(struct ctl_table *table, int write,
2742                 void __user *buffer, size_t *lenp,
2743                 loff_t *ppos)
2744 {
2745         int ret;
2746         static DEFINE_MUTEX(mutex);
2747
2748         mutex_lock(&mutex);
2749         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2750         /*
2751          * Make sure that internally we keep jiffies.
2752          * Also, writing zero resets the timeslice to default:
2753          */
2754         if (!ret && write) {
2755                 sched_rr_timeslice =
2756                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2757                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
2758         }
2759         mutex_unlock(&mutex);
2760         return ret;
2761 }
2762
2763 #ifdef CONFIG_SCHED_DEBUG
2764 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2765
2766 void print_rt_stats(struct seq_file *m, int cpu)
2767 {
2768         rt_rq_iter_t iter;
2769         struct rt_rq *rt_rq;
2770
2771         rcu_read_lock();
2772         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2773                 print_rt_rq(m, cpu, rt_rq);
2774         rcu_read_unlock();
2775 }
2776 #endif /* CONFIG_SCHED_DEBUG */