arm64: mte: fix prctl(PR_GET_TAGGED_ADDR_CTRL) if TCF0=NONE
[sfrench/cifs-2.6.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include "sched.h"
12
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15
16 #define IOWAIT_BOOST_MIN        (SCHED_CAPACITY_SCALE / 8)
17
18 struct sugov_tunables {
19         struct gov_attr_set     attr_set;
20         unsigned int            rate_limit_us;
21 };
22
23 struct sugov_policy {
24         struct cpufreq_policy   *policy;
25
26         struct sugov_tunables   *tunables;
27         struct list_head        tunables_hook;
28
29         raw_spinlock_t          update_lock;    /* For shared policies */
30         u64                     last_freq_update_time;
31         s64                     freq_update_delay_ns;
32         unsigned int            next_freq;
33         unsigned int            cached_raw_freq;
34
35         /* The next fields are only needed if fast switch cannot be used: */
36         struct                  irq_work irq_work;
37         struct                  kthread_work work;
38         struct                  mutex work_lock;
39         struct                  kthread_worker worker;
40         struct task_struct      *thread;
41         bool                    work_in_progress;
42
43         bool                    limits_changed;
44         bool                    need_freq_update;
45 };
46
47 struct sugov_cpu {
48         struct update_util_data update_util;
49         struct sugov_policy     *sg_policy;
50         unsigned int            cpu;
51
52         bool                    iowait_boost_pending;
53         unsigned int            iowait_boost;
54         u64                     last_update;
55
56         unsigned long           bw_dl;
57         unsigned long           max;
58
59         /* The field below is for single-CPU policies only: */
60 #ifdef CONFIG_NO_HZ_COMMON
61         unsigned long           saved_idle_calls;
62 #endif
63 };
64
65 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
66
67 /************************ Governor internals ***********************/
68
69 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
70 {
71         s64 delta_ns;
72
73         /*
74          * Since cpufreq_update_util() is called with rq->lock held for
75          * the @target_cpu, our per-CPU data is fully serialized.
76          *
77          * However, drivers cannot in general deal with cross-CPU
78          * requests, so while get_next_freq() will work, our
79          * sugov_update_commit() call may not for the fast switching platforms.
80          *
81          * Hence stop here for remote requests if they aren't supported
82          * by the hardware, as calculating the frequency is pointless if
83          * we cannot in fact act on it.
84          *
85          * This is needed on the slow switching platforms too to prevent CPUs
86          * going offline from leaving stale IRQ work items behind.
87          */
88         if (!cpufreq_this_cpu_can_update(sg_policy->policy))
89                 return false;
90
91         if (unlikely(sg_policy->limits_changed)) {
92                 sg_policy->limits_changed = false;
93                 sg_policy->need_freq_update = true;
94                 return true;
95         }
96
97         delta_ns = time - sg_policy->last_freq_update_time;
98
99         return delta_ns >= sg_policy->freq_update_delay_ns;
100 }
101
102 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
103                                    unsigned int next_freq)
104 {
105         if (sg_policy->next_freq == next_freq)
106                 return false;
107
108         sg_policy->next_freq = next_freq;
109         sg_policy->last_freq_update_time = time;
110
111         return true;
112 }
113
114 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
115                               unsigned int next_freq)
116 {
117         if (sugov_update_next_freq(sg_policy, time, next_freq))
118                 cpufreq_driver_fast_switch(sg_policy->policy, next_freq);
119 }
120
121 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
122                                   unsigned int next_freq)
123 {
124         if (!sugov_update_next_freq(sg_policy, time, next_freq))
125                 return;
126
127         if (!sg_policy->work_in_progress) {
128                 sg_policy->work_in_progress = true;
129                 irq_work_queue(&sg_policy->irq_work);
130         }
131 }
132
133 /**
134  * get_next_freq - Compute a new frequency for a given cpufreq policy.
135  * @sg_policy: schedutil policy object to compute the new frequency for.
136  * @util: Current CPU utilization.
137  * @max: CPU capacity.
138  *
139  * If the utilization is frequency-invariant, choose the new frequency to be
140  * proportional to it, that is
141  *
142  * next_freq = C * max_freq * util / max
143  *
144  * Otherwise, approximate the would-be frequency-invariant utilization by
145  * util_raw * (curr_freq / max_freq) which leads to
146  *
147  * next_freq = C * curr_freq * util_raw / max
148  *
149  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
150  *
151  * The lowest driver-supported frequency which is equal or greater than the raw
152  * next_freq (as calculated above) is returned, subject to policy min/max and
153  * cpufreq driver limitations.
154  */
155 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
156                                   unsigned long util, unsigned long max)
157 {
158         struct cpufreq_policy *policy = sg_policy->policy;
159         unsigned int freq = arch_scale_freq_invariant() ?
160                                 policy->cpuinfo.max_freq : policy->cur;
161
162         freq = map_util_freq(util, freq, max);
163
164         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
165                 return sg_policy->next_freq;
166
167         sg_policy->need_freq_update = false;
168         sg_policy->cached_raw_freq = freq;
169         return cpufreq_driver_resolve_freq(policy, freq);
170 }
171
172 /*
173  * This function computes an effective utilization for the given CPU, to be
174  * used for frequency selection given the linear relation: f = u * f_max.
175  *
176  * The scheduler tracks the following metrics:
177  *
178  *   cpu_util_{cfs,rt,dl,irq}()
179  *   cpu_bw_dl()
180  *
181  * Where the cfs,rt and dl util numbers are tracked with the same metric and
182  * synchronized windows and are thus directly comparable.
183  *
184  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
185  * which excludes things like IRQ and steal-time. These latter are then accrued
186  * in the irq utilization.
187  *
188  * The DL bandwidth number otoh is not a measured metric but a value computed
189  * based on the task model parameters and gives the minimal utilization
190  * required to meet deadlines.
191  */
192 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
193                                  unsigned long max, enum schedutil_type type,
194                                  struct task_struct *p)
195 {
196         unsigned long dl_util, util, irq;
197         struct rq *rq = cpu_rq(cpu);
198
199         if (!uclamp_is_used() &&
200             type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
201                 return max;
202         }
203
204         /*
205          * Early check to see if IRQ/steal time saturates the CPU, can be
206          * because of inaccuracies in how we track these -- see
207          * update_irq_load_avg().
208          */
209         irq = cpu_util_irq(rq);
210         if (unlikely(irq >= max))
211                 return max;
212
213         /*
214          * Because the time spend on RT/DL tasks is visible as 'lost' time to
215          * CFS tasks and we use the same metric to track the effective
216          * utilization (PELT windows are synchronized) we can directly add them
217          * to obtain the CPU's actual utilization.
218          *
219          * CFS and RT utilization can be boosted or capped, depending on
220          * utilization clamp constraints requested by currently RUNNABLE
221          * tasks.
222          * When there are no CFS RUNNABLE tasks, clamps are released and
223          * frequency will be gracefully reduced with the utilization decay.
224          */
225         util = util_cfs + cpu_util_rt(rq);
226         if (type == FREQUENCY_UTIL)
227                 util = uclamp_rq_util_with(rq, util, p);
228
229         dl_util = cpu_util_dl(rq);
230
231         /*
232          * For frequency selection we do not make cpu_util_dl() a permanent part
233          * of this sum because we want to use cpu_bw_dl() later on, but we need
234          * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
235          * that we select f_max when there is no idle time.
236          *
237          * NOTE: numerical errors or stop class might cause us to not quite hit
238          * saturation when we should -- something for later.
239          */
240         if (util + dl_util >= max)
241                 return max;
242
243         /*
244          * OTOH, for energy computation we need the estimated running time, so
245          * include util_dl and ignore dl_bw.
246          */
247         if (type == ENERGY_UTIL)
248                 util += dl_util;
249
250         /*
251          * There is still idle time; further improve the number by using the
252          * irq metric. Because IRQ/steal time is hidden from the task clock we
253          * need to scale the task numbers:
254          *
255          *              max - irq
256          *   U' = irq + --------- * U
257          *                 max
258          */
259         util = scale_irq_capacity(util, irq, max);
260         util += irq;
261
262         /*
263          * Bandwidth required by DEADLINE must always be granted while, for
264          * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
265          * to gracefully reduce the frequency when no tasks show up for longer
266          * periods of time.
267          *
268          * Ideally we would like to set bw_dl as min/guaranteed freq and util +
269          * bw_dl as requested freq. However, cpufreq is not yet ready for such
270          * an interface. So, we only do the latter for now.
271          */
272         if (type == FREQUENCY_UTIL)
273                 util += cpu_bw_dl(rq);
274
275         return min(max, util);
276 }
277
278 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
279 {
280         struct rq *rq = cpu_rq(sg_cpu->cpu);
281         unsigned long util = cpu_util_cfs(rq);
282         unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
283
284         sg_cpu->max = max;
285         sg_cpu->bw_dl = cpu_bw_dl(rq);
286
287         return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
288 }
289
290 /**
291  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
292  * @sg_cpu: the sugov data for the CPU to boost
293  * @time: the update time from the caller
294  * @set_iowait_boost: true if an IO boost has been requested
295  *
296  * The IO wait boost of a task is disabled after a tick since the last update
297  * of a CPU. If a new IO wait boost is requested after more then a tick, then
298  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
299  * efficiency by ignoring sporadic wakeups from IO.
300  */
301 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
302                                bool set_iowait_boost)
303 {
304         s64 delta_ns = time - sg_cpu->last_update;
305
306         /* Reset boost only if a tick has elapsed since last request */
307         if (delta_ns <= TICK_NSEC)
308                 return false;
309
310         sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
311         sg_cpu->iowait_boost_pending = set_iowait_boost;
312
313         return true;
314 }
315
316 /**
317  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
318  * @sg_cpu: the sugov data for the CPU to boost
319  * @time: the update time from the caller
320  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
321  *
322  * Each time a task wakes up after an IO operation, the CPU utilization can be
323  * boosted to a certain utilization which doubles at each "frequent and
324  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
325  * of the maximum OPP.
326  *
327  * To keep doubling, an IO boost has to be requested at least once per tick,
328  * otherwise we restart from the utilization of the minimum OPP.
329  */
330 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
331                                unsigned int flags)
332 {
333         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
334
335         /* Reset boost if the CPU appears to have been idle enough */
336         if (sg_cpu->iowait_boost &&
337             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
338                 return;
339
340         /* Boost only tasks waking up after IO */
341         if (!set_iowait_boost)
342                 return;
343
344         /* Ensure boost doubles only one time at each request */
345         if (sg_cpu->iowait_boost_pending)
346                 return;
347         sg_cpu->iowait_boost_pending = true;
348
349         /* Double the boost at each request */
350         if (sg_cpu->iowait_boost) {
351                 sg_cpu->iowait_boost =
352                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
353                 return;
354         }
355
356         /* First wakeup after IO: start with minimum boost */
357         sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
358 }
359
360 /**
361  * sugov_iowait_apply() - Apply the IO boost to a CPU.
362  * @sg_cpu: the sugov data for the cpu to boost
363  * @time: the update time from the caller
364  * @util: the utilization to (eventually) boost
365  * @max: the maximum value the utilization can be boosted to
366  *
367  * A CPU running a task which woken up after an IO operation can have its
368  * utilization boosted to speed up the completion of those IO operations.
369  * The IO boost value is increased each time a task wakes up from IO, in
370  * sugov_iowait_apply(), and it's instead decreased by this function,
371  * each time an increase has not been requested (!iowait_boost_pending).
372  *
373  * A CPU which also appears to have been idle for at least one tick has also
374  * its IO boost utilization reset.
375  *
376  * This mechanism is designed to boost high frequently IO waiting tasks, while
377  * being more conservative on tasks which does sporadic IO operations.
378  */
379 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
380                                         unsigned long util, unsigned long max)
381 {
382         unsigned long boost;
383
384         /* No boost currently required */
385         if (!sg_cpu->iowait_boost)
386                 return util;
387
388         /* Reset boost if the CPU appears to have been idle enough */
389         if (sugov_iowait_reset(sg_cpu, time, false))
390                 return util;
391
392         if (!sg_cpu->iowait_boost_pending) {
393                 /*
394                  * No boost pending; reduce the boost value.
395                  */
396                 sg_cpu->iowait_boost >>= 1;
397                 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
398                         sg_cpu->iowait_boost = 0;
399                         return util;
400                 }
401         }
402
403         sg_cpu->iowait_boost_pending = false;
404
405         /*
406          * @util is already in capacity scale; convert iowait_boost
407          * into the same scale so we can compare.
408          */
409         boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
410         return max(boost, util);
411 }
412
413 #ifdef CONFIG_NO_HZ_COMMON
414 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
415 {
416         unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
417         bool ret = idle_calls == sg_cpu->saved_idle_calls;
418
419         sg_cpu->saved_idle_calls = idle_calls;
420         return ret;
421 }
422 #else
423 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
424 #endif /* CONFIG_NO_HZ_COMMON */
425
426 /*
427  * Make sugov_should_update_freq() ignore the rate limit when DL
428  * has increased the utilization.
429  */
430 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
431 {
432         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
433                 sg_policy->limits_changed = true;
434 }
435
436 static void sugov_update_single(struct update_util_data *hook, u64 time,
437                                 unsigned int flags)
438 {
439         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
440         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
441         unsigned long util, max;
442         unsigned int next_f;
443         bool busy;
444         unsigned int cached_freq = sg_policy->cached_raw_freq;
445
446         sugov_iowait_boost(sg_cpu, time, flags);
447         sg_cpu->last_update = time;
448
449         ignore_dl_rate_limit(sg_cpu, sg_policy);
450
451         if (!sugov_should_update_freq(sg_policy, time))
452                 return;
453
454         /* Limits may have changed, don't skip frequency update */
455         busy = !sg_policy->need_freq_update && sugov_cpu_is_busy(sg_cpu);
456
457         util = sugov_get_util(sg_cpu);
458         max = sg_cpu->max;
459         util = sugov_iowait_apply(sg_cpu, time, util, max);
460         next_f = get_next_freq(sg_policy, util, max);
461         /*
462          * Do not reduce the frequency if the CPU has not been idle
463          * recently, as the reduction is likely to be premature then.
464          */
465         if (busy && next_f < sg_policy->next_freq) {
466                 next_f = sg_policy->next_freq;
467
468                 /* Restore cached freq as next_freq has changed */
469                 sg_policy->cached_raw_freq = cached_freq;
470         }
471
472         /*
473          * This code runs under rq->lock for the target CPU, so it won't run
474          * concurrently on two different CPUs for the same target and it is not
475          * necessary to acquire the lock in the fast switch case.
476          */
477         if (sg_policy->policy->fast_switch_enabled) {
478                 sugov_fast_switch(sg_policy, time, next_f);
479         } else {
480                 raw_spin_lock(&sg_policy->update_lock);
481                 sugov_deferred_update(sg_policy, time, next_f);
482                 raw_spin_unlock(&sg_policy->update_lock);
483         }
484 }
485
486 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
487 {
488         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
489         struct cpufreq_policy *policy = sg_policy->policy;
490         unsigned long util = 0, max = 1;
491         unsigned int j;
492
493         for_each_cpu(j, policy->cpus) {
494                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
495                 unsigned long j_util, j_max;
496
497                 j_util = sugov_get_util(j_sg_cpu);
498                 j_max = j_sg_cpu->max;
499                 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
500
501                 if (j_util * max > j_max * util) {
502                         util = j_util;
503                         max = j_max;
504                 }
505         }
506
507         return get_next_freq(sg_policy, util, max);
508 }
509
510 static void
511 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
512 {
513         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
514         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
515         unsigned int next_f;
516
517         raw_spin_lock(&sg_policy->update_lock);
518
519         sugov_iowait_boost(sg_cpu, time, flags);
520         sg_cpu->last_update = time;
521
522         ignore_dl_rate_limit(sg_cpu, sg_policy);
523
524         if (sugov_should_update_freq(sg_policy, time)) {
525                 next_f = sugov_next_freq_shared(sg_cpu, time);
526
527                 if (sg_policy->policy->fast_switch_enabled)
528                         sugov_fast_switch(sg_policy, time, next_f);
529                 else
530                         sugov_deferred_update(sg_policy, time, next_f);
531         }
532
533         raw_spin_unlock(&sg_policy->update_lock);
534 }
535
536 static void sugov_work(struct kthread_work *work)
537 {
538         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
539         unsigned int freq;
540         unsigned long flags;
541
542         /*
543          * Hold sg_policy->update_lock shortly to handle the case where:
544          * incase sg_policy->next_freq is read here, and then updated by
545          * sugov_deferred_update() just before work_in_progress is set to false
546          * here, we may miss queueing the new update.
547          *
548          * Note: If a work was queued after the update_lock is released,
549          * sugov_work() will just be called again by kthread_work code; and the
550          * request will be proceed before the sugov thread sleeps.
551          */
552         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
553         freq = sg_policy->next_freq;
554         sg_policy->work_in_progress = false;
555         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
556
557         mutex_lock(&sg_policy->work_lock);
558         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
559         mutex_unlock(&sg_policy->work_lock);
560 }
561
562 static void sugov_irq_work(struct irq_work *irq_work)
563 {
564         struct sugov_policy *sg_policy;
565
566         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
567
568         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
569 }
570
571 /************************** sysfs interface ************************/
572
573 static struct sugov_tunables *global_tunables;
574 static DEFINE_MUTEX(global_tunables_lock);
575
576 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
577 {
578         return container_of(attr_set, struct sugov_tunables, attr_set);
579 }
580
581 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
582 {
583         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
584
585         return sprintf(buf, "%u\n", tunables->rate_limit_us);
586 }
587
588 static ssize_t
589 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
590 {
591         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
592         struct sugov_policy *sg_policy;
593         unsigned int rate_limit_us;
594
595         if (kstrtouint(buf, 10, &rate_limit_us))
596                 return -EINVAL;
597
598         tunables->rate_limit_us = rate_limit_us;
599
600         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
601                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
602
603         return count;
604 }
605
606 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
607
608 static struct attribute *sugov_attrs[] = {
609         &rate_limit_us.attr,
610         NULL
611 };
612 ATTRIBUTE_GROUPS(sugov);
613
614 static struct kobj_type sugov_tunables_ktype = {
615         .default_groups = sugov_groups,
616         .sysfs_ops = &governor_sysfs_ops,
617 };
618
619 /********************** cpufreq governor interface *********************/
620
621 struct cpufreq_governor schedutil_gov;
622
623 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
624 {
625         struct sugov_policy *sg_policy;
626
627         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
628         if (!sg_policy)
629                 return NULL;
630
631         sg_policy->policy = policy;
632         raw_spin_lock_init(&sg_policy->update_lock);
633         return sg_policy;
634 }
635
636 static void sugov_policy_free(struct sugov_policy *sg_policy)
637 {
638         kfree(sg_policy);
639 }
640
641 static int sugov_kthread_create(struct sugov_policy *sg_policy)
642 {
643         struct task_struct *thread;
644         struct sched_attr attr = {
645                 .size           = sizeof(struct sched_attr),
646                 .sched_policy   = SCHED_DEADLINE,
647                 .sched_flags    = SCHED_FLAG_SUGOV,
648                 .sched_nice     = 0,
649                 .sched_priority = 0,
650                 /*
651                  * Fake (unused) bandwidth; workaround to "fix"
652                  * priority inheritance.
653                  */
654                 .sched_runtime  =  1000000,
655                 .sched_deadline = 10000000,
656                 .sched_period   = 10000000,
657         };
658         struct cpufreq_policy *policy = sg_policy->policy;
659         int ret;
660
661         /* kthread only required for slow path */
662         if (policy->fast_switch_enabled)
663                 return 0;
664
665         kthread_init_work(&sg_policy->work, sugov_work);
666         kthread_init_worker(&sg_policy->worker);
667         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
668                                 "sugov:%d",
669                                 cpumask_first(policy->related_cpus));
670         if (IS_ERR(thread)) {
671                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
672                 return PTR_ERR(thread);
673         }
674
675         ret = sched_setattr_nocheck(thread, &attr);
676         if (ret) {
677                 kthread_stop(thread);
678                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
679                 return ret;
680         }
681
682         sg_policy->thread = thread;
683         kthread_bind_mask(thread, policy->related_cpus);
684         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
685         mutex_init(&sg_policy->work_lock);
686
687         wake_up_process(thread);
688
689         return 0;
690 }
691
692 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
693 {
694         /* kthread only required for slow path */
695         if (sg_policy->policy->fast_switch_enabled)
696                 return;
697
698         kthread_flush_worker(&sg_policy->worker);
699         kthread_stop(sg_policy->thread);
700         mutex_destroy(&sg_policy->work_lock);
701 }
702
703 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
704 {
705         struct sugov_tunables *tunables;
706
707         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
708         if (tunables) {
709                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
710                 if (!have_governor_per_policy())
711                         global_tunables = tunables;
712         }
713         return tunables;
714 }
715
716 static void sugov_tunables_free(struct sugov_tunables *tunables)
717 {
718         if (!have_governor_per_policy())
719                 global_tunables = NULL;
720
721         kfree(tunables);
722 }
723
724 static int sugov_init(struct cpufreq_policy *policy)
725 {
726         struct sugov_policy *sg_policy;
727         struct sugov_tunables *tunables;
728         int ret = 0;
729
730         /* State should be equivalent to EXIT */
731         if (policy->governor_data)
732                 return -EBUSY;
733
734         cpufreq_enable_fast_switch(policy);
735
736         sg_policy = sugov_policy_alloc(policy);
737         if (!sg_policy) {
738                 ret = -ENOMEM;
739                 goto disable_fast_switch;
740         }
741
742         ret = sugov_kthread_create(sg_policy);
743         if (ret)
744                 goto free_sg_policy;
745
746         mutex_lock(&global_tunables_lock);
747
748         if (global_tunables) {
749                 if (WARN_ON(have_governor_per_policy())) {
750                         ret = -EINVAL;
751                         goto stop_kthread;
752                 }
753                 policy->governor_data = sg_policy;
754                 sg_policy->tunables = global_tunables;
755
756                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
757                 goto out;
758         }
759
760         tunables = sugov_tunables_alloc(sg_policy);
761         if (!tunables) {
762                 ret = -ENOMEM;
763                 goto stop_kthread;
764         }
765
766         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
767
768         policy->governor_data = sg_policy;
769         sg_policy->tunables = tunables;
770
771         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
772                                    get_governor_parent_kobj(policy), "%s",
773                                    schedutil_gov.name);
774         if (ret)
775                 goto fail;
776
777 out:
778         mutex_unlock(&global_tunables_lock);
779         return 0;
780
781 fail:
782         kobject_put(&tunables->attr_set.kobj);
783         policy->governor_data = NULL;
784         sugov_tunables_free(tunables);
785
786 stop_kthread:
787         sugov_kthread_stop(sg_policy);
788         mutex_unlock(&global_tunables_lock);
789
790 free_sg_policy:
791         sugov_policy_free(sg_policy);
792
793 disable_fast_switch:
794         cpufreq_disable_fast_switch(policy);
795
796         pr_err("initialization failed (error %d)\n", ret);
797         return ret;
798 }
799
800 static void sugov_exit(struct cpufreq_policy *policy)
801 {
802         struct sugov_policy *sg_policy = policy->governor_data;
803         struct sugov_tunables *tunables = sg_policy->tunables;
804         unsigned int count;
805
806         mutex_lock(&global_tunables_lock);
807
808         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
809         policy->governor_data = NULL;
810         if (!count)
811                 sugov_tunables_free(tunables);
812
813         mutex_unlock(&global_tunables_lock);
814
815         sugov_kthread_stop(sg_policy);
816         sugov_policy_free(sg_policy);
817         cpufreq_disable_fast_switch(policy);
818 }
819
820 static int sugov_start(struct cpufreq_policy *policy)
821 {
822         struct sugov_policy *sg_policy = policy->governor_data;
823         unsigned int cpu;
824
825         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
826         sg_policy->last_freq_update_time        = 0;
827         sg_policy->next_freq                    = 0;
828         sg_policy->work_in_progress             = false;
829         sg_policy->limits_changed               = false;
830         sg_policy->need_freq_update             = false;
831         sg_policy->cached_raw_freq              = 0;
832
833         for_each_cpu(cpu, policy->cpus) {
834                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
835
836                 memset(sg_cpu, 0, sizeof(*sg_cpu));
837                 sg_cpu->cpu                     = cpu;
838                 sg_cpu->sg_policy               = sg_policy;
839         }
840
841         for_each_cpu(cpu, policy->cpus) {
842                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
843
844                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
845                                              policy_is_shared(policy) ?
846                                                         sugov_update_shared :
847                                                         sugov_update_single);
848         }
849         return 0;
850 }
851
852 static void sugov_stop(struct cpufreq_policy *policy)
853 {
854         struct sugov_policy *sg_policy = policy->governor_data;
855         unsigned int cpu;
856
857         for_each_cpu(cpu, policy->cpus)
858                 cpufreq_remove_update_util_hook(cpu);
859
860         synchronize_rcu();
861
862         if (!policy->fast_switch_enabled) {
863                 irq_work_sync(&sg_policy->irq_work);
864                 kthread_cancel_work_sync(&sg_policy->work);
865         }
866 }
867
868 static void sugov_limits(struct cpufreq_policy *policy)
869 {
870         struct sugov_policy *sg_policy = policy->governor_data;
871
872         if (!policy->fast_switch_enabled) {
873                 mutex_lock(&sg_policy->work_lock);
874                 cpufreq_policy_apply_limits(policy);
875                 mutex_unlock(&sg_policy->work_lock);
876         }
877
878         sg_policy->limits_changed = true;
879 }
880
881 struct cpufreq_governor schedutil_gov = {
882         .name                   = "schedutil",
883         .owner                  = THIS_MODULE,
884         .dynamic_switching      = true,
885         .init                   = sugov_init,
886         .exit                   = sugov_exit,
887         .start                  = sugov_start,
888         .stop                   = sugov_stop,
889         .limits                 = sugov_limits,
890 };
891
892 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
893 struct cpufreq_governor *cpufreq_default_governor(void)
894 {
895         return &schedutil_gov;
896 }
897 #endif
898
899 cpufreq_governor_init(schedutil_gov);
900
901 #ifdef CONFIG_ENERGY_MODEL
902 extern bool sched_energy_update;
903 extern struct mutex sched_energy_mutex;
904
905 static void rebuild_sd_workfn(struct work_struct *work)
906 {
907         mutex_lock(&sched_energy_mutex);
908         sched_energy_update = true;
909         rebuild_sched_domains();
910         sched_energy_update = false;
911         mutex_unlock(&sched_energy_mutex);
912 }
913 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
914
915 /*
916  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
917  * on governor changes to make sure the scheduler knows about it.
918  */
919 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
920                                   struct cpufreq_governor *old_gov)
921 {
922         if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
923                 /*
924                  * When called from the cpufreq_register_driver() path, the
925                  * cpu_hotplug_lock is already held, so use a work item to
926                  * avoid nested locking in rebuild_sched_domains().
927                  */
928                 schedule_work(&rebuild_sd_work);
929         }
930
931 }
932 #endif