zonefs: convert zonefs to use the new mount api
[sfrench/cifs-2.6.git] / kernel / rcu / rcuscale.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update module-based scalability-test facility
4  *
5  * Copyright (C) IBM Corporation, 2015
6  *
7  * Authors: Paul E. McKenney <paulmck@linux.ibm.com>
8  */
9
10 #define pr_fmt(fmt) fmt
11
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/module.h>
17 #include <linux/kthread.h>
18 #include <linux/err.h>
19 #include <linux/spinlock.h>
20 #include <linux/smp.h>
21 #include <linux/rcupdate.h>
22 #include <linux/interrupt.h>
23 #include <linux/sched.h>
24 #include <uapi/linux/sched/types.h>
25 #include <linux/atomic.h>
26 #include <linux/bitops.h>
27 #include <linux/completion.h>
28 #include <linux/moduleparam.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/freezer.h>
33 #include <linux/cpu.h>
34 #include <linux/delay.h>
35 #include <linux/stat.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <asm/byteorder.h>
39 #include <linux/torture.h>
40 #include <linux/vmalloc.h>
41 #include <linux/rcupdate_trace.h>
42
43 #include "rcu.h"
44
45 MODULE_LICENSE("GPL");
46 MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>");
47
48 #define SCALE_FLAG "-scale:"
49 #define SCALEOUT_STRING(s) \
50         pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s)
51 #define VERBOSE_SCALEOUT_STRING(s) \
52         do { if (verbose) pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s); } while (0)
53 #define SCALEOUT_ERRSTRING(s) \
54         pr_alert("%s" SCALE_FLAG "!!! %s\n", scale_type, s)
55
56 /*
57  * The intended use cases for the nreaders and nwriters module parameters
58  * are as follows:
59  *
60  * 1.   Specify only the nr_cpus kernel boot parameter.  This will
61  *      set both nreaders and nwriters to the value specified by
62  *      nr_cpus for a mixed reader/writer test.
63  *
64  * 2.   Specify the nr_cpus kernel boot parameter, but set
65  *      rcuscale.nreaders to zero.  This will set nwriters to the
66  *      value specified by nr_cpus for an update-only test.
67  *
68  * 3.   Specify the nr_cpus kernel boot parameter, but set
69  *      rcuscale.nwriters to zero.  This will set nreaders to the
70  *      value specified by nr_cpus for a read-only test.
71  *
72  * Various other use cases may of course be specified.
73  *
74  * Note that this test's readers are intended only as a test load for
75  * the writers.  The reader scalability statistics will be overly
76  * pessimistic due to the per-critical-section interrupt disabling,
77  * test-end checks, and the pair of calls through pointers.
78  */
79
80 #ifdef MODULE
81 # define RCUSCALE_SHUTDOWN 0
82 #else
83 # define RCUSCALE_SHUTDOWN 1
84 #endif
85
86 torture_param(bool, gp_async, false, "Use asynchronous GP wait primitives");
87 torture_param(int, gp_async_max, 1000, "Max # outstanding waits per writer");
88 torture_param(bool, gp_exp, false, "Use expedited GP wait primitives");
89 torture_param(int, holdoff, 10, "Holdoff time before test start (s)");
90 torture_param(int, minruntime, 0, "Minimum run time (s)");
91 torture_param(int, nreaders, -1, "Number of RCU reader threads");
92 torture_param(int, nwriters, -1, "Number of RCU updater threads");
93 torture_param(bool, shutdown, RCUSCALE_SHUTDOWN,
94               "Shutdown at end of scalability tests.");
95 torture_param(int, verbose, 1, "Enable verbose debugging printk()s");
96 torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable");
97 torture_param(int, writer_holdoff_jiffies, 0, "Holdoff (jiffies) between GPs, zero to disable");
98 torture_param(int, kfree_rcu_test, 0, "Do we run a kfree_rcu() scale test?");
99 torture_param(int, kfree_mult, 1, "Multiple of kfree_obj size to allocate.");
100 torture_param(int, kfree_by_call_rcu, 0, "Use call_rcu() to emulate kfree_rcu()?");
101
102 static char *scale_type = "rcu";
103 module_param(scale_type, charp, 0444);
104 MODULE_PARM_DESC(scale_type, "Type of RCU to scalability-test (rcu, srcu, ...)");
105
106 static int nrealreaders;
107 static int nrealwriters;
108 static struct task_struct **writer_tasks;
109 static struct task_struct **reader_tasks;
110 static struct task_struct *shutdown_task;
111
112 static u64 **writer_durations;
113 static int *writer_n_durations;
114 static atomic_t n_rcu_scale_reader_started;
115 static atomic_t n_rcu_scale_writer_started;
116 static atomic_t n_rcu_scale_writer_finished;
117 static wait_queue_head_t shutdown_wq;
118 static u64 t_rcu_scale_writer_started;
119 static u64 t_rcu_scale_writer_finished;
120 static unsigned long b_rcu_gp_test_started;
121 static unsigned long b_rcu_gp_test_finished;
122 static DEFINE_PER_CPU(atomic_t, n_async_inflight);
123
124 #define MAX_MEAS 10000
125 #define MIN_MEAS 100
126
127 /*
128  * Operations vector for selecting different types of tests.
129  */
130
131 struct rcu_scale_ops {
132         int ptype;
133         void (*init)(void);
134         void (*cleanup)(void);
135         int (*readlock)(void);
136         void (*readunlock)(int idx);
137         unsigned long (*get_gp_seq)(void);
138         unsigned long (*gp_diff)(unsigned long new, unsigned long old);
139         unsigned long (*exp_completed)(void);
140         void (*async)(struct rcu_head *head, rcu_callback_t func);
141         void (*gp_barrier)(void);
142         void (*sync)(void);
143         void (*exp_sync)(void);
144         struct task_struct *(*rso_gp_kthread)(void);
145         const char *name;
146 };
147
148 static struct rcu_scale_ops *cur_ops;
149
150 /*
151  * Definitions for rcu scalability testing.
152  */
153
154 static int rcu_scale_read_lock(void) __acquires(RCU)
155 {
156         rcu_read_lock();
157         return 0;
158 }
159
160 static void rcu_scale_read_unlock(int idx) __releases(RCU)
161 {
162         rcu_read_unlock();
163 }
164
165 static unsigned long __maybe_unused rcu_no_completed(void)
166 {
167         return 0;
168 }
169
170 static void rcu_sync_scale_init(void)
171 {
172 }
173
174 static struct rcu_scale_ops rcu_ops = {
175         .ptype          = RCU_FLAVOR,
176         .init           = rcu_sync_scale_init,
177         .readlock       = rcu_scale_read_lock,
178         .readunlock     = rcu_scale_read_unlock,
179         .get_gp_seq     = rcu_get_gp_seq,
180         .gp_diff        = rcu_seq_diff,
181         .exp_completed  = rcu_exp_batches_completed,
182         .async          = call_rcu_hurry,
183         .gp_barrier     = rcu_barrier,
184         .sync           = synchronize_rcu,
185         .exp_sync       = synchronize_rcu_expedited,
186         .name           = "rcu"
187 };
188
189 /*
190  * Definitions for srcu scalability testing.
191  */
192
193 DEFINE_STATIC_SRCU(srcu_ctl_scale);
194 static struct srcu_struct *srcu_ctlp = &srcu_ctl_scale;
195
196 static int srcu_scale_read_lock(void) __acquires(srcu_ctlp)
197 {
198         return srcu_read_lock(srcu_ctlp);
199 }
200
201 static void srcu_scale_read_unlock(int idx) __releases(srcu_ctlp)
202 {
203         srcu_read_unlock(srcu_ctlp, idx);
204 }
205
206 static unsigned long srcu_scale_completed(void)
207 {
208         return srcu_batches_completed(srcu_ctlp);
209 }
210
211 static void srcu_call_rcu(struct rcu_head *head, rcu_callback_t func)
212 {
213         call_srcu(srcu_ctlp, head, func);
214 }
215
216 static void srcu_rcu_barrier(void)
217 {
218         srcu_barrier(srcu_ctlp);
219 }
220
221 static void srcu_scale_synchronize(void)
222 {
223         synchronize_srcu(srcu_ctlp);
224 }
225
226 static void srcu_scale_synchronize_expedited(void)
227 {
228         synchronize_srcu_expedited(srcu_ctlp);
229 }
230
231 static struct rcu_scale_ops srcu_ops = {
232         .ptype          = SRCU_FLAVOR,
233         .init           = rcu_sync_scale_init,
234         .readlock       = srcu_scale_read_lock,
235         .readunlock     = srcu_scale_read_unlock,
236         .get_gp_seq     = srcu_scale_completed,
237         .gp_diff        = rcu_seq_diff,
238         .exp_completed  = srcu_scale_completed,
239         .async          = srcu_call_rcu,
240         .gp_barrier     = srcu_rcu_barrier,
241         .sync           = srcu_scale_synchronize,
242         .exp_sync       = srcu_scale_synchronize_expedited,
243         .name           = "srcu"
244 };
245
246 static struct srcu_struct srcud;
247
248 static void srcu_sync_scale_init(void)
249 {
250         srcu_ctlp = &srcud;
251         init_srcu_struct(srcu_ctlp);
252 }
253
254 static void srcu_sync_scale_cleanup(void)
255 {
256         cleanup_srcu_struct(srcu_ctlp);
257 }
258
259 static struct rcu_scale_ops srcud_ops = {
260         .ptype          = SRCU_FLAVOR,
261         .init           = srcu_sync_scale_init,
262         .cleanup        = srcu_sync_scale_cleanup,
263         .readlock       = srcu_scale_read_lock,
264         .readunlock     = srcu_scale_read_unlock,
265         .get_gp_seq     = srcu_scale_completed,
266         .gp_diff        = rcu_seq_diff,
267         .exp_completed  = srcu_scale_completed,
268         .async          = srcu_call_rcu,
269         .gp_barrier     = srcu_rcu_barrier,
270         .sync           = srcu_scale_synchronize,
271         .exp_sync       = srcu_scale_synchronize_expedited,
272         .name           = "srcud"
273 };
274
275 #ifdef CONFIG_TASKS_RCU
276
277 /*
278  * Definitions for RCU-tasks scalability testing.
279  */
280
281 static int tasks_scale_read_lock(void)
282 {
283         return 0;
284 }
285
286 static void tasks_scale_read_unlock(int idx)
287 {
288 }
289
290 static struct rcu_scale_ops tasks_ops = {
291         .ptype          = RCU_TASKS_FLAVOR,
292         .init           = rcu_sync_scale_init,
293         .readlock       = tasks_scale_read_lock,
294         .readunlock     = tasks_scale_read_unlock,
295         .get_gp_seq     = rcu_no_completed,
296         .gp_diff        = rcu_seq_diff,
297         .async          = call_rcu_tasks,
298         .gp_barrier     = rcu_barrier_tasks,
299         .sync           = synchronize_rcu_tasks,
300         .exp_sync       = synchronize_rcu_tasks,
301         .rso_gp_kthread = get_rcu_tasks_gp_kthread,
302         .name           = "tasks"
303 };
304
305 #define TASKS_OPS &tasks_ops,
306
307 #else // #ifdef CONFIG_TASKS_RCU
308
309 #define TASKS_OPS
310
311 #endif // #else // #ifdef CONFIG_TASKS_RCU
312
313 #ifdef CONFIG_TASKS_RUDE_RCU
314
315 /*
316  * Definitions for RCU-tasks-rude scalability testing.
317  */
318
319 static int tasks_rude_scale_read_lock(void)
320 {
321         return 0;
322 }
323
324 static void tasks_rude_scale_read_unlock(int idx)
325 {
326 }
327
328 static struct rcu_scale_ops tasks_rude_ops = {
329         .ptype          = RCU_TASKS_RUDE_FLAVOR,
330         .init           = rcu_sync_scale_init,
331         .readlock       = tasks_rude_scale_read_lock,
332         .readunlock     = tasks_rude_scale_read_unlock,
333         .get_gp_seq     = rcu_no_completed,
334         .gp_diff        = rcu_seq_diff,
335         .async          = call_rcu_tasks_rude,
336         .gp_barrier     = rcu_barrier_tasks_rude,
337         .sync           = synchronize_rcu_tasks_rude,
338         .exp_sync       = synchronize_rcu_tasks_rude,
339         .rso_gp_kthread = get_rcu_tasks_rude_gp_kthread,
340         .name           = "tasks-rude"
341 };
342
343 #define TASKS_RUDE_OPS &tasks_rude_ops,
344
345 #else // #ifdef CONFIG_TASKS_RUDE_RCU
346
347 #define TASKS_RUDE_OPS
348
349 #endif // #else // #ifdef CONFIG_TASKS_RUDE_RCU
350
351 #ifdef CONFIG_TASKS_TRACE_RCU
352
353 /*
354  * Definitions for RCU-tasks-trace scalability testing.
355  */
356
357 static int tasks_trace_scale_read_lock(void)
358 {
359         rcu_read_lock_trace();
360         return 0;
361 }
362
363 static void tasks_trace_scale_read_unlock(int idx)
364 {
365         rcu_read_unlock_trace();
366 }
367
368 static struct rcu_scale_ops tasks_tracing_ops = {
369         .ptype          = RCU_TASKS_FLAVOR,
370         .init           = rcu_sync_scale_init,
371         .readlock       = tasks_trace_scale_read_lock,
372         .readunlock     = tasks_trace_scale_read_unlock,
373         .get_gp_seq     = rcu_no_completed,
374         .gp_diff        = rcu_seq_diff,
375         .async          = call_rcu_tasks_trace,
376         .gp_barrier     = rcu_barrier_tasks_trace,
377         .sync           = synchronize_rcu_tasks_trace,
378         .exp_sync       = synchronize_rcu_tasks_trace,
379         .rso_gp_kthread = get_rcu_tasks_trace_gp_kthread,
380         .name           = "tasks-tracing"
381 };
382
383 #define TASKS_TRACING_OPS &tasks_tracing_ops,
384
385 #else // #ifdef CONFIG_TASKS_TRACE_RCU
386
387 #define TASKS_TRACING_OPS
388
389 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
390
391 static unsigned long rcuscale_seq_diff(unsigned long new, unsigned long old)
392 {
393         if (!cur_ops->gp_diff)
394                 return new - old;
395         return cur_ops->gp_diff(new, old);
396 }
397
398 /*
399  * If scalability tests complete, wait for shutdown to commence.
400  */
401 static void rcu_scale_wait_shutdown(void)
402 {
403         cond_resched_tasks_rcu_qs();
404         if (atomic_read(&n_rcu_scale_writer_finished) < nrealwriters)
405                 return;
406         while (!torture_must_stop())
407                 schedule_timeout_uninterruptible(1);
408 }
409
410 /*
411  * RCU scalability reader kthread.  Repeatedly does empty RCU read-side
412  * critical section, minimizing update-side interference.  However, the
413  * point of this test is not to evaluate reader scalability, but instead
414  * to serve as a test load for update-side scalability testing.
415  */
416 static int
417 rcu_scale_reader(void *arg)
418 {
419         unsigned long flags;
420         int idx;
421         long me = (long)arg;
422
423         VERBOSE_SCALEOUT_STRING("rcu_scale_reader task started");
424         set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
425         set_user_nice(current, MAX_NICE);
426         atomic_inc(&n_rcu_scale_reader_started);
427
428         do {
429                 local_irq_save(flags);
430                 idx = cur_ops->readlock();
431                 cur_ops->readunlock(idx);
432                 local_irq_restore(flags);
433                 rcu_scale_wait_shutdown();
434         } while (!torture_must_stop());
435         torture_kthread_stopping("rcu_scale_reader");
436         return 0;
437 }
438
439 /*
440  * Callback function for asynchronous grace periods from rcu_scale_writer().
441  */
442 static void rcu_scale_async_cb(struct rcu_head *rhp)
443 {
444         atomic_dec(this_cpu_ptr(&n_async_inflight));
445         kfree(rhp);
446 }
447
448 /*
449  * RCU scale writer kthread.  Repeatedly does a grace period.
450  */
451 static int
452 rcu_scale_writer(void *arg)
453 {
454         int i = 0;
455         int i_max;
456         unsigned long jdone;
457         long me = (long)arg;
458         struct rcu_head *rhp = NULL;
459         bool started = false, done = false, alldone = false;
460         u64 t;
461         DEFINE_TORTURE_RANDOM(tr);
462         u64 *wdp;
463         u64 *wdpp = writer_durations[me];
464
465         VERBOSE_SCALEOUT_STRING("rcu_scale_writer task started");
466         WARN_ON(!wdpp);
467         set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
468         current->flags |= PF_NO_SETAFFINITY;
469         sched_set_fifo_low(current);
470
471         if (holdoff)
472                 schedule_timeout_idle(holdoff * HZ);
473
474         /*
475          * Wait until rcu_end_inkernel_boot() is called for normal GP tests
476          * so that RCU is not always expedited for normal GP tests.
477          * The system_state test is approximate, but works well in practice.
478          */
479         while (!gp_exp && system_state != SYSTEM_RUNNING)
480                 schedule_timeout_uninterruptible(1);
481
482         t = ktime_get_mono_fast_ns();
483         if (atomic_inc_return(&n_rcu_scale_writer_started) >= nrealwriters) {
484                 t_rcu_scale_writer_started = t;
485                 if (gp_exp) {
486                         b_rcu_gp_test_started =
487                                 cur_ops->exp_completed() / 2;
488                 } else {
489                         b_rcu_gp_test_started = cur_ops->get_gp_seq();
490                 }
491         }
492
493         jdone = jiffies + minruntime * HZ;
494         do {
495                 if (writer_holdoff)
496                         udelay(writer_holdoff);
497                 if (writer_holdoff_jiffies)
498                         schedule_timeout_idle(torture_random(&tr) % writer_holdoff_jiffies + 1);
499                 wdp = &wdpp[i];
500                 *wdp = ktime_get_mono_fast_ns();
501                 if (gp_async) {
502 retry:
503                         if (!rhp)
504                                 rhp = kmalloc(sizeof(*rhp), GFP_KERNEL);
505                         if (rhp && atomic_read(this_cpu_ptr(&n_async_inflight)) < gp_async_max) {
506                                 atomic_inc(this_cpu_ptr(&n_async_inflight));
507                                 cur_ops->async(rhp, rcu_scale_async_cb);
508                                 rhp = NULL;
509                         } else if (!kthread_should_stop()) {
510                                 cur_ops->gp_barrier();
511                                 goto retry;
512                         } else {
513                                 kfree(rhp); /* Because we are stopping. */
514                         }
515                 } else if (gp_exp) {
516                         cur_ops->exp_sync();
517                 } else {
518                         cur_ops->sync();
519                 }
520                 t = ktime_get_mono_fast_ns();
521                 *wdp = t - *wdp;
522                 i_max = i;
523                 if (!started &&
524                     atomic_read(&n_rcu_scale_writer_started) >= nrealwriters)
525                         started = true;
526                 if (!done && i >= MIN_MEAS && time_after(jiffies, jdone)) {
527                         done = true;
528                         sched_set_normal(current, 0);
529                         pr_alert("%s%s rcu_scale_writer %ld has %d measurements\n",
530                                  scale_type, SCALE_FLAG, me, MIN_MEAS);
531                         if (atomic_inc_return(&n_rcu_scale_writer_finished) >=
532                             nrealwriters) {
533                                 schedule_timeout_interruptible(10);
534                                 rcu_ftrace_dump(DUMP_ALL);
535                                 SCALEOUT_STRING("Test complete");
536                                 t_rcu_scale_writer_finished = t;
537                                 if (gp_exp) {
538                                         b_rcu_gp_test_finished =
539                                                 cur_ops->exp_completed() / 2;
540                                 } else {
541                                         b_rcu_gp_test_finished =
542                                                 cur_ops->get_gp_seq();
543                                 }
544                                 if (shutdown) {
545                                         smp_mb(); /* Assign before wake. */
546                                         wake_up(&shutdown_wq);
547                                 }
548                         }
549                 }
550                 if (done && !alldone &&
551                     atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters)
552                         alldone = true;
553                 if (started && !alldone && i < MAX_MEAS - 1)
554                         i++;
555                 rcu_scale_wait_shutdown();
556         } while (!torture_must_stop());
557         if (gp_async) {
558                 cur_ops->gp_barrier();
559         }
560         writer_n_durations[me] = i_max + 1;
561         torture_kthread_stopping("rcu_scale_writer");
562         return 0;
563 }
564
565 static void
566 rcu_scale_print_module_parms(struct rcu_scale_ops *cur_ops, const char *tag)
567 {
568         pr_alert("%s" SCALE_FLAG
569                  "--- %s: gp_async=%d gp_async_max=%d gp_exp=%d holdoff=%d minruntime=%d nreaders=%d nwriters=%d writer_holdoff=%d writer_holdoff_jiffies=%d verbose=%d shutdown=%d\n",
570                  scale_type, tag, gp_async, gp_async_max, gp_exp, holdoff, minruntime, nrealreaders, nrealwriters, writer_holdoff, writer_holdoff_jiffies, verbose, shutdown);
571 }
572
573 /*
574  * Return the number if non-negative.  If -1, the number of CPUs.
575  * If less than -1, that much less than the number of CPUs, but
576  * at least one.
577  */
578 static int compute_real(int n)
579 {
580         int nr;
581
582         if (n >= 0) {
583                 nr = n;
584         } else {
585                 nr = num_online_cpus() + 1 + n;
586                 if (nr <= 0)
587                         nr = 1;
588         }
589         return nr;
590 }
591
592 /*
593  * kfree_rcu() scalability tests: Start a kfree_rcu() loop on all CPUs for number
594  * of iterations and measure total time and number of GP for all iterations to complete.
595  */
596
597 torture_param(int, kfree_nthreads, -1, "Number of threads running loops of kfree_rcu().");
598 torture_param(int, kfree_alloc_num, 8000, "Number of allocations and frees done in an iteration.");
599 torture_param(int, kfree_loops, 10, "Number of loops doing kfree_alloc_num allocations and frees.");
600 torture_param(bool, kfree_rcu_test_double, false, "Do we run a kfree_rcu() double-argument scale test?");
601 torture_param(bool, kfree_rcu_test_single, false, "Do we run a kfree_rcu() single-argument scale test?");
602
603 static struct task_struct **kfree_reader_tasks;
604 static int kfree_nrealthreads;
605 static atomic_t n_kfree_scale_thread_started;
606 static atomic_t n_kfree_scale_thread_ended;
607 static struct task_struct *kthread_tp;
608 static u64 kthread_stime;
609
610 struct kfree_obj {
611         char kfree_obj[8];
612         struct rcu_head rh;
613 };
614
615 /* Used if doing RCU-kfree'ing via call_rcu(). */
616 static void kfree_call_rcu(struct rcu_head *rh)
617 {
618         struct kfree_obj *obj = container_of(rh, struct kfree_obj, rh);
619
620         kfree(obj);
621 }
622
623 static int
624 kfree_scale_thread(void *arg)
625 {
626         int i, loop = 0;
627         long me = (long)arg;
628         struct kfree_obj *alloc_ptr;
629         u64 start_time, end_time;
630         long long mem_begin, mem_during = 0;
631         bool kfree_rcu_test_both;
632         DEFINE_TORTURE_RANDOM(tr);
633
634         VERBOSE_SCALEOUT_STRING("kfree_scale_thread task started");
635         set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
636         set_user_nice(current, MAX_NICE);
637         kfree_rcu_test_both = (kfree_rcu_test_single == kfree_rcu_test_double);
638
639         start_time = ktime_get_mono_fast_ns();
640
641         if (atomic_inc_return(&n_kfree_scale_thread_started) >= kfree_nrealthreads) {
642                 if (gp_exp)
643                         b_rcu_gp_test_started = cur_ops->exp_completed() / 2;
644                 else
645                         b_rcu_gp_test_started = cur_ops->get_gp_seq();
646         }
647
648         do {
649                 if (!mem_during) {
650                         mem_during = mem_begin = si_mem_available();
651                 } else if (loop % (kfree_loops / 4) == 0) {
652                         mem_during = (mem_during + si_mem_available()) / 2;
653                 }
654
655                 for (i = 0; i < kfree_alloc_num; i++) {
656                         alloc_ptr = kmalloc(kfree_mult * sizeof(struct kfree_obj), GFP_KERNEL);
657                         if (!alloc_ptr)
658                                 return -ENOMEM;
659
660                         if (kfree_by_call_rcu) {
661                                 call_rcu(&(alloc_ptr->rh), kfree_call_rcu);
662                                 continue;
663                         }
664
665                         // By default kfree_rcu_test_single and kfree_rcu_test_double are
666                         // initialized to false. If both have the same value (false or true)
667                         // both are randomly tested, otherwise only the one with value true
668                         // is tested.
669                         if ((kfree_rcu_test_single && !kfree_rcu_test_double) ||
670                                         (kfree_rcu_test_both && torture_random(&tr) & 0x800))
671                                 kfree_rcu_mightsleep(alloc_ptr);
672                         else
673                                 kfree_rcu(alloc_ptr, rh);
674                 }
675
676                 cond_resched();
677         } while (!torture_must_stop() && ++loop < kfree_loops);
678
679         if (atomic_inc_return(&n_kfree_scale_thread_ended) >= kfree_nrealthreads) {
680                 end_time = ktime_get_mono_fast_ns();
681
682                 if (gp_exp)
683                         b_rcu_gp_test_finished = cur_ops->exp_completed() / 2;
684                 else
685                         b_rcu_gp_test_finished = cur_ops->get_gp_seq();
686
687                 pr_alert("Total time taken by all kfree'ers: %llu ns, loops: %d, batches: %ld, memory footprint: %lldMB\n",
688                        (unsigned long long)(end_time - start_time), kfree_loops,
689                        rcuscale_seq_diff(b_rcu_gp_test_finished, b_rcu_gp_test_started),
690                        (mem_begin - mem_during) >> (20 - PAGE_SHIFT));
691
692                 if (shutdown) {
693                         smp_mb(); /* Assign before wake. */
694                         wake_up(&shutdown_wq);
695                 }
696         }
697
698         torture_kthread_stopping("kfree_scale_thread");
699         return 0;
700 }
701
702 static void
703 kfree_scale_cleanup(void)
704 {
705         int i;
706
707         if (torture_cleanup_begin())
708                 return;
709
710         if (kfree_reader_tasks) {
711                 for (i = 0; i < kfree_nrealthreads; i++)
712                         torture_stop_kthread(kfree_scale_thread,
713                                              kfree_reader_tasks[i]);
714                 kfree(kfree_reader_tasks);
715         }
716
717         torture_cleanup_end();
718 }
719
720 /*
721  * shutdown kthread.  Just waits to be awakened, then shuts down system.
722  */
723 static int
724 kfree_scale_shutdown(void *arg)
725 {
726         wait_event_idle(shutdown_wq,
727                         atomic_read(&n_kfree_scale_thread_ended) >= kfree_nrealthreads);
728
729         smp_mb(); /* Wake before output. */
730
731         kfree_scale_cleanup();
732         kernel_power_off();
733         return -EINVAL;
734 }
735
736 // Used if doing RCU-kfree'ing via call_rcu().
737 static unsigned long jiffies_at_lazy_cb;
738 static struct rcu_head lazy_test1_rh;
739 static int rcu_lazy_test1_cb_called;
740 static void call_rcu_lazy_test1(struct rcu_head *rh)
741 {
742         jiffies_at_lazy_cb = jiffies;
743         WRITE_ONCE(rcu_lazy_test1_cb_called, 1);
744 }
745
746 static int __init
747 kfree_scale_init(void)
748 {
749         int firsterr = 0;
750         long i;
751         unsigned long jif_start;
752         unsigned long orig_jif;
753
754         pr_alert("%s" SCALE_FLAG
755                  "--- kfree_rcu_test: kfree_mult=%d kfree_by_call_rcu=%d kfree_nthreads=%d kfree_alloc_num=%d kfree_loops=%d kfree_rcu_test_double=%d kfree_rcu_test_single=%d\n",
756                  scale_type, kfree_mult, kfree_by_call_rcu, kfree_nthreads, kfree_alloc_num, kfree_loops, kfree_rcu_test_double, kfree_rcu_test_single);
757
758         // Also, do a quick self-test to ensure laziness is as much as
759         // expected.
760         if (kfree_by_call_rcu && !IS_ENABLED(CONFIG_RCU_LAZY)) {
761                 pr_alert("CONFIG_RCU_LAZY is disabled, falling back to kfree_rcu() for delayed RCU kfree'ing\n");
762                 kfree_by_call_rcu = 0;
763         }
764
765         if (kfree_by_call_rcu) {
766                 /* do a test to check the timeout. */
767                 orig_jif = rcu_lazy_get_jiffies_till_flush();
768
769                 rcu_lazy_set_jiffies_till_flush(2 * HZ);
770                 rcu_barrier();
771
772                 jif_start = jiffies;
773                 jiffies_at_lazy_cb = 0;
774                 call_rcu(&lazy_test1_rh, call_rcu_lazy_test1);
775
776                 smp_cond_load_relaxed(&rcu_lazy_test1_cb_called, VAL == 1);
777
778                 rcu_lazy_set_jiffies_till_flush(orig_jif);
779
780                 if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start < 2 * HZ)) {
781                         pr_alert("ERROR: call_rcu() CBs are not being lazy as expected!\n");
782                         WARN_ON_ONCE(1);
783                         return -1;
784                 }
785
786                 if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start > 3 * HZ)) {
787                         pr_alert("ERROR: call_rcu() CBs are being too lazy!\n");
788                         WARN_ON_ONCE(1);
789                         return -1;
790                 }
791         }
792
793         kfree_nrealthreads = compute_real(kfree_nthreads);
794         /* Start up the kthreads. */
795         if (shutdown) {
796                 init_waitqueue_head(&shutdown_wq);
797                 firsterr = torture_create_kthread(kfree_scale_shutdown, NULL,
798                                                   shutdown_task);
799                 if (torture_init_error(firsterr))
800                         goto unwind;
801                 schedule_timeout_uninterruptible(1);
802         }
803
804         pr_alert("kfree object size=%zu, kfree_by_call_rcu=%d\n",
805                         kfree_mult * sizeof(struct kfree_obj),
806                         kfree_by_call_rcu);
807
808         kfree_reader_tasks = kcalloc(kfree_nrealthreads, sizeof(kfree_reader_tasks[0]),
809                                GFP_KERNEL);
810         if (kfree_reader_tasks == NULL) {
811                 firsterr = -ENOMEM;
812                 goto unwind;
813         }
814
815         for (i = 0; i < kfree_nrealthreads; i++) {
816                 firsterr = torture_create_kthread(kfree_scale_thread, (void *)i,
817                                                   kfree_reader_tasks[i]);
818                 if (torture_init_error(firsterr))
819                         goto unwind;
820         }
821
822         while (atomic_read(&n_kfree_scale_thread_started) < kfree_nrealthreads)
823                 schedule_timeout_uninterruptible(1);
824
825         torture_init_end();
826         return 0;
827
828 unwind:
829         torture_init_end();
830         kfree_scale_cleanup();
831         return firsterr;
832 }
833
834 static void
835 rcu_scale_cleanup(void)
836 {
837         int i;
838         int j;
839         int ngps = 0;
840         u64 *wdp;
841         u64 *wdpp;
842
843         /*
844          * Would like warning at start, but everything is expedited
845          * during the mid-boot phase, so have to wait till the end.
846          */
847         if (rcu_gp_is_expedited() && !rcu_gp_is_normal() && !gp_exp)
848                 SCALEOUT_ERRSTRING("All grace periods expedited, no normal ones to measure!");
849         if (rcu_gp_is_normal() && gp_exp)
850                 SCALEOUT_ERRSTRING("All grace periods normal, no expedited ones to measure!");
851         if (gp_exp && gp_async)
852                 SCALEOUT_ERRSTRING("No expedited async GPs, so went with async!");
853
854         // If built-in, just report all of the GP kthread's CPU time.
855         if (IS_BUILTIN(CONFIG_RCU_SCALE_TEST) && !kthread_tp && cur_ops->rso_gp_kthread)
856                 kthread_tp = cur_ops->rso_gp_kthread();
857         if (kthread_tp) {
858                 u32 ns;
859                 u64 us;
860
861                 kthread_stime = kthread_tp->stime - kthread_stime;
862                 us = div_u64_rem(kthread_stime, 1000, &ns);
863                 pr_info("rcu_scale: Grace-period kthread CPU time: %llu.%03u us\n", us, ns);
864                 show_rcu_gp_kthreads();
865         }
866         if (kfree_rcu_test) {
867                 kfree_scale_cleanup();
868                 return;
869         }
870
871         if (torture_cleanup_begin())
872                 return;
873         if (!cur_ops) {
874                 torture_cleanup_end();
875                 return;
876         }
877
878         if (reader_tasks) {
879                 for (i = 0; i < nrealreaders; i++)
880                         torture_stop_kthread(rcu_scale_reader,
881                                              reader_tasks[i]);
882                 kfree(reader_tasks);
883         }
884
885         if (writer_tasks) {
886                 for (i = 0; i < nrealwriters; i++) {
887                         torture_stop_kthread(rcu_scale_writer,
888                                              writer_tasks[i]);
889                         if (!writer_n_durations)
890                                 continue;
891                         j = writer_n_durations[i];
892                         pr_alert("%s%s writer %d gps: %d\n",
893                                  scale_type, SCALE_FLAG, i, j);
894                         ngps += j;
895                 }
896                 pr_alert("%s%s start: %llu end: %llu duration: %llu gps: %d batches: %ld\n",
897                          scale_type, SCALE_FLAG,
898                          t_rcu_scale_writer_started, t_rcu_scale_writer_finished,
899                          t_rcu_scale_writer_finished -
900                          t_rcu_scale_writer_started,
901                          ngps,
902                          rcuscale_seq_diff(b_rcu_gp_test_finished,
903                                            b_rcu_gp_test_started));
904                 for (i = 0; i < nrealwriters; i++) {
905                         if (!writer_durations)
906                                 break;
907                         if (!writer_n_durations)
908                                 continue;
909                         wdpp = writer_durations[i];
910                         if (!wdpp)
911                                 continue;
912                         for (j = 0; j < writer_n_durations[i]; j++) {
913                                 wdp = &wdpp[j];
914                                 pr_alert("%s%s %4d writer-duration: %5d %llu\n",
915                                         scale_type, SCALE_FLAG,
916                                         i, j, *wdp);
917                                 if (j % 100 == 0)
918                                         schedule_timeout_uninterruptible(1);
919                         }
920                         kfree(writer_durations[i]);
921                 }
922                 kfree(writer_tasks);
923                 kfree(writer_durations);
924                 kfree(writer_n_durations);
925         }
926
927         /* Do torture-type-specific cleanup operations.  */
928         if (cur_ops->cleanup != NULL)
929                 cur_ops->cleanup();
930
931         torture_cleanup_end();
932 }
933
934 /*
935  * RCU scalability shutdown kthread.  Just waits to be awakened, then shuts
936  * down system.
937  */
938 static int
939 rcu_scale_shutdown(void *arg)
940 {
941         wait_event_idle(shutdown_wq, atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters);
942         smp_mb(); /* Wake before output. */
943         rcu_scale_cleanup();
944         kernel_power_off();
945         return -EINVAL;
946 }
947
948 static int __init
949 rcu_scale_init(void)
950 {
951         long i;
952         int firsterr = 0;
953         static struct rcu_scale_ops *scale_ops[] = {
954                 &rcu_ops, &srcu_ops, &srcud_ops, TASKS_OPS TASKS_RUDE_OPS TASKS_TRACING_OPS
955         };
956
957         if (!torture_init_begin(scale_type, verbose))
958                 return -EBUSY;
959
960         /* Process args and announce that the scalability'er is on the job. */
961         for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
962                 cur_ops = scale_ops[i];
963                 if (strcmp(scale_type, cur_ops->name) == 0)
964                         break;
965         }
966         if (i == ARRAY_SIZE(scale_ops)) {
967                 pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
968                 pr_alert("rcu-scale types:");
969                 for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
970                         pr_cont(" %s", scale_ops[i]->name);
971                 pr_cont("\n");
972                 firsterr = -EINVAL;
973                 cur_ops = NULL;
974                 goto unwind;
975         }
976         if (cur_ops->init)
977                 cur_ops->init();
978
979         if (cur_ops->rso_gp_kthread) {
980                 kthread_tp = cur_ops->rso_gp_kthread();
981                 if (kthread_tp)
982                         kthread_stime = kthread_tp->stime;
983         }
984         if (kfree_rcu_test)
985                 return kfree_scale_init();
986
987         nrealwriters = compute_real(nwriters);
988         nrealreaders = compute_real(nreaders);
989         atomic_set(&n_rcu_scale_reader_started, 0);
990         atomic_set(&n_rcu_scale_writer_started, 0);
991         atomic_set(&n_rcu_scale_writer_finished, 0);
992         rcu_scale_print_module_parms(cur_ops, "Start of test");
993
994         /* Start up the kthreads. */
995
996         if (shutdown) {
997                 init_waitqueue_head(&shutdown_wq);
998                 firsterr = torture_create_kthread(rcu_scale_shutdown, NULL,
999                                                   shutdown_task);
1000                 if (torture_init_error(firsterr))
1001                         goto unwind;
1002                 schedule_timeout_uninterruptible(1);
1003         }
1004         reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]),
1005                                GFP_KERNEL);
1006         if (reader_tasks == NULL) {
1007                 SCALEOUT_ERRSTRING("out of memory");
1008                 firsterr = -ENOMEM;
1009                 goto unwind;
1010         }
1011         for (i = 0; i < nrealreaders; i++) {
1012                 firsterr = torture_create_kthread(rcu_scale_reader, (void *)i,
1013                                                   reader_tasks[i]);
1014                 if (torture_init_error(firsterr))
1015                         goto unwind;
1016         }
1017         while (atomic_read(&n_rcu_scale_reader_started) < nrealreaders)
1018                 schedule_timeout_uninterruptible(1);
1019         writer_tasks = kcalloc(nrealwriters, sizeof(reader_tasks[0]),
1020                                GFP_KERNEL);
1021         writer_durations = kcalloc(nrealwriters, sizeof(*writer_durations),
1022                                    GFP_KERNEL);
1023         writer_n_durations =
1024                 kcalloc(nrealwriters, sizeof(*writer_n_durations),
1025                         GFP_KERNEL);
1026         if (!writer_tasks || !writer_durations || !writer_n_durations) {
1027                 SCALEOUT_ERRSTRING("out of memory");
1028                 firsterr = -ENOMEM;
1029                 goto unwind;
1030         }
1031         for (i = 0; i < nrealwriters; i++) {
1032                 writer_durations[i] =
1033                         kcalloc(MAX_MEAS, sizeof(*writer_durations[i]),
1034                                 GFP_KERNEL);
1035                 if (!writer_durations[i]) {
1036                         firsterr = -ENOMEM;
1037                         goto unwind;
1038                 }
1039                 firsterr = torture_create_kthread(rcu_scale_writer, (void *)i,
1040                                                   writer_tasks[i]);
1041                 if (torture_init_error(firsterr))
1042                         goto unwind;
1043         }
1044         torture_init_end();
1045         return 0;
1046
1047 unwind:
1048         torture_init_end();
1049         rcu_scale_cleanup();
1050         if (shutdown) {
1051                 WARN_ON(!IS_MODULE(CONFIG_RCU_SCALE_TEST));
1052                 kernel_power_off();
1053         }
1054         return firsterr;
1055 }
1056
1057 module_init(rcu_scale_init);
1058 module_exit(rcu_scale_cleanup);