]> git.samba.org - sfrench/cifs-2.6.git/blob - kernel/power/swap.c
fix short copy handling in copy_mc_pipe_to_iter()
[sfrench/cifs-2.6.git] / kernel / power / swap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/swap.c
4  *
5  * This file provides functions for reading the suspend image from
6  * and writing it to a swap partition.
7  *
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11  */
12
13 #define pr_fmt(fmt) "PM: " fmt
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/device.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/pm.h>
25 #include <linux/slab.h>
26 #include <linux/lzo.h>
27 #include <linux/vmalloc.h>
28 #include <linux/cpumask.h>
29 #include <linux/atomic.h>
30 #include <linux/kthread.h>
31 #include <linux/crc32.h>
32 #include <linux/ktime.h>
33
34 #include "power.h"
35
36 #define HIBERNATE_SIG   "S1SUSPEND"
37
38 u32 swsusp_hardware_signature;
39
40 /*
41  * When reading an {un,}compressed image, we may restore pages in place,
42  * in which case some architectures need these pages cleaning before they
43  * can be executed. We don't know which pages these may be, so clean the lot.
44  */
45 static bool clean_pages_on_read;
46 static bool clean_pages_on_decompress;
47
48 /*
49  *      The swap map is a data structure used for keeping track of each page
50  *      written to a swap partition.  It consists of many swap_map_page
51  *      structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
52  *      These structures are stored on the swap and linked together with the
53  *      help of the .next_swap member.
54  *
55  *      The swap map is created during suspend.  The swap map pages are
56  *      allocated and populated one at a time, so we only need one memory
57  *      page to set up the entire structure.
58  *
59  *      During resume we pick up all swap_map_page structures into a list.
60  */
61
62 #define MAP_PAGE_ENTRIES        (PAGE_SIZE / sizeof(sector_t) - 1)
63
64 /*
65  * Number of free pages that are not high.
66  */
67 static inline unsigned long low_free_pages(void)
68 {
69         return nr_free_pages() - nr_free_highpages();
70 }
71
72 /*
73  * Number of pages required to be kept free while writing the image. Always
74  * half of all available low pages before the writing starts.
75  */
76 static inline unsigned long reqd_free_pages(void)
77 {
78         return low_free_pages() / 2;
79 }
80
81 struct swap_map_page {
82         sector_t entries[MAP_PAGE_ENTRIES];
83         sector_t next_swap;
84 };
85
86 struct swap_map_page_list {
87         struct swap_map_page *map;
88         struct swap_map_page_list *next;
89 };
90
91 /*
92  *      The swap_map_handle structure is used for handling swap in
93  *      a file-alike way
94  */
95
96 struct swap_map_handle {
97         struct swap_map_page *cur;
98         struct swap_map_page_list *maps;
99         sector_t cur_swap;
100         sector_t first_sector;
101         unsigned int k;
102         unsigned long reqd_free_pages;
103         u32 crc32;
104 };
105
106 struct swsusp_header {
107         char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
108                       sizeof(u32) - sizeof(u32)];
109         u32     hw_sig;
110         u32     crc32;
111         sector_t image;
112         unsigned int flags;     /* Flags to pass to the "boot" kernel */
113         char    orig_sig[10];
114         char    sig[10];
115 } __packed;
116
117 static struct swsusp_header *swsusp_header;
118
119 /*
120  *      The following functions are used for tracing the allocated
121  *      swap pages, so that they can be freed in case of an error.
122  */
123
124 struct swsusp_extent {
125         struct rb_node node;
126         unsigned long start;
127         unsigned long end;
128 };
129
130 static struct rb_root swsusp_extents = RB_ROOT;
131
132 static int swsusp_extents_insert(unsigned long swap_offset)
133 {
134         struct rb_node **new = &(swsusp_extents.rb_node);
135         struct rb_node *parent = NULL;
136         struct swsusp_extent *ext;
137
138         /* Figure out where to put the new node */
139         while (*new) {
140                 ext = rb_entry(*new, struct swsusp_extent, node);
141                 parent = *new;
142                 if (swap_offset < ext->start) {
143                         /* Try to merge */
144                         if (swap_offset == ext->start - 1) {
145                                 ext->start--;
146                                 return 0;
147                         }
148                         new = &((*new)->rb_left);
149                 } else if (swap_offset > ext->end) {
150                         /* Try to merge */
151                         if (swap_offset == ext->end + 1) {
152                                 ext->end++;
153                                 return 0;
154                         }
155                         new = &((*new)->rb_right);
156                 } else {
157                         /* It already is in the tree */
158                         return -EINVAL;
159                 }
160         }
161         /* Add the new node and rebalance the tree. */
162         ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
163         if (!ext)
164                 return -ENOMEM;
165
166         ext->start = swap_offset;
167         ext->end = swap_offset;
168         rb_link_node(&ext->node, parent, new);
169         rb_insert_color(&ext->node, &swsusp_extents);
170         return 0;
171 }
172
173 /*
174  *      alloc_swapdev_block - allocate a swap page and register that it has
175  *      been allocated, so that it can be freed in case of an error.
176  */
177
178 sector_t alloc_swapdev_block(int swap)
179 {
180         unsigned long offset;
181
182         offset = swp_offset(get_swap_page_of_type(swap));
183         if (offset) {
184                 if (swsusp_extents_insert(offset))
185                         swap_free(swp_entry(swap, offset));
186                 else
187                         return swapdev_block(swap, offset);
188         }
189         return 0;
190 }
191
192 /*
193  *      free_all_swap_pages - free swap pages allocated for saving image data.
194  *      It also frees the extents used to register which swap entries had been
195  *      allocated.
196  */
197
198 void free_all_swap_pages(int swap)
199 {
200         struct rb_node *node;
201
202         while ((node = swsusp_extents.rb_node)) {
203                 struct swsusp_extent *ext;
204                 unsigned long offset;
205
206                 ext = rb_entry(node, struct swsusp_extent, node);
207                 rb_erase(node, &swsusp_extents);
208                 for (offset = ext->start; offset <= ext->end; offset++)
209                         swap_free(swp_entry(swap, offset));
210
211                 kfree(ext);
212         }
213 }
214
215 int swsusp_swap_in_use(void)
216 {
217         return (swsusp_extents.rb_node != NULL);
218 }
219
220 /*
221  * General things
222  */
223
224 static unsigned short root_swap = 0xffff;
225 static struct block_device *hib_resume_bdev;
226
227 struct hib_bio_batch {
228         atomic_t                count;
229         wait_queue_head_t       wait;
230         blk_status_t            error;
231         struct blk_plug         plug;
232 };
233
234 static void hib_init_batch(struct hib_bio_batch *hb)
235 {
236         atomic_set(&hb->count, 0);
237         init_waitqueue_head(&hb->wait);
238         hb->error = BLK_STS_OK;
239         blk_start_plug(&hb->plug);
240 }
241
242 static void hib_finish_batch(struct hib_bio_batch *hb)
243 {
244         blk_finish_plug(&hb->plug);
245 }
246
247 static void hib_end_io(struct bio *bio)
248 {
249         struct hib_bio_batch *hb = bio->bi_private;
250         struct page *page = bio_first_page_all(bio);
251
252         if (bio->bi_status) {
253                 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
254                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
255                          (unsigned long long)bio->bi_iter.bi_sector);
256         }
257
258         if (bio_data_dir(bio) == WRITE)
259                 put_page(page);
260         else if (clean_pages_on_read)
261                 flush_icache_range((unsigned long)page_address(page),
262                                    (unsigned long)page_address(page) + PAGE_SIZE);
263
264         if (bio->bi_status && !hb->error)
265                 hb->error = bio->bi_status;
266         if (atomic_dec_and_test(&hb->count))
267                 wake_up(&hb->wait);
268
269         bio_put(bio);
270 }
271
272 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
273                 struct hib_bio_batch *hb)
274 {
275         struct page *page = virt_to_page(addr);
276         struct bio *bio;
277         int error = 0;
278
279         bio = bio_alloc(hib_resume_bdev, 1, op | op_flags,
280                         GFP_NOIO | __GFP_HIGH);
281         bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
282
283         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
284                 pr_err("Adding page to bio failed at %llu\n",
285                        (unsigned long long)bio->bi_iter.bi_sector);
286                 bio_put(bio);
287                 return -EFAULT;
288         }
289
290         if (hb) {
291                 bio->bi_end_io = hib_end_io;
292                 bio->bi_private = hb;
293                 atomic_inc(&hb->count);
294                 submit_bio(bio);
295         } else {
296                 error = submit_bio_wait(bio);
297                 bio_put(bio);
298         }
299
300         return error;
301 }
302
303 static int hib_wait_io(struct hib_bio_batch *hb)
304 {
305         /*
306          * We are relying on the behavior of blk_plug that a thread with
307          * a plug will flush the plug list before sleeping.
308          */
309         wait_event(hb->wait, atomic_read(&hb->count) == 0);
310         return blk_status_to_errno(hb->error);
311 }
312
313 /*
314  * Saving part
315  */
316 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
317 {
318         int error;
319
320         hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
321                       swsusp_header, NULL);
322         if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
323             !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
324                 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
325                 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
326                 swsusp_header->image = handle->first_sector;
327                 if (swsusp_hardware_signature) {
328                         swsusp_header->hw_sig = swsusp_hardware_signature;
329                         flags |= SF_HW_SIG;
330                 }
331                 swsusp_header->flags = flags;
332                 if (flags & SF_CRC32_MODE)
333                         swsusp_header->crc32 = handle->crc32;
334                 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
335                                       swsusp_resume_block, swsusp_header, NULL);
336         } else {
337                 pr_err("Swap header not found!\n");
338                 error = -ENODEV;
339         }
340         return error;
341 }
342
343 /**
344  *      swsusp_swap_check - check if the resume device is a swap device
345  *      and get its index (if so)
346  *
347  *      This is called before saving image
348  */
349 static int swsusp_swap_check(void)
350 {
351         int res;
352
353         if (swsusp_resume_device)
354                 res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
355         else
356                 res = find_first_swap(&swsusp_resume_device);
357         if (res < 0)
358                 return res;
359         root_swap = res;
360
361         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, FMODE_WRITE,
362                         NULL);
363         if (IS_ERR(hib_resume_bdev))
364                 return PTR_ERR(hib_resume_bdev);
365
366         res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
367         if (res < 0)
368                 blkdev_put(hib_resume_bdev, FMODE_WRITE);
369
370         return res;
371 }
372
373 /**
374  *      write_page - Write one page to given swap location.
375  *      @buf:           Address we're writing.
376  *      @offset:        Offset of the swap page we're writing to.
377  *      @hb:            bio completion batch
378  */
379
380 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
381 {
382         void *src;
383         int ret;
384
385         if (!offset)
386                 return -ENOSPC;
387
388         if (hb) {
389                 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
390                                               __GFP_NORETRY);
391                 if (src) {
392                         copy_page(src, buf);
393                 } else {
394                         ret = hib_wait_io(hb); /* Free pages */
395                         if (ret)
396                                 return ret;
397                         src = (void *)__get_free_page(GFP_NOIO |
398                                                       __GFP_NOWARN |
399                                                       __GFP_NORETRY);
400                         if (src) {
401                                 copy_page(src, buf);
402                         } else {
403                                 WARN_ON_ONCE(1);
404                                 hb = NULL;      /* Go synchronous */
405                                 src = buf;
406                         }
407                 }
408         } else {
409                 src = buf;
410         }
411         return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
412 }
413
414 static void release_swap_writer(struct swap_map_handle *handle)
415 {
416         if (handle->cur)
417                 free_page((unsigned long)handle->cur);
418         handle->cur = NULL;
419 }
420
421 static int get_swap_writer(struct swap_map_handle *handle)
422 {
423         int ret;
424
425         ret = swsusp_swap_check();
426         if (ret) {
427                 if (ret != -ENOSPC)
428                         pr_err("Cannot find swap device, try swapon -a\n");
429                 return ret;
430         }
431         handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
432         if (!handle->cur) {
433                 ret = -ENOMEM;
434                 goto err_close;
435         }
436         handle->cur_swap = alloc_swapdev_block(root_swap);
437         if (!handle->cur_swap) {
438                 ret = -ENOSPC;
439                 goto err_rel;
440         }
441         handle->k = 0;
442         handle->reqd_free_pages = reqd_free_pages();
443         handle->first_sector = handle->cur_swap;
444         return 0;
445 err_rel:
446         release_swap_writer(handle);
447 err_close:
448         swsusp_close(FMODE_WRITE);
449         return ret;
450 }
451
452 static int swap_write_page(struct swap_map_handle *handle, void *buf,
453                 struct hib_bio_batch *hb)
454 {
455         int error = 0;
456         sector_t offset;
457
458         if (!handle->cur)
459                 return -EINVAL;
460         offset = alloc_swapdev_block(root_swap);
461         error = write_page(buf, offset, hb);
462         if (error)
463                 return error;
464         handle->cur->entries[handle->k++] = offset;
465         if (handle->k >= MAP_PAGE_ENTRIES) {
466                 offset = alloc_swapdev_block(root_swap);
467                 if (!offset)
468                         return -ENOSPC;
469                 handle->cur->next_swap = offset;
470                 error = write_page(handle->cur, handle->cur_swap, hb);
471                 if (error)
472                         goto out;
473                 clear_page(handle->cur);
474                 handle->cur_swap = offset;
475                 handle->k = 0;
476
477                 if (hb && low_free_pages() <= handle->reqd_free_pages) {
478                         error = hib_wait_io(hb);
479                         if (error)
480                                 goto out;
481                         /*
482                          * Recalculate the number of required free pages, to
483                          * make sure we never take more than half.
484                          */
485                         handle->reqd_free_pages = reqd_free_pages();
486                 }
487         }
488  out:
489         return error;
490 }
491
492 static int flush_swap_writer(struct swap_map_handle *handle)
493 {
494         if (handle->cur && handle->cur_swap)
495                 return write_page(handle->cur, handle->cur_swap, NULL);
496         else
497                 return -EINVAL;
498 }
499
500 static int swap_writer_finish(struct swap_map_handle *handle,
501                 unsigned int flags, int error)
502 {
503         if (!error) {
504                 pr_info("S");
505                 error = mark_swapfiles(handle, flags);
506                 pr_cont("|\n");
507                 flush_swap_writer(handle);
508         }
509
510         if (error)
511                 free_all_swap_pages(root_swap);
512         release_swap_writer(handle);
513         swsusp_close(FMODE_WRITE);
514
515         return error;
516 }
517
518 /* We need to remember how much compressed data we need to read. */
519 #define LZO_HEADER      sizeof(size_t)
520
521 /* Number of pages/bytes we'll compress at one time. */
522 #define LZO_UNC_PAGES   32
523 #define LZO_UNC_SIZE    (LZO_UNC_PAGES * PAGE_SIZE)
524
525 /* Number of pages/bytes we need for compressed data (worst case). */
526 #define LZO_CMP_PAGES   DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
527                                      LZO_HEADER, PAGE_SIZE)
528 #define LZO_CMP_SIZE    (LZO_CMP_PAGES * PAGE_SIZE)
529
530 /* Maximum number of threads for compression/decompression. */
531 #define LZO_THREADS     3
532
533 /* Minimum/maximum number of pages for read buffering. */
534 #define LZO_MIN_RD_PAGES        1024
535 #define LZO_MAX_RD_PAGES        8192
536
537
538 /**
539  *      save_image - save the suspend image data
540  */
541
542 static int save_image(struct swap_map_handle *handle,
543                       struct snapshot_handle *snapshot,
544                       unsigned int nr_to_write)
545 {
546         unsigned int m;
547         int ret;
548         int nr_pages;
549         int err2;
550         struct hib_bio_batch hb;
551         ktime_t start;
552         ktime_t stop;
553
554         hib_init_batch(&hb);
555
556         pr_info("Saving image data pages (%u pages)...\n",
557                 nr_to_write);
558         m = nr_to_write / 10;
559         if (!m)
560                 m = 1;
561         nr_pages = 0;
562         start = ktime_get();
563         while (1) {
564                 ret = snapshot_read_next(snapshot);
565                 if (ret <= 0)
566                         break;
567                 ret = swap_write_page(handle, data_of(*snapshot), &hb);
568                 if (ret)
569                         break;
570                 if (!(nr_pages % m))
571                         pr_info("Image saving progress: %3d%%\n",
572                                 nr_pages / m * 10);
573                 nr_pages++;
574         }
575         err2 = hib_wait_io(&hb);
576         hib_finish_batch(&hb);
577         stop = ktime_get();
578         if (!ret)
579                 ret = err2;
580         if (!ret)
581                 pr_info("Image saving done\n");
582         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
583         return ret;
584 }
585
586 /**
587  * Structure used for CRC32.
588  */
589 struct crc_data {
590         struct task_struct *thr;                  /* thread */
591         atomic_t ready;                           /* ready to start flag */
592         atomic_t stop;                            /* ready to stop flag */
593         unsigned run_threads;                     /* nr current threads */
594         wait_queue_head_t go;                     /* start crc update */
595         wait_queue_head_t done;                   /* crc update done */
596         u32 *crc32;                               /* points to handle's crc32 */
597         size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
598         unsigned char *unc[LZO_THREADS];          /* uncompressed data */
599 };
600
601 /**
602  * CRC32 update function that runs in its own thread.
603  */
604 static int crc32_threadfn(void *data)
605 {
606         struct crc_data *d = data;
607         unsigned i;
608
609         while (1) {
610                 wait_event(d->go, atomic_read(&d->ready) ||
611                                   kthread_should_stop());
612                 if (kthread_should_stop()) {
613                         d->thr = NULL;
614                         atomic_set(&d->stop, 1);
615                         wake_up(&d->done);
616                         break;
617                 }
618                 atomic_set(&d->ready, 0);
619
620                 for (i = 0; i < d->run_threads; i++)
621                         *d->crc32 = crc32_le(*d->crc32,
622                                              d->unc[i], *d->unc_len[i]);
623                 atomic_set(&d->stop, 1);
624                 wake_up(&d->done);
625         }
626         return 0;
627 }
628 /**
629  * Structure used for LZO data compression.
630  */
631 struct cmp_data {
632         struct task_struct *thr;                  /* thread */
633         atomic_t ready;                           /* ready to start flag */
634         atomic_t stop;                            /* ready to stop flag */
635         int ret;                                  /* return code */
636         wait_queue_head_t go;                     /* start compression */
637         wait_queue_head_t done;                   /* compression done */
638         size_t unc_len;                           /* uncompressed length */
639         size_t cmp_len;                           /* compressed length */
640         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
641         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
642         unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
643 };
644
645 /**
646  * Compression function that runs in its own thread.
647  */
648 static int lzo_compress_threadfn(void *data)
649 {
650         struct cmp_data *d = data;
651
652         while (1) {
653                 wait_event(d->go, atomic_read(&d->ready) ||
654                                   kthread_should_stop());
655                 if (kthread_should_stop()) {
656                         d->thr = NULL;
657                         d->ret = -1;
658                         atomic_set(&d->stop, 1);
659                         wake_up(&d->done);
660                         break;
661                 }
662                 atomic_set(&d->ready, 0);
663
664                 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
665                                           d->cmp + LZO_HEADER, &d->cmp_len,
666                                           d->wrk);
667                 atomic_set(&d->stop, 1);
668                 wake_up(&d->done);
669         }
670         return 0;
671 }
672
673 /**
674  * save_image_lzo - Save the suspend image data compressed with LZO.
675  * @handle: Swap map handle to use for saving the image.
676  * @snapshot: Image to read data from.
677  * @nr_to_write: Number of pages to save.
678  */
679 static int save_image_lzo(struct swap_map_handle *handle,
680                           struct snapshot_handle *snapshot,
681                           unsigned int nr_to_write)
682 {
683         unsigned int m;
684         int ret = 0;
685         int nr_pages;
686         int err2;
687         struct hib_bio_batch hb;
688         ktime_t start;
689         ktime_t stop;
690         size_t off;
691         unsigned thr, run_threads, nr_threads;
692         unsigned char *page = NULL;
693         struct cmp_data *data = NULL;
694         struct crc_data *crc = NULL;
695
696         hib_init_batch(&hb);
697
698         /*
699          * We'll limit the number of threads for compression to limit memory
700          * footprint.
701          */
702         nr_threads = num_online_cpus() - 1;
703         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
704
705         page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
706         if (!page) {
707                 pr_err("Failed to allocate LZO page\n");
708                 ret = -ENOMEM;
709                 goto out_clean;
710         }
711
712         data = vzalloc(array_size(nr_threads, sizeof(*data)));
713         if (!data) {
714                 pr_err("Failed to allocate LZO data\n");
715                 ret = -ENOMEM;
716                 goto out_clean;
717         }
718
719         crc = kzalloc(sizeof(*crc), GFP_KERNEL);
720         if (!crc) {
721                 pr_err("Failed to allocate crc\n");
722                 ret = -ENOMEM;
723                 goto out_clean;
724         }
725
726         /*
727          * Start the compression threads.
728          */
729         for (thr = 0; thr < nr_threads; thr++) {
730                 init_waitqueue_head(&data[thr].go);
731                 init_waitqueue_head(&data[thr].done);
732
733                 data[thr].thr = kthread_run(lzo_compress_threadfn,
734                                             &data[thr],
735                                             "image_compress/%u", thr);
736                 if (IS_ERR(data[thr].thr)) {
737                         data[thr].thr = NULL;
738                         pr_err("Cannot start compression threads\n");
739                         ret = -ENOMEM;
740                         goto out_clean;
741                 }
742         }
743
744         /*
745          * Start the CRC32 thread.
746          */
747         init_waitqueue_head(&crc->go);
748         init_waitqueue_head(&crc->done);
749
750         handle->crc32 = 0;
751         crc->crc32 = &handle->crc32;
752         for (thr = 0; thr < nr_threads; thr++) {
753                 crc->unc[thr] = data[thr].unc;
754                 crc->unc_len[thr] = &data[thr].unc_len;
755         }
756
757         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
758         if (IS_ERR(crc->thr)) {
759                 crc->thr = NULL;
760                 pr_err("Cannot start CRC32 thread\n");
761                 ret = -ENOMEM;
762                 goto out_clean;
763         }
764
765         /*
766          * Adjust the number of required free pages after all allocations have
767          * been done. We don't want to run out of pages when writing.
768          */
769         handle->reqd_free_pages = reqd_free_pages();
770
771         pr_info("Using %u thread(s) for compression\n", nr_threads);
772         pr_info("Compressing and saving image data (%u pages)...\n",
773                 nr_to_write);
774         m = nr_to_write / 10;
775         if (!m)
776                 m = 1;
777         nr_pages = 0;
778         start = ktime_get();
779         for (;;) {
780                 for (thr = 0; thr < nr_threads; thr++) {
781                         for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
782                                 ret = snapshot_read_next(snapshot);
783                                 if (ret < 0)
784                                         goto out_finish;
785
786                                 if (!ret)
787                                         break;
788
789                                 memcpy(data[thr].unc + off,
790                                        data_of(*snapshot), PAGE_SIZE);
791
792                                 if (!(nr_pages % m))
793                                         pr_info("Image saving progress: %3d%%\n",
794                                                 nr_pages / m * 10);
795                                 nr_pages++;
796                         }
797                         if (!off)
798                                 break;
799
800                         data[thr].unc_len = off;
801
802                         atomic_set(&data[thr].ready, 1);
803                         wake_up(&data[thr].go);
804                 }
805
806                 if (!thr)
807                         break;
808
809                 crc->run_threads = thr;
810                 atomic_set(&crc->ready, 1);
811                 wake_up(&crc->go);
812
813                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
814                         wait_event(data[thr].done,
815                                    atomic_read(&data[thr].stop));
816                         atomic_set(&data[thr].stop, 0);
817
818                         ret = data[thr].ret;
819
820                         if (ret < 0) {
821                                 pr_err("LZO compression failed\n");
822                                 goto out_finish;
823                         }
824
825                         if (unlikely(!data[thr].cmp_len ||
826                                      data[thr].cmp_len >
827                                      lzo1x_worst_compress(data[thr].unc_len))) {
828                                 pr_err("Invalid LZO compressed length\n");
829                                 ret = -1;
830                                 goto out_finish;
831                         }
832
833                         *(size_t *)data[thr].cmp = data[thr].cmp_len;
834
835                         /*
836                          * Given we are writing one page at a time to disk, we
837                          * copy that much from the buffer, although the last
838                          * bit will likely be smaller than full page. This is
839                          * OK - we saved the length of the compressed data, so
840                          * any garbage at the end will be discarded when we
841                          * read it.
842                          */
843                         for (off = 0;
844                              off < LZO_HEADER + data[thr].cmp_len;
845                              off += PAGE_SIZE) {
846                                 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
847
848                                 ret = swap_write_page(handle, page, &hb);
849                                 if (ret)
850                                         goto out_finish;
851                         }
852                 }
853
854                 wait_event(crc->done, atomic_read(&crc->stop));
855                 atomic_set(&crc->stop, 0);
856         }
857
858 out_finish:
859         err2 = hib_wait_io(&hb);
860         stop = ktime_get();
861         if (!ret)
862                 ret = err2;
863         if (!ret)
864                 pr_info("Image saving done\n");
865         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
866 out_clean:
867         hib_finish_batch(&hb);
868         if (crc) {
869                 if (crc->thr)
870                         kthread_stop(crc->thr);
871                 kfree(crc);
872         }
873         if (data) {
874                 for (thr = 0; thr < nr_threads; thr++)
875                         if (data[thr].thr)
876                                 kthread_stop(data[thr].thr);
877                 vfree(data);
878         }
879         if (page) free_page((unsigned long)page);
880
881         return ret;
882 }
883
884 /**
885  *      enough_swap - Make sure we have enough swap to save the image.
886  *
887  *      Returns TRUE or FALSE after checking the total amount of swap
888  *      space available from the resume partition.
889  */
890
891 static int enough_swap(unsigned int nr_pages)
892 {
893         unsigned int free_swap = count_swap_pages(root_swap, 1);
894         unsigned int required;
895
896         pr_debug("Free swap pages: %u\n", free_swap);
897
898         required = PAGES_FOR_IO + nr_pages;
899         return free_swap > required;
900 }
901
902 /**
903  *      swsusp_write - Write entire image and metadata.
904  *      @flags: flags to pass to the "boot" kernel in the image header
905  *
906  *      It is important _NOT_ to umount filesystems at this point. We want
907  *      them synced (in case something goes wrong) but we DO not want to mark
908  *      filesystem clean: it is not. (And it does not matter, if we resume
909  *      correctly, we'll mark system clean, anyway.)
910  */
911
912 int swsusp_write(unsigned int flags)
913 {
914         struct swap_map_handle handle;
915         struct snapshot_handle snapshot;
916         struct swsusp_info *header;
917         unsigned long pages;
918         int error;
919
920         pages = snapshot_get_image_size();
921         error = get_swap_writer(&handle);
922         if (error) {
923                 pr_err("Cannot get swap writer\n");
924                 return error;
925         }
926         if (flags & SF_NOCOMPRESS_MODE) {
927                 if (!enough_swap(pages)) {
928                         pr_err("Not enough free swap\n");
929                         error = -ENOSPC;
930                         goto out_finish;
931                 }
932         }
933         memset(&snapshot, 0, sizeof(struct snapshot_handle));
934         error = snapshot_read_next(&snapshot);
935         if (error < (int)PAGE_SIZE) {
936                 if (error >= 0)
937                         error = -EFAULT;
938
939                 goto out_finish;
940         }
941         header = (struct swsusp_info *)data_of(snapshot);
942         error = swap_write_page(&handle, header, NULL);
943         if (!error) {
944                 error = (flags & SF_NOCOMPRESS_MODE) ?
945                         save_image(&handle, &snapshot, pages - 1) :
946                         save_image_lzo(&handle, &snapshot, pages - 1);
947         }
948 out_finish:
949         error = swap_writer_finish(&handle, flags, error);
950         return error;
951 }
952
953 /**
954  *      The following functions allow us to read data using a swap map
955  *      in a file-alike way
956  */
957
958 static void release_swap_reader(struct swap_map_handle *handle)
959 {
960         struct swap_map_page_list *tmp;
961
962         while (handle->maps) {
963                 if (handle->maps->map)
964                         free_page((unsigned long)handle->maps->map);
965                 tmp = handle->maps;
966                 handle->maps = handle->maps->next;
967                 kfree(tmp);
968         }
969         handle->cur = NULL;
970 }
971
972 static int get_swap_reader(struct swap_map_handle *handle,
973                 unsigned int *flags_p)
974 {
975         int error;
976         struct swap_map_page_list *tmp, *last;
977         sector_t offset;
978
979         *flags_p = swsusp_header->flags;
980
981         if (!swsusp_header->image) /* how can this happen? */
982                 return -EINVAL;
983
984         handle->cur = NULL;
985         last = handle->maps = NULL;
986         offset = swsusp_header->image;
987         while (offset) {
988                 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
989                 if (!tmp) {
990                         release_swap_reader(handle);
991                         return -ENOMEM;
992                 }
993                 if (!handle->maps)
994                         handle->maps = tmp;
995                 if (last)
996                         last->next = tmp;
997                 last = tmp;
998
999                 tmp->map = (struct swap_map_page *)
1000                            __get_free_page(GFP_NOIO | __GFP_HIGH);
1001                 if (!tmp->map) {
1002                         release_swap_reader(handle);
1003                         return -ENOMEM;
1004                 }
1005
1006                 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
1007                 if (error) {
1008                         release_swap_reader(handle);
1009                         return error;
1010                 }
1011                 offset = tmp->map->next_swap;
1012         }
1013         handle->k = 0;
1014         handle->cur = handle->maps->map;
1015         return 0;
1016 }
1017
1018 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1019                 struct hib_bio_batch *hb)
1020 {
1021         sector_t offset;
1022         int error;
1023         struct swap_map_page_list *tmp;
1024
1025         if (!handle->cur)
1026                 return -EINVAL;
1027         offset = handle->cur->entries[handle->k];
1028         if (!offset)
1029                 return -EFAULT;
1030         error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1031         if (error)
1032                 return error;
1033         if (++handle->k >= MAP_PAGE_ENTRIES) {
1034                 handle->k = 0;
1035                 free_page((unsigned long)handle->maps->map);
1036                 tmp = handle->maps;
1037                 handle->maps = handle->maps->next;
1038                 kfree(tmp);
1039                 if (!handle->maps)
1040                         release_swap_reader(handle);
1041                 else
1042                         handle->cur = handle->maps->map;
1043         }
1044         return error;
1045 }
1046
1047 static int swap_reader_finish(struct swap_map_handle *handle)
1048 {
1049         release_swap_reader(handle);
1050
1051         return 0;
1052 }
1053
1054 /**
1055  *      load_image - load the image using the swap map handle
1056  *      @handle and the snapshot handle @snapshot
1057  *      (assume there are @nr_pages pages to load)
1058  */
1059
1060 static int load_image(struct swap_map_handle *handle,
1061                       struct snapshot_handle *snapshot,
1062                       unsigned int nr_to_read)
1063 {
1064         unsigned int m;
1065         int ret = 0;
1066         ktime_t start;
1067         ktime_t stop;
1068         struct hib_bio_batch hb;
1069         int err2;
1070         unsigned nr_pages;
1071
1072         hib_init_batch(&hb);
1073
1074         clean_pages_on_read = true;
1075         pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1076         m = nr_to_read / 10;
1077         if (!m)
1078                 m = 1;
1079         nr_pages = 0;
1080         start = ktime_get();
1081         for ( ; ; ) {
1082                 ret = snapshot_write_next(snapshot);
1083                 if (ret <= 0)
1084                         break;
1085                 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1086                 if (ret)
1087                         break;
1088                 if (snapshot->sync_read)
1089                         ret = hib_wait_io(&hb);
1090                 if (ret)
1091                         break;
1092                 if (!(nr_pages % m))
1093                         pr_info("Image loading progress: %3d%%\n",
1094                                 nr_pages / m * 10);
1095                 nr_pages++;
1096         }
1097         err2 = hib_wait_io(&hb);
1098         hib_finish_batch(&hb);
1099         stop = ktime_get();
1100         if (!ret)
1101                 ret = err2;
1102         if (!ret) {
1103                 pr_info("Image loading done\n");
1104                 snapshot_write_finalize(snapshot);
1105                 if (!snapshot_image_loaded(snapshot))
1106                         ret = -ENODATA;
1107         }
1108         swsusp_show_speed(start, stop, nr_to_read, "Read");
1109         return ret;
1110 }
1111
1112 /**
1113  * Structure used for LZO data decompression.
1114  */
1115 struct dec_data {
1116         struct task_struct *thr;                  /* thread */
1117         atomic_t ready;                           /* ready to start flag */
1118         atomic_t stop;                            /* ready to stop flag */
1119         int ret;                                  /* return code */
1120         wait_queue_head_t go;                     /* start decompression */
1121         wait_queue_head_t done;                   /* decompression done */
1122         size_t unc_len;                           /* uncompressed length */
1123         size_t cmp_len;                           /* compressed length */
1124         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1125         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1126 };
1127
1128 /**
1129  * Decompression function that runs in its own thread.
1130  */
1131 static int lzo_decompress_threadfn(void *data)
1132 {
1133         struct dec_data *d = data;
1134
1135         while (1) {
1136                 wait_event(d->go, atomic_read(&d->ready) ||
1137                                   kthread_should_stop());
1138                 if (kthread_should_stop()) {
1139                         d->thr = NULL;
1140                         d->ret = -1;
1141                         atomic_set(&d->stop, 1);
1142                         wake_up(&d->done);
1143                         break;
1144                 }
1145                 atomic_set(&d->ready, 0);
1146
1147                 d->unc_len = LZO_UNC_SIZE;
1148                 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1149                                                d->unc, &d->unc_len);
1150                 if (clean_pages_on_decompress)
1151                         flush_icache_range((unsigned long)d->unc,
1152                                            (unsigned long)d->unc + d->unc_len);
1153
1154                 atomic_set(&d->stop, 1);
1155                 wake_up(&d->done);
1156         }
1157         return 0;
1158 }
1159
1160 /**
1161  * load_image_lzo - Load compressed image data and decompress them with LZO.
1162  * @handle: Swap map handle to use for loading data.
1163  * @snapshot: Image to copy uncompressed data into.
1164  * @nr_to_read: Number of pages to load.
1165  */
1166 static int load_image_lzo(struct swap_map_handle *handle,
1167                           struct snapshot_handle *snapshot,
1168                           unsigned int nr_to_read)
1169 {
1170         unsigned int m;
1171         int ret = 0;
1172         int eof = 0;
1173         struct hib_bio_batch hb;
1174         ktime_t start;
1175         ktime_t stop;
1176         unsigned nr_pages;
1177         size_t off;
1178         unsigned i, thr, run_threads, nr_threads;
1179         unsigned ring = 0, pg = 0, ring_size = 0,
1180                  have = 0, want, need, asked = 0;
1181         unsigned long read_pages = 0;
1182         unsigned char **page = NULL;
1183         struct dec_data *data = NULL;
1184         struct crc_data *crc = NULL;
1185
1186         hib_init_batch(&hb);
1187
1188         /*
1189          * We'll limit the number of threads for decompression to limit memory
1190          * footprint.
1191          */
1192         nr_threads = num_online_cpus() - 1;
1193         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1194
1195         page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1196         if (!page) {
1197                 pr_err("Failed to allocate LZO page\n");
1198                 ret = -ENOMEM;
1199                 goto out_clean;
1200         }
1201
1202         data = vzalloc(array_size(nr_threads, sizeof(*data)));
1203         if (!data) {
1204                 pr_err("Failed to allocate LZO data\n");
1205                 ret = -ENOMEM;
1206                 goto out_clean;
1207         }
1208
1209         crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1210         if (!crc) {
1211                 pr_err("Failed to allocate crc\n");
1212                 ret = -ENOMEM;
1213                 goto out_clean;
1214         }
1215
1216         clean_pages_on_decompress = true;
1217
1218         /*
1219          * Start the decompression threads.
1220          */
1221         for (thr = 0; thr < nr_threads; thr++) {
1222                 init_waitqueue_head(&data[thr].go);
1223                 init_waitqueue_head(&data[thr].done);
1224
1225                 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1226                                             &data[thr],
1227                                             "image_decompress/%u", thr);
1228                 if (IS_ERR(data[thr].thr)) {
1229                         data[thr].thr = NULL;
1230                         pr_err("Cannot start decompression threads\n");
1231                         ret = -ENOMEM;
1232                         goto out_clean;
1233                 }
1234         }
1235
1236         /*
1237          * Start the CRC32 thread.
1238          */
1239         init_waitqueue_head(&crc->go);
1240         init_waitqueue_head(&crc->done);
1241
1242         handle->crc32 = 0;
1243         crc->crc32 = &handle->crc32;
1244         for (thr = 0; thr < nr_threads; thr++) {
1245                 crc->unc[thr] = data[thr].unc;
1246                 crc->unc_len[thr] = &data[thr].unc_len;
1247         }
1248
1249         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1250         if (IS_ERR(crc->thr)) {
1251                 crc->thr = NULL;
1252                 pr_err("Cannot start CRC32 thread\n");
1253                 ret = -ENOMEM;
1254                 goto out_clean;
1255         }
1256
1257         /*
1258          * Set the number of pages for read buffering.
1259          * This is complete guesswork, because we'll only know the real
1260          * picture once prepare_image() is called, which is much later on
1261          * during the image load phase. We'll assume the worst case and
1262          * say that none of the image pages are from high memory.
1263          */
1264         if (low_free_pages() > snapshot_get_image_size())
1265                 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1266         read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1267
1268         for (i = 0; i < read_pages; i++) {
1269                 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1270                                                   GFP_NOIO | __GFP_HIGH :
1271                                                   GFP_NOIO | __GFP_NOWARN |
1272                                                   __GFP_NORETRY);
1273
1274                 if (!page[i]) {
1275                         if (i < LZO_CMP_PAGES) {
1276                                 ring_size = i;
1277                                 pr_err("Failed to allocate LZO pages\n");
1278                                 ret = -ENOMEM;
1279                                 goto out_clean;
1280                         } else {
1281                                 break;
1282                         }
1283                 }
1284         }
1285         want = ring_size = i;
1286
1287         pr_info("Using %u thread(s) for decompression\n", nr_threads);
1288         pr_info("Loading and decompressing image data (%u pages)...\n",
1289                 nr_to_read);
1290         m = nr_to_read / 10;
1291         if (!m)
1292                 m = 1;
1293         nr_pages = 0;
1294         start = ktime_get();
1295
1296         ret = snapshot_write_next(snapshot);
1297         if (ret <= 0)
1298                 goto out_finish;
1299
1300         for(;;) {
1301                 for (i = 0; !eof && i < want; i++) {
1302                         ret = swap_read_page(handle, page[ring], &hb);
1303                         if (ret) {
1304                                 /*
1305                                  * On real read error, finish. On end of data,
1306                                  * set EOF flag and just exit the read loop.
1307                                  */
1308                                 if (handle->cur &&
1309                                     handle->cur->entries[handle->k]) {
1310                                         goto out_finish;
1311                                 } else {
1312                                         eof = 1;
1313                                         break;
1314                                 }
1315                         }
1316                         if (++ring >= ring_size)
1317                                 ring = 0;
1318                 }
1319                 asked += i;
1320                 want -= i;
1321
1322                 /*
1323                  * We are out of data, wait for some more.
1324                  */
1325                 if (!have) {
1326                         if (!asked)
1327                                 break;
1328
1329                         ret = hib_wait_io(&hb);
1330                         if (ret)
1331                                 goto out_finish;
1332                         have += asked;
1333                         asked = 0;
1334                         if (eof)
1335                                 eof = 2;
1336                 }
1337
1338                 if (crc->run_threads) {
1339                         wait_event(crc->done, atomic_read(&crc->stop));
1340                         atomic_set(&crc->stop, 0);
1341                         crc->run_threads = 0;
1342                 }
1343
1344                 for (thr = 0; have && thr < nr_threads; thr++) {
1345                         data[thr].cmp_len = *(size_t *)page[pg];
1346                         if (unlikely(!data[thr].cmp_len ||
1347                                      data[thr].cmp_len >
1348                                      lzo1x_worst_compress(LZO_UNC_SIZE))) {
1349                                 pr_err("Invalid LZO compressed length\n");
1350                                 ret = -1;
1351                                 goto out_finish;
1352                         }
1353
1354                         need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1355                                             PAGE_SIZE);
1356                         if (need > have) {
1357                                 if (eof > 1) {
1358                                         ret = -1;
1359                                         goto out_finish;
1360                                 }
1361                                 break;
1362                         }
1363
1364                         for (off = 0;
1365                              off < LZO_HEADER + data[thr].cmp_len;
1366                              off += PAGE_SIZE) {
1367                                 memcpy(data[thr].cmp + off,
1368                                        page[pg], PAGE_SIZE);
1369                                 have--;
1370                                 want++;
1371                                 if (++pg >= ring_size)
1372                                         pg = 0;
1373                         }
1374
1375                         atomic_set(&data[thr].ready, 1);
1376                         wake_up(&data[thr].go);
1377                 }
1378
1379                 /*
1380                  * Wait for more data while we are decompressing.
1381                  */
1382                 if (have < LZO_CMP_PAGES && asked) {
1383                         ret = hib_wait_io(&hb);
1384                         if (ret)
1385                                 goto out_finish;
1386                         have += asked;
1387                         asked = 0;
1388                         if (eof)
1389                                 eof = 2;
1390                 }
1391
1392                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1393                         wait_event(data[thr].done,
1394                                    atomic_read(&data[thr].stop));
1395                         atomic_set(&data[thr].stop, 0);
1396
1397                         ret = data[thr].ret;
1398
1399                         if (ret < 0) {
1400                                 pr_err("LZO decompression failed\n");
1401                                 goto out_finish;
1402                         }
1403
1404                         if (unlikely(!data[thr].unc_len ||
1405                                      data[thr].unc_len > LZO_UNC_SIZE ||
1406                                      data[thr].unc_len & (PAGE_SIZE - 1))) {
1407                                 pr_err("Invalid LZO uncompressed length\n");
1408                                 ret = -1;
1409                                 goto out_finish;
1410                         }
1411
1412                         for (off = 0;
1413                              off < data[thr].unc_len; off += PAGE_SIZE) {
1414                                 memcpy(data_of(*snapshot),
1415                                        data[thr].unc + off, PAGE_SIZE);
1416
1417                                 if (!(nr_pages % m))
1418                                         pr_info("Image loading progress: %3d%%\n",
1419                                                 nr_pages / m * 10);
1420                                 nr_pages++;
1421
1422                                 ret = snapshot_write_next(snapshot);
1423                                 if (ret <= 0) {
1424                                         crc->run_threads = thr + 1;
1425                                         atomic_set(&crc->ready, 1);
1426                                         wake_up(&crc->go);
1427                                         goto out_finish;
1428                                 }
1429                         }
1430                 }
1431
1432                 crc->run_threads = thr;
1433                 atomic_set(&crc->ready, 1);
1434                 wake_up(&crc->go);
1435         }
1436
1437 out_finish:
1438         if (crc->run_threads) {
1439                 wait_event(crc->done, atomic_read(&crc->stop));
1440                 atomic_set(&crc->stop, 0);
1441         }
1442         stop = ktime_get();
1443         if (!ret) {
1444                 pr_info("Image loading done\n");
1445                 snapshot_write_finalize(snapshot);
1446                 if (!snapshot_image_loaded(snapshot))
1447                         ret = -ENODATA;
1448                 if (!ret) {
1449                         if (swsusp_header->flags & SF_CRC32_MODE) {
1450                                 if(handle->crc32 != swsusp_header->crc32) {
1451                                         pr_err("Invalid image CRC32!\n");
1452                                         ret = -ENODATA;
1453                                 }
1454                         }
1455                 }
1456         }
1457         swsusp_show_speed(start, stop, nr_to_read, "Read");
1458 out_clean:
1459         hib_finish_batch(&hb);
1460         for (i = 0; i < ring_size; i++)
1461                 free_page((unsigned long)page[i]);
1462         if (crc) {
1463                 if (crc->thr)
1464                         kthread_stop(crc->thr);
1465                 kfree(crc);
1466         }
1467         if (data) {
1468                 for (thr = 0; thr < nr_threads; thr++)
1469                         if (data[thr].thr)
1470                                 kthread_stop(data[thr].thr);
1471                 vfree(data);
1472         }
1473         vfree(page);
1474
1475         return ret;
1476 }
1477
1478 /**
1479  *      swsusp_read - read the hibernation image.
1480  *      @flags_p: flags passed by the "frozen" kernel in the image header should
1481  *                be written into this memory location
1482  */
1483
1484 int swsusp_read(unsigned int *flags_p)
1485 {
1486         int error;
1487         struct swap_map_handle handle;
1488         struct snapshot_handle snapshot;
1489         struct swsusp_info *header;
1490
1491         memset(&snapshot, 0, sizeof(struct snapshot_handle));
1492         error = snapshot_write_next(&snapshot);
1493         if (error < (int)PAGE_SIZE)
1494                 return error < 0 ? error : -EFAULT;
1495         header = (struct swsusp_info *)data_of(snapshot);
1496         error = get_swap_reader(&handle, flags_p);
1497         if (error)
1498                 goto end;
1499         if (!error)
1500                 error = swap_read_page(&handle, header, NULL);
1501         if (!error) {
1502                 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1503                         load_image(&handle, &snapshot, header->pages - 1) :
1504                         load_image_lzo(&handle, &snapshot, header->pages - 1);
1505         }
1506         swap_reader_finish(&handle);
1507 end:
1508         if (!error)
1509                 pr_debug("Image successfully loaded\n");
1510         else
1511                 pr_debug("Error %d resuming\n", error);
1512         return error;
1513 }
1514
1515 /**
1516  *      swsusp_check - Check for swsusp signature in the resume device
1517  */
1518
1519 int swsusp_check(void)
1520 {
1521         int error;
1522         void *holder;
1523
1524         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1525                                             FMODE_READ | FMODE_EXCL, &holder);
1526         if (!IS_ERR(hib_resume_bdev)) {
1527                 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1528                 clear_page(swsusp_header);
1529                 error = hib_submit_io(REQ_OP_READ, 0,
1530                                         swsusp_resume_block,
1531                                         swsusp_header, NULL);
1532                 if (error)
1533                         goto put;
1534
1535                 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1536                         memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1537                         /* Reset swap signature now */
1538                         error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1539                                                 swsusp_resume_block,
1540                                                 swsusp_header, NULL);
1541                 } else {
1542                         error = -EINVAL;
1543                 }
1544                 if (!error && swsusp_header->flags & SF_HW_SIG &&
1545                     swsusp_header->hw_sig != swsusp_hardware_signature) {
1546                         pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1547                                 swsusp_header->hw_sig, swsusp_hardware_signature);
1548                         error = -EINVAL;
1549                 }
1550
1551 put:
1552                 if (error)
1553                         blkdev_put(hib_resume_bdev, FMODE_READ | FMODE_EXCL);
1554                 else
1555                         pr_debug("Image signature found, resuming\n");
1556         } else {
1557                 error = PTR_ERR(hib_resume_bdev);
1558         }
1559
1560         if (error)
1561                 pr_debug("Image not found (code %d)\n", error);
1562
1563         return error;
1564 }
1565
1566 /**
1567  *      swsusp_close - close swap device.
1568  */
1569
1570 void swsusp_close(fmode_t mode)
1571 {
1572         if (IS_ERR(hib_resume_bdev)) {
1573                 pr_debug("Image device not initialised\n");
1574                 return;
1575         }
1576
1577         blkdev_put(hib_resume_bdev, mode);
1578 }
1579
1580 /**
1581  *      swsusp_unmark - Unmark swsusp signature in the resume device
1582  */
1583
1584 #ifdef CONFIG_SUSPEND
1585 int swsusp_unmark(void)
1586 {
1587         int error;
1588
1589         hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1590                       swsusp_header, NULL);
1591         if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1592                 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1593                 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1594                                         swsusp_resume_block,
1595                                         swsusp_header, NULL);
1596         } else {
1597                 pr_err("Cannot find swsusp signature!\n");
1598                 error = -ENODEV;
1599         }
1600
1601         /*
1602          * We just returned from suspend, we don't need the image any more.
1603          */
1604         free_all_swap_pages(root_swap);
1605
1606         return error;
1607 }
1608 #endif
1609
1610 static int __init swsusp_header_init(void)
1611 {
1612         swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1613         if (!swsusp_header)
1614                 panic("Could not allocate memory for swsusp_header\n");
1615         return 0;
1616 }
1617
1618 core_initcall(swsusp_header_init);