Merge tag 'for-6.9-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[sfrench/cifs-2.6.git] / kernel / power / swap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/swap.c
4  *
5  * This file provides functions for reading the suspend image from
6  * and writing it to a swap partition.
7  *
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11  */
12
13 #define pr_fmt(fmt) "PM: " fmt
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/device.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/pm.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <linux/cpumask.h>
28 #include <linux/atomic.h>
29 #include <linux/kthread.h>
30 #include <linux/crc32.h>
31 #include <linux/ktime.h>
32
33 #include "power.h"
34
35 #define HIBERNATE_SIG   "S1SUSPEND"
36
37 u32 swsusp_hardware_signature;
38
39 /*
40  * When reading an {un,}compressed image, we may restore pages in place,
41  * in which case some architectures need these pages cleaning before they
42  * can be executed. We don't know which pages these may be, so clean the lot.
43  */
44 static bool clean_pages_on_read;
45 static bool clean_pages_on_decompress;
46
47 /*
48  *      The swap map is a data structure used for keeping track of each page
49  *      written to a swap partition.  It consists of many swap_map_page
50  *      structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51  *      These structures are stored on the swap and linked together with the
52  *      help of the .next_swap member.
53  *
54  *      The swap map is created during suspend.  The swap map pages are
55  *      allocated and populated one at a time, so we only need one memory
56  *      page to set up the entire structure.
57  *
58  *      During resume we pick up all swap_map_page structures into a list.
59  */
60
61 #define MAP_PAGE_ENTRIES        (PAGE_SIZE / sizeof(sector_t) - 1)
62
63 /*
64  * Number of free pages that are not high.
65  */
66 static inline unsigned long low_free_pages(void)
67 {
68         return nr_free_pages() - nr_free_highpages();
69 }
70
71 /*
72  * Number of pages required to be kept free while writing the image. Always
73  * half of all available low pages before the writing starts.
74  */
75 static inline unsigned long reqd_free_pages(void)
76 {
77         return low_free_pages() / 2;
78 }
79
80 struct swap_map_page {
81         sector_t entries[MAP_PAGE_ENTRIES];
82         sector_t next_swap;
83 };
84
85 struct swap_map_page_list {
86         struct swap_map_page *map;
87         struct swap_map_page_list *next;
88 };
89
90 /*
91  *      The swap_map_handle structure is used for handling swap in
92  *      a file-alike way
93  */
94
95 struct swap_map_handle {
96         struct swap_map_page *cur;
97         struct swap_map_page_list *maps;
98         sector_t cur_swap;
99         sector_t first_sector;
100         unsigned int k;
101         unsigned long reqd_free_pages;
102         u32 crc32;
103 };
104
105 struct swsusp_header {
106         char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107                       sizeof(u32) - sizeof(u32)];
108         u32     hw_sig;
109         u32     crc32;
110         sector_t image;
111         unsigned int flags;     /* Flags to pass to the "boot" kernel */
112         char    orig_sig[10];
113         char    sig[10];
114 } __packed;
115
116 static struct swsusp_header *swsusp_header;
117
118 /*
119  *      The following functions are used for tracing the allocated
120  *      swap pages, so that they can be freed in case of an error.
121  */
122
123 struct swsusp_extent {
124         struct rb_node node;
125         unsigned long start;
126         unsigned long end;
127 };
128
129 static struct rb_root swsusp_extents = RB_ROOT;
130
131 static int swsusp_extents_insert(unsigned long swap_offset)
132 {
133         struct rb_node **new = &(swsusp_extents.rb_node);
134         struct rb_node *parent = NULL;
135         struct swsusp_extent *ext;
136
137         /* Figure out where to put the new node */
138         while (*new) {
139                 ext = rb_entry(*new, struct swsusp_extent, node);
140                 parent = *new;
141                 if (swap_offset < ext->start) {
142                         /* Try to merge */
143                         if (swap_offset == ext->start - 1) {
144                                 ext->start--;
145                                 return 0;
146                         }
147                         new = &((*new)->rb_left);
148                 } else if (swap_offset > ext->end) {
149                         /* Try to merge */
150                         if (swap_offset == ext->end + 1) {
151                                 ext->end++;
152                                 return 0;
153                         }
154                         new = &((*new)->rb_right);
155                 } else {
156                         /* It already is in the tree */
157                         return -EINVAL;
158                 }
159         }
160         /* Add the new node and rebalance the tree. */
161         ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
162         if (!ext)
163                 return -ENOMEM;
164
165         ext->start = swap_offset;
166         ext->end = swap_offset;
167         rb_link_node(&ext->node, parent, new);
168         rb_insert_color(&ext->node, &swsusp_extents);
169         return 0;
170 }
171
172 /*
173  *      alloc_swapdev_block - allocate a swap page and register that it has
174  *      been allocated, so that it can be freed in case of an error.
175  */
176
177 sector_t alloc_swapdev_block(int swap)
178 {
179         unsigned long offset;
180
181         offset = swp_offset(get_swap_page_of_type(swap));
182         if (offset) {
183                 if (swsusp_extents_insert(offset))
184                         swap_free(swp_entry(swap, offset));
185                 else
186                         return swapdev_block(swap, offset);
187         }
188         return 0;
189 }
190
191 /*
192  *      free_all_swap_pages - free swap pages allocated for saving image data.
193  *      It also frees the extents used to register which swap entries had been
194  *      allocated.
195  */
196
197 void free_all_swap_pages(int swap)
198 {
199         struct rb_node *node;
200
201         while ((node = swsusp_extents.rb_node)) {
202                 struct swsusp_extent *ext;
203                 unsigned long offset;
204
205                 ext = rb_entry(node, struct swsusp_extent, node);
206                 rb_erase(node, &swsusp_extents);
207                 for (offset = ext->start; offset <= ext->end; offset++)
208                         swap_free(swp_entry(swap, offset));
209
210                 kfree(ext);
211         }
212 }
213
214 int swsusp_swap_in_use(void)
215 {
216         return (swsusp_extents.rb_node != NULL);
217 }
218
219 /*
220  * General things
221  */
222
223 static unsigned short root_swap = 0xffff;
224 static struct file *hib_resume_bdev_file;
225
226 struct hib_bio_batch {
227         atomic_t                count;
228         wait_queue_head_t       wait;
229         blk_status_t            error;
230         struct blk_plug         plug;
231 };
232
233 static void hib_init_batch(struct hib_bio_batch *hb)
234 {
235         atomic_set(&hb->count, 0);
236         init_waitqueue_head(&hb->wait);
237         hb->error = BLK_STS_OK;
238         blk_start_plug(&hb->plug);
239 }
240
241 static void hib_finish_batch(struct hib_bio_batch *hb)
242 {
243         blk_finish_plug(&hb->plug);
244 }
245
246 static void hib_end_io(struct bio *bio)
247 {
248         struct hib_bio_batch *hb = bio->bi_private;
249         struct page *page = bio_first_page_all(bio);
250
251         if (bio->bi_status) {
252                 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
253                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
254                          (unsigned long long)bio->bi_iter.bi_sector);
255         }
256
257         if (bio_data_dir(bio) == WRITE)
258                 put_page(page);
259         else if (clean_pages_on_read)
260                 flush_icache_range((unsigned long)page_address(page),
261                                    (unsigned long)page_address(page) + PAGE_SIZE);
262
263         if (bio->bi_status && !hb->error)
264                 hb->error = bio->bi_status;
265         if (atomic_dec_and_test(&hb->count))
266                 wake_up(&hb->wait);
267
268         bio_put(bio);
269 }
270
271 static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
272                          struct hib_bio_batch *hb)
273 {
274         struct page *page = virt_to_page(addr);
275         struct bio *bio;
276         int error = 0;
277
278         bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf,
279                         GFP_NOIO | __GFP_HIGH);
280         bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
281
282         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
283                 pr_err("Adding page to bio failed at %llu\n",
284                        (unsigned long long)bio->bi_iter.bi_sector);
285                 bio_put(bio);
286                 return -EFAULT;
287         }
288
289         if (hb) {
290                 bio->bi_end_io = hib_end_io;
291                 bio->bi_private = hb;
292                 atomic_inc(&hb->count);
293                 submit_bio(bio);
294         } else {
295                 error = submit_bio_wait(bio);
296                 bio_put(bio);
297         }
298
299         return error;
300 }
301
302 static int hib_wait_io(struct hib_bio_batch *hb)
303 {
304         /*
305          * We are relying on the behavior of blk_plug that a thread with
306          * a plug will flush the plug list before sleeping.
307          */
308         wait_event(hb->wait, atomic_read(&hb->count) == 0);
309         return blk_status_to_errno(hb->error);
310 }
311
312 /*
313  * Saving part
314  */
315 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
316 {
317         int error;
318
319         hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
320         if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
321             !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
322                 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
323                 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
324                 swsusp_header->image = handle->first_sector;
325                 if (swsusp_hardware_signature) {
326                         swsusp_header->hw_sig = swsusp_hardware_signature;
327                         flags |= SF_HW_SIG;
328                 }
329                 swsusp_header->flags = flags;
330                 if (flags & SF_CRC32_MODE)
331                         swsusp_header->crc32 = handle->crc32;
332                 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
333                                       swsusp_resume_block, swsusp_header, NULL);
334         } else {
335                 pr_err("Swap header not found!\n");
336                 error = -ENODEV;
337         }
338         return error;
339 }
340
341 /*
342  * Hold the swsusp_header flag. This is used in software_resume() in
343  * 'kernel/power/hibernate' to check if the image is compressed and query
344  * for the compression algorithm support(if so).
345  */
346 unsigned int swsusp_header_flags;
347
348 /**
349  *      swsusp_swap_check - check if the resume device is a swap device
350  *      and get its index (if so)
351  *
352  *      This is called before saving image
353  */
354 static int swsusp_swap_check(void)
355 {
356         int res;
357
358         if (swsusp_resume_device)
359                 res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
360         else
361                 res = find_first_swap(&swsusp_resume_device);
362         if (res < 0)
363                 return res;
364         root_swap = res;
365
366         hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
367                         BLK_OPEN_WRITE, NULL, NULL);
368         if (IS_ERR(hib_resume_bdev_file))
369                 return PTR_ERR(hib_resume_bdev_file);
370
371         res = set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE);
372         if (res < 0)
373                 fput(hib_resume_bdev_file);
374
375         return res;
376 }
377
378 /**
379  *      write_page - Write one page to given swap location.
380  *      @buf:           Address we're writing.
381  *      @offset:        Offset of the swap page we're writing to.
382  *      @hb:            bio completion batch
383  */
384
385 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
386 {
387         void *src;
388         int ret;
389
390         if (!offset)
391                 return -ENOSPC;
392
393         if (hb) {
394                 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
395                                               __GFP_NORETRY);
396                 if (src) {
397                         copy_page(src, buf);
398                 } else {
399                         ret = hib_wait_io(hb); /* Free pages */
400                         if (ret)
401                                 return ret;
402                         src = (void *)__get_free_page(GFP_NOIO |
403                                                       __GFP_NOWARN |
404                                                       __GFP_NORETRY);
405                         if (src) {
406                                 copy_page(src, buf);
407                         } else {
408                                 WARN_ON_ONCE(1);
409                                 hb = NULL;      /* Go synchronous */
410                                 src = buf;
411                         }
412                 }
413         } else {
414                 src = buf;
415         }
416         return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
417 }
418
419 static void release_swap_writer(struct swap_map_handle *handle)
420 {
421         if (handle->cur)
422                 free_page((unsigned long)handle->cur);
423         handle->cur = NULL;
424 }
425
426 static int get_swap_writer(struct swap_map_handle *handle)
427 {
428         int ret;
429
430         ret = swsusp_swap_check();
431         if (ret) {
432                 if (ret != -ENOSPC)
433                         pr_err("Cannot find swap device, try swapon -a\n");
434                 return ret;
435         }
436         handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
437         if (!handle->cur) {
438                 ret = -ENOMEM;
439                 goto err_close;
440         }
441         handle->cur_swap = alloc_swapdev_block(root_swap);
442         if (!handle->cur_swap) {
443                 ret = -ENOSPC;
444                 goto err_rel;
445         }
446         handle->k = 0;
447         handle->reqd_free_pages = reqd_free_pages();
448         handle->first_sector = handle->cur_swap;
449         return 0;
450 err_rel:
451         release_swap_writer(handle);
452 err_close:
453         swsusp_close();
454         return ret;
455 }
456
457 static int swap_write_page(struct swap_map_handle *handle, void *buf,
458                 struct hib_bio_batch *hb)
459 {
460         int error;
461         sector_t offset;
462
463         if (!handle->cur)
464                 return -EINVAL;
465         offset = alloc_swapdev_block(root_swap);
466         error = write_page(buf, offset, hb);
467         if (error)
468                 return error;
469         handle->cur->entries[handle->k++] = offset;
470         if (handle->k >= MAP_PAGE_ENTRIES) {
471                 offset = alloc_swapdev_block(root_swap);
472                 if (!offset)
473                         return -ENOSPC;
474                 handle->cur->next_swap = offset;
475                 error = write_page(handle->cur, handle->cur_swap, hb);
476                 if (error)
477                         goto out;
478                 clear_page(handle->cur);
479                 handle->cur_swap = offset;
480                 handle->k = 0;
481
482                 if (hb && low_free_pages() <= handle->reqd_free_pages) {
483                         error = hib_wait_io(hb);
484                         if (error)
485                                 goto out;
486                         /*
487                          * Recalculate the number of required free pages, to
488                          * make sure we never take more than half.
489                          */
490                         handle->reqd_free_pages = reqd_free_pages();
491                 }
492         }
493  out:
494         return error;
495 }
496
497 static int flush_swap_writer(struct swap_map_handle *handle)
498 {
499         if (handle->cur && handle->cur_swap)
500                 return write_page(handle->cur, handle->cur_swap, NULL);
501         else
502                 return -EINVAL;
503 }
504
505 static int swap_writer_finish(struct swap_map_handle *handle,
506                 unsigned int flags, int error)
507 {
508         if (!error) {
509                 pr_info("S");
510                 error = mark_swapfiles(handle, flags);
511                 pr_cont("|\n");
512                 flush_swap_writer(handle);
513         }
514
515         if (error)
516                 free_all_swap_pages(root_swap);
517         release_swap_writer(handle);
518         swsusp_close();
519
520         return error;
521 }
522
523 /*
524  * Bytes we need for compressed data in worst case. We assume(limitation)
525  * this is the worst of all the compression algorithms.
526  */
527 #define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
528
529 /* We need to remember how much compressed data we need to read. */
530 #define CMP_HEADER      sizeof(size_t)
531
532 /* Number of pages/bytes we'll compress at one time. */
533 #define UNC_PAGES       32
534 #define UNC_SIZE        (UNC_PAGES * PAGE_SIZE)
535
536 /* Number of pages we need for compressed data (worst case). */
537 #define CMP_PAGES       DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \
538                                 CMP_HEADER, PAGE_SIZE)
539 #define CMP_SIZE        (CMP_PAGES * PAGE_SIZE)
540
541 /* Maximum number of threads for compression/decompression. */
542 #define CMP_THREADS     3
543
544 /* Minimum/maximum number of pages for read buffering. */
545 #define CMP_MIN_RD_PAGES        1024
546 #define CMP_MAX_RD_PAGES        8192
547
548 /**
549  *      save_image - save the suspend image data
550  */
551
552 static int save_image(struct swap_map_handle *handle,
553                       struct snapshot_handle *snapshot,
554                       unsigned int nr_to_write)
555 {
556         unsigned int m;
557         int ret;
558         int nr_pages;
559         int err2;
560         struct hib_bio_batch hb;
561         ktime_t start;
562         ktime_t stop;
563
564         hib_init_batch(&hb);
565
566         pr_info("Saving image data pages (%u pages)...\n",
567                 nr_to_write);
568         m = nr_to_write / 10;
569         if (!m)
570                 m = 1;
571         nr_pages = 0;
572         start = ktime_get();
573         while (1) {
574                 ret = snapshot_read_next(snapshot);
575                 if (ret <= 0)
576                         break;
577                 ret = swap_write_page(handle, data_of(*snapshot), &hb);
578                 if (ret)
579                         break;
580                 if (!(nr_pages % m))
581                         pr_info("Image saving progress: %3d%%\n",
582                                 nr_pages / m * 10);
583                 nr_pages++;
584         }
585         err2 = hib_wait_io(&hb);
586         hib_finish_batch(&hb);
587         stop = ktime_get();
588         if (!ret)
589                 ret = err2;
590         if (!ret)
591                 pr_info("Image saving done\n");
592         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
593         return ret;
594 }
595
596 /*
597  * Structure used for CRC32.
598  */
599 struct crc_data {
600         struct task_struct *thr;                  /* thread */
601         atomic_t ready;                           /* ready to start flag */
602         atomic_t stop;                            /* ready to stop flag */
603         unsigned run_threads;                     /* nr current threads */
604         wait_queue_head_t go;                     /* start crc update */
605         wait_queue_head_t done;                   /* crc update done */
606         u32 *crc32;                               /* points to handle's crc32 */
607         size_t *unc_len[CMP_THREADS];             /* uncompressed lengths */
608         unsigned char *unc[CMP_THREADS];          /* uncompressed data */
609 };
610
611 /*
612  * CRC32 update function that runs in its own thread.
613  */
614 static int crc32_threadfn(void *data)
615 {
616         struct crc_data *d = data;
617         unsigned i;
618
619         while (1) {
620                 wait_event(d->go, atomic_read_acquire(&d->ready) ||
621                                   kthread_should_stop());
622                 if (kthread_should_stop()) {
623                         d->thr = NULL;
624                         atomic_set_release(&d->stop, 1);
625                         wake_up(&d->done);
626                         break;
627                 }
628                 atomic_set(&d->ready, 0);
629
630                 for (i = 0; i < d->run_threads; i++)
631                         *d->crc32 = crc32_le(*d->crc32,
632                                              d->unc[i], *d->unc_len[i]);
633                 atomic_set_release(&d->stop, 1);
634                 wake_up(&d->done);
635         }
636         return 0;
637 }
638 /*
639  * Structure used for data compression.
640  */
641 struct cmp_data {
642         struct task_struct *thr;                  /* thread */
643         struct crypto_comp *cc;                   /* crypto compressor stream */
644         atomic_t ready;                           /* ready to start flag */
645         atomic_t stop;                            /* ready to stop flag */
646         int ret;                                  /* return code */
647         wait_queue_head_t go;                     /* start compression */
648         wait_queue_head_t done;                   /* compression done */
649         size_t unc_len;                           /* uncompressed length */
650         size_t cmp_len;                           /* compressed length */
651         unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
652         unsigned char cmp[CMP_SIZE];              /* compressed buffer */
653 };
654
655 /* Indicates the image size after compression */
656 static atomic_t compressed_size = ATOMIC_INIT(0);
657
658 /*
659  * Compression function that runs in its own thread.
660  */
661 static int compress_threadfn(void *data)
662 {
663         struct cmp_data *d = data;
664         unsigned int cmp_len = 0;
665
666         while (1) {
667                 wait_event(d->go, atomic_read_acquire(&d->ready) ||
668                                   kthread_should_stop());
669                 if (kthread_should_stop()) {
670                         d->thr = NULL;
671                         d->ret = -1;
672                         atomic_set_release(&d->stop, 1);
673                         wake_up(&d->done);
674                         break;
675                 }
676                 atomic_set(&d->ready, 0);
677
678                 cmp_len = CMP_SIZE - CMP_HEADER;
679                 d->ret = crypto_comp_compress(d->cc, d->unc, d->unc_len,
680                                               d->cmp + CMP_HEADER,
681                                               &cmp_len);
682                 d->cmp_len = cmp_len;
683
684                 atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len);
685                 atomic_set_release(&d->stop, 1);
686                 wake_up(&d->done);
687         }
688         return 0;
689 }
690
691 /**
692  * save_compressed_image - Save the suspend image data after compression.
693  * @handle: Swap map handle to use for saving the image.
694  * @snapshot: Image to read data from.
695  * @nr_to_write: Number of pages to save.
696  */
697 static int save_compressed_image(struct swap_map_handle *handle,
698                                  struct snapshot_handle *snapshot,
699                                  unsigned int nr_to_write)
700 {
701         unsigned int m;
702         int ret = 0;
703         int nr_pages;
704         int err2;
705         struct hib_bio_batch hb;
706         ktime_t start;
707         ktime_t stop;
708         size_t off;
709         unsigned thr, run_threads, nr_threads;
710         unsigned char *page = NULL;
711         struct cmp_data *data = NULL;
712         struct crc_data *crc = NULL;
713
714         hib_init_batch(&hb);
715
716         atomic_set(&compressed_size, 0);
717
718         /*
719          * We'll limit the number of threads for compression to limit memory
720          * footprint.
721          */
722         nr_threads = num_online_cpus() - 1;
723         nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
724
725         page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
726         if (!page) {
727                 pr_err("Failed to allocate %s page\n", hib_comp_algo);
728                 ret = -ENOMEM;
729                 goto out_clean;
730         }
731
732         data = vzalloc(array_size(nr_threads, sizeof(*data)));
733         if (!data) {
734                 pr_err("Failed to allocate %s data\n", hib_comp_algo);
735                 ret = -ENOMEM;
736                 goto out_clean;
737         }
738
739         crc = kzalloc(sizeof(*crc), GFP_KERNEL);
740         if (!crc) {
741                 pr_err("Failed to allocate crc\n");
742                 ret = -ENOMEM;
743                 goto out_clean;
744         }
745
746         /*
747          * Start the compression threads.
748          */
749         for (thr = 0; thr < nr_threads; thr++) {
750                 init_waitqueue_head(&data[thr].go);
751                 init_waitqueue_head(&data[thr].done);
752
753                 data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
754                 if (IS_ERR_OR_NULL(data[thr].cc)) {
755                         pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
756                         ret = -EFAULT;
757                         goto out_clean;
758                 }
759
760                 data[thr].thr = kthread_run(compress_threadfn,
761                                             &data[thr],
762                                             "image_compress/%u", thr);
763                 if (IS_ERR(data[thr].thr)) {
764                         data[thr].thr = NULL;
765                         pr_err("Cannot start compression threads\n");
766                         ret = -ENOMEM;
767                         goto out_clean;
768                 }
769         }
770
771         /*
772          * Start the CRC32 thread.
773          */
774         init_waitqueue_head(&crc->go);
775         init_waitqueue_head(&crc->done);
776
777         handle->crc32 = 0;
778         crc->crc32 = &handle->crc32;
779         for (thr = 0; thr < nr_threads; thr++) {
780                 crc->unc[thr] = data[thr].unc;
781                 crc->unc_len[thr] = &data[thr].unc_len;
782         }
783
784         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
785         if (IS_ERR(crc->thr)) {
786                 crc->thr = NULL;
787                 pr_err("Cannot start CRC32 thread\n");
788                 ret = -ENOMEM;
789                 goto out_clean;
790         }
791
792         /*
793          * Adjust the number of required free pages after all allocations have
794          * been done. We don't want to run out of pages when writing.
795          */
796         handle->reqd_free_pages = reqd_free_pages();
797
798         pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo);
799         pr_info("Compressing and saving image data (%u pages)...\n",
800                 nr_to_write);
801         m = nr_to_write / 10;
802         if (!m)
803                 m = 1;
804         nr_pages = 0;
805         start = ktime_get();
806         for (;;) {
807                 for (thr = 0; thr < nr_threads; thr++) {
808                         for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) {
809                                 ret = snapshot_read_next(snapshot);
810                                 if (ret < 0)
811                                         goto out_finish;
812
813                                 if (!ret)
814                                         break;
815
816                                 memcpy(data[thr].unc + off,
817                                        data_of(*snapshot), PAGE_SIZE);
818
819                                 if (!(nr_pages % m))
820                                         pr_info("Image saving progress: %3d%%\n",
821                                                 nr_pages / m * 10);
822                                 nr_pages++;
823                         }
824                         if (!off)
825                                 break;
826
827                         data[thr].unc_len = off;
828
829                         atomic_set_release(&data[thr].ready, 1);
830                         wake_up(&data[thr].go);
831                 }
832
833                 if (!thr)
834                         break;
835
836                 crc->run_threads = thr;
837                 atomic_set_release(&crc->ready, 1);
838                 wake_up(&crc->go);
839
840                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
841                         wait_event(data[thr].done,
842                                 atomic_read_acquire(&data[thr].stop));
843                         atomic_set(&data[thr].stop, 0);
844
845                         ret = data[thr].ret;
846
847                         if (ret < 0) {
848                                 pr_err("%s compression failed\n", hib_comp_algo);
849                                 goto out_finish;
850                         }
851
852                         if (unlikely(!data[thr].cmp_len ||
853                                      data[thr].cmp_len >
854                                      bytes_worst_compress(data[thr].unc_len))) {
855                                 pr_err("Invalid %s compressed length\n", hib_comp_algo);
856                                 ret = -1;
857                                 goto out_finish;
858                         }
859
860                         *(size_t *)data[thr].cmp = data[thr].cmp_len;
861
862                         /*
863                          * Given we are writing one page at a time to disk, we
864                          * copy that much from the buffer, although the last
865                          * bit will likely be smaller than full page. This is
866                          * OK - we saved the length of the compressed data, so
867                          * any garbage at the end will be discarded when we
868                          * read it.
869                          */
870                         for (off = 0;
871                              off < CMP_HEADER + data[thr].cmp_len;
872                              off += PAGE_SIZE) {
873                                 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
874
875                                 ret = swap_write_page(handle, page, &hb);
876                                 if (ret)
877                                         goto out_finish;
878                         }
879                 }
880
881                 wait_event(crc->done, atomic_read_acquire(&crc->stop));
882                 atomic_set(&crc->stop, 0);
883         }
884
885 out_finish:
886         err2 = hib_wait_io(&hb);
887         stop = ktime_get();
888         if (!ret)
889                 ret = err2;
890         if (!ret)
891                 pr_info("Image saving done\n");
892         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
893         pr_info("Image size after compression: %d kbytes\n",
894                 (atomic_read(&compressed_size) / 1024));
895
896 out_clean:
897         hib_finish_batch(&hb);
898         if (crc) {
899                 if (crc->thr)
900                         kthread_stop(crc->thr);
901                 kfree(crc);
902         }
903         if (data) {
904                 for (thr = 0; thr < nr_threads; thr++) {
905                         if (data[thr].thr)
906                                 kthread_stop(data[thr].thr);
907                         if (data[thr].cc)
908                                 crypto_free_comp(data[thr].cc);
909                 }
910                 vfree(data);
911         }
912         if (page) free_page((unsigned long)page);
913
914         return ret;
915 }
916
917 /**
918  *      enough_swap - Make sure we have enough swap to save the image.
919  *
920  *      Returns TRUE or FALSE after checking the total amount of swap
921  *      space available from the resume partition.
922  */
923
924 static int enough_swap(unsigned int nr_pages)
925 {
926         unsigned int free_swap = count_swap_pages(root_swap, 1);
927         unsigned int required;
928
929         pr_debug("Free swap pages: %u\n", free_swap);
930
931         required = PAGES_FOR_IO + nr_pages;
932         return free_swap > required;
933 }
934
935 /**
936  *      swsusp_write - Write entire image and metadata.
937  *      @flags: flags to pass to the "boot" kernel in the image header
938  *
939  *      It is important _NOT_ to umount filesystems at this point. We want
940  *      them synced (in case something goes wrong) but we DO not want to mark
941  *      filesystem clean: it is not. (And it does not matter, if we resume
942  *      correctly, we'll mark system clean, anyway.)
943  */
944
945 int swsusp_write(unsigned int flags)
946 {
947         struct swap_map_handle handle;
948         struct snapshot_handle snapshot;
949         struct swsusp_info *header;
950         unsigned long pages;
951         int error;
952
953         pages = snapshot_get_image_size();
954         error = get_swap_writer(&handle);
955         if (error) {
956                 pr_err("Cannot get swap writer\n");
957                 return error;
958         }
959         if (flags & SF_NOCOMPRESS_MODE) {
960                 if (!enough_swap(pages)) {
961                         pr_err("Not enough free swap\n");
962                         error = -ENOSPC;
963                         goto out_finish;
964                 }
965         }
966         memset(&snapshot, 0, sizeof(struct snapshot_handle));
967         error = snapshot_read_next(&snapshot);
968         if (error < (int)PAGE_SIZE) {
969                 if (error >= 0)
970                         error = -EFAULT;
971
972                 goto out_finish;
973         }
974         header = (struct swsusp_info *)data_of(snapshot);
975         error = swap_write_page(&handle, header, NULL);
976         if (!error) {
977                 error = (flags & SF_NOCOMPRESS_MODE) ?
978                         save_image(&handle, &snapshot, pages - 1) :
979                         save_compressed_image(&handle, &snapshot, pages - 1);
980         }
981 out_finish:
982         error = swap_writer_finish(&handle, flags, error);
983         return error;
984 }
985
986 /*
987  *      The following functions allow us to read data using a swap map
988  *      in a file-like way.
989  */
990
991 static void release_swap_reader(struct swap_map_handle *handle)
992 {
993         struct swap_map_page_list *tmp;
994
995         while (handle->maps) {
996                 if (handle->maps->map)
997                         free_page((unsigned long)handle->maps->map);
998                 tmp = handle->maps;
999                 handle->maps = handle->maps->next;
1000                 kfree(tmp);
1001         }
1002         handle->cur = NULL;
1003 }
1004
1005 static int get_swap_reader(struct swap_map_handle *handle,
1006                 unsigned int *flags_p)
1007 {
1008         int error;
1009         struct swap_map_page_list *tmp, *last;
1010         sector_t offset;
1011
1012         *flags_p = swsusp_header->flags;
1013
1014         if (!swsusp_header->image) /* how can this happen? */
1015                 return -EINVAL;
1016
1017         handle->cur = NULL;
1018         last = handle->maps = NULL;
1019         offset = swsusp_header->image;
1020         while (offset) {
1021                 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
1022                 if (!tmp) {
1023                         release_swap_reader(handle);
1024                         return -ENOMEM;
1025                 }
1026                 if (!handle->maps)
1027                         handle->maps = tmp;
1028                 if (last)
1029                         last->next = tmp;
1030                 last = tmp;
1031
1032                 tmp->map = (struct swap_map_page *)
1033                            __get_free_page(GFP_NOIO | __GFP_HIGH);
1034                 if (!tmp->map) {
1035                         release_swap_reader(handle);
1036                         return -ENOMEM;
1037                 }
1038
1039                 error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1040                 if (error) {
1041                         release_swap_reader(handle);
1042                         return error;
1043                 }
1044                 offset = tmp->map->next_swap;
1045         }
1046         handle->k = 0;
1047         handle->cur = handle->maps->map;
1048         return 0;
1049 }
1050
1051 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1052                 struct hib_bio_batch *hb)
1053 {
1054         sector_t offset;
1055         int error;
1056         struct swap_map_page_list *tmp;
1057
1058         if (!handle->cur)
1059                 return -EINVAL;
1060         offset = handle->cur->entries[handle->k];
1061         if (!offset)
1062                 return -EFAULT;
1063         error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1064         if (error)
1065                 return error;
1066         if (++handle->k >= MAP_PAGE_ENTRIES) {
1067                 handle->k = 0;
1068                 free_page((unsigned long)handle->maps->map);
1069                 tmp = handle->maps;
1070                 handle->maps = handle->maps->next;
1071                 kfree(tmp);
1072                 if (!handle->maps)
1073                         release_swap_reader(handle);
1074                 else
1075                         handle->cur = handle->maps->map;
1076         }
1077         return error;
1078 }
1079
1080 static int swap_reader_finish(struct swap_map_handle *handle)
1081 {
1082         release_swap_reader(handle);
1083
1084         return 0;
1085 }
1086
1087 /**
1088  *      load_image - load the image using the swap map handle
1089  *      @handle and the snapshot handle @snapshot
1090  *      (assume there are @nr_pages pages to load)
1091  */
1092
1093 static int load_image(struct swap_map_handle *handle,
1094                       struct snapshot_handle *snapshot,
1095                       unsigned int nr_to_read)
1096 {
1097         unsigned int m;
1098         int ret = 0;
1099         ktime_t start;
1100         ktime_t stop;
1101         struct hib_bio_batch hb;
1102         int err2;
1103         unsigned nr_pages;
1104
1105         hib_init_batch(&hb);
1106
1107         clean_pages_on_read = true;
1108         pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1109         m = nr_to_read / 10;
1110         if (!m)
1111                 m = 1;
1112         nr_pages = 0;
1113         start = ktime_get();
1114         for ( ; ; ) {
1115                 ret = snapshot_write_next(snapshot);
1116                 if (ret <= 0)
1117                         break;
1118                 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1119                 if (ret)
1120                         break;
1121                 if (snapshot->sync_read)
1122                         ret = hib_wait_io(&hb);
1123                 if (ret)
1124                         break;
1125                 if (!(nr_pages % m))
1126                         pr_info("Image loading progress: %3d%%\n",
1127                                 nr_pages / m * 10);
1128                 nr_pages++;
1129         }
1130         err2 = hib_wait_io(&hb);
1131         hib_finish_batch(&hb);
1132         stop = ktime_get();
1133         if (!ret)
1134                 ret = err2;
1135         if (!ret) {
1136                 pr_info("Image loading done\n");
1137                 ret = snapshot_write_finalize(snapshot);
1138                 if (!ret && !snapshot_image_loaded(snapshot))
1139                         ret = -ENODATA;
1140         }
1141         swsusp_show_speed(start, stop, nr_to_read, "Read");
1142         return ret;
1143 }
1144
1145 /*
1146  * Structure used for data decompression.
1147  */
1148 struct dec_data {
1149         struct task_struct *thr;                  /* thread */
1150         struct crypto_comp *cc;                   /* crypto compressor stream */
1151         atomic_t ready;                           /* ready to start flag */
1152         atomic_t stop;                            /* ready to stop flag */
1153         int ret;                                  /* return code */
1154         wait_queue_head_t go;                     /* start decompression */
1155         wait_queue_head_t done;                   /* decompression done */
1156         size_t unc_len;                           /* uncompressed length */
1157         size_t cmp_len;                           /* compressed length */
1158         unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
1159         unsigned char cmp[CMP_SIZE];              /* compressed buffer */
1160 };
1161
1162 /*
1163  * Decompression function that runs in its own thread.
1164  */
1165 static int decompress_threadfn(void *data)
1166 {
1167         struct dec_data *d = data;
1168         unsigned int unc_len = 0;
1169
1170         while (1) {
1171                 wait_event(d->go, atomic_read_acquire(&d->ready) ||
1172                                   kthread_should_stop());
1173                 if (kthread_should_stop()) {
1174                         d->thr = NULL;
1175                         d->ret = -1;
1176                         atomic_set_release(&d->stop, 1);
1177                         wake_up(&d->done);
1178                         break;
1179                 }
1180                 atomic_set(&d->ready, 0);
1181
1182                 unc_len = UNC_SIZE;
1183                 d->ret = crypto_comp_decompress(d->cc, d->cmp + CMP_HEADER, d->cmp_len,
1184                                                 d->unc, &unc_len);
1185                 d->unc_len = unc_len;
1186
1187                 if (clean_pages_on_decompress)
1188                         flush_icache_range((unsigned long)d->unc,
1189                                            (unsigned long)d->unc + d->unc_len);
1190
1191                 atomic_set_release(&d->stop, 1);
1192                 wake_up(&d->done);
1193         }
1194         return 0;
1195 }
1196
1197 /**
1198  * load_compressed_image - Load compressed image data and decompress it.
1199  * @handle: Swap map handle to use for loading data.
1200  * @snapshot: Image to copy uncompressed data into.
1201  * @nr_to_read: Number of pages to load.
1202  */
1203 static int load_compressed_image(struct swap_map_handle *handle,
1204                                  struct snapshot_handle *snapshot,
1205                                  unsigned int nr_to_read)
1206 {
1207         unsigned int m;
1208         int ret = 0;
1209         int eof = 0;
1210         struct hib_bio_batch hb;
1211         ktime_t start;
1212         ktime_t stop;
1213         unsigned nr_pages;
1214         size_t off;
1215         unsigned i, thr, run_threads, nr_threads;
1216         unsigned ring = 0, pg = 0, ring_size = 0,
1217                  have = 0, want, need, asked = 0;
1218         unsigned long read_pages = 0;
1219         unsigned char **page = NULL;
1220         struct dec_data *data = NULL;
1221         struct crc_data *crc = NULL;
1222
1223         hib_init_batch(&hb);
1224
1225         /*
1226          * We'll limit the number of threads for decompression to limit memory
1227          * footprint.
1228          */
1229         nr_threads = num_online_cpus() - 1;
1230         nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
1231
1232         page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page)));
1233         if (!page) {
1234                 pr_err("Failed to allocate %s page\n", hib_comp_algo);
1235                 ret = -ENOMEM;
1236                 goto out_clean;
1237         }
1238
1239         data = vzalloc(array_size(nr_threads, sizeof(*data)));
1240         if (!data) {
1241                 pr_err("Failed to allocate %s data\n", hib_comp_algo);
1242                 ret = -ENOMEM;
1243                 goto out_clean;
1244         }
1245
1246         crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1247         if (!crc) {
1248                 pr_err("Failed to allocate crc\n");
1249                 ret = -ENOMEM;
1250                 goto out_clean;
1251         }
1252
1253         clean_pages_on_decompress = true;
1254
1255         /*
1256          * Start the decompression threads.
1257          */
1258         for (thr = 0; thr < nr_threads; thr++) {
1259                 init_waitqueue_head(&data[thr].go);
1260                 init_waitqueue_head(&data[thr].done);
1261
1262                 data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
1263                 if (IS_ERR_OR_NULL(data[thr].cc)) {
1264                         pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
1265                         ret = -EFAULT;
1266                         goto out_clean;
1267                 }
1268
1269                 data[thr].thr = kthread_run(decompress_threadfn,
1270                                             &data[thr],
1271                                             "image_decompress/%u", thr);
1272                 if (IS_ERR(data[thr].thr)) {
1273                         data[thr].thr = NULL;
1274                         pr_err("Cannot start decompression threads\n");
1275                         ret = -ENOMEM;
1276                         goto out_clean;
1277                 }
1278         }
1279
1280         /*
1281          * Start the CRC32 thread.
1282          */
1283         init_waitqueue_head(&crc->go);
1284         init_waitqueue_head(&crc->done);
1285
1286         handle->crc32 = 0;
1287         crc->crc32 = &handle->crc32;
1288         for (thr = 0; thr < nr_threads; thr++) {
1289                 crc->unc[thr] = data[thr].unc;
1290                 crc->unc_len[thr] = &data[thr].unc_len;
1291         }
1292
1293         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1294         if (IS_ERR(crc->thr)) {
1295                 crc->thr = NULL;
1296                 pr_err("Cannot start CRC32 thread\n");
1297                 ret = -ENOMEM;
1298                 goto out_clean;
1299         }
1300
1301         /*
1302          * Set the number of pages for read buffering.
1303          * This is complete guesswork, because we'll only know the real
1304          * picture once prepare_image() is called, which is much later on
1305          * during the image load phase. We'll assume the worst case and
1306          * say that none of the image pages are from high memory.
1307          */
1308         if (low_free_pages() > snapshot_get_image_size())
1309                 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1310         read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES);
1311
1312         for (i = 0; i < read_pages; i++) {
1313                 page[i] = (void *)__get_free_page(i < CMP_PAGES ?
1314                                                   GFP_NOIO | __GFP_HIGH :
1315                                                   GFP_NOIO | __GFP_NOWARN |
1316                                                   __GFP_NORETRY);
1317
1318                 if (!page[i]) {
1319                         if (i < CMP_PAGES) {
1320                                 ring_size = i;
1321                                 pr_err("Failed to allocate %s pages\n", hib_comp_algo);
1322                                 ret = -ENOMEM;
1323                                 goto out_clean;
1324                         } else {
1325                                 break;
1326                         }
1327                 }
1328         }
1329         want = ring_size = i;
1330
1331         pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo);
1332         pr_info("Loading and decompressing image data (%u pages)...\n",
1333                 nr_to_read);
1334         m = nr_to_read / 10;
1335         if (!m)
1336                 m = 1;
1337         nr_pages = 0;
1338         start = ktime_get();
1339
1340         ret = snapshot_write_next(snapshot);
1341         if (ret <= 0)
1342                 goto out_finish;
1343
1344         for(;;) {
1345                 for (i = 0; !eof && i < want; i++) {
1346                         ret = swap_read_page(handle, page[ring], &hb);
1347                         if (ret) {
1348                                 /*
1349                                  * On real read error, finish. On end of data,
1350                                  * set EOF flag and just exit the read loop.
1351                                  */
1352                                 if (handle->cur &&
1353                                     handle->cur->entries[handle->k]) {
1354                                         goto out_finish;
1355                                 } else {
1356                                         eof = 1;
1357                                         break;
1358                                 }
1359                         }
1360                         if (++ring >= ring_size)
1361                                 ring = 0;
1362                 }
1363                 asked += i;
1364                 want -= i;
1365
1366                 /*
1367                  * We are out of data, wait for some more.
1368                  */
1369                 if (!have) {
1370                         if (!asked)
1371                                 break;
1372
1373                         ret = hib_wait_io(&hb);
1374                         if (ret)
1375                                 goto out_finish;
1376                         have += asked;
1377                         asked = 0;
1378                         if (eof)
1379                                 eof = 2;
1380                 }
1381
1382                 if (crc->run_threads) {
1383                         wait_event(crc->done, atomic_read_acquire(&crc->stop));
1384                         atomic_set(&crc->stop, 0);
1385                         crc->run_threads = 0;
1386                 }
1387
1388                 for (thr = 0; have && thr < nr_threads; thr++) {
1389                         data[thr].cmp_len = *(size_t *)page[pg];
1390                         if (unlikely(!data[thr].cmp_len ||
1391                                      data[thr].cmp_len >
1392                                         bytes_worst_compress(UNC_SIZE))) {
1393                                 pr_err("Invalid %s compressed length\n", hib_comp_algo);
1394                                 ret = -1;
1395                                 goto out_finish;
1396                         }
1397
1398                         need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER,
1399                                             PAGE_SIZE);
1400                         if (need > have) {
1401                                 if (eof > 1) {
1402                                         ret = -1;
1403                                         goto out_finish;
1404                                 }
1405                                 break;
1406                         }
1407
1408                         for (off = 0;
1409                              off < CMP_HEADER + data[thr].cmp_len;
1410                              off += PAGE_SIZE) {
1411                                 memcpy(data[thr].cmp + off,
1412                                        page[pg], PAGE_SIZE);
1413                                 have--;
1414                                 want++;
1415                                 if (++pg >= ring_size)
1416                                         pg = 0;
1417                         }
1418
1419                         atomic_set_release(&data[thr].ready, 1);
1420                         wake_up(&data[thr].go);
1421                 }
1422
1423                 /*
1424                  * Wait for more data while we are decompressing.
1425                  */
1426                 if (have < CMP_PAGES && asked) {
1427                         ret = hib_wait_io(&hb);
1428                         if (ret)
1429                                 goto out_finish;
1430                         have += asked;
1431                         asked = 0;
1432                         if (eof)
1433                                 eof = 2;
1434                 }
1435
1436                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1437                         wait_event(data[thr].done,
1438                                 atomic_read_acquire(&data[thr].stop));
1439                         atomic_set(&data[thr].stop, 0);
1440
1441                         ret = data[thr].ret;
1442
1443                         if (ret < 0) {
1444                                 pr_err("%s decompression failed\n", hib_comp_algo);
1445                                 goto out_finish;
1446                         }
1447
1448                         if (unlikely(!data[thr].unc_len ||
1449                                 data[thr].unc_len > UNC_SIZE ||
1450                                 data[thr].unc_len & (PAGE_SIZE - 1))) {
1451                                 pr_err("Invalid %s uncompressed length\n", hib_comp_algo);
1452                                 ret = -1;
1453                                 goto out_finish;
1454                         }
1455
1456                         for (off = 0;
1457                              off < data[thr].unc_len; off += PAGE_SIZE) {
1458                                 memcpy(data_of(*snapshot),
1459                                        data[thr].unc + off, PAGE_SIZE);
1460
1461                                 if (!(nr_pages % m))
1462                                         pr_info("Image loading progress: %3d%%\n",
1463                                                 nr_pages / m * 10);
1464                                 nr_pages++;
1465
1466                                 ret = snapshot_write_next(snapshot);
1467                                 if (ret <= 0) {
1468                                         crc->run_threads = thr + 1;
1469                                         atomic_set_release(&crc->ready, 1);
1470                                         wake_up(&crc->go);
1471                                         goto out_finish;
1472                                 }
1473                         }
1474                 }
1475
1476                 crc->run_threads = thr;
1477                 atomic_set_release(&crc->ready, 1);
1478                 wake_up(&crc->go);
1479         }
1480
1481 out_finish:
1482         if (crc->run_threads) {
1483                 wait_event(crc->done, atomic_read_acquire(&crc->stop));
1484                 atomic_set(&crc->stop, 0);
1485         }
1486         stop = ktime_get();
1487         if (!ret) {
1488                 pr_info("Image loading done\n");
1489                 ret = snapshot_write_finalize(snapshot);
1490                 if (!ret && !snapshot_image_loaded(snapshot))
1491                         ret = -ENODATA;
1492                 if (!ret) {
1493                         if (swsusp_header->flags & SF_CRC32_MODE) {
1494                                 if(handle->crc32 != swsusp_header->crc32) {
1495                                         pr_err("Invalid image CRC32!\n");
1496                                         ret = -ENODATA;
1497                                 }
1498                         }
1499                 }
1500         }
1501         swsusp_show_speed(start, stop, nr_to_read, "Read");
1502 out_clean:
1503         hib_finish_batch(&hb);
1504         for (i = 0; i < ring_size; i++)
1505                 free_page((unsigned long)page[i]);
1506         if (crc) {
1507                 if (crc->thr)
1508                         kthread_stop(crc->thr);
1509                 kfree(crc);
1510         }
1511         if (data) {
1512                 for (thr = 0; thr < nr_threads; thr++) {
1513                         if (data[thr].thr)
1514                                 kthread_stop(data[thr].thr);
1515                         if (data[thr].cc)
1516                                 crypto_free_comp(data[thr].cc);
1517                 }
1518                 vfree(data);
1519         }
1520         vfree(page);
1521
1522         return ret;
1523 }
1524
1525 /**
1526  *      swsusp_read - read the hibernation image.
1527  *      @flags_p: flags passed by the "frozen" kernel in the image header should
1528  *                be written into this memory location
1529  */
1530
1531 int swsusp_read(unsigned int *flags_p)
1532 {
1533         int error;
1534         struct swap_map_handle handle;
1535         struct snapshot_handle snapshot;
1536         struct swsusp_info *header;
1537
1538         memset(&snapshot, 0, sizeof(struct snapshot_handle));
1539         error = snapshot_write_next(&snapshot);
1540         if (error < (int)PAGE_SIZE)
1541                 return error < 0 ? error : -EFAULT;
1542         header = (struct swsusp_info *)data_of(snapshot);
1543         error = get_swap_reader(&handle, flags_p);
1544         if (error)
1545                 goto end;
1546         if (!error)
1547                 error = swap_read_page(&handle, header, NULL);
1548         if (!error) {
1549                 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1550                         load_image(&handle, &snapshot, header->pages - 1) :
1551                         load_compressed_image(&handle, &snapshot, header->pages - 1);
1552         }
1553         swap_reader_finish(&handle);
1554 end:
1555         if (!error)
1556                 pr_debug("Image successfully loaded\n");
1557         else
1558                 pr_debug("Error %d resuming\n", error);
1559         return error;
1560 }
1561
1562 static void *swsusp_holder;
1563
1564 /**
1565  * swsusp_check - Open the resume device and check for the swsusp signature.
1566  * @exclusive: Open the resume device exclusively.
1567  */
1568
1569 int swsusp_check(bool exclusive)
1570 {
1571         void *holder = exclusive ? &swsusp_holder : NULL;
1572         int error;
1573
1574         hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
1575                                 BLK_OPEN_READ, holder, NULL);
1576         if (!IS_ERR(hib_resume_bdev_file)) {
1577                 set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE);
1578                 clear_page(swsusp_header);
1579                 error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1580                                         swsusp_header, NULL);
1581                 if (error)
1582                         goto put;
1583
1584                 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1585                         memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1586                         swsusp_header_flags = swsusp_header->flags;
1587                         /* Reset swap signature now */
1588                         error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1589                                                 swsusp_resume_block,
1590                                                 swsusp_header, NULL);
1591                 } else {
1592                         error = -EINVAL;
1593                 }
1594                 if (!error && swsusp_header->flags & SF_HW_SIG &&
1595                     swsusp_header->hw_sig != swsusp_hardware_signature) {
1596                         pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1597                                 swsusp_header->hw_sig, swsusp_hardware_signature);
1598                         error = -EINVAL;
1599                 }
1600
1601 put:
1602                 if (error)
1603                         fput(hib_resume_bdev_file);
1604                 else
1605                         pr_debug("Image signature found, resuming\n");
1606         } else {
1607                 error = PTR_ERR(hib_resume_bdev_file);
1608         }
1609
1610         if (error)
1611                 pr_debug("Image not found (code %d)\n", error);
1612
1613         return error;
1614 }
1615
1616 /**
1617  * swsusp_close - close resume device.
1618  */
1619
1620 void swsusp_close(void)
1621 {
1622         if (IS_ERR(hib_resume_bdev_file)) {
1623                 pr_debug("Image device not initialised\n");
1624                 return;
1625         }
1626
1627         fput(hib_resume_bdev_file);
1628 }
1629
1630 /**
1631  *      swsusp_unmark - Unmark swsusp signature in the resume device
1632  */
1633
1634 #ifdef CONFIG_SUSPEND
1635 int swsusp_unmark(void)
1636 {
1637         int error;
1638
1639         hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1640                         swsusp_header, NULL);
1641         if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1642                 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1643                 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1644                                         swsusp_resume_block,
1645                                         swsusp_header, NULL);
1646         } else {
1647                 pr_err("Cannot find swsusp signature!\n");
1648                 error = -ENODEV;
1649         }
1650
1651         /*
1652          * We just returned from suspend, we don't need the image any more.
1653          */
1654         free_all_swap_pages(root_swap);
1655
1656         return error;
1657 }
1658 #endif
1659
1660 static int __init swsusp_header_init(void)
1661 {
1662         swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1663         if (!swsusp_header)
1664                 panic("Could not allocate memory for swsusp_header\n");
1665         return 0;
1666 }
1667
1668 core_initcall(swsusp_header_init);