Merge tag 'dma-mapping-5.18' of git://git.infradead.org/users/hch/dma-mapping
[sfrench/cifs-2.6.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 #include <linux/sched/mm.h>
101
102 #include <asm/pgalloc.h>
103 #include <linux/uaccess.h>
104 #include <asm/mmu_context.h>
105 #include <asm/cacheflush.h>
106 #include <asm/tlbflush.h>
107
108 #include <trace/events/sched.h>
109
110 #define CREATE_TRACE_POINTS
111 #include <trace/events/task.h>
112
113 /*
114  * Minimum number of threads to boot the kernel
115  */
116 #define MIN_THREADS 20
117
118 /*
119  * Maximum number of threads
120  */
121 #define MAX_THREADS FUTEX_TID_MASK
122
123 /*
124  * Protected counters by write_lock_irq(&tasklist_lock)
125  */
126 unsigned long total_forks;      /* Handle normal Linux uptimes. */
127 int nr_threads;                 /* The idle threads do not count.. */
128
129 static int max_threads;         /* tunable limit on nr_threads */
130
131 #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
132
133 static const char * const resident_page_types[] = {
134         NAMED_ARRAY_INDEX(MM_FILEPAGES),
135         NAMED_ARRAY_INDEX(MM_ANONPAGES),
136         NAMED_ARRAY_INDEX(MM_SWAPENTS),
137         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
138 };
139
140 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
141
142 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
143
144 #ifdef CONFIG_PROVE_RCU
145 int lockdep_tasklist_lock_is_held(void)
146 {
147         return lockdep_is_held(&tasklist_lock);
148 }
149 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
150 #endif /* #ifdef CONFIG_PROVE_RCU */
151
152 int nr_processes(void)
153 {
154         int cpu;
155         int total = 0;
156
157         for_each_possible_cpu(cpu)
158                 total += per_cpu(process_counts, cpu);
159
160         return total;
161 }
162
163 void __weak arch_release_task_struct(struct task_struct *tsk)
164 {
165 }
166
167 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
168 static struct kmem_cache *task_struct_cachep;
169
170 static inline struct task_struct *alloc_task_struct_node(int node)
171 {
172         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
173 }
174
175 static inline void free_task_struct(struct task_struct *tsk)
176 {
177         kmem_cache_free(task_struct_cachep, tsk);
178 }
179 #endif
180
181 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
182
183 /*
184  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
185  * kmemcache based allocator.
186  */
187 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
188
189 #  ifdef CONFIG_VMAP_STACK
190 /*
191  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
192  * flush.  Try to minimize the number of calls by caching stacks.
193  */
194 #define NR_CACHED_STACKS 2
195 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
196
197 struct vm_stack {
198         struct rcu_head rcu;
199         struct vm_struct *stack_vm_area;
200 };
201
202 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
203 {
204         unsigned int i;
205
206         for (i = 0; i < NR_CACHED_STACKS; i++) {
207                 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
208                         continue;
209                 return true;
210         }
211         return false;
212 }
213
214 static void thread_stack_free_rcu(struct rcu_head *rh)
215 {
216         struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
217
218         if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
219                 return;
220
221         vfree(vm_stack);
222 }
223
224 static void thread_stack_delayed_free(struct task_struct *tsk)
225 {
226         struct vm_stack *vm_stack = tsk->stack;
227
228         vm_stack->stack_vm_area = tsk->stack_vm_area;
229         call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
230 }
231
232 static int free_vm_stack_cache(unsigned int cpu)
233 {
234         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
235         int i;
236
237         for (i = 0; i < NR_CACHED_STACKS; i++) {
238                 struct vm_struct *vm_stack = cached_vm_stacks[i];
239
240                 if (!vm_stack)
241                         continue;
242
243                 vfree(vm_stack->addr);
244                 cached_vm_stacks[i] = NULL;
245         }
246
247         return 0;
248 }
249
250 static int memcg_charge_kernel_stack(struct vm_struct *vm)
251 {
252         int i;
253         int ret;
254
255         BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
256         BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
257
258         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
259                 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
260                 if (ret)
261                         goto err;
262         }
263         return 0;
264 err:
265         /*
266          * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
267          * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
268          * ignore this page.
269          */
270         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
271                 memcg_kmem_uncharge_page(vm->pages[i], 0);
272         return ret;
273 }
274
275 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
276 {
277         struct vm_struct *vm;
278         void *stack;
279         int i;
280
281         for (i = 0; i < NR_CACHED_STACKS; i++) {
282                 struct vm_struct *s;
283
284                 s = this_cpu_xchg(cached_stacks[i], NULL);
285
286                 if (!s)
287                         continue;
288
289                 /* Reset stack metadata. */
290                 kasan_unpoison_range(s->addr, THREAD_SIZE);
291
292                 stack = kasan_reset_tag(s->addr);
293
294                 /* Clear stale pointers from reused stack. */
295                 memset(stack, 0, THREAD_SIZE);
296
297                 if (memcg_charge_kernel_stack(s)) {
298                         vfree(s->addr);
299                         return -ENOMEM;
300                 }
301
302                 tsk->stack_vm_area = s;
303                 tsk->stack = stack;
304                 return 0;
305         }
306
307         /*
308          * Allocated stacks are cached and later reused by new threads,
309          * so memcg accounting is performed manually on assigning/releasing
310          * stacks to tasks. Drop __GFP_ACCOUNT.
311          */
312         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
313                                      VMALLOC_START, VMALLOC_END,
314                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
315                                      PAGE_KERNEL,
316                                      0, node, __builtin_return_address(0));
317         if (!stack)
318                 return -ENOMEM;
319
320         vm = find_vm_area(stack);
321         if (memcg_charge_kernel_stack(vm)) {
322                 vfree(stack);
323                 return -ENOMEM;
324         }
325         /*
326          * We can't call find_vm_area() in interrupt context, and
327          * free_thread_stack() can be called in interrupt context,
328          * so cache the vm_struct.
329          */
330         tsk->stack_vm_area = vm;
331         stack = kasan_reset_tag(stack);
332         tsk->stack = stack;
333         return 0;
334 }
335
336 static void free_thread_stack(struct task_struct *tsk)
337 {
338         if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
339                 thread_stack_delayed_free(tsk);
340
341         tsk->stack = NULL;
342         tsk->stack_vm_area = NULL;
343 }
344
345 #  else /* !CONFIG_VMAP_STACK */
346
347 static void thread_stack_free_rcu(struct rcu_head *rh)
348 {
349         __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
350 }
351
352 static void thread_stack_delayed_free(struct task_struct *tsk)
353 {
354         struct rcu_head *rh = tsk->stack;
355
356         call_rcu(rh, thread_stack_free_rcu);
357 }
358
359 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
360 {
361         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
362                                              THREAD_SIZE_ORDER);
363
364         if (likely(page)) {
365                 tsk->stack = kasan_reset_tag(page_address(page));
366                 return 0;
367         }
368         return -ENOMEM;
369 }
370
371 static void free_thread_stack(struct task_struct *tsk)
372 {
373         thread_stack_delayed_free(tsk);
374         tsk->stack = NULL;
375 }
376
377 #  endif /* CONFIG_VMAP_STACK */
378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
379
380 static struct kmem_cache *thread_stack_cache;
381
382 static void thread_stack_free_rcu(struct rcu_head *rh)
383 {
384         kmem_cache_free(thread_stack_cache, rh);
385 }
386
387 static void thread_stack_delayed_free(struct task_struct *tsk)
388 {
389         struct rcu_head *rh = tsk->stack;
390
391         call_rcu(rh, thread_stack_free_rcu);
392 }
393
394 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
395 {
396         unsigned long *stack;
397         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
398         stack = kasan_reset_tag(stack);
399         tsk->stack = stack;
400         return stack ? 0 : -ENOMEM;
401 }
402
403 static void free_thread_stack(struct task_struct *tsk)
404 {
405         thread_stack_delayed_free(tsk);
406         tsk->stack = NULL;
407 }
408
409 void thread_stack_cache_init(void)
410 {
411         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
412                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
413                                         THREAD_SIZE, NULL);
414         BUG_ON(thread_stack_cache == NULL);
415 }
416
417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
418 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
419
420 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
421 {
422         unsigned long *stack;
423
424         stack = arch_alloc_thread_stack_node(tsk, node);
425         tsk->stack = stack;
426         return stack ? 0 : -ENOMEM;
427 }
428
429 static void free_thread_stack(struct task_struct *tsk)
430 {
431         arch_free_thread_stack(tsk);
432         tsk->stack = NULL;
433 }
434
435 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
436
437 /* SLAB cache for signal_struct structures (tsk->signal) */
438 static struct kmem_cache *signal_cachep;
439
440 /* SLAB cache for sighand_struct structures (tsk->sighand) */
441 struct kmem_cache *sighand_cachep;
442
443 /* SLAB cache for files_struct structures (tsk->files) */
444 struct kmem_cache *files_cachep;
445
446 /* SLAB cache for fs_struct structures (tsk->fs) */
447 struct kmem_cache *fs_cachep;
448
449 /* SLAB cache for vm_area_struct structures */
450 static struct kmem_cache *vm_area_cachep;
451
452 /* SLAB cache for mm_struct structures (tsk->mm) */
453 static struct kmem_cache *mm_cachep;
454
455 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
456 {
457         struct vm_area_struct *vma;
458
459         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
460         if (vma)
461                 vma_init(vma, mm);
462         return vma;
463 }
464
465 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
466 {
467         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
468
469         if (new) {
470                 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
471                 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
472                 /*
473                  * orig->shared.rb may be modified concurrently, but the clone
474                  * will be reinitialized.
475                  */
476                 *new = data_race(*orig);
477                 INIT_LIST_HEAD(&new->anon_vma_chain);
478                 new->vm_next = new->vm_prev = NULL;
479                 dup_anon_vma_name(orig, new);
480         }
481         return new;
482 }
483
484 void vm_area_free(struct vm_area_struct *vma)
485 {
486         free_anon_vma_name(vma);
487         kmem_cache_free(vm_area_cachep, vma);
488 }
489
490 static void account_kernel_stack(struct task_struct *tsk, int account)
491 {
492         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
493                 struct vm_struct *vm = task_stack_vm_area(tsk);
494                 int i;
495
496                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
497                         mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
498                                               account * (PAGE_SIZE / 1024));
499         } else {
500                 void *stack = task_stack_page(tsk);
501
502                 /* All stack pages are in the same node. */
503                 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
504                                       account * (THREAD_SIZE / 1024));
505         }
506 }
507
508 void exit_task_stack_account(struct task_struct *tsk)
509 {
510         account_kernel_stack(tsk, -1);
511
512         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
513                 struct vm_struct *vm;
514                 int i;
515
516                 vm = task_stack_vm_area(tsk);
517                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
518                         memcg_kmem_uncharge_page(vm->pages[i], 0);
519         }
520 }
521
522 static void release_task_stack(struct task_struct *tsk)
523 {
524         if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
525                 return;  /* Better to leak the stack than to free prematurely */
526
527         free_thread_stack(tsk);
528 }
529
530 #ifdef CONFIG_THREAD_INFO_IN_TASK
531 void put_task_stack(struct task_struct *tsk)
532 {
533         if (refcount_dec_and_test(&tsk->stack_refcount))
534                 release_task_stack(tsk);
535 }
536 #endif
537
538 void free_task(struct task_struct *tsk)
539 {
540         release_user_cpus_ptr(tsk);
541         scs_release(tsk);
542
543 #ifndef CONFIG_THREAD_INFO_IN_TASK
544         /*
545          * The task is finally done with both the stack and thread_info,
546          * so free both.
547          */
548         release_task_stack(tsk);
549 #else
550         /*
551          * If the task had a separate stack allocation, it should be gone
552          * by now.
553          */
554         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
555 #endif
556         rt_mutex_debug_task_free(tsk);
557         ftrace_graph_exit_task(tsk);
558         arch_release_task_struct(tsk);
559         if (tsk->flags & PF_KTHREAD)
560                 free_kthread_struct(tsk);
561         free_task_struct(tsk);
562 }
563 EXPORT_SYMBOL(free_task);
564
565 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
566 {
567         struct file *exe_file;
568
569         exe_file = get_mm_exe_file(oldmm);
570         RCU_INIT_POINTER(mm->exe_file, exe_file);
571         /*
572          * We depend on the oldmm having properly denied write access to the
573          * exe_file already.
574          */
575         if (exe_file && deny_write_access(exe_file))
576                 pr_warn_once("deny_write_access() failed in %s\n", __func__);
577 }
578
579 #ifdef CONFIG_MMU
580 static __latent_entropy int dup_mmap(struct mm_struct *mm,
581                                         struct mm_struct *oldmm)
582 {
583         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
584         struct rb_node **rb_link, *rb_parent;
585         int retval;
586         unsigned long charge;
587         LIST_HEAD(uf);
588
589         uprobe_start_dup_mmap();
590         if (mmap_write_lock_killable(oldmm)) {
591                 retval = -EINTR;
592                 goto fail_uprobe_end;
593         }
594         flush_cache_dup_mm(oldmm);
595         uprobe_dup_mmap(oldmm, mm);
596         /*
597          * Not linked in yet - no deadlock potential:
598          */
599         mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
600
601         /* No ordering required: file already has been exposed. */
602         dup_mm_exe_file(mm, oldmm);
603
604         mm->total_vm = oldmm->total_vm;
605         mm->data_vm = oldmm->data_vm;
606         mm->exec_vm = oldmm->exec_vm;
607         mm->stack_vm = oldmm->stack_vm;
608
609         rb_link = &mm->mm_rb.rb_node;
610         rb_parent = NULL;
611         pprev = &mm->mmap;
612         retval = ksm_fork(mm, oldmm);
613         if (retval)
614                 goto out;
615         retval = khugepaged_fork(mm, oldmm);
616         if (retval)
617                 goto out;
618
619         prev = NULL;
620         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
621                 struct file *file;
622
623                 if (mpnt->vm_flags & VM_DONTCOPY) {
624                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
625                         continue;
626                 }
627                 charge = 0;
628                 /*
629                  * Don't duplicate many vmas if we've been oom-killed (for
630                  * example)
631                  */
632                 if (fatal_signal_pending(current)) {
633                         retval = -EINTR;
634                         goto out;
635                 }
636                 if (mpnt->vm_flags & VM_ACCOUNT) {
637                         unsigned long len = vma_pages(mpnt);
638
639                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
640                                 goto fail_nomem;
641                         charge = len;
642                 }
643                 tmp = vm_area_dup(mpnt);
644                 if (!tmp)
645                         goto fail_nomem;
646                 retval = vma_dup_policy(mpnt, tmp);
647                 if (retval)
648                         goto fail_nomem_policy;
649                 tmp->vm_mm = mm;
650                 retval = dup_userfaultfd(tmp, &uf);
651                 if (retval)
652                         goto fail_nomem_anon_vma_fork;
653                 if (tmp->vm_flags & VM_WIPEONFORK) {
654                         /*
655                          * VM_WIPEONFORK gets a clean slate in the child.
656                          * Don't prepare anon_vma until fault since we don't
657                          * copy page for current vma.
658                          */
659                         tmp->anon_vma = NULL;
660                 } else if (anon_vma_fork(tmp, mpnt))
661                         goto fail_nomem_anon_vma_fork;
662                 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
663                 file = tmp->vm_file;
664                 if (file) {
665                         struct address_space *mapping = file->f_mapping;
666
667                         get_file(file);
668                         i_mmap_lock_write(mapping);
669                         if (tmp->vm_flags & VM_SHARED)
670                                 mapping_allow_writable(mapping);
671                         flush_dcache_mmap_lock(mapping);
672                         /* insert tmp into the share list, just after mpnt */
673                         vma_interval_tree_insert_after(tmp, mpnt,
674                                         &mapping->i_mmap);
675                         flush_dcache_mmap_unlock(mapping);
676                         i_mmap_unlock_write(mapping);
677                 }
678
679                 /*
680                  * Clear hugetlb-related page reserves for children. This only
681                  * affects MAP_PRIVATE mappings. Faults generated by the child
682                  * are not guaranteed to succeed, even if read-only
683                  */
684                 if (is_vm_hugetlb_page(tmp))
685                         reset_vma_resv_huge_pages(tmp);
686
687                 /*
688                  * Link in the new vma and copy the page table entries.
689                  */
690                 *pprev = tmp;
691                 pprev = &tmp->vm_next;
692                 tmp->vm_prev = prev;
693                 prev = tmp;
694
695                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
696                 rb_link = &tmp->vm_rb.rb_right;
697                 rb_parent = &tmp->vm_rb;
698
699                 mm->map_count++;
700                 if (!(tmp->vm_flags & VM_WIPEONFORK))
701                         retval = copy_page_range(tmp, mpnt);
702
703                 if (tmp->vm_ops && tmp->vm_ops->open)
704                         tmp->vm_ops->open(tmp);
705
706                 if (retval)
707                         goto out;
708         }
709         /* a new mm has just been created */
710         retval = arch_dup_mmap(oldmm, mm);
711 out:
712         mmap_write_unlock(mm);
713         flush_tlb_mm(oldmm);
714         mmap_write_unlock(oldmm);
715         dup_userfaultfd_complete(&uf);
716 fail_uprobe_end:
717         uprobe_end_dup_mmap();
718         return retval;
719 fail_nomem_anon_vma_fork:
720         mpol_put(vma_policy(tmp));
721 fail_nomem_policy:
722         vm_area_free(tmp);
723 fail_nomem:
724         retval = -ENOMEM;
725         vm_unacct_memory(charge);
726         goto out;
727 }
728
729 static inline int mm_alloc_pgd(struct mm_struct *mm)
730 {
731         mm->pgd = pgd_alloc(mm);
732         if (unlikely(!mm->pgd))
733                 return -ENOMEM;
734         return 0;
735 }
736
737 static inline void mm_free_pgd(struct mm_struct *mm)
738 {
739         pgd_free(mm, mm->pgd);
740 }
741 #else
742 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
743 {
744         mmap_write_lock(oldmm);
745         dup_mm_exe_file(mm, oldmm);
746         mmap_write_unlock(oldmm);
747         return 0;
748 }
749 #define mm_alloc_pgd(mm)        (0)
750 #define mm_free_pgd(mm)
751 #endif /* CONFIG_MMU */
752
753 static void check_mm(struct mm_struct *mm)
754 {
755         int i;
756
757         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
758                          "Please make sure 'struct resident_page_types[]' is updated as well");
759
760         for (i = 0; i < NR_MM_COUNTERS; i++) {
761                 long x = atomic_long_read(&mm->rss_stat.count[i]);
762
763                 if (unlikely(x))
764                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
765                                  mm, resident_page_types[i], x);
766         }
767
768         if (mm_pgtables_bytes(mm))
769                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
770                                 mm_pgtables_bytes(mm));
771
772 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
773         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
774 #endif
775 }
776
777 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
778 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
779
780 /*
781  * Called when the last reference to the mm
782  * is dropped: either by a lazy thread or by
783  * mmput. Free the page directory and the mm.
784  */
785 void __mmdrop(struct mm_struct *mm)
786 {
787         BUG_ON(mm == &init_mm);
788         WARN_ON_ONCE(mm == current->mm);
789         WARN_ON_ONCE(mm == current->active_mm);
790         mm_free_pgd(mm);
791         destroy_context(mm);
792         mmu_notifier_subscriptions_destroy(mm);
793         check_mm(mm);
794         put_user_ns(mm->user_ns);
795         free_mm(mm);
796 }
797 EXPORT_SYMBOL_GPL(__mmdrop);
798
799 static void mmdrop_async_fn(struct work_struct *work)
800 {
801         struct mm_struct *mm;
802
803         mm = container_of(work, struct mm_struct, async_put_work);
804         __mmdrop(mm);
805 }
806
807 static void mmdrop_async(struct mm_struct *mm)
808 {
809         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
810                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
811                 schedule_work(&mm->async_put_work);
812         }
813 }
814
815 static inline void free_signal_struct(struct signal_struct *sig)
816 {
817         taskstats_tgid_free(sig);
818         sched_autogroup_exit(sig);
819         /*
820          * __mmdrop is not safe to call from softirq context on x86 due to
821          * pgd_dtor so postpone it to the async context
822          */
823         if (sig->oom_mm)
824                 mmdrop_async(sig->oom_mm);
825         kmem_cache_free(signal_cachep, sig);
826 }
827
828 static inline void put_signal_struct(struct signal_struct *sig)
829 {
830         if (refcount_dec_and_test(&sig->sigcnt))
831                 free_signal_struct(sig);
832 }
833
834 void __put_task_struct(struct task_struct *tsk)
835 {
836         WARN_ON(!tsk->exit_state);
837         WARN_ON(refcount_read(&tsk->usage));
838         WARN_ON(tsk == current);
839
840         io_uring_free(tsk);
841         cgroup_free(tsk);
842         task_numa_free(tsk, true);
843         security_task_free(tsk);
844         bpf_task_storage_free(tsk);
845         exit_creds(tsk);
846         delayacct_tsk_free(tsk);
847         put_signal_struct(tsk->signal);
848         sched_core_free(tsk);
849         free_task(tsk);
850 }
851 EXPORT_SYMBOL_GPL(__put_task_struct);
852
853 void __init __weak arch_task_cache_init(void) { }
854
855 /*
856  * set_max_threads
857  */
858 static void set_max_threads(unsigned int max_threads_suggested)
859 {
860         u64 threads;
861         unsigned long nr_pages = totalram_pages();
862
863         /*
864          * The number of threads shall be limited such that the thread
865          * structures may only consume a small part of the available memory.
866          */
867         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
868                 threads = MAX_THREADS;
869         else
870                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
871                                     (u64) THREAD_SIZE * 8UL);
872
873         if (threads > max_threads_suggested)
874                 threads = max_threads_suggested;
875
876         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
877 }
878
879 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
880 /* Initialized by the architecture: */
881 int arch_task_struct_size __read_mostly;
882 #endif
883
884 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
885 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
886 {
887         /* Fetch thread_struct whitelist for the architecture. */
888         arch_thread_struct_whitelist(offset, size);
889
890         /*
891          * Handle zero-sized whitelist or empty thread_struct, otherwise
892          * adjust offset to position of thread_struct in task_struct.
893          */
894         if (unlikely(*size == 0))
895                 *offset = 0;
896         else
897                 *offset += offsetof(struct task_struct, thread);
898 }
899 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
900
901 void __init fork_init(void)
902 {
903         int i;
904 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
905 #ifndef ARCH_MIN_TASKALIGN
906 #define ARCH_MIN_TASKALIGN      0
907 #endif
908         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
909         unsigned long useroffset, usersize;
910
911         /* create a slab on which task_structs can be allocated */
912         task_struct_whitelist(&useroffset, &usersize);
913         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
914                         arch_task_struct_size, align,
915                         SLAB_PANIC|SLAB_ACCOUNT,
916                         useroffset, usersize, NULL);
917 #endif
918
919         /* do the arch specific task caches init */
920         arch_task_cache_init();
921
922         set_max_threads(MAX_THREADS);
923
924         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
925         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
926         init_task.signal->rlim[RLIMIT_SIGPENDING] =
927                 init_task.signal->rlim[RLIMIT_NPROC];
928
929         for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
930                 init_user_ns.ucount_max[i] = max_threads/2;
931
932         set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
933         set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
934         set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
935         set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
936
937 #ifdef CONFIG_VMAP_STACK
938         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
939                           NULL, free_vm_stack_cache);
940 #endif
941
942         scs_init();
943
944         lockdep_init_task(&init_task);
945         uprobes_init();
946 }
947
948 int __weak arch_dup_task_struct(struct task_struct *dst,
949                                                struct task_struct *src)
950 {
951         *dst = *src;
952         return 0;
953 }
954
955 void set_task_stack_end_magic(struct task_struct *tsk)
956 {
957         unsigned long *stackend;
958
959         stackend = end_of_stack(tsk);
960         *stackend = STACK_END_MAGIC;    /* for overflow detection */
961 }
962
963 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
964 {
965         struct task_struct *tsk;
966         int err;
967
968         if (node == NUMA_NO_NODE)
969                 node = tsk_fork_get_node(orig);
970         tsk = alloc_task_struct_node(node);
971         if (!tsk)
972                 return NULL;
973
974         err = arch_dup_task_struct(tsk, orig);
975         if (err)
976                 goto free_tsk;
977
978         err = alloc_thread_stack_node(tsk, node);
979         if (err)
980                 goto free_tsk;
981
982 #ifdef CONFIG_THREAD_INFO_IN_TASK
983         refcount_set(&tsk->stack_refcount, 1);
984 #endif
985         account_kernel_stack(tsk, 1);
986
987         err = scs_prepare(tsk, node);
988         if (err)
989                 goto free_stack;
990
991 #ifdef CONFIG_SECCOMP
992         /*
993          * We must handle setting up seccomp filters once we're under
994          * the sighand lock in case orig has changed between now and
995          * then. Until then, filter must be NULL to avoid messing up
996          * the usage counts on the error path calling free_task.
997          */
998         tsk->seccomp.filter = NULL;
999 #endif
1000
1001         setup_thread_stack(tsk, orig);
1002         clear_user_return_notifier(tsk);
1003         clear_tsk_need_resched(tsk);
1004         set_task_stack_end_magic(tsk);
1005         clear_syscall_work_syscall_user_dispatch(tsk);
1006
1007 #ifdef CONFIG_STACKPROTECTOR
1008         tsk->stack_canary = get_random_canary();
1009 #endif
1010         if (orig->cpus_ptr == &orig->cpus_mask)
1011                 tsk->cpus_ptr = &tsk->cpus_mask;
1012         dup_user_cpus_ptr(tsk, orig, node);
1013
1014         /*
1015          * One for the user space visible state that goes away when reaped.
1016          * One for the scheduler.
1017          */
1018         refcount_set(&tsk->rcu_users, 2);
1019         /* One for the rcu users */
1020         refcount_set(&tsk->usage, 1);
1021 #ifdef CONFIG_BLK_DEV_IO_TRACE
1022         tsk->btrace_seq = 0;
1023 #endif
1024         tsk->splice_pipe = NULL;
1025         tsk->task_frag.page = NULL;
1026         tsk->wake_q.next = NULL;
1027         tsk->worker_private = NULL;
1028
1029         kcov_task_init(tsk);
1030         kmap_local_fork(tsk);
1031
1032 #ifdef CONFIG_FAULT_INJECTION
1033         tsk->fail_nth = 0;
1034 #endif
1035
1036 #ifdef CONFIG_BLK_CGROUP
1037         tsk->throttle_queue = NULL;
1038         tsk->use_memdelay = 0;
1039 #endif
1040
1041 #ifdef CONFIG_IOMMU_SVA
1042         tsk->pasid_activated = 0;
1043 #endif
1044
1045 #ifdef CONFIG_MEMCG
1046         tsk->active_memcg = NULL;
1047 #endif
1048         return tsk;
1049
1050 free_stack:
1051         exit_task_stack_account(tsk);
1052         free_thread_stack(tsk);
1053 free_tsk:
1054         free_task_struct(tsk);
1055         return NULL;
1056 }
1057
1058 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1059
1060 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1061
1062 static int __init coredump_filter_setup(char *s)
1063 {
1064         default_dump_filter =
1065                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1066                 MMF_DUMP_FILTER_MASK;
1067         return 1;
1068 }
1069
1070 __setup("coredump_filter=", coredump_filter_setup);
1071
1072 #include <linux/init_task.h>
1073
1074 static void mm_init_aio(struct mm_struct *mm)
1075 {
1076 #ifdef CONFIG_AIO
1077         spin_lock_init(&mm->ioctx_lock);
1078         mm->ioctx_table = NULL;
1079 #endif
1080 }
1081
1082 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1083                                            struct task_struct *p)
1084 {
1085 #ifdef CONFIG_MEMCG
1086         if (mm->owner == p)
1087                 WRITE_ONCE(mm->owner, NULL);
1088 #endif
1089 }
1090
1091 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1092 {
1093 #ifdef CONFIG_MEMCG
1094         mm->owner = p;
1095 #endif
1096 }
1097
1098 static void mm_init_uprobes_state(struct mm_struct *mm)
1099 {
1100 #ifdef CONFIG_UPROBES
1101         mm->uprobes_state.xol_area = NULL;
1102 #endif
1103 }
1104
1105 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1106         struct user_namespace *user_ns)
1107 {
1108         mm->mmap = NULL;
1109         mm->mm_rb = RB_ROOT;
1110         mm->vmacache_seqnum = 0;
1111         atomic_set(&mm->mm_users, 1);
1112         atomic_set(&mm->mm_count, 1);
1113         seqcount_init(&mm->write_protect_seq);
1114         mmap_init_lock(mm);
1115         INIT_LIST_HEAD(&mm->mmlist);
1116         mm_pgtables_bytes_init(mm);
1117         mm->map_count = 0;
1118         mm->locked_vm = 0;
1119         atomic64_set(&mm->pinned_vm, 0);
1120         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1121         spin_lock_init(&mm->page_table_lock);
1122         spin_lock_init(&mm->arg_lock);
1123         mm_init_cpumask(mm);
1124         mm_init_aio(mm);
1125         mm_init_owner(mm, p);
1126         mm_pasid_init(mm);
1127         RCU_INIT_POINTER(mm->exe_file, NULL);
1128         mmu_notifier_subscriptions_init(mm);
1129         init_tlb_flush_pending(mm);
1130 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1131         mm->pmd_huge_pte = NULL;
1132 #endif
1133         mm_init_uprobes_state(mm);
1134         hugetlb_count_init(mm);
1135
1136         if (current->mm) {
1137                 mm->flags = current->mm->flags & MMF_INIT_MASK;
1138                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1139         } else {
1140                 mm->flags = default_dump_filter;
1141                 mm->def_flags = 0;
1142         }
1143
1144         if (mm_alloc_pgd(mm))
1145                 goto fail_nopgd;
1146
1147         if (init_new_context(p, mm))
1148                 goto fail_nocontext;
1149
1150         mm->user_ns = get_user_ns(user_ns);
1151         return mm;
1152
1153 fail_nocontext:
1154         mm_free_pgd(mm);
1155 fail_nopgd:
1156         free_mm(mm);
1157         return NULL;
1158 }
1159
1160 /*
1161  * Allocate and initialize an mm_struct.
1162  */
1163 struct mm_struct *mm_alloc(void)
1164 {
1165         struct mm_struct *mm;
1166
1167         mm = allocate_mm();
1168         if (!mm)
1169                 return NULL;
1170
1171         memset(mm, 0, sizeof(*mm));
1172         return mm_init(mm, current, current_user_ns());
1173 }
1174
1175 static inline void __mmput(struct mm_struct *mm)
1176 {
1177         VM_BUG_ON(atomic_read(&mm->mm_users));
1178
1179         uprobe_clear_state(mm);
1180         exit_aio(mm);
1181         ksm_exit(mm);
1182         khugepaged_exit(mm); /* must run before exit_mmap */
1183         exit_mmap(mm);
1184         mm_put_huge_zero_page(mm);
1185         set_mm_exe_file(mm, NULL);
1186         if (!list_empty(&mm->mmlist)) {
1187                 spin_lock(&mmlist_lock);
1188                 list_del(&mm->mmlist);
1189                 spin_unlock(&mmlist_lock);
1190         }
1191         if (mm->binfmt)
1192                 module_put(mm->binfmt->module);
1193         mm_pasid_drop(mm);
1194         mmdrop(mm);
1195 }
1196
1197 /*
1198  * Decrement the use count and release all resources for an mm.
1199  */
1200 void mmput(struct mm_struct *mm)
1201 {
1202         might_sleep();
1203
1204         if (atomic_dec_and_test(&mm->mm_users))
1205                 __mmput(mm);
1206 }
1207 EXPORT_SYMBOL_GPL(mmput);
1208
1209 #ifdef CONFIG_MMU
1210 static void mmput_async_fn(struct work_struct *work)
1211 {
1212         struct mm_struct *mm = container_of(work, struct mm_struct,
1213                                             async_put_work);
1214
1215         __mmput(mm);
1216 }
1217
1218 void mmput_async(struct mm_struct *mm)
1219 {
1220         if (atomic_dec_and_test(&mm->mm_users)) {
1221                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1222                 schedule_work(&mm->async_put_work);
1223         }
1224 }
1225 #endif
1226
1227 /**
1228  * set_mm_exe_file - change a reference to the mm's executable file
1229  *
1230  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1231  *
1232  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1233  * invocations: in mmput() nobody alive left, in execve task is single
1234  * threaded.
1235  *
1236  * Can only fail if new_exe_file != NULL.
1237  */
1238 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1239 {
1240         struct file *old_exe_file;
1241
1242         /*
1243          * It is safe to dereference the exe_file without RCU as
1244          * this function is only called if nobody else can access
1245          * this mm -- see comment above for justification.
1246          */
1247         old_exe_file = rcu_dereference_raw(mm->exe_file);
1248
1249         if (new_exe_file) {
1250                 /*
1251                  * We expect the caller (i.e., sys_execve) to already denied
1252                  * write access, so this is unlikely to fail.
1253                  */
1254                 if (unlikely(deny_write_access(new_exe_file)))
1255                         return -EACCES;
1256                 get_file(new_exe_file);
1257         }
1258         rcu_assign_pointer(mm->exe_file, new_exe_file);
1259         if (old_exe_file) {
1260                 allow_write_access(old_exe_file);
1261                 fput(old_exe_file);
1262         }
1263         return 0;
1264 }
1265
1266 /**
1267  * replace_mm_exe_file - replace a reference to the mm's executable file
1268  *
1269  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1270  * dealing with concurrent invocation and without grabbing the mmap lock in
1271  * write mode.
1272  *
1273  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1274  */
1275 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1276 {
1277         struct vm_area_struct *vma;
1278         struct file *old_exe_file;
1279         int ret = 0;
1280
1281         /* Forbid mm->exe_file change if old file still mapped. */
1282         old_exe_file = get_mm_exe_file(mm);
1283         if (old_exe_file) {
1284                 mmap_read_lock(mm);
1285                 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1286                         if (!vma->vm_file)
1287                                 continue;
1288                         if (path_equal(&vma->vm_file->f_path,
1289                                        &old_exe_file->f_path))
1290                                 ret = -EBUSY;
1291                 }
1292                 mmap_read_unlock(mm);
1293                 fput(old_exe_file);
1294                 if (ret)
1295                         return ret;
1296         }
1297
1298         /* set the new file, lockless */
1299         ret = deny_write_access(new_exe_file);
1300         if (ret)
1301                 return -EACCES;
1302         get_file(new_exe_file);
1303
1304         old_exe_file = xchg(&mm->exe_file, new_exe_file);
1305         if (old_exe_file) {
1306                 /*
1307                  * Don't race with dup_mmap() getting the file and disallowing
1308                  * write access while someone might open the file writable.
1309                  */
1310                 mmap_read_lock(mm);
1311                 allow_write_access(old_exe_file);
1312                 fput(old_exe_file);
1313                 mmap_read_unlock(mm);
1314         }
1315         return 0;
1316 }
1317
1318 /**
1319  * get_mm_exe_file - acquire a reference to the mm's executable file
1320  *
1321  * Returns %NULL if mm has no associated executable file.
1322  * User must release file via fput().
1323  */
1324 struct file *get_mm_exe_file(struct mm_struct *mm)
1325 {
1326         struct file *exe_file;
1327
1328         rcu_read_lock();
1329         exe_file = rcu_dereference(mm->exe_file);
1330         if (exe_file && !get_file_rcu(exe_file))
1331                 exe_file = NULL;
1332         rcu_read_unlock();
1333         return exe_file;
1334 }
1335
1336 /**
1337  * get_task_exe_file - acquire a reference to the task's executable file
1338  *
1339  * Returns %NULL if task's mm (if any) has no associated executable file or
1340  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1341  * User must release file via fput().
1342  */
1343 struct file *get_task_exe_file(struct task_struct *task)
1344 {
1345         struct file *exe_file = NULL;
1346         struct mm_struct *mm;
1347
1348         task_lock(task);
1349         mm = task->mm;
1350         if (mm) {
1351                 if (!(task->flags & PF_KTHREAD))
1352                         exe_file = get_mm_exe_file(mm);
1353         }
1354         task_unlock(task);
1355         return exe_file;
1356 }
1357
1358 /**
1359  * get_task_mm - acquire a reference to the task's mm
1360  *
1361  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1362  * this kernel workthread has transiently adopted a user mm with use_mm,
1363  * to do its AIO) is not set and if so returns a reference to it, after
1364  * bumping up the use count.  User must release the mm via mmput()
1365  * after use.  Typically used by /proc and ptrace.
1366  */
1367 struct mm_struct *get_task_mm(struct task_struct *task)
1368 {
1369         struct mm_struct *mm;
1370
1371         task_lock(task);
1372         mm = task->mm;
1373         if (mm) {
1374                 if (task->flags & PF_KTHREAD)
1375                         mm = NULL;
1376                 else
1377                         mmget(mm);
1378         }
1379         task_unlock(task);
1380         return mm;
1381 }
1382 EXPORT_SYMBOL_GPL(get_task_mm);
1383
1384 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1385 {
1386         struct mm_struct *mm;
1387         int err;
1388
1389         err =  down_read_killable(&task->signal->exec_update_lock);
1390         if (err)
1391                 return ERR_PTR(err);
1392
1393         mm = get_task_mm(task);
1394         if (mm && mm != current->mm &&
1395                         !ptrace_may_access(task, mode)) {
1396                 mmput(mm);
1397                 mm = ERR_PTR(-EACCES);
1398         }
1399         up_read(&task->signal->exec_update_lock);
1400
1401         return mm;
1402 }
1403
1404 static void complete_vfork_done(struct task_struct *tsk)
1405 {
1406         struct completion *vfork;
1407
1408         task_lock(tsk);
1409         vfork = tsk->vfork_done;
1410         if (likely(vfork)) {
1411                 tsk->vfork_done = NULL;
1412                 complete(vfork);
1413         }
1414         task_unlock(tsk);
1415 }
1416
1417 static int wait_for_vfork_done(struct task_struct *child,
1418                                 struct completion *vfork)
1419 {
1420         int killed;
1421
1422         freezer_do_not_count();
1423         cgroup_enter_frozen();
1424         killed = wait_for_completion_killable(vfork);
1425         cgroup_leave_frozen(false);
1426         freezer_count();
1427
1428         if (killed) {
1429                 task_lock(child);
1430                 child->vfork_done = NULL;
1431                 task_unlock(child);
1432         }
1433
1434         put_task_struct(child);
1435         return killed;
1436 }
1437
1438 /* Please note the differences between mmput and mm_release.
1439  * mmput is called whenever we stop holding onto a mm_struct,
1440  * error success whatever.
1441  *
1442  * mm_release is called after a mm_struct has been removed
1443  * from the current process.
1444  *
1445  * This difference is important for error handling, when we
1446  * only half set up a mm_struct for a new process and need to restore
1447  * the old one.  Because we mmput the new mm_struct before
1448  * restoring the old one. . .
1449  * Eric Biederman 10 January 1998
1450  */
1451 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1452 {
1453         uprobe_free_utask(tsk);
1454
1455         /* Get rid of any cached register state */
1456         deactivate_mm(tsk, mm);
1457
1458         /*
1459          * Signal userspace if we're not exiting with a core dump
1460          * because we want to leave the value intact for debugging
1461          * purposes.
1462          */
1463         if (tsk->clear_child_tid) {
1464                 if (atomic_read(&mm->mm_users) > 1) {
1465                         /*
1466                          * We don't check the error code - if userspace has
1467                          * not set up a proper pointer then tough luck.
1468                          */
1469                         put_user(0, tsk->clear_child_tid);
1470                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1471                                         1, NULL, NULL, 0, 0);
1472                 }
1473                 tsk->clear_child_tid = NULL;
1474         }
1475
1476         /*
1477          * All done, finally we can wake up parent and return this mm to him.
1478          * Also kthread_stop() uses this completion for synchronization.
1479          */
1480         if (tsk->vfork_done)
1481                 complete_vfork_done(tsk);
1482 }
1483
1484 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1485 {
1486         futex_exit_release(tsk);
1487         mm_release(tsk, mm);
1488 }
1489
1490 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1491 {
1492         futex_exec_release(tsk);
1493         mm_release(tsk, mm);
1494 }
1495
1496 /**
1497  * dup_mm() - duplicates an existing mm structure
1498  * @tsk: the task_struct with which the new mm will be associated.
1499  * @oldmm: the mm to duplicate.
1500  *
1501  * Allocates a new mm structure and duplicates the provided @oldmm structure
1502  * content into it.
1503  *
1504  * Return: the duplicated mm or NULL on failure.
1505  */
1506 static struct mm_struct *dup_mm(struct task_struct *tsk,
1507                                 struct mm_struct *oldmm)
1508 {
1509         struct mm_struct *mm;
1510         int err;
1511
1512         mm = allocate_mm();
1513         if (!mm)
1514                 goto fail_nomem;
1515
1516         memcpy(mm, oldmm, sizeof(*mm));
1517
1518         if (!mm_init(mm, tsk, mm->user_ns))
1519                 goto fail_nomem;
1520
1521         err = dup_mmap(mm, oldmm);
1522         if (err)
1523                 goto free_pt;
1524
1525         mm->hiwater_rss = get_mm_rss(mm);
1526         mm->hiwater_vm = mm->total_vm;
1527
1528         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1529                 goto free_pt;
1530
1531         return mm;
1532
1533 free_pt:
1534         /* don't put binfmt in mmput, we haven't got module yet */
1535         mm->binfmt = NULL;
1536         mm_init_owner(mm, NULL);
1537         mmput(mm);
1538
1539 fail_nomem:
1540         return NULL;
1541 }
1542
1543 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1544 {
1545         struct mm_struct *mm, *oldmm;
1546
1547         tsk->min_flt = tsk->maj_flt = 0;
1548         tsk->nvcsw = tsk->nivcsw = 0;
1549 #ifdef CONFIG_DETECT_HUNG_TASK
1550         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1551         tsk->last_switch_time = 0;
1552 #endif
1553
1554         tsk->mm = NULL;
1555         tsk->active_mm = NULL;
1556
1557         /*
1558          * Are we cloning a kernel thread?
1559          *
1560          * We need to steal a active VM for that..
1561          */
1562         oldmm = current->mm;
1563         if (!oldmm)
1564                 return 0;
1565
1566         /* initialize the new vmacache entries */
1567         vmacache_flush(tsk);
1568
1569         if (clone_flags & CLONE_VM) {
1570                 mmget(oldmm);
1571                 mm = oldmm;
1572         } else {
1573                 mm = dup_mm(tsk, current->mm);
1574                 if (!mm)
1575                         return -ENOMEM;
1576         }
1577
1578         tsk->mm = mm;
1579         tsk->active_mm = mm;
1580         return 0;
1581 }
1582
1583 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1584 {
1585         struct fs_struct *fs = current->fs;
1586         if (clone_flags & CLONE_FS) {
1587                 /* tsk->fs is already what we want */
1588                 spin_lock(&fs->lock);
1589                 if (fs->in_exec) {
1590                         spin_unlock(&fs->lock);
1591                         return -EAGAIN;
1592                 }
1593                 fs->users++;
1594                 spin_unlock(&fs->lock);
1595                 return 0;
1596         }
1597         tsk->fs = copy_fs_struct(fs);
1598         if (!tsk->fs)
1599                 return -ENOMEM;
1600         return 0;
1601 }
1602
1603 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1604 {
1605         struct files_struct *oldf, *newf;
1606         int error = 0;
1607
1608         /*
1609          * A background process may not have any files ...
1610          */
1611         oldf = current->files;
1612         if (!oldf)
1613                 goto out;
1614
1615         if (clone_flags & CLONE_FILES) {
1616                 atomic_inc(&oldf->count);
1617                 goto out;
1618         }
1619
1620         newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1621         if (!newf)
1622                 goto out;
1623
1624         tsk->files = newf;
1625         error = 0;
1626 out:
1627         return error;
1628 }
1629
1630 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1631 {
1632         struct sighand_struct *sig;
1633
1634         if (clone_flags & CLONE_SIGHAND) {
1635                 refcount_inc(&current->sighand->count);
1636                 return 0;
1637         }
1638         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1639         RCU_INIT_POINTER(tsk->sighand, sig);
1640         if (!sig)
1641                 return -ENOMEM;
1642
1643         refcount_set(&sig->count, 1);
1644         spin_lock_irq(&current->sighand->siglock);
1645         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1646         spin_unlock_irq(&current->sighand->siglock);
1647
1648         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1649         if (clone_flags & CLONE_CLEAR_SIGHAND)
1650                 flush_signal_handlers(tsk, 0);
1651
1652         return 0;
1653 }
1654
1655 void __cleanup_sighand(struct sighand_struct *sighand)
1656 {
1657         if (refcount_dec_and_test(&sighand->count)) {
1658                 signalfd_cleanup(sighand);
1659                 /*
1660                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1661                  * without an RCU grace period, see __lock_task_sighand().
1662                  */
1663                 kmem_cache_free(sighand_cachep, sighand);
1664         }
1665 }
1666
1667 /*
1668  * Initialize POSIX timer handling for a thread group.
1669  */
1670 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1671 {
1672         struct posix_cputimers *pct = &sig->posix_cputimers;
1673         unsigned long cpu_limit;
1674
1675         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1676         posix_cputimers_group_init(pct, cpu_limit);
1677 }
1678
1679 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1680 {
1681         struct signal_struct *sig;
1682
1683         if (clone_flags & CLONE_THREAD)
1684                 return 0;
1685
1686         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1687         tsk->signal = sig;
1688         if (!sig)
1689                 return -ENOMEM;
1690
1691         sig->nr_threads = 1;
1692         atomic_set(&sig->live, 1);
1693         refcount_set(&sig->sigcnt, 1);
1694
1695         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1696         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1697         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1698
1699         init_waitqueue_head(&sig->wait_chldexit);
1700         sig->curr_target = tsk;
1701         init_sigpending(&sig->shared_pending);
1702         INIT_HLIST_HEAD(&sig->multiprocess);
1703         seqlock_init(&sig->stats_lock);
1704         prev_cputime_init(&sig->prev_cputime);
1705
1706 #ifdef CONFIG_POSIX_TIMERS
1707         INIT_LIST_HEAD(&sig->posix_timers);
1708         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1709         sig->real_timer.function = it_real_fn;
1710 #endif
1711
1712         task_lock(current->group_leader);
1713         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1714         task_unlock(current->group_leader);
1715
1716         posix_cpu_timers_init_group(sig);
1717
1718         tty_audit_fork(sig);
1719         sched_autogroup_fork(sig);
1720
1721         sig->oom_score_adj = current->signal->oom_score_adj;
1722         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1723
1724         mutex_init(&sig->cred_guard_mutex);
1725         init_rwsem(&sig->exec_update_lock);
1726
1727         return 0;
1728 }
1729
1730 static void copy_seccomp(struct task_struct *p)
1731 {
1732 #ifdef CONFIG_SECCOMP
1733         /*
1734          * Must be called with sighand->lock held, which is common to
1735          * all threads in the group. Holding cred_guard_mutex is not
1736          * needed because this new task is not yet running and cannot
1737          * be racing exec.
1738          */
1739         assert_spin_locked(&current->sighand->siglock);
1740
1741         /* Ref-count the new filter user, and assign it. */
1742         get_seccomp_filter(current);
1743         p->seccomp = current->seccomp;
1744
1745         /*
1746          * Explicitly enable no_new_privs here in case it got set
1747          * between the task_struct being duplicated and holding the
1748          * sighand lock. The seccomp state and nnp must be in sync.
1749          */
1750         if (task_no_new_privs(current))
1751                 task_set_no_new_privs(p);
1752
1753         /*
1754          * If the parent gained a seccomp mode after copying thread
1755          * flags and between before we held the sighand lock, we have
1756          * to manually enable the seccomp thread flag here.
1757          */
1758         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1759                 set_task_syscall_work(p, SECCOMP);
1760 #endif
1761 }
1762
1763 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1764 {
1765         current->clear_child_tid = tidptr;
1766
1767         return task_pid_vnr(current);
1768 }
1769
1770 static void rt_mutex_init_task(struct task_struct *p)
1771 {
1772         raw_spin_lock_init(&p->pi_lock);
1773 #ifdef CONFIG_RT_MUTEXES
1774         p->pi_waiters = RB_ROOT_CACHED;
1775         p->pi_top_task = NULL;
1776         p->pi_blocked_on = NULL;
1777 #endif
1778 }
1779
1780 static inline void init_task_pid_links(struct task_struct *task)
1781 {
1782         enum pid_type type;
1783
1784         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1785                 INIT_HLIST_NODE(&task->pid_links[type]);
1786 }
1787
1788 static inline void
1789 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1790 {
1791         if (type == PIDTYPE_PID)
1792                 task->thread_pid = pid;
1793         else
1794                 task->signal->pids[type] = pid;
1795 }
1796
1797 static inline void rcu_copy_process(struct task_struct *p)
1798 {
1799 #ifdef CONFIG_PREEMPT_RCU
1800         p->rcu_read_lock_nesting = 0;
1801         p->rcu_read_unlock_special.s = 0;
1802         p->rcu_blocked_node = NULL;
1803         INIT_LIST_HEAD(&p->rcu_node_entry);
1804 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1805 #ifdef CONFIG_TASKS_RCU
1806         p->rcu_tasks_holdout = false;
1807         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1808         p->rcu_tasks_idle_cpu = -1;
1809 #endif /* #ifdef CONFIG_TASKS_RCU */
1810 #ifdef CONFIG_TASKS_TRACE_RCU
1811         p->trc_reader_nesting = 0;
1812         p->trc_reader_special.s = 0;
1813         INIT_LIST_HEAD(&p->trc_holdout_list);
1814 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1815 }
1816
1817 struct pid *pidfd_pid(const struct file *file)
1818 {
1819         if (file->f_op == &pidfd_fops)
1820                 return file->private_data;
1821
1822         return ERR_PTR(-EBADF);
1823 }
1824
1825 static int pidfd_release(struct inode *inode, struct file *file)
1826 {
1827         struct pid *pid = file->private_data;
1828
1829         file->private_data = NULL;
1830         put_pid(pid);
1831         return 0;
1832 }
1833
1834 #ifdef CONFIG_PROC_FS
1835 /**
1836  * pidfd_show_fdinfo - print information about a pidfd
1837  * @m: proc fdinfo file
1838  * @f: file referencing a pidfd
1839  *
1840  * Pid:
1841  * This function will print the pid that a given pidfd refers to in the
1842  * pid namespace of the procfs instance.
1843  * If the pid namespace of the process is not a descendant of the pid
1844  * namespace of the procfs instance 0 will be shown as its pid. This is
1845  * similar to calling getppid() on a process whose parent is outside of
1846  * its pid namespace.
1847  *
1848  * NSpid:
1849  * If pid namespaces are supported then this function will also print
1850  * the pid of a given pidfd refers to for all descendant pid namespaces
1851  * starting from the current pid namespace of the instance, i.e. the
1852  * Pid field and the first entry in the NSpid field will be identical.
1853  * If the pid namespace of the process is not a descendant of the pid
1854  * namespace of the procfs instance 0 will be shown as its first NSpid
1855  * entry and no others will be shown.
1856  * Note that this differs from the Pid and NSpid fields in
1857  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1858  * the  pid namespace of the procfs instance. The difference becomes
1859  * obvious when sending around a pidfd between pid namespaces from a
1860  * different branch of the tree, i.e. where no ancestral relation is
1861  * present between the pid namespaces:
1862  * - create two new pid namespaces ns1 and ns2 in the initial pid
1863  *   namespace (also take care to create new mount namespaces in the
1864  *   new pid namespace and mount procfs)
1865  * - create a process with a pidfd in ns1
1866  * - send pidfd from ns1 to ns2
1867  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1868  *   have exactly one entry, which is 0
1869  */
1870 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1871 {
1872         struct pid *pid = f->private_data;
1873         struct pid_namespace *ns;
1874         pid_t nr = -1;
1875
1876         if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1877                 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1878                 nr = pid_nr_ns(pid, ns);
1879         }
1880
1881         seq_put_decimal_ll(m, "Pid:\t", nr);
1882
1883 #ifdef CONFIG_PID_NS
1884         seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1885         if (nr > 0) {
1886                 int i;
1887
1888                 /* If nr is non-zero it means that 'pid' is valid and that
1889                  * ns, i.e. the pid namespace associated with the procfs
1890                  * instance, is in the pid namespace hierarchy of pid.
1891                  * Start at one below the already printed level.
1892                  */
1893                 for (i = ns->level + 1; i <= pid->level; i++)
1894                         seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1895         }
1896 #endif
1897         seq_putc(m, '\n');
1898 }
1899 #endif
1900
1901 /*
1902  * Poll support for process exit notification.
1903  */
1904 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1905 {
1906         struct pid *pid = file->private_data;
1907         __poll_t poll_flags = 0;
1908
1909         poll_wait(file, &pid->wait_pidfd, pts);
1910
1911         /*
1912          * Inform pollers only when the whole thread group exits.
1913          * If the thread group leader exits before all other threads in the
1914          * group, then poll(2) should block, similar to the wait(2) family.
1915          */
1916         if (thread_group_exited(pid))
1917                 poll_flags = EPOLLIN | EPOLLRDNORM;
1918
1919         return poll_flags;
1920 }
1921
1922 const struct file_operations pidfd_fops = {
1923         .release = pidfd_release,
1924         .poll = pidfd_poll,
1925 #ifdef CONFIG_PROC_FS
1926         .show_fdinfo = pidfd_show_fdinfo,
1927 #endif
1928 };
1929
1930 static void __delayed_free_task(struct rcu_head *rhp)
1931 {
1932         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1933
1934         free_task(tsk);
1935 }
1936
1937 static __always_inline void delayed_free_task(struct task_struct *tsk)
1938 {
1939         if (IS_ENABLED(CONFIG_MEMCG))
1940                 call_rcu(&tsk->rcu, __delayed_free_task);
1941         else
1942                 free_task(tsk);
1943 }
1944
1945 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1946 {
1947         /* Skip if kernel thread */
1948         if (!tsk->mm)
1949                 return;
1950
1951         /* Skip if spawning a thread or using vfork */
1952         if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1953                 return;
1954
1955         /* We need to synchronize with __set_oom_adj */
1956         mutex_lock(&oom_adj_mutex);
1957         set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1958         /* Update the values in case they were changed after copy_signal */
1959         tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1960         tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1961         mutex_unlock(&oom_adj_mutex);
1962 }
1963
1964 /*
1965  * This creates a new process as a copy of the old one,
1966  * but does not actually start it yet.
1967  *
1968  * It copies the registers, and all the appropriate
1969  * parts of the process environment (as per the clone
1970  * flags). The actual kick-off is left to the caller.
1971  */
1972 static __latent_entropy struct task_struct *copy_process(
1973                                         struct pid *pid,
1974                                         int trace,
1975                                         int node,
1976                                         struct kernel_clone_args *args)
1977 {
1978         int pidfd = -1, retval;
1979         struct task_struct *p;
1980         struct multiprocess_signals delayed;
1981         struct file *pidfile = NULL;
1982         u64 clone_flags = args->flags;
1983         struct nsproxy *nsp = current->nsproxy;
1984
1985         /*
1986          * Don't allow sharing the root directory with processes in a different
1987          * namespace
1988          */
1989         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1990                 return ERR_PTR(-EINVAL);
1991
1992         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1993                 return ERR_PTR(-EINVAL);
1994
1995         /*
1996          * Thread groups must share signals as well, and detached threads
1997          * can only be started up within the thread group.
1998          */
1999         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2000                 return ERR_PTR(-EINVAL);
2001
2002         /*
2003          * Shared signal handlers imply shared VM. By way of the above,
2004          * thread groups also imply shared VM. Blocking this case allows
2005          * for various simplifications in other code.
2006          */
2007         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2008                 return ERR_PTR(-EINVAL);
2009
2010         /*
2011          * Siblings of global init remain as zombies on exit since they are
2012          * not reaped by their parent (swapper). To solve this and to avoid
2013          * multi-rooted process trees, prevent global and container-inits
2014          * from creating siblings.
2015          */
2016         if ((clone_flags & CLONE_PARENT) &&
2017                                 current->signal->flags & SIGNAL_UNKILLABLE)
2018                 return ERR_PTR(-EINVAL);
2019
2020         /*
2021          * If the new process will be in a different pid or user namespace
2022          * do not allow it to share a thread group with the forking task.
2023          */
2024         if (clone_flags & CLONE_THREAD) {
2025                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2026                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2027                         return ERR_PTR(-EINVAL);
2028         }
2029
2030         /*
2031          * If the new process will be in a different time namespace
2032          * do not allow it to share VM or a thread group with the forking task.
2033          */
2034         if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2035                 if (nsp->time_ns != nsp->time_ns_for_children)
2036                         return ERR_PTR(-EINVAL);
2037         }
2038
2039         if (clone_flags & CLONE_PIDFD) {
2040                 /*
2041                  * - CLONE_DETACHED is blocked so that we can potentially
2042                  *   reuse it later for CLONE_PIDFD.
2043                  * - CLONE_THREAD is blocked until someone really needs it.
2044                  */
2045                 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2046                         return ERR_PTR(-EINVAL);
2047         }
2048
2049         /*
2050          * Force any signals received before this point to be delivered
2051          * before the fork happens.  Collect up signals sent to multiple
2052          * processes that happen during the fork and delay them so that
2053          * they appear to happen after the fork.
2054          */
2055         sigemptyset(&delayed.signal);
2056         INIT_HLIST_NODE(&delayed.node);
2057
2058         spin_lock_irq(&current->sighand->siglock);
2059         if (!(clone_flags & CLONE_THREAD))
2060                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2061         recalc_sigpending();
2062         spin_unlock_irq(&current->sighand->siglock);
2063         retval = -ERESTARTNOINTR;
2064         if (task_sigpending(current))
2065                 goto fork_out;
2066
2067         retval = -ENOMEM;
2068         p = dup_task_struct(current, node);
2069         if (!p)
2070                 goto fork_out;
2071         if (args->io_thread) {
2072                 /*
2073                  * Mark us an IO worker, and block any signal that isn't
2074                  * fatal or STOP
2075                  */
2076                 p->flags |= PF_IO_WORKER;
2077                 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2078         }
2079
2080         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2081         /*
2082          * Clear TID on mm_release()?
2083          */
2084         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2085
2086         ftrace_graph_init_task(p);
2087
2088         rt_mutex_init_task(p);
2089
2090         lockdep_assert_irqs_enabled();
2091 #ifdef CONFIG_PROVE_LOCKING
2092         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2093 #endif
2094         retval = copy_creds(p, clone_flags);
2095         if (retval < 0)
2096                 goto bad_fork_free;
2097
2098         retval = -EAGAIN;
2099         if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2100                 if (p->real_cred->user != INIT_USER &&
2101                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2102                         goto bad_fork_cleanup_count;
2103         }
2104         current->flags &= ~PF_NPROC_EXCEEDED;
2105
2106         /*
2107          * If multiple threads are within copy_process(), then this check
2108          * triggers too late. This doesn't hurt, the check is only there
2109          * to stop root fork bombs.
2110          */
2111         retval = -EAGAIN;
2112         if (data_race(nr_threads >= max_threads))
2113                 goto bad_fork_cleanup_count;
2114
2115         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
2116         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2117         p->flags |= PF_FORKNOEXEC;
2118         INIT_LIST_HEAD(&p->children);
2119         INIT_LIST_HEAD(&p->sibling);
2120         rcu_copy_process(p);
2121         p->vfork_done = NULL;
2122         spin_lock_init(&p->alloc_lock);
2123
2124         init_sigpending(&p->pending);
2125
2126         p->utime = p->stime = p->gtime = 0;
2127 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2128         p->utimescaled = p->stimescaled = 0;
2129 #endif
2130         prev_cputime_init(&p->prev_cputime);
2131
2132 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2133         seqcount_init(&p->vtime.seqcount);
2134         p->vtime.starttime = 0;
2135         p->vtime.state = VTIME_INACTIVE;
2136 #endif
2137
2138 #ifdef CONFIG_IO_URING
2139         p->io_uring = NULL;
2140 #endif
2141
2142 #if defined(SPLIT_RSS_COUNTING)
2143         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2144 #endif
2145
2146         p->default_timer_slack_ns = current->timer_slack_ns;
2147
2148 #ifdef CONFIG_PSI
2149         p->psi_flags = 0;
2150 #endif
2151
2152         task_io_accounting_init(&p->ioac);
2153         acct_clear_integrals(p);
2154
2155         posix_cputimers_init(&p->posix_cputimers);
2156
2157         p->io_context = NULL;
2158         audit_set_context(p, NULL);
2159         cgroup_fork(p);
2160         if (p->flags & PF_KTHREAD) {
2161                 if (!set_kthread_struct(p))
2162                         goto bad_fork_cleanup_delayacct;
2163         }
2164 #ifdef CONFIG_NUMA
2165         p->mempolicy = mpol_dup(p->mempolicy);
2166         if (IS_ERR(p->mempolicy)) {
2167                 retval = PTR_ERR(p->mempolicy);
2168                 p->mempolicy = NULL;
2169                 goto bad_fork_cleanup_delayacct;
2170         }
2171 #endif
2172 #ifdef CONFIG_CPUSETS
2173         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2174         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2175         seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2176 #endif
2177 #ifdef CONFIG_TRACE_IRQFLAGS
2178         memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2179         p->irqtrace.hardirq_disable_ip  = _THIS_IP_;
2180         p->irqtrace.softirq_enable_ip   = _THIS_IP_;
2181         p->softirqs_enabled             = 1;
2182         p->softirq_context              = 0;
2183 #endif
2184
2185         p->pagefault_disabled = 0;
2186
2187 #ifdef CONFIG_LOCKDEP
2188         lockdep_init_task(p);
2189 #endif
2190
2191 #ifdef CONFIG_DEBUG_MUTEXES
2192         p->blocked_on = NULL; /* not blocked yet */
2193 #endif
2194 #ifdef CONFIG_BCACHE
2195         p->sequential_io        = 0;
2196         p->sequential_io_avg    = 0;
2197 #endif
2198 #ifdef CONFIG_BPF_SYSCALL
2199         RCU_INIT_POINTER(p->bpf_storage, NULL);
2200         p->bpf_ctx = NULL;
2201 #endif
2202
2203         /* Perform scheduler related setup. Assign this task to a CPU. */
2204         retval = sched_fork(clone_flags, p);
2205         if (retval)
2206                 goto bad_fork_cleanup_policy;
2207
2208         retval = perf_event_init_task(p, clone_flags);
2209         if (retval)
2210                 goto bad_fork_cleanup_policy;
2211         retval = audit_alloc(p);
2212         if (retval)
2213                 goto bad_fork_cleanup_perf;
2214         /* copy all the process information */
2215         shm_init_task(p);
2216         retval = security_task_alloc(p, clone_flags);
2217         if (retval)
2218                 goto bad_fork_cleanup_audit;
2219         retval = copy_semundo(clone_flags, p);
2220         if (retval)
2221                 goto bad_fork_cleanup_security;
2222         retval = copy_files(clone_flags, p);
2223         if (retval)
2224                 goto bad_fork_cleanup_semundo;
2225         retval = copy_fs(clone_flags, p);
2226         if (retval)
2227                 goto bad_fork_cleanup_files;
2228         retval = copy_sighand(clone_flags, p);
2229         if (retval)
2230                 goto bad_fork_cleanup_fs;
2231         retval = copy_signal(clone_flags, p);
2232         if (retval)
2233                 goto bad_fork_cleanup_sighand;
2234         retval = copy_mm(clone_flags, p);
2235         if (retval)
2236                 goto bad_fork_cleanup_signal;
2237         retval = copy_namespaces(clone_flags, p);
2238         if (retval)
2239                 goto bad_fork_cleanup_mm;
2240         retval = copy_io(clone_flags, p);
2241         if (retval)
2242                 goto bad_fork_cleanup_namespaces;
2243         retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2244         if (retval)
2245                 goto bad_fork_cleanup_io;
2246
2247         stackleak_task_init(p);
2248
2249         if (pid != &init_struct_pid) {
2250                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2251                                 args->set_tid_size);
2252                 if (IS_ERR(pid)) {
2253                         retval = PTR_ERR(pid);
2254                         goto bad_fork_cleanup_thread;
2255                 }
2256         }
2257
2258         /*
2259          * This has to happen after we've potentially unshared the file
2260          * descriptor table (so that the pidfd doesn't leak into the child
2261          * if the fd table isn't shared).
2262          */
2263         if (clone_flags & CLONE_PIDFD) {
2264                 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2265                 if (retval < 0)
2266                         goto bad_fork_free_pid;
2267
2268                 pidfd = retval;
2269
2270                 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2271                                               O_RDWR | O_CLOEXEC);
2272                 if (IS_ERR(pidfile)) {
2273                         put_unused_fd(pidfd);
2274                         retval = PTR_ERR(pidfile);
2275                         goto bad_fork_free_pid;
2276                 }
2277                 get_pid(pid);   /* held by pidfile now */
2278
2279                 retval = put_user(pidfd, args->pidfd);
2280                 if (retval)
2281                         goto bad_fork_put_pidfd;
2282         }
2283
2284 #ifdef CONFIG_BLOCK
2285         p->plug = NULL;
2286 #endif
2287         futex_init_task(p);
2288
2289         /*
2290          * sigaltstack should be cleared when sharing the same VM
2291          */
2292         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2293                 sas_ss_reset(p);
2294
2295         /*
2296          * Syscall tracing and stepping should be turned off in the
2297          * child regardless of CLONE_PTRACE.
2298          */
2299         user_disable_single_step(p);
2300         clear_task_syscall_work(p, SYSCALL_TRACE);
2301 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2302         clear_task_syscall_work(p, SYSCALL_EMU);
2303 #endif
2304         clear_tsk_latency_tracing(p);
2305
2306         /* ok, now we should be set up.. */
2307         p->pid = pid_nr(pid);
2308         if (clone_flags & CLONE_THREAD) {
2309                 p->group_leader = current->group_leader;
2310                 p->tgid = current->tgid;
2311         } else {
2312                 p->group_leader = p;
2313                 p->tgid = p->pid;
2314         }
2315
2316         p->nr_dirtied = 0;
2317         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2318         p->dirty_paused_when = 0;
2319
2320         p->pdeath_signal = 0;
2321         INIT_LIST_HEAD(&p->thread_group);
2322         p->task_works = NULL;
2323         clear_posix_cputimers_work(p);
2324
2325 #ifdef CONFIG_KRETPROBES
2326         p->kretprobe_instances.first = NULL;
2327 #endif
2328 #ifdef CONFIG_RETHOOK
2329         p->rethooks.first = NULL;
2330 #endif
2331
2332         /*
2333          * Ensure that the cgroup subsystem policies allow the new process to be
2334          * forked. It should be noted that the new process's css_set can be changed
2335          * between here and cgroup_post_fork() if an organisation operation is in
2336          * progress.
2337          */
2338         retval = cgroup_can_fork(p, args);
2339         if (retval)
2340                 goto bad_fork_put_pidfd;
2341
2342         /*
2343          * Now that the cgroups are pinned, re-clone the parent cgroup and put
2344          * the new task on the correct runqueue. All this *before* the task
2345          * becomes visible.
2346          *
2347          * This isn't part of ->can_fork() because while the re-cloning is
2348          * cgroup specific, it unconditionally needs to place the task on a
2349          * runqueue.
2350          */
2351         sched_cgroup_fork(p, args);
2352
2353         /*
2354          * From this point on we must avoid any synchronous user-space
2355          * communication until we take the tasklist-lock. In particular, we do
2356          * not want user-space to be able to predict the process start-time by
2357          * stalling fork(2) after we recorded the start_time but before it is
2358          * visible to the system.
2359          */
2360
2361         p->start_time = ktime_get_ns();
2362         p->start_boottime = ktime_get_boottime_ns();
2363
2364         /*
2365          * Make it visible to the rest of the system, but dont wake it up yet.
2366          * Need tasklist lock for parent etc handling!
2367          */
2368         write_lock_irq(&tasklist_lock);
2369
2370         /* CLONE_PARENT re-uses the old parent */
2371         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2372                 p->real_parent = current->real_parent;
2373                 p->parent_exec_id = current->parent_exec_id;
2374                 if (clone_flags & CLONE_THREAD)
2375                         p->exit_signal = -1;
2376                 else
2377                         p->exit_signal = current->group_leader->exit_signal;
2378         } else {
2379                 p->real_parent = current;
2380                 p->parent_exec_id = current->self_exec_id;
2381                 p->exit_signal = args->exit_signal;
2382         }
2383
2384         klp_copy_process(p);
2385
2386         sched_core_fork(p);
2387
2388         spin_lock(&current->sighand->siglock);
2389
2390         /*
2391          * Copy seccomp details explicitly here, in case they were changed
2392          * before holding sighand lock.
2393          */
2394         copy_seccomp(p);
2395
2396         rseq_fork(p, clone_flags);
2397
2398         /* Don't start children in a dying pid namespace */
2399         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2400                 retval = -ENOMEM;
2401                 goto bad_fork_cancel_cgroup;
2402         }
2403
2404         /* Let kill terminate clone/fork in the middle */
2405         if (fatal_signal_pending(current)) {
2406                 retval = -EINTR;
2407                 goto bad_fork_cancel_cgroup;
2408         }
2409
2410         init_task_pid_links(p);
2411         if (likely(p->pid)) {
2412                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2413
2414                 init_task_pid(p, PIDTYPE_PID, pid);
2415                 if (thread_group_leader(p)) {
2416                         init_task_pid(p, PIDTYPE_TGID, pid);
2417                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2418                         init_task_pid(p, PIDTYPE_SID, task_session(current));
2419
2420                         if (is_child_reaper(pid)) {
2421                                 ns_of_pid(pid)->child_reaper = p;
2422                                 p->signal->flags |= SIGNAL_UNKILLABLE;
2423                         }
2424                         p->signal->shared_pending.signal = delayed.signal;
2425                         p->signal->tty = tty_kref_get(current->signal->tty);
2426                         /*
2427                          * Inherit has_child_subreaper flag under the same
2428                          * tasklist_lock with adding child to the process tree
2429                          * for propagate_has_child_subreaper optimization.
2430                          */
2431                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2432                                                          p->real_parent->signal->is_child_subreaper;
2433                         list_add_tail(&p->sibling, &p->real_parent->children);
2434                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
2435                         attach_pid(p, PIDTYPE_TGID);
2436                         attach_pid(p, PIDTYPE_PGID);
2437                         attach_pid(p, PIDTYPE_SID);
2438                         __this_cpu_inc(process_counts);
2439                 } else {
2440                         current->signal->nr_threads++;
2441                         atomic_inc(&current->signal->live);
2442                         refcount_inc(&current->signal->sigcnt);
2443                         task_join_group_stop(p);
2444                         list_add_tail_rcu(&p->thread_group,
2445                                           &p->group_leader->thread_group);
2446                         list_add_tail_rcu(&p->thread_node,
2447                                           &p->signal->thread_head);
2448                 }
2449                 attach_pid(p, PIDTYPE_PID);
2450                 nr_threads++;
2451         }
2452         total_forks++;
2453         hlist_del_init(&delayed.node);
2454         spin_unlock(&current->sighand->siglock);
2455         syscall_tracepoint_update(p);
2456         write_unlock_irq(&tasklist_lock);
2457
2458         if (pidfile)
2459                 fd_install(pidfd, pidfile);
2460
2461         proc_fork_connector(p);
2462         sched_post_fork(p);
2463         cgroup_post_fork(p, args);
2464         perf_event_fork(p);
2465
2466         trace_task_newtask(p, clone_flags);
2467         uprobe_copy_process(p, clone_flags);
2468
2469         copy_oom_score_adj(clone_flags, p);
2470
2471         return p;
2472
2473 bad_fork_cancel_cgroup:
2474         sched_core_free(p);
2475         spin_unlock(&current->sighand->siglock);
2476         write_unlock_irq(&tasklist_lock);
2477         cgroup_cancel_fork(p, args);
2478 bad_fork_put_pidfd:
2479         if (clone_flags & CLONE_PIDFD) {
2480                 fput(pidfile);
2481                 put_unused_fd(pidfd);
2482         }
2483 bad_fork_free_pid:
2484         if (pid != &init_struct_pid)
2485                 free_pid(pid);
2486 bad_fork_cleanup_thread:
2487         exit_thread(p);
2488 bad_fork_cleanup_io:
2489         if (p->io_context)
2490                 exit_io_context(p);
2491 bad_fork_cleanup_namespaces:
2492         exit_task_namespaces(p);
2493 bad_fork_cleanup_mm:
2494         if (p->mm) {
2495                 mm_clear_owner(p->mm, p);
2496                 mmput(p->mm);
2497         }
2498 bad_fork_cleanup_signal:
2499         if (!(clone_flags & CLONE_THREAD))
2500                 free_signal_struct(p->signal);
2501 bad_fork_cleanup_sighand:
2502         __cleanup_sighand(p->sighand);
2503 bad_fork_cleanup_fs:
2504         exit_fs(p); /* blocking */
2505 bad_fork_cleanup_files:
2506         exit_files(p); /* blocking */
2507 bad_fork_cleanup_semundo:
2508         exit_sem(p);
2509 bad_fork_cleanup_security:
2510         security_task_free(p);
2511 bad_fork_cleanup_audit:
2512         audit_free(p);
2513 bad_fork_cleanup_perf:
2514         perf_event_free_task(p);
2515 bad_fork_cleanup_policy:
2516         lockdep_free_task(p);
2517 #ifdef CONFIG_NUMA
2518         mpol_put(p->mempolicy);
2519 #endif
2520 bad_fork_cleanup_delayacct:
2521         delayacct_tsk_free(p);
2522 bad_fork_cleanup_count:
2523         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2524         exit_creds(p);
2525 bad_fork_free:
2526         WRITE_ONCE(p->__state, TASK_DEAD);
2527         exit_task_stack_account(p);
2528         put_task_stack(p);
2529         delayed_free_task(p);
2530 fork_out:
2531         spin_lock_irq(&current->sighand->siglock);
2532         hlist_del_init(&delayed.node);
2533         spin_unlock_irq(&current->sighand->siglock);
2534         return ERR_PTR(retval);
2535 }
2536
2537 static inline void init_idle_pids(struct task_struct *idle)
2538 {
2539         enum pid_type type;
2540
2541         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2542                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2543                 init_task_pid(idle, type, &init_struct_pid);
2544         }
2545 }
2546
2547 struct task_struct * __init fork_idle(int cpu)
2548 {
2549         struct task_struct *task;
2550         struct kernel_clone_args args = {
2551                 .flags = CLONE_VM,
2552         };
2553
2554         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2555         if (!IS_ERR(task)) {
2556                 init_idle_pids(task);
2557                 init_idle(task, cpu);
2558         }
2559
2560         return task;
2561 }
2562
2563 struct mm_struct *copy_init_mm(void)
2564 {
2565         return dup_mm(NULL, &init_mm);
2566 }
2567
2568 /*
2569  * This is like kernel_clone(), but shaved down and tailored to just
2570  * creating io_uring workers. It returns a created task, or an error pointer.
2571  * The returned task is inactive, and the caller must fire it up through
2572  * wake_up_new_task(p). All signals are blocked in the created task.
2573  */
2574 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2575 {
2576         unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2577                                 CLONE_IO;
2578         struct kernel_clone_args args = {
2579                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2580                                     CLONE_UNTRACED) & ~CSIGNAL),
2581                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2582                 .stack          = (unsigned long)fn,
2583                 .stack_size     = (unsigned long)arg,
2584                 .io_thread      = 1,
2585         };
2586
2587         return copy_process(NULL, 0, node, &args);
2588 }
2589
2590 /*
2591  *  Ok, this is the main fork-routine.
2592  *
2593  * It copies the process, and if successful kick-starts
2594  * it and waits for it to finish using the VM if required.
2595  *
2596  * args->exit_signal is expected to be checked for sanity by the caller.
2597  */
2598 pid_t kernel_clone(struct kernel_clone_args *args)
2599 {
2600         u64 clone_flags = args->flags;
2601         struct completion vfork;
2602         struct pid *pid;
2603         struct task_struct *p;
2604         int trace = 0;
2605         pid_t nr;
2606
2607         /*
2608          * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2609          * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2610          * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2611          * field in struct clone_args and it still doesn't make sense to have
2612          * them both point at the same memory location. Performing this check
2613          * here has the advantage that we don't need to have a separate helper
2614          * to check for legacy clone().
2615          */
2616         if ((args->flags & CLONE_PIDFD) &&
2617             (args->flags & CLONE_PARENT_SETTID) &&
2618             (args->pidfd == args->parent_tid))
2619                 return -EINVAL;
2620
2621         /*
2622          * Determine whether and which event to report to ptracer.  When
2623          * called from kernel_thread or CLONE_UNTRACED is explicitly
2624          * requested, no event is reported; otherwise, report if the event
2625          * for the type of forking is enabled.
2626          */
2627         if (!(clone_flags & CLONE_UNTRACED)) {
2628                 if (clone_flags & CLONE_VFORK)
2629                         trace = PTRACE_EVENT_VFORK;
2630                 else if (args->exit_signal != SIGCHLD)
2631                         trace = PTRACE_EVENT_CLONE;
2632                 else
2633                         trace = PTRACE_EVENT_FORK;
2634
2635                 if (likely(!ptrace_event_enabled(current, trace)))
2636                         trace = 0;
2637         }
2638
2639         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2640         add_latent_entropy();
2641
2642         if (IS_ERR(p))
2643                 return PTR_ERR(p);
2644
2645         /*
2646          * Do this prior waking up the new thread - the thread pointer
2647          * might get invalid after that point, if the thread exits quickly.
2648          */
2649         trace_sched_process_fork(current, p);
2650
2651         pid = get_task_pid(p, PIDTYPE_PID);
2652         nr = pid_vnr(pid);
2653
2654         if (clone_flags & CLONE_PARENT_SETTID)
2655                 put_user(nr, args->parent_tid);
2656
2657         if (clone_flags & CLONE_VFORK) {
2658                 p->vfork_done = &vfork;
2659                 init_completion(&vfork);
2660                 get_task_struct(p);
2661         }
2662
2663         wake_up_new_task(p);
2664
2665         /* forking complete and child started to run, tell ptracer */
2666         if (unlikely(trace))
2667                 ptrace_event_pid(trace, pid);
2668
2669         if (clone_flags & CLONE_VFORK) {
2670                 if (!wait_for_vfork_done(p, &vfork))
2671                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2672         }
2673
2674         put_pid(pid);
2675         return nr;
2676 }
2677
2678 /*
2679  * Create a kernel thread.
2680  */
2681 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2682 {
2683         struct kernel_clone_args args = {
2684                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2685                                     CLONE_UNTRACED) & ~CSIGNAL),
2686                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2687                 .stack          = (unsigned long)fn,
2688                 .stack_size     = (unsigned long)arg,
2689         };
2690
2691         return kernel_clone(&args);
2692 }
2693
2694 #ifdef __ARCH_WANT_SYS_FORK
2695 SYSCALL_DEFINE0(fork)
2696 {
2697 #ifdef CONFIG_MMU
2698         struct kernel_clone_args args = {
2699                 .exit_signal = SIGCHLD,
2700         };
2701
2702         return kernel_clone(&args);
2703 #else
2704         /* can not support in nommu mode */
2705         return -EINVAL;
2706 #endif
2707 }
2708 #endif
2709
2710 #ifdef __ARCH_WANT_SYS_VFORK
2711 SYSCALL_DEFINE0(vfork)
2712 {
2713         struct kernel_clone_args args = {
2714                 .flags          = CLONE_VFORK | CLONE_VM,
2715                 .exit_signal    = SIGCHLD,
2716         };
2717
2718         return kernel_clone(&args);
2719 }
2720 #endif
2721
2722 #ifdef __ARCH_WANT_SYS_CLONE
2723 #ifdef CONFIG_CLONE_BACKWARDS
2724 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2725                  int __user *, parent_tidptr,
2726                  unsigned long, tls,
2727                  int __user *, child_tidptr)
2728 #elif defined(CONFIG_CLONE_BACKWARDS2)
2729 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2730                  int __user *, parent_tidptr,
2731                  int __user *, child_tidptr,
2732                  unsigned long, tls)
2733 #elif defined(CONFIG_CLONE_BACKWARDS3)
2734 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2735                 int, stack_size,
2736                 int __user *, parent_tidptr,
2737                 int __user *, child_tidptr,
2738                 unsigned long, tls)
2739 #else
2740 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2741                  int __user *, parent_tidptr,
2742                  int __user *, child_tidptr,
2743                  unsigned long, tls)
2744 #endif
2745 {
2746         struct kernel_clone_args args = {
2747                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2748                 .pidfd          = parent_tidptr,
2749                 .child_tid      = child_tidptr,
2750                 .parent_tid     = parent_tidptr,
2751                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2752                 .stack          = newsp,
2753                 .tls            = tls,
2754         };
2755
2756         return kernel_clone(&args);
2757 }
2758 #endif
2759
2760 #ifdef __ARCH_WANT_SYS_CLONE3
2761
2762 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2763                                               struct clone_args __user *uargs,
2764                                               size_t usize)
2765 {
2766         int err;
2767         struct clone_args args;
2768         pid_t *kset_tid = kargs->set_tid;
2769
2770         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2771                      CLONE_ARGS_SIZE_VER0);
2772         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2773                      CLONE_ARGS_SIZE_VER1);
2774         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2775                      CLONE_ARGS_SIZE_VER2);
2776         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2777
2778         if (unlikely(usize > PAGE_SIZE))
2779                 return -E2BIG;
2780         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2781                 return -EINVAL;
2782
2783         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2784         if (err)
2785                 return err;
2786
2787         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2788                 return -EINVAL;
2789
2790         if (unlikely(!args.set_tid && args.set_tid_size > 0))
2791                 return -EINVAL;
2792
2793         if (unlikely(args.set_tid && args.set_tid_size == 0))
2794                 return -EINVAL;
2795
2796         /*
2797          * Verify that higher 32bits of exit_signal are unset and that
2798          * it is a valid signal
2799          */
2800         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2801                      !valid_signal(args.exit_signal)))
2802                 return -EINVAL;
2803
2804         if ((args.flags & CLONE_INTO_CGROUP) &&
2805             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2806                 return -EINVAL;
2807
2808         *kargs = (struct kernel_clone_args){
2809                 .flags          = args.flags,
2810                 .pidfd          = u64_to_user_ptr(args.pidfd),
2811                 .child_tid      = u64_to_user_ptr(args.child_tid),
2812                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
2813                 .exit_signal    = args.exit_signal,
2814                 .stack          = args.stack,
2815                 .stack_size     = args.stack_size,
2816                 .tls            = args.tls,
2817                 .set_tid_size   = args.set_tid_size,
2818                 .cgroup         = args.cgroup,
2819         };
2820
2821         if (args.set_tid &&
2822                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2823                         (kargs->set_tid_size * sizeof(pid_t))))
2824                 return -EFAULT;
2825
2826         kargs->set_tid = kset_tid;
2827
2828         return 0;
2829 }
2830
2831 /**
2832  * clone3_stack_valid - check and prepare stack
2833  * @kargs: kernel clone args
2834  *
2835  * Verify that the stack arguments userspace gave us are sane.
2836  * In addition, set the stack direction for userspace since it's easy for us to
2837  * determine.
2838  */
2839 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2840 {
2841         if (kargs->stack == 0) {
2842                 if (kargs->stack_size > 0)
2843                         return false;
2844         } else {
2845                 if (kargs->stack_size == 0)
2846                         return false;
2847
2848                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2849                         return false;
2850
2851 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2852                 kargs->stack += kargs->stack_size;
2853 #endif
2854         }
2855
2856         return true;
2857 }
2858
2859 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2860 {
2861         /* Verify that no unknown flags are passed along. */
2862         if (kargs->flags &
2863             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2864                 return false;
2865
2866         /*
2867          * - make the CLONE_DETACHED bit reusable for clone3
2868          * - make the CSIGNAL bits reusable for clone3
2869          */
2870         if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2871                 return false;
2872
2873         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2874             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2875                 return false;
2876
2877         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2878             kargs->exit_signal)
2879                 return false;
2880
2881         if (!clone3_stack_valid(kargs))
2882                 return false;
2883
2884         return true;
2885 }
2886
2887 /**
2888  * clone3 - create a new process with specific properties
2889  * @uargs: argument structure
2890  * @size:  size of @uargs
2891  *
2892  * clone3() is the extensible successor to clone()/clone2().
2893  * It takes a struct as argument that is versioned by its size.
2894  *
2895  * Return: On success, a positive PID for the child process.
2896  *         On error, a negative errno number.
2897  */
2898 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2899 {
2900         int err;
2901
2902         struct kernel_clone_args kargs;
2903         pid_t set_tid[MAX_PID_NS_LEVEL];
2904
2905         kargs.set_tid = set_tid;
2906
2907         err = copy_clone_args_from_user(&kargs, uargs, size);
2908         if (err)
2909                 return err;
2910
2911         if (!clone3_args_valid(&kargs))
2912                 return -EINVAL;
2913
2914         return kernel_clone(&kargs);
2915 }
2916 #endif
2917
2918 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2919 {
2920         struct task_struct *leader, *parent, *child;
2921         int res;
2922
2923         read_lock(&tasklist_lock);
2924         leader = top = top->group_leader;
2925 down:
2926         for_each_thread(leader, parent) {
2927                 list_for_each_entry(child, &parent->children, sibling) {
2928                         res = visitor(child, data);
2929                         if (res) {
2930                                 if (res < 0)
2931                                         goto out;
2932                                 leader = child;
2933                                 goto down;
2934                         }
2935 up:
2936                         ;
2937                 }
2938         }
2939
2940         if (leader != top) {
2941                 child = leader;
2942                 parent = child->real_parent;
2943                 leader = parent->group_leader;
2944                 goto up;
2945         }
2946 out:
2947         read_unlock(&tasklist_lock);
2948 }
2949
2950 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2951 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2952 #endif
2953
2954 static void sighand_ctor(void *data)
2955 {
2956         struct sighand_struct *sighand = data;
2957
2958         spin_lock_init(&sighand->siglock);
2959         init_waitqueue_head(&sighand->signalfd_wqh);
2960 }
2961
2962 void __init proc_caches_init(void)
2963 {
2964         unsigned int mm_size;
2965
2966         sighand_cachep = kmem_cache_create("sighand_cache",
2967                         sizeof(struct sighand_struct), 0,
2968                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2969                         SLAB_ACCOUNT, sighand_ctor);
2970         signal_cachep = kmem_cache_create("signal_cache",
2971                         sizeof(struct signal_struct), 0,
2972                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2973                         NULL);
2974         files_cachep = kmem_cache_create("files_cache",
2975                         sizeof(struct files_struct), 0,
2976                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2977                         NULL);
2978         fs_cachep = kmem_cache_create("fs_cache",
2979                         sizeof(struct fs_struct), 0,
2980                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2981                         NULL);
2982
2983         /*
2984          * The mm_cpumask is located at the end of mm_struct, and is
2985          * dynamically sized based on the maximum CPU number this system
2986          * can have, taking hotplug into account (nr_cpu_ids).
2987          */
2988         mm_size = sizeof(struct mm_struct) + cpumask_size();
2989
2990         mm_cachep = kmem_cache_create_usercopy("mm_struct",
2991                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2992                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2993                         offsetof(struct mm_struct, saved_auxv),
2994                         sizeof_field(struct mm_struct, saved_auxv),
2995                         NULL);
2996         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2997         mmap_init();
2998         nsproxy_cache_init();
2999 }
3000
3001 /*
3002  * Check constraints on flags passed to the unshare system call.
3003  */
3004 static int check_unshare_flags(unsigned long unshare_flags)
3005 {
3006         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3007                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3008                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3009                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3010                                 CLONE_NEWTIME))
3011                 return -EINVAL;
3012         /*
3013          * Not implemented, but pretend it works if there is nothing
3014          * to unshare.  Note that unsharing the address space or the
3015          * signal handlers also need to unshare the signal queues (aka
3016          * CLONE_THREAD).
3017          */
3018         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3019                 if (!thread_group_empty(current))
3020                         return -EINVAL;
3021         }
3022         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3023                 if (refcount_read(&current->sighand->count) > 1)
3024                         return -EINVAL;
3025         }
3026         if (unshare_flags & CLONE_VM) {
3027                 if (!current_is_single_threaded())
3028                         return -EINVAL;
3029         }
3030
3031         return 0;
3032 }
3033
3034 /*
3035  * Unshare the filesystem structure if it is being shared
3036  */
3037 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3038 {
3039         struct fs_struct *fs = current->fs;
3040
3041         if (!(unshare_flags & CLONE_FS) || !fs)
3042                 return 0;
3043
3044         /* don't need lock here; in the worst case we'll do useless copy */
3045         if (fs->users == 1)
3046                 return 0;
3047
3048         *new_fsp = copy_fs_struct(fs);
3049         if (!*new_fsp)
3050                 return -ENOMEM;
3051
3052         return 0;
3053 }
3054
3055 /*
3056  * Unshare file descriptor table if it is being shared
3057  */
3058 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3059                struct files_struct **new_fdp)
3060 {
3061         struct files_struct *fd = current->files;
3062         int error = 0;
3063
3064         if ((unshare_flags & CLONE_FILES) &&
3065             (fd && atomic_read(&fd->count) > 1)) {
3066                 *new_fdp = dup_fd(fd, max_fds, &error);
3067                 if (!*new_fdp)
3068                         return error;
3069         }
3070
3071         return 0;
3072 }
3073
3074 /*
3075  * unshare allows a process to 'unshare' part of the process
3076  * context which was originally shared using clone.  copy_*
3077  * functions used by kernel_clone() cannot be used here directly
3078  * because they modify an inactive task_struct that is being
3079  * constructed. Here we are modifying the current, active,
3080  * task_struct.
3081  */
3082 int ksys_unshare(unsigned long unshare_flags)
3083 {
3084         struct fs_struct *fs, *new_fs = NULL;
3085         struct files_struct *new_fd = NULL;
3086         struct cred *new_cred = NULL;
3087         struct nsproxy *new_nsproxy = NULL;
3088         int do_sysvsem = 0;
3089         int err;
3090
3091         /*
3092          * If unsharing a user namespace must also unshare the thread group
3093          * and unshare the filesystem root and working directories.
3094          */
3095         if (unshare_flags & CLONE_NEWUSER)
3096                 unshare_flags |= CLONE_THREAD | CLONE_FS;
3097         /*
3098          * If unsharing vm, must also unshare signal handlers.
3099          */
3100         if (unshare_flags & CLONE_VM)
3101                 unshare_flags |= CLONE_SIGHAND;
3102         /*
3103          * If unsharing a signal handlers, must also unshare the signal queues.
3104          */
3105         if (unshare_flags & CLONE_SIGHAND)
3106                 unshare_flags |= CLONE_THREAD;
3107         /*
3108          * If unsharing namespace, must also unshare filesystem information.
3109          */
3110         if (unshare_flags & CLONE_NEWNS)
3111                 unshare_flags |= CLONE_FS;
3112
3113         err = check_unshare_flags(unshare_flags);
3114         if (err)
3115                 goto bad_unshare_out;
3116         /*
3117          * CLONE_NEWIPC must also detach from the undolist: after switching
3118          * to a new ipc namespace, the semaphore arrays from the old
3119          * namespace are unreachable.
3120          */
3121         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3122                 do_sysvsem = 1;
3123         err = unshare_fs(unshare_flags, &new_fs);
3124         if (err)
3125                 goto bad_unshare_out;
3126         err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3127         if (err)
3128                 goto bad_unshare_cleanup_fs;
3129         err = unshare_userns(unshare_flags, &new_cred);
3130         if (err)
3131                 goto bad_unshare_cleanup_fd;
3132         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3133                                          new_cred, new_fs);
3134         if (err)
3135                 goto bad_unshare_cleanup_cred;
3136
3137         if (new_cred) {
3138                 err = set_cred_ucounts(new_cred);
3139                 if (err)
3140                         goto bad_unshare_cleanup_cred;
3141         }
3142
3143         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3144                 if (do_sysvsem) {
3145                         /*
3146                          * CLONE_SYSVSEM is equivalent to sys_exit().
3147                          */
3148                         exit_sem(current);
3149                 }
3150                 if (unshare_flags & CLONE_NEWIPC) {
3151                         /* Orphan segments in old ns (see sem above). */
3152                         exit_shm(current);
3153                         shm_init_task(current);
3154                 }
3155
3156                 if (new_nsproxy)
3157                         switch_task_namespaces(current, new_nsproxy);
3158
3159                 task_lock(current);
3160
3161                 if (new_fs) {
3162                         fs = current->fs;
3163                         spin_lock(&fs->lock);
3164                         current->fs = new_fs;
3165                         if (--fs->users)
3166                                 new_fs = NULL;
3167                         else
3168                                 new_fs = fs;
3169                         spin_unlock(&fs->lock);
3170                 }
3171
3172                 if (new_fd)
3173                         swap(current->files, new_fd);
3174
3175                 task_unlock(current);
3176
3177                 if (new_cred) {
3178                         /* Install the new user namespace */
3179                         commit_creds(new_cred);
3180                         new_cred = NULL;
3181                 }
3182         }
3183
3184         perf_event_namespaces(current);
3185
3186 bad_unshare_cleanup_cred:
3187         if (new_cred)
3188                 put_cred(new_cred);
3189 bad_unshare_cleanup_fd:
3190         if (new_fd)
3191                 put_files_struct(new_fd);
3192
3193 bad_unshare_cleanup_fs:
3194         if (new_fs)
3195                 free_fs_struct(new_fs);
3196
3197 bad_unshare_out:
3198         return err;
3199 }
3200
3201 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3202 {
3203         return ksys_unshare(unshare_flags);
3204 }
3205
3206 /*
3207  *      Helper to unshare the files of the current task.
3208  *      We don't want to expose copy_files internals to
3209  *      the exec layer of the kernel.
3210  */
3211
3212 int unshare_files(void)
3213 {
3214         struct task_struct *task = current;
3215         struct files_struct *old, *copy = NULL;
3216         int error;
3217
3218         error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3219         if (error || !copy)
3220                 return error;
3221
3222         old = task->files;
3223         task_lock(task);
3224         task->files = copy;
3225         task_unlock(task);
3226         put_files_struct(old);
3227         return 0;
3228 }
3229
3230 int sysctl_max_threads(struct ctl_table *table, int write,
3231                        void *buffer, size_t *lenp, loff_t *ppos)
3232 {
3233         struct ctl_table t;
3234         int ret;
3235         int threads = max_threads;
3236         int min = 1;
3237         int max = MAX_THREADS;
3238
3239         t = *table;
3240         t.data = &threads;
3241         t.extra1 = &min;
3242         t.extra2 = &max;
3243
3244         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3245         if (ret || !write)
3246                 return ret;
3247
3248         max_threads = threads;
3249
3250         return 0;
3251 }