785d708f8553a001227a3259264d7b8fdccbcee8
[sfrench/cifs-2.6.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52
53 #include "internal.h"
54
55 #include <asm/irq_regs.h>
56
57 typedef int (*remote_function_f)(void *);
58
59 struct remote_function_call {
60         struct task_struct      *p;
61         remote_function_f       func;
62         void                    *info;
63         int                     ret;
64 };
65
66 static void remote_function(void *data)
67 {
68         struct remote_function_call *tfc = data;
69         struct task_struct *p = tfc->p;
70
71         if (p) {
72                 /* -EAGAIN */
73                 if (task_cpu(p) != smp_processor_id())
74                         return;
75
76                 /*
77                  * Now that we're on right CPU with IRQs disabled, we can test
78                  * if we hit the right task without races.
79                  */
80
81                 tfc->ret = -ESRCH; /* No such (running) process */
82                 if (p != current)
83                         return;
84         }
85
86         tfc->ret = tfc->func(tfc->info);
87 }
88
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:          the task to evaluate
92  * @func:       the function to be called
93  * @info:       the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *          -ESRCH  - when the process isn't running
100  *          -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105         struct remote_function_call data = {
106                 .p      = p,
107                 .func   = func,
108                 .info   = info,
109                 .ret    = -EAGAIN,
110         };
111         int ret;
112
113         do {
114                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115                 if (!ret)
116                         ret = data.ret;
117         } while (ret == -EAGAIN);
118
119         return ret;
120 }
121
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:       the function to be called
125  * @info:       the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133         struct remote_function_call data = {
134                 .p      = NULL,
135                 .func   = func,
136                 .info   = info,
137                 .ret    = -ENXIO, /* No such CPU */
138         };
139
140         smp_call_function_single(cpu, remote_function, &data, 1);
141
142         return data.ret;
143 }
144
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152                           struct perf_event_context *ctx)
153 {
154         raw_spin_lock(&cpuctx->ctx.lock);
155         if (ctx)
156                 raw_spin_lock(&ctx->lock);
157 }
158
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160                             struct perf_event_context *ctx)
161 {
162         if (ctx)
163                 raw_spin_unlock(&ctx->lock);
164         raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166
167 #define TASK_TOMBSTONE ((void *)-1L)
168
169 static bool is_kernel_event(struct perf_event *event)
170 {
171         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194                         struct perf_event_context *, void *);
195
196 struct event_function_struct {
197         struct perf_event *event;
198         event_f func;
199         void *data;
200 };
201
202 static int event_function(void *info)
203 {
204         struct event_function_struct *efs = info;
205         struct perf_event *event = efs->event;
206         struct perf_event_context *ctx = event->ctx;
207         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208         struct perf_event_context *task_ctx = cpuctx->task_ctx;
209         int ret = 0;
210
211         lockdep_assert_irqs_disabled();
212
213         perf_ctx_lock(cpuctx, task_ctx);
214         /*
215          * Since we do the IPI call without holding ctx->lock things can have
216          * changed, double check we hit the task we set out to hit.
217          */
218         if (ctx->task) {
219                 if (ctx->task != current) {
220                         ret = -ESRCH;
221                         goto unlock;
222                 }
223
224                 /*
225                  * We only use event_function_call() on established contexts,
226                  * and event_function() is only ever called when active (or
227                  * rather, we'll have bailed in task_function_call() or the
228                  * above ctx->task != current test), therefore we must have
229                  * ctx->is_active here.
230                  */
231                 WARN_ON_ONCE(!ctx->is_active);
232                 /*
233                  * And since we have ctx->is_active, cpuctx->task_ctx must
234                  * match.
235                  */
236                 WARN_ON_ONCE(task_ctx != ctx);
237         } else {
238                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
239         }
240
241         efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243         perf_ctx_unlock(cpuctx, task_ctx);
244
245         return ret;
246 }
247
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250         struct perf_event_context *ctx = event->ctx;
251         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252         struct event_function_struct efs = {
253                 .event = event,
254                 .func = func,
255                 .data = data,
256         };
257
258         if (!event->parent) {
259                 /*
260                  * If this is a !child event, we must hold ctx::mutex to
261                  * stabilize the the event->ctx relation. See
262                  * perf_event_ctx_lock().
263                  */
264                 lockdep_assert_held(&ctx->mutex);
265         }
266
267         if (!task) {
268                 cpu_function_call(event->cpu, event_function, &efs);
269                 return;
270         }
271
272         if (task == TASK_TOMBSTONE)
273                 return;
274
275 again:
276         if (!task_function_call(task, event_function, &efs))
277                 return;
278
279         raw_spin_lock_irq(&ctx->lock);
280         /*
281          * Reload the task pointer, it might have been changed by
282          * a concurrent perf_event_context_sched_out().
283          */
284         task = ctx->task;
285         if (task == TASK_TOMBSTONE) {
286                 raw_spin_unlock_irq(&ctx->lock);
287                 return;
288         }
289         if (ctx->is_active) {
290                 raw_spin_unlock_irq(&ctx->lock);
291                 goto again;
292         }
293         func(event, NULL, ctx, data);
294         raw_spin_unlock_irq(&ctx->lock);
295 }
296
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303         struct perf_event_context *ctx = event->ctx;
304         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305         struct task_struct *task = READ_ONCE(ctx->task);
306         struct perf_event_context *task_ctx = NULL;
307
308         lockdep_assert_irqs_disabled();
309
310         if (task) {
311                 if (task == TASK_TOMBSTONE)
312                         return;
313
314                 task_ctx = ctx;
315         }
316
317         perf_ctx_lock(cpuctx, task_ctx);
318
319         task = ctx->task;
320         if (task == TASK_TOMBSTONE)
321                 goto unlock;
322
323         if (task) {
324                 /*
325                  * We must be either inactive or active and the right task,
326                  * otherwise we're screwed, since we cannot IPI to somewhere
327                  * else.
328                  */
329                 if (ctx->is_active) {
330                         if (WARN_ON_ONCE(task != current))
331                                 goto unlock;
332
333                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334                                 goto unlock;
335                 }
336         } else {
337                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338         }
339
340         func(event, cpuctx, ctx, data);
341 unlock:
342         perf_ctx_unlock(cpuctx, task_ctx);
343 }
344
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346                        PERF_FLAG_FD_OUTPUT  |\
347                        PERF_FLAG_PID_CGROUP |\
348                        PERF_FLAG_FD_CLOEXEC)
349
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354         (PERF_SAMPLE_BRANCH_KERNEL |\
355          PERF_SAMPLE_BRANCH_HV)
356
357 enum event_type_t {
358         EVENT_FLEXIBLE = 0x1,
359         EVENT_PINNED = 0x2,
360         EVENT_TIME = 0x4,
361         /* see ctx_resched() for details */
362         EVENT_CPU = 0x8,
363         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE         100000
411 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
413
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
418
419 static int perf_sample_allowed_ns __read_mostly =
420         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421
422 static void update_perf_cpu_limits(void)
423 {
424         u64 tmp = perf_sample_period_ns;
425
426         tmp *= sysctl_perf_cpu_time_max_percent;
427         tmp = div_u64(tmp, 100);
428         if (!tmp)
429                 tmp = 1;
430
431         WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437                 void __user *buffer, size_t *lenp,
438                 loff_t *ppos)
439 {
440         int ret;
441         int perf_cpu = sysctl_perf_cpu_time_max_percent;
442         /*
443          * If throttling is disabled don't allow the write:
444          */
445         if (write && (perf_cpu == 100 || perf_cpu == 0))
446                 return -EINVAL;
447
448         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449         if (ret || !write)
450                 return ret;
451
452         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454         update_perf_cpu_limits();
455
456         return 0;
457 }
458
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462                                 void __user *buffer, size_t *lenp,
463                                 loff_t *ppos)
464 {
465         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466
467         if (ret || !write)
468                 return ret;
469
470         if (sysctl_perf_cpu_time_max_percent == 100 ||
471             sysctl_perf_cpu_time_max_percent == 0) {
472                 printk(KERN_WARNING
473                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474                 WRITE_ONCE(perf_sample_allowed_ns, 0);
475         } else {
476                 update_perf_cpu_limits();
477         }
478
479         return 0;
480 }
481
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490
491 static u64 __report_avg;
492 static u64 __report_allowed;
493
494 static void perf_duration_warn(struct irq_work *w)
495 {
496         printk_ratelimited(KERN_INFO
497                 "perf: interrupt took too long (%lld > %lld), lowering "
498                 "kernel.perf_event_max_sample_rate to %d\n",
499                 __report_avg, __report_allowed,
500                 sysctl_perf_event_sample_rate);
501 }
502
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508         u64 running_len;
509         u64 avg_len;
510         u32 max;
511
512         if (max_len == 0)
513                 return;
514
515         /* Decay the counter by 1 average sample. */
516         running_len = __this_cpu_read(running_sample_length);
517         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518         running_len += sample_len_ns;
519         __this_cpu_write(running_sample_length, running_len);
520
521         /*
522          * Note: this will be biased artifically low until we have
523          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524          * from having to maintain a count.
525          */
526         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527         if (avg_len <= max_len)
528                 return;
529
530         __report_avg = avg_len;
531         __report_allowed = max_len;
532
533         /*
534          * Compute a throttle threshold 25% below the current duration.
535          */
536         avg_len += avg_len / 4;
537         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538         if (avg_len < max)
539                 max /= (u32)avg_len;
540         else
541                 max = 1;
542
543         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544         WRITE_ONCE(max_samples_per_tick, max);
545
546         sysctl_perf_event_sample_rate = max * HZ;
547         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548
549         if (!irq_work_queue(&perf_duration_work)) {
550                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551                              "kernel.perf_event_max_sample_rate to %d\n",
552                              __report_avg, __report_allowed,
553                              sysctl_perf_event_sample_rate);
554         }
555 }
556
557 static atomic64_t perf_event_id;
558
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560                               enum event_type_t event_type);
561
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563                              enum event_type_t event_type,
564                              struct task_struct *task);
565
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568
569 void __weak perf_event_print_debug(void)        { }
570
571 extern __weak const char *perf_pmu_name(void)
572 {
573         return "pmu";
574 }
575
576 static inline u64 perf_clock(void)
577 {
578         return local_clock();
579 }
580
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583         return event->clock();
584 }
585
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611         struct perf_event *leader = event->group_leader;
612
613         if (leader->state <= PERF_EVENT_STATE_OFF)
614                 return leader->state;
615
616         return event->state;
617 }
618
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622         enum perf_event_state state = __perf_effective_state(event);
623         u64 delta = now - event->tstamp;
624
625         *enabled = event->total_time_enabled;
626         if (state >= PERF_EVENT_STATE_INACTIVE)
627                 *enabled += delta;
628
629         *running = event->total_time_running;
630         if (state >= PERF_EVENT_STATE_ACTIVE)
631                 *running += delta;
632 }
633
634 static void perf_event_update_time(struct perf_event *event)
635 {
636         u64 now = perf_event_time(event);
637
638         __perf_update_times(event, now, &event->total_time_enabled,
639                                         &event->total_time_running);
640         event->tstamp = now;
641 }
642
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645         struct perf_event *sibling;
646
647         for_each_sibling_event(sibling, leader)
648                 perf_event_update_time(sibling);
649 }
650
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654         if (event->state == state)
655                 return;
656
657         perf_event_update_time(event);
658         /*
659          * If a group leader gets enabled/disabled all its siblings
660          * are affected too.
661          */
662         if ((event->state < 0) ^ (state < 0))
663                 perf_event_update_sibling_time(event);
664
665         WRITE_ONCE(event->state, state);
666 }
667
668 #ifdef CONFIG_CGROUP_PERF
669
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673         struct perf_event_context *ctx = event->ctx;
674         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
676         /* @event doesn't care about cgroup */
677         if (!event->cgrp)
678                 return true;
679
680         /* wants specific cgroup scope but @cpuctx isn't associated with any */
681         if (!cpuctx->cgrp)
682                 return false;
683
684         /*
685          * Cgroup scoping is recursive.  An event enabled for a cgroup is
686          * also enabled for all its descendant cgroups.  If @cpuctx's
687          * cgroup is a descendant of @event's (the test covers identity
688          * case), it's a match.
689          */
690         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691                                     event->cgrp->css.cgroup);
692 }
693
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696         css_put(&event->cgrp->css);
697         event->cgrp = NULL;
698 }
699
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702         return event->cgrp != NULL;
703 }
704
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707         struct perf_cgroup_info *t;
708
709         t = per_cpu_ptr(event->cgrp->info, event->cpu);
710         return t->time;
711 }
712
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715         struct perf_cgroup_info *info;
716         u64 now;
717
718         now = perf_clock();
719
720         info = this_cpu_ptr(cgrp->info);
721
722         info->time += now - info->timestamp;
723         info->timestamp = now;
724 }
725
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728         struct perf_cgroup *cgrp = cpuctx->cgrp;
729         struct cgroup_subsys_state *css;
730
731         if (cgrp) {
732                 for (css = &cgrp->css; css; css = css->parent) {
733                         cgrp = container_of(css, struct perf_cgroup, css);
734                         __update_cgrp_time(cgrp);
735                 }
736         }
737 }
738
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741         struct perf_cgroup *cgrp;
742
743         /*
744          * ensure we access cgroup data only when needed and
745          * when we know the cgroup is pinned (css_get)
746          */
747         if (!is_cgroup_event(event))
748                 return;
749
750         cgrp = perf_cgroup_from_task(current, event->ctx);
751         /*
752          * Do not update time when cgroup is not active
753          */
754         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755                 __update_cgrp_time(event->cgrp);
756 }
757
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760                           struct perf_event_context *ctx)
761 {
762         struct perf_cgroup *cgrp;
763         struct perf_cgroup_info *info;
764         struct cgroup_subsys_state *css;
765
766         /*
767          * ctx->lock held by caller
768          * ensure we do not access cgroup data
769          * unless we have the cgroup pinned (css_get)
770          */
771         if (!task || !ctx->nr_cgroups)
772                 return;
773
774         cgrp = perf_cgroup_from_task(task, ctx);
775
776         for (css = &cgrp->css; css; css = css->parent) {
777                 cgrp = container_of(css, struct perf_cgroup, css);
778                 info = this_cpu_ptr(cgrp->info);
779                 info->timestamp = ctx->timestamp;
780         }
781 }
782
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
785 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
787
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796         struct perf_cpu_context *cpuctx;
797         struct list_head *list;
798         unsigned long flags;
799
800         /*
801          * Disable interrupts and preemption to avoid this CPU's
802          * cgrp_cpuctx_entry to change under us.
803          */
804         local_irq_save(flags);
805
806         list = this_cpu_ptr(&cgrp_cpuctx_list);
807         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809
810                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811                 perf_pmu_disable(cpuctx->ctx.pmu);
812
813                 if (mode & PERF_CGROUP_SWOUT) {
814                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815                         /*
816                          * must not be done before ctxswout due
817                          * to event_filter_match() in event_sched_out()
818                          */
819                         cpuctx->cgrp = NULL;
820                 }
821
822                 if (mode & PERF_CGROUP_SWIN) {
823                         WARN_ON_ONCE(cpuctx->cgrp);
824                         /*
825                          * set cgrp before ctxsw in to allow
826                          * event_filter_match() to not have to pass
827                          * task around
828                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
829                          * because cgorup events are only per-cpu
830                          */
831                         cpuctx->cgrp = perf_cgroup_from_task(task,
832                                                              &cpuctx->ctx);
833                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834                 }
835                 perf_pmu_enable(cpuctx->ctx.pmu);
836                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837         }
838
839         local_irq_restore(flags);
840 }
841
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843                                          struct task_struct *next)
844 {
845         struct perf_cgroup *cgrp1;
846         struct perf_cgroup *cgrp2 = NULL;
847
848         rcu_read_lock();
849         /*
850          * we come here when we know perf_cgroup_events > 0
851          * we do not need to pass the ctx here because we know
852          * we are holding the rcu lock
853          */
854         cgrp1 = perf_cgroup_from_task(task, NULL);
855         cgrp2 = perf_cgroup_from_task(next, NULL);
856
857         /*
858          * only schedule out current cgroup events if we know
859          * that we are switching to a different cgroup. Otherwise,
860          * do no touch the cgroup events.
861          */
862         if (cgrp1 != cgrp2)
863                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864
865         rcu_read_unlock();
866 }
867
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869                                         struct task_struct *task)
870 {
871         struct perf_cgroup *cgrp1;
872         struct perf_cgroup *cgrp2 = NULL;
873
874         rcu_read_lock();
875         /*
876          * we come here when we know perf_cgroup_events > 0
877          * we do not need to pass the ctx here because we know
878          * we are holding the rcu lock
879          */
880         cgrp1 = perf_cgroup_from_task(task, NULL);
881         cgrp2 = perf_cgroup_from_task(prev, NULL);
882
883         /*
884          * only need to schedule in cgroup events if we are changing
885          * cgroup during ctxsw. Cgroup events were not scheduled
886          * out of ctxsw out if that was not the case.
887          */
888         if (cgrp1 != cgrp2)
889                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890
891         rcu_read_unlock();
892 }
893
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895                                       struct perf_event_attr *attr,
896                                       struct perf_event *group_leader)
897 {
898         struct perf_cgroup *cgrp;
899         struct cgroup_subsys_state *css;
900         struct fd f = fdget(fd);
901         int ret = 0;
902
903         if (!f.file)
904                 return -EBADF;
905
906         css = css_tryget_online_from_dir(f.file->f_path.dentry,
907                                          &perf_event_cgrp_subsys);
908         if (IS_ERR(css)) {
909                 ret = PTR_ERR(css);
910                 goto out;
911         }
912
913         cgrp = container_of(css, struct perf_cgroup, css);
914         event->cgrp = cgrp;
915
916         /*
917          * all events in a group must monitor
918          * the same cgroup because a task belongs
919          * to only one perf cgroup at a time
920          */
921         if (group_leader && group_leader->cgrp != cgrp) {
922                 perf_detach_cgroup(event);
923                 ret = -EINVAL;
924         }
925 out:
926         fdput(f);
927         return ret;
928 }
929
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933         struct perf_cgroup_info *t;
934         t = per_cpu_ptr(event->cgrp->info, event->cpu);
935         event->shadow_ctx_time = now - t->timestamp;
936 }
937
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944                          struct perf_event_context *ctx, bool add)
945 {
946         struct perf_cpu_context *cpuctx;
947         struct list_head *cpuctx_entry;
948
949         if (!is_cgroup_event(event))
950                 return;
951
952         /*
953          * Because cgroup events are always per-cpu events,
954          * this will always be called from the right CPU.
955          */
956         cpuctx = __get_cpu_context(ctx);
957
958         /*
959          * Since setting cpuctx->cgrp is conditional on the current @cgrp
960          * matching the event's cgroup, we must do this for every new event,
961          * because if the first would mismatch, the second would not try again
962          * and we would leave cpuctx->cgrp unset.
963          */
964         if (add && !cpuctx->cgrp) {
965                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
967                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968                         cpuctx->cgrp = cgrp;
969         }
970
971         if (add && ctx->nr_cgroups++)
972                 return;
973         else if (!add && --ctx->nr_cgroups)
974                 return;
975
976         /* no cgroup running */
977         if (!add)
978                 cpuctx->cgrp = NULL;
979
980         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981         if (add)
982                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983         else
984                 list_del(cpuctx_entry);
985 }
986
987 #else /* !CONFIG_CGROUP_PERF */
988
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992         return true;
993 }
994
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000         return 0;
1001 }
1002
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012                                          struct task_struct *next)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017                                         struct task_struct *task)
1018 {
1019 }
1020
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022                                       struct perf_event_attr *attr,
1023                                       struct perf_event *group_leader)
1024 {
1025         return -EINVAL;
1026 }
1027
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030                           struct perf_event_context *ctx)
1031 {
1032 }
1033
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046         return 0;
1047 }
1048
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051                          struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054
1055 #endif
1056
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067         struct perf_cpu_context *cpuctx;
1068         bool rotations;
1069
1070         lockdep_assert_irqs_disabled();
1071
1072         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073         rotations = perf_rotate_context(cpuctx);
1074
1075         raw_spin_lock(&cpuctx->hrtimer_lock);
1076         if (rotations)
1077                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078         else
1079                 cpuctx->hrtimer_active = 0;
1080         raw_spin_unlock(&cpuctx->hrtimer_lock);
1081
1082         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087         struct hrtimer *timer = &cpuctx->hrtimer;
1088         struct pmu *pmu = cpuctx->ctx.pmu;
1089         u64 interval;
1090
1091         /* no multiplexing needed for SW PMU */
1092         if (pmu->task_ctx_nr == perf_sw_context)
1093                 return;
1094
1095         /*
1096          * check default is sane, if not set then force to
1097          * default interval (1/tick)
1098          */
1099         interval = pmu->hrtimer_interval_ms;
1100         if (interval < 1)
1101                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102
1103         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104
1105         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1107         timer->function = perf_mux_hrtimer_handler;
1108 }
1109
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112         struct hrtimer *timer = &cpuctx->hrtimer;
1113         struct pmu *pmu = cpuctx->ctx.pmu;
1114         unsigned long flags;
1115
1116         /* not for SW PMU */
1117         if (pmu->task_ctx_nr == perf_sw_context)
1118                 return 0;
1119
1120         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121         if (!cpuctx->hrtimer_active) {
1122                 cpuctx->hrtimer_active = 1;
1123                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125         }
1126         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127
1128         return 0;
1129 }
1130
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134         if (!(*count)++)
1135                 pmu->pmu_disable(pmu);
1136 }
1137
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141         if (!--(*count))
1142                 pmu->pmu_enable(pmu);
1143 }
1144
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156
1157         lockdep_assert_irqs_disabled();
1158
1159         WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161         list_add(&ctx->active_ctx_list, head);
1162 }
1163
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166         lockdep_assert_irqs_disabled();
1167
1168         WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170         list_del_init(&ctx->active_ctx_list);
1171 }
1172
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175         refcount_inc(&ctx->refcount);
1176 }
1177
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180         struct perf_event_context *ctx;
1181
1182         ctx = container_of(head, struct perf_event_context, rcu_head);
1183         kfree(ctx->task_ctx_data);
1184         kfree(ctx);
1185 }
1186
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189         if (refcount_dec_and_test(&ctx->refcount)) {
1190                 if (ctx->parent_ctx)
1191                         put_ctx(ctx->parent_ctx);
1192                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193                         put_task_struct(ctx->task);
1194                 call_rcu(&ctx->rcu_head, free_ctx);
1195         }
1196 }
1197
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()    [ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()                   [ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()         [ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event() [ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *      task_struct::perf_event_mutex
1253  *        perf_event_context::mutex
1254  *          perf_event::child_mutex;
1255  *            perf_event_context::lock
1256  *          perf_event::mmap_mutex
1257  *          mmap_sem
1258  *            perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *        cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267         struct perf_event_context *ctx;
1268
1269 again:
1270         rcu_read_lock();
1271         ctx = READ_ONCE(event->ctx);
1272         if (!refcount_inc_not_zero(&ctx->refcount)) {
1273                 rcu_read_unlock();
1274                 goto again;
1275         }
1276         rcu_read_unlock();
1277
1278         mutex_lock_nested(&ctx->mutex, nesting);
1279         if (event->ctx != ctx) {
1280                 mutex_unlock(&ctx->mutex);
1281                 put_ctx(ctx);
1282                 goto again;
1283         }
1284
1285         return ctx;
1286 }
1287
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291         return perf_event_ctx_lock_nested(event, 0);
1292 }
1293
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295                                   struct perf_event_context *ctx)
1296 {
1297         mutex_unlock(&ctx->mutex);
1298         put_ctx(ctx);
1299 }
1300
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311         lockdep_assert_held(&ctx->lock);
1312
1313         if (parent_ctx)
1314                 ctx->parent_ctx = NULL;
1315         ctx->generation++;
1316
1317         return parent_ctx;
1318 }
1319
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321                                 enum pid_type type)
1322 {
1323         u32 nr;
1324         /*
1325          * only top level events have the pid namespace they were created in
1326          */
1327         if (event->parent)
1328                 event = event->parent;
1329
1330         nr = __task_pid_nr_ns(p, type, event->ns);
1331         /* avoid -1 if it is idle thread or runs in another ns */
1332         if (!nr && !pid_alive(p))
1333                 nr = -1;
1334         return nr;
1335 }
1336
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344         return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353         u64 id = event->id;
1354
1355         if (event->parent)
1356                 id = event->parent->id;
1357
1358         return id;
1359 }
1360
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370         struct perf_event_context *ctx;
1371
1372 retry:
1373         /*
1374          * One of the few rules of preemptible RCU is that one cannot do
1375          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376          * part of the read side critical section was irqs-enabled -- see
1377          * rcu_read_unlock_special().
1378          *
1379          * Since ctx->lock nests under rq->lock we must ensure the entire read
1380          * side critical section has interrupts disabled.
1381          */
1382         local_irq_save(*flags);
1383         rcu_read_lock();
1384         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385         if (ctx) {
1386                 /*
1387                  * If this context is a clone of another, it might
1388                  * get swapped for another underneath us by
1389                  * perf_event_task_sched_out, though the
1390                  * rcu_read_lock() protects us from any context
1391                  * getting freed.  Lock the context and check if it
1392                  * got swapped before we could get the lock, and retry
1393                  * if so.  If we locked the right context, then it
1394                  * can't get swapped on us any more.
1395                  */
1396                 raw_spin_lock(&ctx->lock);
1397                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398                         raw_spin_unlock(&ctx->lock);
1399                         rcu_read_unlock();
1400                         local_irq_restore(*flags);
1401                         goto retry;
1402                 }
1403
1404                 if (ctx->task == TASK_TOMBSTONE ||
1405                     !refcount_inc_not_zero(&ctx->refcount)) {
1406                         raw_spin_unlock(&ctx->lock);
1407                         ctx = NULL;
1408                 } else {
1409                         WARN_ON_ONCE(ctx->task != task);
1410                 }
1411         }
1412         rcu_read_unlock();
1413         if (!ctx)
1414                 local_irq_restore(*flags);
1415         return ctx;
1416 }
1417
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426         struct perf_event_context *ctx;
1427         unsigned long flags;
1428
1429         ctx = perf_lock_task_context(task, ctxn, &flags);
1430         if (ctx) {
1431                 ++ctx->pin_count;
1432                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433         }
1434         return ctx;
1435 }
1436
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439         unsigned long flags;
1440
1441         raw_spin_lock_irqsave(&ctx->lock, flags);
1442         --ctx->pin_count;
1443         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451         u64 now = perf_clock();
1452
1453         ctx->time += now - ctx->timestamp;
1454         ctx->timestamp = now;
1455 }
1456
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459         struct perf_event_context *ctx = event->ctx;
1460
1461         if (is_cgroup_event(event))
1462                 return perf_cgroup_event_time(event);
1463
1464         return ctx ? ctx->time : 0;
1465 }
1466
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469         struct perf_event_context *ctx = event->ctx;
1470         enum event_type_t event_type;
1471
1472         lockdep_assert_held(&ctx->lock);
1473
1474         /*
1475          * It's 'group type', really, because if our group leader is
1476          * pinned, so are we.
1477          */
1478         if (event->group_leader != event)
1479                 event = event->group_leader;
1480
1481         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482         if (!ctx->task)
1483                 event_type |= EVENT_CPU;
1484
1485         return event_type;
1486 }
1487
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493         RB_CLEAR_NODE(&event->group_node);
1494         event->group_index = 0;
1495 }
1496
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504         if (event->attr.pinned)
1505                 return &ctx->pinned_groups;
1506         else
1507                 return &ctx->flexible_groups;
1508 }
1509
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515         groups->tree = RB_ROOT;
1516         groups->index = 0;
1517 }
1518
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528         if (left->cpu < right->cpu)
1529                 return true;
1530         if (left->cpu > right->cpu)
1531                 return false;
1532
1533         if (left->group_index < right->group_index)
1534                 return true;
1535         if (left->group_index > right->group_index)
1536                 return false;
1537
1538         return false;
1539 }
1540
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548                          struct perf_event *event)
1549 {
1550         struct perf_event *node_event;
1551         struct rb_node *parent;
1552         struct rb_node **node;
1553
1554         event->group_index = ++groups->index;
1555
1556         node = &groups->tree.rb_node;
1557         parent = *node;
1558
1559         while (*node) {
1560                 parent = *node;
1561                 node_event = container_of(*node, struct perf_event, group_node);
1562
1563                 if (perf_event_groups_less(event, node_event))
1564                         node = &parent->rb_left;
1565                 else
1566                         node = &parent->rb_right;
1567         }
1568
1569         rb_link_node(&event->group_node, parent, node);
1570         rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579         struct perf_event_groups *groups;
1580
1581         groups = get_event_groups(event, ctx);
1582         perf_event_groups_insert(groups, event);
1583 }
1584
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590                          struct perf_event *event)
1591 {
1592         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593                      RB_EMPTY_ROOT(&groups->tree));
1594
1595         rb_erase(&event->group_node, &groups->tree);
1596         init_event_group(event);
1597 }
1598
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605         struct perf_event_groups *groups;
1606
1607         groups = get_event_groups(event, ctx);
1608         perf_event_groups_delete(groups, event);
1609 }
1610
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617         struct perf_event *node_event = NULL, *match = NULL;
1618         struct rb_node *node = groups->tree.rb_node;
1619
1620         while (node) {
1621                 node_event = container_of(node, struct perf_event, group_node);
1622
1623                 if (cpu < node_event->cpu) {
1624                         node = node->rb_left;
1625                 } else if (cpu > node_event->cpu) {
1626                         node = node->rb_right;
1627                 } else {
1628                         match = node_event;
1629                         node = node->rb_left;
1630                 }
1631         }
1632
1633         return match;
1634 }
1635
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642         struct perf_event *next;
1643
1644         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645         if (next && next->cpu == event->cpu)
1646                 return next;
1647
1648         return NULL;
1649 }
1650
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)                       \
1655         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1656                                 typeof(*event), group_node); event;     \
1657                 event = rb_entry_safe(rb_next(&event->group_node),      \
1658                                 typeof(*event), group_node))
1659
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667         lockdep_assert_held(&ctx->lock);
1668
1669         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670         event->attach_state |= PERF_ATTACH_CONTEXT;
1671
1672         event->tstamp = perf_event_time(event);
1673
1674         /*
1675          * If we're a stand alone event or group leader, we go to the context
1676          * list, group events are kept attached to the group so that
1677          * perf_group_detach can, at all times, locate all siblings.
1678          */
1679         if (event->group_leader == event) {
1680                 event->group_caps = event->event_caps;
1681                 add_event_to_groups(event, ctx);
1682         }
1683
1684         list_update_cgroup_event(event, ctx, true);
1685
1686         list_add_rcu(&event->event_entry, &ctx->event_list);
1687         ctx->nr_events++;
1688         if (event->attr.inherit_stat)
1689                 ctx->nr_stat++;
1690
1691         ctx->generation++;
1692 }
1693
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700                                               PERF_EVENT_STATE_INACTIVE;
1701 }
1702
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705         int entry = sizeof(u64); /* value */
1706         int size = 0;
1707         int nr = 1;
1708
1709         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710                 size += sizeof(u64);
1711
1712         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713                 size += sizeof(u64);
1714
1715         if (event->attr.read_format & PERF_FORMAT_ID)
1716                 entry += sizeof(u64);
1717
1718         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719                 nr += nr_siblings;
1720                 size += sizeof(u64);
1721         }
1722
1723         size += entry * nr;
1724         event->read_size = size;
1725 }
1726
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729         struct perf_sample_data *data;
1730         u16 size = 0;
1731
1732         if (sample_type & PERF_SAMPLE_IP)
1733                 size += sizeof(data->ip);
1734
1735         if (sample_type & PERF_SAMPLE_ADDR)
1736                 size += sizeof(data->addr);
1737
1738         if (sample_type & PERF_SAMPLE_PERIOD)
1739                 size += sizeof(data->period);
1740
1741         if (sample_type & PERF_SAMPLE_WEIGHT)
1742                 size += sizeof(data->weight);
1743
1744         if (sample_type & PERF_SAMPLE_READ)
1745                 size += event->read_size;
1746
1747         if (sample_type & PERF_SAMPLE_DATA_SRC)
1748                 size += sizeof(data->data_src.val);
1749
1750         if (sample_type & PERF_SAMPLE_TRANSACTION)
1751                 size += sizeof(data->txn);
1752
1753         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754                 size += sizeof(data->phys_addr);
1755
1756         event->header_size = size;
1757 }
1758
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765         __perf_event_read_size(event,
1766                                event->group_leader->nr_siblings);
1767         __perf_event_header_size(event, event->attr.sample_type);
1768 }
1769
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772         struct perf_sample_data *data;
1773         u64 sample_type = event->attr.sample_type;
1774         u16 size = 0;
1775
1776         if (sample_type & PERF_SAMPLE_TID)
1777                 size += sizeof(data->tid_entry);
1778
1779         if (sample_type & PERF_SAMPLE_TIME)
1780                 size += sizeof(data->time);
1781
1782         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783                 size += sizeof(data->id);
1784
1785         if (sample_type & PERF_SAMPLE_ID)
1786                 size += sizeof(data->id);
1787
1788         if (sample_type & PERF_SAMPLE_STREAM_ID)
1789                 size += sizeof(data->stream_id);
1790
1791         if (sample_type & PERF_SAMPLE_CPU)
1792                 size += sizeof(data->cpu_entry);
1793
1794         event->id_header_size = size;
1795 }
1796
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799         /*
1800          * The values computed here will be over-written when we actually
1801          * attach the event.
1802          */
1803         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805         perf_event__id_header_size(event);
1806
1807         /*
1808          * Sum the lot; should not exceed the 64k limit we have on records.
1809          * Conservative limit to allow for callchains and other variable fields.
1810          */
1811         if (event->read_size + event->header_size +
1812             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813                 return false;
1814
1815         return true;
1816 }
1817
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820         struct perf_event *group_leader = event->group_leader, *pos;
1821
1822         lockdep_assert_held(&event->ctx->lock);
1823
1824         /*
1825          * We can have double attach due to group movement in perf_event_open.
1826          */
1827         if (event->attach_state & PERF_ATTACH_GROUP)
1828                 return;
1829
1830         event->attach_state |= PERF_ATTACH_GROUP;
1831
1832         if (group_leader == event)
1833                 return;
1834
1835         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
1837         group_leader->group_caps &= event->event_caps;
1838
1839         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840         group_leader->nr_siblings++;
1841
1842         perf_event__header_size(group_leader);
1843
1844         for_each_sibling_event(pos, group_leader)
1845                 perf_event__header_size(pos);
1846 }
1847
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855         WARN_ON_ONCE(event->ctx != ctx);
1856         lockdep_assert_held(&ctx->lock);
1857
1858         /*
1859          * We can have double detach due to exit/hot-unplug + close.
1860          */
1861         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862                 return;
1863
1864         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
1866         list_update_cgroup_event(event, ctx, false);
1867
1868         ctx->nr_events--;
1869         if (event->attr.inherit_stat)
1870                 ctx->nr_stat--;
1871
1872         list_del_rcu(&event->event_entry);
1873
1874         if (event->group_leader == event)
1875                 del_event_from_groups(event, ctx);
1876
1877         /*
1878          * If event was in error state, then keep it
1879          * that way, otherwise bogus counts will be
1880          * returned on read(). The only way to get out
1881          * of error state is by explicit re-enabling
1882          * of the event
1883          */
1884         if (event->state > PERF_EVENT_STATE_OFF)
1885                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886
1887         ctx->generation++;
1888 }
1889
1890 static void perf_group_detach(struct perf_event *event)
1891 {
1892         struct perf_event *sibling, *tmp;
1893         struct perf_event_context *ctx = event->ctx;
1894
1895         lockdep_assert_held(&ctx->lock);
1896
1897         /*
1898          * We can have double detach due to exit/hot-unplug + close.
1899          */
1900         if (!(event->attach_state & PERF_ATTACH_GROUP))
1901                 return;
1902
1903         event->attach_state &= ~PERF_ATTACH_GROUP;
1904
1905         /*
1906          * If this is a sibling, remove it from its group.
1907          */
1908         if (event->group_leader != event) {
1909                 list_del_init(&event->sibling_list);
1910                 event->group_leader->nr_siblings--;
1911                 goto out;
1912         }
1913
1914         /*
1915          * If this was a group event with sibling events then
1916          * upgrade the siblings to singleton events by adding them
1917          * to whatever list we are on.
1918          */
1919         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1920
1921                 sibling->group_leader = sibling;
1922                 list_del_init(&sibling->sibling_list);
1923
1924                 /* Inherit group flags from the previous leader */
1925                 sibling->group_caps = event->group_caps;
1926
1927                 if (!RB_EMPTY_NODE(&event->group_node)) {
1928                         add_event_to_groups(sibling, event->ctx);
1929
1930                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931                                 struct list_head *list = sibling->attr.pinned ?
1932                                         &ctx->pinned_active : &ctx->flexible_active;
1933
1934                                 list_add_tail(&sibling->active_list, list);
1935                         }
1936                 }
1937
1938                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1939         }
1940
1941 out:
1942         perf_event__header_size(event->group_leader);
1943
1944         for_each_sibling_event(tmp, event->group_leader)
1945                 perf_event__header_size(tmp);
1946 }
1947
1948 static bool is_orphaned_event(struct perf_event *event)
1949 {
1950         return event->state == PERF_EVENT_STATE_DEAD;
1951 }
1952
1953 static inline int __pmu_filter_match(struct perf_event *event)
1954 {
1955         struct pmu *pmu = event->pmu;
1956         return pmu->filter_match ? pmu->filter_match(event) : 1;
1957 }
1958
1959 /*
1960  * Check whether we should attempt to schedule an event group based on
1961  * PMU-specific filtering. An event group can consist of HW and SW events,
1962  * potentially with a SW leader, so we must check all the filters, to
1963  * determine whether a group is schedulable:
1964  */
1965 static inline int pmu_filter_match(struct perf_event *event)
1966 {
1967         struct perf_event *sibling;
1968
1969         if (!__pmu_filter_match(event))
1970                 return 0;
1971
1972         for_each_sibling_event(sibling, event) {
1973                 if (!__pmu_filter_match(sibling))
1974                         return 0;
1975         }
1976
1977         return 1;
1978 }
1979
1980 static inline int
1981 event_filter_match(struct perf_event *event)
1982 {
1983         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984                perf_cgroup_match(event) && pmu_filter_match(event);
1985 }
1986
1987 static void
1988 event_sched_out(struct perf_event *event,
1989                   struct perf_cpu_context *cpuctx,
1990                   struct perf_event_context *ctx)
1991 {
1992         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1993
1994         WARN_ON_ONCE(event->ctx != ctx);
1995         lockdep_assert_held(&ctx->lock);
1996
1997         if (event->state != PERF_EVENT_STATE_ACTIVE)
1998                 return;
1999
2000         /*
2001          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002          * we can schedule events _OUT_ individually through things like
2003          * __perf_remove_from_context().
2004          */
2005         list_del_init(&event->active_list);
2006
2007         perf_pmu_disable(event->pmu);
2008
2009         event->pmu->del(event, 0);
2010         event->oncpu = -1;
2011
2012         if (READ_ONCE(event->pending_disable) >= 0) {
2013                 WRITE_ONCE(event->pending_disable, -1);
2014                 state = PERF_EVENT_STATE_OFF;
2015         }
2016         perf_event_set_state(event, state);
2017
2018         if (!is_software_event(event))
2019                 cpuctx->active_oncpu--;
2020         if (!--ctx->nr_active)
2021                 perf_event_ctx_deactivate(ctx);
2022         if (event->attr.freq && event->attr.sample_freq)
2023                 ctx->nr_freq--;
2024         if (event->attr.exclusive || !cpuctx->active_oncpu)
2025                 cpuctx->exclusive = 0;
2026
2027         perf_pmu_enable(event->pmu);
2028 }
2029
2030 static void
2031 group_sched_out(struct perf_event *group_event,
2032                 struct perf_cpu_context *cpuctx,
2033                 struct perf_event_context *ctx)
2034 {
2035         struct perf_event *event;
2036
2037         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038                 return;
2039
2040         perf_pmu_disable(ctx->pmu);
2041
2042         event_sched_out(group_event, cpuctx, ctx);
2043
2044         /*
2045          * Schedule out siblings (if any):
2046          */
2047         for_each_sibling_event(event, group_event)
2048                 event_sched_out(event, cpuctx, ctx);
2049
2050         perf_pmu_enable(ctx->pmu);
2051
2052         if (group_event->attr.exclusive)
2053                 cpuctx->exclusive = 0;
2054 }
2055
2056 #define DETACH_GROUP    0x01UL
2057
2058 /*
2059  * Cross CPU call to remove a performance event
2060  *
2061  * We disable the event on the hardware level first. After that we
2062  * remove it from the context list.
2063  */
2064 static void
2065 __perf_remove_from_context(struct perf_event *event,
2066                            struct perf_cpu_context *cpuctx,
2067                            struct perf_event_context *ctx,
2068                            void *info)
2069 {
2070         unsigned long flags = (unsigned long)info;
2071
2072         if (ctx->is_active & EVENT_TIME) {
2073                 update_context_time(ctx);
2074                 update_cgrp_time_from_cpuctx(cpuctx);
2075         }
2076
2077         event_sched_out(event, cpuctx, ctx);
2078         if (flags & DETACH_GROUP)
2079                 perf_group_detach(event);
2080         list_del_event(event, ctx);
2081
2082         if (!ctx->nr_events && ctx->is_active) {
2083                 ctx->is_active = 0;
2084                 if (ctx->task) {
2085                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086                         cpuctx->task_ctx = NULL;
2087                 }
2088         }
2089 }
2090
2091 /*
2092  * Remove the event from a task's (or a CPU's) list of events.
2093  *
2094  * If event->ctx is a cloned context, callers must make sure that
2095  * every task struct that event->ctx->task could possibly point to
2096  * remains valid.  This is OK when called from perf_release since
2097  * that only calls us on the top-level context, which can't be a clone.
2098  * When called from perf_event_exit_task, it's OK because the
2099  * context has been detached from its task.
2100  */
2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2102 {
2103         struct perf_event_context *ctx = event->ctx;
2104
2105         lockdep_assert_held(&ctx->mutex);
2106
2107         event_function_call(event, __perf_remove_from_context, (void *)flags);
2108
2109         /*
2110          * The above event_function_call() can NO-OP when it hits
2111          * TASK_TOMBSTONE. In that case we must already have been detached
2112          * from the context (by perf_event_exit_event()) but the grouping
2113          * might still be in-tact.
2114          */
2115         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116         if ((flags & DETACH_GROUP) &&
2117             (event->attach_state & PERF_ATTACH_GROUP)) {
2118                 /*
2119                  * Since in that case we cannot possibly be scheduled, simply
2120                  * detach now.
2121                  */
2122                 raw_spin_lock_irq(&ctx->lock);
2123                 perf_group_detach(event);
2124                 raw_spin_unlock_irq(&ctx->lock);
2125         }
2126 }
2127
2128 /*
2129  * Cross CPU call to disable a performance event
2130  */
2131 static void __perf_event_disable(struct perf_event *event,
2132                                  struct perf_cpu_context *cpuctx,
2133                                  struct perf_event_context *ctx,
2134                                  void *info)
2135 {
2136         if (event->state < PERF_EVENT_STATE_INACTIVE)
2137                 return;
2138
2139         if (ctx->is_active & EVENT_TIME) {
2140                 update_context_time(ctx);
2141                 update_cgrp_time_from_event(event);
2142         }
2143
2144         if (event == event->group_leader)
2145                 group_sched_out(event, cpuctx, ctx);
2146         else
2147                 event_sched_out(event, cpuctx, ctx);
2148
2149         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2150 }
2151
2152 /*
2153  * Disable an event.
2154  *
2155  * If event->ctx is a cloned context, callers must make sure that
2156  * every task struct that event->ctx->task could possibly point to
2157  * remains valid.  This condition is satisifed when called through
2158  * perf_event_for_each_child or perf_event_for_each because they
2159  * hold the top-level event's child_mutex, so any descendant that
2160  * goes to exit will block in perf_event_exit_event().
2161  *
2162  * When called from perf_pending_event it's OK because event->ctx
2163  * is the current context on this CPU and preemption is disabled,
2164  * hence we can't get into perf_event_task_sched_out for this context.
2165  */
2166 static void _perf_event_disable(struct perf_event *event)
2167 {
2168         struct perf_event_context *ctx = event->ctx;
2169
2170         raw_spin_lock_irq(&ctx->lock);
2171         if (event->state <= PERF_EVENT_STATE_OFF) {
2172                 raw_spin_unlock_irq(&ctx->lock);
2173                 return;
2174         }
2175         raw_spin_unlock_irq(&ctx->lock);
2176
2177         event_function_call(event, __perf_event_disable, NULL);
2178 }
2179
2180 void perf_event_disable_local(struct perf_event *event)
2181 {
2182         event_function_local(event, __perf_event_disable, NULL);
2183 }
2184
2185 /*
2186  * Strictly speaking kernel users cannot create groups and therefore this
2187  * interface does not need the perf_event_ctx_lock() magic.
2188  */
2189 void perf_event_disable(struct perf_event *event)
2190 {
2191         struct perf_event_context *ctx;
2192
2193         ctx = perf_event_ctx_lock(event);
2194         _perf_event_disable(event);
2195         perf_event_ctx_unlock(event, ctx);
2196 }
2197 EXPORT_SYMBOL_GPL(perf_event_disable);
2198
2199 void perf_event_disable_inatomic(struct perf_event *event)
2200 {
2201         WRITE_ONCE(event->pending_disable, smp_processor_id());
2202         /* can fail, see perf_pending_event_disable() */
2203         irq_work_queue(&event->pending);
2204 }
2205
2206 static void perf_set_shadow_time(struct perf_event *event,
2207                                  struct perf_event_context *ctx)
2208 {
2209         /*
2210          * use the correct time source for the time snapshot
2211          *
2212          * We could get by without this by leveraging the
2213          * fact that to get to this function, the caller
2214          * has most likely already called update_context_time()
2215          * and update_cgrp_time_xx() and thus both timestamp
2216          * are identical (or very close). Given that tstamp is,
2217          * already adjusted for cgroup, we could say that:
2218          *    tstamp - ctx->timestamp
2219          * is equivalent to
2220          *    tstamp - cgrp->timestamp.
2221          *
2222          * Then, in perf_output_read(), the calculation would
2223          * work with no changes because:
2224          * - event is guaranteed scheduled in
2225          * - no scheduled out in between
2226          * - thus the timestamp would be the same
2227          *
2228          * But this is a bit hairy.
2229          *
2230          * So instead, we have an explicit cgroup call to remain
2231          * within the time time source all along. We believe it
2232          * is cleaner and simpler to understand.
2233          */
2234         if (is_cgroup_event(event))
2235                 perf_cgroup_set_shadow_time(event, event->tstamp);
2236         else
2237                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2238 }
2239
2240 #define MAX_INTERRUPTS (~0ULL)
2241
2242 static void perf_log_throttle(struct perf_event *event, int enable);
2243 static void perf_log_itrace_start(struct perf_event *event);
2244
2245 static int
2246 event_sched_in(struct perf_event *event,
2247                  struct perf_cpu_context *cpuctx,
2248                  struct perf_event_context *ctx)
2249 {
2250         int ret = 0;
2251
2252         lockdep_assert_held(&ctx->lock);
2253
2254         if (event->state <= PERF_EVENT_STATE_OFF)
2255                 return 0;
2256
2257         WRITE_ONCE(event->oncpu, smp_processor_id());
2258         /*
2259          * Order event::oncpu write to happen before the ACTIVE state is
2260          * visible. This allows perf_event_{stop,read}() to observe the correct
2261          * ->oncpu if it sees ACTIVE.
2262          */
2263         smp_wmb();
2264         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2265
2266         /*
2267          * Unthrottle events, since we scheduled we might have missed several
2268          * ticks already, also for a heavily scheduling task there is little
2269          * guarantee it'll get a tick in a timely manner.
2270          */
2271         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2272                 perf_log_throttle(event, 1);
2273                 event->hw.interrupts = 0;
2274         }
2275
2276         perf_pmu_disable(event->pmu);
2277
2278         perf_set_shadow_time(event, ctx);
2279
2280         perf_log_itrace_start(event);
2281
2282         if (event->pmu->add(event, PERF_EF_START)) {
2283                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2284                 event->oncpu = -1;
2285                 ret = -EAGAIN;
2286                 goto out;
2287         }
2288
2289         if (!is_software_event(event))
2290                 cpuctx->active_oncpu++;
2291         if (!ctx->nr_active++)
2292                 perf_event_ctx_activate(ctx);
2293         if (event->attr.freq && event->attr.sample_freq)
2294                 ctx->nr_freq++;
2295
2296         if (event->attr.exclusive)
2297                 cpuctx->exclusive = 1;
2298
2299 out:
2300         perf_pmu_enable(event->pmu);
2301
2302         return ret;
2303 }
2304
2305 static int
2306 group_sched_in(struct perf_event *group_event,
2307                struct perf_cpu_context *cpuctx,
2308                struct perf_event_context *ctx)
2309 {
2310         struct perf_event *event, *partial_group = NULL;
2311         struct pmu *pmu = ctx->pmu;
2312
2313         if (group_event->state == PERF_EVENT_STATE_OFF)
2314                 return 0;
2315
2316         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2317
2318         if (event_sched_in(group_event, cpuctx, ctx)) {
2319                 pmu->cancel_txn(pmu);
2320                 perf_mux_hrtimer_restart(cpuctx);
2321                 return -EAGAIN;
2322         }
2323
2324         /*
2325          * Schedule in siblings as one group (if any):
2326          */
2327         for_each_sibling_event(event, group_event) {
2328                 if (event_sched_in(event, cpuctx, ctx)) {
2329                         partial_group = event;
2330                         goto group_error;
2331                 }
2332         }
2333
2334         if (!pmu->commit_txn(pmu))
2335                 return 0;
2336
2337 group_error:
2338         /*
2339          * Groups can be scheduled in as one unit only, so undo any
2340          * partial group before returning:
2341          * The events up to the failed event are scheduled out normally.
2342          */
2343         for_each_sibling_event(event, group_event) {
2344                 if (event == partial_group)
2345                         break;
2346
2347                 event_sched_out(event, cpuctx, ctx);
2348         }
2349         event_sched_out(group_event, cpuctx, ctx);
2350
2351         pmu->cancel_txn(pmu);
2352
2353         perf_mux_hrtimer_restart(cpuctx);
2354
2355         return -EAGAIN;
2356 }
2357
2358 /*
2359  * Work out whether we can put this event group on the CPU now.
2360  */
2361 static int group_can_go_on(struct perf_event *event,
2362                            struct perf_cpu_context *cpuctx,
2363                            int can_add_hw)
2364 {
2365         /*
2366          * Groups consisting entirely of software events can always go on.
2367          */
2368         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2369                 return 1;
2370         /*
2371          * If an exclusive group is already on, no other hardware
2372          * events can go on.
2373          */
2374         if (cpuctx->exclusive)
2375                 return 0;
2376         /*
2377          * If this group is exclusive and there are already
2378          * events on the CPU, it can't go on.
2379          */
2380         if (event->attr.exclusive && cpuctx->active_oncpu)
2381                 return 0;
2382         /*
2383          * Otherwise, try to add it if all previous groups were able
2384          * to go on.
2385          */
2386         return can_add_hw;
2387 }
2388
2389 static void add_event_to_ctx(struct perf_event *event,
2390                                struct perf_event_context *ctx)
2391 {
2392         list_add_event(event, ctx);
2393         perf_group_attach(event);
2394 }
2395
2396 static void ctx_sched_out(struct perf_event_context *ctx,
2397                           struct perf_cpu_context *cpuctx,
2398                           enum event_type_t event_type);
2399 static void
2400 ctx_sched_in(struct perf_event_context *ctx,
2401              struct perf_cpu_context *cpuctx,
2402              enum event_type_t event_type,
2403              struct task_struct *task);
2404
2405 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2406                                struct perf_event_context *ctx,
2407                                enum event_type_t event_type)
2408 {
2409         if (!cpuctx->task_ctx)
2410                 return;
2411
2412         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2413                 return;
2414
2415         ctx_sched_out(ctx, cpuctx, event_type);
2416 }
2417
2418 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2419                                 struct perf_event_context *ctx,
2420                                 struct task_struct *task)
2421 {
2422         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2423         if (ctx)
2424                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2425         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2426         if (ctx)
2427                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2428 }
2429
2430 /*
2431  * We want to maintain the following priority of scheduling:
2432  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2433  *  - task pinned (EVENT_PINNED)
2434  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2435  *  - task flexible (EVENT_FLEXIBLE).
2436  *
2437  * In order to avoid unscheduling and scheduling back in everything every
2438  * time an event is added, only do it for the groups of equal priority and
2439  * below.
2440  *
2441  * This can be called after a batch operation on task events, in which case
2442  * event_type is a bit mask of the types of events involved. For CPU events,
2443  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2444  */
2445 static void ctx_resched(struct perf_cpu_context *cpuctx,
2446                         struct perf_event_context *task_ctx,
2447                         enum event_type_t event_type)
2448 {
2449         enum event_type_t ctx_event_type;
2450         bool cpu_event = !!(event_type & EVENT_CPU);
2451
2452         /*
2453          * If pinned groups are involved, flexible groups also need to be
2454          * scheduled out.
2455          */
2456         if (event_type & EVENT_PINNED)
2457                 event_type |= EVENT_FLEXIBLE;
2458
2459         ctx_event_type = event_type & EVENT_ALL;
2460
2461         perf_pmu_disable(cpuctx->ctx.pmu);
2462         if (task_ctx)
2463                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2464
2465         /*
2466          * Decide which cpu ctx groups to schedule out based on the types
2467          * of events that caused rescheduling:
2468          *  - EVENT_CPU: schedule out corresponding groups;
2469          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2470          *  - otherwise, do nothing more.
2471          */
2472         if (cpu_event)
2473                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2474         else if (ctx_event_type & EVENT_PINNED)
2475                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2476
2477         perf_event_sched_in(cpuctx, task_ctx, current);
2478         perf_pmu_enable(cpuctx->ctx.pmu);
2479 }
2480
2481 void perf_pmu_resched(struct pmu *pmu)
2482 {
2483         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2484         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2485
2486         perf_ctx_lock(cpuctx, task_ctx);
2487         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2488         perf_ctx_unlock(cpuctx, task_ctx);
2489 }
2490
2491 /*
2492  * Cross CPU call to install and enable a performance event
2493  *
2494  * Very similar to remote_function() + event_function() but cannot assume that
2495  * things like ctx->is_active and cpuctx->task_ctx are set.
2496  */
2497 static int  __perf_install_in_context(void *info)
2498 {
2499         struct perf_event *event = info;
2500         struct perf_event_context *ctx = event->ctx;
2501         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2502         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2503         bool reprogram = true;
2504         int ret = 0;
2505
2506         raw_spin_lock(&cpuctx->ctx.lock);
2507         if (ctx->task) {
2508                 raw_spin_lock(&ctx->lock);
2509                 task_ctx = ctx;
2510
2511                 reprogram = (ctx->task == current);
2512
2513                 /*
2514                  * If the task is running, it must be running on this CPU,
2515                  * otherwise we cannot reprogram things.
2516                  *
2517                  * If its not running, we don't care, ctx->lock will
2518                  * serialize against it becoming runnable.
2519                  */
2520                 if (task_curr(ctx->task) && !reprogram) {
2521                         ret = -ESRCH;
2522                         goto unlock;
2523                 }
2524
2525                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2526         } else if (task_ctx) {
2527                 raw_spin_lock(&task_ctx->lock);
2528         }
2529
2530 #ifdef CONFIG_CGROUP_PERF
2531         if (is_cgroup_event(event)) {
2532                 /*
2533                  * If the current cgroup doesn't match the event's
2534                  * cgroup, we should not try to schedule it.
2535                  */
2536                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2537                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2538                                         event->cgrp->css.cgroup);
2539         }
2540 #endif
2541
2542         if (reprogram) {
2543                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2544                 add_event_to_ctx(event, ctx);
2545                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2546         } else {
2547                 add_event_to_ctx(event, ctx);
2548         }
2549
2550 unlock:
2551         perf_ctx_unlock(cpuctx, task_ctx);
2552
2553         return ret;
2554 }
2555
2556 /*
2557  * Attach a performance event to a context.
2558  *
2559  * Very similar to event_function_call, see comment there.
2560  */
2561 static void
2562 perf_install_in_context(struct perf_event_context *ctx,
2563                         struct perf_event *event,
2564                         int cpu)
2565 {
2566         struct task_struct *task = READ_ONCE(ctx->task);
2567
2568         lockdep_assert_held(&ctx->mutex);
2569
2570         if (event->cpu != -1)
2571                 event->cpu = cpu;
2572
2573         /*
2574          * Ensures that if we can observe event->ctx, both the event and ctx
2575          * will be 'complete'. See perf_iterate_sb_cpu().
2576          */
2577         smp_store_release(&event->ctx, ctx);
2578
2579         if (!task) {
2580                 cpu_function_call(cpu, __perf_install_in_context, event);
2581                 return;
2582         }
2583
2584         /*
2585          * Should not happen, we validate the ctx is still alive before calling.
2586          */
2587         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2588                 return;
2589
2590         /*
2591          * Installing events is tricky because we cannot rely on ctx->is_active
2592          * to be set in case this is the nr_events 0 -> 1 transition.
2593          *
2594          * Instead we use task_curr(), which tells us if the task is running.
2595          * However, since we use task_curr() outside of rq::lock, we can race
2596          * against the actual state. This means the result can be wrong.
2597          *
2598          * If we get a false positive, we retry, this is harmless.
2599          *
2600          * If we get a false negative, things are complicated. If we are after
2601          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2602          * value must be correct. If we're before, it doesn't matter since
2603          * perf_event_context_sched_in() will program the counter.
2604          *
2605          * However, this hinges on the remote context switch having observed
2606          * our task->perf_event_ctxp[] store, such that it will in fact take
2607          * ctx::lock in perf_event_context_sched_in().
2608          *
2609          * We do this by task_function_call(), if the IPI fails to hit the task
2610          * we know any future context switch of task must see the
2611          * perf_event_ctpx[] store.
2612          */
2613
2614         /*
2615          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2616          * task_cpu() load, such that if the IPI then does not find the task
2617          * running, a future context switch of that task must observe the
2618          * store.
2619          */
2620         smp_mb();
2621 again:
2622         if (!task_function_call(task, __perf_install_in_context, event))
2623                 return;
2624
2625         raw_spin_lock_irq(&ctx->lock);
2626         task = ctx->task;
2627         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2628                 /*
2629                  * Cannot happen because we already checked above (which also
2630                  * cannot happen), and we hold ctx->mutex, which serializes us
2631                  * against perf_event_exit_task_context().
2632                  */
2633                 raw_spin_unlock_irq(&ctx->lock);
2634                 return;
2635         }
2636         /*
2637          * If the task is not running, ctx->lock will avoid it becoming so,
2638          * thus we can safely install the event.
2639          */
2640         if (task_curr(task)) {
2641                 raw_spin_unlock_irq(&ctx->lock);
2642                 goto again;
2643         }
2644         add_event_to_ctx(event, ctx);
2645         raw_spin_unlock_irq(&ctx->lock);
2646 }
2647
2648 /*
2649  * Cross CPU call to enable a performance event
2650  */
2651 static void __perf_event_enable(struct perf_event *event,
2652                                 struct perf_cpu_context *cpuctx,
2653                                 struct perf_event_context *ctx,
2654                                 void *info)
2655 {
2656         struct perf_event *leader = event->group_leader;
2657         struct perf_event_context *task_ctx;
2658
2659         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2660             event->state <= PERF_EVENT_STATE_ERROR)
2661                 return;
2662
2663         if (ctx->is_active)
2664                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2665
2666         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2667
2668         if (!ctx->is_active)
2669                 return;
2670
2671         if (!event_filter_match(event)) {
2672                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2673                 return;
2674         }
2675
2676         /*
2677          * If the event is in a group and isn't the group leader,
2678          * then don't put it on unless the group is on.
2679          */
2680         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2681                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2682                 return;
2683         }
2684
2685         task_ctx = cpuctx->task_ctx;
2686         if (ctx->task)
2687                 WARN_ON_ONCE(task_ctx != ctx);
2688
2689         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2690 }
2691
2692 /*
2693  * Enable an event.
2694  *
2695  * If event->ctx is a cloned context, callers must make sure that
2696  * every task struct that event->ctx->task could possibly point to
2697  * remains valid.  This condition is satisfied when called through
2698  * perf_event_for_each_child or perf_event_for_each as described
2699  * for perf_event_disable.
2700  */
2701 static void _perf_event_enable(struct perf_event *event)
2702 {
2703         struct perf_event_context *ctx = event->ctx;
2704
2705         raw_spin_lock_irq(&ctx->lock);
2706         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2707             event->state <  PERF_EVENT_STATE_ERROR) {
2708                 raw_spin_unlock_irq(&ctx->lock);
2709                 return;
2710         }
2711
2712         /*
2713          * If the event is in error state, clear that first.
2714          *
2715          * That way, if we see the event in error state below, we know that it
2716          * has gone back into error state, as distinct from the task having
2717          * been scheduled away before the cross-call arrived.
2718          */
2719         if (event->state == PERF_EVENT_STATE_ERROR)
2720                 event->state = PERF_EVENT_STATE_OFF;
2721         raw_spin_unlock_irq(&ctx->lock);
2722
2723         event_function_call(event, __perf_event_enable, NULL);
2724 }
2725
2726 /*
2727  * See perf_event_disable();
2728  */
2729 void perf_event_enable(struct perf_event *event)
2730 {
2731         struct perf_event_context *ctx;
2732
2733         ctx = perf_event_ctx_lock(event);
2734         _perf_event_enable(event);
2735         perf_event_ctx_unlock(event, ctx);
2736 }
2737 EXPORT_SYMBOL_GPL(perf_event_enable);
2738
2739 struct stop_event_data {
2740         struct perf_event       *event;
2741         unsigned int            restart;
2742 };
2743
2744 static int __perf_event_stop(void *info)
2745 {
2746         struct stop_event_data *sd = info;
2747         struct perf_event *event = sd->event;
2748
2749         /* if it's already INACTIVE, do nothing */
2750         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2751                 return 0;
2752
2753         /* matches smp_wmb() in event_sched_in() */
2754         smp_rmb();
2755
2756         /*
2757          * There is a window with interrupts enabled before we get here,
2758          * so we need to check again lest we try to stop another CPU's event.
2759          */
2760         if (READ_ONCE(event->oncpu) != smp_processor_id())
2761                 return -EAGAIN;
2762
2763         event->pmu->stop(event, PERF_EF_UPDATE);
2764
2765         /*
2766          * May race with the actual stop (through perf_pmu_output_stop()),
2767          * but it is only used for events with AUX ring buffer, and such
2768          * events will refuse to restart because of rb::aux_mmap_count==0,
2769          * see comments in perf_aux_output_begin().
2770          *
2771          * Since this is happening on an event-local CPU, no trace is lost
2772          * while restarting.
2773          */
2774         if (sd->restart)
2775                 event->pmu->start(event, 0);
2776
2777         return 0;
2778 }
2779
2780 static int perf_event_stop(struct perf_event *event, int restart)
2781 {
2782         struct stop_event_data sd = {
2783                 .event          = event,
2784                 .restart        = restart,
2785         };
2786         int ret = 0;
2787
2788         do {
2789                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2790                         return 0;
2791
2792                 /* matches smp_wmb() in event_sched_in() */
2793                 smp_rmb();
2794
2795                 /*
2796                  * We only want to restart ACTIVE events, so if the event goes
2797                  * inactive here (event->oncpu==-1), there's nothing more to do;
2798                  * fall through with ret==-ENXIO.
2799                  */
2800                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2801                                         __perf_event_stop, &sd);
2802         } while (ret == -EAGAIN);
2803
2804         return ret;
2805 }
2806
2807 /*
2808  * In order to contain the amount of racy and tricky in the address filter
2809  * configuration management, it is a two part process:
2810  *
2811  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2812  *      we update the addresses of corresponding vmas in
2813  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2814  * (p2) when an event is scheduled in (pmu::add), it calls
2815  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2816  *      if the generation has changed since the previous call.
2817  *
2818  * If (p1) happens while the event is active, we restart it to force (p2).
2819  *
2820  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2821  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2822  *     ioctl;
2823  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2824  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2825  *     for reading;
2826  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2827  *     of exec.
2828  */
2829 void perf_event_addr_filters_sync(struct perf_event *event)
2830 {
2831         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2832
2833         if (!has_addr_filter(event))
2834                 return;
2835
2836         raw_spin_lock(&ifh->lock);
2837         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2838                 event->pmu->addr_filters_sync(event);
2839                 event->hw.addr_filters_gen = event->addr_filters_gen;
2840         }
2841         raw_spin_unlock(&ifh->lock);
2842 }
2843 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2844
2845 static int _perf_event_refresh(struct perf_event *event, int refresh)
2846 {
2847         /*
2848          * not supported on inherited events
2849          */
2850         if (event->attr.inherit || !is_sampling_event(event))
2851                 return -EINVAL;
2852
2853         atomic_add(refresh, &event->event_limit);
2854         _perf_event_enable(event);
2855
2856         return 0;
2857 }
2858
2859 /*
2860  * See perf_event_disable()
2861  */
2862 int perf_event_refresh(struct perf_event *event, int refresh)
2863 {
2864         struct perf_event_context *ctx;
2865         int ret;
2866
2867         ctx = perf_event_ctx_lock(event);
2868         ret = _perf_event_refresh(event, refresh);
2869         perf_event_ctx_unlock(event, ctx);
2870
2871         return ret;
2872 }
2873 EXPORT_SYMBOL_GPL(perf_event_refresh);
2874
2875 static int perf_event_modify_breakpoint(struct perf_event *bp,
2876                                          struct perf_event_attr *attr)
2877 {
2878         int err;
2879
2880         _perf_event_disable(bp);
2881
2882         err = modify_user_hw_breakpoint_check(bp, attr, true);
2883
2884         if (!bp->attr.disabled)
2885                 _perf_event_enable(bp);
2886
2887         return err;
2888 }
2889
2890 static int perf_event_modify_attr(struct perf_event *event,
2891                                   struct perf_event_attr *attr)
2892 {
2893         if (event->attr.type != attr->type)
2894                 return -EINVAL;
2895
2896         switch (event->attr.type) {
2897         case PERF_TYPE_BREAKPOINT:
2898                 return perf_event_modify_breakpoint(event, attr);
2899         default:
2900                 /* Place holder for future additions. */
2901                 return -EOPNOTSUPP;
2902         }
2903 }
2904
2905 static void ctx_sched_out(struct perf_event_context *ctx,
2906                           struct perf_cpu_context *cpuctx,
2907                           enum event_type_t event_type)
2908 {
2909         struct perf_event *event, *tmp;
2910         int is_active = ctx->is_active;
2911
2912         lockdep_assert_held(&ctx->lock);
2913
2914         if (likely(!ctx->nr_events)) {
2915                 /*
2916                  * See __perf_remove_from_context().
2917                  */
2918                 WARN_ON_ONCE(ctx->is_active);
2919                 if (ctx->task)
2920                         WARN_ON_ONCE(cpuctx->task_ctx);
2921                 return;
2922         }
2923
2924         ctx->is_active &= ~event_type;
2925         if (!(ctx->is_active & EVENT_ALL))
2926                 ctx->is_active = 0;
2927
2928         if (ctx->task) {
2929                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2930                 if (!ctx->is_active)
2931                         cpuctx->task_ctx = NULL;
2932         }
2933
2934         /*
2935          * Always update time if it was set; not only when it changes.
2936          * Otherwise we can 'forget' to update time for any but the last
2937          * context we sched out. For example:
2938          *
2939          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2940          *   ctx_sched_out(.event_type = EVENT_PINNED)
2941          *
2942          * would only update time for the pinned events.
2943          */
2944         if (is_active & EVENT_TIME) {
2945                 /* update (and stop) ctx time */
2946                 update_context_time(ctx);
2947                 update_cgrp_time_from_cpuctx(cpuctx);
2948         }
2949
2950         is_active ^= ctx->is_active; /* changed bits */
2951
2952         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2953                 return;
2954
2955         /*
2956          * If we had been multiplexing, no rotations are necessary, now no events
2957          * are active.
2958          */
2959         ctx->rotate_necessary = 0;
2960
2961         perf_pmu_disable(ctx->pmu);
2962         if (is_active & EVENT_PINNED) {
2963                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2964                         group_sched_out(event, cpuctx, ctx);
2965         }
2966
2967         if (is_active & EVENT_FLEXIBLE) {
2968                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2969                         group_sched_out(event, cpuctx, ctx);
2970         }
2971         perf_pmu_enable(ctx->pmu);
2972 }
2973
2974 /*
2975  * Test whether two contexts are equivalent, i.e. whether they have both been
2976  * cloned from the same version of the same context.
2977  *
2978  * Equivalence is measured using a generation number in the context that is
2979  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2980  * and list_del_event().
2981  */
2982 static int context_equiv(struct perf_event_context *ctx1,
2983                          struct perf_event_context *ctx2)
2984 {
2985         lockdep_assert_held(&ctx1->lock);
2986         lockdep_assert_held(&ctx2->lock);
2987
2988         /* Pinning disables the swap optimization */
2989         if (ctx1->pin_count || ctx2->pin_count)
2990                 return 0;
2991
2992         /* If ctx1 is the parent of ctx2 */
2993         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2994                 return 1;
2995
2996         /* If ctx2 is the parent of ctx1 */
2997         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2998                 return 1;
2999
3000         /*
3001          * If ctx1 and ctx2 have the same parent; we flatten the parent
3002          * hierarchy, see perf_event_init_context().
3003          */
3004         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3005                         ctx1->parent_gen == ctx2->parent_gen)
3006                 return 1;
3007
3008         /* Unmatched */
3009         return 0;
3010 }
3011
3012 static void __perf_event_sync_stat(struct perf_event *event,
3013                                      struct perf_event *next_event)
3014 {
3015         u64 value;
3016
3017         if (!event->attr.inherit_stat)
3018                 return;
3019
3020         /*
3021          * Update the event value, we cannot use perf_event_read()
3022          * because we're in the middle of a context switch and have IRQs
3023          * disabled, which upsets smp_call_function_single(), however
3024          * we know the event must be on the current CPU, therefore we
3025          * don't need to use it.
3026          */
3027         if (event->state == PERF_EVENT_STATE_ACTIVE)
3028                 event->pmu->read(event);
3029
3030         perf_event_update_time(event);
3031
3032         /*
3033          * In order to keep per-task stats reliable we need to flip the event
3034          * values when we flip the contexts.
3035          */
3036         value = local64_read(&next_event->count);
3037         value = local64_xchg(&event->count, value);
3038         local64_set(&next_event->count, value);
3039
3040         swap(event->total_time_enabled, next_event->total_time_enabled);
3041         swap(event->total_time_running, next_event->total_time_running);
3042
3043         /*
3044          * Since we swizzled the values, update the user visible data too.
3045          */
3046         perf_event_update_userpage(event);
3047         perf_event_update_userpage(next_event);
3048 }
3049
3050 static void perf_event_sync_stat(struct perf_event_context *ctx,
3051                                    struct perf_event_context *next_ctx)
3052 {
3053         struct perf_event *event, *next_event;
3054
3055         if (!ctx->nr_stat)
3056                 return;
3057
3058         update_context_time(ctx);
3059
3060         event = list_first_entry(&ctx->event_list,
3061                                    struct perf_event, event_entry);
3062
3063         next_event = list_first_entry(&next_ctx->event_list,
3064                                         struct perf_event, event_entry);
3065
3066         while (&event->event_entry != &ctx->event_list &&
3067                &next_event->event_entry != &next_ctx->event_list) {
3068
3069                 __perf_event_sync_stat(event, next_event);
3070
3071                 event = list_next_entry(event, event_entry);
3072                 next_event = list_next_entry(next_event, event_entry);
3073         }
3074 }
3075
3076 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3077                                          struct task_struct *next)
3078 {
3079         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3080         struct perf_event_context *next_ctx;
3081         struct perf_event_context *parent, *next_parent;
3082         struct perf_cpu_context *cpuctx;
3083         int do_switch = 1;
3084
3085         if (likely(!ctx))
3086                 return;
3087
3088         cpuctx = __get_cpu_context(ctx);
3089         if (!cpuctx->task_ctx)
3090                 return;
3091
3092         rcu_read_lock();
3093         next_ctx = next->perf_event_ctxp[ctxn];
3094         if (!next_ctx)
3095                 goto unlock;
3096
3097         parent = rcu_dereference(ctx->parent_ctx);
3098         next_parent = rcu_dereference(next_ctx->parent_ctx);
3099
3100         /* If neither context have a parent context; they cannot be clones. */
3101         if (!parent && !next_parent)
3102                 goto unlock;
3103
3104         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3105                 /*
3106                  * Looks like the two contexts are clones, so we might be
3107                  * able to optimize the context switch.  We lock both
3108                  * contexts and check that they are clones under the
3109                  * lock (including re-checking that neither has been
3110                  * uncloned in the meantime).  It doesn't matter which
3111                  * order we take the locks because no other cpu could
3112                  * be trying to lock both of these tasks.
3113                  */
3114                 raw_spin_lock(&ctx->lock);
3115                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3116                 if (context_equiv(ctx, next_ctx)) {
3117                         WRITE_ONCE(ctx->task, next);
3118                         WRITE_ONCE(next_ctx->task, task);
3119
3120                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3121
3122                         /*
3123                          * RCU_INIT_POINTER here is safe because we've not
3124                          * modified the ctx and the above modification of
3125                          * ctx->task and ctx->task_ctx_data are immaterial
3126                          * since those values are always verified under
3127                          * ctx->lock which we're now holding.
3128                          */
3129                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3130                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3131
3132                         do_switch = 0;
3133
3134                         perf_event_sync_stat(ctx, next_ctx);
3135                 }
3136                 raw_spin_unlock(&next_ctx->lock);
3137                 raw_spin_unlock(&ctx->lock);
3138         }
3139 unlock:
3140         rcu_read_unlock();
3141
3142         if (do_switch) {
3143                 raw_spin_lock(&ctx->lock);
3144                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3145                 raw_spin_unlock(&ctx->lock);
3146         }
3147 }
3148
3149 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3150
3151 void perf_sched_cb_dec(struct pmu *pmu)
3152 {
3153         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3154
3155         this_cpu_dec(perf_sched_cb_usages);
3156
3157         if (!--cpuctx->sched_cb_usage)
3158                 list_del(&cpuctx->sched_cb_entry);
3159 }
3160
3161
3162 void perf_sched_cb_inc(struct pmu *pmu)
3163 {
3164         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3165
3166         if (!cpuctx->sched_cb_usage++)
3167                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3168
3169         this_cpu_inc(perf_sched_cb_usages);
3170 }
3171
3172 /*
3173  * This function provides the context switch callback to the lower code
3174  * layer. It is invoked ONLY when the context switch callback is enabled.
3175  *
3176  * This callback is relevant even to per-cpu events; for example multi event
3177  * PEBS requires this to provide PID/TID information. This requires we flush
3178  * all queued PEBS records before we context switch to a new task.
3179  */
3180 static void perf_pmu_sched_task(struct task_struct *prev,
3181                                 struct task_struct *next,
3182                                 bool sched_in)
3183 {
3184         struct perf_cpu_context *cpuctx;
3185         struct pmu *pmu;
3186
3187         if (prev == next)
3188                 return;
3189
3190         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3191                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3192
3193                 if (WARN_ON_ONCE(!pmu->sched_task))
3194                         continue;
3195
3196                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3197                 perf_pmu_disable(pmu);
3198
3199                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3200
3201                 perf_pmu_enable(pmu);
3202                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3203         }
3204 }
3205
3206 static void perf_event_switch(struct task_struct *task,
3207                               struct task_struct *next_prev, bool sched_in);
3208
3209 #define for_each_task_context_nr(ctxn)                                  \
3210         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3211
3212 /*
3213  * Called from scheduler to remove the events of the current task,
3214  * with interrupts disabled.
3215  *
3216  * We stop each event and update the event value in event->count.
3217  *
3218  * This does not protect us against NMI, but disable()
3219  * sets the disabled bit in the control field of event _before_
3220  * accessing the event control register. If a NMI hits, then it will
3221  * not restart the event.
3222  */
3223 void __perf_event_task_sched_out(struct task_struct *task,
3224                                  struct task_struct *next)
3225 {
3226         int ctxn;
3227
3228         if (__this_cpu_read(perf_sched_cb_usages))
3229                 perf_pmu_sched_task(task, next, false);
3230
3231         if (atomic_read(&nr_switch_events))
3232                 perf_event_switch(task, next, false);
3233
3234         for_each_task_context_nr(ctxn)
3235                 perf_event_context_sched_out(task, ctxn, next);
3236
3237         /*
3238          * if cgroup events exist on this CPU, then we need
3239          * to check if we have to switch out PMU state.
3240          * cgroup event are system-wide mode only
3241          */
3242         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3243                 perf_cgroup_sched_out(task, next);
3244 }
3245
3246 /*
3247  * Called with IRQs disabled
3248  */
3249 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3250                               enum event_type_t event_type)
3251 {
3252         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3253 }
3254
3255 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3256                               int (*func)(struct perf_event *, void *), void *data)
3257 {
3258         struct perf_event **evt, *evt1, *evt2;
3259         int ret;
3260
3261         evt1 = perf_event_groups_first(groups, -1);
3262         evt2 = perf_event_groups_first(groups, cpu);
3263
3264         while (evt1 || evt2) {
3265                 if (evt1 && evt2) {
3266                         if (evt1->group_index < evt2->group_index)
3267                                 evt = &evt1;
3268                         else
3269                                 evt = &evt2;
3270                 } else if (evt1) {
3271                         evt = &evt1;
3272                 } else {
3273                         evt = &evt2;
3274                 }
3275
3276                 ret = func(*evt, data);
3277                 if (ret)
3278                         return ret;
3279
3280                 *evt = perf_event_groups_next(*evt);
3281         }
3282
3283         return 0;
3284 }
3285
3286 struct sched_in_data {
3287         struct perf_event_context *ctx;
3288         struct perf_cpu_context *cpuctx;
3289         int can_add_hw;
3290 };
3291
3292 static int pinned_sched_in(struct perf_event *event, void *data)
3293 {
3294         struct sched_in_data *sid = data;
3295
3296         if (event->state <= PERF_EVENT_STATE_OFF)
3297                 return 0;
3298
3299         if (!event_filter_match(event))
3300                 return 0;
3301
3302         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3303                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3304                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3305         }
3306
3307         /*
3308          * If this pinned group hasn't been scheduled,
3309          * put it in error state.
3310          */
3311         if (event->state == PERF_EVENT_STATE_INACTIVE)
3312                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3313
3314         return 0;
3315 }
3316
3317 static int flexible_sched_in(struct perf_event *event, void *data)
3318 {
3319         struct sched_in_data *sid = data;
3320
3321         if (event->state <= PERF_EVENT_STATE_OFF)
3322                 return 0;
3323
3324         if (!event_filter_match(event))
3325                 return 0;
3326
3327         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3328                 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3329                 if (ret) {
3330                         sid->can_add_hw = 0;
3331                         sid->ctx->rotate_necessary = 1;
3332                         return 0;
3333                 }
3334                 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3335         }
3336
3337         return 0;
3338 }
3339
3340 static void
3341 ctx_pinned_sched_in(struct perf_event_context *ctx,
3342                     struct perf_cpu_context *cpuctx)
3343 {
3344         struct sched_in_data sid = {
3345                 .ctx = ctx,
3346                 .cpuctx = cpuctx,
3347                 .can_add_hw = 1,
3348         };
3349
3350         visit_groups_merge(&ctx->pinned_groups,
3351                            smp_processor_id(),
3352                            pinned_sched_in, &sid);
3353 }
3354
3355 static void
3356 ctx_flexible_sched_in(struct perf_event_context *ctx,
3357                       struct perf_cpu_context *cpuctx)
3358 {
3359         struct sched_in_data sid = {
3360                 .ctx = ctx,
3361                 .cpuctx = cpuctx,
3362                 .can_add_hw = 1,
3363         };
3364
3365         visit_groups_merge(&ctx->flexible_groups,
3366                            smp_processor_id(),
3367                            flexible_sched_in, &sid);
3368 }
3369
3370 static void
3371 ctx_sched_in(struct perf_event_context *ctx,
3372              struct perf_cpu_context *cpuctx,
3373              enum event_type_t event_type,
3374              struct task_struct *task)
3375 {
3376         int is_active = ctx->is_active;
3377         u64 now;
3378
3379         lockdep_assert_held(&ctx->lock);
3380
3381         if (likely(!ctx->nr_events))
3382                 return;
3383
3384         ctx->is_active |= (event_type | EVENT_TIME);
3385         if (ctx->task) {
3386                 if (!is_active)
3387                         cpuctx->task_ctx = ctx;
3388                 else
3389                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3390         }
3391
3392         is_active ^= ctx->is_active; /* changed bits */
3393
3394         if (is_active & EVENT_TIME) {
3395                 /* start ctx time */
3396                 now = perf_clock();
3397                 ctx->timestamp = now;
3398                 perf_cgroup_set_timestamp(task, ctx);
3399         }
3400
3401         /*
3402          * First go through the list and put on any pinned groups
3403          * in order to give them the best chance of going on.
3404          */
3405         if (is_active & EVENT_PINNED)
3406                 ctx_pinned_sched_in(ctx, cpuctx);
3407
3408         /* Then walk through the lower prio flexible groups */
3409         if (is_active & EVENT_FLEXIBLE)
3410                 ctx_flexible_sched_in(ctx, cpuctx);
3411 }
3412
3413 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3414                              enum event_type_t event_type,
3415                              struct task_struct *task)
3416 {
3417         struct perf_event_context *ctx = &cpuctx->ctx;
3418
3419         ctx_sched_in(ctx, cpuctx, event_type, task);
3420 }
3421
3422 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3423                                         struct task_struct *task)
3424 {
3425         struct perf_cpu_context *cpuctx;
3426
3427         cpuctx = __get_cpu_context(ctx);
3428         if (cpuctx->task_ctx == ctx)
3429                 return;
3430
3431         perf_ctx_lock(cpuctx, ctx);
3432         /*
3433          * We must check ctx->nr_events while holding ctx->lock, such
3434          * that we serialize against perf_install_in_context().
3435          */
3436         if (!ctx->nr_events)
3437                 goto unlock;
3438
3439         perf_pmu_disable(ctx->pmu);
3440         /*
3441          * We want to keep the following priority order:
3442          * cpu pinned (that don't need to move), task pinned,
3443          * cpu flexible, task flexible.
3444          *
3445          * However, if task's ctx is not carrying any pinned
3446          * events, no need to flip the cpuctx's events around.
3447          */
3448         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3449                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3450         perf_event_sched_in(cpuctx, ctx, task);
3451         perf_pmu_enable(ctx->pmu);
3452
3453 unlock:
3454         perf_ctx_unlock(cpuctx, ctx);
3455 }
3456
3457 /*
3458  * Called from scheduler to add the events of the current task
3459  * with interrupts disabled.
3460  *
3461  * We restore the event value and then enable it.
3462  *
3463  * This does not protect us against NMI, but enable()
3464  * sets the enabled bit in the control field of event _before_
3465  * accessing the event control register. If a NMI hits, then it will
3466  * keep the event running.
3467  */
3468 void __perf_event_task_sched_in(struct task_struct *prev,
3469                                 struct task_struct *task)
3470 {
3471         struct perf_event_context *ctx;
3472         int ctxn;
3473
3474         /*
3475          * If cgroup events exist on this CPU, then we need to check if we have
3476          * to switch in PMU state; cgroup event are system-wide mode only.
3477          *
3478          * Since cgroup events are CPU events, we must schedule these in before
3479          * we schedule in the task events.
3480          */
3481         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3482                 perf_cgroup_sched_in(prev, task);
3483
3484         for_each_task_context_nr(ctxn) {
3485                 ctx = task->perf_event_ctxp[ctxn];
3486                 if (likely(!ctx))
3487                         continue;
3488
3489                 perf_event_context_sched_in(ctx, task);
3490         }
3491
3492         if (atomic_read(&nr_switch_events))
3493                 perf_event_switch(task, prev, true);
3494
3495         if (__this_cpu_read(perf_sched_cb_usages))
3496                 perf_pmu_sched_task(prev, task, true);
3497 }
3498
3499 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3500 {
3501         u64 frequency = event->attr.sample_freq;
3502         u64 sec = NSEC_PER_SEC;
3503         u64 divisor, dividend;
3504
3505         int count_fls, nsec_fls, frequency_fls, sec_fls;
3506
3507         count_fls = fls64(count);
3508         nsec_fls = fls64(nsec);
3509         frequency_fls = fls64(frequency);
3510         sec_fls = 30;
3511
3512         /*
3513          * We got @count in @nsec, with a target of sample_freq HZ
3514          * the target period becomes:
3515          *
3516          *             @count * 10^9
3517          * period = -------------------
3518          *          @nsec * sample_freq
3519          *
3520          */
3521
3522         /*
3523          * Reduce accuracy by one bit such that @a and @b converge
3524          * to a similar magnitude.
3525          */
3526 #define REDUCE_FLS(a, b)                \
3527 do {                                    \
3528         if (a##_fls > b##_fls) {        \
3529                 a >>= 1;                \
3530                 a##_fls--;              \
3531         } else {                        \
3532                 b >>= 1;                \
3533                 b##_fls--;              \
3534         }                               \
3535 } while (0)
3536
3537         /*
3538          * Reduce accuracy until either term fits in a u64, then proceed with
3539          * the other, so that finally we can do a u64/u64 division.
3540          */
3541         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3542                 REDUCE_FLS(nsec, frequency);
3543                 REDUCE_FLS(sec, count);
3544         }
3545
3546         if (count_fls + sec_fls > 64) {
3547                 divisor = nsec * frequency;
3548
3549                 while (count_fls + sec_fls > 64) {
3550                         REDUCE_FLS(count, sec);
3551                         divisor >>= 1;
3552                 }
3553
3554                 dividend = count * sec;
3555         } else {
3556                 dividend = count * sec;
3557
3558                 while (nsec_fls + frequency_fls > 64) {
3559                         REDUCE_FLS(nsec, frequency);
3560                         dividend >>= 1;
3561                 }
3562
3563                 divisor = nsec * frequency;
3564         }
3565
3566         if (!divisor)
3567                 return dividend;
3568
3569         return div64_u64(dividend, divisor);
3570 }
3571
3572 static DEFINE_PER_CPU(int, perf_throttled_count);
3573 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3574
3575 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3576 {
3577         struct hw_perf_event *hwc = &event->hw;
3578         s64 period, sample_period;
3579         s64 delta;
3580
3581         period = perf_calculate_period(event, nsec, count);
3582
3583         delta = (s64)(period - hwc->sample_period);
3584         delta = (delta + 7) / 8; /* low pass filter */
3585
3586         sample_period = hwc->sample_period + delta;
3587
3588         if (!sample_period)
3589                 sample_period = 1;
3590
3591         hwc->sample_period = sample_period;
3592
3593         if (local64_read(&hwc->period_left) > 8*sample_period) {
3594                 if (disable)
3595                         event->pmu->stop(event, PERF_EF_UPDATE);
3596
3597                 local64_set(&hwc->period_left, 0);
3598
3599                 if (disable)
3600                         event->pmu->start(event, PERF_EF_RELOAD);
3601         }
3602 }
3603
3604 /*
3605  * combine freq adjustment with unthrottling to avoid two passes over the
3606  * events. At the same time, make sure, having freq events does not change
3607  * the rate of unthrottling as that would introduce bias.
3608  */
3609 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3610                                            int needs_unthr)
3611 {
3612         struct perf_event *event;
3613         struct hw_perf_event *hwc;
3614         u64 now, period = TICK_NSEC;
3615         s64 delta;
3616
3617         /*
3618          * only need to iterate over all events iff:
3619          * - context have events in frequency mode (needs freq adjust)
3620          * - there are events to unthrottle on this cpu
3621          */
3622         if (!(ctx->nr_freq || needs_unthr))
3623                 return;
3624
3625         raw_spin_lock(&ctx->lock);
3626         perf_pmu_disable(ctx->pmu);
3627
3628         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3629                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3630                         continue;
3631
3632                 if (!event_filter_match(event))
3633                         continue;
3634
3635                 perf_pmu_disable(event->pmu);
3636
3637                 hwc = &event->hw;
3638
3639                 if (hwc->interrupts == MAX_INTERRUPTS) {
3640                         hwc->interrupts = 0;
3641                         perf_log_throttle(event, 1);
3642                         event->pmu->start(event, 0);
3643                 }
3644
3645                 if (!event->attr.freq || !event->attr.sample_freq)
3646                         goto next;
3647
3648                 /*
3649                  * stop the event and update event->count
3650                  */
3651                 event->pmu->stop(event, PERF_EF_UPDATE);
3652
3653                 now = local64_read(&event->count);
3654                 delta = now - hwc->freq_count_stamp;
3655                 hwc->freq_count_stamp = now;
3656
3657                 /*
3658                  * restart the event
3659                  * reload only if value has changed
3660                  * we have stopped the event so tell that
3661                  * to perf_adjust_period() to avoid stopping it
3662                  * twice.
3663                  */
3664                 if (delta > 0)
3665                         perf_adjust_period(event, period, delta, false);
3666
3667                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3668         next:
3669                 perf_pmu_enable(event->pmu);
3670         }
3671
3672         perf_pmu_enable(ctx->pmu);
3673         raw_spin_unlock(&ctx->lock);
3674 }
3675
3676 /*
3677  * Move @event to the tail of the @ctx's elegible events.
3678  */
3679 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3680 {
3681         /*
3682          * Rotate the first entry last of non-pinned groups. Rotation might be
3683          * disabled by the inheritance code.
3684          */
3685         if (ctx->rotate_disable)
3686                 return;
3687
3688         perf_event_groups_delete(&ctx->flexible_groups, event);
3689         perf_event_groups_insert(&ctx->flexible_groups, event);
3690 }
3691
3692 static inline struct perf_event *
3693 ctx_first_active(struct perf_event_context *ctx)
3694 {
3695         return list_first_entry_or_null(&ctx->flexible_active,
3696                                         struct perf_event, active_list);
3697 }
3698
3699 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3700 {
3701         struct perf_event *cpu_event = NULL, *task_event = NULL;
3702         struct perf_event_context *task_ctx = NULL;
3703         int cpu_rotate, task_rotate;
3704
3705         /*
3706          * Since we run this from IRQ context, nobody can install new
3707          * events, thus the event count values are stable.
3708          */
3709
3710         cpu_rotate = cpuctx->ctx.rotate_necessary;
3711         task_ctx = cpuctx->task_ctx;
3712         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3713
3714         if (!(cpu_rotate || task_rotate))
3715                 return false;
3716
3717         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3718         perf_pmu_disable(cpuctx->ctx.pmu);
3719
3720         if (task_rotate)
3721                 task_event = ctx_first_active(task_ctx);
3722         if (cpu_rotate)
3723                 cpu_event = ctx_first_active(&cpuctx->ctx);
3724
3725         /*
3726          * As per the order given at ctx_resched() first 'pop' task flexible
3727          * and then, if needed CPU flexible.
3728          */
3729         if (task_event || (task_ctx && cpu_event))
3730                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3731         if (cpu_event)
3732                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3733
3734         if (task_event)
3735                 rotate_ctx(task_ctx, task_event);
3736         if (cpu_event)
3737                 rotate_ctx(&cpuctx->ctx, cpu_event);
3738
3739         perf_event_sched_in(cpuctx, task_ctx, current);
3740
3741         perf_pmu_enable(cpuctx->ctx.pmu);
3742         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3743
3744         return true;
3745 }
3746
3747 void perf_event_task_tick(void)
3748 {
3749         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3750         struct perf_event_context *ctx, *tmp;
3751         int throttled;
3752
3753         lockdep_assert_irqs_disabled();
3754
3755         __this_cpu_inc(perf_throttled_seq);
3756         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3757         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3758
3759         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3760                 perf_adjust_freq_unthr_context(ctx, throttled);
3761 }
3762
3763 static int event_enable_on_exec(struct perf_event *event,
3764                                 struct perf_event_context *ctx)
3765 {
3766         if (!event->attr.enable_on_exec)
3767                 return 0;
3768
3769         event->attr.enable_on_exec = 0;
3770         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3771                 return 0;
3772
3773         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3774
3775         return 1;
3776 }
3777
3778 /*
3779  * Enable all of a task's events that have been marked enable-on-exec.
3780  * This expects task == current.
3781  */
3782 static void perf_event_enable_on_exec(int ctxn)
3783 {
3784         struct perf_event_context *ctx, *clone_ctx = NULL;
3785         enum event_type_t event_type = 0;
3786         struct perf_cpu_context *cpuctx;
3787         struct perf_event *event;
3788         unsigned long flags;
3789         int enabled = 0;
3790
3791         local_irq_save(flags);
3792         ctx = current->perf_event_ctxp[ctxn];
3793         if (!ctx || !ctx->nr_events)
3794                 goto out;
3795
3796         cpuctx = __get_cpu_context(ctx);
3797         perf_ctx_lock(cpuctx, ctx);
3798         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3799         list_for_each_entry(event, &ctx->event_list, event_entry) {
3800                 enabled |= event_enable_on_exec(event, ctx);
3801                 event_type |= get_event_type(event);
3802         }
3803
3804         /*
3805          * Unclone and reschedule this context if we enabled any event.
3806          */
3807         if (enabled) {
3808                 clone_ctx = unclone_ctx(ctx);
3809                 ctx_resched(cpuctx, ctx, event_type);
3810         } else {
3811                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3812         }
3813         perf_ctx_unlock(cpuctx, ctx);
3814
3815 out:
3816         local_irq_restore(flags);
3817
3818         if (clone_ctx)
3819                 put_ctx(clone_ctx);
3820 }
3821
3822 struct perf_read_data {
3823         struct perf_event *event;
3824         bool group;
3825         int ret;
3826 };
3827
3828 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3829 {
3830         u16 local_pkg, event_pkg;
3831
3832         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3833                 int local_cpu = smp_processor_id();
3834
3835                 event_pkg = topology_physical_package_id(event_cpu);
3836                 local_pkg = topology_physical_package_id(local_cpu);
3837
3838                 if (event_pkg == local_pkg)
3839                         return local_cpu;
3840         }
3841
3842         return event_cpu;
3843 }
3844
3845 /*
3846  * Cross CPU call to read the hardware event
3847  */
3848 static void __perf_event_read(void *info)
3849 {
3850         struct perf_read_data *data = info;
3851         struct perf_event *sub, *event = data->event;
3852         struct perf_event_context *ctx = event->ctx;
3853         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3854         struct pmu *pmu = event->pmu;
3855
3856         /*
3857          * If this is a task context, we need to check whether it is
3858          * the current task context of this cpu.  If not it has been
3859          * scheduled out before the smp call arrived.  In that case
3860          * event->count would have been updated to a recent sample
3861          * when the event was scheduled out.
3862          */
3863         if (ctx->task && cpuctx->task_ctx != ctx)
3864                 return;
3865
3866         raw_spin_lock(&ctx->lock);
3867         if (ctx->is_active & EVENT_TIME) {
3868                 update_context_time(ctx);
3869                 update_cgrp_time_from_event(event);
3870         }
3871
3872         perf_event_update_time(event);
3873         if (data->group)
3874                 perf_event_update_sibling_time(event);
3875
3876         if (event->state != PERF_EVENT_STATE_ACTIVE)
3877                 goto unlock;
3878
3879         if (!data->group) {
3880                 pmu->read(event);
3881                 data->ret = 0;
3882                 goto unlock;
3883         }
3884
3885         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3886
3887         pmu->read(event);
3888
3889         for_each_sibling_event(sub, event) {
3890                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3891                         /*
3892                          * Use sibling's PMU rather than @event's since
3893                          * sibling could be on different (eg: software) PMU.
3894                          */
3895                         sub->pmu->read(sub);
3896                 }
3897         }
3898
3899         data->ret = pmu->commit_txn(pmu);
3900
3901 unlock:
3902         raw_spin_unlock(&ctx->lock);
3903 }
3904
3905 static inline u64 perf_event_count(struct perf_event *event)
3906 {
3907         return local64_read(&event->count) + atomic64_read(&event->child_count);
3908 }
3909
3910 /*
3911  * NMI-safe method to read a local event, that is an event that
3912  * is:
3913  *   - either for the current task, or for this CPU
3914  *   - does not have inherit set, for inherited task events
3915  *     will not be local and we cannot read them atomically
3916  *   - must not have a pmu::count method
3917  */
3918 int perf_event_read_local(struct perf_event *event, u64 *value,
3919                           u64 *enabled, u64 *running)
3920 {
3921         unsigned long flags;
3922         int ret = 0;
3923
3924         /*
3925          * Disabling interrupts avoids all counter scheduling (context
3926          * switches, timer based rotation and IPIs).
3927          */
3928         local_irq_save(flags);
3929
3930         /*
3931          * It must not be an event with inherit set, we cannot read
3932          * all child counters from atomic context.
3933          */
3934         if (event->attr.inherit) {
3935                 ret = -EOPNOTSUPP;
3936                 goto out;
3937         }
3938
3939         /* If this is a per-task event, it must be for current */
3940         if ((event->attach_state & PERF_ATTACH_TASK) &&
3941             event->hw.target != current) {
3942                 ret = -EINVAL;
3943                 goto out;
3944         }
3945
3946         /* If this is a per-CPU event, it must be for this CPU */
3947         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3948             event->cpu != smp_processor_id()) {
3949                 ret = -EINVAL;
3950                 goto out;
3951         }
3952
3953         /* If this is a pinned event it must be running on this CPU */
3954         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3955                 ret = -EBUSY;
3956                 goto out;
3957         }
3958
3959         /*
3960          * If the event is currently on this CPU, its either a per-task event,
3961          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3962          * oncpu == -1).
3963          */
3964         if (event->oncpu == smp_processor_id())
3965                 event->pmu->read(event);
3966
3967         *value = local64_read(&event->count);
3968         if (enabled || running) {
3969                 u64 now = event->shadow_ctx_time + perf_clock();
3970                 u64 __enabled, __running;
3971
3972                 __perf_update_times(event, now, &__enabled, &__running);
3973                 if (enabled)
3974                         *enabled = __enabled;
3975                 if (running)
3976                         *running = __running;
3977         }
3978 out:
3979         local_irq_restore(flags);
3980
3981         return ret;
3982 }
3983
3984 static int perf_event_read(struct perf_event *event, bool group)
3985 {
3986         enum perf_event_state state = READ_ONCE(event->state);
3987         int event_cpu, ret = 0;
3988
3989         /*
3990          * If event is enabled and currently active on a CPU, update the
3991          * value in the event structure:
3992          */
3993 again:
3994         if (state == PERF_EVENT_STATE_ACTIVE) {
3995                 struct perf_read_data data;
3996
3997                 /*
3998                  * Orders the ->state and ->oncpu loads such that if we see
3999                  * ACTIVE we must also see the right ->oncpu.
4000                  *
4001                  * Matches the smp_wmb() from event_sched_in().
4002                  */
4003                 smp_rmb();
4004
4005                 event_cpu = READ_ONCE(event->oncpu);
4006                 if ((unsigned)event_cpu >= nr_cpu_ids)
4007                         return 0;
4008
4009                 data = (struct perf_read_data){
4010                         .event = event,
4011                         .group = group,
4012                         .ret = 0,
4013                 };
4014
4015                 preempt_disable();
4016                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4017
4018                 /*
4019                  * Purposely ignore the smp_call_function_single() return
4020                  * value.
4021                  *
4022                  * If event_cpu isn't a valid CPU it means the event got
4023                  * scheduled out and that will have updated the event count.
4024                  *
4025                  * Therefore, either way, we'll have an up-to-date event count
4026                  * after this.
4027                  */
4028                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4029                 preempt_enable();
4030                 ret = data.ret;
4031
4032         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4033                 struct perf_event_context *ctx = event->ctx;
4034                 unsigned long flags;
4035
4036                 raw_spin_lock_irqsave(&ctx->lock, flags);
4037                 state = event->state;
4038                 if (state != PERF_EVENT_STATE_INACTIVE) {
4039                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4040                         goto again;
4041                 }
4042
4043                 /*
4044                  * May read while context is not active (e.g., thread is
4045                  * blocked), in that case we cannot update context time
4046                  */
4047                 if (ctx->is_active & EVENT_TIME) {
4048                         update_context_time(ctx);
4049                         update_cgrp_time_from_event(event);
4050                 }
4051
4052                 perf_event_update_time(event);
4053                 if (group)
4054                         perf_event_update_sibling_time(event);
4055                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4056         }
4057
4058         return ret;
4059 }
4060
4061 /*
4062  * Initialize the perf_event context in a task_struct:
4063  */
4064 static void __perf_event_init_context(struct perf_event_context *ctx)
4065 {
4066         raw_spin_lock_init(&ctx->lock);
4067         mutex_init(&ctx->mutex);
4068         INIT_LIST_HEAD(&ctx->active_ctx_list);
4069         perf_event_groups_init(&ctx->pinned_groups);
4070         perf_event_groups_init(&ctx->flexible_groups);
4071         INIT_LIST_HEAD(&ctx->event_list);
4072         INIT_LIST_HEAD(&ctx->pinned_active);
4073         INIT_LIST_HEAD(&ctx->flexible_active);
4074         refcount_set(&ctx->refcount, 1);
4075 }
4076
4077 static struct perf_event_context *
4078 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4079 {
4080         struct perf_event_context *ctx;
4081
4082         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4083         if (!ctx)
4084                 return NULL;
4085
4086         __perf_event_init_context(ctx);
4087         if (task) {
4088                 ctx->task = task;
4089                 get_task_struct(task);
4090         }
4091         ctx->pmu = pmu;
4092
4093         return ctx;
4094 }
4095
4096 static struct task_struct *
4097 find_lively_task_by_vpid(pid_t vpid)
4098 {
4099         struct task_struct *task;
4100
4101         rcu_read_lock();
4102         if (!vpid)
4103                 task = current;
4104         else
4105                 task = find_task_by_vpid(vpid);
4106         if (task)
4107                 get_task_struct(task);
4108         rcu_read_unlock();
4109
4110         if (!task)
4111                 return ERR_PTR(-ESRCH);
4112
4113         return task;
4114 }
4115
4116 /*
4117  * Returns a matching context with refcount and pincount.
4118  */
4119 static struct perf_event_context *
4120 find_get_context(struct pmu *pmu, struct task_struct *task,
4121                 struct perf_event *event)
4122 {
4123         struct perf_event_context *ctx, *clone_ctx = NULL;
4124         struct perf_cpu_context *cpuctx;
4125         void *task_ctx_data = NULL;
4126         unsigned long flags;
4127         int ctxn, err;
4128         int cpu = event->cpu;
4129
4130         if (!task) {
4131                 /* Must be root to operate on a CPU event: */
4132                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4133                         return ERR_PTR(-EACCES);
4134
4135                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4136                 ctx = &cpuctx->ctx;
4137                 get_ctx(ctx);
4138                 ++ctx->pin_count;
4139
4140                 return ctx;
4141         }
4142
4143         err = -EINVAL;
4144         ctxn = pmu->task_ctx_nr;
4145         if (ctxn < 0)
4146                 goto errout;
4147
4148         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4149                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4150                 if (!task_ctx_data) {
4151                         err = -ENOMEM;
4152                         goto errout;
4153                 }
4154         }
4155
4156 retry:
4157         ctx = perf_lock_task_context(task, ctxn, &flags);
4158         if (ctx) {
4159                 clone_ctx = unclone_ctx(ctx);
4160                 ++ctx->pin_count;
4161
4162                 if (task_ctx_data && !ctx->task_ctx_data) {
4163                         ctx->task_ctx_data = task_ctx_data;
4164                         task_ctx_data = NULL;
4165                 }
4166                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4167
4168                 if (clone_ctx)
4169                         put_ctx(clone_ctx);
4170         } else {
4171                 ctx = alloc_perf_context(pmu, task);
4172                 err = -ENOMEM;
4173                 if (!ctx)
4174                         goto errout;
4175
4176                 if (task_ctx_data) {
4177                         ctx->task_ctx_data = task_ctx_data;
4178                         task_ctx_data = NULL;
4179                 }
4180
4181                 err = 0;
4182                 mutex_lock(&task->perf_event_mutex);
4183                 /*
4184                  * If it has already passed perf_event_exit_task().
4185                  * we must see PF_EXITING, it takes this mutex too.
4186                  */
4187                 if (task->flags & PF_EXITING)
4188                         err = -ESRCH;
4189                 else if (task->perf_event_ctxp[ctxn])
4190                         err = -EAGAIN;
4191                 else {
4192                         get_ctx(ctx);
4193                         ++ctx->pin_count;
4194                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4195                 }
4196                 mutex_unlock(&task->perf_event_mutex);
4197
4198                 if (unlikely(err)) {
4199                         put_ctx(ctx);
4200
4201                         if (err == -EAGAIN)
4202                                 goto retry;
4203                         goto errout;
4204                 }
4205         }
4206
4207         kfree(task_ctx_data);
4208         return ctx;
4209
4210 errout:
4211         kfree(task_ctx_data);
4212         return ERR_PTR(err);
4213 }
4214
4215 static void perf_event_free_filter(struct perf_event *event);
4216 static void perf_event_free_bpf_prog(struct perf_event *event);
4217
4218 static void free_event_rcu(struct rcu_head *head)
4219 {
4220         struct perf_event *event;
4221
4222         event = container_of(head, struct perf_event, rcu_head);
4223         if (event->ns)
4224                 put_pid_ns(event->ns);
4225         perf_event_free_filter(event);
4226         kfree(event);
4227 }
4228
4229 static void ring_buffer_attach(struct perf_event *event,
4230                                struct ring_buffer *rb);
4231
4232 static void detach_sb_event(struct perf_event *event)
4233 {
4234         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4235
4236         raw_spin_lock(&pel->lock);
4237         list_del_rcu(&event->sb_list);
4238         raw_spin_unlock(&pel->lock);
4239 }
4240
4241 static bool is_sb_event(struct perf_event *event)
4242 {
4243         struct perf_event_attr *attr = &event->attr;
4244
4245         if (event->parent)
4246                 return false;
4247
4248         if (event->attach_state & PERF_ATTACH_TASK)
4249                 return false;
4250
4251         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4252             attr->comm || attr->comm_exec ||
4253             attr->task || attr->ksymbol ||
4254             attr->context_switch ||
4255             attr->bpf_event)
4256                 return true;
4257         return false;
4258 }
4259
4260 static void unaccount_pmu_sb_event(struct perf_event *event)
4261 {
4262         if (is_sb_event(event))
4263                 detach_sb_event(event);
4264 }
4265
4266 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4267 {
4268         if (event->parent)
4269                 return;
4270
4271         if (is_cgroup_event(event))
4272                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4273 }
4274
4275 #ifdef CONFIG_NO_HZ_FULL
4276 static DEFINE_SPINLOCK(nr_freq_lock);
4277 #endif
4278
4279 static void unaccount_freq_event_nohz(void)
4280 {
4281 #ifdef CONFIG_NO_HZ_FULL
4282         spin_lock(&nr_freq_lock);
4283         if (atomic_dec_and_test(&nr_freq_events))
4284                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4285         spin_unlock(&nr_freq_lock);
4286 #endif
4287 }
4288
4289 static void unaccount_freq_event(void)
4290 {
4291         if (tick_nohz_full_enabled())
4292                 unaccount_freq_event_nohz();
4293         else
4294                 atomic_dec(&nr_freq_events);
4295 }
4296
4297 static void unaccount_event(struct perf_event *event)
4298 {
4299         bool dec = false;
4300
4301         if (event->parent)
4302                 return;
4303
4304         if (event->attach_state & PERF_ATTACH_TASK)
4305                 dec = true;
4306         if (event->attr.mmap || event->attr.mmap_data)
4307                 atomic_dec(&nr_mmap_events);
4308         if (event->attr.comm)
4309                 atomic_dec(&nr_comm_events);
4310         if (event->attr.namespaces)
4311                 atomic_dec(&nr_namespaces_events);
4312         if (event->attr.task)
4313                 atomic_dec(&nr_task_events);
4314         if (event->attr.freq)
4315                 unaccount_freq_event();
4316         if (event->attr.context_switch) {
4317                 dec = true;
4318                 atomic_dec(&nr_switch_events);
4319         }
4320         if (is_cgroup_event(event))
4321                 dec = true;
4322         if (has_branch_stack(event))
4323                 dec = true;
4324         if (event->attr.ksymbol)
4325                 atomic_dec(&nr_ksymbol_events);
4326         if (event->attr.bpf_event)
4327                 atomic_dec(&nr_bpf_events);
4328
4329         if (dec) {
4330                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4331                         schedule_delayed_work(&perf_sched_work, HZ);
4332         }
4333
4334         unaccount_event_cpu(event, event->cpu);
4335
4336         unaccount_pmu_sb_event(event);
4337 }
4338
4339 static void perf_sched_delayed(struct work_struct *work)
4340 {
4341         mutex_lock(&perf_sched_mutex);
4342         if (atomic_dec_and_test(&perf_sched_count))
4343                 static_branch_disable(&perf_sched_events);
4344         mutex_unlock(&perf_sched_mutex);
4345 }
4346
4347 /*
4348  * The following implement mutual exclusion of events on "exclusive" pmus
4349  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4350  * at a time, so we disallow creating events that might conflict, namely:
4351  *
4352  *  1) cpu-wide events in the presence of per-task events,
4353  *  2) per-task events in the presence of cpu-wide events,
4354  *  3) two matching events on the same context.
4355  *
4356  * The former two cases are handled in the allocation path (perf_event_alloc(),
4357  * _free_event()), the latter -- before the first perf_install_in_context().
4358  */
4359 static int exclusive_event_init(struct perf_event *event)
4360 {
4361         struct pmu *pmu = event->pmu;
4362
4363         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4364                 return 0;
4365
4366         /*
4367          * Prevent co-existence of per-task and cpu-wide events on the
4368          * same exclusive pmu.
4369          *
4370          * Negative pmu::exclusive_cnt means there are cpu-wide
4371          * events on this "exclusive" pmu, positive means there are
4372          * per-task events.
4373          *
4374          * Since this is called in perf_event_alloc() path, event::ctx
4375          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4376          * to mean "per-task event", because unlike other attach states it
4377          * never gets cleared.
4378          */
4379         if (event->attach_state & PERF_ATTACH_TASK) {
4380                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4381                         return -EBUSY;
4382         } else {
4383                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4384                         return -EBUSY;
4385         }
4386
4387         return 0;
4388 }
4389
4390 static void exclusive_event_destroy(struct perf_event *event)
4391 {
4392         struct pmu *pmu = event->pmu;
4393
4394         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4395                 return;
4396
4397         /* see comment in exclusive_event_init() */
4398         if (event->attach_state & PERF_ATTACH_TASK)
4399                 atomic_dec(&pmu->exclusive_cnt);
4400         else
4401                 atomic_inc(&pmu->exclusive_cnt);
4402 }
4403
4404 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4405 {
4406         if ((e1->pmu == e2->pmu) &&
4407             (e1->cpu == e2->cpu ||
4408              e1->cpu == -1 ||
4409              e2->cpu == -1))
4410                 return true;
4411         return false;
4412 }
4413
4414 /* Called under the same ctx::mutex as perf_install_in_context() */
4415 static bool exclusive_event_installable(struct perf_event *event,
4416                                         struct perf_event_context *ctx)
4417 {
4418         struct perf_event *iter_event;
4419         struct pmu *pmu = event->pmu;
4420
4421         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4422                 return true;
4423
4424         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4425                 if (exclusive_event_match(iter_event, event))
4426                         return false;
4427         }
4428
4429         return true;
4430 }
4431
4432 static void perf_addr_filters_splice(struct perf_event *event,
4433                                        struct list_head *head);
4434
4435 static void _free_event(struct perf_event *event)
4436 {
4437         irq_work_sync(&event->pending);
4438
4439         unaccount_event(event);
4440
4441         if (event->rb) {
4442                 /*
4443                  * Can happen when we close an event with re-directed output.
4444                  *
4445                  * Since we have a 0 refcount, perf_mmap_close() will skip
4446                  * over us; possibly making our ring_buffer_put() the last.
4447                  */
4448                 mutex_lock(&event->mmap_mutex);
4449                 ring_buffer_attach(event, NULL);
4450                 mutex_unlock(&event->mmap_mutex);
4451         }
4452
4453         if (is_cgroup_event(event))
4454                 perf_detach_cgroup(event);
4455
4456         if (!event->parent) {
4457                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4458                         put_callchain_buffers();
4459         }
4460
4461         perf_event_free_bpf_prog(event);
4462         perf_addr_filters_splice(event, NULL);
4463         kfree(event->addr_filter_ranges);
4464
4465         if (event->destroy)
4466                 event->destroy(event);
4467
4468         if (event->ctx)
4469                 put_ctx(event->ctx);
4470
4471         if (event->hw.target)
4472                 put_task_struct(event->hw.target);
4473
4474         exclusive_event_destroy(event);
4475         module_put(event->pmu->module);
4476
4477         call_rcu(&event->rcu_head, free_event_rcu);
4478 }
4479
4480 /*
4481  * Used to free events which have a known refcount of 1, such as in error paths
4482  * where the event isn't exposed yet and inherited events.
4483  */
4484 static void free_event(struct perf_event *event)
4485 {
4486         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4487                                 "unexpected event refcount: %ld; ptr=%p\n",
4488                                 atomic_long_read(&event->refcount), event)) {
4489                 /* leak to avoid use-after-free */
4490                 return;
4491         }
4492
4493         _free_event(event);
4494 }
4495
4496 /*
4497  * Remove user event from the owner task.
4498  */
4499 static void perf_remove_from_owner(struct perf_event *event)
4500 {
4501         struct task_struct *owner;
4502
4503         rcu_read_lock();
4504         /*
4505          * Matches the smp_store_release() in perf_event_exit_task(). If we
4506          * observe !owner it means the list deletion is complete and we can
4507          * indeed free this event, otherwise we need to serialize on
4508          * owner->perf_event_mutex.
4509          */
4510         owner = READ_ONCE(event->owner);
4511         if (owner) {
4512                 /*
4513                  * Since delayed_put_task_struct() also drops the last
4514                  * task reference we can safely take a new reference
4515                  * while holding the rcu_read_lock().
4516                  */
4517                 get_task_struct(owner);
4518         }
4519         rcu_read_unlock();
4520
4521         if (owner) {
4522                 /*
4523                  * If we're here through perf_event_exit_task() we're already
4524                  * holding ctx->mutex which would be an inversion wrt. the
4525                  * normal lock order.
4526                  *
4527                  * However we can safely take this lock because its the child
4528                  * ctx->mutex.
4529                  */
4530                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4531
4532                 /*
4533                  * We have to re-check the event->owner field, if it is cleared
4534                  * we raced with perf_event_exit_task(), acquiring the mutex
4535                  * ensured they're done, and we can proceed with freeing the
4536                  * event.
4537                  */
4538                 if (event->owner) {
4539                         list_del_init(&event->owner_entry);
4540                         smp_store_release(&event->owner, NULL);
4541                 }
4542                 mutex_unlock(&owner->perf_event_mutex);
4543                 put_task_struct(owner);
4544         }
4545 }
4546
4547 static void put_event(struct perf_event *event)
4548 {
4549         if (!atomic_long_dec_and_test(&event->refcount))
4550                 return;
4551
4552         _free_event(event);
4553 }
4554
4555 /*
4556  * Kill an event dead; while event:refcount will preserve the event
4557  * object, it will not preserve its functionality. Once the last 'user'
4558  * gives up the object, we'll destroy the thing.
4559  */
4560 int perf_event_release_kernel(struct perf_event *event)
4561 {
4562         struct perf_event_context *ctx = event->ctx;
4563         struct perf_event *child, *tmp;
4564         LIST_HEAD(free_list);
4565
4566         /*
4567          * If we got here through err_file: fput(event_file); we will not have
4568          * attached to a context yet.
4569          */
4570         if (!ctx) {
4571                 WARN_ON_ONCE(event->attach_state &
4572                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4573                 goto no_ctx;
4574         }
4575
4576         if (!is_kernel_event(event))
4577                 perf_remove_from_owner(event);
4578
4579         ctx = perf_event_ctx_lock(event);
4580         WARN_ON_ONCE(ctx->parent_ctx);
4581         perf_remove_from_context(event, DETACH_GROUP);
4582
4583         raw_spin_lock_irq(&ctx->lock);
4584         /*
4585          * Mark this event as STATE_DEAD, there is no external reference to it
4586          * anymore.
4587          *
4588          * Anybody acquiring event->child_mutex after the below loop _must_
4589          * also see this, most importantly inherit_event() which will avoid
4590          * placing more children on the list.
4591          *
4592          * Thus this guarantees that we will in fact observe and kill _ALL_
4593          * child events.
4594          */
4595         event->state = PERF_EVENT_STATE_DEAD;
4596         raw_spin_unlock_irq(&ctx->lock);
4597
4598         perf_event_ctx_unlock(event, ctx);
4599
4600 again:
4601         mutex_lock(&event->child_mutex);
4602         list_for_each_entry(child, &event->child_list, child_list) {
4603
4604                 /*
4605                  * Cannot change, child events are not migrated, see the
4606                  * comment with perf_event_ctx_lock_nested().
4607                  */
4608                 ctx = READ_ONCE(child->ctx);
4609                 /*
4610                  * Since child_mutex nests inside ctx::mutex, we must jump
4611                  * through hoops. We start by grabbing a reference on the ctx.
4612                  *
4613                  * Since the event cannot get freed while we hold the
4614                  * child_mutex, the context must also exist and have a !0
4615                  * reference count.
4616                  */
4617                 get_ctx(ctx);
4618
4619                 /*
4620                  * Now that we have a ctx ref, we can drop child_mutex, and
4621                  * acquire ctx::mutex without fear of it going away. Then we
4622                  * can re-acquire child_mutex.
4623                  */
4624                 mutex_unlock(&event->child_mutex);
4625                 mutex_lock(&ctx->mutex);
4626                 mutex_lock(&event->child_mutex);
4627
4628                 /*
4629                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4630                  * state, if child is still the first entry, it didn't get freed
4631                  * and we can continue doing so.
4632                  */
4633                 tmp = list_first_entry_or_null(&event->child_list,
4634                                                struct perf_event, child_list);
4635                 if (tmp == child) {
4636                         perf_remove_from_context(child, DETACH_GROUP);
4637                         list_move(&child->child_list, &free_list);
4638                         /*
4639                          * This matches the refcount bump in inherit_event();
4640                          * this can't be the last reference.
4641                          */
4642                         put_event(event);
4643                 }
4644
4645                 mutex_unlock(&event->child_mutex);
4646                 mutex_unlock(&ctx->mutex);
4647                 put_ctx(ctx);
4648                 goto again;
4649         }
4650         mutex_unlock(&event->child_mutex);
4651
4652         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4653                 list_del(&child->child_list);
4654                 free_event(child);
4655         }
4656
4657 no_ctx:
4658         put_event(event); /* Must be the 'last' reference */
4659         return 0;
4660 }
4661 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4662
4663 /*
4664  * Called when the last reference to the file is gone.
4665  */
4666 static int perf_release(struct inode *inode, struct file *file)
4667 {
4668         perf_event_release_kernel(file->private_data);
4669         return 0;
4670 }
4671
4672 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4673 {
4674         struct perf_event *child;
4675         u64 total = 0;
4676
4677         *enabled = 0;
4678         *running = 0;
4679
4680         mutex_lock(&event->child_mutex);
4681
4682         (void)perf_event_read(event, false);
4683         total += perf_event_count(event);
4684
4685         *enabled += event->total_time_enabled +
4686                         atomic64_read(&event->child_total_time_enabled);
4687         *running += event->total_time_running +
4688                         atomic64_read(&event->child_total_time_running);
4689
4690         list_for_each_entry(child, &event->child_list, child_list) {
4691                 (void)perf_event_read(child, false);
4692                 total += perf_event_count(child);
4693                 *enabled += child->total_time_enabled;
4694                 *running += child->total_time_running;
4695         }
4696         mutex_unlock(&event->child_mutex);
4697
4698         return total;
4699 }
4700
4701 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4702 {
4703         struct perf_event_context *ctx;
4704         u64 count;
4705
4706         ctx = perf_event_ctx_lock(event);
4707         count = __perf_event_read_value(event, enabled, running);
4708         perf_event_ctx_unlock(event, ctx);
4709
4710         return count;
4711 }
4712 EXPORT_SYMBOL_GPL(perf_event_read_value);
4713
4714 static int __perf_read_group_add(struct perf_event *leader,
4715                                         u64 read_format, u64 *values)
4716 {
4717         struct perf_event_context *ctx = leader->ctx;
4718         struct perf_event *sub;
4719         unsigned long flags;
4720         int n = 1; /* skip @nr */
4721         int ret;
4722
4723         ret = perf_event_read(leader, true);
4724         if (ret)
4725                 return ret;
4726
4727         raw_spin_lock_irqsave(&ctx->lock, flags);
4728
4729         /*
4730          * Since we co-schedule groups, {enabled,running} times of siblings
4731          * will be identical to those of the leader, so we only publish one
4732          * set.
4733          */
4734         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4735                 values[n++] += leader->total_time_enabled +
4736                         atomic64_read(&leader->child_total_time_enabled);
4737         }
4738
4739         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4740                 values[n++] += leader->total_time_running +
4741                         atomic64_read(&leader->child_total_time_running);
4742         }
4743
4744         /*
4745          * Write {count,id} tuples for every sibling.
4746          */
4747         values[n++] += perf_event_count(leader);
4748         if (read_format & PERF_FORMAT_ID)
4749                 values[n++] = primary_event_id(leader);
4750
4751         for_each_sibling_event(sub, leader) {
4752                 values[n++] += perf_event_count(sub);
4753                 if (read_format & PERF_FORMAT_ID)
4754                         values[n++] = primary_event_id(sub);
4755         }
4756
4757         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4758         return 0;
4759 }
4760
4761 static int perf_read_group(struct perf_event *event,
4762                                    u64 read_format, char __user *buf)
4763 {
4764         struct perf_event *leader = event->group_leader, *child;
4765         struct perf_event_context *ctx = leader->ctx;
4766         int ret;
4767         u64 *values;
4768
4769         lockdep_assert_held(&ctx->mutex);
4770
4771         values = kzalloc(event->read_size, GFP_KERNEL);
4772         if (!values)
4773                 return -ENOMEM;
4774
4775         values[0] = 1 + leader->nr_siblings;
4776
4777         /*
4778          * By locking the child_mutex of the leader we effectively
4779          * lock the child list of all siblings.. XXX explain how.
4780          */
4781         mutex_lock(&leader->child_mutex);
4782
4783         ret = __perf_read_group_add(leader, read_format, values);
4784         if (ret)
4785                 goto unlock;
4786
4787         list_for_each_entry(child, &leader->child_list, child_list) {
4788                 ret = __perf_read_group_add(child, read_format, values);
4789                 if (ret)
4790                         goto unlock;
4791         }
4792
4793         mutex_unlock(&leader->child_mutex);
4794
4795         ret = event->read_size;
4796         if (copy_to_user(buf, values, event->read_size))
4797                 ret = -EFAULT;
4798         goto out;
4799
4800 unlock:
4801         mutex_unlock(&leader->child_mutex);
4802 out:
4803         kfree(values);
4804         return ret;
4805 }
4806
4807 static int perf_read_one(struct perf_event *event,
4808                                  u64 read_format, char __user *buf)
4809 {
4810         u64 enabled, running;
4811         u64 values[4];
4812         int n = 0;
4813
4814         values[n++] = __perf_event_read_value(event, &enabled, &running);
4815         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4816                 values[n++] = enabled;
4817         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4818                 values[n++] = running;
4819         if (read_format & PERF_FORMAT_ID)
4820                 values[n++] = primary_event_id(event);
4821
4822         if (copy_to_user(buf, values, n * sizeof(u64)))
4823                 return -EFAULT;
4824
4825         return n * sizeof(u64);
4826 }
4827
4828 static bool is_event_hup(struct perf_event *event)
4829 {
4830         bool no_children;
4831
4832         if (event->state > PERF_EVENT_STATE_EXIT)
4833                 return false;
4834
4835         mutex_lock(&event->child_mutex);
4836         no_children = list_empty(&event->child_list);
4837         mutex_unlock(&event->child_mutex);
4838         return no_children;
4839 }
4840
4841 /*
4842  * Read the performance event - simple non blocking version for now
4843  */
4844 static ssize_t
4845 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4846 {
4847         u64 read_format = event->attr.read_format;
4848         int ret;
4849
4850         /*
4851          * Return end-of-file for a read on an event that is in
4852          * error state (i.e. because it was pinned but it couldn't be
4853          * scheduled on to the CPU at some point).
4854          */
4855         if (event->state == PERF_EVENT_STATE_ERROR)
4856                 return 0;
4857
4858         if (count < event->read_size)
4859                 return -ENOSPC;
4860
4861         WARN_ON_ONCE(event->ctx->parent_ctx);
4862         if (read_format & PERF_FORMAT_GROUP)
4863                 ret = perf_read_group(event, read_format, buf);
4864         else
4865                 ret = perf_read_one(event, read_format, buf);
4866
4867         return ret;
4868 }
4869
4870 static ssize_t
4871 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4872 {
4873         struct perf_event *event = file->private_data;
4874         struct perf_event_context *ctx;
4875         int ret;
4876
4877         ctx = perf_event_ctx_lock(event);
4878         ret = __perf_read(event, buf, count);
4879         perf_event_ctx_unlock(event, ctx);
4880
4881         return ret;
4882 }
4883
4884 static __poll_t perf_poll(struct file *file, poll_table *wait)
4885 {
4886         struct perf_event *event = file->private_data;
4887         struct ring_buffer *rb;
4888         __poll_t events = EPOLLHUP;
4889
4890         poll_wait(file, &event->waitq, wait);
4891
4892         if (is_event_hup(event))
4893                 return events;
4894
4895         /*
4896          * Pin the event->rb by taking event->mmap_mutex; otherwise
4897          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4898          */
4899         mutex_lock(&event->mmap_mutex);
4900         rb = event->rb;
4901         if (rb)
4902                 events = atomic_xchg(&rb->poll, 0);
4903         mutex_unlock(&event->mmap_mutex);
4904         return events;
4905 }
4906
4907 static void _perf_event_reset(struct perf_event *event)
4908 {
4909         (void)perf_event_read(event, false);
4910         local64_set(&event->count, 0);
4911         perf_event_update_userpage(event);
4912 }
4913
4914 /*
4915  * Holding the top-level event's child_mutex means that any
4916  * descendant process that has inherited this event will block
4917  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4918  * task existence requirements of perf_event_enable/disable.
4919  */
4920 static void perf_event_for_each_child(struct perf_event *event,
4921                                         void (*func)(struct perf_event *))
4922 {
4923         struct perf_event *child;
4924
4925         WARN_ON_ONCE(event->ctx->parent_ctx);
4926
4927         mutex_lock(&event->child_mutex);
4928         func(event);
4929         list_for_each_entry(child, &event->child_list, child_list)
4930                 func(child);
4931         mutex_unlock(&event->child_mutex);
4932 }
4933
4934 static void perf_event_for_each(struct perf_event *event,
4935                                   void (*func)(struct perf_event *))
4936 {
4937         struct perf_event_context *ctx = event->ctx;
4938         struct perf_event *sibling;
4939
4940         lockdep_assert_held(&ctx->mutex);
4941
4942         event = event->group_leader;
4943
4944         perf_event_for_each_child(event, func);
4945         for_each_sibling_event(sibling, event)
4946                 perf_event_for_each_child(sibling, func);
4947 }
4948
4949 static void __perf_event_period(struct perf_event *event,
4950                                 struct perf_cpu_context *cpuctx,
4951                                 struct perf_event_context *ctx,
4952                                 void *info)
4953 {
4954         u64 value = *((u64 *)info);
4955         bool active;
4956
4957         if (event->attr.freq) {
4958                 event->attr.sample_freq = value;
4959         } else {
4960                 event->attr.sample_period = value;
4961                 event->hw.sample_period = value;
4962         }
4963
4964         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4965         if (active) {
4966                 perf_pmu_disable(ctx->pmu);
4967                 /*
4968                  * We could be throttled; unthrottle now to avoid the tick
4969                  * trying to unthrottle while we already re-started the event.
4970                  */
4971                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4972                         event->hw.interrupts = 0;
4973                         perf_log_throttle(event, 1);
4974                 }
4975                 event->pmu->stop(event, PERF_EF_UPDATE);
4976         }
4977
4978         local64_set(&event->hw.period_left, 0);
4979
4980         if (active) {
4981                 event->pmu->start(event, PERF_EF_RELOAD);
4982                 perf_pmu_enable(ctx->pmu);
4983         }
4984 }
4985
4986 static int perf_event_check_period(struct perf_event *event, u64 value)
4987 {
4988         return event->pmu->check_period(event, value);
4989 }
4990
4991 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4992 {
4993         u64 value;
4994
4995         if (!is_sampling_event(event))
4996                 return -EINVAL;
4997
4998         if (copy_from_user(&value, arg, sizeof(value)))
4999                 return -EFAULT;
5000
5001         if (!value)
5002                 return -EINVAL;
5003
5004         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5005                 return -EINVAL;
5006
5007         if (perf_event_check_period(event, value))
5008                 return -EINVAL;
5009
5010         if (!event->attr.freq && (value & (1ULL << 63)))
5011                 return -EINVAL;
5012
5013         event_function_call(event, __perf_event_period, &value);
5014
5015         return 0;
5016 }
5017
5018 static const struct file_operations perf_fops;
5019
5020 static inline int perf_fget_light(int fd, struct fd *p)
5021 {
5022         struct fd f = fdget(fd);
5023         if (!f.file)
5024                 return -EBADF;
5025
5026         if (f.file->f_op != &perf_fops) {
5027                 fdput(f);
5028                 return -EBADF;
5029         }
5030         *p = f;
5031         return 0;
5032 }
5033
5034 static int perf_event_set_output(struct perf_event *event,
5035                                  struct perf_event *output_event);
5036 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5037 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5038 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5039                           struct perf_event_attr *attr);
5040
5041 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5042 {
5043         void (*func)(struct perf_event *);
5044         u32 flags = arg;
5045
5046         switch (cmd) {
5047         case PERF_EVENT_IOC_ENABLE:
5048                 func = _perf_event_enable;
5049                 break;
5050         case PERF_EVENT_IOC_DISABLE:
5051                 func = _perf_event_disable;
5052                 break;
5053         case PERF_EVENT_IOC_RESET:
5054                 func = _perf_event_reset;
5055                 break;
5056
5057         case PERF_EVENT_IOC_REFRESH:
5058                 return _perf_event_refresh(event, arg);
5059
5060         case PERF_EVENT_IOC_PERIOD:
5061                 return perf_event_period(event, (u64 __user *)arg);
5062
5063         case PERF_EVENT_IOC_ID:
5064         {
5065                 u64 id = primary_event_id(event);
5066
5067                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5068                         return -EFAULT;
5069                 return 0;
5070         }
5071
5072         case PERF_EVENT_IOC_SET_OUTPUT:
5073         {
5074                 int ret;
5075                 if (arg != -1) {
5076                         struct perf_event *output_event;
5077                         struct fd output;
5078                         ret = perf_fget_light(arg, &output);
5079                         if (ret)
5080                                 return ret;
5081                         output_event = output.file->private_data;
5082                         ret = perf_event_set_output(event, output_event);
5083                         fdput(output);
5084                 } else {
5085                         ret = perf_event_set_output(event, NULL);
5086                 }
5087                 return ret;
5088         }
5089
5090         case PERF_EVENT_IOC_SET_FILTER:
5091                 return perf_event_set_filter(event, (void __user *)arg);
5092
5093         case PERF_EVENT_IOC_SET_BPF:
5094                 return perf_event_set_bpf_prog(event, arg);
5095
5096         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5097                 struct ring_buffer *rb;
5098
5099                 rcu_read_lock();
5100                 rb = rcu_dereference(event->rb);
5101                 if (!rb || !rb->nr_pages) {
5102                         rcu_read_unlock();
5103                         return -EINVAL;
5104                 }
5105                 rb_toggle_paused(rb, !!arg);
5106                 rcu_read_unlock();
5107                 return 0;
5108         }
5109
5110         case PERF_EVENT_IOC_QUERY_BPF:
5111                 return perf_event_query_prog_array(event, (void __user *)arg);
5112
5113         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5114                 struct perf_event_attr new_attr;
5115                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5116                                          &new_attr);
5117
5118                 if (err)
5119                         return err;
5120
5121                 return perf_event_modify_attr(event,  &new_attr);
5122         }
5123         default:
5124                 return -ENOTTY;
5125         }
5126
5127         if (flags & PERF_IOC_FLAG_GROUP)
5128                 perf_event_for_each(event, func);
5129         else
5130                 perf_event_for_each_child(event, func);
5131
5132         return 0;
5133 }
5134
5135 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5136 {
5137         struct perf_event *event = file->private_data;
5138         struct perf_event_context *ctx;
5139         long ret;
5140
5141         ctx = perf_event_ctx_lock(event);
5142         ret = _perf_ioctl(event, cmd, arg);
5143         perf_event_ctx_unlock(event, ctx);
5144
5145         return ret;
5146 }
5147
5148 #ifdef CONFIG_COMPAT
5149 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5150                                 unsigned long arg)
5151 {
5152         switch (_IOC_NR(cmd)) {
5153         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5154         case _IOC_NR(PERF_EVENT_IOC_ID):
5155         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5156         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5157                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5158                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5159                         cmd &= ~IOCSIZE_MASK;
5160                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5161                 }
5162                 break;
5163         }
5164         return perf_ioctl(file, cmd, arg);
5165 }
5166 #else
5167 # define perf_compat_ioctl NULL
5168 #endif
5169
5170 int perf_event_task_enable(void)
5171 {
5172         struct perf_event_context *ctx;
5173         struct perf_event *event;
5174
5175         mutex_lock(&current->perf_event_mutex);
5176         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5177                 ctx = perf_event_ctx_lock(event);
5178                 perf_event_for_each_child(event, _perf_event_enable);
5179                 perf_event_ctx_unlock(event, ctx);
5180         }
5181         mutex_unlock(&current->perf_event_mutex);
5182
5183         return 0;
5184 }
5185
5186 int perf_event_task_disable(void)
5187 {
5188         struct perf_event_context *ctx;
5189         struct perf_event *event;
5190
5191         mutex_lock(&current->perf_event_mutex);
5192         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5193                 ctx = perf_event_ctx_lock(event);
5194                 perf_event_for_each_child(event, _perf_event_disable);
5195                 perf_event_ctx_unlock(event, ctx);
5196         }
5197         mutex_unlock(&current->perf_event_mutex);
5198
5199         return 0;
5200 }
5201
5202 static int perf_event_index(struct perf_event *event)
5203 {
5204         if (event->hw.state & PERF_HES_STOPPED)
5205                 return 0;
5206
5207         if (event->state != PERF_EVENT_STATE_ACTIVE)
5208                 return 0;
5209
5210         return event->pmu->event_idx(event);
5211 }
5212
5213 static void calc_timer_values(struct perf_event *event,
5214                                 u64 *now,
5215                                 u64 *enabled,
5216                                 u64 *running)
5217 {
5218         u64 ctx_time;
5219
5220         *now = perf_clock();
5221         ctx_time = event->shadow_ctx_time + *now;
5222         __perf_update_times(event, ctx_time, enabled, running);
5223 }
5224
5225 static void perf_event_init_userpage(struct perf_event *event)
5226 {
5227         struct perf_event_mmap_page *userpg;
5228         struct ring_buffer *rb;
5229
5230         rcu_read_lock();
5231         rb = rcu_dereference(event->rb);
5232         if (!rb)
5233                 goto unlock;
5234
5235         userpg = rb->user_page;
5236
5237         /* Allow new userspace to detect that bit 0 is deprecated */
5238         userpg->cap_bit0_is_deprecated = 1;
5239         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5240         userpg->data_offset = PAGE_SIZE;
5241         userpg->data_size = perf_data_size(rb);
5242
5243 unlock:
5244         rcu_read_unlock();
5245 }
5246
5247 void __weak arch_perf_update_userpage(
5248         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5249 {
5250 }
5251
5252 /*
5253  * Callers need to ensure there can be no nesting of this function, otherwise
5254  * the seqlock logic goes bad. We can not serialize this because the arch
5255  * code calls this from NMI context.
5256  */
5257 void perf_event_update_userpage(struct perf_event *event)
5258 {
5259         struct perf_event_mmap_page *userpg;
5260         struct ring_buffer *rb;
5261         u64 enabled, running, now;
5262
5263         rcu_read_lock();
5264         rb = rcu_dereference(event->rb);
5265         if (!rb)
5266                 goto unlock;
5267
5268         /*
5269          * compute total_time_enabled, total_time_running
5270          * based on snapshot values taken when the event
5271          * was last scheduled in.
5272          *
5273          * we cannot simply called update_context_time()
5274          * because of locking issue as we can be called in
5275          * NMI context
5276          */
5277         calc_timer_values(event, &now, &enabled, &running);
5278
5279         userpg = rb->user_page;
5280         /*
5281          * Disable preemption to guarantee consistent time stamps are stored to
5282          * the user page.
5283          */
5284         preempt_disable();
5285         ++userpg->lock;
5286         barrier();
5287         userpg->index = perf_event_index(event);
5288         userpg->offset = perf_event_count(event);
5289         if (userpg->index)
5290                 userpg->offset -= local64_read(&event->hw.prev_count);
5291
5292         userpg->time_enabled = enabled +
5293                         atomic64_read(&event->child_total_time_enabled);
5294
5295         userpg->time_running = running +
5296                         atomic64_read(&event->child_total_time_running);
5297
5298         arch_perf_update_userpage(event, userpg, now);
5299
5300         barrier();
5301         ++userpg->lock;
5302         preempt_enable();
5303 unlock:
5304         rcu_read_unlock();
5305 }
5306 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5307
5308 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5309 {
5310         struct perf_event *event = vmf->vma->vm_file->private_data;
5311         struct ring_buffer *rb;
5312         vm_fault_t ret = VM_FAULT_SIGBUS;
5313
5314         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5315                 if (vmf->pgoff == 0)
5316                         ret = 0;
5317                 return ret;
5318         }
5319
5320         rcu_read_lock();
5321         rb = rcu_dereference(event->rb);
5322         if (!rb)
5323                 goto unlock;
5324
5325         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5326                 goto unlock;
5327
5328         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5329         if (!vmf->page)
5330                 goto unlock;
5331
5332         get_page(vmf->page);
5333         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5334         vmf->page->index   = vmf->pgoff;
5335
5336         ret = 0;
5337 unlock:
5338         rcu_read_unlock();
5339
5340         return ret;
5341 }
5342
5343 static void ring_buffer_attach(struct perf_event *event,
5344                                struct ring_buffer *rb)
5345 {
5346         struct ring_buffer *old_rb = NULL;
5347         unsigned long flags;
5348
5349         if (event->rb) {
5350                 /*
5351                  * Should be impossible, we set this when removing
5352                  * event->rb_entry and wait/clear when adding event->rb_entry.
5353                  */
5354                 WARN_ON_ONCE(event->rcu_pending);
5355
5356                 old_rb = event->rb;
5357                 spin_lock_irqsave(&old_rb->event_lock, flags);
5358                 list_del_rcu(&event->rb_entry);
5359                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5360
5361                 event->rcu_batches = get_state_synchronize_rcu();
5362                 event->rcu_pending = 1;
5363         }
5364
5365         if (rb) {
5366                 if (event->rcu_pending) {
5367                         cond_synchronize_rcu(event->rcu_batches);
5368                         event->rcu_pending = 0;
5369                 }
5370
5371                 spin_lock_irqsave(&rb->event_lock, flags);
5372                 list_add_rcu(&event->rb_entry, &rb->event_list);
5373                 spin_unlock_irqrestore(&rb->event_lock, flags);
5374         }
5375
5376         /*
5377          * Avoid racing with perf_mmap_close(AUX): stop the event
5378          * before swizzling the event::rb pointer; if it's getting
5379          * unmapped, its aux_mmap_count will be 0 and it won't
5380          * restart. See the comment in __perf_pmu_output_stop().
5381          *
5382          * Data will inevitably be lost when set_output is done in
5383          * mid-air, but then again, whoever does it like this is
5384          * not in for the data anyway.
5385          */
5386         if (has_aux(event))
5387                 perf_event_stop(event, 0);
5388
5389         rcu_assign_pointer(event->rb, rb);
5390
5391         if (old_rb) {
5392                 ring_buffer_put(old_rb);
5393                 /*
5394                  * Since we detached before setting the new rb, so that we
5395                  * could attach the new rb, we could have missed a wakeup.
5396                  * Provide it now.
5397                  */
5398                 wake_up_all(&event->waitq);
5399         }
5400 }
5401
5402 static void ring_buffer_wakeup(struct perf_event *event)
5403 {
5404         struct ring_buffer *rb;
5405
5406         rcu_read_lock();
5407         rb = rcu_dereference(event->rb);
5408         if (rb) {
5409                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5410                         wake_up_all(&event->waitq);
5411         }
5412         rcu_read_unlock();
5413 }
5414
5415 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5416 {
5417         struct ring_buffer *rb;
5418
5419         rcu_read_lock();
5420         rb = rcu_dereference(event->rb);
5421         if (rb) {
5422                 if (!refcount_inc_not_zero(&rb->refcount))
5423                         rb = NULL;
5424         }
5425         rcu_read_unlock();
5426
5427         return rb;
5428 }
5429
5430 void ring_buffer_put(struct ring_buffer *rb)
5431 {
5432         if (!refcount_dec_and_test(&rb->refcount))
5433                 return;
5434
5435         WARN_ON_ONCE(!list_empty(&rb->event_list));
5436
5437         call_rcu(&rb->rcu_head, rb_free_rcu);
5438 }
5439
5440 static void perf_mmap_open(struct vm_area_struct *vma)
5441 {
5442         struct perf_event *event = vma->vm_file->private_data;
5443
5444         atomic_inc(&event->mmap_count);
5445         atomic_inc(&event->rb->mmap_count);
5446
5447         if (vma->vm_pgoff)
5448                 atomic_inc(&event->rb->aux_mmap_count);
5449
5450         if (event->pmu->event_mapped)
5451                 event->pmu->event_mapped(event, vma->vm_mm);
5452 }
5453
5454 static void perf_pmu_output_stop(struct perf_event *event);
5455
5456 /*
5457  * A buffer can be mmap()ed multiple times; either directly through the same
5458  * event, or through other events by use of perf_event_set_output().
5459  *
5460  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5461  * the buffer here, where we still have a VM context. This means we need
5462  * to detach all events redirecting to us.
5463  */
5464 static void perf_mmap_close(struct vm_area_struct *vma)
5465 {
5466         struct perf_event *event = vma->vm_file->private_data;
5467
5468         struct ring_buffer *rb = ring_buffer_get(event);
5469         struct user_struct *mmap_user = rb->mmap_user;
5470         int mmap_locked = rb->mmap_locked;
5471         unsigned long size = perf_data_size(rb);
5472
5473         if (event->pmu->event_unmapped)
5474                 event->pmu->event_unmapped(event, vma->vm_mm);
5475
5476         /*
5477          * rb->aux_mmap_count will always drop before rb->mmap_count and
5478          * event->mmap_count, so it is ok to use event->mmap_mutex to
5479          * serialize with perf_mmap here.
5480          */
5481         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5482             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5483                 /*
5484                  * Stop all AUX events that are writing to this buffer,
5485                  * so that we can free its AUX pages and corresponding PMU
5486                  * data. Note that after rb::aux_mmap_count dropped to zero,
5487                  * they won't start any more (see perf_aux_output_begin()).
5488                  */
5489                 perf_pmu_output_stop(event);
5490
5491                 /* now it's safe to free the pages */
5492                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5493                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5494
5495                 /* this has to be the last one */
5496                 rb_free_aux(rb);
5497                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5498
5499                 mutex_unlock(&event->mmap_mutex);
5500         }
5501
5502         atomic_dec(&rb->mmap_count);
5503
5504         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5505                 goto out_put;
5506
5507         ring_buffer_attach(event, NULL);
5508         mutex_unlock(&event->mmap_mutex);
5509
5510         /* If there's still other mmap()s of this buffer, we're done. */
5511         if (atomic_read(&rb->mmap_count))
5512                 goto out_put;
5513
5514         /*
5515          * No other mmap()s, detach from all other events that might redirect
5516          * into the now unreachable buffer. Somewhat complicated by the
5517          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5518          */
5519 again:
5520         rcu_read_lock();
5521         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5522                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5523                         /*
5524                          * This event is en-route to free_event() which will
5525                          * detach it and remove it from the list.
5526                          */
5527                         continue;
5528                 }
5529                 rcu_read_unlock();
5530
5531                 mutex_lock(&event->mmap_mutex);
5532                 /*
5533                  * Check we didn't race with perf_event_set_output() which can
5534                  * swizzle the rb from under us while we were waiting to
5535                  * acquire mmap_mutex.
5536                  *
5537                  * If we find a different rb; ignore this event, a next
5538                  * iteration will no longer find it on the list. We have to
5539                  * still restart the iteration to make sure we're not now
5540                  * iterating the wrong list.
5541                  */
5542                 if (event->rb == rb)
5543                         ring_buffer_attach(event, NULL);
5544
5545                 mutex_unlock(&event->mmap_mutex);
5546                 put_event(event);
5547
5548                 /*
5549                  * Restart the iteration; either we're on the wrong list or
5550                  * destroyed its integrity by doing a deletion.
5551                  */
5552                 goto again;
5553         }
5554         rcu_read_unlock();
5555
5556         /*
5557          * It could be there's still a few 0-ref events on the list; they'll
5558          * get cleaned up by free_event() -- they'll also still have their
5559          * ref on the rb and will free it whenever they are done with it.
5560          *
5561          * Aside from that, this buffer is 'fully' detached and unmapped,
5562          * undo the VM accounting.
5563          */
5564
5565         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5566         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5567         free_uid(mmap_user);
5568
5569 out_put:
5570         ring_buffer_put(rb); /* could be last */
5571 }
5572
5573 static const struct vm_operations_struct perf_mmap_vmops = {
5574         .open           = perf_mmap_open,
5575         .close          = perf_mmap_close, /* non mergeable */
5576         .fault          = perf_mmap_fault,
5577         .page_mkwrite   = perf_mmap_fault,
5578 };
5579
5580 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5581 {
5582         struct perf_event *event = file->private_data;
5583         unsigned long user_locked, user_lock_limit;
5584         struct user_struct *user = current_user();
5585         unsigned long locked, lock_limit;
5586         struct ring_buffer *rb = NULL;
5587         unsigned long vma_size;
5588         unsigned long nr_pages;
5589         long user_extra = 0, extra = 0;
5590         int ret = 0, flags = 0;
5591
5592         /*
5593          * Don't allow mmap() of inherited per-task counters. This would
5594          * create a performance issue due to all children writing to the
5595          * same rb.
5596          */
5597         if (event->cpu == -1 && event->attr.inherit)
5598                 return -EINVAL;
5599
5600         if (!(vma->vm_flags & VM_SHARED))
5601                 return -EINVAL;
5602
5603         vma_size = vma->vm_end - vma->vm_start;
5604
5605         if (vma->vm_pgoff == 0) {
5606                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5607         } else {
5608                 /*
5609                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5610                  * mapped, all subsequent mappings should have the same size
5611                  * and offset. Must be above the normal perf buffer.
5612                  */
5613                 u64 aux_offset, aux_size;
5614
5615                 if (!event->rb)
5616                         return -EINVAL;
5617
5618                 nr_pages = vma_size / PAGE_SIZE;
5619
5620                 mutex_lock(&event->mmap_mutex);
5621                 ret = -EINVAL;
5622
5623                 rb = event->rb;
5624                 if (!rb)
5625                         goto aux_unlock;
5626
5627                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5628                 aux_size = READ_ONCE(rb->user_page->aux_size);
5629
5630                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5631                         goto aux_unlock;
5632
5633                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5634                         goto aux_unlock;
5635
5636                 /* already mapped with a different offset */
5637                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5638                         goto aux_unlock;
5639
5640                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5641                         goto aux_unlock;
5642
5643                 /* already mapped with a different size */
5644                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5645                         goto aux_unlock;
5646
5647                 if (!is_power_of_2(nr_pages))
5648                         goto aux_unlock;
5649
5650                 if (!atomic_inc_not_zero(&rb->mmap_count))
5651                         goto aux_unlock;
5652
5653                 if (rb_has_aux(rb)) {
5654                         atomic_inc(&rb->aux_mmap_count);
5655                         ret = 0;
5656                         goto unlock;
5657                 }
5658
5659                 atomic_set(&rb->aux_mmap_count, 1);
5660                 user_extra = nr_pages;
5661
5662                 goto accounting;
5663         }
5664
5665         /*
5666          * If we have rb pages ensure they're a power-of-two number, so we
5667          * can do bitmasks instead of modulo.
5668          */
5669         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5670                 return -EINVAL;
5671
5672         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5673                 return -EINVAL;
5674
5675         WARN_ON_ONCE(event->ctx->parent_ctx);
5676 again:
5677         mutex_lock(&event->mmap_mutex);
5678         if (event->rb) {
5679                 if (event->rb->nr_pages != nr_pages) {
5680                         ret = -EINVAL;
5681                         goto unlock;
5682                 }
5683
5684                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5685                         /*
5686                          * Raced against perf_mmap_close() through
5687                          * perf_event_set_output(). Try again, hope for better
5688                          * luck.
5689                          */
5690                         mutex_unlock(&event->mmap_mutex);
5691                         goto again;
5692                 }
5693
5694                 goto unlock;
5695         }
5696
5697         user_extra = nr_pages + 1;
5698
5699 accounting:
5700         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5701
5702         /*
5703          * Increase the limit linearly with more CPUs:
5704          */
5705         user_lock_limit *= num_online_cpus();
5706
5707         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5708
5709         if (user_locked > user_lock_limit)
5710                 extra = user_locked - user_lock_limit;
5711
5712         lock_limit = rlimit(RLIMIT_MEMLOCK);
5713         lock_limit >>= PAGE_SHIFT;
5714         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5715
5716         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5717                 !capable(CAP_IPC_LOCK)) {
5718                 ret = -EPERM;
5719                 goto unlock;
5720         }
5721
5722         WARN_ON(!rb && event->rb);
5723
5724         if (vma->vm_flags & VM_WRITE)
5725                 flags |= RING_BUFFER_WRITABLE;
5726
5727         if (!rb) {
5728                 rb = rb_alloc(nr_pages,
5729                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5730                               event->cpu, flags);
5731
5732                 if (!rb) {
5733                         ret = -ENOMEM;
5734                         goto unlock;
5735                 }
5736
5737                 atomic_set(&rb->mmap_count, 1);
5738                 rb->mmap_user = get_current_user();
5739                 rb->mmap_locked = extra;
5740
5741                 ring_buffer_attach(event, rb);
5742
5743                 perf_event_init_userpage(event);
5744                 perf_event_update_userpage(event);
5745         } else {
5746                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5747                                    event->attr.aux_watermark, flags);
5748                 if (!ret)
5749                         rb->aux_mmap_locked = extra;
5750         }
5751
5752 unlock:
5753         if (!ret) {
5754                 atomic_long_add(user_extra, &user->locked_vm);
5755                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
5756
5757                 atomic_inc(&event->mmap_count);
5758         } else if (rb) {
5759                 atomic_dec(&rb->mmap_count);
5760         }
5761 aux_unlock:
5762         mutex_unlock(&event->mmap_mutex);
5763
5764         /*
5765          * Since pinned accounting is per vm we cannot allow fork() to copy our
5766          * vma.
5767          */
5768         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5769         vma->vm_ops = &perf_mmap_vmops;
5770
5771         if (event->pmu->event_mapped)
5772                 event->pmu->event_mapped(event, vma->vm_mm);
5773
5774         return ret;
5775 }
5776
5777 static int perf_fasync(int fd, struct file *filp, int on)
5778 {
5779         struct inode *inode = file_inode(filp);
5780         struct perf_event *event = filp->private_data;
5781         int retval;
5782
5783         inode_lock(inode);
5784         retval = fasync_helper(fd, filp, on, &event->fasync);
5785         inode_unlock(inode);
5786
5787         if (retval < 0)
5788                 return retval;
5789
5790         return 0;
5791 }
5792
5793 static const struct file_operations perf_fops = {
5794         .llseek                 = no_llseek,
5795         .release                = perf_release,
5796         .read                   = perf_read,
5797         .poll                   = perf_poll,
5798         .unlocked_ioctl         = perf_ioctl,
5799         .compat_ioctl           = perf_compat_ioctl,
5800         .mmap                   = perf_mmap,
5801         .fasync                 = perf_fasync,
5802 };
5803
5804 /*
5805  * Perf event wakeup
5806  *
5807  * If there's data, ensure we set the poll() state and publish everything
5808  * to user-space before waking everybody up.
5809  */
5810
5811 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5812 {
5813         /* only the parent has fasync state */
5814         if (event->parent)
5815                 event = event->parent;
5816         return &event->fasync;
5817 }
5818
5819 void perf_event_wakeup(struct perf_event *event)
5820 {
5821         ring_buffer_wakeup(event);
5822
5823         if (event->pending_kill) {
5824                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5825                 event->pending_kill = 0;
5826         }
5827 }
5828
5829 static void perf_pending_event_disable(struct perf_event *event)
5830 {
5831         int cpu = READ_ONCE(event->pending_disable);
5832
5833         if (cpu < 0)
5834                 return;
5835
5836         if (cpu == smp_processor_id()) {
5837                 WRITE_ONCE(event->pending_disable, -1);
5838                 perf_event_disable_local(event);
5839                 return;
5840         }
5841
5842         /*
5843          *  CPU-A                       CPU-B
5844          *
5845          *  perf_event_disable_inatomic()
5846          *    @pending_disable = CPU-A;
5847          *    irq_work_queue();
5848          *
5849          *  sched-out
5850          *    @pending_disable = -1;
5851          *
5852          *                              sched-in
5853          *                              perf_event_disable_inatomic()
5854          *                                @pending_disable = CPU-B;
5855          *                                irq_work_queue(); // FAILS
5856          *
5857          *  irq_work_run()
5858          *    perf_pending_event()
5859          *
5860          * But the event runs on CPU-B and wants disabling there.
5861          */
5862         irq_work_queue_on(&event->pending, cpu);
5863 }
5864
5865 static void perf_pending_event(struct irq_work *entry)
5866 {
5867         struct perf_event *event = container_of(entry, struct perf_event, pending);
5868         int rctx;
5869
5870         rctx = perf_swevent_get_recursion_context();
5871         /*
5872          * If we 'fail' here, that's OK, it means recursion is already disabled
5873          * and we won't recurse 'further'.
5874          */
5875
5876         perf_pending_event_disable(event);
5877
5878         if (event->pending_wakeup) {
5879                 event->pending_wakeup = 0;
5880                 perf_event_wakeup(event);
5881         }
5882
5883         if (rctx >= 0)
5884                 perf_swevent_put_recursion_context(rctx);
5885 }
5886
5887 /*
5888  * We assume there is only KVM supporting the callbacks.
5889  * Later on, we might change it to a list if there is
5890  * another virtualization implementation supporting the callbacks.
5891  */
5892 struct perf_guest_info_callbacks *perf_guest_cbs;
5893
5894 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5895 {
5896         perf_guest_cbs = cbs;
5897         return 0;
5898 }
5899 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5900
5901 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5902 {
5903         perf_guest_cbs = NULL;
5904         return 0;
5905 }
5906 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5907
5908 static void
5909 perf_output_sample_regs(struct perf_output_handle *handle,
5910                         struct pt_regs *regs, u64 mask)
5911 {
5912         int bit;
5913         DECLARE_BITMAP(_mask, 64);
5914
5915         bitmap_from_u64(_mask, mask);
5916         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5917                 u64 val;
5918
5919                 val = perf_reg_value(regs, bit);
5920                 perf_output_put(handle, val);
5921         }
5922 }
5923
5924 static void perf_sample_regs_user(struct perf_regs *regs_user,
5925                                   struct pt_regs *regs,
5926                                   struct pt_regs *regs_user_copy)
5927 {
5928         if (user_mode(regs)) {
5929                 regs_user->abi = perf_reg_abi(current);
5930                 regs_user->regs = regs;
5931         } else if (!(current->flags & PF_KTHREAD)) {
5932                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5933         } else {
5934                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5935                 regs_user->regs = NULL;
5936         }
5937 }
5938
5939 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5940                                   struct pt_regs *regs)
5941 {
5942         regs_intr->regs = regs;
5943         regs_intr->abi  = perf_reg_abi(current);
5944 }
5945
5946
5947 /*
5948  * Get remaining task size from user stack pointer.
5949  *
5950  * It'd be better to take stack vma map and limit this more
5951  * precisly, but there's no way to get it safely under interrupt,
5952  * so using TASK_SIZE as limit.
5953  */
5954 static u64 perf_ustack_task_size(struct pt_regs *regs)
5955 {
5956         unsigned long addr = perf_user_stack_pointer(regs);
5957
5958         if (!addr || addr >= TASK_SIZE)
5959                 return 0;
5960
5961         return TASK_SIZE - addr;
5962 }
5963
5964 static u16
5965 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5966                         struct pt_regs *regs)
5967 {
5968         u64 task_size;
5969
5970         /* No regs, no stack pointer, no dump. */
5971         if (!regs)
5972                 return 0;
5973
5974         /*
5975          * Check if we fit in with the requested stack size into the:
5976          * - TASK_SIZE
5977          *   If we don't, we limit the size to the TASK_SIZE.
5978          *
5979          * - remaining sample size
5980          *   If we don't, we customize the stack size to
5981          *   fit in to the remaining sample size.
5982          */
5983
5984         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5985         stack_size = min(stack_size, (u16) task_size);
5986
5987         /* Current header size plus static size and dynamic size. */
5988         header_size += 2 * sizeof(u64);
5989
5990         /* Do we fit in with the current stack dump size? */
5991         if ((u16) (header_size + stack_size) < header_size) {
5992                 /*
5993                  * If we overflow the maximum size for the sample,
5994                  * we customize the stack dump size to fit in.
5995                  */
5996                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5997                 stack_size = round_up(stack_size, sizeof(u64));
5998         }
5999
6000         return stack_size;
6001 }
6002
6003 static void
6004 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6005                           struct pt_regs *regs)
6006 {
6007         /* Case of a kernel thread, nothing to dump */
6008         if (!regs) {
6009                 u64 size = 0;
6010                 perf_output_put(handle, size);
6011         } else {
6012                 unsigned long sp;
6013                 unsigned int rem;
6014                 u64 dyn_size;
6015                 mm_segment_t fs;
6016
6017                 /*
6018                  * We dump:
6019                  * static size
6020                  *   - the size requested by user or the best one we can fit
6021                  *     in to the sample max size
6022                  * data
6023                  *   - user stack dump data
6024                  * dynamic size
6025                  *   - the actual dumped size
6026                  */
6027
6028                 /* Static size. */
6029                 perf_output_put(handle, dump_size);
6030
6031                 /* Data. */
6032                 sp = perf_user_stack_pointer(regs);
6033                 fs = get_fs();
6034                 set_fs(USER_DS);
6035                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6036                 set_fs(fs);
6037                 dyn_size = dump_size - rem;
6038
6039                 perf_output_skip(handle, rem);
6040
6041                 /* Dynamic size. */
6042                 perf_output_put(handle, dyn_size);
6043         }
6044 }
6045
6046 static void __perf_event_header__init_id(struct perf_event_header *header,
6047                                          struct perf_sample_data *data,
6048                                          struct perf_event *event)
6049 {
6050         u64 sample_type = event->attr.sample_type;
6051
6052         data->type = sample_type;
6053         header->size += event->id_header_size;
6054
6055         if (sample_type & PERF_SAMPLE_TID) {
6056                 /* namespace issues */
6057                 data->tid_entry.pid = perf_event_pid(event, current);
6058                 data->tid_entry.tid = perf_event_tid(event, current);
6059         }
6060
6061         if (sample_type & PERF_SAMPLE_TIME)
6062                 data->time = perf_event_clock(event);
6063
6064         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6065                 data->id = primary_event_id(event);
6066
6067         if (sample_type & PERF_SAMPLE_STREAM_ID)
6068                 data->stream_id = event->id;
6069
6070         if (sample_type & PERF_SAMPLE_CPU) {
6071                 data->cpu_entry.cpu      = raw_smp_processor_id();
6072                 data->cpu_entry.reserved = 0;
6073         }
6074 }
6075
6076 void perf_event_header__init_id(struct perf_event_header *header,
6077                                 struct perf_sample_data *data,
6078                                 struct perf_event *event)
6079 {
6080         if (event->attr.sample_id_all)
6081                 __perf_event_header__init_id(header, data, event);
6082 }
6083
6084 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6085                                            struct perf_sample_data *data)
6086 {
6087         u64 sample_type = data->type;
6088
6089         if (sample_type & PERF_SAMPLE_TID)
6090                 perf_output_put(handle, data->tid_entry);
6091
6092         if (sample_type & PERF_SAMPLE_TIME)
6093                 perf_output_put(handle, data->time);
6094
6095         if (sample_type & PERF_SAMPLE_ID)
6096                 perf_output_put(handle, data->id);
6097
6098         if (sample_type & PERF_SAMPLE_STREAM_ID)
6099                 perf_output_put(handle, data->stream_id);
6100
6101         if (sample_type & PERF_SAMPLE_CPU)
6102                 perf_output_put(handle, data->cpu_entry);
6103
6104         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6105                 perf_output_put(handle, data->id);
6106 }
6107
6108 void perf_event__output_id_sample(struct perf_event *event,
6109                                   struct perf_output_handle *handle,
6110                                   struct perf_sample_data *sample)
6111 {
6112         if (event->attr.sample_id_all)
6113                 __perf_event__output_id_sample(handle, sample);
6114 }
6115
6116 static void perf_output_read_one(struct perf_output_handle *handle,
6117                                  struct perf_event *event,
6118                                  u64 enabled, u64 running)
6119 {
6120         u64 read_format = event->attr.read_format;
6121         u64 values[4];
6122         int n = 0;
6123
6124         values[n++] = perf_event_count(event);
6125         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6126                 values[n++] = enabled +
6127                         atomic64_read(&event->child_total_time_enabled);
6128         }
6129         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6130                 values[n++] = running +
6131                         atomic64_read(&event->child_total_time_running);
6132         }
6133         if (read_format & PERF_FORMAT_ID)
6134                 values[n++] = primary_event_id(event);
6135
6136         __output_copy(handle, values, n * sizeof(u64));
6137 }
6138
6139 static void perf_output_read_group(struct perf_output_handle *handle,
6140                             struct perf_event *event,
6141                             u64 enabled, u64 running)
6142 {
6143         struct perf_event *leader = event->group_leader, *sub;
6144         u64 read_format = event->attr.read_format;
6145         u64 values[5];
6146         int n = 0;
6147
6148         values[n++] = 1 + leader->nr_siblings;
6149
6150         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6151                 values[n++] = enabled;
6152
6153         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6154                 values[n++] = running;
6155
6156         if ((leader != event) &&
6157             (leader->state == PERF_EVENT_STATE_ACTIVE))
6158                 leader->pmu->read(leader);
6159
6160         values[n++] = perf_event_count(leader);
6161         if (read_format & PERF_FORMAT_ID)
6162                 values[n++] = primary_event_id(leader);
6163
6164         __output_copy(handle, values, n * sizeof(u64));
6165
6166         for_each_sibling_event(sub, leader) {
6167                 n = 0;
6168
6169                 if ((sub != event) &&
6170                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6171                         sub->pmu->read(sub);
6172
6173                 values[n++] = perf_event_count(sub);
6174                 if (read_format & PERF_FORMAT_ID)
6175                         values[n++] = primary_event_id(sub);
6176
6177                 __output_copy(handle, values, n * sizeof(u64));
6178         }
6179 }
6180
6181 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6182                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6183
6184 /*
6185  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6186  *
6187  * The problem is that its both hard and excessively expensive to iterate the
6188  * child list, not to mention that its impossible to IPI the children running
6189  * on another CPU, from interrupt/NMI context.
6190  */
6191 static void perf_output_read(struct perf_output_handle *handle,
6192                              struct perf_event *event)
6193 {
6194         u64 enabled = 0, running = 0, now;
6195         u64 read_format = event->attr.read_format;
6196
6197         /*
6198          * compute total_time_enabled, total_time_running
6199          * based on snapshot values taken when the event
6200          * was last scheduled in.
6201          *
6202          * we cannot simply called update_context_time()
6203          * because of locking issue as we are called in
6204          * NMI context
6205          */
6206         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6207                 calc_timer_values(event, &now, &enabled, &running);
6208
6209         if (event->attr.read_format & PERF_FORMAT_GROUP)
6210                 perf_output_read_group(handle, event, enabled, running);
6211         else
6212                 perf_output_read_one(handle, event, enabled, running);
6213 }
6214
6215 void perf_output_sample(struct perf_output_handle *handle,
6216                         struct perf_event_header *header,
6217                         struct perf_sample_data *data,
6218                         struct perf_event *event)
6219 {
6220         u64 sample_type = data->type;
6221
6222         perf_output_put(handle, *header);
6223
6224         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6225                 perf_output_put(handle, data->id);
6226
6227         if (sample_type & PERF_SAMPLE_IP)
6228                 perf_output_put(handle, data->ip);
6229
6230         if (sample_type & PERF_SAMPLE_TID)
6231                 perf_output_put(handle, data->tid_entry);
6232
6233         if (sample_type & PERF_SAMPLE_TIME)
6234                 perf_output_put(handle, data->time);
6235
6236         if (sample_type & PERF_SAMPLE_ADDR)
6237                 perf_output_put(handle, data->addr);
6238
6239         if (sample_type & PERF_SAMPLE_ID)
6240                 perf_output_put(handle, data->id);
6241
6242         if (sample_type & PERF_SAMPLE_STREAM_ID)
6243                 perf_output_put(handle, data->stream_id);
6244
6245         if (sample_type & PERF_SAMPLE_CPU)
6246                 perf_output_put(handle, data->cpu_entry);
6247
6248         if (sample_type & PERF_SAMPLE_PERIOD)
6249                 perf_output_put(handle, data->period);
6250
6251         if (sample_type & PERF_SAMPLE_READ)
6252                 perf_output_read(handle, event);
6253
6254         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6255                 int size = 1;
6256
6257                 size += data->callchain->nr;
6258                 size *= sizeof(u64);
6259                 __output_copy(handle, data->callchain, size);
6260         }
6261
6262         if (sample_type & PERF_SAMPLE_RAW) {
6263                 struct perf_raw_record *raw = data->raw;
6264
6265                 if (raw) {
6266                         struct perf_raw_frag *frag = &raw->frag;
6267
6268                         perf_output_put(handle, raw->size);
6269                         do {
6270                                 if (frag->copy) {
6271                                         __output_custom(handle, frag->copy,
6272                                                         frag->data, frag->size);
6273                                 } else {
6274                                         __output_copy(handle, frag->data,
6275                                                       frag->size);
6276                                 }
6277                                 if (perf_raw_frag_last(frag))
6278                                         break;
6279                                 frag = frag->next;
6280                         } while (1);
6281                         if (frag->pad)
6282                                 __output_skip(handle, NULL, frag->pad);
6283                 } else {
6284                         struct {
6285                                 u32     size;
6286                                 u32     data;
6287                         } raw = {
6288                                 .size = sizeof(u32),
6289                                 .data = 0,
6290                         };
6291                         perf_output_put(handle, raw);
6292                 }
6293         }
6294
6295         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6296                 if (data->br_stack) {
6297                         size_t size;
6298
6299                         size = data->br_stack->nr
6300                              * sizeof(struct perf_branch_entry);
6301
6302                         perf_output_put(handle, data->br_stack->nr);
6303                         perf_output_copy(handle, data->br_stack->entries, size);
6304                 } else {
6305                         /*
6306                          * we always store at least the value of nr
6307                          */
6308                         u64 nr = 0;
6309                         perf_output_put(handle, nr);
6310                 }
6311         }
6312
6313         if (sample_type & PERF_SAMPLE_REGS_USER) {
6314                 u64 abi = data->regs_user.abi;
6315
6316                 /*
6317                  * If there are no regs to dump, notice it through
6318                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6319                  */
6320                 perf_output_put(handle, abi);
6321
6322                 if (abi) {
6323                         u64 mask = event->attr.sample_regs_user;
6324                         perf_output_sample_regs(handle,
6325                                                 data->regs_user.regs,
6326                                                 mask);
6327                 }
6328         }
6329
6330         if (sample_type & PERF_SAMPLE_STACK_USER) {
6331                 perf_output_sample_ustack(handle,
6332                                           data->stack_user_size,
6333                                           data->regs_user.regs);
6334         }
6335
6336         if (sample_type & PERF_SAMPLE_WEIGHT)
6337                 perf_output_put(handle, data->weight);
6338
6339         if (sample_type & PERF_SAMPLE_DATA_SRC)
6340                 perf_output_put(handle, data->data_src.val);
6341
6342         if (sample_type & PERF_SAMPLE_TRANSACTION)
6343                 perf_output_put(handle, data->txn);
6344
6345         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6346                 u64 abi = data->regs_intr.abi;
6347                 /*
6348                  * If there are no regs to dump, notice it through
6349                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6350                  */
6351                 perf_output_put(handle, abi);
6352
6353                 if (abi) {
6354                         u64 mask = event->attr.sample_regs_intr;
6355
6356                         perf_output_sample_regs(handle,
6357                                                 data->regs_intr.regs,
6358                                                 mask);
6359                 }
6360         }
6361
6362         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6363                 perf_output_put(handle, data->phys_addr);
6364
6365         if (!event->attr.watermark) {
6366                 int wakeup_events = event->attr.wakeup_events;
6367
6368                 if (wakeup_events) {
6369                         struct ring_buffer *rb = handle->rb;
6370                         int events = local_inc_return(&rb->events);
6371
6372                         if (events >= wakeup_events) {
6373                                 local_sub(wakeup_events, &rb->events);
6374                                 local_inc(&rb->wakeup);
6375                         }
6376                 }
6377         }
6378 }
6379
6380 static u64 perf_virt_to_phys(u64 virt)
6381 {
6382         u64 phys_addr = 0;
6383         struct page *p = NULL;
6384
6385         if (!virt)
6386                 return 0;
6387
6388         if (virt >= TASK_SIZE) {
6389                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6390                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6391                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6392                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6393         } else {
6394                 /*
6395                  * Walking the pages tables for user address.
6396                  * Interrupts are disabled, so it prevents any tear down
6397                  * of the page tables.
6398                  * Try IRQ-safe __get_user_pages_fast first.
6399                  * If failed, leave phys_addr as 0.
6400                  */
6401                 if ((current->mm != NULL) &&
6402                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6403                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6404
6405                 if (p)
6406                         put_page(p);
6407         }
6408
6409         return phys_addr;
6410 }
6411
6412 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6413
6414 struct perf_callchain_entry *
6415 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6416 {
6417         bool kernel = !event->attr.exclude_callchain_kernel;
6418         bool user   = !event->attr.exclude_callchain_user;
6419         /* Disallow cross-task user callchains. */
6420         bool crosstask = event->ctx->task && event->ctx->task != current;
6421         const u32 max_stack = event->attr.sample_max_stack;
6422         struct perf_callchain_entry *callchain;
6423
6424         if (!kernel && !user)
6425                 return &__empty_callchain;
6426
6427         callchain = get_perf_callchain(regs, 0, kernel, user,
6428                                        max_stack, crosstask, true);
6429         return callchain ?: &__empty_callchain;
6430 }
6431
6432 void perf_prepare_sample(struct perf_event_header *header,
6433                          struct perf_sample_data *data,
6434                          struct perf_event *event,
6435                          struct pt_regs *regs)
6436 {
6437         u64 sample_type = event->attr.sample_type;
6438
6439         header->type = PERF_RECORD_SAMPLE;
6440         header->size = sizeof(*header) + event->header_size;
6441
6442         header->misc = 0;
6443         header->misc |= perf_misc_flags(regs);
6444
6445         __perf_event_header__init_id(header, data, event);
6446
6447         if (sample_type & PERF_SAMPLE_IP)
6448                 data->ip = perf_instruction_pointer(regs);
6449
6450         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6451                 int size = 1;
6452
6453                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6454                         data->callchain = perf_callchain(event, regs);
6455
6456                 size += data->callchain->nr;
6457
6458                 header->size += size * sizeof(u64);
6459         }
6460
6461         if (sample_type & PERF_SAMPLE_RAW) {
6462                 struct perf_raw_record *raw = data->raw;
6463                 int size;
6464
6465                 if (raw) {
6466                         struct perf_raw_frag *frag = &raw->frag;
6467                         u32 sum = 0;
6468
6469                         do {
6470                                 sum += frag->size;
6471                                 if (perf_raw_frag_last(frag))
6472                                         break;
6473                                 frag = frag->next;
6474                         } while (1);
6475
6476                         size = round_up(sum + sizeof(u32), sizeof(u64));
6477                         raw->size = size - sizeof(u32);
6478                         frag->pad = raw->size - sum;
6479                 } else {
6480                         size = sizeof(u64);
6481                 }
6482
6483                 header->size += size;
6484         }
6485
6486         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6487                 int size = sizeof(u64); /* nr */
6488                 if (data->br_stack) {
6489                         size += data->br_stack->nr
6490                               * sizeof(struct perf_branch_entry);
6491                 }
6492                 header->size += size;
6493         }
6494
6495         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6496                 perf_sample_regs_user(&data->regs_user, regs,
6497                                       &data->regs_user_copy);
6498
6499         if (sample_type & PERF_SAMPLE_REGS_USER) {
6500                 /* regs dump ABI info */
6501                 int size = sizeof(u64);
6502
6503                 if (data->regs_user.regs) {
6504                         u64 mask = event->attr.sample_regs_user;
6505                         size += hweight64(mask) * sizeof(u64);
6506                 }
6507
6508                 header->size += size;
6509         }
6510
6511         if (sample_type & PERF_SAMPLE_STACK_USER) {
6512                 /*
6513                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6514                  * processed as the last one or have additional check added
6515                  * in case new sample type is added, because we could eat
6516                  * up the rest of the sample size.
6517                  */
6518                 u16 stack_size = event->attr.sample_stack_user;
6519                 u16 size = sizeof(u64);
6520
6521                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6522                                                      data->regs_user.regs);
6523
6524                 /*
6525                  * If there is something to dump, add space for the dump
6526                  * itself and for the field that tells the dynamic size,
6527                  * which is how many have been actually dumped.
6528                  */
6529                 if (stack_size)
6530                         size += sizeof(u64) + stack_size;
6531
6532                 data->stack_user_size = stack_size;
6533                 header->size += size;
6534         }
6535
6536         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6537                 /* regs dump ABI info */
6538                 int size = sizeof(u64);
6539
6540                 perf_sample_regs_intr(&data->regs_intr, regs);
6541
6542                 if (data->regs_intr.regs) {
6543                         u64 mask = event->attr.sample_regs_intr;
6544
6545                         size += hweight64(mask) * sizeof(u64);
6546                 }
6547
6548                 header->size += size;
6549         }
6550
6551         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6552                 data->phys_addr = perf_virt_to_phys(data->addr);
6553 }
6554
6555 static __always_inline int
6556 __perf_event_output(struct perf_event *event,
6557                     struct perf_sample_data *data,
6558                     struct pt_regs *regs,
6559                     int (*output_begin)(struct perf_output_handle *,
6560                                         struct perf_event *,
6561                                         unsigned int))
6562 {
6563         struct perf_output_handle handle;
6564         struct perf_event_header header;
6565         int err;
6566
6567         /* protect the callchain buffers */
6568         rcu_read_lock();
6569
6570         perf_prepare_sample(&header, data, event, regs);
6571
6572         err = output_begin(&handle, event, header.size);
6573         if (err)
6574                 goto exit;
6575
6576         perf_output_sample(&handle, &header, data, event);
6577
6578         perf_output_end(&handle);
6579
6580 exit:
6581         rcu_read_unlock();
6582         return err;
6583 }
6584
6585 void
6586 perf_event_output_forward(struct perf_event *event,
6587                          struct perf_sample_data *data,
6588                          struct pt_regs *regs)
6589 {
6590         __perf_event_output(event, data, regs, perf_output_begin_forward);
6591 }
6592
6593 void
6594 perf_event_output_backward(struct perf_event *event,
6595                            struct perf_sample_data *data,
6596                            struct pt_regs *regs)
6597 {
6598         __perf_event_output(event, data, regs, perf_output_begin_backward);
6599 }
6600
6601 int
6602 perf_event_output(struct perf_event *event,
6603                   struct perf_sample_data *data,
6604                   struct pt_regs *regs)
6605 {
6606         return __perf_event_output(event, data, regs, perf_output_begin);
6607 }
6608
6609 /*
6610  * read event_id
6611  */
6612
6613 struct perf_read_event {
6614         struct perf_event_header        header;
6615
6616         u32                             pid;
6617         u32                             tid;
6618 };
6619
6620 static void
6621 perf_event_read_event(struct perf_event *event,
6622                         struct task_struct *task)
6623 {
6624         struct perf_output_handle handle;
6625         struct perf_sample_data sample;
6626         struct perf_read_event read_event = {
6627                 .header = {
6628                         .type = PERF_RECORD_READ,
6629                         .misc = 0,
6630                         .size = sizeof(read_event) + event->read_size,
6631                 },
6632                 .pid = perf_event_pid(event, task),
6633                 .tid = perf_event_tid(event, task),
6634         };
6635         int ret;
6636
6637         perf_event_header__init_id(&read_event.header, &sample, event);
6638         ret = perf_output_begin(&handle, event, read_event.header.size);
6639         if (ret)
6640                 return;
6641
6642         perf_output_put(&handle, read_event);
6643         perf_output_read(&handle, event);
6644         perf_event__output_id_sample(event, &handle, &sample);
6645
6646         perf_output_end(&handle);
6647 }
6648
6649 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6650
6651 static void
6652 perf_iterate_ctx(struct perf_event_context *ctx,
6653                    perf_iterate_f output,
6654                    void *data, bool all)
6655 {
6656         struct perf_event *event;
6657
6658         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6659                 if (!all) {
6660                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6661                                 continue;
6662                         if (!event_filter_match(event))
6663                                 continue;
6664                 }
6665
6666                 output(event, data);
6667         }
6668 }
6669
6670 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6671 {
6672         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6673         struct perf_event *event;
6674
6675         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6676                 /*
6677                  * Skip events that are not fully formed yet; ensure that
6678                  * if we observe event->ctx, both event and ctx will be
6679                  * complete enough. See perf_install_in_context().
6680                  */
6681                 if (!smp_load_acquire(&event->ctx))
6682                         continue;
6683
6684                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6685                         continue;
6686                 if (!event_filter_match(event))
6687                         continue;
6688                 output(event, data);
6689         }
6690 }
6691
6692 /*
6693  * Iterate all events that need to receive side-band events.
6694  *
6695  * For new callers; ensure that account_pmu_sb_event() includes
6696  * your event, otherwise it might not get delivered.
6697  */
6698 static void
6699 perf_iterate_sb(perf_iterate_f output, void *data,
6700                struct perf_event_context *task_ctx)
6701 {
6702         struct perf_event_context *ctx;
6703         int ctxn;
6704
6705         rcu_read_lock();
6706         preempt_disable();
6707
6708         /*
6709          * If we have task_ctx != NULL we only notify the task context itself.
6710          * The task_ctx is set only for EXIT events before releasing task
6711          * context.
6712          */
6713         if (task_ctx) {
6714                 perf_iterate_ctx(task_ctx, output, data, false);
6715                 goto done;
6716         }
6717
6718         perf_iterate_sb_cpu(output, data);
6719
6720         for_each_task_context_nr(ctxn) {
6721                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6722                 if (ctx)
6723                         perf_iterate_ctx(ctx, output, data, false);
6724         }
6725 done:
6726         preempt_enable();
6727         rcu_read_unlock();
6728 }
6729
6730 /*
6731  * Clear all file-based filters at exec, they'll have to be
6732  * re-instated when/if these objects are mmapped again.
6733  */
6734 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6735 {
6736         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6737         struct perf_addr_filter *filter;
6738         unsigned int restart = 0, count = 0;
6739         unsigned long flags;
6740
6741         if (!has_addr_filter(event))
6742                 return;
6743
6744         raw_spin_lock_irqsave(&ifh->lock, flags);
6745         list_for_each_entry(filter, &ifh->list, entry) {
6746                 if (filter->path.dentry) {
6747                         event->addr_filter_ranges[count].start = 0;
6748                         event->addr_filter_ranges[count].size = 0;
6749                         restart++;
6750                 }
6751
6752                 count++;
6753         }
6754
6755         if (restart)
6756                 event->addr_filters_gen++;
6757         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6758
6759         if (restart)
6760                 perf_event_stop(event, 1);
6761 }
6762
6763 void perf_event_exec(void)
6764 {
6765         struct perf_event_context *ctx;
6766         int ctxn;
6767
6768         rcu_read_lock();
6769         for_each_task_context_nr(ctxn) {
6770                 ctx = current->perf_event_ctxp[ctxn];
6771                 if (!ctx)
6772                         continue;
6773
6774                 perf_event_enable_on_exec(ctxn);
6775
6776                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6777                                    true);
6778         }
6779         rcu_read_unlock();
6780 }
6781
6782 struct remote_output {
6783         struct ring_buffer      *rb;
6784         int                     err;
6785 };
6786
6787 static void __perf_event_output_stop(struct perf_event *event, void *data)
6788 {
6789         struct perf_event *parent = event->parent;
6790         struct remote_output *ro = data;
6791         struct ring_buffer *rb = ro->rb;
6792         struct stop_event_data sd = {
6793                 .event  = event,
6794         };
6795
6796         if (!has_aux(event))
6797                 return;
6798
6799         if (!parent)
6800                 parent = event;
6801
6802         /*
6803          * In case of inheritance, it will be the parent that links to the
6804          * ring-buffer, but it will be the child that's actually using it.
6805          *
6806          * We are using event::rb to determine if the event should be stopped,
6807          * however this may race with ring_buffer_attach() (through set_output),
6808          * which will make us skip the event that actually needs to be stopped.
6809          * So ring_buffer_attach() has to stop an aux event before re-assigning
6810          * its rb pointer.
6811          */
6812         if (rcu_dereference(parent->rb) == rb)
6813                 ro->err = __perf_event_stop(&sd);
6814 }
6815
6816 static int __perf_pmu_output_stop(void *info)
6817 {
6818         struct perf_event *event = info;
6819         struct pmu *pmu = event->pmu;
6820         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6821         struct remote_output ro = {
6822                 .rb     = event->rb,
6823         };
6824
6825         rcu_read_lock();
6826         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6827         if (cpuctx->task_ctx)
6828                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6829                                    &ro, false);
6830         rcu_read_unlock();
6831
6832         return ro.err;
6833 }
6834
6835 static void perf_pmu_output_stop(struct perf_event *event)
6836 {
6837         struct perf_event *iter;
6838         int err, cpu;
6839
6840 restart:
6841         rcu_read_lock();
6842         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6843                 /*
6844                  * For per-CPU events, we need to make sure that neither they
6845                  * nor their children are running; for cpu==-1 events it's
6846                  * sufficient to stop the event itself if it's active, since
6847                  * it can't have children.
6848                  */
6849                 cpu = iter->cpu;
6850                 if (cpu == -1)
6851                         cpu = READ_ONCE(iter->oncpu);
6852
6853                 if (cpu == -1)
6854                         continue;
6855
6856                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6857                 if (err == -EAGAIN) {
6858                         rcu_read_unlock();
6859                         goto restart;
6860                 }
6861         }
6862         rcu_read_unlock();
6863 }
6864
6865 /*
6866  * task tracking -- fork/exit
6867  *
6868  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6869  */
6870
6871 struct perf_task_event {
6872         struct task_struct              *task;
6873         struct perf_event_context       *task_ctx;
6874
6875         struct {
6876                 struct perf_event_header        header;
6877
6878                 u32                             pid;
6879                 u32                             ppid;
6880                 u32                             tid;
6881                 u32                             ptid;
6882                 u64                             time;
6883         } event_id;
6884 };
6885
6886 static int perf_event_task_match(struct perf_event *event)
6887 {
6888         return event->attr.comm  || event->attr.mmap ||
6889                event->attr.mmap2 || event->attr.mmap_data ||
6890                event->attr.task;
6891 }
6892
6893 static void perf_event_task_output(struct perf_event *event,
6894                                    void *data)
6895 {
6896         struct perf_task_event *task_event = data;
6897         struct perf_output_handle handle;
6898         struct perf_sample_data sample;
6899         struct task_struct *task = task_event->task;
6900         int ret, size = task_event->event_id.header.size;
6901
6902         if (!perf_event_task_match(event))
6903                 return;
6904
6905         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6906
6907         ret = perf_output_begin(&handle, event,
6908                                 task_event->event_id.header.size);
6909         if (ret)
6910                 goto out;
6911
6912         task_event->event_id.pid = perf_event_pid(event, task);
6913         task_event->event_id.ppid = perf_event_pid(event, current);
6914
6915         task_event->event_id.tid = perf_event_tid(event, task);
6916         task_event->event_id.ptid = perf_event_tid(event, current);
6917
6918         task_event->event_id.time = perf_event_clock(event);
6919
6920         perf_output_put(&handle, task_event->event_id);
6921
6922         perf_event__output_id_sample(event, &handle, &sample);
6923
6924         perf_output_end(&handle);
6925 out:
6926         task_event->event_id.header.size = size;
6927 }
6928
6929 static void perf_event_task(struct task_struct *task,
6930                               struct perf_event_context *task_ctx,
6931                               int new)
6932 {
6933         struct perf_task_event task_event;
6934
6935         if (!atomic_read(&nr_comm_events) &&
6936             !atomic_read(&nr_mmap_events) &&
6937             !atomic_read(&nr_task_events))
6938                 return;
6939
6940         task_event = (struct perf_task_event){
6941                 .task     = task,
6942                 .task_ctx = task_ctx,
6943                 .event_id    = {
6944                         .header = {
6945                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6946                                 .misc = 0,
6947                                 .size = sizeof(task_event.event_id),
6948                         },
6949                         /* .pid  */
6950                         /* .ppid */
6951                         /* .tid  */
6952                         /* .ptid */
6953                         /* .time */
6954                 },
6955         };
6956
6957         perf_iterate_sb(perf_event_task_output,
6958                        &task_event,
6959                        task_ctx);
6960 }
6961
6962 void perf_event_fork(struct task_struct *task)
6963 {
6964         perf_event_task(task, NULL, 1);
6965         perf_event_namespaces(task);
6966 }
6967
6968 /*
6969  * comm tracking
6970  */
6971
6972 struct perf_comm_event {
6973         struct task_struct      *task;
6974         char                    *comm;
6975         int                     comm_size;
6976
6977         struct {
6978                 struct perf_event_header        header;
6979
6980                 u32                             pid;
6981                 u32                             tid;
6982         } event_id;
6983 };
6984
6985 static int perf_event_comm_match(struct perf_event *event)
6986 {
6987         return event->attr.comm;
6988 }
6989
6990 static void perf_event_comm_output(struct perf_event *event,
6991                                    void *data)
6992 {
6993         struct perf_comm_event *comm_event = data;
6994         struct perf_output_handle handle;
6995         struct perf_sample_data sample;
6996         int size = comm_event->event_id.header.size;
6997         int ret;
6998
6999         if (!perf_event_comm_match(event))
7000                 return;
7001
7002         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7003         ret = perf_output_begin(&handle, event,
7004                                 comm_event->event_id.header.size);
7005
7006         if (ret)
7007                 goto out;
7008
7009         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7010         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7011
7012         perf_output_put(&handle, comm_event->event_id);
7013         __output_copy(&handle, comm_event->comm,
7014                                    comm_event->comm_size);
7015
7016         perf_event__output_id_sample(event, &handle, &sample);
7017
7018         perf_output_end(&handle);
7019 out:
7020         comm_event->event_id.header.size = size;
7021 }
7022
7023 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7024 {
7025         char comm[TASK_COMM_LEN];
7026         unsigned int size;
7027
7028         memset(comm, 0, sizeof(comm));
7029         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7030         size = ALIGN(strlen(comm)+1, sizeof(u64));
7031
7032         comm_event->comm = comm;
7033         comm_event->comm_size = size;
7034
7035         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7036
7037         perf_iterate_sb(perf_event_comm_output,
7038                        comm_event,
7039                        NULL);
7040 }
7041
7042 void perf_event_comm(struct task_struct *task, bool exec)
7043 {
7044         struct perf_comm_event comm_event;
7045
7046         if (!atomic_read(&nr_comm_events))
7047                 return;
7048
7049         comm_event = (struct perf_comm_event){
7050                 .task   = task,
7051                 /* .comm      */
7052                 /* .comm_size */
7053                 .event_id  = {
7054                         .header = {
7055                                 .type = PERF_RECORD_COMM,
7056                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7057                                 /* .size */
7058                         },
7059                         /* .pid */
7060                         /* .tid */
7061                 },
7062         };
7063
7064         perf_event_comm_event(&comm_event);
7065 }
7066
7067 /*
7068  * namespaces tracking
7069  */
7070
7071 struct perf_namespaces_event {
7072         struct task_struct              *task;
7073
7074         struct {
7075                 struct perf_event_header        header;
7076
7077                 u32                             pid;
7078                 u32                             tid;
7079                 u64                             nr_namespaces;
7080                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7081         } event_id;
7082 };
7083
7084 static int perf_event_namespaces_match(struct perf_event *event)
7085 {
7086         return event->attr.namespaces;
7087 }
7088
7089 static void perf_event_namespaces_output(struct perf_event *event,
7090                                          void *data)
7091 {
7092         struct perf_namespaces_event *namespaces_event = data;
7093         struct perf_output_handle handle;
7094         struct perf_sample_data sample;
7095         u16 header_size = namespaces_event->event_id.header.size;
7096         int ret;
7097
7098         if (!perf_event_namespaces_match(event))
7099                 return;
7100
7101         perf_event_header__init_id(&namespaces_event->event_id.header,
7102                                    &sample, event);
7103         ret = perf_output_begin(&handle, event,
7104                                 namespaces_event->event_id.header.size);
7105         if (ret)
7106                 goto out;
7107
7108         namespaces_event->event_id.pid = perf_event_pid(event,
7109                                                         namespaces_event->task);
7110         namespaces_event->event_id.tid = perf_event_tid(event,
7111                                                         namespaces_event->task);
7112
7113         perf_output_put(&handle, namespaces_event->event_id);
7114
7115         perf_event__output_id_sample(event, &handle, &sample);
7116
7117         perf_output_end(&handle);
7118 out:
7119         namespaces_event->event_id.header.size = header_size;
7120 }
7121
7122 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7123                                    struct task_struct *task,
7124                                    const struct proc_ns_operations *ns_ops)
7125 {
7126         struct path ns_path;
7127         struct inode *ns_inode;
7128         void *error;
7129
7130         error = ns_get_path(&ns_path, task, ns_ops);
7131         if (!error) {
7132                 ns_inode = ns_path.dentry->d_inode;
7133                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7134                 ns_link_info->ino = ns_inode->i_ino;
7135                 path_put(&ns_path);
7136         }
7137 }
7138
7139 void perf_event_namespaces(struct task_struct *task)
7140 {
7141         struct perf_namespaces_event namespaces_event;
7142         struct perf_ns_link_info *ns_link_info;
7143
7144         if (!atomic_read(&nr_namespaces_events))
7145                 return;
7146
7147         namespaces_event = (struct perf_namespaces_event){
7148                 .task   = task,
7149                 .event_id  = {
7150                         .header = {
7151                                 .type = PERF_RECORD_NAMESPACES,
7152                                 .misc = 0,
7153                                 .size = sizeof(namespaces_event.event_id),
7154                         },
7155                         /* .pid */
7156                         /* .tid */
7157                         .nr_namespaces = NR_NAMESPACES,
7158                         /* .link_info[NR_NAMESPACES] */
7159                 },
7160         };
7161
7162         ns_link_info = namespaces_event.event_id.link_info;
7163
7164         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7165                                task, &mntns_operations);
7166
7167 #ifdef CONFIG_USER_NS
7168         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7169                                task, &userns_operations);
7170 #endif
7171 #ifdef CONFIG_NET_NS
7172         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7173                                task, &netns_operations);
7174 #endif
7175 #ifdef CONFIG_UTS_NS
7176         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7177                                task, &utsns_operations);
7178 #endif
7179 #ifdef CONFIG_IPC_NS
7180         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7181                                task, &ipcns_operations);
7182 #endif
7183 #ifdef CONFIG_PID_NS
7184         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7185                                task, &pidns_operations);
7186 #endif
7187 #ifdef CONFIG_CGROUPS
7188         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7189                                task, &cgroupns_operations);
7190 #endif
7191
7192         perf_iterate_sb(perf_event_namespaces_output,
7193                         &namespaces_event,
7194                         NULL);
7195 }
7196
7197 /*
7198  * mmap tracking
7199  */
7200
7201 struct perf_mmap_event {
7202         struct vm_area_struct   *vma;
7203
7204         const char              *file_name;
7205         int                     file_size;
7206         int                     maj, min;
7207         u64                     ino;
7208         u64                     ino_generation;
7209         u32                     prot, flags;
7210
7211         struct {
7212                 struct perf_event_header        header;
7213
7214                 u32                             pid;
7215                 u32                             tid;
7216                 u64                             start;
7217                 u64                             len;
7218                 u64                             pgoff;
7219         } event_id;
7220 };
7221
7222 static int perf_event_mmap_match(struct perf_event *event,
7223                                  void *data)
7224 {
7225         struct perf_mmap_event *mmap_event = data;
7226         struct vm_area_struct *vma = mmap_event->vma;
7227         int executable = vma->vm_flags & VM_EXEC;
7228
7229         return (!executable && event->attr.mmap_data) ||
7230                (executable && (event->attr.mmap || event->attr.mmap2));
7231 }
7232
7233 static void perf_event_mmap_output(struct perf_event *event,
7234                                    void *data)
7235 {
7236         struct perf_mmap_event *mmap_event = data;
7237         struct perf_output_handle handle;
7238         struct perf_sample_data sample;
7239         int size = mmap_event->event_id.header.size;
7240         u32 type = mmap_event->event_id.header.type;
7241         int ret;
7242
7243         if (!perf_event_mmap_match(event, data))
7244                 return;
7245
7246         if (event->attr.mmap2) {
7247                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7248                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7249                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7250                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7251                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7252                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7253                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7254         }
7255
7256         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7257         ret = perf_output_begin(&handle, event,
7258                                 mmap_event->event_id.header.size);
7259         if (ret)
7260                 goto out;
7261
7262         mmap_event->event_id.pid = perf_event_pid(event, current);
7263         mmap_event->event_id.tid = perf_event_tid(event, current);
7264
7265         perf_output_put(&handle, mmap_event->event_id);
7266
7267         if (event->attr.mmap2) {
7268                 perf_output_put(&handle, mmap_event->maj);
7269                 perf_output_put(&handle, mmap_event->min);
7270                 perf_output_put(&handle, mmap_event->ino);
7271                 perf_output_put(&handle, mmap_event->ino_generation);
7272                 perf_output_put(&handle, mmap_event->prot);
7273                 perf_output_put(&handle, mmap_event->flags);
7274         }
7275
7276         __output_copy(&handle, mmap_event->file_name,
7277                                    mmap_event->file_size);
7278
7279         perf_event__output_id_sample(event, &handle, &sample);
7280
7281         perf_output_end(&handle);
7282 out:
7283         mmap_event->event_id.header.size = size;
7284         mmap_event->event_id.header.type = type;
7285 }
7286
7287 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7288 {
7289         struct vm_area_struct *vma = mmap_event->vma;
7290         struct file *file = vma->vm_file;
7291         int maj = 0, min = 0;
7292         u64 ino = 0, gen = 0;
7293         u32 prot = 0, flags = 0;
7294         unsigned int size;
7295         char tmp[16];
7296         char *buf = NULL;
7297         char *name;
7298
7299         if (vma->vm_flags & VM_READ)
7300                 prot |= PROT_READ;
7301         if (vma->vm_flags & VM_WRITE)
7302                 prot |= PROT_WRITE;
7303         if (vma->vm_flags & VM_EXEC)
7304                 prot |= PROT_EXEC;
7305
7306         if (vma->vm_flags & VM_MAYSHARE)
7307                 flags = MAP_SHARED;
7308         else
7309                 flags = MAP_PRIVATE;
7310
7311         if (vma->vm_flags & VM_DENYWRITE)
7312                 flags |= MAP_DENYWRITE;
7313         if (vma->vm_flags & VM_MAYEXEC)
7314                 flags |= MAP_EXECUTABLE;
7315         if (vma->vm_flags & VM_LOCKED)
7316                 flags |= MAP_LOCKED;
7317         if (vma->vm_flags & VM_HUGETLB)
7318                 flags |= MAP_HUGETLB;
7319
7320         if (file) {
7321                 struct inode *inode;
7322                 dev_t dev;
7323
7324                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7325                 if (!buf) {
7326                         name = "//enomem";
7327                         goto cpy_name;
7328                 }
7329                 /*
7330                  * d_path() works from the end of the rb backwards, so we
7331                  * need to add enough zero bytes after the string to handle
7332                  * the 64bit alignment we do later.
7333                  */
7334                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7335                 if (IS_ERR(name)) {
7336                         name = "//toolong";
7337                         goto cpy_name;
7338                 }
7339                 inode = file_inode(vma->vm_file);
7340                 dev = inode->i_sb->s_dev;
7341                 ino = inode->i_ino;
7342                 gen = inode->i_generation;
7343                 maj = MAJOR(dev);
7344                 min = MINOR(dev);
7345
7346                 goto got_name;
7347         } else {
7348                 if (vma->vm_ops && vma->vm_ops->name) {
7349                         name = (char *) vma->vm_ops->name(vma);
7350                         if (name)
7351                                 goto cpy_name;
7352                 }
7353
7354                 name = (char *)arch_vma_name(vma);
7355                 if (name)
7356                         goto cpy_name;
7357
7358                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7359                                 vma->vm_end >= vma->vm_mm->brk) {
7360                         name = "[heap]";
7361                         goto cpy_name;
7362                 }
7363                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7364                                 vma->vm_end >= vma->vm_mm->start_stack) {
7365                         name = "[stack]";
7366                         goto cpy_name;
7367                 }
7368
7369                 name = "//anon";
7370                 goto cpy_name;
7371         }
7372
7373 cpy_name:
7374         strlcpy(tmp, name, sizeof(tmp));
7375         name = tmp;
7376 got_name:
7377         /*
7378          * Since our buffer works in 8 byte units we need to align our string
7379          * size to a multiple of 8. However, we must guarantee the tail end is
7380          * zero'd out to avoid leaking random bits to userspace.
7381          */
7382         size = strlen(name)+1;
7383         while (!IS_ALIGNED(size, sizeof(u64)))
7384                 name[size++] = '\0';
7385
7386         mmap_event->file_name = name;
7387         mmap_event->file_size = size;
7388         mmap_event->maj = maj;
7389         mmap_event->min = min;
7390         mmap_event->ino = ino;
7391         mmap_event->ino_generation = gen;
7392         mmap_event->prot = prot;
7393         mmap_event->flags = flags;
7394
7395         if (!(vma->vm_flags & VM_EXEC))
7396                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7397
7398         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7399
7400         perf_iterate_sb(perf_event_mmap_output,
7401                        mmap_event,
7402                        NULL);
7403
7404         kfree(buf);
7405 }
7406
7407 /*
7408  * Check whether inode and address range match filter criteria.
7409  */
7410 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7411                                      struct file *file, unsigned long offset,
7412                                      unsigned long size)
7413 {
7414         /* d_inode(NULL) won't be equal to any mapped user-space file */
7415         if (!filter->path.dentry)
7416                 return false;
7417
7418         if (d_inode(filter->path.dentry) != file_inode(file))
7419                 return false;
7420
7421         if (filter->offset > offset + size)
7422                 return false;
7423
7424         if (filter->offset + filter->size < offset)
7425                 return false;
7426
7427         return true;
7428 }
7429
7430 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7431                                         struct vm_area_struct *vma,
7432                                         struct perf_addr_filter_range *fr)
7433 {
7434         unsigned long vma_size = vma->vm_end - vma->vm_start;
7435         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7436         struct file *file = vma->vm_file;
7437
7438         if (!perf_addr_filter_match(filter, file, off, vma_size))
7439                 return false;
7440
7441         if (filter->offset < off) {
7442                 fr->start = vma->vm_start;
7443                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7444         } else {
7445                 fr->start = vma->vm_start + filter->offset - off;
7446                 fr->size = min(vma->vm_end - fr->start, filter->size);
7447         }
7448
7449         return true;
7450 }
7451
7452 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7453 {
7454         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7455         struct vm_area_struct *vma = data;
7456         struct perf_addr_filter *filter;
7457         unsigned int restart = 0, count = 0;
7458         unsigned long flags;
7459
7460         if (!has_addr_filter(event))
7461                 return;
7462
7463         if (!vma->vm_file)
7464                 return;
7465
7466         raw_spin_lock_irqsave(&ifh->lock, flags);
7467         list_for_each_entry(filter, &ifh->list, entry) {
7468                 if (perf_addr_filter_vma_adjust(filter, vma,
7469                                                 &event->addr_filter_ranges[count]))
7470                         restart++;
7471
7472                 count++;
7473         }
7474
7475         if (restart)
7476                 event->addr_filters_gen++;
7477         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7478
7479         if (restart)
7480                 perf_event_stop(event, 1);
7481 }
7482
7483 /*
7484  * Adjust all task's events' filters to the new vma
7485  */
7486 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7487 {
7488         struct perf_event_context *ctx;
7489         int ctxn;
7490
7491         /*
7492          * Data tracing isn't supported yet and as such there is no need
7493          * to keep track of anything that isn't related to executable code:
7494          */
7495         if (!(vma->vm_flags & VM_EXEC))
7496                 return;
7497
7498         rcu_read_lock();
7499         for_each_task_context_nr(ctxn) {
7500                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7501                 if (!ctx)
7502                         continue;
7503
7504                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7505         }
7506         rcu_read_unlock();
7507 }
7508
7509 void perf_event_mmap(struct vm_area_struct *vma)
7510 {
7511         struct perf_mmap_event mmap_event;
7512
7513         if (!atomic_read(&nr_mmap_events))
7514                 return;
7515
7516         mmap_event = (struct perf_mmap_event){
7517                 .vma    = vma,
7518                 /* .file_name */
7519                 /* .file_size */
7520                 .event_id  = {
7521                         .header = {
7522                                 .type = PERF_RECORD_MMAP,
7523                                 .misc = PERF_RECORD_MISC_USER,
7524                                 /* .size */
7525                         },
7526                         /* .pid */
7527                         /* .tid */
7528                         .start  = vma->vm_start,
7529                         .len    = vma->vm_end - vma->vm_start,
7530                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7531                 },
7532                 /* .maj (attr_mmap2 only) */
7533                 /* .min (attr_mmap2 only) */
7534                 /* .ino (attr_mmap2 only) */
7535                 /* .ino_generation (attr_mmap2 only) */
7536                 /* .prot (attr_mmap2 only) */
7537                 /* .flags (attr_mmap2 only) */
7538         };
7539
7540         perf_addr_filters_adjust(vma);
7541         perf_event_mmap_event(&mmap_event);
7542 }
7543
7544 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7545                           unsigned long size, u64 flags)
7546 {
7547         struct perf_output_handle handle;
7548         struct perf_sample_data sample;
7549         struct perf_aux_event {
7550                 struct perf_event_header        header;
7551                 u64                             offset;
7552                 u64                             size;
7553                 u64                             flags;
7554         } rec = {
7555                 .header = {
7556                         .type = PERF_RECORD_AUX,
7557                         .misc = 0,
7558                         .size = sizeof(rec),
7559                 },
7560                 .offset         = head,
7561                 .size           = size,
7562                 .flags          = flags,
7563         };
7564         int ret;
7565
7566         perf_event_header__init_id(&rec.header, &sample, event);
7567         ret = perf_output_begin(&handle, event, rec.header.size);
7568
7569         if (ret)
7570                 return;
7571
7572         perf_output_put(&handle, rec);
7573         perf_event__output_id_sample(event, &handle, &sample);
7574
7575         perf_output_end(&handle);
7576 }
7577
7578 /*
7579  * Lost/dropped samples logging
7580  */
7581 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7582 {
7583         struct perf_output_handle handle;
7584         struct perf_sample_data sample;
7585         int ret;
7586
7587         struct {
7588                 struct perf_event_header        header;
7589                 u64                             lost;
7590         } lost_samples_event = {
7591                 .header = {
7592                         .type = PERF_RECORD_LOST_SAMPLES,
7593                         .misc = 0,
7594                         .size = sizeof(lost_samples_event),
7595                 },
7596                 .lost           = lost,
7597         };
7598
7599         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7600
7601         ret = perf_output_begin(&handle, event,
7602                                 lost_samples_event.header.size);
7603         if (ret)
7604                 return;
7605
7606         perf_output_put(&handle, lost_samples_event);
7607         perf_event__output_id_sample(event, &handle, &sample);
7608         perf_output_end(&handle);
7609 }
7610
7611 /*
7612  * context_switch tracking
7613  */
7614
7615 struct perf_switch_event {
7616         struct task_struct      *task;
7617         struct task_struct      *next_prev;
7618
7619         struct {
7620                 struct perf_event_header        header;
7621                 u32                             next_prev_pid;
7622                 u32                             next_prev_tid;
7623         } event_id;
7624 };
7625
7626 static int perf_event_switch_match(struct perf_event *event)
7627 {
7628         return event->attr.context_switch;
7629 }
7630
7631 static void perf_event_switch_output(struct perf_event *event, void *data)
7632 {
7633         struct perf_switch_event *se = data;
7634         struct perf_output_handle handle;
7635         struct perf_sample_data sample;
7636         int ret;
7637
7638         if (!perf_event_switch_match(event))
7639                 return;
7640
7641         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7642         if (event->ctx->task) {
7643                 se->event_id.header.type = PERF_RECORD_SWITCH;
7644                 se->event_id.header.size = sizeof(se->event_id.header);
7645         } else {
7646                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7647                 se->event_id.header.size = sizeof(se->event_id);
7648                 se->event_id.next_prev_pid =
7649                                         perf_event_pid(event, se->next_prev);
7650                 se->event_id.next_prev_tid =
7651                                         perf_event_tid(event, se->next_prev);
7652         }
7653
7654         perf_event_header__init_id(&se->event_id.header, &sample, event);
7655
7656         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7657         if (ret)
7658                 return;
7659
7660         if (event->ctx->task)
7661                 perf_output_put(&handle, se->event_id.header);
7662         else
7663                 perf_output_put(&handle, se->event_id);
7664
7665         perf_event__output_id_sample(event, &handle, &sample);
7666
7667         perf_output_end(&handle);
7668 }
7669
7670 static void perf_event_switch(struct task_struct *task,
7671                               struct task_struct *next_prev, bool sched_in)
7672 {
7673         struct perf_switch_event switch_event;
7674
7675         /* N.B. caller checks nr_switch_events != 0 */
7676
7677         switch_event = (struct perf_switch_event){
7678                 .task           = task,
7679                 .next_prev      = next_prev,
7680                 .event_id       = {
7681                         .header = {
7682                                 /* .type */
7683                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7684                                 /* .size */
7685                         },
7686                         /* .next_prev_pid */
7687                         /* .next_prev_tid */
7688                 },
7689         };
7690
7691         if (!sched_in && task->state == TASK_RUNNING)
7692                 switch_event.event_id.header.misc |=
7693                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7694
7695         perf_iterate_sb(perf_event_switch_output,
7696                        &switch_event,
7697                        NULL);
7698 }
7699
7700 /*
7701  * IRQ throttle logging
7702  */
7703
7704 static void perf_log_throttle(struct perf_event *event, int enable)
7705 {
7706         struct perf_output_handle handle;
7707         struct perf_sample_data sample;
7708         int ret;
7709
7710         struct {
7711                 struct perf_event_header        header;
7712                 u64                             time;
7713                 u64                             id;
7714                 u64                             stream_id;
7715         } throttle_event = {
7716                 .header = {
7717                         .type = PERF_RECORD_THROTTLE,
7718                         .misc = 0,
7719                         .size = sizeof(throttle_event),
7720                 },
7721                 .time           = perf_event_clock(event),
7722                 .id             = primary_event_id(event),
7723                 .stream_id      = event->id,
7724         };
7725
7726         if (enable)
7727                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7728
7729         perf_event_header__init_id(&throttle_event.header, &sample, event);
7730
7731         ret = perf_output_begin(&handle, event,
7732                                 throttle_event.header.size);
7733         if (ret)
7734                 return;
7735
7736         perf_output_put(&handle, throttle_event);
7737         perf_event__output_id_sample(event, &handle, &sample);
7738         perf_output_end(&handle);
7739 }
7740
7741 /*
7742  * ksymbol register/unregister tracking
7743  */
7744
7745 struct perf_ksymbol_event {
7746         const char      *name;
7747         int             name_len;
7748         struct {
7749                 struct perf_event_header        header;
7750                 u64                             addr;
7751                 u32                             len;
7752                 u16                             ksym_type;
7753                 u16                             flags;
7754         } event_id;
7755 };
7756
7757 static int perf_event_ksymbol_match(struct perf_event *event)
7758 {
7759         return event->attr.ksymbol;
7760 }
7761
7762 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7763 {
7764         struct perf_ksymbol_event *ksymbol_event = data;
7765         struct perf_output_handle handle;
7766         struct perf_sample_data sample;
7767         int ret;
7768
7769         if (!perf_event_ksymbol_match(event))
7770                 return;
7771
7772         perf_event_header__init_id(&ksymbol_event->event_id.header,
7773                                    &sample, event);
7774         ret = perf_output_begin(&handle, event,
7775                                 ksymbol_event->event_id.header.size);
7776         if (ret)
7777                 return;
7778
7779         perf_output_put(&handle, ksymbol_event->event_id);
7780         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7781         perf_event__output_id_sample(event, &handle, &sample);
7782
7783         perf_output_end(&handle);
7784 }
7785
7786 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7787                         const char *sym)
7788 {
7789         struct perf_ksymbol_event ksymbol_event;
7790         char name[KSYM_NAME_LEN];
7791         u16 flags = 0;
7792         int name_len;
7793
7794         if (!atomic_read(&nr_ksymbol_events))
7795                 return;
7796
7797         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7798             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7799                 goto err;
7800
7801         strlcpy(name, sym, KSYM_NAME_LEN);
7802         name_len = strlen(name) + 1;
7803         while (!IS_ALIGNED(name_len, sizeof(u64)))
7804                 name[name_len++] = '\0';
7805         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7806
7807         if (unregister)
7808                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7809
7810         ksymbol_event = (struct perf_ksymbol_event){
7811                 .name = name,
7812                 .name_len = name_len,
7813                 .event_id = {
7814                         .header = {
7815                                 .type = PERF_RECORD_KSYMBOL,
7816                                 .size = sizeof(ksymbol_event.event_id) +
7817                                         name_len,
7818                         },
7819                         .addr = addr,
7820                         .len = len,
7821                         .ksym_type = ksym_type,
7822                         .flags = flags,
7823                 },
7824         };
7825
7826         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7827         return;
7828 err:
7829         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7830 }
7831
7832 /*
7833  * bpf program load/unload tracking
7834  */
7835
7836 struct perf_bpf_event {
7837         struct bpf_prog *prog;
7838         struct {
7839                 struct perf_event_header        header;
7840                 u16                             type;
7841                 u16                             flags;
7842                 u32                             id;
7843                 u8                              tag[BPF_TAG_SIZE];
7844         } event_id;
7845 };
7846
7847 static int perf_event_bpf_match(struct perf_event *event)
7848 {
7849         return event->attr.bpf_event;
7850 }
7851
7852 static void perf_event_bpf_output(struct perf_event *event, void *data)
7853 {
7854         struct perf_bpf_event *bpf_event = data;
7855         struct perf_output_handle handle;
7856         struct perf_sample_data sample;
7857         int ret;
7858
7859         if (!perf_event_bpf_match(event))
7860                 return;
7861
7862         perf_event_header__init_id(&bpf_event->event_id.header,
7863                                    &sample, event);
7864         ret = perf_output_begin(&handle, event,
7865                                 bpf_event->event_id.header.size);
7866         if (ret)
7867                 return;
7868
7869         perf_output_put(&handle, bpf_event->event_id);
7870         perf_event__output_id_sample(event, &handle, &sample);
7871
7872         perf_output_end(&handle);
7873 }
7874
7875 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7876                                          enum perf_bpf_event_type type)
7877 {
7878         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7879         char sym[KSYM_NAME_LEN];
7880         int i;
7881
7882         if (prog->aux->func_cnt == 0) {
7883                 bpf_get_prog_name(prog, sym);
7884                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7885                                    (u64)(unsigned long)prog->bpf_func,
7886                                    prog->jited_len, unregister, sym);
7887         } else {
7888                 for (i = 0; i < prog->aux->func_cnt; i++) {
7889                         struct bpf_prog *subprog = prog->aux->func[i];
7890
7891                         bpf_get_prog_name(subprog, sym);
7892                         perf_event_ksymbol(
7893                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
7894                                 (u64)(unsigned long)subprog->bpf_func,
7895                                 subprog->jited_len, unregister, sym);
7896                 }
7897         }
7898 }
7899
7900 void perf_event_bpf_event(struct bpf_prog *prog,
7901                           enum perf_bpf_event_type type,
7902                           u16 flags)
7903 {
7904         struct perf_bpf_event bpf_event;
7905
7906         if (type <= PERF_BPF_EVENT_UNKNOWN ||
7907             type >= PERF_BPF_EVENT_MAX)
7908                 return;
7909
7910         switch (type) {
7911         case PERF_BPF_EVENT_PROG_LOAD:
7912         case PERF_BPF_EVENT_PROG_UNLOAD:
7913                 if (atomic_read(&nr_ksymbol_events))
7914                         perf_event_bpf_emit_ksymbols(prog, type);
7915                 break;
7916         default:
7917                 break;
7918         }
7919
7920         if (!atomic_read(&nr_bpf_events))
7921                 return;
7922
7923         bpf_event = (struct perf_bpf_event){
7924                 .prog = prog,
7925                 .event_id = {
7926                         .header = {
7927                                 .type = PERF_RECORD_BPF_EVENT,
7928                                 .size = sizeof(bpf_event.event_id),
7929                         },
7930                         .type = type,
7931                         .flags = flags,
7932                         .id = prog->aux->id,
7933                 },
7934         };
7935
7936         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7937
7938         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7939         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7940 }
7941
7942 void perf_event_itrace_started(struct perf_event *event)
7943 {
7944         event->attach_state |= PERF_ATTACH_ITRACE;
7945 }
7946
7947 static void perf_log_itrace_start(struct perf_event *event)
7948 {
7949         struct perf_output_handle handle;
7950         struct perf_sample_data sample;
7951         struct perf_aux_event {
7952                 struct perf_event_header        header;
7953                 u32                             pid;
7954                 u32                             tid;
7955         } rec;
7956         int ret;
7957
7958         if (event->parent)
7959                 event = event->parent;
7960
7961         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7962             event->attach_state & PERF_ATTACH_ITRACE)
7963                 return;
7964
7965         rec.header.type = PERF_RECORD_ITRACE_START;
7966         rec.header.misc = 0;
7967         rec.header.size = sizeof(rec);
7968         rec.pid = perf_event_pid(event, current);
7969         rec.tid = perf_event_tid(event, current);
7970
7971         perf_event_header__init_id(&rec.header, &sample, event);
7972         ret = perf_output_begin(&handle, event, rec.header.size);
7973
7974         if (ret)
7975                 return;
7976
7977         perf_output_put(&handle, rec);
7978         perf_event__output_id_sample(event, &handle, &sample);
7979
7980         perf_output_end(&handle);
7981 }
7982
7983 static int
7984 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7985 {
7986         struct hw_perf_event *hwc = &event->hw;
7987         int ret = 0;
7988         u64 seq;
7989
7990         seq = __this_cpu_read(perf_throttled_seq);
7991         if (seq != hwc->interrupts_seq) {
7992                 hwc->interrupts_seq = seq;
7993                 hwc->interrupts = 1;
7994         } else {
7995                 hwc->interrupts++;
7996                 if (unlikely(throttle
7997                              && hwc->interrupts >= max_samples_per_tick)) {
7998                         __this_cpu_inc(perf_throttled_count);
7999                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8000                         hwc->interrupts = MAX_INTERRUPTS;
8001                         perf_log_throttle(event, 0);
8002                         ret = 1;
8003                 }
8004         }
8005
8006         if (event->attr.freq) {
8007                 u64 now = perf_clock();
8008                 s64 delta = now - hwc->freq_time_stamp;
8009
8010                 hwc->freq_time_stamp = now;
8011
8012                 if (delta > 0 && delta < 2*TICK_NSEC)
8013                         perf_adjust_period(event, delta, hwc->last_period, true);
8014         }
8015
8016         return ret;
8017 }
8018
8019 int perf_event_account_interrupt(struct perf_event *event)
8020 {
8021         return __perf_event_account_interrupt(event, 1);
8022 }
8023
8024 /*
8025  * Generic event overflow handling, sampling.
8026  */
8027
8028 static int __perf_event_overflow(struct perf_event *event,
8029                                    int throttle, struct perf_sample_data *data,
8030                                    struct pt_regs *regs)
8031 {
8032         int events = atomic_read(&event->event_limit);
8033         int ret = 0;
8034
8035         /*
8036          * Non-sampling counters might still use the PMI to fold short
8037          * hardware counters, ignore those.
8038          */
8039         if (unlikely(!is_sampling_event(event)))
8040                 return 0;
8041
8042         ret = __perf_event_account_interrupt(event, throttle);
8043
8044         /*
8045          * XXX event_limit might not quite work as expected on inherited
8046          * events
8047          */
8048
8049         event->pending_kill = POLL_IN;
8050         if (events && atomic_dec_and_test(&event->event_limit)) {
8051                 ret = 1;
8052                 event->pending_kill = POLL_HUP;
8053
8054                 perf_event_disable_inatomic(event);
8055         }
8056
8057         READ_ONCE(event->overflow_handler)(event, data, regs);
8058
8059         if (*perf_event_fasync(event) && event->pending_kill) {
8060                 event->pending_wakeup = 1;
8061                 irq_work_queue(&event->pending);
8062         }
8063
8064         return ret;
8065 }
8066
8067 int perf_event_overflow(struct perf_event *event,
8068                           struct perf_sample_data *data,
8069                           struct pt_regs *regs)
8070 {
8071         return __perf_event_overflow(event, 1, data, regs);
8072 }
8073
8074 /*
8075  * Generic software event infrastructure
8076  */
8077
8078 struct swevent_htable {
8079         struct swevent_hlist            *swevent_hlist;
8080         struct mutex                    hlist_mutex;
8081         int                             hlist_refcount;
8082
8083         /* Recursion avoidance in each contexts */
8084         int                             recursion[PERF_NR_CONTEXTS];
8085 };
8086
8087 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8088
8089 /*
8090  * We directly increment event->count and keep a second value in
8091  * event->hw.period_left to count intervals. This period event
8092  * is kept in the range [-sample_period, 0] so that we can use the
8093  * sign as trigger.
8094  */
8095
8096 u64 perf_swevent_set_period(struct perf_event *event)
8097 {
8098         struct hw_perf_event *hwc = &event->hw;
8099         u64 period = hwc->last_period;
8100         u64 nr, offset;
8101         s64 old, val;
8102
8103         hwc->last_period = hwc->sample_period;
8104
8105 again:
8106         old = val = local64_read(&hwc->period_left);
8107         if (val < 0)
8108                 return 0;
8109
8110         nr = div64_u64(period + val, period);
8111         offset = nr * period;
8112         val -= offset;
8113         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8114                 goto again;
8115
8116         return nr;
8117 }
8118
8119 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8120                                     struct perf_sample_data *data,
8121                                     struct pt_regs *regs)
8122 {
8123         struct hw_perf_event *hwc = &event->hw;
8124         int throttle = 0;
8125
8126         if (!overflow)
8127                 overflow = perf_swevent_set_period(event);
8128
8129         if (hwc->interrupts == MAX_INTERRUPTS)
8130                 return;
8131
8132         for (; overflow; overflow--) {
8133                 if (__perf_event_overflow(event, throttle,
8134                                             data, regs)) {
8135                         /*
8136                          * We inhibit the overflow from happening when
8137                          * hwc->interrupts == MAX_INTERRUPTS.
8138                          */
8139                         break;
8140                 }
8141                 throttle = 1;
8142         }
8143 }
8144
8145 static void perf_swevent_event(struct perf_event *event, u64 nr,
8146                                struct perf_sample_data *data,
8147                                struct pt_regs *regs)
8148 {
8149         struct hw_perf_event *hwc = &event->hw;
8150
8151         local64_add(nr, &event->count);
8152
8153         if (!regs)
8154                 return;
8155
8156         if (!is_sampling_event(event))
8157                 return;
8158
8159         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8160                 data->period = nr;
8161                 return perf_swevent_overflow(event, 1, data, regs);
8162         } else
8163                 data->period = event->hw.last_period;
8164
8165         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8166                 return perf_swevent_overflow(event, 1, data, regs);
8167
8168         if (local64_add_negative(nr, &hwc->period_left))
8169                 return;
8170
8171         perf_swevent_overflow(event, 0, data, regs);
8172 }
8173
8174 static int perf_exclude_event(struct perf_event *event,
8175                               struct pt_regs *regs)
8176 {
8177         if (event->hw.state & PERF_HES_STOPPED)
8178                 return 1;
8179
8180         if (regs) {
8181                 if (event->attr.exclude_user && user_mode(regs))
8182                         return 1;
8183
8184                 if (event->attr.exclude_kernel && !user_mode(regs))
8185                         return 1;
8186         }
8187
8188         return 0;
8189 }
8190
8191 static int perf_swevent_match(struct perf_event *event,
8192                                 enum perf_type_id type,
8193                                 u32 event_id,
8194                                 struct perf_sample_data *data,
8195                                 struct pt_regs *regs)
8196 {
8197         if (event->attr.type != type)
8198                 return 0;
8199
8200         if (event->attr.config != event_id)
8201                 return 0;
8202
8203         if (perf_exclude_event(event, regs))
8204                 return 0;
8205
8206         return 1;
8207 }
8208
8209 static inline u64 swevent_hash(u64 type, u32 event_id)
8210 {
8211         u64 val = event_id | (type << 32);
8212
8213         return hash_64(val, SWEVENT_HLIST_BITS);
8214 }
8215
8216 static inline struct hlist_head *
8217 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8218 {
8219         u64 hash = swevent_hash(type, event_id);
8220
8221         return &hlist->heads[hash];
8222 }
8223
8224 /* For the read side: events when they trigger */
8225 static inline struct hlist_head *
8226 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8227 {
8228         struct swevent_hlist *hlist;
8229
8230         hlist = rcu_dereference(swhash->swevent_hlist);
8231         if (!hlist)
8232                 return NULL;
8233
8234         return __find_swevent_head(hlist, type, event_id);
8235 }
8236
8237 /* For the event head insertion and removal in the hlist */
8238 static inline struct hlist_head *
8239 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8240 {
8241         struct swevent_hlist *hlist;
8242         u32 event_id = event->attr.config;
8243         u64 type = event->attr.type;
8244
8245         /*
8246          * Event scheduling is always serialized against hlist allocation
8247          * and release. Which makes the protected version suitable here.
8248          * The context lock guarantees that.
8249          */
8250         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8251                                           lockdep_is_held(&event->ctx->lock));
8252         if (!hlist)
8253                 return NULL;
8254
8255         return __find_swevent_head(hlist, type, event_id);
8256 }
8257
8258 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8259                                     u64 nr,
8260                                     struct perf_sample_data *data,
8261                                     struct pt_regs *regs)
8262 {
8263         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8264         struct perf_event *event;
8265         struct hlist_head *head;
8266
8267         rcu_read_lock();
8268         head = find_swevent_head_rcu(swhash, type, event_id);
8269         if (!head)
8270                 goto end;
8271
8272         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8273                 if (perf_swevent_match(event, type, event_id, data, regs))
8274                         perf_swevent_event(event, nr, data, regs);
8275         }
8276 end:
8277         rcu_read_unlock();
8278 }
8279
8280 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8281
8282 int perf_swevent_get_recursion_context(void)
8283 {
8284         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8285
8286         return get_recursion_context(swhash->recursion);
8287 }
8288 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8289
8290 void perf_swevent_put_recursion_context(int rctx)
8291 {
8292         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8293
8294         put_recursion_context(swhash->recursion, rctx);
8295 }
8296
8297 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8298 {
8299         struct perf_sample_data data;
8300
8301         if (WARN_ON_ONCE(!regs))
8302                 return;
8303
8304         perf_sample_data_init(&data, addr, 0);
8305         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8306 }
8307
8308 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8309 {
8310         int rctx;
8311
8312         preempt_disable_notrace();
8313         rctx = perf_swevent_get_recursion_context();
8314         if (unlikely(rctx < 0))
8315                 goto fail;
8316
8317         ___perf_sw_event(event_id, nr, regs, addr);
8318
8319         perf_swevent_put_recursion_context(rctx);
8320 fail:
8321         preempt_enable_notrace();
8322 }
8323
8324 static void perf_swevent_read(struct perf_event *event)
8325 {
8326 }
8327
8328 static int perf_swevent_add(struct perf_event *event, int flags)
8329 {
8330         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8331         struct hw_perf_event *hwc = &event->hw;
8332         struct hlist_head *head;
8333
8334         if (is_sampling_event(event)) {
8335                 hwc->last_period = hwc->sample_period;
8336                 perf_swevent_set_period(event);
8337         }
8338
8339         hwc->state = !(flags & PERF_EF_START);
8340
8341         head = find_swevent_head(swhash, event);
8342         if (WARN_ON_ONCE(!head))
8343                 return -EINVAL;
8344
8345         hlist_add_head_rcu(&event->hlist_entry, head);
8346         perf_event_update_userpage(event);
8347
8348         return 0;
8349 }
8350
8351 static void perf_swevent_del(struct perf_event *event, int flags)
8352 {
8353         hlist_del_rcu(&event->hlist_entry);
8354 }
8355
8356 static void perf_swevent_start(struct perf_event *event, int flags)
8357 {
8358         event->hw.state = 0;
8359 }
8360
8361 static void perf_swevent_stop(struct perf_event *event, int flags)
8362 {
8363         event->hw.state = PERF_HES_STOPPED;
8364 }
8365
8366 /* Deref the hlist from the update side */
8367 static inline struct swevent_hlist *
8368 swevent_hlist_deref(struct swevent_htable *swhash)
8369 {
8370         return rcu_dereference_protected(swhash->swevent_hlist,
8371                                          lockdep_is_held(&swhash->hlist_mutex));
8372 }
8373
8374 static void swevent_hlist_release(struct swevent_htable *swhash)
8375 {
8376         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8377
8378         if (!hlist)
8379                 return;
8380
8381         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8382         kfree_rcu(hlist, rcu_head);
8383 }
8384
8385 static void swevent_hlist_put_cpu(int cpu)
8386 {
8387         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8388
8389         mutex_lock(&swhash->hlist_mutex);
8390
8391         if (!--swhash->hlist_refcount)
8392                 swevent_hlist_release(swhash);
8393
8394         mutex_unlock(&swhash->hlist_mutex);
8395 }
8396
8397 static void swevent_hlist_put(void)
8398 {
8399         int cpu;
8400
8401         for_each_possible_cpu(cpu)
8402                 swevent_hlist_put_cpu(cpu);
8403 }
8404
8405 static int swevent_hlist_get_cpu(int cpu)
8406 {
8407         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8408         int err = 0;
8409
8410         mutex_lock(&swhash->hlist_mutex);
8411         if (!swevent_hlist_deref(swhash) &&
8412             cpumask_test_cpu(cpu, perf_online_mask)) {
8413                 struct swevent_hlist *hlist;
8414
8415                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8416                 if (!hlist) {
8417                         err = -ENOMEM;
8418                         goto exit;
8419                 }
8420                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8421         }
8422         swhash->hlist_refcount++;
8423 exit:
8424         mutex_unlock(&swhash->hlist_mutex);
8425
8426         return err;
8427 }
8428
8429 static int swevent_hlist_get(void)
8430 {
8431         int err, cpu, failed_cpu;
8432
8433         mutex_lock(&pmus_lock);
8434         for_each_possible_cpu(cpu) {
8435                 err = swevent_hlist_get_cpu(cpu);
8436                 if (err) {
8437                         failed_cpu = cpu;
8438                         goto fail;
8439                 }
8440         }
8441         mutex_unlock(&pmus_lock);
8442         return 0;
8443 fail:
8444         for_each_possible_cpu(cpu) {
8445                 if (cpu == failed_cpu)
8446                         break;
8447                 swevent_hlist_put_cpu(cpu);
8448         }
8449         mutex_unlock(&pmus_lock);
8450         return err;
8451 }
8452
8453 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8454
8455 static void sw_perf_event_destroy(struct perf_event *event)
8456 {
8457         u64 event_id = event->attr.config;
8458
8459         WARN_ON(event->parent);
8460
8461         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8462         swevent_hlist_put();
8463 }
8464
8465 static int perf_swevent_init(struct perf_event *event)
8466 {
8467         u64 event_id = event->attr.config;
8468
8469         if (event->attr.type != PERF_TYPE_SOFTWARE)
8470                 return -ENOENT;
8471
8472         /*
8473          * no branch sampling for software events
8474          */
8475         if (has_branch_stack(event))
8476                 return -EOPNOTSUPP;
8477
8478         switch (event_id) {
8479         case PERF_COUNT_SW_CPU_CLOCK:
8480         case PERF_COUNT_SW_TASK_CLOCK:
8481                 return -ENOENT;
8482
8483         default:
8484                 break;
8485         }
8486
8487         if (event_id >= PERF_COUNT_SW_MAX)
8488                 return -ENOENT;
8489
8490         if (!event->parent) {
8491                 int err;
8492
8493                 err = swevent_hlist_get();
8494                 if (err)
8495                         return err;
8496
8497                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8498                 event->destroy = sw_perf_event_destroy;
8499         }
8500
8501         return 0;
8502 }
8503
8504 static struct pmu perf_swevent = {
8505         .task_ctx_nr    = perf_sw_context,
8506
8507         .capabilities   = PERF_PMU_CAP_NO_NMI,
8508
8509         .event_init     = perf_swevent_init,
8510         .add            = perf_swevent_add,
8511         .del            = perf_swevent_del,
8512         .start          = perf_swevent_start,
8513         .stop           = perf_swevent_stop,
8514         .read           = perf_swevent_read,
8515 };
8516
8517 #ifdef CONFIG_EVENT_TRACING
8518
8519 static int perf_tp_filter_match(struct perf_event *event,
8520                                 struct perf_sample_data *data)
8521 {
8522         void *record = data->raw->frag.data;
8523
8524         /* only top level events have filters set */
8525         if (event->parent)
8526                 event = event->parent;
8527
8528         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8529                 return 1;
8530         return 0;
8531 }
8532
8533 static int perf_tp_event_match(struct perf_event *event,
8534                                 struct perf_sample_data *data,
8535                                 struct pt_regs *regs)
8536 {
8537         if (event->hw.state & PERF_HES_STOPPED)
8538                 return 0;
8539         /*
8540          * If exclude_kernel, only trace user-space tracepoints (uprobes)
8541          */
8542         if (event->attr.exclude_kernel && !user_mode(regs))
8543                 return 0;
8544
8545         if (!perf_tp_filter_match(event, data))
8546                 return 0;
8547
8548         return 1;
8549 }
8550
8551 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8552                                struct trace_event_call *call, u64 count,
8553                                struct pt_regs *regs, struct hlist_head *head,
8554                                struct task_struct *task)
8555 {
8556         if (bpf_prog_array_valid(call)) {
8557                 *(struct pt_regs **)raw_data = regs;
8558                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8559                         perf_swevent_put_recursion_context(rctx);
8560                         return;
8561                 }
8562         }
8563         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8564                       rctx, task);
8565 }
8566 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8567
8568 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8569                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8570                    struct task_struct *task)
8571 {
8572         struct perf_sample_data data;
8573         struct perf_event *event;
8574
8575         struct perf_raw_record raw = {
8576                 .frag = {
8577                         .size = entry_size,
8578                         .data = record,
8579                 },
8580         };
8581
8582         perf_sample_data_init(&data, 0, 0);
8583         data.raw = &raw;
8584
8585         perf_trace_buf_update(record, event_type);
8586
8587         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8588                 if (perf_tp_event_match(event, &data, regs))
8589                         perf_swevent_event(event, count, &data, regs);
8590         }
8591
8592         /*
8593          * If we got specified a target task, also iterate its context and
8594          * deliver this event there too.
8595          */
8596         if (task && task != current) {
8597                 struct perf_event_context *ctx;
8598                 struct trace_entry *entry = record;
8599
8600                 rcu_read_lock();
8601                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8602                 if (!ctx)
8603                         goto unlock;
8604
8605                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8606                         if (event->cpu != smp_processor_id())
8607                                 continue;
8608                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8609                                 continue;
8610                         if (event->attr.config != entry->type)
8611                                 continue;
8612                         if (perf_tp_event_match(event, &data, regs))
8613                                 perf_swevent_event(event, count, &data, regs);
8614                 }
8615 unlock:
8616                 rcu_read_unlock();
8617         }
8618
8619         perf_swevent_put_recursion_context(rctx);
8620 }
8621 EXPORT_SYMBOL_GPL(perf_tp_event);
8622
8623 static void tp_perf_event_destroy(struct perf_event *event)
8624 {
8625         perf_trace_destroy(event);
8626 }
8627
8628 static int perf_tp_event_init(struct perf_event *event)
8629 {
8630         int err;
8631
8632         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8633                 return -ENOENT;
8634
8635         /*
8636          * no branch sampling for tracepoint events
8637          */
8638         if (has_branch_stack(event))
8639                 return -EOPNOTSUPP;
8640
8641         err = perf_trace_init(event);
8642         if (err)
8643                 return err;
8644
8645         event->destroy = tp_perf_event_destroy;
8646
8647         return 0;
8648 }
8649
8650 static struct pmu perf_tracepoint = {
8651         .task_ctx_nr    = perf_sw_context,
8652
8653         .event_init     = perf_tp_event_init,
8654         .add            = perf_trace_add,
8655         .del            = perf_trace_del,
8656         .start          = perf_swevent_start,
8657         .stop           = perf_swevent_stop,
8658         .read           = perf_swevent_read,
8659 };
8660
8661 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8662 /*
8663  * Flags in config, used by dynamic PMU kprobe and uprobe
8664  * The flags should match following PMU_FORMAT_ATTR().
8665  *
8666  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8667  *                               if not set, create kprobe/uprobe
8668  *
8669  * The following values specify a reference counter (or semaphore in the
8670  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8671  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8672  *
8673  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
8674  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
8675  */
8676 enum perf_probe_config {
8677         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8678         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8679         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8680 };
8681
8682 PMU_FORMAT_ATTR(retprobe, "config:0");
8683 #endif
8684
8685 #ifdef CONFIG_KPROBE_EVENTS
8686 static struct attribute *kprobe_attrs[] = {
8687         &format_attr_retprobe.attr,
8688         NULL,
8689 };
8690
8691 static struct attribute_group kprobe_format_group = {
8692         .name = "format",
8693         .attrs = kprobe_attrs,
8694 };
8695
8696 static const struct attribute_group *kprobe_attr_groups[] = {
8697         &kprobe_format_group,
8698         NULL,
8699 };
8700
8701 static int perf_kprobe_event_init(struct perf_event *event);
8702 static struct pmu perf_kprobe = {
8703         .task_ctx_nr    = perf_sw_context,
8704         .event_init     = perf_kprobe_event_init,
8705         .add            = perf_trace_add,
8706         .del            = perf_trace_del,
8707         .start          = perf_swevent_start,
8708         .stop           = perf_swevent_stop,
8709         .read           = perf_swevent_read,
8710         .attr_groups    = kprobe_attr_groups,
8711 };
8712
8713 static int perf_kprobe_event_init(struct perf_event *event)
8714 {
8715         int err;
8716         bool is_retprobe;
8717
8718         if (event->attr.type != perf_kprobe.type)
8719                 return -ENOENT;
8720
8721         if (!capable(CAP_SYS_ADMIN))
8722                 return -EACCES;
8723
8724         /*
8725          * no branch sampling for probe events
8726          */
8727         if (has_branch_stack(event))
8728                 return -EOPNOTSUPP;
8729
8730         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8731         err = perf_kprobe_init(event, is_retprobe);
8732         if (err)
8733                 return err;
8734
8735         event->destroy = perf_kprobe_destroy;
8736
8737         return 0;
8738 }
8739 #endif /* CONFIG_KPROBE_EVENTS */
8740
8741 #ifdef CONFIG_UPROBE_EVENTS
8742 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8743
8744 static struct attribute *uprobe_attrs[] = {
8745         &format_attr_retprobe.attr,
8746         &format_attr_ref_ctr_offset.attr,
8747         NULL,
8748 };
8749
8750 static struct attribute_group uprobe_format_group = {
8751         .name = "format",
8752         .attrs = uprobe_attrs,
8753 };
8754
8755 static const struct attribute_group *uprobe_attr_groups[] = {
8756         &uprobe_format_group,
8757         NULL,
8758 };
8759
8760 static int perf_uprobe_event_init(struct perf_event *event);
8761 static struct pmu perf_uprobe = {
8762         .task_ctx_nr    = perf_sw_context,
8763         .event_init     = perf_uprobe_event_init,
8764         .add            = perf_trace_add,
8765         .del            = perf_trace_del,
8766         .start          = perf_swevent_start,
8767         .stop           = perf_swevent_stop,
8768         .read           = perf_swevent_read,
8769         .attr_groups    = uprobe_attr_groups,
8770 };
8771
8772 static int perf_uprobe_event_init(struct perf_event *event)
8773 {
8774         int err;
8775         unsigned long ref_ctr_offset;
8776         bool is_retprobe;
8777
8778         if (event->attr.type != perf_uprobe.type)
8779                 return -ENOENT;
8780
8781         if (!capable(CAP_SYS_ADMIN))
8782                 return -EACCES;
8783
8784         /*
8785          * no branch sampling for probe events
8786          */
8787         if (has_branch_stack(event))
8788                 return -EOPNOTSUPP;
8789
8790         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8791         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8792         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8793         if (err)
8794                 return err;
8795
8796         event->destroy = perf_uprobe_destroy;
8797
8798         return 0;
8799 }
8800 #endif /* CONFIG_UPROBE_EVENTS */
8801
8802 static inline void perf_tp_register(void)
8803 {
8804         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8805 #ifdef CONFIG_KPROBE_EVENTS
8806         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8807 #endif
8808 #ifdef CONFIG_UPROBE_EVENTS
8809         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8810 #endif
8811 }
8812
8813 static void perf_event_free_filter(struct perf_event *event)
8814 {
8815         ftrace_profile_free_filter(event);
8816 }
8817
8818 #ifdef CONFIG_BPF_SYSCALL
8819 static void bpf_overflow_handler(struct perf_event *event,
8820                                  struct perf_sample_data *data,
8821                                  struct pt_regs *regs)
8822 {
8823         struct bpf_perf_event_data_kern ctx = {
8824                 .data = data,
8825                 .event = event,
8826         };
8827         int ret = 0;
8828
8829         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8830         preempt_disable();
8831         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8832                 goto out;
8833         rcu_read_lock();
8834         ret = BPF_PROG_RUN(event->prog, &ctx);
8835         rcu_read_unlock();
8836 out:
8837         __this_cpu_dec(bpf_prog_active);
8838         preempt_enable();
8839         if (!ret)
8840                 return;
8841
8842         event->orig_overflow_handler(event, data, regs);
8843 }
8844
8845 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8846 {
8847         struct bpf_prog *prog;
8848
8849         if (event->overflow_handler_context)
8850                 /* hw breakpoint or kernel counter */
8851                 return -EINVAL;
8852
8853         if (event->prog)
8854                 return -EEXIST;
8855
8856         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8857         if (IS_ERR(prog))
8858                 return PTR_ERR(prog);
8859
8860         event->prog = prog;
8861         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8862         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8863         return 0;
8864 }
8865
8866 static void perf_event_free_bpf_handler(struct perf_event *event)
8867 {
8868         struct bpf_prog *prog = event->prog;
8869
8870         if (!prog)
8871                 return;
8872
8873         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8874         event->prog = NULL;
8875         bpf_prog_put(prog);
8876 }
8877 #else
8878 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8879 {
8880         return -EOPNOTSUPP;
8881 }
8882 static void perf_event_free_bpf_handler(struct perf_event *event)
8883 {
8884 }
8885 #endif
8886
8887 /*
8888  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8889  * with perf_event_open()
8890  */
8891 static inline bool perf_event_is_tracing(struct perf_event *event)
8892 {
8893         if (event->pmu == &perf_tracepoint)
8894                 return true;
8895 #ifdef CONFIG_KPROBE_EVENTS
8896         if (event->pmu == &perf_kprobe)
8897                 return true;
8898 #endif
8899 #ifdef CONFIG_UPROBE_EVENTS
8900         if (event->pmu == &perf_uprobe)
8901                 return true;
8902 #endif
8903         return false;
8904 }
8905
8906 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8907 {
8908         bool is_kprobe, is_tracepoint, is_syscall_tp;
8909         struct bpf_prog *prog;
8910         int ret;
8911
8912         if (!perf_event_is_tracing(event))
8913                 return perf_event_set_bpf_handler(event, prog_fd);
8914
8915         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8916         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8917         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8918         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8919                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8920                 return -EINVAL;
8921
8922         prog = bpf_prog_get(prog_fd);
8923         if (IS_ERR(prog))
8924                 return PTR_ERR(prog);
8925
8926         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8927             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8928             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8929                 /* valid fd, but invalid bpf program type */
8930                 bpf_prog_put(prog);
8931                 return -EINVAL;
8932         }
8933
8934         /* Kprobe override only works for kprobes, not uprobes. */
8935         if (prog->kprobe_override &&
8936             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8937                 bpf_prog_put(prog);
8938                 return -EINVAL;
8939         }
8940
8941         if (is_tracepoint || is_syscall_tp) {
8942                 int off = trace_event_get_offsets(event->tp_event);
8943
8944                 if (prog->aux->max_ctx_offset > off) {
8945                         bpf_prog_put(prog);
8946                         return -EACCES;
8947                 }
8948         }
8949
8950         ret = perf_event_attach_bpf_prog(event, prog);
8951         if (ret)
8952                 bpf_prog_put(prog);
8953         return ret;
8954 }
8955
8956 static void perf_event_free_bpf_prog(struct perf_event *event)
8957 {
8958         if (!perf_event_is_tracing(event)) {
8959                 perf_event_free_bpf_handler(event);
8960                 return;
8961         }
8962         perf_event_detach_bpf_prog(event);
8963 }
8964
8965 #else
8966
8967 static inline void perf_tp_register(void)
8968 {
8969 }
8970
8971 static void perf_event_free_filter(struct perf_event *event)
8972 {
8973 }
8974
8975 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8976 {
8977         return -ENOENT;
8978 }
8979
8980 static void perf_event_free_bpf_prog(struct perf_event *event)
8981 {
8982 }
8983 #endif /* CONFIG_EVENT_TRACING */
8984
8985 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8986 void perf_bp_event(struct perf_event *bp, void *data)
8987 {
8988         struct perf_sample_data sample;
8989         struct pt_regs *regs = data;
8990
8991         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8992
8993         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8994                 perf_swevent_event(bp, 1, &sample, regs);
8995 }
8996 #endif
8997
8998 /*
8999  * Allocate a new address filter
9000  */
9001 static struct perf_addr_filter *
9002 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9003 {
9004         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9005         struct perf_addr_filter *filter;
9006
9007         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9008         if (!filter)
9009                 return NULL;
9010
9011         INIT_LIST_HEAD(&filter->entry);
9012         list_add_tail(&filter->entry, filters);
9013
9014         return filter;
9015 }
9016
9017 static void free_filters_list(struct list_head *filters)
9018 {
9019         struct perf_addr_filter *filter, *iter;
9020
9021         list_for_each_entry_safe(filter, iter, filters, entry) {
9022                 path_put(&filter->path);
9023                 list_del(&filter->entry);
9024                 kfree(filter);
9025         }
9026 }
9027
9028 /*
9029  * Free existing address filters and optionally install new ones
9030  */
9031 static void perf_addr_filters_splice(struct perf_event *event,
9032                                      struct list_head *head)
9033 {
9034         unsigned long flags;
9035         LIST_HEAD(list);
9036
9037         if (!has_addr_filter(event))
9038                 return;
9039
9040         /* don't bother with children, they don't have their own filters */
9041         if (event->parent)
9042                 return;
9043
9044         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9045
9046         list_splice_init(&event->addr_filters.list, &list);
9047         if (head)
9048                 list_splice(head, &event->addr_filters.list);
9049
9050         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9051
9052         free_filters_list(&list);
9053 }
9054
9055 /*
9056  * Scan through mm's vmas and see if one of them matches the
9057  * @filter; if so, adjust filter's address range.
9058  * Called with mm::mmap_sem down for reading.
9059  */
9060 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9061                                    struct mm_struct *mm,
9062                                    struct perf_addr_filter_range *fr)
9063 {
9064         struct vm_area_struct *vma;
9065
9066         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9067                 if (!vma->vm_file)
9068                         continue;
9069
9070                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9071                         return;
9072         }
9073 }
9074
9075 /*
9076  * Update event's address range filters based on the
9077  * task's existing mappings, if any.
9078  */
9079 static void perf_event_addr_filters_apply(struct perf_event *event)
9080 {
9081         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9082         struct task_struct *task = READ_ONCE(event->ctx->task);
9083         struct perf_addr_filter *filter;
9084         struct mm_struct *mm = NULL;
9085         unsigned int count = 0;
9086         unsigned long flags;
9087
9088         /*
9089          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9090          * will stop on the parent's child_mutex that our caller is also holding
9091          */
9092         if (task == TASK_TOMBSTONE)
9093                 return;
9094
9095         if (ifh->nr_file_filters) {
9096                 mm = get_task_mm(event->ctx->task);
9097                 if (!mm)
9098                         goto restart;
9099
9100                 down_read(&mm->mmap_sem);
9101         }
9102
9103         raw_spin_lock_irqsave(&ifh->lock, flags);
9104         list_for_each_entry(filter, &ifh->list, entry) {
9105                 if (filter->path.dentry) {
9106                         /*
9107                          * Adjust base offset if the filter is associated to a
9108                          * binary that needs to be mapped:
9109                          */
9110                         event->addr_filter_ranges[count].start = 0;
9111                         event->addr_filter_ranges[count].size = 0;
9112
9113                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9114                 } else {
9115                         event->addr_filter_ranges[count].start = filter->offset;
9116                         event->addr_filter_ranges[count].size  = filter->size;
9117                 }
9118
9119                 count++;
9120         }
9121
9122         event->addr_filters_gen++;
9123         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9124
9125         if (ifh->nr_file_filters) {
9126                 up_read(&mm->mmap_sem);
9127
9128                 mmput(mm);
9129         }
9130
9131 restart:
9132         perf_event_stop(event, 1);
9133 }
9134
9135 /*
9136  * Address range filtering: limiting the data to certain
9137  * instruction address ranges. Filters are ioctl()ed to us from
9138  * userspace as ascii strings.
9139  *
9140  * Filter string format:
9141  *
9142  * ACTION RANGE_SPEC
9143  * where ACTION is one of the
9144  *  * "filter": limit the trace to this region
9145  *  * "start": start tracing from this address
9146  *  * "stop": stop tracing at this address/region;
9147  * RANGE_SPEC is
9148  *  * for kernel addresses: <start address>[/<size>]
9149  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9150  *
9151  * if <size> is not specified or is zero, the range is treated as a single
9152  * address; not valid for ACTION=="filter".
9153  */
9154 enum {
9155         IF_ACT_NONE = -1,
9156         IF_ACT_FILTER,
9157         IF_ACT_START,
9158         IF_ACT_STOP,
9159         IF_SRC_FILE,
9160         IF_SRC_KERNEL,
9161         IF_SRC_FILEADDR,
9162         IF_SRC_KERNELADDR,
9163 };
9164
9165 enum {
9166         IF_STATE_ACTION = 0,
9167         IF_STATE_SOURCE,
9168         IF_STATE_END,
9169 };
9170
9171 static const match_table_t if_tokens = {
9172         { IF_ACT_FILTER,        "filter" },
9173         { IF_ACT_START,         "start" },
9174         { IF_ACT_STOP,          "stop" },
9175         { IF_SRC_FILE,          "%u/%u@%s" },
9176         { IF_SRC_KERNEL,        "%u/%u" },
9177         { IF_SRC_FILEADDR,      "%u@%s" },
9178         { IF_SRC_KERNELADDR,    "%u" },
9179         { IF_ACT_NONE,          NULL },
9180 };
9181
9182 /*
9183  * Address filter string parser
9184  */
9185 static int
9186 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9187                              struct list_head *filters)
9188 {
9189         struct perf_addr_filter *filter = NULL;
9190         char *start, *orig, *filename = NULL;
9191         substring_t args[MAX_OPT_ARGS];
9192         int state = IF_STATE_ACTION, token;
9193         unsigned int kernel = 0;
9194         int ret = -EINVAL;
9195
9196         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9197         if (!fstr)
9198                 return -ENOMEM;
9199
9200         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9201                 static const enum perf_addr_filter_action_t actions[] = {
9202                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9203                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9204                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9205                 };
9206                 ret = -EINVAL;
9207
9208                 if (!*start)
9209                         continue;
9210
9211                 /* filter definition begins */
9212                 if (state == IF_STATE_ACTION) {
9213                         filter = perf_addr_filter_new(event, filters);
9214                         if (!filter)
9215                                 goto fail;
9216                 }
9217
9218                 token = match_token(start, if_tokens, args);
9219                 switch (token) {
9220                 case IF_ACT_FILTER:
9221                 case IF_ACT_START:
9222                 case IF_ACT_STOP:
9223                         if (state != IF_STATE_ACTION)
9224                                 goto fail;
9225
9226                         filter->action = actions[token];
9227                         state = IF_STATE_SOURCE;
9228                         break;
9229
9230                 case IF_SRC_KERNELADDR:
9231                 case IF_SRC_KERNEL:
9232                         kernel = 1;
9233                         /* fall through */
9234
9235                 case IF_SRC_FILEADDR:
9236                 case IF_SRC_FILE:
9237                         if (state != IF_STATE_SOURCE)
9238                                 goto fail;
9239
9240                         *args[0].to = 0;
9241                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9242                         if (ret)
9243                                 goto fail;
9244
9245                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9246                                 *args[1].to = 0;
9247                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9248                                 if (ret)
9249                                         goto fail;
9250                         }
9251
9252                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9253                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9254
9255                                 filename = match_strdup(&args[fpos]);
9256                                 if (!filename) {
9257                                         ret = -ENOMEM;
9258                                         goto fail;
9259                                 }
9260                         }
9261
9262                         state = IF_STATE_END;
9263                         break;
9264
9265                 default:
9266                         goto fail;
9267                 }
9268
9269                 /*
9270                  * Filter definition is fully parsed, validate and install it.
9271                  * Make sure that it doesn't contradict itself or the event's
9272                  * attribute.
9273                  */
9274                 if (state == IF_STATE_END) {
9275                         ret = -EINVAL;
9276                         if (kernel && event->attr.exclude_kernel)
9277                                 goto fail;
9278
9279                         /*
9280                          * ACTION "filter" must have a non-zero length region
9281                          * specified.
9282                          */
9283                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9284                             !filter->size)
9285                                 goto fail;
9286
9287                         if (!kernel) {
9288                                 if (!filename)
9289                                         goto fail;
9290
9291                                 /*
9292                                  * For now, we only support file-based filters
9293                                  * in per-task events; doing so for CPU-wide
9294                                  * events requires additional context switching
9295                                  * trickery, since same object code will be
9296                                  * mapped at different virtual addresses in
9297                                  * different processes.
9298                                  */
9299                                 ret = -EOPNOTSUPP;
9300                                 if (!event->ctx->task)
9301                                         goto fail_free_name;
9302
9303                                 /* look up the path and grab its inode */
9304                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9305                                                 &filter->path);
9306                                 if (ret)
9307                                         goto fail_free_name;
9308
9309                                 kfree(filename);
9310                                 filename = NULL;
9311
9312                                 ret = -EINVAL;
9313                                 if (!filter->path.dentry ||
9314                                     !S_ISREG(d_inode(filter->path.dentry)
9315                                              ->i_mode))
9316                                         goto fail;
9317
9318                                 event->addr_filters.nr_file_filters++;
9319                         }
9320
9321                         /* ready to consume more filters */
9322                         state = IF_STATE_ACTION;
9323                         filter = NULL;
9324                 }
9325         }
9326
9327         if (state != IF_STATE_ACTION)
9328                 goto fail;
9329
9330         kfree(orig);
9331
9332         return 0;
9333
9334 fail_free_name:
9335         kfree(filename);
9336 fail:
9337         free_filters_list(filters);
9338         kfree(orig);
9339
9340         return ret;
9341 }
9342
9343 static int
9344 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9345 {
9346         LIST_HEAD(filters);
9347         int ret;
9348
9349         /*
9350          * Since this is called in perf_ioctl() path, we're already holding
9351          * ctx::mutex.
9352          */
9353         lockdep_assert_held(&event->ctx->mutex);
9354
9355         if (WARN_ON_ONCE(event->parent))
9356                 return -EINVAL;
9357
9358         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9359         if (ret)
9360                 goto fail_clear_files;
9361
9362         ret = event->pmu->addr_filters_validate(&filters);
9363         if (ret)
9364                 goto fail_free_filters;
9365
9366         /* remove existing filters, if any */
9367         perf_addr_filters_splice(event, &filters);
9368
9369         /* install new filters */
9370         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9371
9372         return ret;
9373
9374 fail_free_filters:
9375         free_filters_list(&filters);
9376
9377 fail_clear_files:
9378         event->addr_filters.nr_file_filters = 0;
9379
9380         return ret;
9381 }
9382
9383 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9384 {
9385         int ret = -EINVAL;
9386         char *filter_str;
9387
9388         filter_str = strndup_user(arg, PAGE_SIZE);
9389         if (IS_ERR(filter_str))
9390                 return PTR_ERR(filter_str);
9391
9392 #ifdef CONFIG_EVENT_TRACING
9393         if (perf_event_is_tracing(event)) {
9394                 struct perf_event_context *ctx = event->ctx;
9395
9396                 /*
9397                  * Beware, here be dragons!!
9398                  *
9399                  * the tracepoint muck will deadlock against ctx->mutex, but
9400                  * the tracepoint stuff does not actually need it. So
9401                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9402                  * already have a reference on ctx.
9403                  *
9404                  * This can result in event getting moved to a different ctx,
9405                  * but that does not affect the tracepoint state.
9406                  */
9407                 mutex_unlock(&ctx->mutex);
9408                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9409                 mutex_lock(&ctx->mutex);
9410         } else
9411 #endif
9412         if (has_addr_filter(event))
9413                 ret = perf_event_set_addr_filter(event, filter_str);
9414
9415         kfree(filter_str);
9416         return ret;
9417 }
9418
9419 /*
9420  * hrtimer based swevent callback
9421  */
9422
9423 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9424 {
9425         enum hrtimer_restart ret = HRTIMER_RESTART;
9426         struct perf_sample_data data;
9427         struct pt_regs *regs;
9428         struct perf_event *event;
9429         u64 period;
9430
9431         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9432
9433         if (event->state != PERF_EVENT_STATE_ACTIVE)
9434                 return HRTIMER_NORESTART;
9435
9436         event->pmu->read(event);
9437
9438         perf_sample_data_init(&data, 0, event->hw.last_period);
9439         regs = get_irq_regs();
9440
9441         if (regs && !perf_exclude_event(event, regs)) {
9442                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9443                         if (__perf_event_overflow(event, 1, &data, regs))
9444                                 ret = HRTIMER_NORESTART;
9445         }
9446
9447         period = max_t(u64, 10000, event->hw.sample_period);
9448         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9449
9450         return ret;
9451 }
9452
9453 static void perf_swevent_start_hrtimer(struct perf_event *event)
9454 {
9455         struct hw_perf_event *hwc = &event->hw;
9456         s64 period;
9457
9458         if (!is_sampling_event(event))
9459                 return;
9460
9461         period = local64_read(&hwc->period_left);
9462         if (period) {
9463                 if (period < 0)
9464                         period = 10000;
9465
9466                 local64_set(&hwc->period_left, 0);
9467         } else {
9468                 period = max_t(u64, 10000, hwc->sample_period);
9469         }
9470         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9471                       HRTIMER_MODE_REL_PINNED);
9472 }
9473
9474 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9475 {
9476         struct hw_perf_event *hwc = &event->hw;
9477
9478         if (is_sampling_event(event)) {
9479                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9480                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9481
9482                 hrtimer_cancel(&hwc->hrtimer);
9483         }
9484 }
9485
9486 static void perf_swevent_init_hrtimer(struct perf_event *event)
9487 {
9488         struct hw_perf_event *hwc = &event->hw;
9489
9490         if (!is_sampling_event(event))
9491                 return;
9492
9493         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9494         hwc->hrtimer.function = perf_swevent_hrtimer;
9495
9496         /*
9497          * Since hrtimers have a fixed rate, we can do a static freq->period
9498          * mapping and avoid the whole period adjust feedback stuff.
9499          */
9500         if (event->attr.freq) {
9501                 long freq = event->attr.sample_freq;
9502
9503                 event->attr.sample_period = NSEC_PER_SEC / freq;
9504                 hwc->sample_period = event->attr.sample_period;
9505                 local64_set(&hwc->period_left, hwc->sample_period);
9506                 hwc->last_period = hwc->sample_period;
9507                 event->attr.freq = 0;
9508         }
9509 }
9510
9511 /*
9512  * Software event: cpu wall time clock
9513  */
9514
9515 static void cpu_clock_event_update(struct perf_event *event)
9516 {
9517         s64 prev;
9518         u64 now;
9519
9520         now = local_clock();
9521         prev = local64_xchg(&event->hw.prev_count, now);
9522         local64_add(now - prev, &event->count);
9523 }
9524
9525 static void cpu_clock_event_start(struct perf_event *event, int flags)
9526 {
9527         local64_set(&event->hw.prev_count, local_clock());
9528         perf_swevent_start_hrtimer(event);
9529 }
9530
9531 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9532 {
9533         perf_swevent_cancel_hrtimer(event);
9534         cpu_clock_event_update(event);
9535 }
9536
9537 static int cpu_clock_event_add(struct perf_event *event, int flags)
9538 {
9539         if (flags & PERF_EF_START)
9540                 cpu_clock_event_start(event, flags);
9541         perf_event_update_userpage(event);
9542
9543         return 0;
9544 }
9545
9546 static void cpu_clock_event_del(struct perf_event *event, int flags)
9547 {
9548         cpu_clock_event_stop(event, flags);
9549 }
9550
9551 static void cpu_clock_event_read(struct perf_event *event)
9552 {
9553         cpu_clock_event_update(event);
9554 }
9555
9556 static int cpu_clock_event_init(struct perf_event *event)
9557 {
9558         if (event->attr.type != PERF_TYPE_SOFTWARE)
9559                 return -ENOENT;
9560
9561         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9562                 return -ENOENT;
9563
9564         /*
9565          * no branch sampling for software events
9566          */
9567         if (has_branch_stack(event))
9568                 return -EOPNOTSUPP;
9569
9570         perf_swevent_init_hrtimer(event);
9571
9572         return 0;
9573 }
9574
9575 static struct pmu perf_cpu_clock = {
9576         .task_ctx_nr    = perf_sw_context,
9577
9578         .capabilities   = PERF_PMU_CAP_NO_NMI,
9579
9580         .event_init     = cpu_clock_event_init,
9581         .add            = cpu_clock_event_add,
9582         .del            = cpu_clock_event_del,
9583         .start          = cpu_clock_event_start,
9584         .stop           = cpu_clock_event_stop,
9585         .read           = cpu_clock_event_read,
9586 };
9587
9588 /*
9589  * Software event: task time clock
9590  */
9591
9592 static void task_clock_event_update(struct perf_event *event, u64 now)
9593 {
9594         u64 prev;
9595         s64 delta;
9596
9597         prev = local64_xchg(&event->hw.prev_count, now);
9598         delta = now - prev;
9599         local64_add(delta, &event->count);
9600 }
9601
9602 static void task_clock_event_start(struct perf_event *event, int flags)
9603 {
9604         local64_set(&event->hw.prev_count, event->ctx->time);
9605         perf_swevent_start_hrtimer(event);
9606 }
9607
9608 static void task_clock_event_stop(struct perf_event *event, int flags)
9609 {
9610         perf_swevent_cancel_hrtimer(event);
9611         task_clock_event_update(event, event->ctx->time);
9612 }
9613
9614 static int task_clock_event_add(struct perf_event *event, int flags)
9615 {
9616         if (flags & PERF_EF_START)
9617                 task_clock_event_start(event, flags);
9618         perf_event_update_userpage(event);
9619
9620         return 0;
9621 }
9622
9623 static void task_clock_event_del(struct perf_event *event, int flags)
9624 {
9625         task_clock_event_stop(event, PERF_EF_UPDATE);
9626 }
9627
9628 static void task_clock_event_read(struct perf_event *event)
9629 {
9630         u64 now = perf_clock();
9631         u64 delta = now - event->ctx->timestamp;
9632         u64 time = event->ctx->time + delta;
9633
9634         task_clock_event_update(event, time);
9635 }
9636
9637 static int task_clock_event_init(struct perf_event *event)
9638 {
9639         if (event->attr.type != PERF_TYPE_SOFTWARE)
9640                 return -ENOENT;
9641
9642         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9643                 return -ENOENT;
9644
9645         /*
9646          * no branch sampling for software events
9647          */
9648         if (has_branch_stack(event))
9649                 return -EOPNOTSUPP;
9650
9651         perf_swevent_init_hrtimer(event);
9652
9653         return 0;
9654 }
9655
9656 static struct pmu perf_task_clock = {
9657         .task_ctx_nr    = perf_sw_context,
9658
9659         .capabilities   = PERF_PMU_CAP_NO_NMI,
9660
9661         .event_init     = task_clock_event_init,
9662         .add            = task_clock_event_add,
9663         .del            = task_clock_event_del,
9664         .start          = task_clock_event_start,
9665         .stop           = task_clock_event_stop,
9666         .read           = task_clock_event_read,
9667 };
9668
9669 static void perf_pmu_nop_void(struct pmu *pmu)
9670 {
9671 }
9672
9673 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9674 {
9675 }
9676
9677 static int perf_pmu_nop_int(struct pmu *pmu)
9678 {
9679         return 0;
9680 }
9681
9682 static int perf_event_nop_int(struct perf_event *event, u64 value)
9683 {
9684         return 0;
9685 }
9686
9687 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9688
9689 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9690 {
9691         __this_cpu_write(nop_txn_flags, flags);
9692
9693         if (flags & ~PERF_PMU_TXN_ADD)
9694                 return;
9695
9696         perf_pmu_disable(pmu);
9697 }
9698
9699 static int perf_pmu_commit_txn(struct pmu *pmu)
9700 {
9701         unsigned int flags = __this_cpu_read(nop_txn_flags);
9702
9703         __this_cpu_write(nop_txn_flags, 0);
9704
9705         if (flags & ~PERF_PMU_TXN_ADD)
9706                 return 0;
9707
9708         perf_pmu_enable(pmu);
9709         return 0;
9710 }
9711
9712 static void perf_pmu_cancel_txn(struct pmu *pmu)
9713 {
9714         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9715
9716         __this_cpu_write(nop_txn_flags, 0);
9717
9718         if (flags & ~PERF_PMU_TXN_ADD)
9719                 return;
9720
9721         perf_pmu_enable(pmu);
9722 }
9723
9724 static int perf_event_idx_default(struct perf_event *event)
9725 {
9726         return 0;
9727 }
9728
9729 /*
9730  * Ensures all contexts with the same task_ctx_nr have the same
9731  * pmu_cpu_context too.
9732  */
9733 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9734 {
9735         struct pmu *pmu;
9736
9737         if (ctxn < 0)
9738                 return NULL;
9739
9740         list_for_each_entry(pmu, &pmus, entry) {
9741                 if (pmu->task_ctx_nr == ctxn)
9742                         return pmu->pmu_cpu_context;
9743         }
9744
9745         return NULL;
9746 }
9747
9748 static void free_pmu_context(struct pmu *pmu)
9749 {
9750         /*
9751          * Static contexts such as perf_sw_context have a global lifetime
9752          * and may be shared between different PMUs. Avoid freeing them
9753          * when a single PMU is going away.
9754          */
9755         if (pmu->task_ctx_nr > perf_invalid_context)
9756                 return;
9757
9758         free_percpu(pmu->pmu_cpu_context);
9759 }
9760
9761 /*
9762  * Let userspace know that this PMU supports address range filtering:
9763  */
9764 static ssize_t nr_addr_filters_show(struct device *dev,
9765                                     struct device_attribute *attr,
9766                                     char *page)
9767 {
9768         struct pmu *pmu = dev_get_drvdata(dev);
9769
9770         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9771 }
9772 DEVICE_ATTR_RO(nr_addr_filters);
9773
9774 static struct idr pmu_idr;
9775
9776 static ssize_t
9777 type_show(struct device *dev, struct device_attribute *attr, char *page)
9778 {
9779         struct pmu *pmu = dev_get_drvdata(dev);
9780
9781         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9782 }
9783 static DEVICE_ATTR_RO(type);
9784
9785 static ssize_t
9786 perf_event_mux_interval_ms_show(struct device *dev,
9787                                 struct device_attribute *attr,
9788                                 char *page)
9789 {
9790         struct pmu *pmu = dev_get_drvdata(dev);
9791
9792         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9793 }
9794
9795 static DEFINE_MUTEX(mux_interval_mutex);
9796
9797 static ssize_t
9798 perf_event_mux_interval_ms_store(struct device *dev,
9799                                  struct device_attribute *attr,
9800                                  const char *buf, size_t count)
9801 {
9802         struct pmu *pmu = dev_get_drvdata(dev);
9803         int timer, cpu, ret;
9804
9805         ret = kstrtoint(buf, 0, &timer);
9806         if (ret)
9807                 return ret;
9808
9809         if (timer < 1)
9810                 return -EINVAL;
9811
9812         /* same value, noting to do */
9813         if (timer == pmu->hrtimer_interval_ms)
9814                 return count;
9815
9816         mutex_lock(&mux_interval_mutex);
9817         pmu->hrtimer_interval_ms = timer;
9818
9819         /* update all cpuctx for this PMU */
9820         cpus_read_lock();
9821         for_each_online_cpu(cpu) {
9822                 struct perf_cpu_context *cpuctx;
9823                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9824                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9825
9826                 cpu_function_call(cpu,
9827                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9828         }
9829         cpus_read_unlock();
9830         mutex_unlock(&mux_interval_mutex);
9831
9832         return count;
9833 }
9834 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9835
9836 static struct attribute *pmu_dev_attrs[] = {
9837         &dev_attr_type.attr,
9838         &dev_attr_perf_event_mux_interval_ms.attr,
9839         NULL,
9840 };
9841 ATTRIBUTE_GROUPS(pmu_dev);
9842
9843 static int pmu_bus_running;
9844 static struct bus_type pmu_bus = {
9845         .name           = "event_source",
9846         .dev_groups     = pmu_dev_groups,
9847 };
9848
9849 static void pmu_dev_release(struct device *dev)
9850 {
9851         kfree(dev);
9852 }
9853
9854 static int pmu_dev_alloc(struct pmu *pmu)
9855 {
9856         int ret = -ENOMEM;
9857
9858         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9859         if (!pmu->dev)
9860                 goto out;
9861
9862         pmu->dev->groups = pmu->attr_groups;
9863         device_initialize(pmu->dev);
9864         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9865         if (ret)
9866                 goto free_dev;
9867
9868         dev_set_drvdata(pmu->dev, pmu);
9869         pmu->dev->bus = &pmu_bus;
9870         pmu->dev->release = pmu_dev_release;
9871         ret = device_add(pmu->dev);
9872         if (ret)
9873                 goto free_dev;
9874
9875         /* For PMUs with address filters, throw in an extra attribute: */
9876         if (pmu->nr_addr_filters)
9877                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9878
9879         if (ret)
9880                 goto del_dev;
9881
9882         if (pmu->attr_update)
9883                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
9884
9885         if (ret)
9886                 goto del_dev;
9887
9888 out:
9889         return ret;
9890
9891 del_dev:
9892         device_del(pmu->dev);
9893
9894 free_dev:
9895         put_device(pmu->dev);
9896         goto out;
9897 }
9898
9899 static struct lock_class_key cpuctx_mutex;
9900 static struct lock_class_key cpuctx_lock;
9901
9902 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9903 {
9904         int cpu, ret;
9905
9906         mutex_lock(&pmus_lock);
9907         ret = -ENOMEM;
9908         pmu->pmu_disable_count = alloc_percpu(int);
9909         if (!pmu->pmu_disable_count)
9910                 goto unlock;
9911
9912         pmu->type = -1;
9913         if (!name)
9914                 goto skip_type;
9915         pmu->name = name;
9916
9917         if (type < 0) {
9918                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9919                 if (type < 0) {
9920                         ret = type;
9921                         goto free_pdc;
9922                 }
9923         }
9924         pmu->type = type;
9925
9926         if (pmu_bus_running) {
9927                 ret = pmu_dev_alloc(pmu);
9928                 if (ret)
9929                         goto free_idr;
9930         }
9931
9932 skip_type:
9933         if (pmu->task_ctx_nr == perf_hw_context) {
9934                 static int hw_context_taken = 0;
9935
9936                 /*
9937                  * Other than systems with heterogeneous CPUs, it never makes
9938                  * sense for two PMUs to share perf_hw_context. PMUs which are
9939                  * uncore must use perf_invalid_context.
9940                  */
9941                 if (WARN_ON_ONCE(hw_context_taken &&
9942                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9943                         pmu->task_ctx_nr = perf_invalid_context;
9944
9945                 hw_context_taken = 1;
9946         }
9947
9948         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9949         if (pmu->pmu_cpu_context)
9950                 goto got_cpu_context;
9951
9952         ret = -ENOMEM;
9953         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9954         if (!pmu->pmu_cpu_context)
9955                 goto free_dev;
9956
9957         for_each_possible_cpu(cpu) {
9958                 struct perf_cpu_context *cpuctx;
9959
9960                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9961                 __perf_event_init_context(&cpuctx->ctx);
9962                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9963                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9964                 cpuctx->ctx.pmu = pmu;
9965                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9966
9967                 __perf_mux_hrtimer_init(cpuctx, cpu);
9968         }
9969
9970 got_cpu_context:
9971         if (!pmu->start_txn) {
9972                 if (pmu->pmu_enable) {
9973                         /*
9974                          * If we have pmu_enable/pmu_disable calls, install
9975                          * transaction stubs that use that to try and batch
9976                          * hardware accesses.
9977                          */
9978                         pmu->start_txn  = perf_pmu_start_txn;
9979                         pmu->commit_txn = perf_pmu_commit_txn;
9980                         pmu->cancel_txn = perf_pmu_cancel_txn;
9981                 } else {
9982                         pmu->start_txn  = perf_pmu_nop_txn;
9983                         pmu->commit_txn = perf_pmu_nop_int;
9984                         pmu->cancel_txn = perf_pmu_nop_void;
9985                 }
9986         }
9987
9988         if (!pmu->pmu_enable) {
9989                 pmu->pmu_enable  = perf_pmu_nop_void;
9990                 pmu->pmu_disable = perf_pmu_nop_void;
9991         }
9992
9993         if (!pmu->check_period)
9994                 pmu->check_period = perf_event_nop_int;
9995
9996         if (!pmu->event_idx)
9997                 pmu->event_idx = perf_event_idx_default;
9998
9999         list_add_rcu(&pmu->entry, &pmus);
10000         atomic_set(&pmu->exclusive_cnt, 0);
10001         ret = 0;
10002 unlock:
10003         mutex_unlock(&pmus_lock);
10004
10005         return ret;
10006
10007 free_dev:
10008         device_del(pmu->dev);
10009         put_device(pmu->dev);
10010
10011 free_idr:
10012         if (pmu->type >= PERF_TYPE_MAX)
10013                 idr_remove(&pmu_idr, pmu->type);
10014
10015 free_pdc:
10016         free_percpu(pmu->pmu_disable_count);
10017         goto unlock;
10018 }
10019 EXPORT_SYMBOL_GPL(perf_pmu_register);
10020
10021 void perf_pmu_unregister(struct pmu *pmu)
10022 {
10023         mutex_lock(&pmus_lock);
10024         list_del_rcu(&pmu->entry);
10025
10026         /*
10027          * We dereference the pmu list under both SRCU and regular RCU, so
10028          * synchronize against both of those.
10029          */
10030         synchronize_srcu(&pmus_srcu);
10031         synchronize_rcu();
10032
10033         free_percpu(pmu->pmu_disable_count);
10034         if (pmu->type >= PERF_TYPE_MAX)
10035                 idr_remove(&pmu_idr, pmu->type);
10036         if (pmu_bus_running) {
10037                 if (pmu->nr_addr_filters)
10038                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10039                 device_del(pmu->dev);
10040                 put_device(pmu->dev);
10041         }
10042         free_pmu_context(pmu);
10043         mutex_unlock(&pmus_lock);
10044 }
10045 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10046
10047 static inline bool has_extended_regs(struct perf_event *event)
10048 {
10049         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10050                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10051 }
10052
10053 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10054 {
10055         struct perf_event_context *ctx = NULL;
10056         int ret;
10057
10058         if (!try_module_get(pmu->module))
10059                 return -ENODEV;
10060
10061         /*
10062          * A number of pmu->event_init() methods iterate the sibling_list to,
10063          * for example, validate if the group fits on the PMU. Therefore,
10064          * if this is a sibling event, acquire the ctx->mutex to protect
10065          * the sibling_list.
10066          */
10067         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10068                 /*
10069                  * This ctx->mutex can nest when we're called through
10070                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10071                  */
10072                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10073                                                  SINGLE_DEPTH_NESTING);
10074                 BUG_ON(!ctx);
10075         }
10076
10077         event->pmu = pmu;
10078         ret = pmu->event_init(event);
10079
10080         if (ctx)
10081                 perf_event_ctx_unlock(event->group_leader, ctx);
10082
10083         if (!ret) {
10084                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10085                     has_extended_regs(event))
10086                         ret = -EOPNOTSUPP;
10087
10088                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10089                     event_has_any_exclude_flag(event))
10090                         ret = -EINVAL;
10091
10092                 if (ret && event->destroy)
10093                         event->destroy(event);
10094         }
10095
10096         if (ret)
10097                 module_put(pmu->module);
10098
10099         return ret;
10100 }
10101
10102 static struct pmu *perf_init_event(struct perf_event *event)
10103 {
10104         struct pmu *pmu;
10105         int idx;
10106         int ret;
10107
10108         idx = srcu_read_lock(&pmus_srcu);
10109
10110         /* Try parent's PMU first: */
10111         if (event->parent && event->parent->pmu) {
10112                 pmu = event->parent->pmu;
10113                 ret = perf_try_init_event(pmu, event);
10114                 if (!ret)
10115                         goto unlock;
10116         }
10117
10118         rcu_read_lock();
10119         pmu = idr_find(&pmu_idr, event->attr.type);
10120         rcu_read_unlock();
10121         if (pmu) {
10122                 ret = perf_try_init_event(pmu, event);
10123                 if (ret)
10124                         pmu = ERR_PTR(ret);
10125                 goto unlock;
10126         }
10127
10128         list_for_each_entry_rcu(pmu, &pmus, entry) {
10129                 ret = perf_try_init_event(pmu, event);
10130                 if (!ret)
10131                         goto unlock;
10132
10133                 if (ret != -ENOENT) {
10134                         pmu = ERR_PTR(ret);
10135                         goto unlock;
10136                 }
10137         }
10138         pmu = ERR_PTR(-ENOENT);
10139 unlock:
10140         srcu_read_unlock(&pmus_srcu, idx);
10141
10142         return pmu;
10143 }
10144
10145 static void attach_sb_event(struct perf_event *event)
10146 {
10147         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10148
10149         raw_spin_lock(&pel->lock);
10150         list_add_rcu(&event->sb_list, &pel->list);
10151         raw_spin_unlock(&pel->lock);
10152 }
10153
10154 /*
10155  * We keep a list of all !task (and therefore per-cpu) events
10156  * that need to receive side-band records.
10157  *
10158  * This avoids having to scan all the various PMU per-cpu contexts
10159  * looking for them.
10160  */
10161 static void account_pmu_sb_event(struct perf_event *event)
10162 {
10163         if (is_sb_event(event))
10164                 attach_sb_event(event);
10165 }
10166
10167 static void account_event_cpu(struct perf_event *event, int cpu)
10168 {
10169         if (event->parent)
10170                 return;
10171
10172         if (is_cgroup_event(event))
10173                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10174 }
10175
10176 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10177 static void account_freq_event_nohz(void)
10178 {
10179 #ifdef CONFIG_NO_HZ_FULL
10180         /* Lock so we don't race with concurrent unaccount */
10181         spin_lock(&nr_freq_lock);
10182         if (atomic_inc_return(&nr_freq_events) == 1)
10183                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10184         spin_unlock(&nr_freq_lock);
10185 #endif
10186 }
10187
10188 static void account_freq_event(void)
10189 {
10190         if (tick_nohz_full_enabled())
10191                 account_freq_event_nohz();
10192         else
10193                 atomic_inc(&nr_freq_events);
10194 }
10195
10196
10197 static void account_event(struct perf_event *event)
10198 {
10199         bool inc = false;
10200
10201         if (event->parent)
10202                 return;
10203
10204         if (event->attach_state & PERF_ATTACH_TASK)
10205                 inc = true;
10206         if (event->attr.mmap || event->attr.mmap_data)
10207                 atomic_inc(&nr_mmap_events);
10208         if (event->attr.comm)
10209                 atomic_inc(&nr_comm_events);
10210         if (event->attr.namespaces)
10211                 atomic_inc(&nr_namespaces_events);
10212         if (event->attr.task)
10213                 atomic_inc(&nr_task_events);
10214         if (event->attr.freq)
10215                 account_freq_event();
10216         if (event->attr.context_switch) {
10217                 atomic_inc(&nr_switch_events);
10218                 inc = true;
10219         }
10220         if (has_branch_stack(event))
10221                 inc = true;
10222         if (is_cgroup_event(event))
10223                 inc = true;
10224         if (event->attr.ksymbol)
10225                 atomic_inc(&nr_ksymbol_events);
10226         if (event->attr.bpf_event)
10227                 atomic_inc(&nr_bpf_events);
10228
10229         if (inc) {
10230                 /*
10231                  * We need the mutex here because static_branch_enable()
10232                  * must complete *before* the perf_sched_count increment
10233                  * becomes visible.
10234                  */
10235                 if (atomic_inc_not_zero(&perf_sched_count))
10236                         goto enabled;
10237
10238                 mutex_lock(&perf_sched_mutex);
10239                 if (!atomic_read(&perf_sched_count)) {
10240                         static_branch_enable(&perf_sched_events);
10241                         /*
10242                          * Guarantee that all CPUs observe they key change and
10243                          * call the perf scheduling hooks before proceeding to
10244                          * install events that need them.
10245                          */
10246                         synchronize_rcu();
10247                 }
10248                 /*
10249                  * Now that we have waited for the sync_sched(), allow further
10250                  * increments to by-pass the mutex.
10251                  */
10252                 atomic_inc(&perf_sched_count);
10253                 mutex_unlock(&perf_sched_mutex);
10254         }
10255 enabled:
10256
10257         account_event_cpu(event, event->cpu);
10258
10259         account_pmu_sb_event(event);
10260 }
10261
10262 /*
10263  * Allocate and initialize an event structure
10264  */
10265 static struct perf_event *
10266 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10267                  struct task_struct *task,
10268                  struct perf_event *group_leader,
10269                  struct perf_event *parent_event,
10270                  perf_overflow_handler_t overflow_handler,
10271                  void *context, int cgroup_fd)
10272 {
10273         struct pmu *pmu;
10274         struct perf_event *event;
10275         struct hw_perf_event *hwc;
10276         long err = -EINVAL;
10277
10278         if ((unsigned)cpu >= nr_cpu_ids) {
10279                 if (!task || cpu != -1)
10280                         return ERR_PTR(-EINVAL);
10281         }
10282
10283         event = kzalloc(sizeof(*event), GFP_KERNEL);
10284         if (!event)
10285                 return ERR_PTR(-ENOMEM);
10286
10287         /*
10288          * Single events are their own group leaders, with an
10289          * empty sibling list:
10290          */
10291         if (!group_leader)
10292                 group_leader = event;
10293
10294         mutex_init(&event->child_mutex);
10295         INIT_LIST_HEAD(&event->child_list);
10296
10297         INIT_LIST_HEAD(&event->event_entry);
10298         INIT_LIST_HEAD(&event->sibling_list);
10299         INIT_LIST_HEAD(&event->active_list);
10300         init_event_group(event);
10301         INIT_LIST_HEAD(&event->rb_entry);
10302         INIT_LIST_HEAD(&event->active_entry);
10303         INIT_LIST_HEAD(&event->addr_filters.list);
10304         INIT_HLIST_NODE(&event->hlist_entry);
10305
10306
10307         init_waitqueue_head(&event->waitq);
10308         event->pending_disable = -1;
10309         init_irq_work(&event->pending, perf_pending_event);
10310
10311         mutex_init(&event->mmap_mutex);
10312         raw_spin_lock_init(&event->addr_filters.lock);
10313
10314         atomic_long_set(&event->refcount, 1);
10315         event->cpu              = cpu;
10316         event->attr             = *attr;
10317         event->group_leader     = group_leader;
10318         event->pmu              = NULL;
10319         event->oncpu            = -1;
10320
10321         event->parent           = parent_event;
10322
10323         event->ns               = get_pid_ns(task_active_pid_ns(current));
10324         event->id               = atomic64_inc_return(&perf_event_id);
10325
10326         event->state            = PERF_EVENT_STATE_INACTIVE;
10327
10328         if (task) {
10329                 event->attach_state = PERF_ATTACH_TASK;
10330                 /*
10331                  * XXX pmu::event_init needs to know what task to account to
10332                  * and we cannot use the ctx information because we need the
10333                  * pmu before we get a ctx.
10334                  */
10335                 get_task_struct(task);
10336                 event->hw.target = task;
10337         }
10338
10339         event->clock = &local_clock;
10340         if (parent_event)
10341                 event->clock = parent_event->clock;
10342
10343         if (!overflow_handler && parent_event) {
10344                 overflow_handler = parent_event->overflow_handler;
10345                 context = parent_event->overflow_handler_context;
10346 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10347                 if (overflow_handler == bpf_overflow_handler) {
10348                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10349
10350                         if (IS_ERR(prog)) {
10351                                 err = PTR_ERR(prog);
10352                                 goto err_ns;
10353                         }
10354                         event->prog = prog;
10355                         event->orig_overflow_handler =
10356                                 parent_event->orig_overflow_handler;
10357                 }
10358 #endif
10359         }
10360
10361         if (overflow_handler) {
10362                 event->overflow_handler = overflow_handler;
10363                 event->overflow_handler_context = context;
10364         } else if (is_write_backward(event)){
10365                 event->overflow_handler = perf_event_output_backward;
10366                 event->overflow_handler_context = NULL;
10367         } else {
10368                 event->overflow_handler = perf_event_output_forward;
10369                 event->overflow_handler_context = NULL;
10370         }
10371
10372         perf_event__state_init(event);
10373
10374         pmu = NULL;
10375
10376         hwc = &event->hw;
10377         hwc->sample_period = attr->sample_period;
10378         if (attr->freq && attr->sample_freq)
10379                 hwc->sample_period = 1;
10380         hwc->last_period = hwc->sample_period;
10381
10382         local64_set(&hwc->period_left, hwc->sample_period);
10383
10384         /*
10385          * We currently do not support PERF_SAMPLE_READ on inherited events.
10386          * See perf_output_read().
10387          */
10388         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10389                 goto err_ns;
10390
10391         if (!has_branch_stack(event))
10392                 event->attr.branch_sample_type = 0;
10393
10394         if (cgroup_fd != -1) {
10395                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10396                 if (err)
10397                         goto err_ns;
10398         }
10399
10400         pmu = perf_init_event(event);
10401         if (IS_ERR(pmu)) {
10402                 err = PTR_ERR(pmu);
10403                 goto err_ns;
10404         }
10405
10406         err = exclusive_event_init(event);
10407         if (err)
10408                 goto err_pmu;
10409
10410         if (has_addr_filter(event)) {
10411                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10412                                                     sizeof(struct perf_addr_filter_range),
10413                                                     GFP_KERNEL);
10414                 if (!event->addr_filter_ranges) {
10415                         err = -ENOMEM;
10416                         goto err_per_task;
10417                 }
10418
10419                 /*
10420                  * Clone the parent's vma offsets: they are valid until exec()
10421                  * even if the mm is not shared with the parent.
10422                  */
10423                 if (event->parent) {
10424                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10425
10426                         raw_spin_lock_irq(&ifh->lock);
10427                         memcpy(event->addr_filter_ranges,
10428                                event->parent->addr_filter_ranges,
10429                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10430                         raw_spin_unlock_irq(&ifh->lock);
10431                 }
10432
10433                 /* force hw sync on the address filters */
10434                 event->addr_filters_gen = 1;
10435         }
10436
10437         if (!event->parent) {
10438                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10439                         err = get_callchain_buffers(attr->sample_max_stack);
10440                         if (err)
10441                                 goto err_addr_filters;
10442                 }
10443         }
10444
10445         /* symmetric to unaccount_event() in _free_event() */
10446         account_event(event);
10447
10448         return event;
10449
10450 err_addr_filters:
10451         kfree(event->addr_filter_ranges);
10452
10453 err_per_task:
10454         exclusive_event_destroy(event);
10455
10456 err_pmu:
10457         if (event->destroy)
10458                 event->destroy(event);
10459         module_put(pmu->module);
10460 err_ns:
10461         if (is_cgroup_event(event))
10462                 perf_detach_cgroup(event);
10463         if (event->ns)
10464                 put_pid_ns(event->ns);
10465         if (event->hw.target)
10466                 put_task_struct(event->hw.target);
10467         kfree(event);
10468
10469         return ERR_PTR(err);
10470 }
10471
10472 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10473                           struct perf_event_attr *attr)
10474 {
10475         u32 size;
10476         int ret;
10477
10478         if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10479                 return -EFAULT;
10480
10481         /*
10482          * zero the full structure, so that a short copy will be nice.
10483          */
10484         memset(attr, 0, sizeof(*attr));
10485
10486         ret = get_user(size, &uattr->size);
10487         if (ret)
10488                 return ret;
10489
10490         if (size > PAGE_SIZE)   /* silly large */
10491                 goto err_size;
10492
10493         if (!size)              /* abi compat */
10494                 size = PERF_ATTR_SIZE_VER0;
10495
10496         if (size < PERF_ATTR_SIZE_VER0)
10497                 goto err_size;
10498
10499         /*
10500          * If we're handed a bigger struct than we know of,
10501          * ensure all the unknown bits are 0 - i.e. new
10502          * user-space does not rely on any kernel feature
10503          * extensions we dont know about yet.
10504          */
10505         if (size > sizeof(*attr)) {
10506                 unsigned char __user *addr;
10507                 unsigned char __user *end;
10508                 unsigned char val;
10509
10510                 addr = (void __user *)uattr + sizeof(*attr);
10511                 end  = (void __user *)uattr + size;
10512
10513                 for (; addr < end; addr++) {
10514                         ret = get_user(val, addr);
10515                         if (ret)
10516                                 return ret;
10517                         if (val)
10518                                 goto err_size;
10519                 }
10520                 size = sizeof(*attr);
10521         }
10522
10523         ret = copy_from_user(attr, uattr, size);
10524         if (ret)
10525                 return -EFAULT;
10526
10527         attr->size = size;
10528
10529         if (attr->__reserved_1)
10530                 return -EINVAL;
10531
10532         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10533                 return -EINVAL;
10534
10535         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10536                 return -EINVAL;
10537
10538         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10539                 u64 mask = attr->branch_sample_type;
10540
10541                 /* only using defined bits */
10542                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10543                         return -EINVAL;
10544
10545                 /* at least one branch bit must be set */
10546                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10547                         return -EINVAL;
10548
10549                 /* propagate priv level, when not set for branch */
10550                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10551
10552                         /* exclude_kernel checked on syscall entry */
10553                         if (!attr->exclude_kernel)
10554                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10555
10556                         if (!attr->exclude_user)
10557                                 mask |= PERF_SAMPLE_BRANCH_USER;
10558
10559                         if (!attr->exclude_hv)
10560                                 mask |= PERF_SAMPLE_BRANCH_HV;
10561                         /*
10562                          * adjust user setting (for HW filter setup)
10563                          */
10564                         attr->branch_sample_type = mask;
10565                 }
10566                 /* privileged levels capture (kernel, hv): check permissions */
10567                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10568                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10569                         return -EACCES;
10570         }
10571
10572         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10573                 ret = perf_reg_validate(attr->sample_regs_user);
10574                 if (ret)
10575                         return ret;
10576         }
10577
10578         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10579                 if (!arch_perf_have_user_stack_dump())
10580                         return -ENOSYS;
10581
10582                 /*
10583                  * We have __u32 type for the size, but so far
10584                  * we can only use __u16 as maximum due to the
10585                  * __u16 sample size limit.
10586                  */
10587                 if (attr->sample_stack_user >= USHRT_MAX)
10588                         return -EINVAL;
10589                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10590                         return -EINVAL;
10591         }
10592
10593         if (!attr->sample_max_stack)
10594                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10595
10596         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10597                 ret = perf_reg_validate(attr->sample_regs_intr);
10598 out:
10599         return ret;
10600
10601 err_size:
10602         put_user(sizeof(*attr), &uattr->size);
10603         ret = -E2BIG;
10604         goto out;
10605 }
10606
10607 static int
10608 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10609 {
10610         struct ring_buffer *rb = NULL;
10611         int ret = -EINVAL;
10612
10613         if (!output_event)
10614                 goto set;
10615
10616         /* don't allow circular references */
10617         if (event == output_event)
10618                 goto out;
10619
10620         /*
10621          * Don't allow cross-cpu buffers
10622          */
10623         if (output_event->cpu != event->cpu)
10624                 goto out;
10625
10626         /*
10627          * If its not a per-cpu rb, it must be the same task.
10628          */
10629         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10630                 goto out;
10631
10632         /*
10633          * Mixing clocks in the same buffer is trouble you don't need.
10634          */
10635         if (output_event->clock != event->clock)
10636                 goto out;
10637
10638         /*
10639          * Either writing ring buffer from beginning or from end.
10640          * Mixing is not allowed.
10641          */
10642         if (is_write_backward(output_event) != is_write_backward(event))
10643                 goto out;
10644
10645         /*
10646          * If both events generate aux data, they must be on the same PMU
10647          */
10648         if (has_aux(event) && has_aux(output_event) &&
10649             event->pmu != output_event->pmu)
10650                 goto out;
10651
10652 set:
10653         mutex_lock(&event->mmap_mutex);
10654         /* Can't redirect output if we've got an active mmap() */
10655         if (atomic_read(&event->mmap_count))
10656                 goto unlock;
10657
10658         if (output_event) {
10659                 /* get the rb we want to redirect to */
10660                 rb = ring_buffer_get(output_event);
10661                 if (!rb)
10662                         goto unlock;
10663         }
10664
10665         ring_buffer_attach(event, rb);
10666
10667         ret = 0;
10668 unlock:
10669         mutex_unlock(&event->mmap_mutex);
10670
10671 out:
10672         return ret;
10673 }
10674
10675 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10676 {
10677         if (b < a)
10678                 swap(a, b);
10679
10680         mutex_lock(a);
10681         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10682 }
10683
10684 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10685 {
10686         bool nmi_safe = false;
10687
10688         switch (clk_id) {
10689         case CLOCK_MONOTONIC:
10690                 event->clock = &ktime_get_mono_fast_ns;
10691                 nmi_safe = true;
10692                 break;
10693
10694         case CLOCK_MONOTONIC_RAW:
10695                 event->clock = &ktime_get_raw_fast_ns;
10696                 nmi_safe = true;
10697                 break;
10698
10699         case CLOCK_REALTIME:
10700                 event->clock = &ktime_get_real_ns;
10701                 break;
10702
10703         case CLOCK_BOOTTIME:
10704                 event->clock = &ktime_get_boottime_ns;
10705                 break;
10706
10707         case CLOCK_TAI:
10708                 event->clock = &ktime_get_clocktai_ns;
10709                 break;
10710
10711         default:
10712                 return -EINVAL;
10713         }
10714
10715         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10716                 return -EINVAL;
10717
10718         return 0;
10719 }
10720
10721 /*
10722  * Variation on perf_event_ctx_lock_nested(), except we take two context
10723  * mutexes.
10724  */
10725 static struct perf_event_context *
10726 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10727                              struct perf_event_context *ctx)
10728 {
10729         struct perf_event_context *gctx;
10730
10731 again:
10732         rcu_read_lock();
10733         gctx = READ_ONCE(group_leader->ctx);
10734         if (!refcount_inc_not_zero(&gctx->refcount)) {
10735                 rcu_read_unlock();
10736                 goto again;
10737         }
10738         rcu_read_unlock();
10739
10740         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10741
10742         if (group_leader->ctx != gctx) {
10743                 mutex_unlock(&ctx->mutex);
10744                 mutex_unlock(&gctx->mutex);
10745                 put_ctx(gctx);
10746                 goto again;
10747         }
10748
10749         return gctx;
10750 }
10751
10752 /**
10753  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10754  *
10755  * @attr_uptr:  event_id type attributes for monitoring/sampling
10756  * @pid:                target pid
10757  * @cpu:                target cpu
10758  * @group_fd:           group leader event fd
10759  */
10760 SYSCALL_DEFINE5(perf_event_open,
10761                 struct perf_event_attr __user *, attr_uptr,
10762                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10763 {
10764         struct perf_event *group_leader = NULL, *output_event = NULL;
10765         struct perf_event *event, *sibling;
10766         struct perf_event_attr attr;
10767         struct perf_event_context *ctx, *uninitialized_var(gctx);
10768         struct file *event_file = NULL;
10769         struct fd group = {NULL, 0};
10770         struct task_struct *task = NULL;
10771         struct pmu *pmu;
10772         int event_fd;
10773         int move_group = 0;
10774         int err;
10775         int f_flags = O_RDWR;
10776         int cgroup_fd = -1;
10777
10778         /* for future expandability... */
10779         if (flags & ~PERF_FLAG_ALL)
10780                 return -EINVAL;
10781
10782         err = perf_copy_attr(attr_uptr, &attr);
10783         if (err)
10784                 return err;
10785
10786         if (!attr.exclude_kernel) {
10787                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10788                         return -EACCES;
10789         }
10790
10791         if (attr.namespaces) {
10792                 if (!capable(CAP_SYS_ADMIN))
10793                         return -EACCES;
10794         }
10795
10796         if (attr.freq) {
10797                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10798                         return -EINVAL;
10799         } else {
10800                 if (attr.sample_period & (1ULL << 63))
10801                         return -EINVAL;
10802         }
10803
10804         /* Only privileged users can get physical addresses */
10805         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10806             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10807                 return -EACCES;
10808
10809         /*
10810          * In cgroup mode, the pid argument is used to pass the fd
10811          * opened to the cgroup directory in cgroupfs. The cpu argument
10812          * designates the cpu on which to monitor threads from that
10813          * cgroup.
10814          */
10815         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10816                 return -EINVAL;
10817
10818         if (flags & PERF_FLAG_FD_CLOEXEC)
10819                 f_flags |= O_CLOEXEC;
10820
10821         event_fd = get_unused_fd_flags(f_flags);
10822         if (event_fd < 0)
10823                 return event_fd;
10824
10825         if (group_fd != -1) {
10826                 err = perf_fget_light(group_fd, &group);
10827                 if (err)
10828                         goto err_fd;
10829                 group_leader = group.file->private_data;
10830                 if (flags & PERF_FLAG_FD_OUTPUT)
10831                         output_event = group_leader;
10832                 if (flags & PERF_FLAG_FD_NO_GROUP)
10833                         group_leader = NULL;
10834         }
10835
10836         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10837                 task = find_lively_task_by_vpid(pid);
10838                 if (IS_ERR(task)) {
10839                         err = PTR_ERR(task);
10840                         goto err_group_fd;
10841                 }
10842         }
10843
10844         if (task && group_leader &&
10845             group_leader->attr.inherit != attr.inherit) {
10846                 err = -EINVAL;
10847                 goto err_task;
10848         }
10849
10850         if (task) {
10851                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10852                 if (err)
10853                         goto err_task;
10854
10855                 /*
10856                  * Reuse ptrace permission checks for now.
10857                  *
10858                  * We must hold cred_guard_mutex across this and any potential
10859                  * perf_install_in_context() call for this new event to
10860                  * serialize against exec() altering our credentials (and the
10861                  * perf_event_exit_task() that could imply).
10862                  */
10863                 err = -EACCES;
10864                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10865                         goto err_cred;
10866         }
10867
10868         if (flags & PERF_FLAG_PID_CGROUP)
10869                 cgroup_fd = pid;
10870
10871         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10872                                  NULL, NULL, cgroup_fd);
10873         if (IS_ERR(event)) {
10874                 err = PTR_ERR(event);
10875                 goto err_cred;
10876         }
10877
10878         if (is_sampling_event(event)) {
10879                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10880                         err = -EOPNOTSUPP;
10881                         goto err_alloc;
10882                 }
10883         }
10884
10885         /*
10886          * Special case software events and allow them to be part of
10887          * any hardware group.
10888          */
10889         pmu = event->pmu;
10890
10891         if (attr.use_clockid) {
10892                 err = perf_event_set_clock(event, attr.clockid);
10893                 if (err)
10894                         goto err_alloc;
10895         }
10896
10897         if (pmu->task_ctx_nr == perf_sw_context)
10898                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10899
10900         if (group_leader) {
10901                 if (is_software_event(event) &&
10902                     !in_software_context(group_leader)) {
10903                         /*
10904                          * If the event is a sw event, but the group_leader
10905                          * is on hw context.
10906                          *
10907                          * Allow the addition of software events to hw
10908                          * groups, this is safe because software events
10909                          * never fail to schedule.
10910                          */
10911                         pmu = group_leader->ctx->pmu;
10912                 } else if (!is_software_event(event) &&
10913                            is_software_event(group_leader) &&
10914                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10915                         /*
10916                          * In case the group is a pure software group, and we
10917                          * try to add a hardware event, move the whole group to
10918                          * the hardware context.
10919                          */
10920                         move_group = 1;
10921                 }
10922         }
10923
10924         /*
10925          * Get the target context (task or percpu):
10926          */
10927         ctx = find_get_context(pmu, task, event);
10928         if (IS_ERR(ctx)) {
10929                 err = PTR_ERR(ctx);
10930                 goto err_alloc;
10931         }
10932
10933         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10934                 err = -EBUSY;
10935                 goto err_context;
10936         }
10937
10938         /*
10939          * Look up the group leader (we will attach this event to it):
10940          */
10941         if (group_leader) {
10942                 err = -EINVAL;
10943
10944                 /*
10945                  * Do not allow a recursive hierarchy (this new sibling
10946                  * becoming part of another group-sibling):
10947                  */
10948                 if (group_leader->group_leader != group_leader)
10949                         goto err_context;
10950
10951                 /* All events in a group should have the same clock */
10952                 if (group_leader->clock != event->clock)
10953                         goto err_context;
10954
10955                 /*
10956                  * Make sure we're both events for the same CPU;
10957                  * grouping events for different CPUs is broken; since
10958                  * you can never concurrently schedule them anyhow.
10959                  */
10960                 if (group_leader->cpu != event->cpu)
10961                         goto err_context;
10962
10963                 /*
10964                  * Make sure we're both on the same task, or both
10965                  * per-CPU events.
10966                  */
10967                 if (group_leader->ctx->task != ctx->task)
10968                         goto err_context;
10969
10970                 /*
10971                  * Do not allow to attach to a group in a different task
10972                  * or CPU context. If we're moving SW events, we'll fix
10973                  * this up later, so allow that.
10974                  */
10975                 if (!move_group && group_leader->ctx != ctx)
10976                         goto err_context;
10977
10978                 /*
10979                  * Only a group leader can be exclusive or pinned
10980                  */
10981                 if (attr.exclusive || attr.pinned)
10982                         goto err_context;
10983         }
10984
10985         if (output_event) {
10986                 err = perf_event_set_output(event, output_event);
10987                 if (err)
10988                         goto err_context;
10989         }
10990
10991         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10992                                         f_flags);
10993         if (IS_ERR(event_file)) {
10994                 err = PTR_ERR(event_file);
10995                 event_file = NULL;
10996                 goto err_context;
10997         }
10998
10999         if (move_group) {
11000                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11001
11002                 if (gctx->task == TASK_TOMBSTONE) {
11003                         err = -ESRCH;
11004                         goto err_locked;
11005                 }
11006
11007                 /*
11008                  * Check if we raced against another sys_perf_event_open() call
11009                  * moving the software group underneath us.
11010                  */
11011                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11012                         /*
11013                          * If someone moved the group out from under us, check
11014                          * if this new event wound up on the same ctx, if so
11015                          * its the regular !move_group case, otherwise fail.
11016                          */
11017                         if (gctx != ctx) {
11018                                 err = -EINVAL;
11019                                 goto err_locked;
11020                         } else {
11021                                 perf_event_ctx_unlock(group_leader, gctx);
11022                                 move_group = 0;
11023                         }
11024                 }
11025         } else {
11026                 mutex_lock(&ctx->mutex);
11027         }
11028
11029         if (ctx->task == TASK_TOMBSTONE) {
11030                 err = -ESRCH;
11031                 goto err_locked;
11032         }
11033
11034         if (!perf_event_validate_size(event)) {
11035                 err = -E2BIG;
11036                 goto err_locked;
11037         }
11038
11039         if (!task) {
11040                 /*
11041                  * Check if the @cpu we're creating an event for is online.
11042                  *
11043                  * We use the perf_cpu_context::ctx::mutex to serialize against
11044                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11045                  */
11046                 struct perf_cpu_context *cpuctx =
11047                         container_of(ctx, struct perf_cpu_context, ctx);
11048
11049                 if (!cpuctx->online) {
11050                         err = -ENODEV;
11051                         goto err_locked;
11052                 }
11053         }
11054
11055
11056         /*
11057          * Must be under the same ctx::mutex as perf_install_in_context(),
11058          * because we need to serialize with concurrent event creation.
11059          */
11060         if (!exclusive_event_installable(event, ctx)) {
11061                 /* exclusive and group stuff are assumed mutually exclusive */
11062                 WARN_ON_ONCE(move_group);
11063
11064                 err = -EBUSY;
11065                 goto err_locked;
11066         }
11067
11068         WARN_ON_ONCE(ctx->parent_ctx);
11069
11070         /*
11071          * This is the point on no return; we cannot fail hereafter. This is
11072          * where we start modifying current state.
11073          */
11074
11075         if (move_group) {
11076                 /*
11077                  * See perf_event_ctx_lock() for comments on the details
11078                  * of swizzling perf_event::ctx.
11079                  */
11080                 perf_remove_from_context(group_leader, 0);
11081                 put_ctx(gctx);
11082
11083                 for_each_sibling_event(sibling, group_leader) {
11084                         perf_remove_from_context(sibling, 0);
11085                         put_ctx(gctx);
11086                 }
11087
11088                 /*
11089                  * Wait for everybody to stop referencing the events through
11090                  * the old lists, before installing it on new lists.
11091                  */
11092                 synchronize_rcu();
11093
11094                 /*
11095                  * Install the group siblings before the group leader.
11096                  *
11097                  * Because a group leader will try and install the entire group
11098                  * (through the sibling list, which is still in-tact), we can
11099                  * end up with siblings installed in the wrong context.
11100                  *
11101                  * By installing siblings first we NO-OP because they're not
11102                  * reachable through the group lists.
11103                  */
11104                 for_each_sibling_event(sibling, group_leader) {
11105                         perf_event__state_init(sibling);
11106                         perf_install_in_context(ctx, sibling, sibling->cpu);
11107                         get_ctx(ctx);
11108                 }
11109
11110                 /*
11111                  * Removing from the context ends up with disabled
11112                  * event. What we want here is event in the initial
11113                  * startup state, ready to be add into new context.
11114                  */
11115                 perf_event__state_init(group_leader);
11116                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11117                 get_ctx(ctx);
11118         }
11119
11120         /*
11121          * Precalculate sample_data sizes; do while holding ctx::mutex such
11122          * that we're serialized against further additions and before
11123          * perf_install_in_context() which is the point the event is active and
11124          * can use these values.
11125          */
11126         perf_event__header_size(event);
11127         perf_event__id_header_size(event);
11128
11129         event->owner = current;
11130
11131         perf_install_in_context(ctx, event, event->cpu);
11132         perf_unpin_context(ctx);
11133
11134         if (move_group)
11135                 perf_event_ctx_unlock(group_leader, gctx);
11136         mutex_unlock(&ctx->mutex);
11137
11138         if (task) {
11139                 mutex_unlock(&task->signal->cred_guard_mutex);
11140                 put_task_struct(task);
11141         }
11142
11143         mutex_lock(&current->perf_event_mutex);
11144         list_add_tail(&event->owner_entry, &current->perf_event_list);
11145         mutex_unlock(&current->perf_event_mutex);
11146
11147         /*
11148          * Drop the reference on the group_event after placing the
11149          * new event on the sibling_list. This ensures destruction
11150          * of the group leader will find the pointer to itself in
11151          * perf_group_detach().
11152          */
11153         fdput(group);
11154         fd_install(event_fd, event_file);
11155         return event_fd;
11156
11157 err_locked:
11158         if (move_group)
11159                 perf_event_ctx_unlock(group_leader, gctx);
11160         mutex_unlock(&ctx->mutex);
11161 /* err_file: */
11162         fput(event_file);
11163 err_context:
11164         perf_unpin_context(ctx);
11165         put_ctx(ctx);
11166 err_alloc:
11167         /*
11168          * If event_file is set, the fput() above will have called ->release()
11169          * and that will take care of freeing the event.
11170          */
11171         if (!event_file)
11172                 free_event(event);
11173 err_cred:
11174         if (task)
11175                 mutex_unlock(&task->signal->cred_guard_mutex);
11176 err_task:
11177         if (task)
11178                 put_task_struct(task);
11179 err_group_fd:
11180         fdput(group);
11181 err_fd:
11182         put_unused_fd(event_fd);
11183         return err;
11184 }
11185
11186 /**
11187  * perf_event_create_kernel_counter
11188  *
11189  * @attr: attributes of the counter to create
11190  * @cpu: cpu in which the counter is bound
11191  * @task: task to profile (NULL for percpu)
11192  */
11193 struct perf_event *
11194 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11195                                  struct task_struct *task,
11196                                  perf_overflow_handler_t overflow_handler,
11197                                  void *context)
11198 {
11199         struct perf_event_context *ctx;
11200         struct perf_event *event;
11201         int err;
11202
11203         /*
11204          * Get the target context (task or percpu):
11205          */
11206
11207         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11208                                  overflow_handler, context, -1);
11209         if (IS_ERR(event)) {
11210                 err = PTR_ERR(event);
11211                 goto err;
11212         }
11213
11214         /* Mark owner so we could distinguish it from user events. */
11215         event->owner = TASK_TOMBSTONE;
11216
11217         ctx = find_get_context(event->pmu, task, event);
11218         if (IS_ERR(ctx)) {
11219                 err = PTR_ERR(ctx);
11220                 goto err_free;
11221         }
11222
11223         WARN_ON_ONCE(ctx->parent_ctx);
11224         mutex_lock(&ctx->mutex);
11225         if (ctx->task == TASK_TOMBSTONE) {
11226                 err = -ESRCH;
11227                 goto err_unlock;
11228         }
11229
11230         if (!task) {
11231                 /*
11232                  * Check if the @cpu we're creating an event for is online.
11233                  *
11234                  * We use the perf_cpu_context::ctx::mutex to serialize against
11235                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11236                  */
11237                 struct perf_cpu_context *cpuctx =
11238                         container_of(ctx, struct perf_cpu_context, ctx);
11239                 if (!cpuctx->online) {
11240                         err = -ENODEV;
11241                         goto err_unlock;
11242                 }
11243         }
11244
11245         if (!exclusive_event_installable(event, ctx)) {
11246                 err = -EBUSY;
11247                 goto err_unlock;
11248         }
11249
11250         perf_install_in_context(ctx, event, cpu);
11251         perf_unpin_context(ctx);
11252         mutex_unlock(&ctx->mutex);
11253
11254         return event;
11255
11256 err_unlock:
11257         mutex_unlock(&ctx->mutex);
11258         perf_unpin_context(ctx);
11259         put_ctx(ctx);
11260 err_free:
11261         free_event(event);
11262 err:
11263         return ERR_PTR(err);
11264 }
11265 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11266
11267 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11268 {
11269         struct perf_event_context *src_ctx;
11270         struct perf_event_context *dst_ctx;
11271         struct perf_event *event, *tmp;
11272         LIST_HEAD(events);
11273
11274         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11275         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11276
11277         /*
11278          * See perf_event_ctx_lock() for comments on the details
11279          * of swizzling perf_event::ctx.
11280          */
11281         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11282         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11283                                  event_entry) {
11284                 perf_remove_from_context(event, 0);
11285                 unaccount_event_cpu(event, src_cpu);
11286                 put_ctx(src_ctx);
11287                 list_add(&event->migrate_entry, &events);
11288         }
11289
11290         /*
11291          * Wait for the events to quiesce before re-instating them.
11292          */
11293         synchronize_rcu();
11294
11295         /*
11296          * Re-instate events in 2 passes.
11297          *
11298          * Skip over group leaders and only install siblings on this first
11299          * pass, siblings will not get enabled without a leader, however a
11300          * leader will enable its siblings, even if those are still on the old
11301          * context.
11302          */
11303         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11304                 if (event->group_leader == event)
11305                         continue;
11306
11307                 list_del(&event->migrate_entry);
11308                 if (event->state >= PERF_EVENT_STATE_OFF)
11309                         event->state = PERF_EVENT_STATE_INACTIVE;
11310                 account_event_cpu(event, dst_cpu);
11311                 perf_install_in_context(dst_ctx, event, dst_cpu);
11312                 get_ctx(dst_ctx);
11313         }
11314
11315         /*
11316          * Once all the siblings are setup properly, install the group leaders
11317          * to make it go.
11318          */
11319         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11320                 list_del(&event->migrate_entry);
11321                 if (event->state >= PERF_EVENT_STATE_OFF)
11322                         event->state = PERF_EVENT_STATE_INACTIVE;
11323                 account_event_cpu(event, dst_cpu);
11324                 perf_install_in_context(dst_ctx, event, dst_cpu);
11325                 get_ctx(dst_ctx);
11326         }
11327         mutex_unlock(&dst_ctx->mutex);
11328         mutex_unlock(&src_ctx->mutex);
11329 }
11330 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11331
11332 static void sync_child_event(struct perf_event *child_event,
11333                                struct task_struct *child)
11334 {
11335         struct perf_event *parent_event = child_event->parent;
11336         u64 child_val;
11337
11338         if (child_event->attr.inherit_stat)
11339                 perf_event_read_event(child_event, child);
11340
11341         child_val = perf_event_count(child_event);
11342
11343         /*
11344          * Add back the child's count to the parent's count:
11345          */
11346         atomic64_add(child_val, &parent_event->child_count);
11347         atomic64_add(child_event->total_time_enabled,
11348                      &parent_event->child_total_time_enabled);
11349         atomic64_add(child_event->total_time_running,
11350                      &parent_event->child_total_time_running);
11351 }
11352
11353 static void
11354 perf_event_exit_event(struct perf_event *child_event,
11355                       struct perf_event_context *child_ctx,
11356                       struct task_struct *child)
11357 {
11358         struct perf_event *parent_event = child_event->parent;
11359
11360         /*
11361          * Do not destroy the 'original' grouping; because of the context
11362          * switch optimization the original events could've ended up in a
11363          * random child task.
11364          *
11365          * If we were to destroy the original group, all group related
11366          * operations would cease to function properly after this random
11367          * child dies.
11368          *
11369          * Do destroy all inherited groups, we don't care about those
11370          * and being thorough is better.
11371          */
11372         raw_spin_lock_irq(&child_ctx->lock);
11373         WARN_ON_ONCE(child_ctx->is_active);
11374
11375         if (parent_event)
11376                 perf_group_detach(child_event);
11377         list_del_event(child_event, child_ctx);
11378         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11379         raw_spin_unlock_irq(&child_ctx->lock);
11380
11381         /*
11382          * Parent events are governed by their filedesc, retain them.
11383          */
11384         if (!parent_event) {
11385                 perf_event_wakeup(child_event);
11386                 return;
11387         }
11388         /*
11389          * Child events can be cleaned up.
11390          */
11391
11392         sync_child_event(child_event, child);
11393
11394         /*
11395          * Remove this event from the parent's list
11396          */
11397         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11398         mutex_lock(&parent_event->child_mutex);
11399         list_del_init(&child_event->child_list);
11400         mutex_unlock(&parent_event->child_mutex);
11401
11402         /*
11403          * Kick perf_poll() for is_event_hup().
11404          */
11405         perf_event_wakeup(parent_event);
11406         free_event(child_event);
11407         put_event(parent_event);
11408 }
11409
11410 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11411 {
11412         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11413         struct perf_event *child_event, *next;
11414
11415         WARN_ON_ONCE(child != current);
11416
11417         child_ctx = perf_pin_task_context(child, ctxn);
11418         if (!child_ctx)
11419                 return;
11420
11421         /*
11422          * In order to reduce the amount of tricky in ctx tear-down, we hold
11423          * ctx::mutex over the entire thing. This serializes against almost
11424          * everything that wants to access the ctx.
11425          *
11426          * The exception is sys_perf_event_open() /
11427          * perf_event_create_kernel_count() which does find_get_context()
11428          * without ctx::mutex (it cannot because of the move_group double mutex
11429          * lock thing). See the comments in perf_install_in_context().
11430          */
11431         mutex_lock(&child_ctx->mutex);
11432
11433         /*
11434          * In a single ctx::lock section, de-schedule the events and detach the
11435          * context from the task such that we cannot ever get it scheduled back
11436          * in.
11437          */
11438         raw_spin_lock_irq(&child_ctx->lock);
11439         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11440
11441         /*
11442          * Now that the context is inactive, destroy the task <-> ctx relation
11443          * and mark the context dead.
11444          */
11445         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11446         put_ctx(child_ctx); /* cannot be last */
11447         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11448         put_task_struct(current); /* cannot be last */
11449
11450         clone_ctx = unclone_ctx(child_ctx);
11451         raw_spin_unlock_irq(&child_ctx->lock);
11452
11453         if (clone_ctx)
11454                 put_ctx(clone_ctx);
11455
11456         /*
11457          * Report the task dead after unscheduling the events so that we
11458          * won't get any samples after PERF_RECORD_EXIT. We can however still
11459          * get a few PERF_RECORD_READ events.
11460          */
11461         perf_event_task(child, child_ctx, 0);
11462
11463         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11464                 perf_event_exit_event(child_event, child_ctx, child);
11465
11466         mutex_unlock(&child_ctx->mutex);
11467
11468         put_ctx(child_ctx);
11469 }
11470
11471 /*
11472  * When a child task exits, feed back event values to parent events.
11473  *
11474  * Can be called with cred_guard_mutex held when called from
11475  * install_exec_creds().
11476  */
11477 void perf_event_exit_task(struct task_struct *child)
11478 {
11479         struct perf_event *event, *tmp;
11480         int ctxn;
11481
11482         mutex_lock(&child->perf_event_mutex);
11483         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11484                                  owner_entry) {
11485                 list_del_init(&event->owner_entry);
11486
11487                 /*
11488                  * Ensure the list deletion is visible before we clear
11489                  * the owner, closes a race against perf_release() where
11490                  * we need to serialize on the owner->perf_event_mutex.
11491                  */
11492                 smp_store_release(&event->owner, NULL);
11493         }
11494         mutex_unlock(&child->perf_event_mutex);
11495
11496         for_each_task_context_nr(ctxn)
11497                 perf_event_exit_task_context(child, ctxn);
11498
11499         /*
11500          * The perf_event_exit_task_context calls perf_event_task
11501          * with child's task_ctx, which generates EXIT events for
11502          * child contexts and sets child->perf_event_ctxp[] to NULL.
11503          * At this point we need to send EXIT events to cpu contexts.
11504          */
11505         perf_event_task(child, NULL, 0);
11506 }
11507
11508 static void perf_free_event(struct perf_event *event,
11509                             struct perf_event_context *ctx)
11510 {
11511         struct perf_event *parent = event->parent;
11512
11513         if (WARN_ON_ONCE(!parent))
11514                 return;
11515
11516         mutex_lock(&parent->child_mutex);
11517         list_del_init(&event->child_list);
11518         mutex_unlock(&parent->child_mutex);
11519
11520         put_event(parent);
11521
11522         raw_spin_lock_irq(&ctx->lock);
11523         perf_group_detach(event);
11524         list_del_event(event, ctx);
11525         raw_spin_unlock_irq(&ctx->lock);
11526         free_event(event);
11527 }
11528
11529 /*
11530  * Free an unexposed, unused context as created by inheritance by
11531  * perf_event_init_task below, used by fork() in case of fail.
11532  *
11533  * Not all locks are strictly required, but take them anyway to be nice and
11534  * help out with the lockdep assertions.
11535  */
11536 void perf_event_free_task(struct task_struct *task)
11537 {
11538         struct perf_event_context *ctx;
11539         struct perf_event *event, *tmp;
11540         int ctxn;
11541
11542         for_each_task_context_nr(ctxn) {
11543                 ctx = task->perf_event_ctxp[ctxn];
11544                 if (!ctx)
11545                         continue;
11546
11547                 mutex_lock(&ctx->mutex);
11548                 raw_spin_lock_irq(&ctx->lock);
11549                 /*
11550                  * Destroy the task <-> ctx relation and mark the context dead.
11551                  *
11552                  * This is important because even though the task hasn't been
11553                  * exposed yet the context has been (through child_list).
11554                  */
11555                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11556                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11557                 put_task_struct(task); /* cannot be last */
11558                 raw_spin_unlock_irq(&ctx->lock);
11559
11560                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11561                         perf_free_event(event, ctx);
11562
11563                 mutex_unlock(&ctx->mutex);
11564                 put_ctx(ctx);
11565         }
11566 }
11567
11568 void perf_event_delayed_put(struct task_struct *task)
11569 {
11570         int ctxn;
11571
11572         for_each_task_context_nr(ctxn)
11573                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11574 }
11575
11576 struct file *perf_event_get(unsigned int fd)
11577 {
11578         struct file *file;
11579
11580         file = fget_raw(fd);
11581         if (!file)
11582                 return ERR_PTR(-EBADF);
11583
11584         if (file->f_op != &perf_fops) {
11585                 fput(file);
11586                 return ERR_PTR(-EBADF);
11587         }
11588
11589         return file;
11590 }
11591
11592 const struct perf_event *perf_get_event(struct file *file)
11593 {
11594         if (file->f_op != &perf_fops)
11595                 return ERR_PTR(-EINVAL);
11596
11597         return file->private_data;
11598 }
11599
11600 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11601 {
11602         if (!event)
11603                 return ERR_PTR(-EINVAL);
11604
11605         return &event->attr;
11606 }
11607
11608 /*
11609  * Inherit an event from parent task to child task.
11610  *
11611  * Returns:
11612  *  - valid pointer on success
11613  *  - NULL for orphaned events
11614  *  - IS_ERR() on error
11615  */
11616 static struct perf_event *
11617 inherit_event(struct perf_event *parent_event,
11618               struct task_struct *parent,
11619               struct perf_event_context *parent_ctx,
11620               struct task_struct *child,
11621               struct perf_event *group_leader,
11622               struct perf_event_context *child_ctx)
11623 {
11624         enum perf_event_state parent_state = parent_event->state;
11625         struct perf_event *child_event;
11626         unsigned long flags;
11627
11628         /*
11629          * Instead of creating recursive hierarchies of events,
11630          * we link inherited events back to the original parent,
11631          * which has a filp for sure, which we use as the reference
11632          * count:
11633          */
11634         if (parent_event->parent)
11635                 parent_event = parent_event->parent;
11636
11637         child_event = perf_event_alloc(&parent_event->attr,
11638                                            parent_event->cpu,
11639                                            child,
11640                                            group_leader, parent_event,
11641                                            NULL, NULL, -1);
11642         if (IS_ERR(child_event))
11643                 return child_event;
11644
11645
11646         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11647             !child_ctx->task_ctx_data) {
11648                 struct pmu *pmu = child_event->pmu;
11649
11650                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11651                                                    GFP_KERNEL);
11652                 if (!child_ctx->task_ctx_data) {
11653                         free_event(child_event);
11654                         return NULL;
11655                 }
11656         }
11657
11658         /*
11659          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11660          * must be under the same lock in order to serialize against
11661          * perf_event_release_kernel(), such that either we must observe
11662          * is_orphaned_event() or they will observe us on the child_list.
11663          */
11664         mutex_lock(&parent_event->child_mutex);
11665         if (is_orphaned_event(parent_event) ||
11666             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11667                 mutex_unlock(&parent_event->child_mutex);
11668                 /* task_ctx_data is freed with child_ctx */
11669                 free_event(child_event);
11670                 return NULL;
11671         }
11672
11673         get_ctx(child_ctx);
11674
11675         /*
11676          * Make the child state follow the state of the parent event,
11677          * not its attr.disabled bit.  We hold the parent's mutex,
11678          * so we won't race with perf_event_{en, dis}able_family.
11679          */
11680         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11681                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11682         else
11683                 child_event->state = PERF_EVENT_STATE_OFF;
11684
11685         if (parent_event->attr.freq) {
11686                 u64 sample_period = parent_event->hw.sample_period;
11687                 struct hw_perf_event *hwc = &child_event->hw;
11688
11689                 hwc->sample_period = sample_period;
11690                 hwc->last_period   = sample_period;
11691
11692                 local64_set(&hwc->period_left, sample_period);
11693         }
11694
11695         child_event->ctx = child_ctx;
11696         child_event->overflow_handler = parent_event->overflow_handler;
11697         child_event->overflow_handler_context
11698                 = parent_event->overflow_handler_context;
11699
11700         /*
11701          * Precalculate sample_data sizes
11702          */
11703         perf_event__header_size(child_event);
11704         perf_event__id_header_size(child_event);
11705
11706         /*
11707          * Link it up in the child's context:
11708          */
11709         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11710         add_event_to_ctx(child_event, child_ctx);
11711         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11712
11713         /*
11714          * Link this into the parent event's child list
11715          */
11716         list_add_tail(&child_event->child_list, &parent_event->child_list);
11717         mutex_unlock(&parent_event->child_mutex);
11718
11719         return child_event;
11720 }
11721
11722 /*
11723  * Inherits an event group.
11724  *
11725  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11726  * This matches with perf_event_release_kernel() removing all child events.
11727  *
11728  * Returns:
11729  *  - 0 on success
11730  *  - <0 on error
11731  */
11732 static int inherit_group(struct perf_event *parent_event,
11733               struct task_struct *parent,
11734               struct perf_event_context *parent_ctx,
11735               struct task_struct *child,
11736               struct perf_event_context *child_ctx)
11737 {
11738         struct perf_event *leader;
11739         struct perf_event *sub;
11740         struct perf_event *child_ctr;
11741
11742         leader = inherit_event(parent_event, parent, parent_ctx,
11743                                  child, NULL, child_ctx);
11744         if (IS_ERR(leader))
11745                 return PTR_ERR(leader);
11746         /*
11747          * @leader can be NULL here because of is_orphaned_event(). In this
11748          * case inherit_event() will create individual events, similar to what
11749          * perf_group_detach() would do anyway.
11750          */
11751         for_each_sibling_event(sub, parent_event) {
11752                 child_ctr = inherit_event(sub, parent, parent_ctx,
11753                                             child, leader, child_ctx);
11754                 if (IS_ERR(child_ctr))
11755                         return PTR_ERR(child_ctr);
11756         }
11757         return 0;
11758 }
11759
11760 /*
11761  * Creates the child task context and tries to inherit the event-group.
11762  *
11763  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11764  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11765  * consistent with perf_event_release_kernel() removing all child events.
11766  *
11767  * Returns:
11768  *  - 0 on success
11769  *  - <0 on error
11770  */
11771 static int
11772 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11773                    struct perf_event_context *parent_ctx,
11774                    struct task_struct *child, int ctxn,
11775                    int *inherited_all)
11776 {
11777         int ret;
11778         struct perf_event_context *child_ctx;
11779
11780         if (!event->attr.inherit) {
11781                 *inherited_all = 0;
11782                 return 0;
11783         }
11784
11785         child_ctx = child->perf_event_ctxp[ctxn];
11786         if (!child_ctx) {
11787                 /*
11788                  * This is executed from the parent task context, so
11789                  * inherit events that have been marked for cloning.
11790                  * First allocate and initialize a context for the
11791                  * child.
11792                  */
11793                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11794                 if (!child_ctx)
11795                         return -ENOMEM;
11796
11797                 child->perf_event_ctxp[ctxn] = child_ctx;
11798         }
11799
11800         ret = inherit_group(event, parent, parent_ctx,
11801                             child, child_ctx);
11802
11803         if (ret)
11804                 *inherited_all = 0;
11805
11806         return ret;
11807 }
11808
11809 /*
11810  * Initialize the perf_event context in task_struct
11811  */
11812 static int perf_event_init_context(struct task_struct *child, int ctxn)
11813 {
11814         struct perf_event_context *child_ctx, *parent_ctx;
11815         struct perf_event_context *cloned_ctx;
11816         struct perf_event *event;
11817         struct task_struct *parent = current;
11818         int inherited_all = 1;
11819         unsigned long flags;
11820         int ret = 0;
11821
11822         if (likely(!parent->perf_event_ctxp[ctxn]))
11823                 return 0;
11824
11825         /*
11826          * If the parent's context is a clone, pin it so it won't get
11827          * swapped under us.
11828          */
11829         parent_ctx = perf_pin_task_context(parent, ctxn);
11830         if (!parent_ctx)
11831                 return 0;
11832
11833         /*
11834          * No need to check if parent_ctx != NULL here; since we saw
11835          * it non-NULL earlier, the only reason for it to become NULL
11836          * is if we exit, and since we're currently in the middle of
11837          * a fork we can't be exiting at the same time.
11838          */
11839
11840         /*
11841          * Lock the parent list. No need to lock the child - not PID
11842          * hashed yet and not running, so nobody can access it.
11843          */
11844         mutex_lock(&parent_ctx->mutex);
11845
11846         /*
11847          * We dont have to disable NMIs - we are only looking at
11848          * the list, not manipulating it:
11849          */
11850         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11851                 ret = inherit_task_group(event, parent, parent_ctx,
11852                                          child, ctxn, &inherited_all);
11853                 if (ret)
11854                         goto out_unlock;
11855         }
11856
11857         /*
11858          * We can't hold ctx->lock when iterating the ->flexible_group list due
11859          * to allocations, but we need to prevent rotation because
11860          * rotate_ctx() will change the list from interrupt context.
11861          */
11862         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11863         parent_ctx->rotate_disable = 1;
11864         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11865
11866         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11867                 ret = inherit_task_group(event, parent, parent_ctx,
11868                                          child, ctxn, &inherited_all);
11869                 if (ret)
11870                         goto out_unlock;
11871         }
11872
11873         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11874         parent_ctx->rotate_disable = 0;
11875
11876         child_ctx = child->perf_event_ctxp[ctxn];
11877
11878         if (child_ctx && inherited_all) {
11879                 /*
11880                  * Mark the child context as a clone of the parent
11881                  * context, or of whatever the parent is a clone of.
11882                  *
11883                  * Note that if the parent is a clone, the holding of
11884                  * parent_ctx->lock avoids it from being uncloned.
11885                  */
11886                 cloned_ctx = parent_ctx->parent_ctx;
11887                 if (cloned_ctx) {
11888                         child_ctx->parent_ctx = cloned_ctx;
11889                         child_ctx->parent_gen = parent_ctx->parent_gen;
11890                 } else {
11891                         child_ctx->parent_ctx = parent_ctx;
11892                         child_ctx->parent_gen = parent_ctx->generation;
11893                 }
11894                 get_ctx(child_ctx->parent_ctx);
11895         }
11896
11897         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11898 out_unlock:
11899         mutex_unlock(&parent_ctx->mutex);
11900
11901         perf_unpin_context(parent_ctx);
11902         put_ctx(parent_ctx);
11903
11904         return ret;
11905 }
11906
11907 /*
11908  * Initialize the perf_event context in task_struct
11909  */
11910 int perf_event_init_task(struct task_struct *child)
11911 {
11912         int ctxn, ret;
11913
11914         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11915         mutex_init(&child->perf_event_mutex);
11916         INIT_LIST_HEAD(&child->perf_event_list);
11917
11918         for_each_task_context_nr(ctxn) {
11919                 ret = perf_event_init_context(child, ctxn);
11920                 if (ret) {
11921                         perf_event_free_task(child);
11922                         return ret;
11923                 }
11924         }
11925
11926         return 0;
11927 }
11928
11929 static void __init perf_event_init_all_cpus(void)
11930 {
11931         struct swevent_htable *swhash;
11932         int cpu;
11933
11934         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11935
11936         for_each_possible_cpu(cpu) {
11937                 swhash = &per_cpu(swevent_htable, cpu);
11938                 mutex_init(&swhash->hlist_mutex);
11939                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11940
11941                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11942                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11943
11944 #ifdef CONFIG_CGROUP_PERF
11945                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11946 #endif
11947                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11948         }
11949 }
11950
11951 static void perf_swevent_init_cpu(unsigned int cpu)
11952 {
11953         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11954
11955         mutex_lock(&swhash->hlist_mutex);
11956         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11957                 struct swevent_hlist *hlist;
11958
11959                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11960                 WARN_ON(!hlist);
11961                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11962         }
11963         mutex_unlock(&swhash->hlist_mutex);
11964 }
11965
11966 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11967 static void __perf_event_exit_context(void *__info)
11968 {
11969         struct perf_event_context *ctx = __info;
11970         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11971         struct perf_event *event;
11972
11973         raw_spin_lock(&ctx->lock);
11974         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11975         list_for_each_entry(event, &ctx->event_list, event_entry)
11976                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11977         raw_spin_unlock(&ctx->lock);
11978 }
11979
11980 static void perf_event_exit_cpu_context(int cpu)
11981 {
11982         struct perf_cpu_context *cpuctx;
11983         struct perf_event_context *ctx;
11984         struct pmu *pmu;
11985
11986         mutex_lock(&pmus_lock);
11987         list_for_each_entry(pmu, &pmus, entry) {
11988                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11989                 ctx = &cpuctx->ctx;
11990
11991                 mutex_lock(&ctx->mutex);
11992                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11993                 cpuctx->online = 0;
11994                 mutex_unlock(&ctx->mutex);
11995         }
11996         cpumask_clear_cpu(cpu, perf_online_mask);
11997         mutex_unlock(&pmus_lock);
11998 }
11999 #else
12000
12001 static void perf_event_exit_cpu_context(int cpu) { }
12002
12003 #endif
12004
12005 int perf_event_init_cpu(unsigned int cpu)
12006 {
12007         struct perf_cpu_context *cpuctx;
12008         struct perf_event_context *ctx;
12009         struct pmu *pmu;
12010
12011         perf_swevent_init_cpu(cpu);
12012
12013         mutex_lock(&pmus_lock);
12014         cpumask_set_cpu(cpu, perf_online_mask);
12015         list_for_each_entry(pmu, &pmus, entry) {
12016                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12017                 ctx = &cpuctx->ctx;
12018
12019                 mutex_lock(&ctx->mutex);
12020                 cpuctx->online = 1;
12021                 mutex_unlock(&ctx->mutex);
12022         }
12023         mutex_unlock(&pmus_lock);
12024
12025         return 0;
12026 }
12027
12028 int perf_event_exit_cpu(unsigned int cpu)
12029 {
12030         perf_event_exit_cpu_context(cpu);
12031         return 0;
12032 }
12033
12034 static int
12035 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12036 {
12037         int cpu;
12038
12039         for_each_online_cpu(cpu)
12040                 perf_event_exit_cpu(cpu);
12041
12042         return NOTIFY_OK;
12043 }
12044
12045 /*
12046  * Run the perf reboot notifier at the very last possible moment so that
12047  * the generic watchdog code runs as long as possible.
12048  */
12049 static struct notifier_block perf_reboot_notifier = {
12050         .notifier_call = perf_reboot,
12051         .priority = INT_MIN,
12052 };
12053
12054 void __init perf_event_init(void)
12055 {
12056         int ret;
12057
12058         idr_init(&pmu_idr);
12059
12060         perf_event_init_all_cpus();
12061         init_srcu_struct(&pmus_srcu);
12062         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12063         perf_pmu_register(&perf_cpu_clock, NULL, -1);
12064         perf_pmu_register(&perf_task_clock, NULL, -1);
12065         perf_tp_register();
12066         perf_event_init_cpu(smp_processor_id());
12067         register_reboot_notifier(&perf_reboot_notifier);
12068
12069         ret = init_hw_breakpoint();
12070         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12071
12072         /*
12073          * Build time assertion that we keep the data_head at the intended
12074          * location.  IOW, validation we got the __reserved[] size right.
12075          */
12076         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12077                      != 1024);
12078 }
12079
12080 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12081                               char *page)
12082 {
12083         struct perf_pmu_events_attr *pmu_attr =
12084                 container_of(attr, struct perf_pmu_events_attr, attr);
12085
12086         if (pmu_attr->event_str)
12087                 return sprintf(page, "%s\n", pmu_attr->event_str);
12088
12089         return 0;
12090 }
12091 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12092
12093 static int __init perf_event_sysfs_init(void)
12094 {
12095         struct pmu *pmu;
12096         int ret;
12097
12098         mutex_lock(&pmus_lock);
12099
12100         ret = bus_register(&pmu_bus);
12101         if (ret)
12102                 goto unlock;
12103
12104         list_for_each_entry(pmu, &pmus, entry) {
12105                 if (!pmu->name || pmu->type < 0)
12106                         continue;
12107
12108                 ret = pmu_dev_alloc(pmu);
12109                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12110         }
12111         pmu_bus_running = 1;
12112         ret = 0;
12113
12114 unlock:
12115         mutex_unlock(&pmus_lock);
12116
12117         return ret;
12118 }
12119 device_initcall(perf_event_sysfs_init);
12120
12121 #ifdef CONFIG_CGROUP_PERF
12122 static struct cgroup_subsys_state *
12123 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12124 {
12125         struct perf_cgroup *jc;
12126
12127         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12128         if (!jc)
12129                 return ERR_PTR(-ENOMEM);
12130
12131         jc->info = alloc_percpu(struct perf_cgroup_info);
12132         if (!jc->info) {
12133                 kfree(jc);
12134                 return ERR_PTR(-ENOMEM);
12135         }
12136
12137         return &jc->css;
12138 }
12139
12140 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12141 {
12142         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12143
12144         free_percpu(jc->info);
12145         kfree(jc);
12146 }
12147
12148 static int __perf_cgroup_move(void *info)
12149 {
12150         struct task_struct *task = info;
12151         rcu_read_lock();
12152         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12153         rcu_read_unlock();
12154         return 0;
12155 }
12156
12157 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12158 {
12159         struct task_struct *task;
12160         struct cgroup_subsys_state *css;
12161
12162         cgroup_taskset_for_each(task, css, tset)
12163                 task_function_call(task, __perf_cgroup_move, task);
12164 }
12165
12166 struct cgroup_subsys perf_event_cgrp_subsys = {
12167         .css_alloc      = perf_cgroup_css_alloc,
12168         .css_free       = perf_cgroup_css_free,
12169         .attach         = perf_cgroup_attach,
12170         /*
12171          * Implicitly enable on dfl hierarchy so that perf events can
12172          * always be filtered by cgroup2 path as long as perf_event
12173          * controller is not mounted on a legacy hierarchy.
12174          */
12175         .implicit_on_dfl = true,
12176         .threaded       = true,
12177 };
12178 #endif /* CONFIG_CGROUP_PERF */