Merge tag 'f2fs-for-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[sfrench/cifs-2.6.git] / include / uapi / drm / drm_fourcc.h
1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26
27 #include "drm.h"
28
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32
33 /**
34  * DOC: overview
35  *
36  * In the DRM subsystem, framebuffer pixel formats are described using the
37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38  * fourcc code, a Format Modifier may optionally be provided, in order to
39  * further describe the buffer's format - for example tiling or compression.
40  *
41  * Format Modifiers
42  * ----------------
43  *
44  * Format modifiers are used in conjunction with a fourcc code, forming a
45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
46  * format and data layout of the buffer, and should be the only way to describe
47  * that particular buffer.
48  *
49  * Having multiple fourcc:modifier pairs which describe the same layout should
50  * be avoided, as such aliases run the risk of different drivers exposing
51  * different names for the same data format, forcing userspace to understand
52  * that they are aliases.
53  *
54  * Format modifiers may change any property of the buffer, including the number
55  * of planes and/or the required allocation size. Format modifiers are
56  * vendor-namespaced, and as such the relationship between a fourcc code and a
57  * modifier is specific to the modifer being used. For example, some modifiers
58  * may preserve meaning - such as number of planes - from the fourcc code,
59  * whereas others may not.
60  *
61  * Vendors should document their modifier usage in as much detail as
62  * possible, to ensure maximum compatibility across devices, drivers and
63  * applications.
64  *
65  * The authoritative list of format modifier codes is found in
66  * `include/uapi/drm/drm_fourcc.h`
67  */
68
69 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
70                                  ((__u32)(c) << 16) | ((__u32)(d) << 24))
71
72 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
73
74 /* Reserve 0 for the invalid format specifier */
75 #define DRM_FORMAT_INVALID      0
76
77 /* color index */
78 #define DRM_FORMAT_C8           fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
79
80 /* 8 bpp Red */
81 #define DRM_FORMAT_R8           fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
82
83 /* 16 bpp Red */
84 #define DRM_FORMAT_R16          fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
85
86 /* 16 bpp RG */
87 #define DRM_FORMAT_RG88         fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
88 #define DRM_FORMAT_GR88         fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
89
90 /* 32 bpp RG */
91 #define DRM_FORMAT_RG1616       fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
92 #define DRM_FORMAT_GR1616       fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
93
94 /* 8 bpp RGB */
95 #define DRM_FORMAT_RGB332       fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
96 #define DRM_FORMAT_BGR233       fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
97
98 /* 16 bpp RGB */
99 #define DRM_FORMAT_XRGB4444     fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
100 #define DRM_FORMAT_XBGR4444     fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
101 #define DRM_FORMAT_RGBX4444     fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
102 #define DRM_FORMAT_BGRX4444     fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
103
104 #define DRM_FORMAT_ARGB4444     fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
105 #define DRM_FORMAT_ABGR4444     fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
106 #define DRM_FORMAT_RGBA4444     fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
107 #define DRM_FORMAT_BGRA4444     fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
108
109 #define DRM_FORMAT_XRGB1555     fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
110 #define DRM_FORMAT_XBGR1555     fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
111 #define DRM_FORMAT_RGBX5551     fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
112 #define DRM_FORMAT_BGRX5551     fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
113
114 #define DRM_FORMAT_ARGB1555     fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
115 #define DRM_FORMAT_ABGR1555     fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
116 #define DRM_FORMAT_RGBA5551     fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
117 #define DRM_FORMAT_BGRA5551     fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
118
119 #define DRM_FORMAT_RGB565       fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
120 #define DRM_FORMAT_BGR565       fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
121
122 /* 24 bpp RGB */
123 #define DRM_FORMAT_RGB888       fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
124 #define DRM_FORMAT_BGR888       fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
125
126 /* 32 bpp RGB */
127 #define DRM_FORMAT_XRGB8888     fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
128 #define DRM_FORMAT_XBGR8888     fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
129 #define DRM_FORMAT_RGBX8888     fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
130 #define DRM_FORMAT_BGRX8888     fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
131
132 #define DRM_FORMAT_ARGB8888     fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
133 #define DRM_FORMAT_ABGR8888     fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
134 #define DRM_FORMAT_RGBA8888     fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
135 #define DRM_FORMAT_BGRA8888     fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
136
137 #define DRM_FORMAT_XRGB2101010  fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
138 #define DRM_FORMAT_XBGR2101010  fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
139 #define DRM_FORMAT_RGBX1010102  fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
140 #define DRM_FORMAT_BGRX1010102  fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
141
142 #define DRM_FORMAT_ARGB2101010  fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
143 #define DRM_FORMAT_ABGR2101010  fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
144 #define DRM_FORMAT_RGBA1010102  fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
145 #define DRM_FORMAT_BGRA1010102  fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
146
147 /*
148  * Floating point 64bpp RGB
149  * IEEE 754-2008 binary16 half-precision float
150  * [15:0] sign:exponent:mantissa 1:5:10
151  */
152 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
153 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
154
155 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
156 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
157
158 /* packed YCbCr */
159 #define DRM_FORMAT_YUYV         fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
160 #define DRM_FORMAT_YVYU         fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
161 #define DRM_FORMAT_UYVY         fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
162 #define DRM_FORMAT_VYUY         fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
163
164 #define DRM_FORMAT_AYUV         fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
165 #define DRM_FORMAT_XYUV8888     fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
166 #define DRM_FORMAT_VUY888       fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
167 #define DRM_FORMAT_VUY101010    fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
168
169 /*
170  * packed Y2xx indicate for each component, xx valid data occupy msb
171  * 16-xx padding occupy lsb
172  */
173 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
174 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
175 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
176
177 /*
178  * packed Y4xx indicate for each component, xx valid data occupy msb
179  * 16-xx padding occupy lsb except Y410
180  */
181 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
182 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
183 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
184
185 #define DRM_FORMAT_XVYU2101010  fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
186 #define DRM_FORMAT_XVYU12_16161616      fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
187 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
188
189 /*
190  * packed YCbCr420 2x2 tiled formats
191  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
192  */
193 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
194 #define DRM_FORMAT_Y0L0         fourcc_code('Y', '0', 'L', '0')
195 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
196 #define DRM_FORMAT_X0L0         fourcc_code('X', '0', 'L', '0')
197
198 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
199 #define DRM_FORMAT_Y0L2         fourcc_code('Y', '0', 'L', '2')
200 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
201 #define DRM_FORMAT_X0L2         fourcc_code('X', '0', 'L', '2')
202
203 /*
204  * 1-plane YUV 4:2:0
205  * In these formats, the component ordering is specified (Y, followed by U
206  * then V), but the exact Linear layout is undefined.
207  * These formats can only be used with a non-Linear modifier.
208  */
209 #define DRM_FORMAT_YUV420_8BIT  fourcc_code('Y', 'U', '0', '8')
210 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
211
212 /*
213  * 2 plane RGB + A
214  * index 0 = RGB plane, same format as the corresponding non _A8 format has
215  * index 1 = A plane, [7:0] A
216  */
217 #define DRM_FORMAT_XRGB8888_A8  fourcc_code('X', 'R', 'A', '8')
218 #define DRM_FORMAT_XBGR8888_A8  fourcc_code('X', 'B', 'A', '8')
219 #define DRM_FORMAT_RGBX8888_A8  fourcc_code('R', 'X', 'A', '8')
220 #define DRM_FORMAT_BGRX8888_A8  fourcc_code('B', 'X', 'A', '8')
221 #define DRM_FORMAT_RGB888_A8    fourcc_code('R', '8', 'A', '8')
222 #define DRM_FORMAT_BGR888_A8    fourcc_code('B', '8', 'A', '8')
223 #define DRM_FORMAT_RGB565_A8    fourcc_code('R', '5', 'A', '8')
224 #define DRM_FORMAT_BGR565_A8    fourcc_code('B', '5', 'A', '8')
225
226 /*
227  * 2 plane YCbCr
228  * index 0 = Y plane, [7:0] Y
229  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
230  * or
231  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
232  */
233 #define DRM_FORMAT_NV12         fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
234 #define DRM_FORMAT_NV21         fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
235 #define DRM_FORMAT_NV16         fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
236 #define DRM_FORMAT_NV61         fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
237 #define DRM_FORMAT_NV24         fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
238 #define DRM_FORMAT_NV42         fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
239
240 /*
241  * 2 plane YCbCr MSB aligned
242  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
243  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
244  */
245 #define DRM_FORMAT_P210         fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
246
247 /*
248  * 2 plane YCbCr MSB aligned
249  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
250  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
251  */
252 #define DRM_FORMAT_P010         fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
253
254 /*
255  * 2 plane YCbCr MSB aligned
256  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
257  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
258  */
259 #define DRM_FORMAT_P012         fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
260
261 /*
262  * 2 plane YCbCr MSB aligned
263  * index 0 = Y plane, [15:0] Y little endian
264  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
265  */
266 #define DRM_FORMAT_P016         fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
267
268 /*
269  * 3 plane YCbCr
270  * index 0: Y plane, [7:0] Y
271  * index 1: Cb plane, [7:0] Cb
272  * index 2: Cr plane, [7:0] Cr
273  * or
274  * index 1: Cr plane, [7:0] Cr
275  * index 2: Cb plane, [7:0] Cb
276  */
277 #define DRM_FORMAT_YUV410       fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
278 #define DRM_FORMAT_YVU410       fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
279 #define DRM_FORMAT_YUV411       fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
280 #define DRM_FORMAT_YVU411       fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
281 #define DRM_FORMAT_YUV420       fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
282 #define DRM_FORMAT_YVU420       fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
283 #define DRM_FORMAT_YUV422       fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
284 #define DRM_FORMAT_YVU422       fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
285 #define DRM_FORMAT_YUV444       fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
286 #define DRM_FORMAT_YVU444       fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
287
288
289 /*
290  * Format Modifiers:
291  *
292  * Format modifiers describe, typically, a re-ordering or modification
293  * of the data in a plane of an FB.  This can be used to express tiled/
294  * swizzled formats, or compression, or a combination of the two.
295  *
296  * The upper 8 bits of the format modifier are a vendor-id as assigned
297  * below.  The lower 56 bits are assigned as vendor sees fit.
298  */
299
300 /* Vendor Ids: */
301 #define DRM_FORMAT_MOD_NONE           0
302 #define DRM_FORMAT_MOD_VENDOR_NONE    0
303 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
304 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
305 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
306 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
307 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
308 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
309 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
310 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
311 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
312
313 /* add more to the end as needed */
314
315 #define DRM_FORMAT_RESERVED           ((1ULL << 56) - 1)
316
317 #define fourcc_mod_code(vendor, val) \
318         ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
319
320 /*
321  * Format Modifier tokens:
322  *
323  * When adding a new token please document the layout with a code comment,
324  * similar to the fourcc codes above. drm_fourcc.h is considered the
325  * authoritative source for all of these.
326  */
327
328 /*
329  * Invalid Modifier
330  *
331  * This modifier can be used as a sentinel to terminate the format modifiers
332  * list, or to initialize a variable with an invalid modifier. It might also be
333  * used to report an error back to userspace for certain APIs.
334  */
335 #define DRM_FORMAT_MOD_INVALID  fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
336
337 /*
338  * Linear Layout
339  *
340  * Just plain linear layout. Note that this is different from no specifying any
341  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
342  * which tells the driver to also take driver-internal information into account
343  * and so might actually result in a tiled framebuffer.
344  */
345 #define DRM_FORMAT_MOD_LINEAR   fourcc_mod_code(NONE, 0)
346
347 /* Intel framebuffer modifiers */
348
349 /*
350  * Intel X-tiling layout
351  *
352  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
353  * in row-major layout. Within the tile bytes are laid out row-major, with
354  * a platform-dependent stride. On top of that the memory can apply
355  * platform-depending swizzling of some higher address bits into bit6.
356  *
357  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
358  * On earlier platforms the is highly platforms specific and not useful for
359  * cross-driver sharing. It exists since on a given platform it does uniquely
360  * identify the layout in a simple way for i915-specific userspace, which
361  * facilitated conversion of userspace to modifiers. Additionally the exact
362  * format on some really old platforms is not known.
363  */
364 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
365
366 /*
367  * Intel Y-tiling layout
368  *
369  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
370  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
371  * chunks column-major, with a platform-dependent height. On top of that the
372  * memory can apply platform-depending swizzling of some higher address bits
373  * into bit6.
374  *
375  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
376  * On earlier platforms the is highly platforms specific and not useful for
377  * cross-driver sharing. It exists since on a given platform it does uniquely
378  * identify the layout in a simple way for i915-specific userspace, which
379  * facilitated conversion of userspace to modifiers. Additionally the exact
380  * format on some really old platforms is not known.
381  */
382 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
383
384 /*
385  * Intel Yf-tiling layout
386  *
387  * This is a tiled layout using 4Kb tiles in row-major layout.
388  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
389  * are arranged in four groups (two wide, two high) with column-major layout.
390  * Each group therefore consits out of four 256 byte units, which are also laid
391  * out as 2x2 column-major.
392  * 256 byte units are made out of four 64 byte blocks of pixels, producing
393  * either a square block or a 2:1 unit.
394  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
395  * in pixel depends on the pixel depth.
396  */
397 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
398
399 /*
400  * Intel color control surface (CCS) for render compression
401  *
402  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
403  * The main surface will be plane index 0 and must be Y/Yf-tiled,
404  * the CCS will be plane index 1.
405  *
406  * Each CCS tile matches a 1024x512 pixel area of the main surface.
407  * To match certain aspects of the 3D hardware the CCS is
408  * considered to be made up of normal 128Bx32 Y tiles, Thus
409  * the CCS pitch must be specified in multiples of 128 bytes.
410  *
411  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
412  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
413  * But that fact is not relevant unless the memory is accessed
414  * directly.
415  */
416 #define I915_FORMAT_MOD_Y_TILED_CCS     fourcc_mod_code(INTEL, 4)
417 #define I915_FORMAT_MOD_Yf_TILED_CCS    fourcc_mod_code(INTEL, 5)
418
419 /*
420  * Intel color control surfaces (CCS) for Gen-12 render compression.
421  *
422  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
423  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
424  * main surface. In other words, 4 bits in CCS map to a main surface cache
425  * line pair. The main surface pitch is required to be a multiple of four
426  * Y-tile widths.
427  */
428 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
429
430 /*
431  * Intel color control surfaces (CCS) for Gen-12 media compression
432  *
433  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
434  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
435  * main surface. In other words, 4 bits in CCS map to a main surface cache
436  * line pair. The main surface pitch is required to be a multiple of four
437  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
438  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
439  * planes 2 and 3 for the respective CCS.
440  */
441 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
442
443 /*
444  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
445  *
446  * Macroblocks are laid in a Z-shape, and each pixel data is following the
447  * standard NV12 style.
448  * As for NV12, an image is the result of two frame buffers: one for Y,
449  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
450  * Alignment requirements are (for each buffer):
451  * - multiple of 128 pixels for the width
452  * - multiple of  32 pixels for the height
453  *
454  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
455  */
456 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE       fourcc_mod_code(SAMSUNG, 1)
457
458 /*
459  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
460  *
461  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
462  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
463  * they correspond to their 16x16 luma block.
464  */
465 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE       fourcc_mod_code(SAMSUNG, 2)
466
467 /*
468  * Qualcomm Compressed Format
469  *
470  * Refers to a compressed variant of the base format that is compressed.
471  * Implementation may be platform and base-format specific.
472  *
473  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
474  * Pixel data pitch/stride is aligned with macrotile width.
475  * Pixel data height is aligned with macrotile height.
476  * Entire pixel data buffer is aligned with 4k(bytes).
477  */
478 #define DRM_FORMAT_MOD_QCOM_COMPRESSED  fourcc_mod_code(QCOM, 1)
479
480 /* Vivante framebuffer modifiers */
481
482 /*
483  * Vivante 4x4 tiling layout
484  *
485  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
486  * layout.
487  */
488 #define DRM_FORMAT_MOD_VIVANTE_TILED            fourcc_mod_code(VIVANTE, 1)
489
490 /*
491  * Vivante 64x64 super-tiling layout
492  *
493  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
494  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
495  * major layout.
496  *
497  * For more information: see
498  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
499  */
500 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED      fourcc_mod_code(VIVANTE, 2)
501
502 /*
503  * Vivante 4x4 tiling layout for dual-pipe
504  *
505  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
506  * different base address. Offsets from the base addresses are therefore halved
507  * compared to the non-split tiled layout.
508  */
509 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED      fourcc_mod_code(VIVANTE, 3)
510
511 /*
512  * Vivante 64x64 super-tiling layout for dual-pipe
513  *
514  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
515  * starts at a different base address. Offsets from the base addresses are
516  * therefore halved compared to the non-split super-tiled layout.
517  */
518 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
519
520 /* NVIDIA frame buffer modifiers */
521
522 /*
523  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
524  *
525  * Pixels are arranged in simple tiles of 16 x 16 bytes.
526  */
527 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
528
529 /*
530  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
531  * and Tegra GPUs starting with Tegra K1.
532  *
533  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
534  * based on the architecture generation.  GOBs themselves are then arranged in
535  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
536  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
537  * a block depth or height of "4").
538  *
539  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
540  * in full detail.
541  *
542  *       Macro
543  * Bits  Param Description
544  * ----  ----- -----------------------------------------------------------------
545  *
546  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
547  *             compatibility with the existing
548  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
549  *
550  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
551  *             compatibility with the existing
552  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
553  *
554  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
555  *             size).  Must be zero.
556  *
557  *             Note there is no log2(width) parameter.  Some portions of the
558  *             hardware support a block width of two gobs, but it is impractical
559  *             to use due to lack of support elsewhere, and has no known
560  *             benefits.
561  *
562  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
563  *             in blocks, specified via log2(tile width in blocks)).  Must be
564  *             zero.
565  *
566  * 19:12 k     Page Kind.  This value directly maps to a field in the page
567  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
568  *             in memory and can be derived from the tuple
569  *
570  *               (format, GPU model, compression type, samples per pixel)
571  *
572  *             Where compression type is defined below.  If GPU model were
573  *             implied by the format modifier, format, or memory buffer, page
574  *             kind would not need to be included in the modifier itself, but
575  *             since the modifier should define the layout of the associated
576  *             memory buffer independent from any device or other context, it
577  *             must be included here.
578  *
579  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
580  *             starting with Fermi GPUs.  Additionally, the mapping between page
581  *             kind and bit layout has changed at various points.
582  *
583  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
584  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
585  *               2 = Gob Height 8, Turing+ Page Kind mapping
586  *               3 = Reserved for future use.
587  *
588  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
589  *             bit remapping step that occurs at an even lower level than the
590  *             page kind and block linear swizzles.  This causes the layout of
591  *             surfaces mapped in those SOC's GPUs to be incompatible with the
592  *             equivalent mapping on other GPUs in the same system.
593  *
594  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
595  *               1 = Desktop GPU and Tegra Xavier+ Layout
596  *
597  * 25:23 c     Lossless Framebuffer Compression type.
598  *
599  *               0 = none
600  *               1 = ROP/3D, layout 1, exact compression format implied by Page
601  *                   Kind field
602  *               2 = ROP/3D, layout 2, exact compression format implied by Page
603  *                   Kind field
604  *               3 = CDE horizontal
605  *               4 = CDE vertical
606  *               5 = Reserved for future use
607  *               6 = Reserved for future use
608  *               7 = Reserved for future use
609  *
610  * 55:25 -     Reserved for future use.  Must be zero.
611  */
612 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
613         fourcc_mod_code(NVIDIA, (0x10 | \
614                                  ((h) & 0xf) | \
615                                  (((k) & 0xff) << 12) | \
616                                  (((g) & 0x3) << 20) | \
617                                  (((s) & 0x1) << 22) | \
618                                  (((c) & 0x7) << 23)))
619
620 /* To grandfather in prior block linear format modifiers to the above layout,
621  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
622  * with block-linear layouts, is remapped within drivers to the value 0xfe,
623  * which corresponds to the "generic" kind used for simple single-sample
624  * uncompressed color formats on Fermi - Volta GPUs.
625  */
626 static inline __u64
627 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
628 {
629         if (!(modifier & 0x10) || (modifier & (0xff << 12)))
630                 return modifier;
631         else
632                 return modifier | (0xfe << 12);
633 }
634
635 /*
636  * 16Bx2 Block Linear layout, used by Tegra K1 and later
637  *
638  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
639  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
640  *
641  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
642  *
643  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
644  * Valid values are:
645  *
646  * 0 == ONE_GOB
647  * 1 == TWO_GOBS
648  * 2 == FOUR_GOBS
649  * 3 == EIGHT_GOBS
650  * 4 == SIXTEEN_GOBS
651  * 5 == THIRTYTWO_GOBS
652  *
653  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
654  * in full detail.
655  */
656 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
657         DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
658
659 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
660         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
661 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
662         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
663 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
664         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
665 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
666         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
667 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
668         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
669 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
670         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
671
672 /*
673  * Some Broadcom modifiers take parameters, for example the number of
674  * vertical lines in the image. Reserve the lower 32 bits for modifier
675  * type, and the next 24 bits for parameters. Top 8 bits are the
676  * vendor code.
677  */
678 #define __fourcc_mod_broadcom_param_shift 8
679 #define __fourcc_mod_broadcom_param_bits 48
680 #define fourcc_mod_broadcom_code(val, params) \
681         fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
682 #define fourcc_mod_broadcom_param(m) \
683         ((int)(((m) >> __fourcc_mod_broadcom_param_shift) &     \
684                ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
685 #define fourcc_mod_broadcom_mod(m) \
686         ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<    \
687                  __fourcc_mod_broadcom_param_shift))
688
689 /*
690  * Broadcom VC4 "T" format
691  *
692  * This is the primary layout that the V3D GPU can texture from (it
693  * can't do linear).  The T format has:
694  *
695  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
696  *   pixels at 32 bit depth.
697  *
698  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
699  *   16x16 pixels).
700  *
701  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
702  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
703  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
704  *
705  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
706  *   tiles) or right-to-left (odd rows of 4k tiles).
707  */
708 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
709
710 /*
711  * Broadcom SAND format
712  *
713  * This is the native format that the H.264 codec block uses.  For VC4
714  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
715  *
716  * The image can be considered to be split into columns, and the
717  * columns are placed consecutively into memory.  The width of those
718  * columns can be either 32, 64, 128, or 256 pixels, but in practice
719  * only 128 pixel columns are used.
720  *
721  * The pitch between the start of each column is set to optimally
722  * switch between SDRAM banks. This is passed as the number of lines
723  * of column width in the modifier (we can't use the stride value due
724  * to various core checks that look at it , so you should set the
725  * stride to width*cpp).
726  *
727  * Note that the column height for this format modifier is the same
728  * for all of the planes, assuming that each column contains both Y
729  * and UV.  Some SAND-using hardware stores UV in a separate tiled
730  * image from Y to reduce the column height, which is not supported
731  * with these modifiers.
732  */
733
734 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
735         fourcc_mod_broadcom_code(2, v)
736 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
737         fourcc_mod_broadcom_code(3, v)
738 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
739         fourcc_mod_broadcom_code(4, v)
740 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
741         fourcc_mod_broadcom_code(5, v)
742
743 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
744         DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
745 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
746         DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
747 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
748         DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
749 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
750         DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
751
752 /* Broadcom UIF format
753  *
754  * This is the common format for the current Broadcom multimedia
755  * blocks, including V3D 3.x and newer, newer video codecs, and
756  * displays.
757  *
758  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
759  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
760  * stored in columns, with padding between the columns to ensure that
761  * moving from one column to the next doesn't hit the same SDRAM page
762  * bank.
763  *
764  * To calculate the padding, it is assumed that each hardware block
765  * and the software driving it knows the platform's SDRAM page size,
766  * number of banks, and XOR address, and that it's identical between
767  * all blocks using the format.  This tiling modifier will use XOR as
768  * necessary to reduce the padding.  If a hardware block can't do XOR,
769  * the assumption is that a no-XOR tiling modifier will be created.
770  */
771 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
772
773 /*
774  * Arm Framebuffer Compression (AFBC) modifiers
775  *
776  * AFBC is a proprietary lossless image compression protocol and format.
777  * It provides fine-grained random access and minimizes the amount of data
778  * transferred between IP blocks.
779  *
780  * AFBC has several features which may be supported and/or used, which are
781  * represented using bits in the modifier. Not all combinations are valid,
782  * and different devices or use-cases may support different combinations.
783  *
784  * Further information on the use of AFBC modifiers can be found in
785  * Documentation/gpu/afbc.rst
786  */
787
788 /*
789  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
790  * modifiers) denote the category for modifiers. Currently we have only two
791  * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
792  * different categories.
793  */
794 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
795         fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
796
797 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
798 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
799
800 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
801         DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
802
803 /*
804  * AFBC superblock size
805  *
806  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
807  * size (in pixels) must be aligned to a multiple of the superblock size.
808  * Four lowest significant bits(LSBs) are reserved for block size.
809  *
810  * Where one superblock size is specified, it applies to all planes of the
811  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
812  * the first applies to the Luma plane and the second applies to the Chroma
813  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
814  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
815  */
816 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
817 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
818 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
819 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
820 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
821
822 /*
823  * AFBC lossless colorspace transform
824  *
825  * Indicates that the buffer makes use of the AFBC lossless colorspace
826  * transform.
827  */
828 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
829
830 /*
831  * AFBC block-split
832  *
833  * Indicates that the payload of each superblock is split. The second
834  * half of the payload is positioned at a predefined offset from the start
835  * of the superblock payload.
836  */
837 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
838
839 /*
840  * AFBC sparse layout
841  *
842  * This flag indicates that the payload of each superblock must be stored at a
843  * predefined position relative to the other superblocks in the same AFBC
844  * buffer. This order is the same order used by the header buffer. In this mode
845  * each superblock is given the same amount of space as an uncompressed
846  * superblock of the particular format would require, rounding up to the next
847  * multiple of 128 bytes in size.
848  */
849 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
850
851 /*
852  * AFBC copy-block restrict
853  *
854  * Buffers with this flag must obey the copy-block restriction. The restriction
855  * is such that there are no copy-blocks referring across the border of 8x8
856  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
857  */
858 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
859
860 /*
861  * AFBC tiled layout
862  *
863  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
864  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
865  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
866  * larger bpp formats. The order between the tiles is scan line.
867  * When the tiled layout is used, the buffer size (in pixels) must be aligned
868  * to the tile size.
869  */
870 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
871
872 /*
873  * AFBC solid color blocks
874  *
875  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
876  * can be reduced if a whole superblock is a single color.
877  */
878 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
879
880 /*
881  * AFBC double-buffer
882  *
883  * Indicates that the buffer is allocated in a layout safe for front-buffer
884  * rendering.
885  */
886 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
887
888 /*
889  * AFBC buffer content hints
890  *
891  * Indicates that the buffer includes per-superblock content hints.
892  */
893 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
894
895 /*
896  * Arm 16x16 Block U-Interleaved modifier
897  *
898  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
899  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
900  * in the block are reordered.
901  */
902 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
903         DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
904
905 /*
906  * Allwinner tiled modifier
907  *
908  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
909  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
910  * planes.
911  *
912  * With this tiling, the luminance samples are disposed in tiles representing
913  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
914  * The pixel order in each tile is linear and the tiles are disposed linearly,
915  * both in row-major order.
916  */
917 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
918
919 #if defined(__cplusplus)
920 }
921 #endif
922
923 #endif /* DRM_FOURCC_H */