Merge tag 'bootconfig-fixes-v6.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / include / linux / swapops.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SWAPOPS_H
3 #define _LINUX_SWAPOPS_H
4
5 #include <linux/radix-tree.h>
6 #include <linux/bug.h>
7 #include <linux/mm_types.h>
8
9 #ifdef CONFIG_MMU
10
11 #ifdef CONFIG_SWAP
12 #include <linux/swapfile.h>
13 #endif  /* CONFIG_SWAP */
14
15 /*
16  * swapcache pages are stored in the swapper_space radix tree.  We want to
17  * get good packing density in that tree, so the index should be dense in
18  * the low-order bits.
19  *
20  * We arrange the `type' and `offset' fields so that `type' is at the six
21  * high-order bits of the swp_entry_t and `offset' is right-aligned in the
22  * remaining bits.  Although `type' itself needs only five bits, we allow for
23  * shmem/tmpfs to shift it all up a further one bit: see swp_to_radix_entry().
24  *
25  * swp_entry_t's are *never* stored anywhere in their arch-dependent format.
26  */
27 #define SWP_TYPE_SHIFT  (BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT)
28 #define SWP_OFFSET_MASK ((1UL << SWP_TYPE_SHIFT) - 1)
29
30 /*
31  * Definitions only for PFN swap entries (see is_pfn_swap_entry()).  To
32  * store PFN, we only need SWP_PFN_BITS bits.  Each of the pfn swap entries
33  * can use the extra bits to store other information besides PFN.
34  */
35 #ifdef MAX_PHYSMEM_BITS
36 #define SWP_PFN_BITS            (MAX_PHYSMEM_BITS - PAGE_SHIFT)
37 #else  /* MAX_PHYSMEM_BITS */
38 #define SWP_PFN_BITS            min_t(int, \
39                                       sizeof(phys_addr_t) * 8 - PAGE_SHIFT, \
40                                       SWP_TYPE_SHIFT)
41 #endif  /* MAX_PHYSMEM_BITS */
42 #define SWP_PFN_MASK            (BIT(SWP_PFN_BITS) - 1)
43
44 /**
45  * Migration swap entry specific bitfield definitions.  Layout:
46  *
47  *   |----------+--------------------|
48  *   | swp_type | swp_offset         |
49  *   |----------+--------+-+-+-------|
50  *   |          | resv   |D|A|  PFN  |
51  *   |----------+--------+-+-+-------|
52  *
53  * @SWP_MIG_YOUNG_BIT: Whether the page used to have young bit set (bit A)
54  * @SWP_MIG_DIRTY_BIT: Whether the page used to have dirty bit set (bit D)
55  *
56  * Note: A/D bits will be stored in migration entries iff there're enough
57  * free bits in arch specific swp offset.  By default we'll ignore A/D bits
58  * when migrating a page.  Please refer to migration_entry_supports_ad()
59  * for more information.  If there're more bits besides PFN and A/D bits,
60  * they should be reserved and always be zeros.
61  */
62 #define SWP_MIG_YOUNG_BIT               (SWP_PFN_BITS)
63 #define SWP_MIG_DIRTY_BIT               (SWP_PFN_BITS + 1)
64 #define SWP_MIG_TOTAL_BITS              (SWP_PFN_BITS + 2)
65
66 #define SWP_MIG_YOUNG                   BIT(SWP_MIG_YOUNG_BIT)
67 #define SWP_MIG_DIRTY                   BIT(SWP_MIG_DIRTY_BIT)
68
69 static inline bool is_pfn_swap_entry(swp_entry_t entry);
70
71 /* Clear all flags but only keep swp_entry_t related information */
72 static inline pte_t pte_swp_clear_flags(pte_t pte)
73 {
74         if (pte_swp_exclusive(pte))
75                 pte = pte_swp_clear_exclusive(pte);
76         if (pte_swp_soft_dirty(pte))
77                 pte = pte_swp_clear_soft_dirty(pte);
78         if (pte_swp_uffd_wp(pte))
79                 pte = pte_swp_clear_uffd_wp(pte);
80         return pte;
81 }
82
83 /*
84  * Store a type+offset into a swp_entry_t in an arch-independent format
85  */
86 static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset)
87 {
88         swp_entry_t ret;
89
90         ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK);
91         return ret;
92 }
93
94 /*
95  * Extract the `type' field from a swp_entry_t.  The swp_entry_t is in
96  * arch-independent format
97  */
98 static inline unsigned swp_type(swp_entry_t entry)
99 {
100         return (entry.val >> SWP_TYPE_SHIFT);
101 }
102
103 /*
104  * Extract the `offset' field from a swp_entry_t.  The swp_entry_t is in
105  * arch-independent format
106  */
107 static inline pgoff_t swp_offset(swp_entry_t entry)
108 {
109         return entry.val & SWP_OFFSET_MASK;
110 }
111
112 /*
113  * This should only be called upon a pfn swap entry to get the PFN stored
114  * in the swap entry.  Please refers to is_pfn_swap_entry() for definition
115  * of pfn swap entry.
116  */
117 static inline unsigned long swp_offset_pfn(swp_entry_t entry)
118 {
119         VM_BUG_ON(!is_pfn_swap_entry(entry));
120         return swp_offset(entry) & SWP_PFN_MASK;
121 }
122
123 /* check whether a pte points to a swap entry */
124 static inline int is_swap_pte(pte_t pte)
125 {
126         return !pte_none(pte) && !pte_present(pte);
127 }
128
129 /*
130  * Convert the arch-dependent pte representation of a swp_entry_t into an
131  * arch-independent swp_entry_t.
132  */
133 static inline swp_entry_t pte_to_swp_entry(pte_t pte)
134 {
135         swp_entry_t arch_entry;
136
137         pte = pte_swp_clear_flags(pte);
138         arch_entry = __pte_to_swp_entry(pte);
139         return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
140 }
141
142 /*
143  * Convert the arch-independent representation of a swp_entry_t into the
144  * arch-dependent pte representation.
145  */
146 static inline pte_t swp_entry_to_pte(swp_entry_t entry)
147 {
148         swp_entry_t arch_entry;
149
150         arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
151         return __swp_entry_to_pte(arch_entry);
152 }
153
154 static inline swp_entry_t radix_to_swp_entry(void *arg)
155 {
156         swp_entry_t entry;
157
158         entry.val = xa_to_value(arg);
159         return entry;
160 }
161
162 static inline void *swp_to_radix_entry(swp_entry_t entry)
163 {
164         return xa_mk_value(entry.val);
165 }
166
167 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE)
168 static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
169 {
170         return swp_entry(SWP_DEVICE_READ, offset);
171 }
172
173 static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
174 {
175         return swp_entry(SWP_DEVICE_WRITE, offset);
176 }
177
178 static inline bool is_device_private_entry(swp_entry_t entry)
179 {
180         int type = swp_type(entry);
181         return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE;
182 }
183
184 static inline bool is_writable_device_private_entry(swp_entry_t entry)
185 {
186         return unlikely(swp_type(entry) == SWP_DEVICE_WRITE);
187 }
188
189 static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
190 {
191         return swp_entry(SWP_DEVICE_EXCLUSIVE_READ, offset);
192 }
193
194 static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
195 {
196         return swp_entry(SWP_DEVICE_EXCLUSIVE_WRITE, offset);
197 }
198
199 static inline bool is_device_exclusive_entry(swp_entry_t entry)
200 {
201         return swp_type(entry) == SWP_DEVICE_EXCLUSIVE_READ ||
202                 swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE;
203 }
204
205 static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
206 {
207         return unlikely(swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE);
208 }
209 #else /* CONFIG_DEVICE_PRIVATE */
210 static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
211 {
212         return swp_entry(0, 0);
213 }
214
215 static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
216 {
217         return swp_entry(0, 0);
218 }
219
220 static inline bool is_device_private_entry(swp_entry_t entry)
221 {
222         return false;
223 }
224
225 static inline bool is_writable_device_private_entry(swp_entry_t entry)
226 {
227         return false;
228 }
229
230 static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
231 {
232         return swp_entry(0, 0);
233 }
234
235 static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
236 {
237         return swp_entry(0, 0);
238 }
239
240 static inline bool is_device_exclusive_entry(swp_entry_t entry)
241 {
242         return false;
243 }
244
245 static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
246 {
247         return false;
248 }
249 #endif /* CONFIG_DEVICE_PRIVATE */
250
251 #ifdef CONFIG_MIGRATION
252 static inline int is_migration_entry(swp_entry_t entry)
253 {
254         return unlikely(swp_type(entry) == SWP_MIGRATION_READ ||
255                         swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE ||
256                         swp_type(entry) == SWP_MIGRATION_WRITE);
257 }
258
259 static inline int is_writable_migration_entry(swp_entry_t entry)
260 {
261         return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE);
262 }
263
264 static inline int is_readable_migration_entry(swp_entry_t entry)
265 {
266         return unlikely(swp_type(entry) == SWP_MIGRATION_READ);
267 }
268
269 static inline int is_readable_exclusive_migration_entry(swp_entry_t entry)
270 {
271         return unlikely(swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE);
272 }
273
274 static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
275 {
276         return swp_entry(SWP_MIGRATION_READ, offset);
277 }
278
279 static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
280 {
281         return swp_entry(SWP_MIGRATION_READ_EXCLUSIVE, offset);
282 }
283
284 static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
285 {
286         return swp_entry(SWP_MIGRATION_WRITE, offset);
287 }
288
289 /*
290  * Returns whether the host has large enough swap offset field to support
291  * carrying over pgtable A/D bits for page migrations.  The result is
292  * pretty much arch specific.
293  */
294 static inline bool migration_entry_supports_ad(void)
295 {
296 #ifdef CONFIG_SWAP
297         return swap_migration_ad_supported;
298 #else  /* CONFIG_SWAP */
299         return false;
300 #endif  /* CONFIG_SWAP */
301 }
302
303 static inline swp_entry_t make_migration_entry_young(swp_entry_t entry)
304 {
305         if (migration_entry_supports_ad())
306                 return swp_entry(swp_type(entry),
307                                  swp_offset(entry) | SWP_MIG_YOUNG);
308         return entry;
309 }
310
311 static inline bool is_migration_entry_young(swp_entry_t entry)
312 {
313         if (migration_entry_supports_ad())
314                 return swp_offset(entry) & SWP_MIG_YOUNG;
315         /* Keep the old behavior of aging page after migration */
316         return false;
317 }
318
319 static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry)
320 {
321         if (migration_entry_supports_ad())
322                 return swp_entry(swp_type(entry),
323                                  swp_offset(entry) | SWP_MIG_DIRTY);
324         return entry;
325 }
326
327 static inline bool is_migration_entry_dirty(swp_entry_t entry)
328 {
329         if (migration_entry_supports_ad())
330                 return swp_offset(entry) & SWP_MIG_DIRTY;
331         /* Keep the old behavior of clean page after migration */
332         return false;
333 }
334
335 extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
336                                         unsigned long address);
337 extern void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte);
338 #else  /* CONFIG_MIGRATION */
339 static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
340 {
341         return swp_entry(0, 0);
342 }
343
344 static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
345 {
346         return swp_entry(0, 0);
347 }
348
349 static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
350 {
351         return swp_entry(0, 0);
352 }
353
354 static inline int is_migration_entry(swp_entry_t swp)
355 {
356         return 0;
357 }
358
359 static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
360                                         unsigned long address) { }
361 static inline void migration_entry_wait_huge(struct vm_area_struct *vma,
362                                         pte_t *pte) { }
363 static inline int is_writable_migration_entry(swp_entry_t entry)
364 {
365         return 0;
366 }
367 static inline int is_readable_migration_entry(swp_entry_t entry)
368 {
369         return 0;
370 }
371
372 static inline swp_entry_t make_migration_entry_young(swp_entry_t entry)
373 {
374         return entry;
375 }
376
377 static inline bool is_migration_entry_young(swp_entry_t entry)
378 {
379         return false;
380 }
381
382 static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry)
383 {
384         return entry;
385 }
386
387 static inline bool is_migration_entry_dirty(swp_entry_t entry)
388 {
389         return false;
390 }
391 #endif  /* CONFIG_MIGRATION */
392
393 #ifdef CONFIG_MEMORY_FAILURE
394
395 /*
396  * Support for hardware poisoned pages
397  */
398 static inline swp_entry_t make_hwpoison_entry(struct page *page)
399 {
400         BUG_ON(!PageLocked(page));
401         return swp_entry(SWP_HWPOISON, page_to_pfn(page));
402 }
403
404 static inline int is_hwpoison_entry(swp_entry_t entry)
405 {
406         return swp_type(entry) == SWP_HWPOISON;
407 }
408
409 #else
410
411 static inline swp_entry_t make_hwpoison_entry(struct page *page)
412 {
413         return swp_entry(0, 0);
414 }
415
416 static inline int is_hwpoison_entry(swp_entry_t swp)
417 {
418         return 0;
419 }
420 #endif
421
422 typedef unsigned long pte_marker;
423
424 #define  PTE_MARKER_UFFD_WP                     BIT(0)
425 /*
426  * "Poisoned" here is meant in the very general sense of "future accesses are
427  * invalid", instead of referring very specifically to hardware memory errors.
428  * This marker is meant to represent any of various different causes of this.
429  */
430 #define  PTE_MARKER_POISONED                    BIT(1)
431 #define  PTE_MARKER_MASK                        (BIT(2) - 1)
432
433 static inline swp_entry_t make_pte_marker_entry(pte_marker marker)
434 {
435         return swp_entry(SWP_PTE_MARKER, marker);
436 }
437
438 static inline bool is_pte_marker_entry(swp_entry_t entry)
439 {
440         return swp_type(entry) == SWP_PTE_MARKER;
441 }
442
443 static inline pte_marker pte_marker_get(swp_entry_t entry)
444 {
445         return swp_offset(entry) & PTE_MARKER_MASK;
446 }
447
448 static inline bool is_pte_marker(pte_t pte)
449 {
450         return is_swap_pte(pte) && is_pte_marker_entry(pte_to_swp_entry(pte));
451 }
452
453 static inline pte_t make_pte_marker(pte_marker marker)
454 {
455         return swp_entry_to_pte(make_pte_marker_entry(marker));
456 }
457
458 static inline swp_entry_t make_poisoned_swp_entry(void)
459 {
460         return make_pte_marker_entry(PTE_MARKER_POISONED);
461 }
462
463 static inline int is_poisoned_swp_entry(swp_entry_t entry)
464 {
465         return is_pte_marker_entry(entry) &&
466             (pte_marker_get(entry) & PTE_MARKER_POISONED);
467 }
468
469 /*
470  * This is a special version to check pte_none() just to cover the case when
471  * the pte is a pte marker.  It existed because in many cases the pte marker
472  * should be seen as a none pte; it's just that we have stored some information
473  * onto the none pte so it becomes not-none any more.
474  *
475  * It should be used when the pte is file-backed, ram-based and backing
476  * userspace pages, like shmem.  It is not needed upon pgtables that do not
477  * support pte markers at all.  For example, it's not needed on anonymous
478  * memory, kernel-only memory (including when the system is during-boot),
479  * non-ram based generic file-system.  It's fine to be used even there, but the
480  * extra pte marker check will be pure overhead.
481  */
482 static inline int pte_none_mostly(pte_t pte)
483 {
484         return pte_none(pte) || is_pte_marker(pte);
485 }
486
487 static inline struct page *pfn_swap_entry_to_page(swp_entry_t entry)
488 {
489         struct page *p = pfn_to_page(swp_offset_pfn(entry));
490
491         /*
492          * Any use of migration entries may only occur while the
493          * corresponding page is locked
494          */
495         BUG_ON(is_migration_entry(entry) && !PageLocked(p));
496
497         return p;
498 }
499
500 static inline struct folio *pfn_swap_entry_folio(swp_entry_t entry)
501 {
502         struct folio *folio = pfn_folio(swp_offset_pfn(entry));
503
504         /*
505          * Any use of migration entries may only occur while the
506          * corresponding folio is locked
507          */
508         BUG_ON(is_migration_entry(entry) && !folio_test_locked(folio));
509
510         return folio;
511 }
512
513 /*
514  * A pfn swap entry is a special type of swap entry that always has a pfn stored
515  * in the swap offset. They can either be used to represent unaddressable device
516  * memory, to restrict access to a page undergoing migration or to represent a
517  * pfn which has been hwpoisoned and unmapped.
518  */
519 static inline bool is_pfn_swap_entry(swp_entry_t entry)
520 {
521         /* Make sure the swp offset can always store the needed fields */
522         BUILD_BUG_ON(SWP_TYPE_SHIFT < SWP_PFN_BITS);
523
524         return is_migration_entry(entry) || is_device_private_entry(entry) ||
525                is_device_exclusive_entry(entry) || is_hwpoison_entry(entry);
526 }
527
528 struct page_vma_mapped_walk;
529
530 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
531 extern int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
532                 struct page *page);
533
534 extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
535                 struct page *new);
536
537 extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd);
538
539 static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
540 {
541         swp_entry_t arch_entry;
542
543         if (pmd_swp_soft_dirty(pmd))
544                 pmd = pmd_swp_clear_soft_dirty(pmd);
545         if (pmd_swp_uffd_wp(pmd))
546                 pmd = pmd_swp_clear_uffd_wp(pmd);
547         arch_entry = __pmd_to_swp_entry(pmd);
548         return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
549 }
550
551 static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
552 {
553         swp_entry_t arch_entry;
554
555         arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
556         return __swp_entry_to_pmd(arch_entry);
557 }
558
559 static inline int is_pmd_migration_entry(pmd_t pmd)
560 {
561         return is_swap_pmd(pmd) && is_migration_entry(pmd_to_swp_entry(pmd));
562 }
563 #else  /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
564 static inline int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
565                 struct page *page)
566 {
567         BUILD_BUG();
568 }
569
570 static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
571                 struct page *new)
572 {
573         BUILD_BUG();
574 }
575
576 static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { }
577
578 static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
579 {
580         return swp_entry(0, 0);
581 }
582
583 static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
584 {
585         return __pmd(0);
586 }
587
588 static inline int is_pmd_migration_entry(pmd_t pmd)
589 {
590         return 0;
591 }
592 #endif  /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
593
594 static inline int non_swap_entry(swp_entry_t entry)
595 {
596         return swp_type(entry) >= MAX_SWAPFILES;
597 }
598
599 #endif /* CONFIG_MMU */
600 #endif /* _LINUX_SWAPOPS_H */