Merge tag '6.10-rc1-smb3-client-fixes' of git://git.samba.org/sfrench/cifs-2.6
[sfrench/cifs-2.6.git] / fs / xfs / xfs_reflink.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_bit.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
30 #include "xfs_ag.h"
31 #include "xfs_ag_resv.h"
32 #include "xfs_health.h"
33
34 /*
35  * Copy on Write of Shared Blocks
36  *
37  * XFS must preserve "the usual" file semantics even when two files share
38  * the same physical blocks.  This means that a write to one file must not
39  * alter the blocks in a different file; the way that we'll do that is
40  * through the use of a copy-on-write mechanism.  At a high level, that
41  * means that when we want to write to a shared block, we allocate a new
42  * block, write the data to the new block, and if that succeeds we map the
43  * new block into the file.
44  *
45  * XFS provides a "delayed allocation" mechanism that defers the allocation
46  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
47  * possible.  This reduces fragmentation by enabling the filesystem to ask
48  * for bigger chunks less often, which is exactly what we want for CoW.
49  *
50  * The delalloc mechanism begins when the kernel wants to make a block
51  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
52  * create a delalloc mapping, which is a regular in-core extent, but without
53  * a real startblock.  (For delalloc mappings, the startblock encodes both
54  * a flag that this is a delalloc mapping, and a worst-case estimate of how
55  * many blocks might be required to put the mapping into the BMBT.)  delalloc
56  * mappings are a reservation against the free space in the filesystem;
57  * adjacent mappings can also be combined into fewer larger mappings.
58  *
59  * As an optimization, the CoW extent size hint (cowextsz) creates
60  * outsized aligned delalloc reservations in the hope of landing out of
61  * order nearby CoW writes in a single extent on disk, thereby reducing
62  * fragmentation and improving future performance.
63  *
64  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
65  * C: ------DDDDDDD--------- (CoW fork)
66  *
67  * When dirty pages are being written out (typically in writepage), the
68  * delalloc reservations are converted into unwritten mappings by
69  * allocating blocks and replacing the delalloc mapping with real ones.
70  * A delalloc mapping can be replaced by several unwritten ones if the
71  * free space is fragmented.
72  *
73  * D: --RRRRRRSSSRRRRRRRR---
74  * C: ------UUUUUUU---------
75  *
76  * We want to adapt the delalloc mechanism for copy-on-write, since the
77  * write paths are similar.  The first two steps (creating the reservation
78  * and allocating the blocks) are exactly the same as delalloc except that
79  * the mappings must be stored in a separate CoW fork because we do not want
80  * to disturb the mapping in the data fork until we're sure that the write
81  * succeeded.  IO completion in this case is the process of removing the old
82  * mapping from the data fork and moving the new mapping from the CoW fork to
83  * the data fork.  This will be discussed shortly.
84  *
85  * For now, unaligned directio writes will be bounced back to the page cache.
86  * Block-aligned directio writes will use the same mechanism as buffered
87  * writes.
88  *
89  * Just prior to submitting the actual disk write requests, we convert
90  * the extents representing the range of the file actually being written
91  * (as opposed to extra pieces created for the cowextsize hint) to real
92  * extents.  This will become important in the next step:
93  *
94  * D: --RRRRRRSSSRRRRRRRR---
95  * C: ------UUrrUUU---------
96  *
97  * CoW remapping must be done after the data block write completes,
98  * because we don't want to destroy the old data fork map until we're sure
99  * the new block has been written.  Since the new mappings are kept in a
100  * separate fork, we can simply iterate these mappings to find the ones
101  * that cover the file blocks that we just CoW'd.  For each extent, simply
102  * unmap the corresponding range in the data fork, map the new range into
103  * the data fork, and remove the extent from the CoW fork.  Because of
104  * the presence of the cowextsize hint, however, we must be careful
105  * only to remap the blocks that we've actually written out --  we must
106  * never remap delalloc reservations nor CoW staging blocks that have
107  * yet to be written.  This corresponds exactly to the real extents in
108  * the CoW fork:
109  *
110  * D: --RRRRRRrrSRRRRRRRR---
111  * C: ------UU--UUU---------
112  *
113  * Since the remapping operation can be applied to an arbitrary file
114  * range, we record the need for the remap step as a flag in the ioend
115  * instead of declaring a new IO type.  This is required for direct io
116  * because we only have ioend for the whole dio, and we have to be able to
117  * remember the presence of unwritten blocks and CoW blocks with a single
118  * ioend structure.  Better yet, the more ground we can cover with one
119  * ioend, the better.
120  */
121
122 /*
123  * Given an AG extent, find the lowest-numbered run of shared blocks
124  * within that range and return the range in fbno/flen.  If
125  * find_end_of_shared is true, return the longest contiguous extent of
126  * shared blocks.  If there are no shared extents, fbno and flen will
127  * be set to NULLAGBLOCK and 0, respectively.
128  */
129 static int
130 xfs_reflink_find_shared(
131         struct xfs_perag        *pag,
132         struct xfs_trans        *tp,
133         xfs_agblock_t           agbno,
134         xfs_extlen_t            aglen,
135         xfs_agblock_t           *fbno,
136         xfs_extlen_t            *flen,
137         bool                    find_end_of_shared)
138 {
139         struct xfs_buf          *agbp;
140         struct xfs_btree_cur    *cur;
141         int                     error;
142
143         error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
144         if (error)
145                 return error;
146
147         cur = xfs_refcountbt_init_cursor(pag->pag_mount, tp, agbp, pag);
148
149         error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
150                         find_end_of_shared);
151
152         xfs_btree_del_cursor(cur, error);
153
154         xfs_trans_brelse(tp, agbp);
155         return error;
156 }
157
158 /*
159  * Trim the mapping to the next block where there's a change in the
160  * shared/unshared status.  More specifically, this means that we
161  * find the lowest-numbered extent of shared blocks that coincides with
162  * the given block mapping.  If the shared extent overlaps the start of
163  * the mapping, trim the mapping to the end of the shared extent.  If
164  * the shared region intersects the mapping, trim the mapping to the
165  * start of the shared extent.  If there are no shared regions that
166  * overlap, just return the original extent.
167  */
168 int
169 xfs_reflink_trim_around_shared(
170         struct xfs_inode        *ip,
171         struct xfs_bmbt_irec    *irec,
172         bool                    *shared)
173 {
174         struct xfs_mount        *mp = ip->i_mount;
175         struct xfs_perag        *pag;
176         xfs_agblock_t           agbno;
177         xfs_extlen_t            aglen;
178         xfs_agblock_t           fbno;
179         xfs_extlen_t            flen;
180         int                     error = 0;
181
182         /* Holes, unwritten, and delalloc extents cannot be shared */
183         if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
184                 *shared = false;
185                 return 0;
186         }
187
188         trace_xfs_reflink_trim_around_shared(ip, irec);
189
190         pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock));
191         agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock);
192         aglen = irec->br_blockcount;
193
194         error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen,
195                         true);
196         xfs_perag_put(pag);
197         if (error)
198                 return error;
199
200         *shared = false;
201         if (fbno == NULLAGBLOCK) {
202                 /* No shared blocks at all. */
203                 return 0;
204         }
205
206         if (fbno == agbno) {
207                 /*
208                  * The start of this extent is shared.  Truncate the
209                  * mapping at the end of the shared region so that a
210                  * subsequent iteration starts at the start of the
211                  * unshared region.
212                  */
213                 irec->br_blockcount = flen;
214                 *shared = true;
215                 return 0;
216         }
217
218         /*
219          * There's a shared extent midway through this extent.
220          * Truncate the mapping at the start of the shared
221          * extent so that a subsequent iteration starts at the
222          * start of the shared region.
223          */
224         irec->br_blockcount = fbno - agbno;
225         return 0;
226 }
227
228 int
229 xfs_bmap_trim_cow(
230         struct xfs_inode        *ip,
231         struct xfs_bmbt_irec    *imap,
232         bool                    *shared)
233 {
234         /* We can't update any real extents in always COW mode. */
235         if (xfs_is_always_cow_inode(ip) &&
236             !isnullstartblock(imap->br_startblock)) {
237                 *shared = true;
238                 return 0;
239         }
240
241         /* Trim the mapping to the nearest shared extent boundary. */
242         return xfs_reflink_trim_around_shared(ip, imap, shared);
243 }
244
245 static int
246 xfs_reflink_convert_cow_locked(
247         struct xfs_inode        *ip,
248         xfs_fileoff_t           offset_fsb,
249         xfs_filblks_t           count_fsb)
250 {
251         struct xfs_iext_cursor  icur;
252         struct xfs_bmbt_irec    got;
253         struct xfs_btree_cur    *dummy_cur = NULL;
254         int                     dummy_logflags;
255         int                     error = 0;
256
257         if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
258                 return 0;
259
260         do {
261                 if (got.br_startoff >= offset_fsb + count_fsb)
262                         break;
263                 if (got.br_state == XFS_EXT_NORM)
264                         continue;
265                 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
266                         return -EIO;
267
268                 xfs_trim_extent(&got, offset_fsb, count_fsb);
269                 if (!got.br_blockcount)
270                         continue;
271
272                 got.br_state = XFS_EXT_NORM;
273                 error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
274                                 XFS_COW_FORK, &icur, &dummy_cur, &got,
275                                 &dummy_logflags);
276                 if (error)
277                         return error;
278         } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
279
280         return error;
281 }
282
283 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
284 int
285 xfs_reflink_convert_cow(
286         struct xfs_inode        *ip,
287         xfs_off_t               offset,
288         xfs_off_t               count)
289 {
290         struct xfs_mount        *mp = ip->i_mount;
291         xfs_fileoff_t           offset_fsb = XFS_B_TO_FSBT(mp, offset);
292         xfs_fileoff_t           end_fsb = XFS_B_TO_FSB(mp, offset + count);
293         xfs_filblks_t           count_fsb = end_fsb - offset_fsb;
294         int                     error;
295
296         ASSERT(count != 0);
297
298         xfs_ilock(ip, XFS_ILOCK_EXCL);
299         error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
300         xfs_iunlock(ip, XFS_ILOCK_EXCL);
301         return error;
302 }
303
304 /*
305  * Find the extent that maps the given range in the COW fork. Even if the extent
306  * is not shared we might have a preallocation for it in the COW fork. If so we
307  * use it that rather than trigger a new allocation.
308  */
309 static int
310 xfs_find_trim_cow_extent(
311         struct xfs_inode        *ip,
312         struct xfs_bmbt_irec    *imap,
313         struct xfs_bmbt_irec    *cmap,
314         bool                    *shared,
315         bool                    *found)
316 {
317         xfs_fileoff_t           offset_fsb = imap->br_startoff;
318         xfs_filblks_t           count_fsb = imap->br_blockcount;
319         struct xfs_iext_cursor  icur;
320
321         *found = false;
322
323         /*
324          * If we don't find an overlapping extent, trim the range we need to
325          * allocate to fit the hole we found.
326          */
327         if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
328                 cmap->br_startoff = offset_fsb + count_fsb;
329         if (cmap->br_startoff > offset_fsb) {
330                 xfs_trim_extent(imap, imap->br_startoff,
331                                 cmap->br_startoff - imap->br_startoff);
332                 return xfs_bmap_trim_cow(ip, imap, shared);
333         }
334
335         *shared = true;
336         if (isnullstartblock(cmap->br_startblock)) {
337                 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
338                 return 0;
339         }
340
341         /* real extent found - no need to allocate */
342         xfs_trim_extent(cmap, offset_fsb, count_fsb);
343         *found = true;
344         return 0;
345 }
346
347 static int
348 xfs_reflink_convert_unwritten(
349         struct xfs_inode        *ip,
350         struct xfs_bmbt_irec    *imap,
351         struct xfs_bmbt_irec    *cmap,
352         bool                    convert_now)
353 {
354         xfs_fileoff_t           offset_fsb = imap->br_startoff;
355         xfs_filblks_t           count_fsb = imap->br_blockcount;
356         int                     error;
357
358         /*
359          * cmap might larger than imap due to cowextsize hint.
360          */
361         xfs_trim_extent(cmap, offset_fsb, count_fsb);
362
363         /*
364          * COW fork extents are supposed to remain unwritten until we're ready
365          * to initiate a disk write.  For direct I/O we are going to write the
366          * data and need the conversion, but for buffered writes we're done.
367          */
368         if (!convert_now || cmap->br_state == XFS_EXT_NORM)
369                 return 0;
370
371         trace_xfs_reflink_convert_cow(ip, cmap);
372
373         error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
374         if (!error)
375                 cmap->br_state = XFS_EXT_NORM;
376
377         return error;
378 }
379
380 static int
381 xfs_reflink_fill_cow_hole(
382         struct xfs_inode        *ip,
383         struct xfs_bmbt_irec    *imap,
384         struct xfs_bmbt_irec    *cmap,
385         bool                    *shared,
386         uint                    *lockmode,
387         bool                    convert_now)
388 {
389         struct xfs_mount        *mp = ip->i_mount;
390         struct xfs_trans        *tp;
391         xfs_filblks_t           resaligned;
392         xfs_extlen_t            resblks;
393         int                     nimaps;
394         int                     error;
395         bool                    found;
396
397         resaligned = xfs_aligned_fsb_count(imap->br_startoff,
398                 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
399         resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
400
401         xfs_iunlock(ip, *lockmode);
402         *lockmode = 0;
403
404         error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
405                         false, &tp);
406         if (error)
407                 return error;
408
409         *lockmode = XFS_ILOCK_EXCL;
410
411         error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
412         if (error || !*shared)
413                 goto out_trans_cancel;
414
415         if (found) {
416                 xfs_trans_cancel(tp);
417                 goto convert;
418         }
419
420         /* Allocate the entire reservation as unwritten blocks. */
421         nimaps = 1;
422         error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
423                         XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
424                         &nimaps);
425         if (error)
426                 goto out_trans_cancel;
427
428         xfs_inode_set_cowblocks_tag(ip);
429         error = xfs_trans_commit(tp);
430         if (error)
431                 return error;
432
433 convert:
434         return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
435
436 out_trans_cancel:
437         xfs_trans_cancel(tp);
438         return error;
439 }
440
441 static int
442 xfs_reflink_fill_delalloc(
443         struct xfs_inode        *ip,
444         struct xfs_bmbt_irec    *imap,
445         struct xfs_bmbt_irec    *cmap,
446         bool                    *shared,
447         uint                    *lockmode,
448         bool                    convert_now)
449 {
450         struct xfs_mount        *mp = ip->i_mount;
451         struct xfs_trans        *tp;
452         int                     nimaps;
453         int                     error;
454         bool                    found;
455
456         do {
457                 xfs_iunlock(ip, *lockmode);
458                 *lockmode = 0;
459
460                 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0,
461                                 false, &tp);
462                 if (error)
463                         return error;
464
465                 *lockmode = XFS_ILOCK_EXCL;
466
467                 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared,
468                                 &found);
469                 if (error || !*shared)
470                         goto out_trans_cancel;
471
472                 if (found) {
473                         xfs_trans_cancel(tp);
474                         break;
475                 }
476
477                 ASSERT(isnullstartblock(cmap->br_startblock) ||
478                        cmap->br_startblock == DELAYSTARTBLOCK);
479
480                 /*
481                  * Replace delalloc reservation with an unwritten extent.
482                  */
483                 nimaps = 1;
484                 error = xfs_bmapi_write(tp, ip, cmap->br_startoff,
485                                 cmap->br_blockcount,
486                                 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0,
487                                 cmap, &nimaps);
488                 if (error)
489                         goto out_trans_cancel;
490
491                 xfs_inode_set_cowblocks_tag(ip);
492                 error = xfs_trans_commit(tp);
493                 if (error)
494                         return error;
495         } while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff);
496
497         return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
498
499 out_trans_cancel:
500         xfs_trans_cancel(tp);
501         return error;
502 }
503
504 /* Allocate all CoW reservations covering a range of blocks in a file. */
505 int
506 xfs_reflink_allocate_cow(
507         struct xfs_inode        *ip,
508         struct xfs_bmbt_irec    *imap,
509         struct xfs_bmbt_irec    *cmap,
510         bool                    *shared,
511         uint                    *lockmode,
512         bool                    convert_now)
513 {
514         int                     error;
515         bool                    found;
516
517         xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
518         if (!ip->i_cowfp) {
519                 ASSERT(!xfs_is_reflink_inode(ip));
520                 xfs_ifork_init_cow(ip);
521         }
522
523         error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
524         if (error || !*shared)
525                 return error;
526
527         /* CoW fork has a real extent */
528         if (found)
529                 return xfs_reflink_convert_unwritten(ip, imap, cmap,
530                                 convert_now);
531
532         /*
533          * CoW fork does not have an extent and data extent is shared.
534          * Allocate a real extent in the CoW fork.
535          */
536         if (cmap->br_startoff > imap->br_startoff)
537                 return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared,
538                                 lockmode, convert_now);
539
540         /*
541          * CoW fork has a delalloc reservation. Replace it with a real extent.
542          * There may or may not be a data fork mapping.
543          */
544         if (isnullstartblock(cmap->br_startblock) ||
545             cmap->br_startblock == DELAYSTARTBLOCK)
546                 return xfs_reflink_fill_delalloc(ip, imap, cmap, shared,
547                                 lockmode, convert_now);
548
549         /* Shouldn't get here. */
550         ASSERT(0);
551         return -EFSCORRUPTED;
552 }
553
554 /*
555  * Cancel CoW reservations for some block range of an inode.
556  *
557  * If cancel_real is true this function cancels all COW fork extents for the
558  * inode; if cancel_real is false, real extents are not cleared.
559  *
560  * Caller must have already joined the inode to the current transaction. The
561  * inode will be joined to the transaction returned to the caller.
562  */
563 int
564 xfs_reflink_cancel_cow_blocks(
565         struct xfs_inode                *ip,
566         struct xfs_trans                **tpp,
567         xfs_fileoff_t                   offset_fsb,
568         xfs_fileoff_t                   end_fsb,
569         bool                            cancel_real)
570 {
571         struct xfs_ifork                *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
572         struct xfs_bmbt_irec            got, del;
573         struct xfs_iext_cursor          icur;
574         int                             error = 0;
575
576         if (!xfs_inode_has_cow_data(ip))
577                 return 0;
578         if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
579                 return 0;
580
581         /* Walk backwards until we're out of the I/O range... */
582         while (got.br_startoff + got.br_blockcount > offset_fsb) {
583                 del = got;
584                 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
585
586                 /* Extent delete may have bumped ext forward */
587                 if (!del.br_blockcount) {
588                         xfs_iext_prev(ifp, &icur);
589                         goto next_extent;
590                 }
591
592                 trace_xfs_reflink_cancel_cow(ip, &del);
593
594                 if (isnullstartblock(del.br_startblock)) {
595                         xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, &icur, &got,
596                                         &del);
597                 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
598                         ASSERT((*tpp)->t_highest_agno == NULLAGNUMBER);
599
600                         /* Free the CoW orphan record. */
601                         xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
602                                         del.br_blockcount);
603
604                         error = xfs_free_extent_later(*tpp, del.br_startblock,
605                                         del.br_blockcount, NULL,
606                                         XFS_AG_RESV_NONE, false);
607                         if (error)
608                                 break;
609
610                         /* Roll the transaction */
611                         error = xfs_defer_finish(tpp);
612                         if (error)
613                                 break;
614
615                         /* Remove the mapping from the CoW fork. */
616                         xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
617
618                         /* Remove the quota reservation */
619                         xfs_quota_unreserve_blkres(ip, del.br_blockcount);
620                 } else {
621                         /* Didn't do anything, push cursor back. */
622                         xfs_iext_prev(ifp, &icur);
623                 }
624 next_extent:
625                 if (!xfs_iext_get_extent(ifp, &icur, &got))
626                         break;
627         }
628
629         /* clear tag if cow fork is emptied */
630         if (!ifp->if_bytes)
631                 xfs_inode_clear_cowblocks_tag(ip);
632         return error;
633 }
634
635 /*
636  * Cancel CoW reservations for some byte range of an inode.
637  *
638  * If cancel_real is true this function cancels all COW fork extents for the
639  * inode; if cancel_real is false, real extents are not cleared.
640  */
641 int
642 xfs_reflink_cancel_cow_range(
643         struct xfs_inode        *ip,
644         xfs_off_t               offset,
645         xfs_off_t               count,
646         bool                    cancel_real)
647 {
648         struct xfs_trans        *tp;
649         xfs_fileoff_t           offset_fsb;
650         xfs_fileoff_t           end_fsb;
651         int                     error;
652
653         trace_xfs_reflink_cancel_cow_range(ip, offset, count);
654         ASSERT(ip->i_cowfp);
655
656         offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
657         if (count == NULLFILEOFF)
658                 end_fsb = NULLFILEOFF;
659         else
660                 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
661
662         /* Start a rolling transaction to remove the mappings */
663         error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
664                         0, 0, 0, &tp);
665         if (error)
666                 goto out;
667
668         xfs_ilock(ip, XFS_ILOCK_EXCL);
669         xfs_trans_ijoin(tp, ip, 0);
670
671         /* Scrape out the old CoW reservations */
672         error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
673                         cancel_real);
674         if (error)
675                 goto out_cancel;
676
677         error = xfs_trans_commit(tp);
678
679         xfs_iunlock(ip, XFS_ILOCK_EXCL);
680         return error;
681
682 out_cancel:
683         xfs_trans_cancel(tp);
684         xfs_iunlock(ip, XFS_ILOCK_EXCL);
685 out:
686         trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
687         return error;
688 }
689
690 /*
691  * Remap part of the CoW fork into the data fork.
692  *
693  * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
694  * into the data fork; this function will remap what it can (at the end of the
695  * range) and update @end_fsb appropriately.  Each remap gets its own
696  * transaction because we can end up merging and splitting bmbt blocks for
697  * every remap operation and we'd like to keep the block reservation
698  * requirements as low as possible.
699  */
700 STATIC int
701 xfs_reflink_end_cow_extent(
702         struct xfs_inode        *ip,
703         xfs_fileoff_t           *offset_fsb,
704         xfs_fileoff_t           end_fsb)
705 {
706         struct xfs_iext_cursor  icur;
707         struct xfs_bmbt_irec    got, del, data;
708         struct xfs_mount        *mp = ip->i_mount;
709         struct xfs_trans        *tp;
710         struct xfs_ifork        *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
711         unsigned int            resblks;
712         int                     nmaps;
713         int                     error;
714
715         resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
716         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
717                         XFS_TRANS_RESERVE, &tp);
718         if (error)
719                 return error;
720
721         /*
722          * Lock the inode.  We have to ijoin without automatic unlock because
723          * the lead transaction is the refcountbt record deletion; the data
724          * fork update follows as a deferred log item.
725          */
726         xfs_ilock(ip, XFS_ILOCK_EXCL);
727         xfs_trans_ijoin(tp, ip, 0);
728
729         /*
730          * In case of racing, overlapping AIO writes no COW extents might be
731          * left by the time I/O completes for the loser of the race.  In that
732          * case we are done.
733          */
734         if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) ||
735             got.br_startoff >= end_fsb) {
736                 *offset_fsb = end_fsb;
737                 goto out_cancel;
738         }
739
740         /*
741          * Only remap real extents that contain data.  With AIO, speculative
742          * preallocations can leak into the range we are called upon, and we
743          * need to skip them.  Preserve @got for the eventual CoW fork
744          * deletion; from now on @del represents the mapping that we're
745          * actually remapping.
746          */
747         while (!xfs_bmap_is_written_extent(&got)) {
748                 if (!xfs_iext_next_extent(ifp, &icur, &got) ||
749                     got.br_startoff >= end_fsb) {
750                         *offset_fsb = end_fsb;
751                         goto out_cancel;
752                 }
753         }
754         del = got;
755         xfs_trim_extent(&del, *offset_fsb, end_fsb - *offset_fsb);
756
757         error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
758                         XFS_IEXT_REFLINK_END_COW_CNT);
759         if (error)
760                 goto out_cancel;
761
762         /* Grab the corresponding mapping in the data fork. */
763         nmaps = 1;
764         error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data,
765                         &nmaps, 0);
766         if (error)
767                 goto out_cancel;
768
769         /* We can only remap the smaller of the two extent sizes. */
770         data.br_blockcount = min(data.br_blockcount, del.br_blockcount);
771         del.br_blockcount = data.br_blockcount;
772
773         trace_xfs_reflink_cow_remap_from(ip, &del);
774         trace_xfs_reflink_cow_remap_to(ip, &data);
775
776         if (xfs_bmap_is_real_extent(&data)) {
777                 /*
778                  * If the extent we're remapping is backed by storage (written
779                  * or not), unmap the extent and drop its refcount.
780                  */
781                 xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &data);
782                 xfs_refcount_decrease_extent(tp, &data);
783                 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
784                                 -data.br_blockcount);
785         } else if (data.br_startblock == DELAYSTARTBLOCK) {
786                 int             done;
787
788                 /*
789                  * If the extent we're remapping is a delalloc reservation,
790                  * we can use the regular bunmapi function to release the
791                  * incore state.  Dropping the delalloc reservation takes care
792                  * of the quota reservation for us.
793                  */
794                 error = xfs_bunmapi(NULL, ip, data.br_startoff,
795                                 data.br_blockcount, 0, 1, &done);
796                 if (error)
797                         goto out_cancel;
798                 ASSERT(done);
799         }
800
801         /* Free the CoW orphan record. */
802         xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
803
804         /* Map the new blocks into the data fork. */
805         xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, &del);
806
807         /* Charge this new data fork mapping to the on-disk quota. */
808         xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
809                         (long)del.br_blockcount);
810
811         /* Remove the mapping from the CoW fork. */
812         xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
813
814         error = xfs_trans_commit(tp);
815         xfs_iunlock(ip, XFS_ILOCK_EXCL);
816         if (error)
817                 return error;
818
819         /* Update the caller about how much progress we made. */
820         *offset_fsb = del.br_startoff + del.br_blockcount;
821         return 0;
822
823 out_cancel:
824         xfs_trans_cancel(tp);
825         xfs_iunlock(ip, XFS_ILOCK_EXCL);
826         return error;
827 }
828
829 /*
830  * Remap parts of a file's data fork after a successful CoW.
831  */
832 int
833 xfs_reflink_end_cow(
834         struct xfs_inode                *ip,
835         xfs_off_t                       offset,
836         xfs_off_t                       count)
837 {
838         xfs_fileoff_t                   offset_fsb;
839         xfs_fileoff_t                   end_fsb;
840         int                             error = 0;
841
842         trace_xfs_reflink_end_cow(ip, offset, count);
843
844         offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
845         end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
846
847         /*
848          * Walk forwards until we've remapped the I/O range.  The loop function
849          * repeatedly cycles the ILOCK to allocate one transaction per remapped
850          * extent.
851          *
852          * If we're being called by writeback then the pages will still
853          * have PageWriteback set, which prevents races with reflink remapping
854          * and truncate.  Reflink remapping prevents races with writeback by
855          * taking the iolock and mmaplock before flushing the pages and
856          * remapping, which means there won't be any further writeback or page
857          * cache dirtying until the reflink completes.
858          *
859          * We should never have two threads issuing writeback for the same file
860          * region.  There are also have post-eof checks in the writeback
861          * preparation code so that we don't bother writing out pages that are
862          * about to be truncated.
863          *
864          * If we're being called as part of directio write completion, the dio
865          * count is still elevated, which reflink and truncate will wait for.
866          * Reflink remapping takes the iolock and mmaplock and waits for
867          * pending dio to finish, which should prevent any directio until the
868          * remap completes.  Multiple concurrent directio writes to the same
869          * region are handled by end_cow processing only occurring for the
870          * threads which succeed; the outcome of multiple overlapping direct
871          * writes is not well defined anyway.
872          *
873          * It's possible that a buffered write and a direct write could collide
874          * here (the buffered write stumbles in after the dio flushes and
875          * invalidates the page cache and immediately queues writeback), but we
876          * have never supported this 100%.  If either disk write succeeds the
877          * blocks will be remapped.
878          */
879         while (end_fsb > offset_fsb && !error)
880                 error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb);
881
882         if (error)
883                 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
884         return error;
885 }
886
887 /*
888  * Free all CoW staging blocks that are still referenced by the ondisk refcount
889  * metadata.  The ondisk metadata does not track which inode created the
890  * staging extent, so callers must ensure that there are no cached inodes with
891  * live CoW staging extents.
892  */
893 int
894 xfs_reflink_recover_cow(
895         struct xfs_mount        *mp)
896 {
897         struct xfs_perag        *pag;
898         xfs_agnumber_t          agno;
899         int                     error = 0;
900
901         if (!xfs_has_reflink(mp))
902                 return 0;
903
904         for_each_perag(mp, agno, pag) {
905                 error = xfs_refcount_recover_cow_leftovers(mp, pag);
906                 if (error) {
907                         xfs_perag_rele(pag);
908                         break;
909                 }
910         }
911
912         return error;
913 }
914
915 /*
916  * Reflinking (Block) Ranges of Two Files Together
917  *
918  * First, ensure that the reflink flag is set on both inodes.  The flag is an
919  * optimization to avoid unnecessary refcount btree lookups in the write path.
920  *
921  * Now we can iteratively remap the range of extents (and holes) in src to the
922  * corresponding ranges in dest.  Let drange and srange denote the ranges of
923  * logical blocks in dest and src touched by the reflink operation.
924  *
925  * While the length of drange is greater than zero,
926  *    - Read src's bmbt at the start of srange ("imap")
927  *    - If imap doesn't exist, make imap appear to start at the end of srange
928  *      with zero length.
929  *    - If imap starts before srange, advance imap to start at srange.
930  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
931  *    - Punch (imap start - srange start + imap len) blocks from dest at
932  *      offset (drange start).
933  *    - If imap points to a real range of pblks,
934  *         > Increase the refcount of the imap's pblks
935  *         > Map imap's pblks into dest at the offset
936  *           (drange start + imap start - srange start)
937  *    - Advance drange and srange by (imap start - srange start + imap len)
938  *
939  * Finally, if the reflink made dest longer, update both the in-core and
940  * on-disk file sizes.
941  *
942  * ASCII Art Demonstration:
943  *
944  * Let's say we want to reflink this source file:
945  *
946  * ----SSSSSSS-SSSSS----SSSSSS (src file)
947  *   <-------------------->
948  *
949  * into this destination file:
950  *
951  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
952  *        <-------------------->
953  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
954  * Observe that the range has different logical offsets in either file.
955  *
956  * Consider that the first extent in the source file doesn't line up with our
957  * reflink range.  Unmapping  and remapping are separate operations, so we can
958  * unmap more blocks from the destination file than we remap.
959  *
960  * ----SSSSSSS-SSSSS----SSSSSS
961  *   <------->
962  * --DDDDD---------DDDDD--DDD
963  *        <------->
964  *
965  * Now remap the source extent into the destination file:
966  *
967  * ----SSSSSSS-SSSSS----SSSSSS
968  *   <------->
969  * --DDDDD--SSSSSSSDDDDD--DDD
970  *        <------->
971  *
972  * Do likewise with the second hole and extent in our range.  Holes in the
973  * unmap range don't affect our operation.
974  *
975  * ----SSSSSSS-SSSSS----SSSSSS
976  *            <---->
977  * --DDDDD--SSSSSSS-SSSSS-DDD
978  *                 <---->
979  *
980  * Finally, unmap and remap part of the third extent.  This will increase the
981  * size of the destination file.
982  *
983  * ----SSSSSSS-SSSSS----SSSSSS
984  *                  <----->
985  * --DDDDD--SSSSSSS-SSSSS----SSS
986  *                       <----->
987  *
988  * Once we update the destination file's i_size, we're done.
989  */
990
991 /*
992  * Ensure the reflink bit is set in both inodes.
993  */
994 STATIC int
995 xfs_reflink_set_inode_flag(
996         struct xfs_inode        *src,
997         struct xfs_inode        *dest)
998 {
999         struct xfs_mount        *mp = src->i_mount;
1000         int                     error;
1001         struct xfs_trans        *tp;
1002
1003         if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
1004                 return 0;
1005
1006         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1007         if (error)
1008                 goto out_error;
1009
1010         /* Lock both files against IO */
1011         if (src->i_ino == dest->i_ino)
1012                 xfs_ilock(src, XFS_ILOCK_EXCL);
1013         else
1014                 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
1015
1016         if (!xfs_is_reflink_inode(src)) {
1017                 trace_xfs_reflink_set_inode_flag(src);
1018                 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
1019                 src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1020                 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
1021                 xfs_ifork_init_cow(src);
1022         } else
1023                 xfs_iunlock(src, XFS_ILOCK_EXCL);
1024
1025         if (src->i_ino == dest->i_ino)
1026                 goto commit_flags;
1027
1028         if (!xfs_is_reflink_inode(dest)) {
1029                 trace_xfs_reflink_set_inode_flag(dest);
1030                 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1031                 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1032                 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1033                 xfs_ifork_init_cow(dest);
1034         } else
1035                 xfs_iunlock(dest, XFS_ILOCK_EXCL);
1036
1037 commit_flags:
1038         error = xfs_trans_commit(tp);
1039         if (error)
1040                 goto out_error;
1041         return error;
1042
1043 out_error:
1044         trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
1045         return error;
1046 }
1047
1048 /*
1049  * Update destination inode size & cowextsize hint, if necessary.
1050  */
1051 int
1052 xfs_reflink_update_dest(
1053         struct xfs_inode        *dest,
1054         xfs_off_t               newlen,
1055         xfs_extlen_t            cowextsize,
1056         unsigned int            remap_flags)
1057 {
1058         struct xfs_mount        *mp = dest->i_mount;
1059         struct xfs_trans        *tp;
1060         int                     error;
1061
1062         if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
1063                 return 0;
1064
1065         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1066         if (error)
1067                 goto out_error;
1068
1069         xfs_ilock(dest, XFS_ILOCK_EXCL);
1070         xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1071
1072         if (newlen > i_size_read(VFS_I(dest))) {
1073                 trace_xfs_reflink_update_inode_size(dest, newlen);
1074                 i_size_write(VFS_I(dest), newlen);
1075                 dest->i_disk_size = newlen;
1076         }
1077
1078         if (cowextsize) {
1079                 dest->i_cowextsize = cowextsize;
1080                 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
1081         }
1082
1083         xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1084
1085         error = xfs_trans_commit(tp);
1086         if (error)
1087                 goto out_error;
1088         return error;
1089
1090 out_error:
1091         trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
1092         return error;
1093 }
1094
1095 /*
1096  * Do we have enough reserve in this AG to handle a reflink?  The refcount
1097  * btree already reserved all the space it needs, but the rmap btree can grow
1098  * infinitely, so we won't allow more reflinks when the AG is down to the
1099  * btree reserves.
1100  */
1101 static int
1102 xfs_reflink_ag_has_free_space(
1103         struct xfs_mount        *mp,
1104         xfs_agnumber_t          agno)
1105 {
1106         struct xfs_perag        *pag;
1107         int                     error = 0;
1108
1109         if (!xfs_has_rmapbt(mp))
1110                 return 0;
1111
1112         pag = xfs_perag_get(mp, agno);
1113         if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1114             xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1115                 error = -ENOSPC;
1116         xfs_perag_put(pag);
1117         return error;
1118 }
1119
1120 /*
1121  * Remap the given extent into the file.  The dmap blockcount will be set to
1122  * the number of blocks that were actually remapped.
1123  */
1124 STATIC int
1125 xfs_reflink_remap_extent(
1126         struct xfs_inode        *ip,
1127         struct xfs_bmbt_irec    *dmap,
1128         xfs_off_t               new_isize)
1129 {
1130         struct xfs_bmbt_irec    smap;
1131         struct xfs_mount        *mp = ip->i_mount;
1132         struct xfs_trans        *tp;
1133         xfs_off_t               newlen;
1134         int64_t                 qdelta = 0;
1135         unsigned int            resblks;
1136         bool                    quota_reserved = true;
1137         bool                    smap_real;
1138         bool                    dmap_written = xfs_bmap_is_written_extent(dmap);
1139         int                     iext_delta = 0;
1140         int                     nimaps;
1141         int                     error;
1142
1143         /*
1144          * Start a rolling transaction to switch the mappings.
1145          *
1146          * Adding a written extent to the extent map can cause a bmbt split,
1147          * and removing a mapped extent from the extent can cause a bmbt split.
1148          * The two operations cannot both cause a split since they operate on
1149          * the same index in the bmap btree, so we only need a reservation for
1150          * one bmbt split if either thing is happening.  However, we haven't
1151          * locked the inode yet, so we reserve assuming this is the case.
1152          *
1153          * The first allocation call tries to reserve enough space to handle
1154          * mapping dmap into a sparse part of the file plus the bmbt split.  We
1155          * haven't locked the inode or read the existing mapping yet, so we do
1156          * not know for sure that we need the space.  This should succeed most
1157          * of the time.
1158          *
1159          * If the first attempt fails, try again but reserving only enough
1160          * space to handle a bmbt split.  This is the hard minimum requirement,
1161          * and we revisit quota reservations later when we know more about what
1162          * we're remapping.
1163          */
1164         resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1165         error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1166                         resblks + dmap->br_blockcount, 0, false, &tp);
1167         if (error == -EDQUOT || error == -ENOSPC) {
1168                 quota_reserved = false;
1169                 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1170                                 resblks, 0, false, &tp);
1171         }
1172         if (error)
1173                 goto out;
1174
1175         /*
1176          * Read what's currently mapped in the destination file into smap.
1177          * If smap isn't a hole, we will have to remove it before we can add
1178          * dmap to the destination file.
1179          */
1180         nimaps = 1;
1181         error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1182                         &smap, &nimaps, 0);
1183         if (error)
1184                 goto out_cancel;
1185         ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1186         smap_real = xfs_bmap_is_real_extent(&smap);
1187
1188         /*
1189          * We can only remap as many blocks as the smaller of the two extent
1190          * maps, because we can only remap one extent at a time.
1191          */
1192         dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1193         ASSERT(dmap->br_blockcount == smap.br_blockcount);
1194
1195         trace_xfs_reflink_remap_extent_dest(ip, &smap);
1196
1197         /*
1198          * Two extents mapped to the same physical block must not have
1199          * different states; that's filesystem corruption.  Move on to the next
1200          * extent if they're both holes or both the same physical extent.
1201          */
1202         if (dmap->br_startblock == smap.br_startblock) {
1203                 if (dmap->br_state != smap.br_state) {
1204                         xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1205                         error = -EFSCORRUPTED;
1206                 }
1207                 goto out_cancel;
1208         }
1209
1210         /* If both extents are unwritten, leave them alone. */
1211         if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1212             smap.br_state == XFS_EXT_UNWRITTEN)
1213                 goto out_cancel;
1214
1215         /* No reflinking if the AG of the dest mapping is low on space. */
1216         if (dmap_written) {
1217                 error = xfs_reflink_ag_has_free_space(mp,
1218                                 XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1219                 if (error)
1220                         goto out_cancel;
1221         }
1222
1223         /*
1224          * Increase quota reservation if we think the quota block counter for
1225          * this file could increase.
1226          *
1227          * If we are mapping a written extent into the file, we need to have
1228          * enough quota block count reservation to handle the blocks in that
1229          * extent.  We log only the delta to the quota block counts, so if the
1230          * extent we're unmapping also has blocks allocated to it, we don't
1231          * need a quota reservation for the extent itself.
1232          *
1233          * Note that if we're replacing a delalloc reservation with a written
1234          * extent, we have to take the full quota reservation because removing
1235          * the delalloc reservation gives the block count back to the quota
1236          * count.  This is suboptimal, but the VFS flushed the dest range
1237          * before we started.  That should have removed all the delalloc
1238          * reservations, but we code defensively.
1239          *
1240          * xfs_trans_alloc_inode above already tried to grab an even larger
1241          * quota reservation, and kicked off a blockgc scan if it couldn't.
1242          * If we can't get a potentially smaller quota reservation now, we're
1243          * done.
1244          */
1245         if (!quota_reserved && !smap_real && dmap_written) {
1246                 error = xfs_trans_reserve_quota_nblks(tp, ip,
1247                                 dmap->br_blockcount, 0, false);
1248                 if (error)
1249                         goto out_cancel;
1250         }
1251
1252         if (smap_real)
1253                 ++iext_delta;
1254
1255         if (dmap_written)
1256                 ++iext_delta;
1257
1258         error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, iext_delta);
1259         if (error)
1260                 goto out_cancel;
1261
1262         if (smap_real) {
1263                 /*
1264                  * If the extent we're unmapping is backed by storage (written
1265                  * or not), unmap the extent and drop its refcount.
1266                  */
1267                 xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &smap);
1268                 xfs_refcount_decrease_extent(tp, &smap);
1269                 qdelta -= smap.br_blockcount;
1270         } else if (smap.br_startblock == DELAYSTARTBLOCK) {
1271                 int             done;
1272
1273                 /*
1274                  * If the extent we're unmapping is a delalloc reservation,
1275                  * we can use the regular bunmapi function to release the
1276                  * incore state.  Dropping the delalloc reservation takes care
1277                  * of the quota reservation for us.
1278                  */
1279                 error = xfs_bunmapi(NULL, ip, smap.br_startoff,
1280                                 smap.br_blockcount, 0, 1, &done);
1281                 if (error)
1282                         goto out_cancel;
1283                 ASSERT(done);
1284         }
1285
1286         /*
1287          * If the extent we're sharing is backed by written storage, increase
1288          * its refcount and map it into the file.
1289          */
1290         if (dmap_written) {
1291                 xfs_refcount_increase_extent(tp, dmap);
1292                 xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, dmap);
1293                 qdelta += dmap->br_blockcount;
1294         }
1295
1296         xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1297
1298         /* Update dest isize if needed. */
1299         newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1300         newlen = min_t(xfs_off_t, newlen, new_isize);
1301         if (newlen > i_size_read(VFS_I(ip))) {
1302                 trace_xfs_reflink_update_inode_size(ip, newlen);
1303                 i_size_write(VFS_I(ip), newlen);
1304                 ip->i_disk_size = newlen;
1305                 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1306         }
1307
1308         /* Commit everything and unlock. */
1309         error = xfs_trans_commit(tp);
1310         goto out_unlock;
1311
1312 out_cancel:
1313         xfs_trans_cancel(tp);
1314 out_unlock:
1315         xfs_iunlock(ip, XFS_ILOCK_EXCL);
1316 out:
1317         if (error)
1318                 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1319         return error;
1320 }
1321
1322 /* Remap a range of one file to the other. */
1323 int
1324 xfs_reflink_remap_blocks(
1325         struct xfs_inode        *src,
1326         loff_t                  pos_in,
1327         struct xfs_inode        *dest,
1328         loff_t                  pos_out,
1329         loff_t                  remap_len,
1330         loff_t                  *remapped)
1331 {
1332         struct xfs_bmbt_irec    imap;
1333         struct xfs_mount        *mp = src->i_mount;
1334         xfs_fileoff_t           srcoff = XFS_B_TO_FSBT(mp, pos_in);
1335         xfs_fileoff_t           destoff = XFS_B_TO_FSBT(mp, pos_out);
1336         xfs_filblks_t           len;
1337         xfs_filblks_t           remapped_len = 0;
1338         xfs_off_t               new_isize = pos_out + remap_len;
1339         int                     nimaps;
1340         int                     error = 0;
1341
1342         len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1343                         XFS_MAX_FILEOFF);
1344
1345         trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1346
1347         while (len > 0) {
1348                 unsigned int    lock_mode;
1349
1350                 /* Read extent from the source file */
1351                 nimaps = 1;
1352                 lock_mode = xfs_ilock_data_map_shared(src);
1353                 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1354                 xfs_iunlock(src, lock_mode);
1355                 if (error)
1356                         break;
1357                 /*
1358                  * The caller supposedly flushed all dirty pages in the source
1359                  * file range, which means that writeback should have allocated
1360                  * or deleted all delalloc reservations in that range.  If we
1361                  * find one, that's a good sign that something is seriously
1362                  * wrong here.
1363                  */
1364                 ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1365                 if (imap.br_startblock == DELAYSTARTBLOCK) {
1366                         ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1367                         xfs_bmap_mark_sick(src, XFS_DATA_FORK);
1368                         error = -EFSCORRUPTED;
1369                         break;
1370                 }
1371
1372                 trace_xfs_reflink_remap_extent_src(src, &imap);
1373
1374                 /* Remap into the destination file at the given offset. */
1375                 imap.br_startoff = destoff;
1376                 error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1377                 if (error)
1378                         break;
1379
1380                 if (fatal_signal_pending(current)) {
1381                         error = -EINTR;
1382                         break;
1383                 }
1384
1385                 /* Advance drange/srange */
1386                 srcoff += imap.br_blockcount;
1387                 destoff += imap.br_blockcount;
1388                 len -= imap.br_blockcount;
1389                 remapped_len += imap.br_blockcount;
1390                 cond_resched();
1391         }
1392
1393         if (error)
1394                 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1395         *remapped = min_t(loff_t, remap_len,
1396                           XFS_FSB_TO_B(src->i_mount, remapped_len));
1397         return error;
1398 }
1399
1400 /*
1401  * If we're reflinking to a point past the destination file's EOF, we must
1402  * zero any speculative post-EOF preallocations that sit between the old EOF
1403  * and the destination file offset.
1404  */
1405 static int
1406 xfs_reflink_zero_posteof(
1407         struct xfs_inode        *ip,
1408         loff_t                  pos)
1409 {
1410         loff_t                  isize = i_size_read(VFS_I(ip));
1411
1412         if (pos <= isize)
1413                 return 0;
1414
1415         trace_xfs_zero_eof(ip, isize, pos - isize);
1416         return xfs_zero_range(ip, isize, pos - isize, NULL);
1417 }
1418
1419 /*
1420  * Prepare two files for range cloning.  Upon a successful return both inodes
1421  * will have the iolock and mmaplock held, the page cache of the out file will
1422  * be truncated, and any leases on the out file will have been broken.  This
1423  * function borrows heavily from xfs_file_aio_write_checks.
1424  *
1425  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1426  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1427  * EOF block in the source dedupe range because it's not a complete block match,
1428  * hence can introduce a corruption into the file that has it's block replaced.
1429  *
1430  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1431  * "block aligned" for the purposes of cloning entire files.  However, if the
1432  * source file range includes the EOF block and it lands within the existing EOF
1433  * of the destination file, then we can expose stale data from beyond the source
1434  * file EOF in the destination file.
1435  *
1436  * XFS doesn't support partial block sharing, so in both cases we have check
1437  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1438  * down to the previous whole block and ignore the partial EOF block. While this
1439  * means we can't dedupe the last block of a file, this is an acceptible
1440  * tradeoff for simplicity on implementation.
1441  *
1442  * For cloning, we want to share the partial EOF block if it is also the new EOF
1443  * block of the destination file. If the partial EOF block lies inside the
1444  * existing destination EOF, then we have to abort the clone to avoid exposing
1445  * stale data in the destination file. Hence we reject these clone attempts with
1446  * -EINVAL in this case.
1447  */
1448 int
1449 xfs_reflink_remap_prep(
1450         struct file             *file_in,
1451         loff_t                  pos_in,
1452         struct file             *file_out,
1453         loff_t                  pos_out,
1454         loff_t                  *len,
1455         unsigned int            remap_flags)
1456 {
1457         struct inode            *inode_in = file_inode(file_in);
1458         struct xfs_inode        *src = XFS_I(inode_in);
1459         struct inode            *inode_out = file_inode(file_out);
1460         struct xfs_inode        *dest = XFS_I(inode_out);
1461         int                     ret;
1462
1463         /* Lock both files against IO */
1464         ret = xfs_ilock2_io_mmap(src, dest);
1465         if (ret)
1466                 return ret;
1467
1468         /* Check file eligibility and prepare for block sharing. */
1469         ret = -EINVAL;
1470         /* Don't reflink realtime inodes */
1471         if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1472                 goto out_unlock;
1473
1474         /* Don't share DAX file data with non-DAX file. */
1475         if (IS_DAX(inode_in) != IS_DAX(inode_out))
1476                 goto out_unlock;
1477
1478         if (!IS_DAX(inode_in))
1479                 ret = generic_remap_file_range_prep(file_in, pos_in, file_out,
1480                                 pos_out, len, remap_flags);
1481         else
1482                 ret = dax_remap_file_range_prep(file_in, pos_in, file_out,
1483                                 pos_out, len, remap_flags, &xfs_read_iomap_ops);
1484         if (ret || *len == 0)
1485                 goto out_unlock;
1486
1487         /* Attach dquots to dest inode before changing block map */
1488         ret = xfs_qm_dqattach(dest);
1489         if (ret)
1490                 goto out_unlock;
1491
1492         /*
1493          * Zero existing post-eof speculative preallocations in the destination
1494          * file.
1495          */
1496         ret = xfs_reflink_zero_posteof(dest, pos_out);
1497         if (ret)
1498                 goto out_unlock;
1499
1500         /* Set flags and remap blocks. */
1501         ret = xfs_reflink_set_inode_flag(src, dest);
1502         if (ret)
1503                 goto out_unlock;
1504
1505         /*
1506          * If pos_out > EOF, we may have dirtied blocks between EOF and
1507          * pos_out. In that case, we need to extend the flush and unmap to cover
1508          * from EOF to the end of the copy length.
1509          */
1510         if (pos_out > XFS_ISIZE(dest)) {
1511                 loff_t  flen = *len + (pos_out - XFS_ISIZE(dest));
1512                 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1513         } else {
1514                 ret = xfs_flush_unmap_range(dest, pos_out, *len);
1515         }
1516         if (ret)
1517                 goto out_unlock;
1518
1519         xfs_iflags_set(src, XFS_IREMAPPING);
1520         if (inode_in != inode_out)
1521                 xfs_ilock_demote(src, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
1522
1523         return 0;
1524 out_unlock:
1525         xfs_iunlock2_io_mmap(src, dest);
1526         return ret;
1527 }
1528
1529 /* Does this inode need the reflink flag? */
1530 int
1531 xfs_reflink_inode_has_shared_extents(
1532         struct xfs_trans                *tp,
1533         struct xfs_inode                *ip,
1534         bool                            *has_shared)
1535 {
1536         struct xfs_bmbt_irec            got;
1537         struct xfs_mount                *mp = ip->i_mount;
1538         struct xfs_ifork                *ifp;
1539         struct xfs_iext_cursor          icur;
1540         bool                            found;
1541         int                             error;
1542
1543         ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1544         error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1545         if (error)
1546                 return error;
1547
1548         *has_shared = false;
1549         found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1550         while (found) {
1551                 struct xfs_perag        *pag;
1552                 xfs_agblock_t           agbno;
1553                 xfs_extlen_t            aglen;
1554                 xfs_agblock_t           rbno;
1555                 xfs_extlen_t            rlen;
1556
1557                 if (isnullstartblock(got.br_startblock) ||
1558                     got.br_state != XFS_EXT_NORM)
1559                         goto next;
1560
1561                 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock));
1562                 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1563                 aglen = got.br_blockcount;
1564                 error = xfs_reflink_find_shared(pag, tp, agbno, aglen,
1565                                 &rbno, &rlen, false);
1566                 xfs_perag_put(pag);
1567                 if (error)
1568                         return error;
1569
1570                 /* Is there still a shared block here? */
1571                 if (rbno != NULLAGBLOCK) {
1572                         *has_shared = true;
1573                         return 0;
1574                 }
1575 next:
1576                 found = xfs_iext_next_extent(ifp, &icur, &got);
1577         }
1578
1579         return 0;
1580 }
1581
1582 /*
1583  * Clear the inode reflink flag if there are no shared extents.
1584  *
1585  * The caller is responsible for joining the inode to the transaction passed in.
1586  * The inode will be joined to the transaction that is returned to the caller.
1587  */
1588 int
1589 xfs_reflink_clear_inode_flag(
1590         struct xfs_inode        *ip,
1591         struct xfs_trans        **tpp)
1592 {
1593         bool                    needs_flag;
1594         int                     error = 0;
1595
1596         ASSERT(xfs_is_reflink_inode(ip));
1597
1598         error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1599         if (error || needs_flag)
1600                 return error;
1601
1602         /*
1603          * We didn't find any shared blocks so turn off the reflink flag.
1604          * First, get rid of any leftover CoW mappings.
1605          */
1606         error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1607                         true);
1608         if (error)
1609                 return error;
1610
1611         /* Clear the inode flag. */
1612         trace_xfs_reflink_unset_inode_flag(ip);
1613         ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1614         xfs_inode_clear_cowblocks_tag(ip);
1615         xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1616
1617         return error;
1618 }
1619
1620 /*
1621  * Clear the inode reflink flag if there are no shared extents and the size
1622  * hasn't changed.
1623  */
1624 STATIC int
1625 xfs_reflink_try_clear_inode_flag(
1626         struct xfs_inode        *ip)
1627 {
1628         struct xfs_mount        *mp = ip->i_mount;
1629         struct xfs_trans        *tp;
1630         int                     error = 0;
1631
1632         /* Start a rolling transaction to remove the mappings */
1633         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1634         if (error)
1635                 return error;
1636
1637         xfs_ilock(ip, XFS_ILOCK_EXCL);
1638         xfs_trans_ijoin(tp, ip, 0);
1639
1640         error = xfs_reflink_clear_inode_flag(ip, &tp);
1641         if (error)
1642                 goto cancel;
1643
1644         error = xfs_trans_commit(tp);
1645         if (error)
1646                 goto out;
1647
1648         xfs_iunlock(ip, XFS_ILOCK_EXCL);
1649         return 0;
1650 cancel:
1651         xfs_trans_cancel(tp);
1652 out:
1653         xfs_iunlock(ip, XFS_ILOCK_EXCL);
1654         return error;
1655 }
1656
1657 /*
1658  * Pre-COW all shared blocks within a given byte range of a file and turn off
1659  * the reflink flag if we unshare all of the file's blocks.
1660  */
1661 int
1662 xfs_reflink_unshare(
1663         struct xfs_inode        *ip,
1664         xfs_off_t               offset,
1665         xfs_off_t               len)
1666 {
1667         struct inode            *inode = VFS_I(ip);
1668         int                     error;
1669
1670         if (!xfs_is_reflink_inode(ip))
1671                 return 0;
1672
1673         trace_xfs_reflink_unshare(ip, offset, len);
1674
1675         inode_dio_wait(inode);
1676
1677         if (IS_DAX(inode))
1678                 error = dax_file_unshare(inode, offset, len,
1679                                 &xfs_dax_write_iomap_ops);
1680         else
1681                 error = iomap_file_unshare(inode, offset, len,
1682                                 &xfs_buffered_write_iomap_ops);
1683         if (error)
1684                 goto out;
1685
1686         error = filemap_write_and_wait_range(inode->i_mapping, offset,
1687                         offset + len - 1);
1688         if (error)
1689                 goto out;
1690
1691         /* Turn off the reflink flag if possible. */
1692         error = xfs_reflink_try_clear_inode_flag(ip);
1693         if (error)
1694                 goto out;
1695         return 0;
1696
1697 out:
1698         trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1699         return error;
1700 }