oom: move badness() declaration into oom.h
[sfrench/cifs-2.6.git] / fs / proc / base.c
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
84 #include <linux/slab.h>
85 #include "internal.h"
86
87 /* NOTE:
88  *      Implementing inode permission operations in /proc is almost
89  *      certainly an error.  Permission checks need to happen during
90  *      each system call not at open time.  The reason is that most of
91  *      what we wish to check for permissions in /proc varies at runtime.
92  *
93  *      The classic example of a problem is opening file descriptors
94  *      in /proc for a task before it execs a suid executable.
95  */
96
97 struct pid_entry {
98         char *name;
99         int len;
100         mode_t mode;
101         const struct inode_operations *iop;
102         const struct file_operations *fop;
103         union proc_op op;
104 };
105
106 #define NOD(NAME, MODE, IOP, FOP, OP) {                 \
107         .name = (NAME),                                 \
108         .len  = sizeof(NAME) - 1,                       \
109         .mode = MODE,                                   \
110         .iop  = IOP,                                    \
111         .fop  = FOP,                                    \
112         .op   = OP,                                     \
113 }
114
115 #define DIR(NAME, MODE, iops, fops)     \
116         NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
117 #define LNK(NAME, get_link)                                     \
118         NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
119                 &proc_pid_link_inode_operations, NULL,          \
120                 { .proc_get_link = get_link } )
121 #define REG(NAME, MODE, fops)                           \
122         NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
123 #define INF(NAME, MODE, read)                           \
124         NOD(NAME, (S_IFREG|(MODE)),                     \
125                 NULL, &proc_info_file_operations,       \
126                 { .proc_read = read } )
127 #define ONE(NAME, MODE, show)                           \
128         NOD(NAME, (S_IFREG|(MODE)),                     \
129                 NULL, &proc_single_file_operations,     \
130                 { .proc_show = show } )
131
132 /*
133  * Count the number of hardlinks for the pid_entry table, excluding the .
134  * and .. links.
135  */
136 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
137         unsigned int n)
138 {
139         unsigned int i;
140         unsigned int count;
141
142         count = 0;
143         for (i = 0; i < n; ++i) {
144                 if (S_ISDIR(entries[i].mode))
145                         ++count;
146         }
147
148         return count;
149 }
150
151 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
152 {
153         struct fs_struct *fs;
154         int result = -ENOENT;
155
156         task_lock(task);
157         fs = task->fs;
158         if (fs) {
159                 read_lock(&fs->lock);
160                 *path = root ? fs->root : fs->pwd;
161                 path_get(path);
162                 read_unlock(&fs->lock);
163                 result = 0;
164         }
165         task_unlock(task);
166         return result;
167 }
168
169 static int proc_cwd_link(struct inode *inode, struct path *path)
170 {
171         struct task_struct *task = get_proc_task(inode);
172         int result = -ENOENT;
173
174         if (task) {
175                 result = get_fs_path(task, path, 0);
176                 put_task_struct(task);
177         }
178         return result;
179 }
180
181 static int proc_root_link(struct inode *inode, struct path *path)
182 {
183         struct task_struct *task = get_proc_task(inode);
184         int result = -ENOENT;
185
186         if (task) {
187                 result = get_fs_path(task, path, 1);
188                 put_task_struct(task);
189         }
190         return result;
191 }
192
193 /*
194  * Return zero if current may access user memory in @task, -error if not.
195  */
196 static int check_mem_permission(struct task_struct *task)
197 {
198         /*
199          * A task can always look at itself, in case it chooses
200          * to use system calls instead of load instructions.
201          */
202         if (task == current)
203                 return 0;
204
205         /*
206          * If current is actively ptrace'ing, and would also be
207          * permitted to freshly attach with ptrace now, permit it.
208          */
209         if (task_is_stopped_or_traced(task)) {
210                 int match;
211                 rcu_read_lock();
212                 match = (tracehook_tracer_task(task) == current);
213                 rcu_read_unlock();
214                 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
215                         return 0;
216         }
217
218         /*
219          * Noone else is allowed.
220          */
221         return -EPERM;
222 }
223
224 struct mm_struct *mm_for_maps(struct task_struct *task)
225 {
226         struct mm_struct *mm;
227
228         if (mutex_lock_killable(&task->cred_guard_mutex))
229                 return NULL;
230
231         mm = get_task_mm(task);
232         if (mm && mm != current->mm &&
233                         !ptrace_may_access(task, PTRACE_MODE_READ)) {
234                 mmput(mm);
235                 mm = NULL;
236         }
237         mutex_unlock(&task->cred_guard_mutex);
238
239         return mm;
240 }
241
242 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
243 {
244         int res = 0;
245         unsigned int len;
246         struct mm_struct *mm = get_task_mm(task);
247         if (!mm)
248                 goto out;
249         if (!mm->arg_end)
250                 goto out_mm;    /* Shh! No looking before we're done */
251
252         len = mm->arg_end - mm->arg_start;
253  
254         if (len > PAGE_SIZE)
255                 len = PAGE_SIZE;
256  
257         res = access_process_vm(task, mm->arg_start, buffer, len, 0);
258
259         // If the nul at the end of args has been overwritten, then
260         // assume application is using setproctitle(3).
261         if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
262                 len = strnlen(buffer, res);
263                 if (len < res) {
264                     res = len;
265                 } else {
266                         len = mm->env_end - mm->env_start;
267                         if (len > PAGE_SIZE - res)
268                                 len = PAGE_SIZE - res;
269                         res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
270                         res = strnlen(buffer, res);
271                 }
272         }
273 out_mm:
274         mmput(mm);
275 out:
276         return res;
277 }
278
279 static int proc_pid_auxv(struct task_struct *task, char *buffer)
280 {
281         int res = 0;
282         struct mm_struct *mm = get_task_mm(task);
283         if (mm) {
284                 unsigned int nwords = 0;
285                 do {
286                         nwords += 2;
287                 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
288                 res = nwords * sizeof(mm->saved_auxv[0]);
289                 if (res > PAGE_SIZE)
290                         res = PAGE_SIZE;
291                 memcpy(buffer, mm->saved_auxv, res);
292                 mmput(mm);
293         }
294         return res;
295 }
296
297
298 #ifdef CONFIG_KALLSYMS
299 /*
300  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
301  * Returns the resolved symbol.  If that fails, simply return the address.
302  */
303 static int proc_pid_wchan(struct task_struct *task, char *buffer)
304 {
305         unsigned long wchan;
306         char symname[KSYM_NAME_LEN];
307
308         wchan = get_wchan(task);
309
310         if (lookup_symbol_name(wchan, symname) < 0)
311                 if (!ptrace_may_access(task, PTRACE_MODE_READ))
312                         return 0;
313                 else
314                         return sprintf(buffer, "%lu", wchan);
315         else
316                 return sprintf(buffer, "%s", symname);
317 }
318 #endif /* CONFIG_KALLSYMS */
319
320 #ifdef CONFIG_STACKTRACE
321
322 #define MAX_STACK_TRACE_DEPTH   64
323
324 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
325                           struct pid *pid, struct task_struct *task)
326 {
327         struct stack_trace trace;
328         unsigned long *entries;
329         int i;
330
331         entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
332         if (!entries)
333                 return -ENOMEM;
334
335         trace.nr_entries        = 0;
336         trace.max_entries       = MAX_STACK_TRACE_DEPTH;
337         trace.entries           = entries;
338         trace.skip              = 0;
339         save_stack_trace_tsk(task, &trace);
340
341         for (i = 0; i < trace.nr_entries; i++) {
342                 seq_printf(m, "[<%p>] %pS\n",
343                            (void *)entries[i], (void *)entries[i]);
344         }
345         kfree(entries);
346
347         return 0;
348 }
349 #endif
350
351 #ifdef CONFIG_SCHEDSTATS
352 /*
353  * Provides /proc/PID/schedstat
354  */
355 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
356 {
357         return sprintf(buffer, "%llu %llu %lu\n",
358                         (unsigned long long)task->se.sum_exec_runtime,
359                         (unsigned long long)task->sched_info.run_delay,
360                         task->sched_info.pcount);
361 }
362 #endif
363
364 #ifdef CONFIG_LATENCYTOP
365 static int lstats_show_proc(struct seq_file *m, void *v)
366 {
367         int i;
368         struct inode *inode = m->private;
369         struct task_struct *task = get_proc_task(inode);
370
371         if (!task)
372                 return -ESRCH;
373         seq_puts(m, "Latency Top version : v0.1\n");
374         for (i = 0; i < 32; i++) {
375                 if (task->latency_record[i].backtrace[0]) {
376                         int q;
377                         seq_printf(m, "%i %li %li ",
378                                 task->latency_record[i].count,
379                                 task->latency_record[i].time,
380                                 task->latency_record[i].max);
381                         for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
382                                 char sym[KSYM_SYMBOL_LEN];
383                                 char *c;
384                                 if (!task->latency_record[i].backtrace[q])
385                                         break;
386                                 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
387                                         break;
388                                 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
389                                 c = strchr(sym, '+');
390                                 if (c)
391                                         *c = 0;
392                                 seq_printf(m, "%s ", sym);
393                         }
394                         seq_printf(m, "\n");
395                 }
396
397         }
398         put_task_struct(task);
399         return 0;
400 }
401
402 static int lstats_open(struct inode *inode, struct file *file)
403 {
404         return single_open(file, lstats_show_proc, inode);
405 }
406
407 static ssize_t lstats_write(struct file *file, const char __user *buf,
408                             size_t count, loff_t *offs)
409 {
410         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
411
412         if (!task)
413                 return -ESRCH;
414         clear_all_latency_tracing(task);
415         put_task_struct(task);
416
417         return count;
418 }
419
420 static const struct file_operations proc_lstats_operations = {
421         .open           = lstats_open,
422         .read           = seq_read,
423         .write          = lstats_write,
424         .llseek         = seq_lseek,
425         .release        = single_release,
426 };
427
428 #endif
429
430 static int proc_oom_score(struct task_struct *task, char *buffer)
431 {
432         unsigned long points = 0;
433         struct timespec uptime;
434
435         do_posix_clock_monotonic_gettime(&uptime);
436         read_lock(&tasklist_lock);
437         if (pid_alive(task))
438                 points = badness(task, NULL, NULL, uptime.tv_sec);
439         read_unlock(&tasklist_lock);
440         return sprintf(buffer, "%lu\n", points);
441 }
442
443 struct limit_names {
444         char *name;
445         char *unit;
446 };
447
448 static const struct limit_names lnames[RLIM_NLIMITS] = {
449         [RLIMIT_CPU] = {"Max cpu time", "seconds"},
450         [RLIMIT_FSIZE] = {"Max file size", "bytes"},
451         [RLIMIT_DATA] = {"Max data size", "bytes"},
452         [RLIMIT_STACK] = {"Max stack size", "bytes"},
453         [RLIMIT_CORE] = {"Max core file size", "bytes"},
454         [RLIMIT_RSS] = {"Max resident set", "bytes"},
455         [RLIMIT_NPROC] = {"Max processes", "processes"},
456         [RLIMIT_NOFILE] = {"Max open files", "files"},
457         [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
458         [RLIMIT_AS] = {"Max address space", "bytes"},
459         [RLIMIT_LOCKS] = {"Max file locks", "locks"},
460         [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
461         [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
462         [RLIMIT_NICE] = {"Max nice priority", NULL},
463         [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
464         [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
465 };
466
467 /* Display limits for a process */
468 static int proc_pid_limits(struct task_struct *task, char *buffer)
469 {
470         unsigned int i;
471         int count = 0;
472         unsigned long flags;
473         char *bufptr = buffer;
474
475         struct rlimit rlim[RLIM_NLIMITS];
476
477         if (!lock_task_sighand(task, &flags))
478                 return 0;
479         memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
480         unlock_task_sighand(task, &flags);
481
482         /*
483          * print the file header
484          */
485         count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
486                         "Limit", "Soft Limit", "Hard Limit", "Units");
487
488         for (i = 0; i < RLIM_NLIMITS; i++) {
489                 if (rlim[i].rlim_cur == RLIM_INFINITY)
490                         count += sprintf(&bufptr[count], "%-25s %-20s ",
491                                          lnames[i].name, "unlimited");
492                 else
493                         count += sprintf(&bufptr[count], "%-25s %-20lu ",
494                                          lnames[i].name, rlim[i].rlim_cur);
495
496                 if (rlim[i].rlim_max == RLIM_INFINITY)
497                         count += sprintf(&bufptr[count], "%-20s ", "unlimited");
498                 else
499                         count += sprintf(&bufptr[count], "%-20lu ",
500                                          rlim[i].rlim_max);
501
502                 if (lnames[i].unit)
503                         count += sprintf(&bufptr[count], "%-10s\n",
504                                          lnames[i].unit);
505                 else
506                         count += sprintf(&bufptr[count], "\n");
507         }
508
509         return count;
510 }
511
512 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
513 static int proc_pid_syscall(struct task_struct *task, char *buffer)
514 {
515         long nr;
516         unsigned long args[6], sp, pc;
517
518         if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
519                 return sprintf(buffer, "running\n");
520
521         if (nr < 0)
522                 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
523
524         return sprintf(buffer,
525                        "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
526                        nr,
527                        args[0], args[1], args[2], args[3], args[4], args[5],
528                        sp, pc);
529 }
530 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
531
532 /************************************************************************/
533 /*                       Here the fs part begins                        */
534 /************************************************************************/
535
536 /* permission checks */
537 static int proc_fd_access_allowed(struct inode *inode)
538 {
539         struct task_struct *task;
540         int allowed = 0;
541         /* Allow access to a task's file descriptors if it is us or we
542          * may use ptrace attach to the process and find out that
543          * information.
544          */
545         task = get_proc_task(inode);
546         if (task) {
547                 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
548                 put_task_struct(task);
549         }
550         return allowed;
551 }
552
553 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
554 {
555         int error;
556         struct inode *inode = dentry->d_inode;
557
558         if (attr->ia_valid & ATTR_MODE)
559                 return -EPERM;
560
561         error = inode_change_ok(inode, attr);
562         if (!error)
563                 error = inode_setattr(inode, attr);
564         return error;
565 }
566
567 static const struct inode_operations proc_def_inode_operations = {
568         .setattr        = proc_setattr,
569 };
570
571 static int mounts_open_common(struct inode *inode, struct file *file,
572                               const struct seq_operations *op)
573 {
574         struct task_struct *task = get_proc_task(inode);
575         struct nsproxy *nsp;
576         struct mnt_namespace *ns = NULL;
577         struct path root;
578         struct proc_mounts *p;
579         int ret = -EINVAL;
580
581         if (task) {
582                 rcu_read_lock();
583                 nsp = task_nsproxy(task);
584                 if (nsp) {
585                         ns = nsp->mnt_ns;
586                         if (ns)
587                                 get_mnt_ns(ns);
588                 }
589                 rcu_read_unlock();
590                 if (ns && get_fs_path(task, &root, 1) == 0)
591                         ret = 0;
592                 put_task_struct(task);
593         }
594
595         if (!ns)
596                 goto err;
597         if (ret)
598                 goto err_put_ns;
599
600         ret = -ENOMEM;
601         p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
602         if (!p)
603                 goto err_put_path;
604
605         file->private_data = &p->m;
606         ret = seq_open(file, op);
607         if (ret)
608                 goto err_free;
609
610         p->m.private = p;
611         p->ns = ns;
612         p->root = root;
613         p->event = ns->event;
614
615         return 0;
616
617  err_free:
618         kfree(p);
619  err_put_path:
620         path_put(&root);
621  err_put_ns:
622         put_mnt_ns(ns);
623  err:
624         return ret;
625 }
626
627 static int mounts_release(struct inode *inode, struct file *file)
628 {
629         struct proc_mounts *p = file->private_data;
630         path_put(&p->root);
631         put_mnt_ns(p->ns);
632         return seq_release(inode, file);
633 }
634
635 static unsigned mounts_poll(struct file *file, poll_table *wait)
636 {
637         struct proc_mounts *p = file->private_data;
638         unsigned res = POLLIN | POLLRDNORM;
639
640         poll_wait(file, &p->ns->poll, wait);
641         if (mnt_had_events(p))
642                 res |= POLLERR | POLLPRI;
643
644         return res;
645 }
646
647 static int mounts_open(struct inode *inode, struct file *file)
648 {
649         return mounts_open_common(inode, file, &mounts_op);
650 }
651
652 static const struct file_operations proc_mounts_operations = {
653         .open           = mounts_open,
654         .read           = seq_read,
655         .llseek         = seq_lseek,
656         .release        = mounts_release,
657         .poll           = mounts_poll,
658 };
659
660 static int mountinfo_open(struct inode *inode, struct file *file)
661 {
662         return mounts_open_common(inode, file, &mountinfo_op);
663 }
664
665 static const struct file_operations proc_mountinfo_operations = {
666         .open           = mountinfo_open,
667         .read           = seq_read,
668         .llseek         = seq_lseek,
669         .release        = mounts_release,
670         .poll           = mounts_poll,
671 };
672
673 static int mountstats_open(struct inode *inode, struct file *file)
674 {
675         return mounts_open_common(inode, file, &mountstats_op);
676 }
677
678 static const struct file_operations proc_mountstats_operations = {
679         .open           = mountstats_open,
680         .read           = seq_read,
681         .llseek         = seq_lseek,
682         .release        = mounts_release,
683 };
684
685 #define PROC_BLOCK_SIZE (3*1024)                /* 4K page size but our output routines use some slack for overruns */
686
687 static ssize_t proc_info_read(struct file * file, char __user * buf,
688                           size_t count, loff_t *ppos)
689 {
690         struct inode * inode = file->f_path.dentry->d_inode;
691         unsigned long page;
692         ssize_t length;
693         struct task_struct *task = get_proc_task(inode);
694
695         length = -ESRCH;
696         if (!task)
697                 goto out_no_task;
698
699         if (count > PROC_BLOCK_SIZE)
700                 count = PROC_BLOCK_SIZE;
701
702         length = -ENOMEM;
703         if (!(page = __get_free_page(GFP_TEMPORARY)))
704                 goto out;
705
706         length = PROC_I(inode)->op.proc_read(task, (char*)page);
707
708         if (length >= 0)
709                 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
710         free_page(page);
711 out:
712         put_task_struct(task);
713 out_no_task:
714         return length;
715 }
716
717 static const struct file_operations proc_info_file_operations = {
718         .read           = proc_info_read,
719         .llseek         = generic_file_llseek,
720 };
721
722 static int proc_single_show(struct seq_file *m, void *v)
723 {
724         struct inode *inode = m->private;
725         struct pid_namespace *ns;
726         struct pid *pid;
727         struct task_struct *task;
728         int ret;
729
730         ns = inode->i_sb->s_fs_info;
731         pid = proc_pid(inode);
732         task = get_pid_task(pid, PIDTYPE_PID);
733         if (!task)
734                 return -ESRCH;
735
736         ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
737
738         put_task_struct(task);
739         return ret;
740 }
741
742 static int proc_single_open(struct inode *inode, struct file *filp)
743 {
744         int ret;
745         ret = single_open(filp, proc_single_show, NULL);
746         if (!ret) {
747                 struct seq_file *m = filp->private_data;
748
749                 m->private = inode;
750         }
751         return ret;
752 }
753
754 static const struct file_operations proc_single_file_operations = {
755         .open           = proc_single_open,
756         .read           = seq_read,
757         .llseek         = seq_lseek,
758         .release        = single_release,
759 };
760
761 static int mem_open(struct inode* inode, struct file* file)
762 {
763         file->private_data = (void*)((long)current->self_exec_id);
764         return 0;
765 }
766
767 static ssize_t mem_read(struct file * file, char __user * buf,
768                         size_t count, loff_t *ppos)
769 {
770         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
771         char *page;
772         unsigned long src = *ppos;
773         int ret = -ESRCH;
774         struct mm_struct *mm;
775
776         if (!task)
777                 goto out_no_task;
778
779         if (check_mem_permission(task))
780                 goto out;
781
782         ret = -ENOMEM;
783         page = (char *)__get_free_page(GFP_TEMPORARY);
784         if (!page)
785                 goto out;
786
787         ret = 0;
788  
789         mm = get_task_mm(task);
790         if (!mm)
791                 goto out_free;
792
793         ret = -EIO;
794  
795         if (file->private_data != (void*)((long)current->self_exec_id))
796                 goto out_put;
797
798         ret = 0;
799  
800         while (count > 0) {
801                 int this_len, retval;
802
803                 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
804                 retval = access_process_vm(task, src, page, this_len, 0);
805                 if (!retval || check_mem_permission(task)) {
806                         if (!ret)
807                                 ret = -EIO;
808                         break;
809                 }
810
811                 if (copy_to_user(buf, page, retval)) {
812                         ret = -EFAULT;
813                         break;
814                 }
815  
816                 ret += retval;
817                 src += retval;
818                 buf += retval;
819                 count -= retval;
820         }
821         *ppos = src;
822
823 out_put:
824         mmput(mm);
825 out_free:
826         free_page((unsigned long) page);
827 out:
828         put_task_struct(task);
829 out_no_task:
830         return ret;
831 }
832
833 #define mem_write NULL
834
835 #ifndef mem_write
836 /* This is a security hazard */
837 static ssize_t mem_write(struct file * file, const char __user *buf,
838                          size_t count, loff_t *ppos)
839 {
840         int copied;
841         char *page;
842         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
843         unsigned long dst = *ppos;
844
845         copied = -ESRCH;
846         if (!task)
847                 goto out_no_task;
848
849         if (check_mem_permission(task))
850                 goto out;
851
852         copied = -ENOMEM;
853         page = (char *)__get_free_page(GFP_TEMPORARY);
854         if (!page)
855                 goto out;
856
857         copied = 0;
858         while (count > 0) {
859                 int this_len, retval;
860
861                 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
862                 if (copy_from_user(page, buf, this_len)) {
863                         copied = -EFAULT;
864                         break;
865                 }
866                 retval = access_process_vm(task, dst, page, this_len, 1);
867                 if (!retval) {
868                         if (!copied)
869                                 copied = -EIO;
870                         break;
871                 }
872                 copied += retval;
873                 buf += retval;
874                 dst += retval;
875                 count -= retval;                        
876         }
877         *ppos = dst;
878         free_page((unsigned long) page);
879 out:
880         put_task_struct(task);
881 out_no_task:
882         return copied;
883 }
884 #endif
885
886 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
887 {
888         switch (orig) {
889         case 0:
890                 file->f_pos = offset;
891                 break;
892         case 1:
893                 file->f_pos += offset;
894                 break;
895         default:
896                 return -EINVAL;
897         }
898         force_successful_syscall_return();
899         return file->f_pos;
900 }
901
902 static const struct file_operations proc_mem_operations = {
903         .llseek         = mem_lseek,
904         .read           = mem_read,
905         .write          = mem_write,
906         .open           = mem_open,
907 };
908
909 static ssize_t environ_read(struct file *file, char __user *buf,
910                         size_t count, loff_t *ppos)
911 {
912         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
913         char *page;
914         unsigned long src = *ppos;
915         int ret = -ESRCH;
916         struct mm_struct *mm;
917
918         if (!task)
919                 goto out_no_task;
920
921         if (!ptrace_may_access(task, PTRACE_MODE_READ))
922                 goto out;
923
924         ret = -ENOMEM;
925         page = (char *)__get_free_page(GFP_TEMPORARY);
926         if (!page)
927                 goto out;
928
929         ret = 0;
930
931         mm = get_task_mm(task);
932         if (!mm)
933                 goto out_free;
934
935         while (count > 0) {
936                 int this_len, retval, max_len;
937
938                 this_len = mm->env_end - (mm->env_start + src);
939
940                 if (this_len <= 0)
941                         break;
942
943                 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
944                 this_len = (this_len > max_len) ? max_len : this_len;
945
946                 retval = access_process_vm(task, (mm->env_start + src),
947                         page, this_len, 0);
948
949                 if (retval <= 0) {
950                         ret = retval;
951                         break;
952                 }
953
954                 if (copy_to_user(buf, page, retval)) {
955                         ret = -EFAULT;
956                         break;
957                 }
958
959                 ret += retval;
960                 src += retval;
961                 buf += retval;
962                 count -= retval;
963         }
964         *ppos = src;
965
966         mmput(mm);
967 out_free:
968         free_page((unsigned long) page);
969 out:
970         put_task_struct(task);
971 out_no_task:
972         return ret;
973 }
974
975 static const struct file_operations proc_environ_operations = {
976         .read           = environ_read,
977         .llseek         = generic_file_llseek,
978 };
979
980 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
981                                 size_t count, loff_t *ppos)
982 {
983         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
984         char buffer[PROC_NUMBUF];
985         size_t len;
986         int oom_adjust = OOM_DISABLE;
987         unsigned long flags;
988
989         if (!task)
990                 return -ESRCH;
991
992         if (lock_task_sighand(task, &flags)) {
993                 oom_adjust = task->signal->oom_adj;
994                 unlock_task_sighand(task, &flags);
995         }
996
997         put_task_struct(task);
998
999         len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1000
1001         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1002 }
1003
1004 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1005                                 size_t count, loff_t *ppos)
1006 {
1007         struct task_struct *task;
1008         char buffer[PROC_NUMBUF];
1009         long oom_adjust;
1010         unsigned long flags;
1011         int err;
1012
1013         memset(buffer, 0, sizeof(buffer));
1014         if (count > sizeof(buffer) - 1)
1015                 count = sizeof(buffer) - 1;
1016         if (copy_from_user(buffer, buf, count))
1017                 return -EFAULT;
1018
1019         err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1020         if (err)
1021                 return -EINVAL;
1022         if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1023              oom_adjust != OOM_DISABLE)
1024                 return -EINVAL;
1025
1026         task = get_proc_task(file->f_path.dentry->d_inode);
1027         if (!task)
1028                 return -ESRCH;
1029         if (!lock_task_sighand(task, &flags)) {
1030                 put_task_struct(task);
1031                 return -ESRCH;
1032         }
1033
1034         if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1035                 unlock_task_sighand(task, &flags);
1036                 put_task_struct(task);
1037                 return -EACCES;
1038         }
1039
1040         task->signal->oom_adj = oom_adjust;
1041
1042         unlock_task_sighand(task, &flags);
1043         put_task_struct(task);
1044
1045         return count;
1046 }
1047
1048 static const struct file_operations proc_oom_adjust_operations = {
1049         .read           = oom_adjust_read,
1050         .write          = oom_adjust_write,
1051         .llseek         = generic_file_llseek,
1052 };
1053
1054 #ifdef CONFIG_AUDITSYSCALL
1055 #define TMPBUFLEN 21
1056 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1057                                   size_t count, loff_t *ppos)
1058 {
1059         struct inode * inode = file->f_path.dentry->d_inode;
1060         struct task_struct *task = get_proc_task(inode);
1061         ssize_t length;
1062         char tmpbuf[TMPBUFLEN];
1063
1064         if (!task)
1065                 return -ESRCH;
1066         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1067                                 audit_get_loginuid(task));
1068         put_task_struct(task);
1069         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1070 }
1071
1072 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1073                                    size_t count, loff_t *ppos)
1074 {
1075         struct inode * inode = file->f_path.dentry->d_inode;
1076         char *page, *tmp;
1077         ssize_t length;
1078         uid_t loginuid;
1079
1080         if (!capable(CAP_AUDIT_CONTROL))
1081                 return -EPERM;
1082
1083         rcu_read_lock();
1084         if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1085                 rcu_read_unlock();
1086                 return -EPERM;
1087         }
1088         rcu_read_unlock();
1089
1090         if (count >= PAGE_SIZE)
1091                 count = PAGE_SIZE - 1;
1092
1093         if (*ppos != 0) {
1094                 /* No partial writes. */
1095                 return -EINVAL;
1096         }
1097         page = (char*)__get_free_page(GFP_TEMPORARY);
1098         if (!page)
1099                 return -ENOMEM;
1100         length = -EFAULT;
1101         if (copy_from_user(page, buf, count))
1102                 goto out_free_page;
1103
1104         page[count] = '\0';
1105         loginuid = simple_strtoul(page, &tmp, 10);
1106         if (tmp == page) {
1107                 length = -EINVAL;
1108                 goto out_free_page;
1109
1110         }
1111         length = audit_set_loginuid(current, loginuid);
1112         if (likely(length == 0))
1113                 length = count;
1114
1115 out_free_page:
1116         free_page((unsigned long) page);
1117         return length;
1118 }
1119
1120 static const struct file_operations proc_loginuid_operations = {
1121         .read           = proc_loginuid_read,
1122         .write          = proc_loginuid_write,
1123         .llseek         = generic_file_llseek,
1124 };
1125
1126 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1127                                   size_t count, loff_t *ppos)
1128 {
1129         struct inode * inode = file->f_path.dentry->d_inode;
1130         struct task_struct *task = get_proc_task(inode);
1131         ssize_t length;
1132         char tmpbuf[TMPBUFLEN];
1133
1134         if (!task)
1135                 return -ESRCH;
1136         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1137                                 audit_get_sessionid(task));
1138         put_task_struct(task);
1139         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1140 }
1141
1142 static const struct file_operations proc_sessionid_operations = {
1143         .read           = proc_sessionid_read,
1144         .llseek         = generic_file_llseek,
1145 };
1146 #endif
1147
1148 #ifdef CONFIG_FAULT_INJECTION
1149 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1150                                       size_t count, loff_t *ppos)
1151 {
1152         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1153         char buffer[PROC_NUMBUF];
1154         size_t len;
1155         int make_it_fail;
1156
1157         if (!task)
1158                 return -ESRCH;
1159         make_it_fail = task->make_it_fail;
1160         put_task_struct(task);
1161
1162         len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1163
1164         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1165 }
1166
1167 static ssize_t proc_fault_inject_write(struct file * file,
1168                         const char __user * buf, size_t count, loff_t *ppos)
1169 {
1170         struct task_struct *task;
1171         char buffer[PROC_NUMBUF], *end;
1172         int make_it_fail;
1173
1174         if (!capable(CAP_SYS_RESOURCE))
1175                 return -EPERM;
1176         memset(buffer, 0, sizeof(buffer));
1177         if (count > sizeof(buffer) - 1)
1178                 count = sizeof(buffer) - 1;
1179         if (copy_from_user(buffer, buf, count))
1180                 return -EFAULT;
1181         make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1182         if (*end)
1183                 return -EINVAL;
1184         task = get_proc_task(file->f_dentry->d_inode);
1185         if (!task)
1186                 return -ESRCH;
1187         task->make_it_fail = make_it_fail;
1188         put_task_struct(task);
1189
1190         return count;
1191 }
1192
1193 static const struct file_operations proc_fault_inject_operations = {
1194         .read           = proc_fault_inject_read,
1195         .write          = proc_fault_inject_write,
1196         .llseek         = generic_file_llseek,
1197 };
1198 #endif
1199
1200
1201 #ifdef CONFIG_SCHED_DEBUG
1202 /*
1203  * Print out various scheduling related per-task fields:
1204  */
1205 static int sched_show(struct seq_file *m, void *v)
1206 {
1207         struct inode *inode = m->private;
1208         struct task_struct *p;
1209
1210         p = get_proc_task(inode);
1211         if (!p)
1212                 return -ESRCH;
1213         proc_sched_show_task(p, m);
1214
1215         put_task_struct(p);
1216
1217         return 0;
1218 }
1219
1220 static ssize_t
1221 sched_write(struct file *file, const char __user *buf,
1222             size_t count, loff_t *offset)
1223 {
1224         struct inode *inode = file->f_path.dentry->d_inode;
1225         struct task_struct *p;
1226
1227         p = get_proc_task(inode);
1228         if (!p)
1229                 return -ESRCH;
1230         proc_sched_set_task(p);
1231
1232         put_task_struct(p);
1233
1234         return count;
1235 }
1236
1237 static int sched_open(struct inode *inode, struct file *filp)
1238 {
1239         int ret;
1240
1241         ret = single_open(filp, sched_show, NULL);
1242         if (!ret) {
1243                 struct seq_file *m = filp->private_data;
1244
1245                 m->private = inode;
1246         }
1247         return ret;
1248 }
1249
1250 static const struct file_operations proc_pid_sched_operations = {
1251         .open           = sched_open,
1252         .read           = seq_read,
1253         .write          = sched_write,
1254         .llseek         = seq_lseek,
1255         .release        = single_release,
1256 };
1257
1258 #endif
1259
1260 static ssize_t comm_write(struct file *file, const char __user *buf,
1261                                 size_t count, loff_t *offset)
1262 {
1263         struct inode *inode = file->f_path.dentry->d_inode;
1264         struct task_struct *p;
1265         char buffer[TASK_COMM_LEN];
1266
1267         memset(buffer, 0, sizeof(buffer));
1268         if (count > sizeof(buffer) - 1)
1269                 count = sizeof(buffer) - 1;
1270         if (copy_from_user(buffer, buf, count))
1271                 return -EFAULT;
1272
1273         p = get_proc_task(inode);
1274         if (!p)
1275                 return -ESRCH;
1276
1277         if (same_thread_group(current, p))
1278                 set_task_comm(p, buffer);
1279         else
1280                 count = -EINVAL;
1281
1282         put_task_struct(p);
1283
1284         return count;
1285 }
1286
1287 static int comm_show(struct seq_file *m, void *v)
1288 {
1289         struct inode *inode = m->private;
1290         struct task_struct *p;
1291
1292         p = get_proc_task(inode);
1293         if (!p)
1294                 return -ESRCH;
1295
1296         task_lock(p);
1297         seq_printf(m, "%s\n", p->comm);
1298         task_unlock(p);
1299
1300         put_task_struct(p);
1301
1302         return 0;
1303 }
1304
1305 static int comm_open(struct inode *inode, struct file *filp)
1306 {
1307         int ret;
1308
1309         ret = single_open(filp, comm_show, NULL);
1310         if (!ret) {
1311                 struct seq_file *m = filp->private_data;
1312
1313                 m->private = inode;
1314         }
1315         return ret;
1316 }
1317
1318 static const struct file_operations proc_pid_set_comm_operations = {
1319         .open           = comm_open,
1320         .read           = seq_read,
1321         .write          = comm_write,
1322         .llseek         = seq_lseek,
1323         .release        = single_release,
1324 };
1325
1326 /*
1327  * We added or removed a vma mapping the executable. The vmas are only mapped
1328  * during exec and are not mapped with the mmap system call.
1329  * Callers must hold down_write() on the mm's mmap_sem for these
1330  */
1331 void added_exe_file_vma(struct mm_struct *mm)
1332 {
1333         mm->num_exe_file_vmas++;
1334 }
1335
1336 void removed_exe_file_vma(struct mm_struct *mm)
1337 {
1338         mm->num_exe_file_vmas--;
1339         if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1340                 fput(mm->exe_file);
1341                 mm->exe_file = NULL;
1342         }
1343
1344 }
1345
1346 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1347 {
1348         if (new_exe_file)
1349                 get_file(new_exe_file);
1350         if (mm->exe_file)
1351                 fput(mm->exe_file);
1352         mm->exe_file = new_exe_file;
1353         mm->num_exe_file_vmas = 0;
1354 }
1355
1356 struct file *get_mm_exe_file(struct mm_struct *mm)
1357 {
1358         struct file *exe_file;
1359
1360         /* We need mmap_sem to protect against races with removal of
1361          * VM_EXECUTABLE vmas */
1362         down_read(&mm->mmap_sem);
1363         exe_file = mm->exe_file;
1364         if (exe_file)
1365                 get_file(exe_file);
1366         up_read(&mm->mmap_sem);
1367         return exe_file;
1368 }
1369
1370 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1371 {
1372         /* It's safe to write the exe_file pointer without exe_file_lock because
1373          * this is called during fork when the task is not yet in /proc */
1374         newmm->exe_file = get_mm_exe_file(oldmm);
1375 }
1376
1377 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1378 {
1379         struct task_struct *task;
1380         struct mm_struct *mm;
1381         struct file *exe_file;
1382
1383         task = get_proc_task(inode);
1384         if (!task)
1385                 return -ENOENT;
1386         mm = get_task_mm(task);
1387         put_task_struct(task);
1388         if (!mm)
1389                 return -ENOENT;
1390         exe_file = get_mm_exe_file(mm);
1391         mmput(mm);
1392         if (exe_file) {
1393                 *exe_path = exe_file->f_path;
1394                 path_get(&exe_file->f_path);
1395                 fput(exe_file);
1396                 return 0;
1397         } else
1398                 return -ENOENT;
1399 }
1400
1401 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1402 {
1403         struct inode *inode = dentry->d_inode;
1404         int error = -EACCES;
1405
1406         /* We don't need a base pointer in the /proc filesystem */
1407         path_put(&nd->path);
1408
1409         /* Are we allowed to snoop on the tasks file descriptors? */
1410         if (!proc_fd_access_allowed(inode))
1411                 goto out;
1412
1413         error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1414 out:
1415         return ERR_PTR(error);
1416 }
1417
1418 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1419 {
1420         char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1421         char *pathname;
1422         int len;
1423
1424         if (!tmp)
1425                 return -ENOMEM;
1426
1427         pathname = d_path(path, tmp, PAGE_SIZE);
1428         len = PTR_ERR(pathname);
1429         if (IS_ERR(pathname))
1430                 goto out;
1431         len = tmp + PAGE_SIZE - 1 - pathname;
1432
1433         if (len > buflen)
1434                 len = buflen;
1435         if (copy_to_user(buffer, pathname, len))
1436                 len = -EFAULT;
1437  out:
1438         free_page((unsigned long)tmp);
1439         return len;
1440 }
1441
1442 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1443 {
1444         int error = -EACCES;
1445         struct inode *inode = dentry->d_inode;
1446         struct path path;
1447
1448         /* Are we allowed to snoop on the tasks file descriptors? */
1449         if (!proc_fd_access_allowed(inode))
1450                 goto out;
1451
1452         error = PROC_I(inode)->op.proc_get_link(inode, &path);
1453         if (error)
1454                 goto out;
1455
1456         error = do_proc_readlink(&path, buffer, buflen);
1457         path_put(&path);
1458 out:
1459         return error;
1460 }
1461
1462 static const struct inode_operations proc_pid_link_inode_operations = {
1463         .readlink       = proc_pid_readlink,
1464         .follow_link    = proc_pid_follow_link,
1465         .setattr        = proc_setattr,
1466 };
1467
1468
1469 /* building an inode */
1470
1471 static int task_dumpable(struct task_struct *task)
1472 {
1473         int dumpable = 0;
1474         struct mm_struct *mm;
1475
1476         task_lock(task);
1477         mm = task->mm;
1478         if (mm)
1479                 dumpable = get_dumpable(mm);
1480         task_unlock(task);
1481         if(dumpable == 1)
1482                 return 1;
1483         return 0;
1484 }
1485
1486
1487 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1488 {
1489         struct inode * inode;
1490         struct proc_inode *ei;
1491         const struct cred *cred;
1492
1493         /* We need a new inode */
1494
1495         inode = new_inode(sb);
1496         if (!inode)
1497                 goto out;
1498
1499         /* Common stuff */
1500         ei = PROC_I(inode);
1501         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1502         inode->i_op = &proc_def_inode_operations;
1503
1504         /*
1505          * grab the reference to task.
1506          */
1507         ei->pid = get_task_pid(task, PIDTYPE_PID);
1508         if (!ei->pid)
1509                 goto out_unlock;
1510
1511         if (task_dumpable(task)) {
1512                 rcu_read_lock();
1513                 cred = __task_cred(task);
1514                 inode->i_uid = cred->euid;
1515                 inode->i_gid = cred->egid;
1516                 rcu_read_unlock();
1517         }
1518         security_task_to_inode(task, inode);
1519
1520 out:
1521         return inode;
1522
1523 out_unlock:
1524         iput(inode);
1525         return NULL;
1526 }
1527
1528 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1529 {
1530         struct inode *inode = dentry->d_inode;
1531         struct task_struct *task;
1532         const struct cred *cred;
1533
1534         generic_fillattr(inode, stat);
1535
1536         rcu_read_lock();
1537         stat->uid = 0;
1538         stat->gid = 0;
1539         task = pid_task(proc_pid(inode), PIDTYPE_PID);
1540         if (task) {
1541                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1542                     task_dumpable(task)) {
1543                         cred = __task_cred(task);
1544                         stat->uid = cred->euid;
1545                         stat->gid = cred->egid;
1546                 }
1547         }
1548         rcu_read_unlock();
1549         return 0;
1550 }
1551
1552 /* dentry stuff */
1553
1554 /*
1555  *      Exceptional case: normally we are not allowed to unhash a busy
1556  * directory. In this case, however, we can do it - no aliasing problems
1557  * due to the way we treat inodes.
1558  *
1559  * Rewrite the inode's ownerships here because the owning task may have
1560  * performed a setuid(), etc.
1561  *
1562  * Before the /proc/pid/status file was created the only way to read
1563  * the effective uid of a /process was to stat /proc/pid.  Reading
1564  * /proc/pid/status is slow enough that procps and other packages
1565  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1566  * made this apply to all per process world readable and executable
1567  * directories.
1568  */
1569 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1570 {
1571         struct inode *inode = dentry->d_inode;
1572         struct task_struct *task = get_proc_task(inode);
1573         const struct cred *cred;
1574
1575         if (task) {
1576                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1577                     task_dumpable(task)) {
1578                         rcu_read_lock();
1579                         cred = __task_cred(task);
1580                         inode->i_uid = cred->euid;
1581                         inode->i_gid = cred->egid;
1582                         rcu_read_unlock();
1583                 } else {
1584                         inode->i_uid = 0;
1585                         inode->i_gid = 0;
1586                 }
1587                 inode->i_mode &= ~(S_ISUID | S_ISGID);
1588                 security_task_to_inode(task, inode);
1589                 put_task_struct(task);
1590                 return 1;
1591         }
1592         d_drop(dentry);
1593         return 0;
1594 }
1595
1596 static int pid_delete_dentry(struct dentry * dentry)
1597 {
1598         /* Is the task we represent dead?
1599          * If so, then don't put the dentry on the lru list,
1600          * kill it immediately.
1601          */
1602         return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1603 }
1604
1605 static const struct dentry_operations pid_dentry_operations =
1606 {
1607         .d_revalidate   = pid_revalidate,
1608         .d_delete       = pid_delete_dentry,
1609 };
1610
1611 /* Lookups */
1612
1613 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1614                                 struct task_struct *, const void *);
1615
1616 /*
1617  * Fill a directory entry.
1618  *
1619  * If possible create the dcache entry and derive our inode number and
1620  * file type from dcache entry.
1621  *
1622  * Since all of the proc inode numbers are dynamically generated, the inode
1623  * numbers do not exist until the inode is cache.  This means creating the
1624  * the dcache entry in readdir is necessary to keep the inode numbers
1625  * reported by readdir in sync with the inode numbers reported
1626  * by stat.
1627  */
1628 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1629         char *name, int len,
1630         instantiate_t instantiate, struct task_struct *task, const void *ptr)
1631 {
1632         struct dentry *child, *dir = filp->f_path.dentry;
1633         struct inode *inode;
1634         struct qstr qname;
1635         ino_t ino = 0;
1636         unsigned type = DT_UNKNOWN;
1637
1638         qname.name = name;
1639         qname.len  = len;
1640         qname.hash = full_name_hash(name, len);
1641
1642         child = d_lookup(dir, &qname);
1643         if (!child) {
1644                 struct dentry *new;
1645                 new = d_alloc(dir, &qname);
1646                 if (new) {
1647                         child = instantiate(dir->d_inode, new, task, ptr);
1648                         if (child)
1649                                 dput(new);
1650                         else
1651                                 child = new;
1652                 }
1653         }
1654         if (!child || IS_ERR(child) || !child->d_inode)
1655                 goto end_instantiate;
1656         inode = child->d_inode;
1657         if (inode) {
1658                 ino = inode->i_ino;
1659                 type = inode->i_mode >> 12;
1660         }
1661         dput(child);
1662 end_instantiate:
1663         if (!ino)
1664                 ino = find_inode_number(dir, &qname);
1665         if (!ino)
1666                 ino = 1;
1667         return filldir(dirent, name, len, filp->f_pos, ino, type);
1668 }
1669
1670 static unsigned name_to_int(struct dentry *dentry)
1671 {
1672         const char *name = dentry->d_name.name;
1673         int len = dentry->d_name.len;
1674         unsigned n = 0;
1675
1676         if (len > 1 && *name == '0')
1677                 goto out;
1678         while (len-- > 0) {
1679                 unsigned c = *name++ - '0';
1680                 if (c > 9)
1681                         goto out;
1682                 if (n >= (~0U-9)/10)
1683                         goto out;
1684                 n *= 10;
1685                 n += c;
1686         }
1687         return n;
1688 out:
1689         return ~0U;
1690 }
1691
1692 #define PROC_FDINFO_MAX 64
1693
1694 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1695 {
1696         struct task_struct *task = get_proc_task(inode);
1697         struct files_struct *files = NULL;
1698         struct file *file;
1699         int fd = proc_fd(inode);
1700
1701         if (task) {
1702                 files = get_files_struct(task);
1703                 put_task_struct(task);
1704         }
1705         if (files) {
1706                 /*
1707                  * We are not taking a ref to the file structure, so we must
1708                  * hold ->file_lock.
1709                  */
1710                 spin_lock(&files->file_lock);
1711                 file = fcheck_files(files, fd);
1712                 if (file) {
1713                         if (path) {
1714                                 *path = file->f_path;
1715                                 path_get(&file->f_path);
1716                         }
1717                         if (info)
1718                                 snprintf(info, PROC_FDINFO_MAX,
1719                                          "pos:\t%lli\n"
1720                                          "flags:\t0%o\n",
1721                                          (long long) file->f_pos,
1722                                          file->f_flags);
1723                         spin_unlock(&files->file_lock);
1724                         put_files_struct(files);
1725                         return 0;
1726                 }
1727                 spin_unlock(&files->file_lock);
1728                 put_files_struct(files);
1729         }
1730         return -ENOENT;
1731 }
1732
1733 static int proc_fd_link(struct inode *inode, struct path *path)
1734 {
1735         return proc_fd_info(inode, path, NULL);
1736 }
1737
1738 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1739 {
1740         struct inode *inode = dentry->d_inode;
1741         struct task_struct *task = get_proc_task(inode);
1742         int fd = proc_fd(inode);
1743         struct files_struct *files;
1744         const struct cred *cred;
1745
1746         if (task) {
1747                 files = get_files_struct(task);
1748                 if (files) {
1749                         rcu_read_lock();
1750                         if (fcheck_files(files, fd)) {
1751                                 rcu_read_unlock();
1752                                 put_files_struct(files);
1753                                 if (task_dumpable(task)) {
1754                                         rcu_read_lock();
1755                                         cred = __task_cred(task);
1756                                         inode->i_uid = cred->euid;
1757                                         inode->i_gid = cred->egid;
1758                                         rcu_read_unlock();
1759                                 } else {
1760                                         inode->i_uid = 0;
1761                                         inode->i_gid = 0;
1762                                 }
1763                                 inode->i_mode &= ~(S_ISUID | S_ISGID);
1764                                 security_task_to_inode(task, inode);
1765                                 put_task_struct(task);
1766                                 return 1;
1767                         }
1768                         rcu_read_unlock();
1769                         put_files_struct(files);
1770                 }
1771                 put_task_struct(task);
1772         }
1773         d_drop(dentry);
1774         return 0;
1775 }
1776
1777 static const struct dentry_operations tid_fd_dentry_operations =
1778 {
1779         .d_revalidate   = tid_fd_revalidate,
1780         .d_delete       = pid_delete_dentry,
1781 };
1782
1783 static struct dentry *proc_fd_instantiate(struct inode *dir,
1784         struct dentry *dentry, struct task_struct *task, const void *ptr)
1785 {
1786         unsigned fd = *(const unsigned *)ptr;
1787         struct file *file;
1788         struct files_struct *files;
1789         struct inode *inode;
1790         struct proc_inode *ei;
1791         struct dentry *error = ERR_PTR(-ENOENT);
1792
1793         inode = proc_pid_make_inode(dir->i_sb, task);
1794         if (!inode)
1795                 goto out;
1796         ei = PROC_I(inode);
1797         ei->fd = fd;
1798         files = get_files_struct(task);
1799         if (!files)
1800                 goto out_iput;
1801         inode->i_mode = S_IFLNK;
1802
1803         /*
1804          * We are not taking a ref to the file structure, so we must
1805          * hold ->file_lock.
1806          */
1807         spin_lock(&files->file_lock);
1808         file = fcheck_files(files, fd);
1809         if (!file)
1810                 goto out_unlock;
1811         if (file->f_mode & FMODE_READ)
1812                 inode->i_mode |= S_IRUSR | S_IXUSR;
1813         if (file->f_mode & FMODE_WRITE)
1814                 inode->i_mode |= S_IWUSR | S_IXUSR;
1815         spin_unlock(&files->file_lock);
1816         put_files_struct(files);
1817
1818         inode->i_op = &proc_pid_link_inode_operations;
1819         inode->i_size = 64;
1820         ei->op.proc_get_link = proc_fd_link;
1821         dentry->d_op = &tid_fd_dentry_operations;
1822         d_add(dentry, inode);
1823         /* Close the race of the process dying before we return the dentry */
1824         if (tid_fd_revalidate(dentry, NULL))
1825                 error = NULL;
1826
1827  out:
1828         return error;
1829 out_unlock:
1830         spin_unlock(&files->file_lock);
1831         put_files_struct(files);
1832 out_iput:
1833         iput(inode);
1834         goto out;
1835 }
1836
1837 static struct dentry *proc_lookupfd_common(struct inode *dir,
1838                                            struct dentry *dentry,
1839                                            instantiate_t instantiate)
1840 {
1841         struct task_struct *task = get_proc_task(dir);
1842         unsigned fd = name_to_int(dentry);
1843         struct dentry *result = ERR_PTR(-ENOENT);
1844
1845         if (!task)
1846                 goto out_no_task;
1847         if (fd == ~0U)
1848                 goto out;
1849
1850         result = instantiate(dir, dentry, task, &fd);
1851 out:
1852         put_task_struct(task);
1853 out_no_task:
1854         return result;
1855 }
1856
1857 static int proc_readfd_common(struct file * filp, void * dirent,
1858                               filldir_t filldir, instantiate_t instantiate)
1859 {
1860         struct dentry *dentry = filp->f_path.dentry;
1861         struct inode *inode = dentry->d_inode;
1862         struct task_struct *p = get_proc_task(inode);
1863         unsigned int fd, ino;
1864         int retval;
1865         struct files_struct * files;
1866
1867         retval = -ENOENT;
1868         if (!p)
1869                 goto out_no_task;
1870         retval = 0;
1871
1872         fd = filp->f_pos;
1873         switch (fd) {
1874                 case 0:
1875                         if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1876                                 goto out;
1877                         filp->f_pos++;
1878                 case 1:
1879                         ino = parent_ino(dentry);
1880                         if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1881                                 goto out;
1882                         filp->f_pos++;
1883                 default:
1884                         files = get_files_struct(p);
1885                         if (!files)
1886                                 goto out;
1887                         rcu_read_lock();
1888                         for (fd = filp->f_pos-2;
1889                              fd < files_fdtable(files)->max_fds;
1890                              fd++, filp->f_pos++) {
1891                                 char name[PROC_NUMBUF];
1892                                 int len;
1893
1894                                 if (!fcheck_files(files, fd))
1895                                         continue;
1896                                 rcu_read_unlock();
1897
1898                                 len = snprintf(name, sizeof(name), "%d", fd);
1899                                 if (proc_fill_cache(filp, dirent, filldir,
1900                                                     name, len, instantiate,
1901                                                     p, &fd) < 0) {
1902                                         rcu_read_lock();
1903                                         break;
1904                                 }
1905                                 rcu_read_lock();
1906                         }
1907                         rcu_read_unlock();
1908                         put_files_struct(files);
1909         }
1910 out:
1911         put_task_struct(p);
1912 out_no_task:
1913         return retval;
1914 }
1915
1916 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1917                                     struct nameidata *nd)
1918 {
1919         return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1920 }
1921
1922 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1923 {
1924         return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1925 }
1926
1927 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1928                                       size_t len, loff_t *ppos)
1929 {
1930         char tmp[PROC_FDINFO_MAX];
1931         int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1932         if (!err)
1933                 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1934         return err;
1935 }
1936
1937 static const struct file_operations proc_fdinfo_file_operations = {
1938         .open           = nonseekable_open,
1939         .read           = proc_fdinfo_read,
1940 };
1941
1942 static const struct file_operations proc_fd_operations = {
1943         .read           = generic_read_dir,
1944         .readdir        = proc_readfd,
1945 };
1946
1947 /*
1948  * /proc/pid/fd needs a special permission handler so that a process can still
1949  * access /proc/self/fd after it has executed a setuid().
1950  */
1951 static int proc_fd_permission(struct inode *inode, int mask)
1952 {
1953         int rv;
1954
1955         rv = generic_permission(inode, mask, NULL);
1956         if (rv == 0)
1957                 return 0;
1958         if (task_pid(current) == proc_pid(inode))
1959                 rv = 0;
1960         return rv;
1961 }
1962
1963 /*
1964  * proc directories can do almost nothing..
1965  */
1966 static const struct inode_operations proc_fd_inode_operations = {
1967         .lookup         = proc_lookupfd,
1968         .permission     = proc_fd_permission,
1969         .setattr        = proc_setattr,
1970 };
1971
1972 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1973         struct dentry *dentry, struct task_struct *task, const void *ptr)
1974 {
1975         unsigned fd = *(unsigned *)ptr;
1976         struct inode *inode;
1977         struct proc_inode *ei;
1978         struct dentry *error = ERR_PTR(-ENOENT);
1979
1980         inode = proc_pid_make_inode(dir->i_sb, task);
1981         if (!inode)
1982                 goto out;
1983         ei = PROC_I(inode);
1984         ei->fd = fd;
1985         inode->i_mode = S_IFREG | S_IRUSR;
1986         inode->i_fop = &proc_fdinfo_file_operations;
1987         dentry->d_op = &tid_fd_dentry_operations;
1988         d_add(dentry, inode);
1989         /* Close the race of the process dying before we return the dentry */
1990         if (tid_fd_revalidate(dentry, NULL))
1991                 error = NULL;
1992
1993  out:
1994         return error;
1995 }
1996
1997 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1998                                         struct dentry *dentry,
1999                                         struct nameidata *nd)
2000 {
2001         return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2002 }
2003
2004 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2005 {
2006         return proc_readfd_common(filp, dirent, filldir,
2007                                   proc_fdinfo_instantiate);
2008 }
2009
2010 static const struct file_operations proc_fdinfo_operations = {
2011         .read           = generic_read_dir,
2012         .readdir        = proc_readfdinfo,
2013 };
2014
2015 /*
2016  * proc directories can do almost nothing..
2017  */
2018 static const struct inode_operations proc_fdinfo_inode_operations = {
2019         .lookup         = proc_lookupfdinfo,
2020         .setattr        = proc_setattr,
2021 };
2022
2023
2024 static struct dentry *proc_pident_instantiate(struct inode *dir,
2025         struct dentry *dentry, struct task_struct *task, const void *ptr)
2026 {
2027         const struct pid_entry *p = ptr;
2028         struct inode *inode;
2029         struct proc_inode *ei;
2030         struct dentry *error = ERR_PTR(-ENOENT);
2031
2032         inode = proc_pid_make_inode(dir->i_sb, task);
2033         if (!inode)
2034                 goto out;
2035
2036         ei = PROC_I(inode);
2037         inode->i_mode = p->mode;
2038         if (S_ISDIR(inode->i_mode))
2039                 inode->i_nlink = 2;     /* Use getattr to fix if necessary */
2040         if (p->iop)
2041                 inode->i_op = p->iop;
2042         if (p->fop)
2043                 inode->i_fop = p->fop;
2044         ei->op = p->op;
2045         dentry->d_op = &pid_dentry_operations;
2046         d_add(dentry, inode);
2047         /* Close the race of the process dying before we return the dentry */
2048         if (pid_revalidate(dentry, NULL))
2049                 error = NULL;
2050 out:
2051         return error;
2052 }
2053
2054 static struct dentry *proc_pident_lookup(struct inode *dir, 
2055                                          struct dentry *dentry,
2056                                          const struct pid_entry *ents,
2057                                          unsigned int nents)
2058 {
2059         struct dentry *error;
2060         struct task_struct *task = get_proc_task(dir);
2061         const struct pid_entry *p, *last;
2062
2063         error = ERR_PTR(-ENOENT);
2064
2065         if (!task)
2066                 goto out_no_task;
2067
2068         /*
2069          * Yes, it does not scale. And it should not. Don't add
2070          * new entries into /proc/<tgid>/ without very good reasons.
2071          */
2072         last = &ents[nents - 1];
2073         for (p = ents; p <= last; p++) {
2074                 if (p->len != dentry->d_name.len)
2075                         continue;
2076                 if (!memcmp(dentry->d_name.name, p->name, p->len))
2077                         break;
2078         }
2079         if (p > last)
2080                 goto out;
2081
2082         error = proc_pident_instantiate(dir, dentry, task, p);
2083 out:
2084         put_task_struct(task);
2085 out_no_task:
2086         return error;
2087 }
2088
2089 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2090         filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2091 {
2092         return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2093                                 proc_pident_instantiate, task, p);
2094 }
2095
2096 static int proc_pident_readdir(struct file *filp,
2097                 void *dirent, filldir_t filldir,
2098                 const struct pid_entry *ents, unsigned int nents)
2099 {
2100         int i;
2101         struct dentry *dentry = filp->f_path.dentry;
2102         struct inode *inode = dentry->d_inode;
2103         struct task_struct *task = get_proc_task(inode);
2104         const struct pid_entry *p, *last;
2105         ino_t ino;
2106         int ret;
2107
2108         ret = -ENOENT;
2109         if (!task)
2110                 goto out_no_task;
2111
2112         ret = 0;
2113         i = filp->f_pos;
2114         switch (i) {
2115         case 0:
2116                 ino = inode->i_ino;
2117                 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2118                         goto out;
2119                 i++;
2120                 filp->f_pos++;
2121                 /* fall through */
2122         case 1:
2123                 ino = parent_ino(dentry);
2124                 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2125                         goto out;
2126                 i++;
2127                 filp->f_pos++;
2128                 /* fall through */
2129         default:
2130                 i -= 2;
2131                 if (i >= nents) {
2132                         ret = 1;
2133                         goto out;
2134                 }
2135                 p = ents + i;
2136                 last = &ents[nents - 1];
2137                 while (p <= last) {
2138                         if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2139                                 goto out;
2140                         filp->f_pos++;
2141                         p++;
2142                 }
2143         }
2144
2145         ret = 1;
2146 out:
2147         put_task_struct(task);
2148 out_no_task:
2149         return ret;
2150 }
2151
2152 #ifdef CONFIG_SECURITY
2153 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2154                                   size_t count, loff_t *ppos)
2155 {
2156         struct inode * inode = file->f_path.dentry->d_inode;
2157         char *p = NULL;
2158         ssize_t length;
2159         struct task_struct *task = get_proc_task(inode);
2160
2161         if (!task)
2162                 return -ESRCH;
2163
2164         length = security_getprocattr(task,
2165                                       (char*)file->f_path.dentry->d_name.name,
2166                                       &p);
2167         put_task_struct(task);
2168         if (length > 0)
2169                 length = simple_read_from_buffer(buf, count, ppos, p, length);
2170         kfree(p);
2171         return length;
2172 }
2173
2174 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2175                                    size_t count, loff_t *ppos)
2176 {
2177         struct inode * inode = file->f_path.dentry->d_inode;
2178         char *page;
2179         ssize_t length;
2180         struct task_struct *task = get_proc_task(inode);
2181
2182         length = -ESRCH;
2183         if (!task)
2184                 goto out_no_task;
2185         if (count > PAGE_SIZE)
2186                 count = PAGE_SIZE;
2187
2188         /* No partial writes. */
2189         length = -EINVAL;
2190         if (*ppos != 0)
2191                 goto out;
2192
2193         length = -ENOMEM;
2194         page = (char*)__get_free_page(GFP_TEMPORARY);
2195         if (!page)
2196                 goto out;
2197
2198         length = -EFAULT;
2199         if (copy_from_user(page, buf, count))
2200                 goto out_free;
2201
2202         /* Guard against adverse ptrace interaction */
2203         length = mutex_lock_interruptible(&task->cred_guard_mutex);
2204         if (length < 0)
2205                 goto out_free;
2206
2207         length = security_setprocattr(task,
2208                                       (char*)file->f_path.dentry->d_name.name,
2209                                       (void*)page, count);
2210         mutex_unlock(&task->cred_guard_mutex);
2211 out_free:
2212         free_page((unsigned long) page);
2213 out:
2214         put_task_struct(task);
2215 out_no_task:
2216         return length;
2217 }
2218
2219 static const struct file_operations proc_pid_attr_operations = {
2220         .read           = proc_pid_attr_read,
2221         .write          = proc_pid_attr_write,
2222         .llseek         = generic_file_llseek,
2223 };
2224
2225 static const struct pid_entry attr_dir_stuff[] = {
2226         REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2227         REG("prev",       S_IRUGO,         proc_pid_attr_operations),
2228         REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2229         REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2230         REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2231         REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2232 };
2233
2234 static int proc_attr_dir_readdir(struct file * filp,
2235                              void * dirent, filldir_t filldir)
2236 {
2237         return proc_pident_readdir(filp,dirent,filldir,
2238                                    attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2239 }
2240
2241 static const struct file_operations proc_attr_dir_operations = {
2242         .read           = generic_read_dir,
2243         .readdir        = proc_attr_dir_readdir,
2244 };
2245
2246 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2247                                 struct dentry *dentry, struct nameidata *nd)
2248 {
2249         return proc_pident_lookup(dir, dentry,
2250                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2251 }
2252
2253 static const struct inode_operations proc_attr_dir_inode_operations = {
2254         .lookup         = proc_attr_dir_lookup,
2255         .getattr        = pid_getattr,
2256         .setattr        = proc_setattr,
2257 };
2258
2259 #endif
2260
2261 #ifdef CONFIG_ELF_CORE
2262 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2263                                          size_t count, loff_t *ppos)
2264 {
2265         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2266         struct mm_struct *mm;
2267         char buffer[PROC_NUMBUF];
2268         size_t len;
2269         int ret;
2270
2271         if (!task)
2272                 return -ESRCH;
2273
2274         ret = 0;
2275         mm = get_task_mm(task);
2276         if (mm) {
2277                 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2278                                ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2279                                 MMF_DUMP_FILTER_SHIFT));
2280                 mmput(mm);
2281                 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2282         }
2283
2284         put_task_struct(task);
2285
2286         return ret;
2287 }
2288
2289 static ssize_t proc_coredump_filter_write(struct file *file,
2290                                           const char __user *buf,
2291                                           size_t count,
2292                                           loff_t *ppos)
2293 {
2294         struct task_struct *task;
2295         struct mm_struct *mm;
2296         char buffer[PROC_NUMBUF], *end;
2297         unsigned int val;
2298         int ret;
2299         int i;
2300         unsigned long mask;
2301
2302         ret = -EFAULT;
2303         memset(buffer, 0, sizeof(buffer));
2304         if (count > sizeof(buffer) - 1)
2305                 count = sizeof(buffer) - 1;
2306         if (copy_from_user(buffer, buf, count))
2307                 goto out_no_task;
2308
2309         ret = -EINVAL;
2310         val = (unsigned int)simple_strtoul(buffer, &end, 0);
2311         if (*end == '\n')
2312                 end++;
2313         if (end - buffer == 0)
2314                 goto out_no_task;
2315
2316         ret = -ESRCH;
2317         task = get_proc_task(file->f_dentry->d_inode);
2318         if (!task)
2319                 goto out_no_task;
2320
2321         ret = end - buffer;
2322         mm = get_task_mm(task);
2323         if (!mm)
2324                 goto out_no_mm;
2325
2326         for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2327                 if (val & mask)
2328                         set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2329                 else
2330                         clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2331         }
2332
2333         mmput(mm);
2334  out_no_mm:
2335         put_task_struct(task);
2336  out_no_task:
2337         return ret;
2338 }
2339
2340 static const struct file_operations proc_coredump_filter_operations = {
2341         .read           = proc_coredump_filter_read,
2342         .write          = proc_coredump_filter_write,
2343         .llseek         = generic_file_llseek,
2344 };
2345 #endif
2346
2347 /*
2348  * /proc/self:
2349  */
2350 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2351                               int buflen)
2352 {
2353         struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2354         pid_t tgid = task_tgid_nr_ns(current, ns);
2355         char tmp[PROC_NUMBUF];
2356         if (!tgid)
2357                 return -ENOENT;
2358         sprintf(tmp, "%d", tgid);
2359         return vfs_readlink(dentry,buffer,buflen,tmp);
2360 }
2361
2362 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2363 {
2364         struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2365         pid_t tgid = task_tgid_nr_ns(current, ns);
2366         char *name = ERR_PTR(-ENOENT);
2367         if (tgid) {
2368                 name = __getname();
2369                 if (!name)
2370                         name = ERR_PTR(-ENOMEM);
2371                 else
2372                         sprintf(name, "%d", tgid);
2373         }
2374         nd_set_link(nd, name);
2375         return NULL;
2376 }
2377
2378 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2379                                 void *cookie)
2380 {
2381         char *s = nd_get_link(nd);
2382         if (!IS_ERR(s))
2383                 __putname(s);
2384 }
2385
2386 static const struct inode_operations proc_self_inode_operations = {
2387         .readlink       = proc_self_readlink,
2388         .follow_link    = proc_self_follow_link,
2389         .put_link       = proc_self_put_link,
2390 };
2391
2392 /*
2393  * proc base
2394  *
2395  * These are the directory entries in the root directory of /proc
2396  * that properly belong to the /proc filesystem, as they describe
2397  * describe something that is process related.
2398  */
2399 static const struct pid_entry proc_base_stuff[] = {
2400         NOD("self", S_IFLNK|S_IRWXUGO,
2401                 &proc_self_inode_operations, NULL, {}),
2402 };
2403
2404 /*
2405  *      Exceptional case: normally we are not allowed to unhash a busy
2406  * directory. In this case, however, we can do it - no aliasing problems
2407  * due to the way we treat inodes.
2408  */
2409 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2410 {
2411         struct inode *inode = dentry->d_inode;
2412         struct task_struct *task = get_proc_task(inode);
2413         if (task) {
2414                 put_task_struct(task);
2415                 return 1;
2416         }
2417         d_drop(dentry);
2418         return 0;
2419 }
2420
2421 static const struct dentry_operations proc_base_dentry_operations =
2422 {
2423         .d_revalidate   = proc_base_revalidate,
2424         .d_delete       = pid_delete_dentry,
2425 };
2426
2427 static struct dentry *proc_base_instantiate(struct inode *dir,
2428         struct dentry *dentry, struct task_struct *task, const void *ptr)
2429 {
2430         const struct pid_entry *p = ptr;
2431         struct inode *inode;
2432         struct proc_inode *ei;
2433         struct dentry *error;
2434
2435         /* Allocate the inode */
2436         error = ERR_PTR(-ENOMEM);
2437         inode = new_inode(dir->i_sb);
2438         if (!inode)
2439                 goto out;
2440
2441         /* Initialize the inode */
2442         ei = PROC_I(inode);
2443         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2444
2445         /*
2446          * grab the reference to the task.
2447          */
2448         ei->pid = get_task_pid(task, PIDTYPE_PID);
2449         if (!ei->pid)
2450                 goto out_iput;
2451
2452         inode->i_mode = p->mode;
2453         if (S_ISDIR(inode->i_mode))
2454                 inode->i_nlink = 2;
2455         if (S_ISLNK(inode->i_mode))
2456                 inode->i_size = 64;
2457         if (p->iop)
2458                 inode->i_op = p->iop;
2459         if (p->fop)
2460                 inode->i_fop = p->fop;
2461         ei->op = p->op;
2462         dentry->d_op = &proc_base_dentry_operations;
2463         d_add(dentry, inode);
2464         error = NULL;
2465 out:
2466         return error;
2467 out_iput:
2468         iput(inode);
2469         goto out;
2470 }
2471
2472 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2473 {
2474         struct dentry *error;
2475         struct task_struct *task = get_proc_task(dir);
2476         const struct pid_entry *p, *last;
2477
2478         error = ERR_PTR(-ENOENT);
2479
2480         if (!task)
2481                 goto out_no_task;
2482
2483         /* Lookup the directory entry */
2484         last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2485         for (p = proc_base_stuff; p <= last; p++) {
2486                 if (p->len != dentry->d_name.len)
2487                         continue;
2488                 if (!memcmp(dentry->d_name.name, p->name, p->len))
2489                         break;
2490         }
2491         if (p > last)
2492                 goto out;
2493
2494         error = proc_base_instantiate(dir, dentry, task, p);
2495
2496 out:
2497         put_task_struct(task);
2498 out_no_task:
2499         return error;
2500 }
2501
2502 static int proc_base_fill_cache(struct file *filp, void *dirent,
2503         filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2504 {
2505         return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2506                                 proc_base_instantiate, task, p);
2507 }
2508
2509 #ifdef CONFIG_TASK_IO_ACCOUNTING
2510 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2511 {
2512         struct task_io_accounting acct = task->ioac;
2513         unsigned long flags;
2514
2515         if (whole && lock_task_sighand(task, &flags)) {
2516                 struct task_struct *t = task;
2517
2518                 task_io_accounting_add(&acct, &task->signal->ioac);
2519                 while_each_thread(task, t)
2520                         task_io_accounting_add(&acct, &t->ioac);
2521
2522                 unlock_task_sighand(task, &flags);
2523         }
2524         return sprintf(buffer,
2525                         "rchar: %llu\n"
2526                         "wchar: %llu\n"
2527                         "syscr: %llu\n"
2528                         "syscw: %llu\n"
2529                         "read_bytes: %llu\n"
2530                         "write_bytes: %llu\n"
2531                         "cancelled_write_bytes: %llu\n",
2532                         (unsigned long long)acct.rchar,
2533                         (unsigned long long)acct.wchar,
2534                         (unsigned long long)acct.syscr,
2535                         (unsigned long long)acct.syscw,
2536                         (unsigned long long)acct.read_bytes,
2537                         (unsigned long long)acct.write_bytes,
2538                         (unsigned long long)acct.cancelled_write_bytes);
2539 }
2540
2541 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2542 {
2543         return do_io_accounting(task, buffer, 0);
2544 }
2545
2546 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2547 {
2548         return do_io_accounting(task, buffer, 1);
2549 }
2550 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2551
2552 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2553                                 struct pid *pid, struct task_struct *task)
2554 {
2555         seq_printf(m, "%08x\n", task->personality);
2556         return 0;
2557 }
2558
2559 /*
2560  * Thread groups
2561  */
2562 static const struct file_operations proc_task_operations;
2563 static const struct inode_operations proc_task_inode_operations;
2564
2565 static const struct pid_entry tgid_base_stuff[] = {
2566         DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2567         DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2568         DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2569 #ifdef CONFIG_NET
2570         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2571 #endif
2572         REG("environ",    S_IRUSR, proc_environ_operations),
2573         INF("auxv",       S_IRUSR, proc_pid_auxv),
2574         ONE("status",     S_IRUGO, proc_pid_status),
2575         ONE("personality", S_IRUSR, proc_pid_personality),
2576         INF("limits",     S_IRUSR, proc_pid_limits),
2577 #ifdef CONFIG_SCHED_DEBUG
2578         REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2579 #endif
2580         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2581 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2582         INF("syscall",    S_IRUSR, proc_pid_syscall),
2583 #endif
2584         INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2585         ONE("stat",       S_IRUGO, proc_tgid_stat),
2586         ONE("statm",      S_IRUGO, proc_pid_statm),
2587         REG("maps",       S_IRUGO, proc_maps_operations),
2588 #ifdef CONFIG_NUMA
2589         REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2590 #endif
2591         REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2592         LNK("cwd",        proc_cwd_link),
2593         LNK("root",       proc_root_link),
2594         LNK("exe",        proc_exe_link),
2595         REG("mounts",     S_IRUGO, proc_mounts_operations),
2596         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2597         REG("mountstats", S_IRUSR, proc_mountstats_operations),
2598 #ifdef CONFIG_PROC_PAGE_MONITOR
2599         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2600         REG("smaps",      S_IRUGO, proc_smaps_operations),
2601         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2602 #endif
2603 #ifdef CONFIG_SECURITY
2604         DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2605 #endif
2606 #ifdef CONFIG_KALLSYMS
2607         INF("wchan",      S_IRUGO, proc_pid_wchan),
2608 #endif
2609 #ifdef CONFIG_STACKTRACE
2610         ONE("stack",      S_IRUSR, proc_pid_stack),
2611 #endif
2612 #ifdef CONFIG_SCHEDSTATS
2613         INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2614 #endif
2615 #ifdef CONFIG_LATENCYTOP
2616         REG("latency",  S_IRUGO, proc_lstats_operations),
2617 #endif
2618 #ifdef CONFIG_PROC_PID_CPUSET
2619         REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2620 #endif
2621 #ifdef CONFIG_CGROUPS
2622         REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2623 #endif
2624         INF("oom_score",  S_IRUGO, proc_oom_score),
2625         REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2626 #ifdef CONFIG_AUDITSYSCALL
2627         REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2628         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2629 #endif
2630 #ifdef CONFIG_FAULT_INJECTION
2631         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2632 #endif
2633 #ifdef CONFIG_ELF_CORE
2634         REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2635 #endif
2636 #ifdef CONFIG_TASK_IO_ACCOUNTING
2637         INF("io",       S_IRUGO, proc_tgid_io_accounting),
2638 #endif
2639 };
2640
2641 static int proc_tgid_base_readdir(struct file * filp,
2642                              void * dirent, filldir_t filldir)
2643 {
2644         return proc_pident_readdir(filp,dirent,filldir,
2645                                    tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2646 }
2647
2648 static const struct file_operations proc_tgid_base_operations = {
2649         .read           = generic_read_dir,
2650         .readdir        = proc_tgid_base_readdir,
2651 };
2652
2653 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2654         return proc_pident_lookup(dir, dentry,
2655                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2656 }
2657
2658 static const struct inode_operations proc_tgid_base_inode_operations = {
2659         .lookup         = proc_tgid_base_lookup,
2660         .getattr        = pid_getattr,
2661         .setattr        = proc_setattr,
2662 };
2663
2664 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2665 {
2666         struct dentry *dentry, *leader, *dir;
2667         char buf[PROC_NUMBUF];
2668         struct qstr name;
2669
2670         name.name = buf;
2671         name.len = snprintf(buf, sizeof(buf), "%d", pid);
2672         dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2673         if (dentry) {
2674                 shrink_dcache_parent(dentry);
2675                 d_drop(dentry);
2676                 dput(dentry);
2677         }
2678
2679         name.name = buf;
2680         name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2681         leader = d_hash_and_lookup(mnt->mnt_root, &name);
2682         if (!leader)
2683                 goto out;
2684
2685         name.name = "task";
2686         name.len = strlen(name.name);
2687         dir = d_hash_and_lookup(leader, &name);
2688         if (!dir)
2689                 goto out_put_leader;
2690
2691         name.name = buf;
2692         name.len = snprintf(buf, sizeof(buf), "%d", pid);
2693         dentry = d_hash_and_lookup(dir, &name);
2694         if (dentry) {
2695                 shrink_dcache_parent(dentry);
2696                 d_drop(dentry);
2697                 dput(dentry);
2698         }
2699
2700         dput(dir);
2701 out_put_leader:
2702         dput(leader);
2703 out:
2704         return;
2705 }
2706
2707 /**
2708  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2709  * @task: task that should be flushed.
2710  *
2711  * When flushing dentries from proc, one needs to flush them from global
2712  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2713  * in. This call is supposed to do all of this job.
2714  *
2715  * Looks in the dcache for
2716  * /proc/@pid
2717  * /proc/@tgid/task/@pid
2718  * if either directory is present flushes it and all of it'ts children
2719  * from the dcache.
2720  *
2721  * It is safe and reasonable to cache /proc entries for a task until
2722  * that task exits.  After that they just clog up the dcache with
2723  * useless entries, possibly causing useful dcache entries to be
2724  * flushed instead.  This routine is proved to flush those useless
2725  * dcache entries at process exit time.
2726  *
2727  * NOTE: This routine is just an optimization so it does not guarantee
2728  *       that no dcache entries will exist at process exit time it
2729  *       just makes it very unlikely that any will persist.
2730  */
2731
2732 void proc_flush_task(struct task_struct *task)
2733 {
2734         int i;
2735         struct pid *pid, *tgid;
2736         struct upid *upid;
2737
2738         pid = task_pid(task);
2739         tgid = task_tgid(task);
2740
2741         for (i = 0; i <= pid->level; i++) {
2742                 upid = &pid->numbers[i];
2743                 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2744                                         tgid->numbers[i].nr);
2745         }
2746
2747         upid = &pid->numbers[pid->level];
2748         if (upid->nr == 1)
2749                 pid_ns_release_proc(upid->ns);
2750 }
2751
2752 static struct dentry *proc_pid_instantiate(struct inode *dir,
2753                                            struct dentry * dentry,
2754                                            struct task_struct *task, const void *ptr)
2755 {
2756         struct dentry *error = ERR_PTR(-ENOENT);
2757         struct inode *inode;
2758
2759         inode = proc_pid_make_inode(dir->i_sb, task);
2760         if (!inode)
2761                 goto out;
2762
2763         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2764         inode->i_op = &proc_tgid_base_inode_operations;
2765         inode->i_fop = &proc_tgid_base_operations;
2766         inode->i_flags|=S_IMMUTABLE;
2767
2768         inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2769                 ARRAY_SIZE(tgid_base_stuff));
2770
2771         dentry->d_op = &pid_dentry_operations;
2772
2773         d_add(dentry, inode);
2774         /* Close the race of the process dying before we return the dentry */
2775         if (pid_revalidate(dentry, NULL))
2776                 error = NULL;
2777 out:
2778         return error;
2779 }
2780
2781 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2782 {
2783         struct dentry *result;
2784         struct task_struct *task;
2785         unsigned tgid;
2786         struct pid_namespace *ns;
2787
2788         result = proc_base_lookup(dir, dentry);
2789         if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2790                 goto out;
2791
2792         tgid = name_to_int(dentry);
2793         if (tgid == ~0U)
2794                 goto out;
2795
2796         ns = dentry->d_sb->s_fs_info;
2797         rcu_read_lock();
2798         task = find_task_by_pid_ns(tgid, ns);
2799         if (task)
2800                 get_task_struct(task);
2801         rcu_read_unlock();
2802         if (!task)
2803                 goto out;
2804
2805         result = proc_pid_instantiate(dir, dentry, task, NULL);
2806         put_task_struct(task);
2807 out:
2808         return result;
2809 }
2810
2811 /*
2812  * Find the first task with tgid >= tgid
2813  *
2814  */
2815 struct tgid_iter {
2816         unsigned int tgid;
2817         struct task_struct *task;
2818 };
2819 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2820 {
2821         struct pid *pid;
2822
2823         if (iter.task)
2824                 put_task_struct(iter.task);
2825         rcu_read_lock();
2826 retry:
2827         iter.task = NULL;
2828         pid = find_ge_pid(iter.tgid, ns);
2829         if (pid) {
2830                 iter.tgid = pid_nr_ns(pid, ns);
2831                 iter.task = pid_task(pid, PIDTYPE_PID);
2832                 /* What we to know is if the pid we have find is the
2833                  * pid of a thread_group_leader.  Testing for task
2834                  * being a thread_group_leader is the obvious thing
2835                  * todo but there is a window when it fails, due to
2836                  * the pid transfer logic in de_thread.
2837                  *
2838                  * So we perform the straight forward test of seeing
2839                  * if the pid we have found is the pid of a thread
2840                  * group leader, and don't worry if the task we have
2841                  * found doesn't happen to be a thread group leader.
2842                  * As we don't care in the case of readdir.
2843                  */
2844                 if (!iter.task || !has_group_leader_pid(iter.task)) {
2845                         iter.tgid += 1;
2846                         goto retry;
2847                 }
2848                 get_task_struct(iter.task);
2849         }
2850         rcu_read_unlock();
2851         return iter;
2852 }
2853
2854 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2855
2856 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2857         struct tgid_iter iter)
2858 {
2859         char name[PROC_NUMBUF];
2860         int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2861         return proc_fill_cache(filp, dirent, filldir, name, len,
2862                                 proc_pid_instantiate, iter.task, NULL);
2863 }
2864
2865 /* for the /proc/ directory itself, after non-process stuff has been done */
2866 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2867 {
2868         unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2869         struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2870         struct tgid_iter iter;
2871         struct pid_namespace *ns;
2872
2873         if (!reaper)
2874                 goto out_no_task;
2875
2876         for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2877                 const struct pid_entry *p = &proc_base_stuff[nr];
2878                 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2879                         goto out;
2880         }
2881
2882         ns = filp->f_dentry->d_sb->s_fs_info;
2883         iter.task = NULL;
2884         iter.tgid = filp->f_pos - TGID_OFFSET;
2885         for (iter = next_tgid(ns, iter);
2886              iter.task;
2887              iter.tgid += 1, iter = next_tgid(ns, iter)) {
2888                 filp->f_pos = iter.tgid + TGID_OFFSET;
2889                 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2890                         put_task_struct(iter.task);
2891                         goto out;
2892                 }
2893         }
2894         filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2895 out:
2896         put_task_struct(reaper);
2897 out_no_task:
2898         return 0;
2899 }
2900
2901 /*
2902  * Tasks
2903  */
2904 static const struct pid_entry tid_base_stuff[] = {
2905         DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2906         DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2907         REG("environ",   S_IRUSR, proc_environ_operations),
2908         INF("auxv",      S_IRUSR, proc_pid_auxv),
2909         ONE("status",    S_IRUGO, proc_pid_status),
2910         ONE("personality", S_IRUSR, proc_pid_personality),
2911         INF("limits",    S_IRUSR, proc_pid_limits),
2912 #ifdef CONFIG_SCHED_DEBUG
2913         REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2914 #endif
2915         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2916 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2917         INF("syscall",   S_IRUSR, proc_pid_syscall),
2918 #endif
2919         INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2920         ONE("stat",      S_IRUGO, proc_tid_stat),
2921         ONE("statm",     S_IRUGO, proc_pid_statm),
2922         REG("maps",      S_IRUGO, proc_maps_operations),
2923 #ifdef CONFIG_NUMA
2924         REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2925 #endif
2926         REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2927         LNK("cwd",       proc_cwd_link),
2928         LNK("root",      proc_root_link),
2929         LNK("exe",       proc_exe_link),
2930         REG("mounts",    S_IRUGO, proc_mounts_operations),
2931         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2932 #ifdef CONFIG_PROC_PAGE_MONITOR
2933         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2934         REG("smaps",     S_IRUGO, proc_smaps_operations),
2935         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2936 #endif
2937 #ifdef CONFIG_SECURITY
2938         DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2939 #endif
2940 #ifdef CONFIG_KALLSYMS
2941         INF("wchan",     S_IRUGO, proc_pid_wchan),
2942 #endif
2943 #ifdef CONFIG_STACKTRACE
2944         ONE("stack",      S_IRUSR, proc_pid_stack),
2945 #endif
2946 #ifdef CONFIG_SCHEDSTATS
2947         INF("schedstat", S_IRUGO, proc_pid_schedstat),
2948 #endif
2949 #ifdef CONFIG_LATENCYTOP
2950         REG("latency",  S_IRUGO, proc_lstats_operations),
2951 #endif
2952 #ifdef CONFIG_PROC_PID_CPUSET
2953         REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2954 #endif
2955 #ifdef CONFIG_CGROUPS
2956         REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2957 #endif
2958         INF("oom_score", S_IRUGO, proc_oom_score),
2959         REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2960 #ifdef CONFIG_AUDITSYSCALL
2961         REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2962         REG("sessionid",  S_IRUSR, proc_sessionid_operations),
2963 #endif
2964 #ifdef CONFIG_FAULT_INJECTION
2965         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2966 #endif
2967 #ifdef CONFIG_TASK_IO_ACCOUNTING
2968         INF("io",       S_IRUGO, proc_tid_io_accounting),
2969 #endif
2970 };
2971
2972 static int proc_tid_base_readdir(struct file * filp,
2973                              void * dirent, filldir_t filldir)
2974 {
2975         return proc_pident_readdir(filp,dirent,filldir,
2976                                    tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2977 }
2978
2979 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2980         return proc_pident_lookup(dir, dentry,
2981                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2982 }
2983
2984 static const struct file_operations proc_tid_base_operations = {
2985         .read           = generic_read_dir,
2986         .readdir        = proc_tid_base_readdir,
2987 };
2988
2989 static const struct inode_operations proc_tid_base_inode_operations = {
2990         .lookup         = proc_tid_base_lookup,
2991         .getattr        = pid_getattr,
2992         .setattr        = proc_setattr,
2993 };
2994
2995 static struct dentry *proc_task_instantiate(struct inode *dir,
2996         struct dentry *dentry, struct task_struct *task, const void *ptr)
2997 {
2998         struct dentry *error = ERR_PTR(-ENOENT);
2999         struct inode *inode;
3000         inode = proc_pid_make_inode(dir->i_sb, task);
3001
3002         if (!inode)
3003                 goto out;
3004         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3005         inode->i_op = &proc_tid_base_inode_operations;
3006         inode->i_fop = &proc_tid_base_operations;
3007         inode->i_flags|=S_IMMUTABLE;
3008
3009         inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3010                 ARRAY_SIZE(tid_base_stuff));
3011
3012         dentry->d_op = &pid_dentry_operations;
3013
3014         d_add(dentry, inode);
3015         /* Close the race of the process dying before we return the dentry */
3016         if (pid_revalidate(dentry, NULL))
3017                 error = NULL;
3018 out:
3019         return error;
3020 }
3021
3022 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3023 {
3024         struct dentry *result = ERR_PTR(-ENOENT);
3025         struct task_struct *task;
3026         struct task_struct *leader = get_proc_task(dir);
3027         unsigned tid;
3028         struct pid_namespace *ns;
3029
3030         if (!leader)
3031                 goto out_no_task;
3032
3033         tid = name_to_int(dentry);
3034         if (tid == ~0U)
3035                 goto out;
3036
3037         ns = dentry->d_sb->s_fs_info;
3038         rcu_read_lock();
3039         task = find_task_by_pid_ns(tid, ns);
3040         if (task)
3041                 get_task_struct(task);
3042         rcu_read_unlock();
3043         if (!task)
3044                 goto out;
3045         if (!same_thread_group(leader, task))
3046                 goto out_drop_task;
3047
3048         result = proc_task_instantiate(dir, dentry, task, NULL);
3049 out_drop_task:
3050         put_task_struct(task);
3051 out:
3052         put_task_struct(leader);
3053 out_no_task:
3054         return result;
3055 }
3056
3057 /*
3058  * Find the first tid of a thread group to return to user space.
3059  *
3060  * Usually this is just the thread group leader, but if the users
3061  * buffer was too small or there was a seek into the middle of the
3062  * directory we have more work todo.
3063  *
3064  * In the case of a short read we start with find_task_by_pid.
3065  *
3066  * In the case of a seek we start with the leader and walk nr
3067  * threads past it.
3068  */
3069 static struct task_struct *first_tid(struct task_struct *leader,
3070                 int tid, int nr, struct pid_namespace *ns)
3071 {
3072         struct task_struct *pos;
3073
3074         rcu_read_lock();
3075         /* Attempt to start with the pid of a thread */
3076         if (tid && (nr > 0)) {
3077                 pos = find_task_by_pid_ns(tid, ns);
3078                 if (pos && (pos->group_leader == leader))
3079                         goto found;
3080         }
3081
3082         /* If nr exceeds the number of threads there is nothing todo */
3083         pos = NULL;
3084         if (nr && nr >= get_nr_threads(leader))
3085                 goto out;
3086
3087         /* If we haven't found our starting place yet start
3088          * with the leader and walk nr threads forward.
3089          */
3090         for (pos = leader; nr > 0; --nr) {
3091                 pos = next_thread(pos);
3092                 if (pos == leader) {
3093                         pos = NULL;
3094                         goto out;
3095                 }
3096         }
3097 found:
3098         get_task_struct(pos);
3099 out:
3100         rcu_read_unlock();
3101         return pos;
3102 }
3103
3104 /*
3105  * Find the next thread in the thread list.
3106  * Return NULL if there is an error or no next thread.
3107  *
3108  * The reference to the input task_struct is released.
3109  */
3110 static struct task_struct *next_tid(struct task_struct *start)
3111 {
3112         struct task_struct *pos = NULL;
3113         rcu_read_lock();
3114         if (pid_alive(start)) {
3115                 pos = next_thread(start);
3116                 if (thread_group_leader(pos))
3117                         pos = NULL;
3118                 else
3119                         get_task_struct(pos);
3120         }
3121         rcu_read_unlock();
3122         put_task_struct(start);
3123         return pos;
3124 }
3125
3126 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3127         struct task_struct *task, int tid)
3128 {
3129         char name[PROC_NUMBUF];
3130         int len = snprintf(name, sizeof(name), "%d", tid);
3131         return proc_fill_cache(filp, dirent, filldir, name, len,
3132                                 proc_task_instantiate, task, NULL);
3133 }
3134
3135 /* for the /proc/TGID/task/ directories */
3136 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3137 {
3138         struct dentry *dentry = filp->f_path.dentry;
3139         struct inode *inode = dentry->d_inode;
3140         struct task_struct *leader = NULL;
3141         struct task_struct *task;
3142         int retval = -ENOENT;
3143         ino_t ino;
3144         int tid;
3145         struct pid_namespace *ns;
3146
3147         task = get_proc_task(inode);
3148         if (!task)
3149                 goto out_no_task;
3150         rcu_read_lock();
3151         if (pid_alive(task)) {
3152                 leader = task->group_leader;
3153                 get_task_struct(leader);
3154         }
3155         rcu_read_unlock();
3156         put_task_struct(task);
3157         if (!leader)
3158                 goto out_no_task;
3159         retval = 0;
3160
3161         switch ((unsigned long)filp->f_pos) {
3162         case 0:
3163                 ino = inode->i_ino;
3164                 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3165                         goto out;
3166                 filp->f_pos++;
3167                 /* fall through */
3168         case 1:
3169                 ino = parent_ino(dentry);
3170                 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3171                         goto out;
3172                 filp->f_pos++;
3173                 /* fall through */
3174         }
3175
3176         /* f_version caches the tgid value that the last readdir call couldn't
3177          * return. lseek aka telldir automagically resets f_version to 0.
3178          */
3179         ns = filp->f_dentry->d_sb->s_fs_info;
3180         tid = (int)filp->f_version;
3181         filp->f_version = 0;
3182         for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3183              task;
3184              task = next_tid(task), filp->f_pos++) {
3185                 tid = task_pid_nr_ns(task, ns);
3186                 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3187                         /* returning this tgid failed, save it as the first
3188                          * pid for the next readir call */
3189                         filp->f_version = (u64)tid;
3190                         put_task_struct(task);
3191                         break;
3192                 }
3193         }
3194 out:
3195         put_task_struct(leader);
3196 out_no_task:
3197         return retval;
3198 }
3199
3200 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3201 {
3202         struct inode *inode = dentry->d_inode;
3203         struct task_struct *p = get_proc_task(inode);
3204         generic_fillattr(inode, stat);
3205
3206         if (p) {
3207                 stat->nlink += get_nr_threads(p);
3208                 put_task_struct(p);
3209         }
3210
3211         return 0;
3212 }
3213
3214 static const struct inode_operations proc_task_inode_operations = {
3215         .lookup         = proc_task_lookup,
3216         .getattr        = proc_task_getattr,
3217         .setattr        = proc_setattr,
3218 };
3219
3220 static const struct file_operations proc_task_operations = {
3221         .read           = generic_read_dir,
3222         .readdir        = proc_task_readdir,
3223 };