Merge tag 'trace-v6.9-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux...
[sfrench/cifs-2.6.git] / fs / nilfs2 / super.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NILFS module and super block management.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  */
9 /*
10  *  linux/fs/ext2/super.c
11  *
12  * Copyright (C) 1992, 1993, 1994, 1995
13  * Remy Card (card@masi.ibp.fr)
14  * Laboratoire MASI - Institut Blaise Pascal
15  * Universite Pierre et Marie Curie (Paris VI)
16  *
17  *  from
18  *
19  *  linux/fs/minix/inode.c
20  *
21  *  Copyright (C) 1991, 1992  Linus Torvalds
22  *
23  *  Big-endian to little-endian byte-swapping/bitmaps by
24  *        David S. Miller (davem@caip.rutgers.edu), 1995
25  */
26
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/blkdev.h>
32 #include <linux/parser.h>
33 #include <linux/crc32.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
38 #include <linux/fs_context.h>
39 #include "nilfs.h"
40 #include "export.h"
41 #include "mdt.h"
42 #include "alloc.h"
43 #include "btree.h"
44 #include "btnode.h"
45 #include "page.h"
46 #include "cpfile.h"
47 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
48 #include "ifile.h"
49 #include "dat.h"
50 #include "segment.h"
51 #include "segbuf.h"
52
53 MODULE_AUTHOR("NTT Corp.");
54 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
55                    "(NILFS)");
56 MODULE_LICENSE("GPL");
57
58 static struct kmem_cache *nilfs_inode_cachep;
59 struct kmem_cache *nilfs_transaction_cachep;
60 struct kmem_cache *nilfs_segbuf_cachep;
61 struct kmem_cache *nilfs_btree_path_cache;
62
63 static int nilfs_setup_super(struct super_block *sb, int is_mount);
64 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
65
66 void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
67 {
68         struct va_format vaf;
69         va_list args;
70         int level;
71
72         va_start(args, fmt);
73
74         level = printk_get_level(fmt);
75         vaf.fmt = printk_skip_level(fmt);
76         vaf.va = &args;
77
78         if (sb)
79                 printk("%c%cNILFS (%s): %pV\n",
80                        KERN_SOH_ASCII, level, sb->s_id, &vaf);
81         else
82                 printk("%c%cNILFS: %pV\n",
83                        KERN_SOH_ASCII, level, &vaf);
84
85         va_end(args);
86 }
87
88 static void nilfs_set_error(struct super_block *sb)
89 {
90         struct the_nilfs *nilfs = sb->s_fs_info;
91         struct nilfs_super_block **sbp;
92
93         down_write(&nilfs->ns_sem);
94         if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
95                 nilfs->ns_mount_state |= NILFS_ERROR_FS;
96                 sbp = nilfs_prepare_super(sb, 0);
97                 if (likely(sbp)) {
98                         sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
99                         if (sbp[1])
100                                 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
101                         nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
102                 }
103         }
104         up_write(&nilfs->ns_sem);
105 }
106
107 /**
108  * __nilfs_error() - report failure condition on a filesystem
109  *
110  * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
111  * reporting an error message.  This function should be called when
112  * NILFS detects incoherences or defects of meta data on disk.
113  *
114  * This implements the body of nilfs_error() macro.  Normally,
115  * nilfs_error() should be used.  As for sustainable errors such as a
116  * single-shot I/O error, nilfs_err() should be used instead.
117  *
118  * Callers should not add a trailing newline since this will do it.
119  */
120 void __nilfs_error(struct super_block *sb, const char *function,
121                    const char *fmt, ...)
122 {
123         struct the_nilfs *nilfs = sb->s_fs_info;
124         struct va_format vaf;
125         va_list args;
126
127         va_start(args, fmt);
128
129         vaf.fmt = fmt;
130         vaf.va = &args;
131
132         printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
133                sb->s_id, function, &vaf);
134
135         va_end(args);
136
137         if (!sb_rdonly(sb)) {
138                 nilfs_set_error(sb);
139
140                 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
141                         printk(KERN_CRIT "Remounting filesystem read-only\n");
142                         sb->s_flags |= SB_RDONLY;
143                 }
144         }
145
146         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
147                 panic("NILFS (device %s): panic forced after error\n",
148                       sb->s_id);
149 }
150
151 struct inode *nilfs_alloc_inode(struct super_block *sb)
152 {
153         struct nilfs_inode_info *ii;
154
155         ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
156         if (!ii)
157                 return NULL;
158         ii->i_bh = NULL;
159         ii->i_state = 0;
160         ii->i_cno = 0;
161         ii->i_assoc_inode = NULL;
162         ii->i_bmap = &ii->i_bmap_data;
163         return &ii->vfs_inode;
164 }
165
166 static void nilfs_free_inode(struct inode *inode)
167 {
168         if (nilfs_is_metadata_file_inode(inode))
169                 nilfs_mdt_destroy(inode);
170
171         kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
172 }
173
174 static int nilfs_sync_super(struct super_block *sb, int flag)
175 {
176         struct the_nilfs *nilfs = sb->s_fs_info;
177         int err;
178
179  retry:
180         set_buffer_dirty(nilfs->ns_sbh[0]);
181         if (nilfs_test_opt(nilfs, BARRIER)) {
182                 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
183                                           REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
184         } else {
185                 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
186         }
187
188         if (unlikely(err)) {
189                 nilfs_err(sb, "unable to write superblock: err=%d", err);
190                 if (err == -EIO && nilfs->ns_sbh[1]) {
191                         /*
192                          * sbp[0] points to newer log than sbp[1],
193                          * so copy sbp[0] to sbp[1] to take over sbp[0].
194                          */
195                         memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
196                                nilfs->ns_sbsize);
197                         nilfs_fall_back_super_block(nilfs);
198                         goto retry;
199                 }
200         } else {
201                 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
202
203                 nilfs->ns_sbwcount++;
204
205                 /*
206                  * The latest segment becomes trailable from the position
207                  * written in superblock.
208                  */
209                 clear_nilfs_discontinued(nilfs);
210
211                 /* update GC protection for recent segments */
212                 if (nilfs->ns_sbh[1]) {
213                         if (flag == NILFS_SB_COMMIT_ALL) {
214                                 set_buffer_dirty(nilfs->ns_sbh[1]);
215                                 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
216                                         goto out;
217                         }
218                         if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
219                             le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
220                                 sbp = nilfs->ns_sbp[1];
221                 }
222
223                 spin_lock(&nilfs->ns_last_segment_lock);
224                 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
225                 spin_unlock(&nilfs->ns_last_segment_lock);
226         }
227  out:
228         return err;
229 }
230
231 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
232                           struct the_nilfs *nilfs)
233 {
234         sector_t nfreeblocks;
235
236         /* nilfs->ns_sem must be locked by the caller. */
237         nilfs_count_free_blocks(nilfs, &nfreeblocks);
238         sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
239
240         spin_lock(&nilfs->ns_last_segment_lock);
241         sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
242         sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
243         sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
244         spin_unlock(&nilfs->ns_last_segment_lock);
245 }
246
247 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
248                                                int flip)
249 {
250         struct the_nilfs *nilfs = sb->s_fs_info;
251         struct nilfs_super_block **sbp = nilfs->ns_sbp;
252
253         /* nilfs->ns_sem must be locked by the caller. */
254         if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
255                 if (sbp[1] &&
256                     sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
257                         memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
258                 } else {
259                         nilfs_crit(sb, "superblock broke");
260                         return NULL;
261                 }
262         } else if (sbp[1] &&
263                    sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
264                 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
265         }
266
267         if (flip && sbp[1])
268                 nilfs_swap_super_block(nilfs);
269
270         return sbp;
271 }
272
273 int nilfs_commit_super(struct super_block *sb, int flag)
274 {
275         struct the_nilfs *nilfs = sb->s_fs_info;
276         struct nilfs_super_block **sbp = nilfs->ns_sbp;
277         time64_t t;
278
279         /* nilfs->ns_sem must be locked by the caller. */
280         t = ktime_get_real_seconds();
281         nilfs->ns_sbwtime = t;
282         sbp[0]->s_wtime = cpu_to_le64(t);
283         sbp[0]->s_sum = 0;
284         sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
285                                              (unsigned char *)sbp[0],
286                                              nilfs->ns_sbsize));
287         if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
288                 sbp[1]->s_wtime = sbp[0]->s_wtime;
289                 sbp[1]->s_sum = 0;
290                 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
291                                             (unsigned char *)sbp[1],
292                                             nilfs->ns_sbsize));
293         }
294         clear_nilfs_sb_dirty(nilfs);
295         nilfs->ns_flushed_device = 1;
296         /* make sure store to ns_flushed_device cannot be reordered */
297         smp_wmb();
298         return nilfs_sync_super(sb, flag);
299 }
300
301 /**
302  * nilfs_cleanup_super() - write filesystem state for cleanup
303  * @sb: super block instance to be unmounted or degraded to read-only
304  *
305  * This function restores state flags in the on-disk super block.
306  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
307  * filesystem was not clean previously.
308  */
309 int nilfs_cleanup_super(struct super_block *sb)
310 {
311         struct the_nilfs *nilfs = sb->s_fs_info;
312         struct nilfs_super_block **sbp;
313         int flag = NILFS_SB_COMMIT;
314         int ret = -EIO;
315
316         sbp = nilfs_prepare_super(sb, 0);
317         if (sbp) {
318                 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
319                 nilfs_set_log_cursor(sbp[0], nilfs);
320                 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
321                         /*
322                          * make the "clean" flag also to the opposite
323                          * super block if both super blocks point to
324                          * the same checkpoint.
325                          */
326                         sbp[1]->s_state = sbp[0]->s_state;
327                         flag = NILFS_SB_COMMIT_ALL;
328                 }
329                 ret = nilfs_commit_super(sb, flag);
330         }
331         return ret;
332 }
333
334 /**
335  * nilfs_move_2nd_super - relocate secondary super block
336  * @sb: super block instance
337  * @sb2off: new offset of the secondary super block (in bytes)
338  */
339 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
340 {
341         struct the_nilfs *nilfs = sb->s_fs_info;
342         struct buffer_head *nsbh;
343         struct nilfs_super_block *nsbp;
344         sector_t blocknr, newblocknr;
345         unsigned long offset;
346         int sb2i;  /* array index of the secondary superblock */
347         int ret = 0;
348
349         /* nilfs->ns_sem must be locked by the caller. */
350         if (nilfs->ns_sbh[1] &&
351             nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
352                 sb2i = 1;
353                 blocknr = nilfs->ns_sbh[1]->b_blocknr;
354         } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
355                 sb2i = 0;
356                 blocknr = nilfs->ns_sbh[0]->b_blocknr;
357         } else {
358                 sb2i = -1;
359                 blocknr = 0;
360         }
361         if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
362                 goto out;  /* super block location is unchanged */
363
364         /* Get new super block buffer */
365         newblocknr = sb2off >> nilfs->ns_blocksize_bits;
366         offset = sb2off & (nilfs->ns_blocksize - 1);
367         nsbh = sb_getblk(sb, newblocknr);
368         if (!nsbh) {
369                 nilfs_warn(sb,
370                            "unable to move secondary superblock to block %llu",
371                            (unsigned long long)newblocknr);
372                 ret = -EIO;
373                 goto out;
374         }
375         nsbp = (void *)nsbh->b_data + offset;
376
377         lock_buffer(nsbh);
378         if (sb2i >= 0) {
379                 /*
380                  * The position of the second superblock only changes by 4KiB,
381                  * which is larger than the maximum superblock data size
382                  * (= 1KiB), so there is no need to use memmove() to allow
383                  * overlap between source and destination.
384                  */
385                 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
386
387                 /*
388                  * Zero fill after copy to avoid overwriting in case of move
389                  * within the same block.
390                  */
391                 memset(nsbh->b_data, 0, offset);
392                 memset((void *)nsbp + nilfs->ns_sbsize, 0,
393                        nsbh->b_size - offset - nilfs->ns_sbsize);
394         } else {
395                 memset(nsbh->b_data, 0, nsbh->b_size);
396         }
397         set_buffer_uptodate(nsbh);
398         unlock_buffer(nsbh);
399
400         if (sb2i >= 0) {
401                 brelse(nilfs->ns_sbh[sb2i]);
402                 nilfs->ns_sbh[sb2i] = nsbh;
403                 nilfs->ns_sbp[sb2i] = nsbp;
404         } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
405                 /* secondary super block will be restored to index 1 */
406                 nilfs->ns_sbh[1] = nsbh;
407                 nilfs->ns_sbp[1] = nsbp;
408         } else {
409                 brelse(nsbh);
410         }
411 out:
412         return ret;
413 }
414
415 /**
416  * nilfs_resize_fs - resize the filesystem
417  * @sb: super block instance
418  * @newsize: new size of the filesystem (in bytes)
419  */
420 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
421 {
422         struct the_nilfs *nilfs = sb->s_fs_info;
423         struct nilfs_super_block **sbp;
424         __u64 devsize, newnsegs;
425         loff_t sb2off;
426         int ret;
427
428         ret = -ERANGE;
429         devsize = bdev_nr_bytes(sb->s_bdev);
430         if (newsize > devsize)
431                 goto out;
432
433         /*
434          * Prevent underflow in second superblock position calculation.
435          * The exact minimum size check is done in nilfs_sufile_resize().
436          */
437         if (newsize < 4096) {
438                 ret = -ENOSPC;
439                 goto out;
440         }
441
442         /*
443          * Write lock is required to protect some functions depending
444          * on the number of segments, the number of reserved segments,
445          * and so forth.
446          */
447         down_write(&nilfs->ns_segctor_sem);
448
449         sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
450         newnsegs = sb2off >> nilfs->ns_blocksize_bits;
451         newnsegs = div64_ul(newnsegs, nilfs->ns_blocks_per_segment);
452
453         ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
454         up_write(&nilfs->ns_segctor_sem);
455         if (ret < 0)
456                 goto out;
457
458         ret = nilfs_construct_segment(sb);
459         if (ret < 0)
460                 goto out;
461
462         down_write(&nilfs->ns_sem);
463         nilfs_move_2nd_super(sb, sb2off);
464         ret = -EIO;
465         sbp = nilfs_prepare_super(sb, 0);
466         if (likely(sbp)) {
467                 nilfs_set_log_cursor(sbp[0], nilfs);
468                 /*
469                  * Drop NILFS_RESIZE_FS flag for compatibility with
470                  * mount-time resize which may be implemented in a
471                  * future release.
472                  */
473                 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
474                                               ~NILFS_RESIZE_FS);
475                 sbp[0]->s_dev_size = cpu_to_le64(newsize);
476                 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
477                 if (sbp[1])
478                         memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
479                 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
480         }
481         up_write(&nilfs->ns_sem);
482
483         /*
484          * Reset the range of allocatable segments last.  This order
485          * is important in the case of expansion because the secondary
486          * superblock must be protected from log write until migration
487          * completes.
488          */
489         if (!ret)
490                 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
491 out:
492         return ret;
493 }
494
495 static void nilfs_put_super(struct super_block *sb)
496 {
497         struct the_nilfs *nilfs = sb->s_fs_info;
498
499         nilfs_detach_log_writer(sb);
500
501         if (!sb_rdonly(sb)) {
502                 down_write(&nilfs->ns_sem);
503                 nilfs_cleanup_super(sb);
504                 up_write(&nilfs->ns_sem);
505         }
506
507         nilfs_sysfs_delete_device_group(nilfs);
508         iput(nilfs->ns_sufile);
509         iput(nilfs->ns_cpfile);
510         iput(nilfs->ns_dat);
511
512         destroy_nilfs(nilfs);
513         sb->s_fs_info = NULL;
514 }
515
516 static int nilfs_sync_fs(struct super_block *sb, int wait)
517 {
518         struct the_nilfs *nilfs = sb->s_fs_info;
519         struct nilfs_super_block **sbp;
520         int err = 0;
521
522         /* This function is called when super block should be written back */
523         if (wait)
524                 err = nilfs_construct_segment(sb);
525
526         down_write(&nilfs->ns_sem);
527         if (nilfs_sb_dirty(nilfs)) {
528                 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
529                 if (likely(sbp)) {
530                         nilfs_set_log_cursor(sbp[0], nilfs);
531                         nilfs_commit_super(sb, NILFS_SB_COMMIT);
532                 }
533         }
534         up_write(&nilfs->ns_sem);
535
536         if (!err)
537                 err = nilfs_flush_device(nilfs);
538
539         return err;
540 }
541
542 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
543                             struct nilfs_root **rootp)
544 {
545         struct the_nilfs *nilfs = sb->s_fs_info;
546         struct nilfs_root *root;
547         int err = -ENOMEM;
548
549         root = nilfs_find_or_create_root(
550                 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
551         if (!root)
552                 return err;
553
554         if (root->ifile)
555                 goto reuse; /* already attached checkpoint */
556
557         down_read(&nilfs->ns_segctor_sem);
558         err = nilfs_ifile_read(sb, root, cno, nilfs->ns_inode_size);
559         up_read(&nilfs->ns_segctor_sem);
560         if (unlikely(err))
561                 goto failed;
562
563  reuse:
564         *rootp = root;
565         return 0;
566
567  failed:
568         if (err == -EINVAL)
569                 nilfs_err(sb, "Invalid checkpoint (checkpoint number=%llu)",
570                           (unsigned long long)cno);
571         nilfs_put_root(root);
572
573         return err;
574 }
575
576 static int nilfs_freeze(struct super_block *sb)
577 {
578         struct the_nilfs *nilfs = sb->s_fs_info;
579         int err;
580
581         if (sb_rdonly(sb))
582                 return 0;
583
584         /* Mark super block clean */
585         down_write(&nilfs->ns_sem);
586         err = nilfs_cleanup_super(sb);
587         up_write(&nilfs->ns_sem);
588         return err;
589 }
590
591 static int nilfs_unfreeze(struct super_block *sb)
592 {
593         struct the_nilfs *nilfs = sb->s_fs_info;
594
595         if (sb_rdonly(sb))
596                 return 0;
597
598         down_write(&nilfs->ns_sem);
599         nilfs_setup_super(sb, false);
600         up_write(&nilfs->ns_sem);
601         return 0;
602 }
603
604 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
605 {
606         struct super_block *sb = dentry->d_sb;
607         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
608         struct the_nilfs *nilfs = root->nilfs;
609         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
610         unsigned long long blocks;
611         unsigned long overhead;
612         unsigned long nrsvblocks;
613         sector_t nfreeblocks;
614         u64 nmaxinodes, nfreeinodes;
615         int err;
616
617         /*
618          * Compute all of the segment blocks
619          *
620          * The blocks before first segment and after last segment
621          * are excluded.
622          */
623         blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
624                 - nilfs->ns_first_data_block;
625         nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
626
627         /*
628          * Compute the overhead
629          *
630          * When distributing meta data blocks outside segment structure,
631          * We must count them as the overhead.
632          */
633         overhead = 0;
634
635         err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
636         if (unlikely(err))
637                 return err;
638
639         err = nilfs_ifile_count_free_inodes(root->ifile,
640                                             &nmaxinodes, &nfreeinodes);
641         if (unlikely(err)) {
642                 nilfs_warn(sb, "failed to count free inodes: err=%d", err);
643                 if (err == -ERANGE) {
644                         /*
645                          * If nilfs_palloc_count_max_entries() returns
646                          * -ERANGE error code then we simply treat
647                          * curent inodes count as maximum possible and
648                          * zero as free inodes value.
649                          */
650                         nmaxinodes = atomic64_read(&root->inodes_count);
651                         nfreeinodes = 0;
652                         err = 0;
653                 } else
654                         return err;
655         }
656
657         buf->f_type = NILFS_SUPER_MAGIC;
658         buf->f_bsize = sb->s_blocksize;
659         buf->f_blocks = blocks - overhead;
660         buf->f_bfree = nfreeblocks;
661         buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
662                 (buf->f_bfree - nrsvblocks) : 0;
663         buf->f_files = nmaxinodes;
664         buf->f_ffree = nfreeinodes;
665         buf->f_namelen = NILFS_NAME_LEN;
666         buf->f_fsid = u64_to_fsid(id);
667
668         return 0;
669 }
670
671 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
672 {
673         struct super_block *sb = dentry->d_sb;
674         struct the_nilfs *nilfs = sb->s_fs_info;
675         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
676
677         if (!nilfs_test_opt(nilfs, BARRIER))
678                 seq_puts(seq, ",nobarrier");
679         if (root->cno != NILFS_CPTREE_CURRENT_CNO)
680                 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
681         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
682                 seq_puts(seq, ",errors=panic");
683         if (nilfs_test_opt(nilfs, ERRORS_CONT))
684                 seq_puts(seq, ",errors=continue");
685         if (nilfs_test_opt(nilfs, STRICT_ORDER))
686                 seq_puts(seq, ",order=strict");
687         if (nilfs_test_opt(nilfs, NORECOVERY))
688                 seq_puts(seq, ",norecovery");
689         if (nilfs_test_opt(nilfs, DISCARD))
690                 seq_puts(seq, ",discard");
691
692         return 0;
693 }
694
695 static const struct super_operations nilfs_sops = {
696         .alloc_inode    = nilfs_alloc_inode,
697         .free_inode     = nilfs_free_inode,
698         .dirty_inode    = nilfs_dirty_inode,
699         .evict_inode    = nilfs_evict_inode,
700         .put_super      = nilfs_put_super,
701         .sync_fs        = nilfs_sync_fs,
702         .freeze_fs      = nilfs_freeze,
703         .unfreeze_fs    = nilfs_unfreeze,
704         .statfs         = nilfs_statfs,
705         .remount_fs     = nilfs_remount,
706         .show_options = nilfs_show_options
707 };
708
709 enum {
710         Opt_err_cont, Opt_err_panic, Opt_err_ro,
711         Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
712         Opt_discard, Opt_nodiscard, Opt_err,
713 };
714
715 static match_table_t tokens = {
716         {Opt_err_cont, "errors=continue"},
717         {Opt_err_panic, "errors=panic"},
718         {Opt_err_ro, "errors=remount-ro"},
719         {Opt_barrier, "barrier"},
720         {Opt_nobarrier, "nobarrier"},
721         {Opt_snapshot, "cp=%u"},
722         {Opt_order, "order=%s"},
723         {Opt_norecovery, "norecovery"},
724         {Opt_discard, "discard"},
725         {Opt_nodiscard, "nodiscard"},
726         {Opt_err, NULL}
727 };
728
729 static int parse_options(char *options, struct super_block *sb, int is_remount)
730 {
731         struct the_nilfs *nilfs = sb->s_fs_info;
732         char *p;
733         substring_t args[MAX_OPT_ARGS];
734
735         if (!options)
736                 return 1;
737
738         while ((p = strsep(&options, ",")) != NULL) {
739                 int token;
740
741                 if (!*p)
742                         continue;
743
744                 token = match_token(p, tokens, args);
745                 switch (token) {
746                 case Opt_barrier:
747                         nilfs_set_opt(nilfs, BARRIER);
748                         break;
749                 case Opt_nobarrier:
750                         nilfs_clear_opt(nilfs, BARRIER);
751                         break;
752                 case Opt_order:
753                         if (strcmp(args[0].from, "relaxed") == 0)
754                                 /* Ordered data semantics */
755                                 nilfs_clear_opt(nilfs, STRICT_ORDER);
756                         else if (strcmp(args[0].from, "strict") == 0)
757                                 /* Strict in-order semantics */
758                                 nilfs_set_opt(nilfs, STRICT_ORDER);
759                         else
760                                 return 0;
761                         break;
762                 case Opt_err_panic:
763                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
764                         break;
765                 case Opt_err_ro:
766                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
767                         break;
768                 case Opt_err_cont:
769                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
770                         break;
771                 case Opt_snapshot:
772                         if (is_remount) {
773                                 nilfs_err(sb,
774                                           "\"%s\" option is invalid for remount",
775                                           p);
776                                 return 0;
777                         }
778                         break;
779                 case Opt_norecovery:
780                         nilfs_set_opt(nilfs, NORECOVERY);
781                         break;
782                 case Opt_discard:
783                         nilfs_set_opt(nilfs, DISCARD);
784                         break;
785                 case Opt_nodiscard:
786                         nilfs_clear_opt(nilfs, DISCARD);
787                         break;
788                 default:
789                         nilfs_err(sb, "unrecognized mount option \"%s\"", p);
790                         return 0;
791                 }
792         }
793         return 1;
794 }
795
796 static inline void
797 nilfs_set_default_options(struct super_block *sb,
798                           struct nilfs_super_block *sbp)
799 {
800         struct the_nilfs *nilfs = sb->s_fs_info;
801
802         nilfs->ns_mount_opt =
803                 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
804 }
805
806 static int nilfs_setup_super(struct super_block *sb, int is_mount)
807 {
808         struct the_nilfs *nilfs = sb->s_fs_info;
809         struct nilfs_super_block **sbp;
810         int max_mnt_count;
811         int mnt_count;
812
813         /* nilfs->ns_sem must be locked by the caller. */
814         sbp = nilfs_prepare_super(sb, 0);
815         if (!sbp)
816                 return -EIO;
817
818         if (!is_mount)
819                 goto skip_mount_setup;
820
821         max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
822         mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
823
824         if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
825                 nilfs_warn(sb, "mounting fs with errors");
826 #if 0
827         } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
828                 nilfs_warn(sb, "maximal mount count reached");
829 #endif
830         }
831         if (!max_mnt_count)
832                 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
833
834         sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
835         sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
836
837 skip_mount_setup:
838         sbp[0]->s_state =
839                 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
840         /* synchronize sbp[1] with sbp[0] */
841         if (sbp[1])
842                 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
843         return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
844 }
845
846 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
847                                                  u64 pos, int blocksize,
848                                                  struct buffer_head **pbh)
849 {
850         unsigned long long sb_index = pos;
851         unsigned long offset;
852
853         offset = do_div(sb_index, blocksize);
854         *pbh = sb_bread(sb, sb_index);
855         if (!*pbh)
856                 return NULL;
857         return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
858 }
859
860 int nilfs_store_magic_and_option(struct super_block *sb,
861                                  struct nilfs_super_block *sbp,
862                                  char *data)
863 {
864         struct the_nilfs *nilfs = sb->s_fs_info;
865
866         sb->s_magic = le16_to_cpu(sbp->s_magic);
867
868         /* FS independent flags */
869 #ifdef NILFS_ATIME_DISABLE
870         sb->s_flags |= SB_NOATIME;
871 #endif
872
873         nilfs_set_default_options(sb, sbp);
874
875         nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
876         nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
877         nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
878         nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
879
880         return !parse_options(data, sb, 0) ? -EINVAL : 0;
881 }
882
883 int nilfs_check_feature_compatibility(struct super_block *sb,
884                                       struct nilfs_super_block *sbp)
885 {
886         __u64 features;
887
888         features = le64_to_cpu(sbp->s_feature_incompat) &
889                 ~NILFS_FEATURE_INCOMPAT_SUPP;
890         if (features) {
891                 nilfs_err(sb,
892                           "couldn't mount because of unsupported optional features (%llx)",
893                           (unsigned long long)features);
894                 return -EINVAL;
895         }
896         features = le64_to_cpu(sbp->s_feature_compat_ro) &
897                 ~NILFS_FEATURE_COMPAT_RO_SUPP;
898         if (!sb_rdonly(sb) && features) {
899                 nilfs_err(sb,
900                           "couldn't mount RDWR because of unsupported optional features (%llx)",
901                           (unsigned long long)features);
902                 return -EINVAL;
903         }
904         return 0;
905 }
906
907 static int nilfs_get_root_dentry(struct super_block *sb,
908                                  struct nilfs_root *root,
909                                  struct dentry **root_dentry)
910 {
911         struct inode *inode;
912         struct dentry *dentry;
913         int ret = 0;
914
915         inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
916         if (IS_ERR(inode)) {
917                 ret = PTR_ERR(inode);
918                 nilfs_err(sb, "error %d getting root inode", ret);
919                 goto out;
920         }
921         if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
922                 iput(inode);
923                 nilfs_err(sb, "corrupt root inode");
924                 ret = -EINVAL;
925                 goto out;
926         }
927
928         if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
929                 dentry = d_find_alias(inode);
930                 if (!dentry) {
931                         dentry = d_make_root(inode);
932                         if (!dentry) {
933                                 ret = -ENOMEM;
934                                 goto failed_dentry;
935                         }
936                 } else {
937                         iput(inode);
938                 }
939         } else {
940                 dentry = d_obtain_root(inode);
941                 if (IS_ERR(dentry)) {
942                         ret = PTR_ERR(dentry);
943                         goto failed_dentry;
944                 }
945         }
946         *root_dentry = dentry;
947  out:
948         return ret;
949
950  failed_dentry:
951         nilfs_err(sb, "error %d getting root dentry", ret);
952         goto out;
953 }
954
955 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
956                                  struct dentry **root_dentry)
957 {
958         struct the_nilfs *nilfs = s->s_fs_info;
959         struct nilfs_root *root;
960         int ret;
961
962         mutex_lock(&nilfs->ns_snapshot_mount_mutex);
963
964         down_read(&nilfs->ns_segctor_sem);
965         ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
966         up_read(&nilfs->ns_segctor_sem);
967         if (ret < 0) {
968                 ret = (ret == -ENOENT) ? -EINVAL : ret;
969                 goto out;
970         } else if (!ret) {
971                 nilfs_err(s,
972                           "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
973                           (unsigned long long)cno);
974                 ret = -EINVAL;
975                 goto out;
976         }
977
978         ret = nilfs_attach_checkpoint(s, cno, false, &root);
979         if (ret) {
980                 nilfs_err(s,
981                           "error %d while loading snapshot (checkpoint number=%llu)",
982                           ret, (unsigned long long)cno);
983                 goto out;
984         }
985         ret = nilfs_get_root_dentry(s, root, root_dentry);
986         nilfs_put_root(root);
987  out:
988         mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
989         return ret;
990 }
991
992 /**
993  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
994  * @root_dentry: root dentry of the tree to be shrunk
995  *
996  * This function returns true if the tree was in-use.
997  */
998 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
999 {
1000         shrink_dcache_parent(root_dentry);
1001         return d_count(root_dentry) > 1;
1002 }
1003
1004 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1005 {
1006         struct the_nilfs *nilfs = sb->s_fs_info;
1007         struct nilfs_root *root;
1008         struct inode *inode;
1009         struct dentry *dentry;
1010         int ret;
1011
1012         if (cno > nilfs->ns_cno)
1013                 return false;
1014
1015         if (cno >= nilfs_last_cno(nilfs))
1016                 return true;    /* protect recent checkpoints */
1017
1018         ret = false;
1019         root = nilfs_lookup_root(nilfs, cno);
1020         if (root) {
1021                 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1022                 if (inode) {
1023                         dentry = d_find_alias(inode);
1024                         if (dentry) {
1025                                 ret = nilfs_tree_is_busy(dentry);
1026                                 dput(dentry);
1027                         }
1028                         iput(inode);
1029                 }
1030                 nilfs_put_root(root);
1031         }
1032         return ret;
1033 }
1034
1035 /**
1036  * nilfs_fill_super() - initialize a super block instance
1037  * @sb: super_block
1038  * @data: mount options
1039  * @silent: silent mode flag
1040  *
1041  * This function is called exclusively by nilfs->ns_mount_mutex.
1042  * So, the recovery process is protected from other simultaneous mounts.
1043  */
1044 static int
1045 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1046 {
1047         struct the_nilfs *nilfs;
1048         struct nilfs_root *fsroot;
1049         __u64 cno;
1050         int err;
1051
1052         nilfs = alloc_nilfs(sb);
1053         if (!nilfs)
1054                 return -ENOMEM;
1055
1056         sb->s_fs_info = nilfs;
1057
1058         err = init_nilfs(nilfs, sb, (char *)data);
1059         if (err)
1060                 goto failed_nilfs;
1061
1062         sb->s_op = &nilfs_sops;
1063         sb->s_export_op = &nilfs_export_ops;
1064         sb->s_root = NULL;
1065         sb->s_time_gran = 1;
1066         sb->s_max_links = NILFS_LINK_MAX;
1067
1068         sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1069
1070         err = load_nilfs(nilfs, sb);
1071         if (err)
1072                 goto failed_nilfs;
1073
1074         cno = nilfs_last_cno(nilfs);
1075         err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1076         if (err) {
1077                 nilfs_err(sb,
1078                           "error %d while loading last checkpoint (checkpoint number=%llu)",
1079                           err, (unsigned long long)cno);
1080                 goto failed_unload;
1081         }
1082
1083         if (!sb_rdonly(sb)) {
1084                 err = nilfs_attach_log_writer(sb, fsroot);
1085                 if (err)
1086                         goto failed_checkpoint;
1087         }
1088
1089         err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1090         if (err)
1091                 goto failed_segctor;
1092
1093         nilfs_put_root(fsroot);
1094
1095         if (!sb_rdonly(sb)) {
1096                 down_write(&nilfs->ns_sem);
1097                 nilfs_setup_super(sb, true);
1098                 up_write(&nilfs->ns_sem);
1099         }
1100
1101         return 0;
1102
1103  failed_segctor:
1104         nilfs_detach_log_writer(sb);
1105
1106  failed_checkpoint:
1107         nilfs_put_root(fsroot);
1108
1109  failed_unload:
1110         nilfs_sysfs_delete_device_group(nilfs);
1111         iput(nilfs->ns_sufile);
1112         iput(nilfs->ns_cpfile);
1113         iput(nilfs->ns_dat);
1114
1115  failed_nilfs:
1116         destroy_nilfs(nilfs);
1117         return err;
1118 }
1119
1120 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1121 {
1122         struct the_nilfs *nilfs = sb->s_fs_info;
1123         unsigned long old_sb_flags;
1124         unsigned long old_mount_opt;
1125         int err;
1126
1127         sync_filesystem(sb);
1128         old_sb_flags = sb->s_flags;
1129         old_mount_opt = nilfs->ns_mount_opt;
1130
1131         if (!parse_options(data, sb, 1)) {
1132                 err = -EINVAL;
1133                 goto restore_opts;
1134         }
1135         sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1136
1137         err = -EINVAL;
1138
1139         if (!nilfs_valid_fs(nilfs)) {
1140                 nilfs_warn(sb,
1141                            "couldn't remount because the filesystem is in an incomplete recovery state");
1142                 goto restore_opts;
1143         }
1144
1145         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1146                 goto out;
1147         if (*flags & SB_RDONLY) {
1148                 sb->s_flags |= SB_RDONLY;
1149
1150                 /*
1151                  * Remounting a valid RW partition RDONLY, so set
1152                  * the RDONLY flag and then mark the partition as valid again.
1153                  */
1154                 down_write(&nilfs->ns_sem);
1155                 nilfs_cleanup_super(sb);
1156                 up_write(&nilfs->ns_sem);
1157         } else {
1158                 __u64 features;
1159                 struct nilfs_root *root;
1160
1161                 /*
1162                  * Mounting a RDONLY partition read-write, so reread and
1163                  * store the current valid flag.  (It may have been changed
1164                  * by fsck since we originally mounted the partition.)
1165                  */
1166                 down_read(&nilfs->ns_sem);
1167                 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1168                         ~NILFS_FEATURE_COMPAT_RO_SUPP;
1169                 up_read(&nilfs->ns_sem);
1170                 if (features) {
1171                         nilfs_warn(sb,
1172                                    "couldn't remount RDWR because of unsupported optional features (%llx)",
1173                                    (unsigned long long)features);
1174                         err = -EROFS;
1175                         goto restore_opts;
1176                 }
1177
1178                 sb->s_flags &= ~SB_RDONLY;
1179
1180                 root = NILFS_I(d_inode(sb->s_root))->i_root;
1181                 err = nilfs_attach_log_writer(sb, root);
1182                 if (err)
1183                         goto restore_opts;
1184
1185                 down_write(&nilfs->ns_sem);
1186                 nilfs_setup_super(sb, true);
1187                 up_write(&nilfs->ns_sem);
1188         }
1189  out:
1190         return 0;
1191
1192  restore_opts:
1193         sb->s_flags = old_sb_flags;
1194         nilfs->ns_mount_opt = old_mount_opt;
1195         return err;
1196 }
1197
1198 struct nilfs_super_data {
1199         __u64 cno;
1200         int flags;
1201 };
1202
1203 static int nilfs_parse_snapshot_option(const char *option,
1204                                        const substring_t *arg,
1205                                        struct nilfs_super_data *sd)
1206 {
1207         unsigned long long val;
1208         const char *msg = NULL;
1209         int err;
1210
1211         if (!(sd->flags & SB_RDONLY)) {
1212                 msg = "read-only option is not specified";
1213                 goto parse_error;
1214         }
1215
1216         err = kstrtoull(arg->from, 0, &val);
1217         if (err) {
1218                 if (err == -ERANGE)
1219                         msg = "too large checkpoint number";
1220                 else
1221                         msg = "malformed argument";
1222                 goto parse_error;
1223         } else if (val == 0) {
1224                 msg = "invalid checkpoint number 0";
1225                 goto parse_error;
1226         }
1227         sd->cno = val;
1228         return 0;
1229
1230 parse_error:
1231         nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1232         return 1;
1233 }
1234
1235 /**
1236  * nilfs_identify - pre-read mount options needed to identify mount instance
1237  * @data: mount options
1238  * @sd: nilfs_super_data
1239  */
1240 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1241 {
1242         char *p, *options = data;
1243         substring_t args[MAX_OPT_ARGS];
1244         int token;
1245         int ret = 0;
1246
1247         do {
1248                 p = strsep(&options, ",");
1249                 if (p != NULL && *p) {
1250                         token = match_token(p, tokens, args);
1251                         if (token == Opt_snapshot)
1252                                 ret = nilfs_parse_snapshot_option(p, &args[0],
1253                                                                   sd);
1254                 }
1255                 if (!options)
1256                         break;
1257                 BUG_ON(options == data);
1258                 *(options - 1) = ',';
1259         } while (!ret);
1260         return ret;
1261 }
1262
1263 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1264 {
1265         s->s_dev = *(dev_t *)data;
1266         return 0;
1267 }
1268
1269 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1270 {
1271         return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1272 }
1273
1274 static struct dentry *
1275 nilfs_mount(struct file_system_type *fs_type, int flags,
1276              const char *dev_name, void *data)
1277 {
1278         struct nilfs_super_data sd = { .flags = flags };
1279         struct super_block *s;
1280         dev_t dev;
1281         int err;
1282
1283         if (nilfs_identify(data, &sd))
1284                 return ERR_PTR(-EINVAL);
1285
1286         err = lookup_bdev(dev_name, &dev);
1287         if (err)
1288                 return ERR_PTR(err);
1289
1290         s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1291                  &dev);
1292         if (IS_ERR(s))
1293                 return ERR_CAST(s);
1294
1295         if (!s->s_root) {
1296                 err = setup_bdev_super(s, flags, NULL);
1297                 if (!err)
1298                         err = nilfs_fill_super(s, data,
1299                                                flags & SB_SILENT ? 1 : 0);
1300                 if (err)
1301                         goto failed_super;
1302
1303                 s->s_flags |= SB_ACTIVE;
1304         } else if (!sd.cno) {
1305                 if (nilfs_tree_is_busy(s->s_root)) {
1306                         if ((flags ^ s->s_flags) & SB_RDONLY) {
1307                                 nilfs_err(s,
1308                                           "the device already has a %s mount.",
1309                                           sb_rdonly(s) ? "read-only" : "read/write");
1310                                 err = -EBUSY;
1311                                 goto failed_super;
1312                         }
1313                 } else {
1314                         /*
1315                          * Try remount to setup mount states if the current
1316                          * tree is not mounted and only snapshots use this sb.
1317                          */
1318                         err = nilfs_remount(s, &flags, data);
1319                         if (err)
1320                                 goto failed_super;
1321                 }
1322         }
1323
1324         if (sd.cno) {
1325                 struct dentry *root_dentry;
1326
1327                 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1328                 if (err)
1329                         goto failed_super;
1330                 return root_dentry;
1331         }
1332
1333         return dget(s->s_root);
1334
1335  failed_super:
1336         deactivate_locked_super(s);
1337         return ERR_PTR(err);
1338 }
1339
1340 struct file_system_type nilfs_fs_type = {
1341         .owner    = THIS_MODULE,
1342         .name     = "nilfs2",
1343         .mount    = nilfs_mount,
1344         .kill_sb  = kill_block_super,
1345         .fs_flags = FS_REQUIRES_DEV,
1346 };
1347 MODULE_ALIAS_FS("nilfs2");
1348
1349 static void nilfs_inode_init_once(void *obj)
1350 {
1351         struct nilfs_inode_info *ii = obj;
1352
1353         INIT_LIST_HEAD(&ii->i_dirty);
1354 #ifdef CONFIG_NILFS_XATTR
1355         init_rwsem(&ii->xattr_sem);
1356 #endif
1357         inode_init_once(&ii->vfs_inode);
1358 }
1359
1360 static void nilfs_segbuf_init_once(void *obj)
1361 {
1362         memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1363 }
1364
1365 static void nilfs_destroy_cachep(void)
1366 {
1367         /*
1368          * Make sure all delayed rcu free inodes are flushed before we
1369          * destroy cache.
1370          */
1371         rcu_barrier();
1372
1373         kmem_cache_destroy(nilfs_inode_cachep);
1374         kmem_cache_destroy(nilfs_transaction_cachep);
1375         kmem_cache_destroy(nilfs_segbuf_cachep);
1376         kmem_cache_destroy(nilfs_btree_path_cache);
1377 }
1378
1379 static int __init nilfs_init_cachep(void)
1380 {
1381         nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1382                         sizeof(struct nilfs_inode_info), 0,
1383                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1384                         nilfs_inode_init_once);
1385         if (!nilfs_inode_cachep)
1386                 goto fail;
1387
1388         nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1389                         sizeof(struct nilfs_transaction_info), 0,
1390                         SLAB_RECLAIM_ACCOUNT, NULL);
1391         if (!nilfs_transaction_cachep)
1392                 goto fail;
1393
1394         nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1395                         sizeof(struct nilfs_segment_buffer), 0,
1396                         SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1397         if (!nilfs_segbuf_cachep)
1398                 goto fail;
1399
1400         nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1401                         sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1402                         0, 0, NULL);
1403         if (!nilfs_btree_path_cache)
1404                 goto fail;
1405
1406         return 0;
1407
1408 fail:
1409         nilfs_destroy_cachep();
1410         return -ENOMEM;
1411 }
1412
1413 static int __init init_nilfs_fs(void)
1414 {
1415         int err;
1416
1417         err = nilfs_init_cachep();
1418         if (err)
1419                 goto fail;
1420
1421         err = nilfs_sysfs_init();
1422         if (err)
1423                 goto free_cachep;
1424
1425         err = register_filesystem(&nilfs_fs_type);
1426         if (err)
1427                 goto deinit_sysfs_entry;
1428
1429         printk(KERN_INFO "NILFS version 2 loaded\n");
1430         return 0;
1431
1432 deinit_sysfs_entry:
1433         nilfs_sysfs_exit();
1434 free_cachep:
1435         nilfs_destroy_cachep();
1436 fail:
1437         return err;
1438 }
1439
1440 static void __exit exit_nilfs_fs(void)
1441 {
1442         nilfs_destroy_cachep();
1443         nilfs_sysfs_exit();
1444         unregister_filesystem(&nilfs_fs_type);
1445 }
1446
1447 module_init(init_nilfs_fs)
1448 module_exit(exit_nilfs_fs)