Merge branches 'pm-domains', 'pm-avs' and 'powercap'
[sfrench/cifs-2.6.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *fault_name[FAULT_MAX] = {
45         [FAULT_KMALLOC]         = "kmalloc",
46         [FAULT_PAGE_ALLOC]      = "page alloc",
47         [FAULT_ALLOC_NID]       = "alloc nid",
48         [FAULT_ORPHAN]          = "orphan",
49         [FAULT_BLOCK]           = "no more block",
50         [FAULT_DIR_DEPTH]       = "too big dir depth",
51         [FAULT_EVICT_INODE]     = "evict_inode fail",
52         [FAULT_TRUNCATE]        = "truncate fail",
53         [FAULT_IO]              = "IO error",
54         [FAULT_CHECKPOINT]      = "checkpoint error",
55 };
56
57 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
58                                                 unsigned int rate)
59 {
60         struct f2fs_fault_info *ffi = &sbi->fault_info;
61
62         if (rate) {
63                 atomic_set(&ffi->inject_ops, 0);
64                 ffi->inject_rate = rate;
65                 ffi->inject_type = (1 << FAULT_MAX) - 1;
66         } else {
67                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
68         }
69 }
70 #endif
71
72 /* f2fs-wide shrinker description */
73 static struct shrinker f2fs_shrinker_info = {
74         .scan_objects = f2fs_shrink_scan,
75         .count_objects = f2fs_shrink_count,
76         .seeks = DEFAULT_SEEKS,
77 };
78
79 enum {
80         Opt_gc_background,
81         Opt_disable_roll_forward,
82         Opt_norecovery,
83         Opt_discard,
84         Opt_nodiscard,
85         Opt_noheap,
86         Opt_heap,
87         Opt_user_xattr,
88         Opt_nouser_xattr,
89         Opt_acl,
90         Opt_noacl,
91         Opt_active_logs,
92         Opt_disable_ext_identify,
93         Opt_inline_xattr,
94         Opt_noinline_xattr,
95         Opt_inline_data,
96         Opt_inline_dentry,
97         Opt_noinline_dentry,
98         Opt_flush_merge,
99         Opt_noflush_merge,
100         Opt_nobarrier,
101         Opt_fastboot,
102         Opt_extent_cache,
103         Opt_noextent_cache,
104         Opt_noinline_data,
105         Opt_data_flush,
106         Opt_mode,
107         Opt_io_size_bits,
108         Opt_fault_injection,
109         Opt_lazytime,
110         Opt_nolazytime,
111         Opt_err,
112 };
113
114 static match_table_t f2fs_tokens = {
115         {Opt_gc_background, "background_gc=%s"},
116         {Opt_disable_roll_forward, "disable_roll_forward"},
117         {Opt_norecovery, "norecovery"},
118         {Opt_discard, "discard"},
119         {Opt_nodiscard, "nodiscard"},
120         {Opt_noheap, "no_heap"},
121         {Opt_heap, "heap"},
122         {Opt_user_xattr, "user_xattr"},
123         {Opt_nouser_xattr, "nouser_xattr"},
124         {Opt_acl, "acl"},
125         {Opt_noacl, "noacl"},
126         {Opt_active_logs, "active_logs=%u"},
127         {Opt_disable_ext_identify, "disable_ext_identify"},
128         {Opt_inline_xattr, "inline_xattr"},
129         {Opt_noinline_xattr, "noinline_xattr"},
130         {Opt_inline_data, "inline_data"},
131         {Opt_inline_dentry, "inline_dentry"},
132         {Opt_noinline_dentry, "noinline_dentry"},
133         {Opt_flush_merge, "flush_merge"},
134         {Opt_noflush_merge, "noflush_merge"},
135         {Opt_nobarrier, "nobarrier"},
136         {Opt_fastboot, "fastboot"},
137         {Opt_extent_cache, "extent_cache"},
138         {Opt_noextent_cache, "noextent_cache"},
139         {Opt_noinline_data, "noinline_data"},
140         {Opt_data_flush, "data_flush"},
141         {Opt_mode, "mode=%s"},
142         {Opt_io_size_bits, "io_bits=%u"},
143         {Opt_fault_injection, "fault_injection=%u"},
144         {Opt_lazytime, "lazytime"},
145         {Opt_nolazytime, "nolazytime"},
146         {Opt_err, NULL},
147 };
148
149 /* Sysfs support for f2fs */
150 enum {
151         GC_THREAD,      /* struct f2fs_gc_thread */
152         SM_INFO,        /* struct f2fs_sm_info */
153         DCC_INFO,       /* struct discard_cmd_control */
154         NM_INFO,        /* struct f2fs_nm_info */
155         F2FS_SBI,       /* struct f2fs_sb_info */
156 #ifdef CONFIG_F2FS_FAULT_INJECTION
157         FAULT_INFO_RATE,        /* struct f2fs_fault_info */
158         FAULT_INFO_TYPE,        /* struct f2fs_fault_info */
159 #endif
160 };
161
162 struct f2fs_attr {
163         struct attribute attr;
164         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
165         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
166                          const char *, size_t);
167         int struct_type;
168         int offset;
169 };
170
171 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
172 {
173         if (struct_type == GC_THREAD)
174                 return (unsigned char *)sbi->gc_thread;
175         else if (struct_type == SM_INFO)
176                 return (unsigned char *)SM_I(sbi);
177         else if (struct_type == DCC_INFO)
178                 return (unsigned char *)SM_I(sbi)->dcc_info;
179         else if (struct_type == NM_INFO)
180                 return (unsigned char *)NM_I(sbi);
181         else if (struct_type == F2FS_SBI)
182                 return (unsigned char *)sbi;
183 #ifdef CONFIG_F2FS_FAULT_INJECTION
184         else if (struct_type == FAULT_INFO_RATE ||
185                                         struct_type == FAULT_INFO_TYPE)
186                 return (unsigned char *)&sbi->fault_info;
187 #endif
188         return NULL;
189 }
190
191 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
192                 struct f2fs_sb_info *sbi, char *buf)
193 {
194         struct super_block *sb = sbi->sb;
195
196         if (!sb->s_bdev->bd_part)
197                 return snprintf(buf, PAGE_SIZE, "0\n");
198
199         return snprintf(buf, PAGE_SIZE, "%llu\n",
200                 (unsigned long long)(sbi->kbytes_written +
201                         BD_PART_WRITTEN(sbi)));
202 }
203
204 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
205                         struct f2fs_sb_info *sbi, char *buf)
206 {
207         unsigned char *ptr = NULL;
208         unsigned int *ui;
209
210         ptr = __struct_ptr(sbi, a->struct_type);
211         if (!ptr)
212                 return -EINVAL;
213
214         ui = (unsigned int *)(ptr + a->offset);
215
216         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
217 }
218
219 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
220                         struct f2fs_sb_info *sbi,
221                         const char *buf, size_t count)
222 {
223         unsigned char *ptr;
224         unsigned long t;
225         unsigned int *ui;
226         ssize_t ret;
227
228         ptr = __struct_ptr(sbi, a->struct_type);
229         if (!ptr)
230                 return -EINVAL;
231
232         ui = (unsigned int *)(ptr + a->offset);
233
234         ret = kstrtoul(skip_spaces(buf), 0, &t);
235         if (ret < 0)
236                 return ret;
237 #ifdef CONFIG_F2FS_FAULT_INJECTION
238         if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
239                 return -EINVAL;
240 #endif
241         *ui = t;
242         return count;
243 }
244
245 static ssize_t f2fs_attr_show(struct kobject *kobj,
246                                 struct attribute *attr, char *buf)
247 {
248         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
249                                                                 s_kobj);
250         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
251
252         return a->show ? a->show(a, sbi, buf) : 0;
253 }
254
255 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
256                                                 const char *buf, size_t len)
257 {
258         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
259                                                                         s_kobj);
260         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
261
262         return a->store ? a->store(a, sbi, buf, len) : 0;
263 }
264
265 static void f2fs_sb_release(struct kobject *kobj)
266 {
267         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
268                                                                 s_kobj);
269         complete(&sbi->s_kobj_unregister);
270 }
271
272 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
273 static struct f2fs_attr f2fs_attr_##_name = {                   \
274         .attr = {.name = __stringify(_name), .mode = _mode },   \
275         .show   = _show,                                        \
276         .store  = _store,                                       \
277         .struct_type = _struct_type,                            \
278         .offset = _offset                                       \
279 }
280
281 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
282         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
283                 f2fs_sbi_show, f2fs_sbi_store,                  \
284                 offsetof(struct struct_name, elname))
285
286 #define F2FS_GENERAL_RO_ATTR(name) \
287 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
288
289 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
290 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
291 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
292 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
293 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
294 F2FS_RW_ATTR(DCC_INFO, discard_cmd_control, max_small_discards, max_discards);
295 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
296 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
297 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
298 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
299 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_hot_blocks, min_hot_blocks);
300 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
301 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
302 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
303 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
304 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
305 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
306 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
307 #ifdef CONFIG_F2FS_FAULT_INJECTION
308 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
309 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
310 #endif
311 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
312
313 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
314 static struct attribute *f2fs_attrs[] = {
315         ATTR_LIST(gc_min_sleep_time),
316         ATTR_LIST(gc_max_sleep_time),
317         ATTR_LIST(gc_no_gc_sleep_time),
318         ATTR_LIST(gc_idle),
319         ATTR_LIST(reclaim_segments),
320         ATTR_LIST(max_small_discards),
321         ATTR_LIST(batched_trim_sections),
322         ATTR_LIST(ipu_policy),
323         ATTR_LIST(min_ipu_util),
324         ATTR_LIST(min_fsync_blocks),
325         ATTR_LIST(min_hot_blocks),
326         ATTR_LIST(max_victim_search),
327         ATTR_LIST(dir_level),
328         ATTR_LIST(ram_thresh),
329         ATTR_LIST(ra_nid_pages),
330         ATTR_LIST(dirty_nats_ratio),
331         ATTR_LIST(cp_interval),
332         ATTR_LIST(idle_interval),
333 #ifdef CONFIG_F2FS_FAULT_INJECTION
334         ATTR_LIST(inject_rate),
335         ATTR_LIST(inject_type),
336 #endif
337         ATTR_LIST(lifetime_write_kbytes),
338         NULL,
339 };
340
341 static const struct sysfs_ops f2fs_attr_ops = {
342         .show   = f2fs_attr_show,
343         .store  = f2fs_attr_store,
344 };
345
346 static struct kobj_type f2fs_ktype = {
347         .default_attrs  = f2fs_attrs,
348         .sysfs_ops      = &f2fs_attr_ops,
349         .release        = f2fs_sb_release,
350 };
351
352 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
353 {
354         struct va_format vaf;
355         va_list args;
356
357         va_start(args, fmt);
358         vaf.fmt = fmt;
359         vaf.va = &args;
360         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
361         va_end(args);
362 }
363
364 static void init_once(void *foo)
365 {
366         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
367
368         inode_init_once(&fi->vfs_inode);
369 }
370
371 static int parse_options(struct super_block *sb, char *options)
372 {
373         struct f2fs_sb_info *sbi = F2FS_SB(sb);
374         struct request_queue *q;
375         substring_t args[MAX_OPT_ARGS];
376         char *p, *name;
377         int arg = 0;
378
379         if (!options)
380                 return 0;
381
382         while ((p = strsep(&options, ",")) != NULL) {
383                 int token;
384                 if (!*p)
385                         continue;
386                 /*
387                  * Initialize args struct so we know whether arg was
388                  * found; some options take optional arguments.
389                  */
390                 args[0].to = args[0].from = NULL;
391                 token = match_token(p, f2fs_tokens, args);
392
393                 switch (token) {
394                 case Opt_gc_background:
395                         name = match_strdup(&args[0]);
396
397                         if (!name)
398                                 return -ENOMEM;
399                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
400                                 set_opt(sbi, BG_GC);
401                                 clear_opt(sbi, FORCE_FG_GC);
402                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
403                                 clear_opt(sbi, BG_GC);
404                                 clear_opt(sbi, FORCE_FG_GC);
405                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
406                                 set_opt(sbi, BG_GC);
407                                 set_opt(sbi, FORCE_FG_GC);
408                         } else {
409                                 kfree(name);
410                                 return -EINVAL;
411                         }
412                         kfree(name);
413                         break;
414                 case Opt_disable_roll_forward:
415                         set_opt(sbi, DISABLE_ROLL_FORWARD);
416                         break;
417                 case Opt_norecovery:
418                         /* this option mounts f2fs with ro */
419                         set_opt(sbi, DISABLE_ROLL_FORWARD);
420                         if (!f2fs_readonly(sb))
421                                 return -EINVAL;
422                         break;
423                 case Opt_discard:
424                         q = bdev_get_queue(sb->s_bdev);
425                         if (blk_queue_discard(q)) {
426                                 set_opt(sbi, DISCARD);
427                         } else if (!f2fs_sb_mounted_blkzoned(sb)) {
428                                 f2fs_msg(sb, KERN_WARNING,
429                                         "mounting with \"discard\" option, but "
430                                         "the device does not support discard");
431                         }
432                         break;
433                 case Opt_nodiscard:
434                         if (f2fs_sb_mounted_blkzoned(sb)) {
435                                 f2fs_msg(sb, KERN_WARNING,
436                                         "discard is required for zoned block devices");
437                                 return -EINVAL;
438                         }
439                         clear_opt(sbi, DISCARD);
440                         break;
441                 case Opt_noheap:
442                         set_opt(sbi, NOHEAP);
443                         break;
444                 case Opt_heap:
445                         clear_opt(sbi, NOHEAP);
446                         break;
447 #ifdef CONFIG_F2FS_FS_XATTR
448                 case Opt_user_xattr:
449                         set_opt(sbi, XATTR_USER);
450                         break;
451                 case Opt_nouser_xattr:
452                         clear_opt(sbi, XATTR_USER);
453                         break;
454                 case Opt_inline_xattr:
455                         set_opt(sbi, INLINE_XATTR);
456                         break;
457                 case Opt_noinline_xattr:
458                         clear_opt(sbi, INLINE_XATTR);
459                         break;
460 #else
461                 case Opt_user_xattr:
462                         f2fs_msg(sb, KERN_INFO,
463                                 "user_xattr options not supported");
464                         break;
465                 case Opt_nouser_xattr:
466                         f2fs_msg(sb, KERN_INFO,
467                                 "nouser_xattr options not supported");
468                         break;
469                 case Opt_inline_xattr:
470                         f2fs_msg(sb, KERN_INFO,
471                                 "inline_xattr options not supported");
472                         break;
473                 case Opt_noinline_xattr:
474                         f2fs_msg(sb, KERN_INFO,
475                                 "noinline_xattr options not supported");
476                         break;
477 #endif
478 #ifdef CONFIG_F2FS_FS_POSIX_ACL
479                 case Opt_acl:
480                         set_opt(sbi, POSIX_ACL);
481                         break;
482                 case Opt_noacl:
483                         clear_opt(sbi, POSIX_ACL);
484                         break;
485 #else
486                 case Opt_acl:
487                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
488                         break;
489                 case Opt_noacl:
490                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
491                         break;
492 #endif
493                 case Opt_active_logs:
494                         if (args->from && match_int(args, &arg))
495                                 return -EINVAL;
496                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
497                                 return -EINVAL;
498                         sbi->active_logs = arg;
499                         break;
500                 case Opt_disable_ext_identify:
501                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
502                         break;
503                 case Opt_inline_data:
504                         set_opt(sbi, INLINE_DATA);
505                         break;
506                 case Opt_inline_dentry:
507                         set_opt(sbi, INLINE_DENTRY);
508                         break;
509                 case Opt_noinline_dentry:
510                         clear_opt(sbi, INLINE_DENTRY);
511                         break;
512                 case Opt_flush_merge:
513                         set_opt(sbi, FLUSH_MERGE);
514                         break;
515                 case Opt_noflush_merge:
516                         clear_opt(sbi, FLUSH_MERGE);
517                         break;
518                 case Opt_nobarrier:
519                         set_opt(sbi, NOBARRIER);
520                         break;
521                 case Opt_fastboot:
522                         set_opt(sbi, FASTBOOT);
523                         break;
524                 case Opt_extent_cache:
525                         set_opt(sbi, EXTENT_CACHE);
526                         break;
527                 case Opt_noextent_cache:
528                         clear_opt(sbi, EXTENT_CACHE);
529                         break;
530                 case Opt_noinline_data:
531                         clear_opt(sbi, INLINE_DATA);
532                         break;
533                 case Opt_data_flush:
534                         set_opt(sbi, DATA_FLUSH);
535                         break;
536                 case Opt_mode:
537                         name = match_strdup(&args[0]);
538
539                         if (!name)
540                                 return -ENOMEM;
541                         if (strlen(name) == 8 &&
542                                         !strncmp(name, "adaptive", 8)) {
543                                 if (f2fs_sb_mounted_blkzoned(sb)) {
544                                         f2fs_msg(sb, KERN_WARNING,
545                                                  "adaptive mode is not allowed with "
546                                                  "zoned block device feature");
547                                         kfree(name);
548                                         return -EINVAL;
549                                 }
550                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
551                         } else if (strlen(name) == 3 &&
552                                         !strncmp(name, "lfs", 3)) {
553                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
554                         } else {
555                                 kfree(name);
556                                 return -EINVAL;
557                         }
558                         kfree(name);
559                         break;
560                 case Opt_io_size_bits:
561                         if (args->from && match_int(args, &arg))
562                                 return -EINVAL;
563                         if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
564                                 f2fs_msg(sb, KERN_WARNING,
565                                         "Not support %d, larger than %d",
566                                         1 << arg, BIO_MAX_PAGES);
567                                 return -EINVAL;
568                         }
569                         sbi->write_io_size_bits = arg;
570                         break;
571                 case Opt_fault_injection:
572                         if (args->from && match_int(args, &arg))
573                                 return -EINVAL;
574 #ifdef CONFIG_F2FS_FAULT_INJECTION
575                         f2fs_build_fault_attr(sbi, arg);
576                         set_opt(sbi, FAULT_INJECTION);
577 #else
578                         f2fs_msg(sb, KERN_INFO,
579                                 "FAULT_INJECTION was not selected");
580 #endif
581                         break;
582                 case Opt_lazytime:
583                         sb->s_flags |= MS_LAZYTIME;
584                         break;
585                 case Opt_nolazytime:
586                         sb->s_flags &= ~MS_LAZYTIME;
587                         break;
588                 default:
589                         f2fs_msg(sb, KERN_ERR,
590                                 "Unrecognized mount option \"%s\" or missing value",
591                                 p);
592                         return -EINVAL;
593                 }
594         }
595
596         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
597                 f2fs_msg(sb, KERN_ERR,
598                                 "Should set mode=lfs with %uKB-sized IO",
599                                 F2FS_IO_SIZE_KB(sbi));
600                 return -EINVAL;
601         }
602         return 0;
603 }
604
605 static struct inode *f2fs_alloc_inode(struct super_block *sb)
606 {
607         struct f2fs_inode_info *fi;
608
609         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
610         if (!fi)
611                 return NULL;
612
613         init_once((void *) fi);
614
615         /* Initialize f2fs-specific inode info */
616         fi->vfs_inode.i_version = 1;
617         atomic_set(&fi->dirty_pages, 0);
618         fi->i_current_depth = 1;
619         fi->i_advise = 0;
620         init_rwsem(&fi->i_sem);
621         INIT_LIST_HEAD(&fi->dirty_list);
622         INIT_LIST_HEAD(&fi->gdirty_list);
623         INIT_LIST_HEAD(&fi->inmem_pages);
624         mutex_init(&fi->inmem_lock);
625         init_rwsem(&fi->dio_rwsem[READ]);
626         init_rwsem(&fi->dio_rwsem[WRITE]);
627
628         /* Will be used by directory only */
629         fi->i_dir_level = F2FS_SB(sb)->dir_level;
630         return &fi->vfs_inode;
631 }
632
633 static int f2fs_drop_inode(struct inode *inode)
634 {
635         int ret;
636         /*
637          * This is to avoid a deadlock condition like below.
638          * writeback_single_inode(inode)
639          *  - f2fs_write_data_page
640          *    - f2fs_gc -> iput -> evict
641          *       - inode_wait_for_writeback(inode)
642          */
643         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
644                 if (!inode->i_nlink && !is_bad_inode(inode)) {
645                         /* to avoid evict_inode call simultaneously */
646                         atomic_inc(&inode->i_count);
647                         spin_unlock(&inode->i_lock);
648
649                         /* some remained atomic pages should discarded */
650                         if (f2fs_is_atomic_file(inode))
651                                 drop_inmem_pages(inode);
652
653                         /* should remain fi->extent_tree for writepage */
654                         f2fs_destroy_extent_node(inode);
655
656                         sb_start_intwrite(inode->i_sb);
657                         f2fs_i_size_write(inode, 0);
658
659                         if (F2FS_HAS_BLOCKS(inode))
660                                 f2fs_truncate(inode);
661
662                         sb_end_intwrite(inode->i_sb);
663
664                         fscrypt_put_encryption_info(inode, NULL);
665                         spin_lock(&inode->i_lock);
666                         atomic_dec(&inode->i_count);
667                 }
668                 trace_f2fs_drop_inode(inode, 0);
669                 return 0;
670         }
671         ret = generic_drop_inode(inode);
672         trace_f2fs_drop_inode(inode, ret);
673         return ret;
674 }
675
676 int f2fs_inode_dirtied(struct inode *inode, bool sync)
677 {
678         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
679         int ret = 0;
680
681         spin_lock(&sbi->inode_lock[DIRTY_META]);
682         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
683                 ret = 1;
684         } else {
685                 set_inode_flag(inode, FI_DIRTY_INODE);
686                 stat_inc_dirty_inode(sbi, DIRTY_META);
687         }
688         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
689                 list_add_tail(&F2FS_I(inode)->gdirty_list,
690                                 &sbi->inode_list[DIRTY_META]);
691                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
692         }
693         spin_unlock(&sbi->inode_lock[DIRTY_META]);
694         return ret;
695 }
696
697 void f2fs_inode_synced(struct inode *inode)
698 {
699         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
700
701         spin_lock(&sbi->inode_lock[DIRTY_META]);
702         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
703                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
704                 return;
705         }
706         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
707                 list_del_init(&F2FS_I(inode)->gdirty_list);
708                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
709         }
710         clear_inode_flag(inode, FI_DIRTY_INODE);
711         clear_inode_flag(inode, FI_AUTO_RECOVER);
712         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
713         spin_unlock(&sbi->inode_lock[DIRTY_META]);
714 }
715
716 /*
717  * f2fs_dirty_inode() is called from __mark_inode_dirty()
718  *
719  * We should call set_dirty_inode to write the dirty inode through write_inode.
720  */
721 static void f2fs_dirty_inode(struct inode *inode, int flags)
722 {
723         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
724
725         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
726                         inode->i_ino == F2FS_META_INO(sbi))
727                 return;
728
729         if (flags == I_DIRTY_TIME)
730                 return;
731
732         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
733                 clear_inode_flag(inode, FI_AUTO_RECOVER);
734
735         f2fs_inode_dirtied(inode, false);
736 }
737
738 static void f2fs_i_callback(struct rcu_head *head)
739 {
740         struct inode *inode = container_of(head, struct inode, i_rcu);
741         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
742 }
743
744 static void f2fs_destroy_inode(struct inode *inode)
745 {
746         call_rcu(&inode->i_rcu, f2fs_i_callback);
747 }
748
749 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
750 {
751         percpu_counter_destroy(&sbi->alloc_valid_block_count);
752         percpu_counter_destroy(&sbi->total_valid_inode_count);
753 }
754
755 static void destroy_device_list(struct f2fs_sb_info *sbi)
756 {
757         int i;
758
759         for (i = 0; i < sbi->s_ndevs; i++) {
760                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
761 #ifdef CONFIG_BLK_DEV_ZONED
762                 kfree(FDEV(i).blkz_type);
763 #endif
764         }
765         kfree(sbi->devs);
766 }
767
768 static void f2fs_put_super(struct super_block *sb)
769 {
770         struct f2fs_sb_info *sbi = F2FS_SB(sb);
771
772         if (sbi->s_proc) {
773                 remove_proc_entry("segment_info", sbi->s_proc);
774                 remove_proc_entry("segment_bits", sbi->s_proc);
775                 remove_proc_entry(sb->s_id, f2fs_proc_root);
776         }
777         kobject_del(&sbi->s_kobj);
778
779         stop_gc_thread(sbi);
780
781         /* prevent remaining shrinker jobs */
782         mutex_lock(&sbi->umount_mutex);
783
784         /*
785          * We don't need to do checkpoint when superblock is clean.
786          * But, the previous checkpoint was not done by umount, it needs to do
787          * clean checkpoint again.
788          */
789         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
790                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
791                 struct cp_control cpc = {
792                         .reason = CP_UMOUNT,
793                 };
794                 write_checkpoint(sbi, &cpc);
795         }
796
797         /* be sure to wait for any on-going discard commands */
798         f2fs_wait_discard_bios(sbi);
799
800         if (!sbi->discard_blks) {
801                 struct cp_control cpc = {
802                         .reason = CP_UMOUNT | CP_TRIMMED,
803                 };
804                 write_checkpoint(sbi, &cpc);
805         }
806
807         /* write_checkpoint can update stat informaion */
808         f2fs_destroy_stats(sbi);
809
810         /*
811          * normally superblock is clean, so we need to release this.
812          * In addition, EIO will skip do checkpoint, we need this as well.
813          */
814         release_ino_entry(sbi, true);
815
816         f2fs_leave_shrinker(sbi);
817         mutex_unlock(&sbi->umount_mutex);
818
819         /* our cp_error case, we can wait for any writeback page */
820         f2fs_flush_merged_bios(sbi);
821
822         iput(sbi->node_inode);
823         iput(sbi->meta_inode);
824
825         /* destroy f2fs internal modules */
826         destroy_node_manager(sbi);
827         destroy_segment_manager(sbi);
828
829         kfree(sbi->ckpt);
830         kobject_put(&sbi->s_kobj);
831         wait_for_completion(&sbi->s_kobj_unregister);
832
833         sb->s_fs_info = NULL;
834         if (sbi->s_chksum_driver)
835                 crypto_free_shash(sbi->s_chksum_driver);
836         kfree(sbi->raw_super);
837
838         destroy_device_list(sbi);
839         mempool_destroy(sbi->write_io_dummy);
840         destroy_percpu_info(sbi);
841         kfree(sbi);
842 }
843
844 int f2fs_sync_fs(struct super_block *sb, int sync)
845 {
846         struct f2fs_sb_info *sbi = F2FS_SB(sb);
847         int err = 0;
848
849         trace_f2fs_sync_fs(sb, sync);
850
851         if (sync) {
852                 struct cp_control cpc;
853
854                 cpc.reason = __get_cp_reason(sbi);
855
856                 mutex_lock(&sbi->gc_mutex);
857                 err = write_checkpoint(sbi, &cpc);
858                 mutex_unlock(&sbi->gc_mutex);
859         }
860         f2fs_trace_ios(NULL, 1);
861
862         return err;
863 }
864
865 static int f2fs_freeze(struct super_block *sb)
866 {
867         if (f2fs_readonly(sb))
868                 return 0;
869
870         /* IO error happened before */
871         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
872                 return -EIO;
873
874         /* must be clean, since sync_filesystem() was already called */
875         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
876                 return -EINVAL;
877         return 0;
878 }
879
880 static int f2fs_unfreeze(struct super_block *sb)
881 {
882         return 0;
883 }
884
885 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
886 {
887         struct super_block *sb = dentry->d_sb;
888         struct f2fs_sb_info *sbi = F2FS_SB(sb);
889         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
890         block_t total_count, user_block_count, start_count, ovp_count;
891
892         total_count = le64_to_cpu(sbi->raw_super->block_count);
893         user_block_count = sbi->user_block_count;
894         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
895         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
896         buf->f_type = F2FS_SUPER_MAGIC;
897         buf->f_bsize = sbi->blocksize;
898
899         buf->f_blocks = total_count - start_count;
900         buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
901         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
902
903         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
904         buf->f_ffree = min(buf->f_files - valid_node_count(sbi),
905                                                         buf->f_bavail);
906
907         buf->f_namelen = F2FS_NAME_LEN;
908         buf->f_fsid.val[0] = (u32)id;
909         buf->f_fsid.val[1] = (u32)(id >> 32);
910
911         return 0;
912 }
913
914 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
915 {
916         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
917
918         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
919                 if (test_opt(sbi, FORCE_FG_GC))
920                         seq_printf(seq, ",background_gc=%s", "sync");
921                 else
922                         seq_printf(seq, ",background_gc=%s", "on");
923         } else {
924                 seq_printf(seq, ",background_gc=%s", "off");
925         }
926         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
927                 seq_puts(seq, ",disable_roll_forward");
928         if (test_opt(sbi, DISCARD))
929                 seq_puts(seq, ",discard");
930         if (test_opt(sbi, NOHEAP))
931                 seq_puts(seq, ",no_heap");
932         else
933                 seq_puts(seq, ",heap");
934 #ifdef CONFIG_F2FS_FS_XATTR
935         if (test_opt(sbi, XATTR_USER))
936                 seq_puts(seq, ",user_xattr");
937         else
938                 seq_puts(seq, ",nouser_xattr");
939         if (test_opt(sbi, INLINE_XATTR))
940                 seq_puts(seq, ",inline_xattr");
941         else
942                 seq_puts(seq, ",noinline_xattr");
943 #endif
944 #ifdef CONFIG_F2FS_FS_POSIX_ACL
945         if (test_opt(sbi, POSIX_ACL))
946                 seq_puts(seq, ",acl");
947         else
948                 seq_puts(seq, ",noacl");
949 #endif
950         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
951                 seq_puts(seq, ",disable_ext_identify");
952         if (test_opt(sbi, INLINE_DATA))
953                 seq_puts(seq, ",inline_data");
954         else
955                 seq_puts(seq, ",noinline_data");
956         if (test_opt(sbi, INLINE_DENTRY))
957                 seq_puts(seq, ",inline_dentry");
958         else
959                 seq_puts(seq, ",noinline_dentry");
960         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
961                 seq_puts(seq, ",flush_merge");
962         if (test_opt(sbi, NOBARRIER))
963                 seq_puts(seq, ",nobarrier");
964         if (test_opt(sbi, FASTBOOT))
965                 seq_puts(seq, ",fastboot");
966         if (test_opt(sbi, EXTENT_CACHE))
967                 seq_puts(seq, ",extent_cache");
968         else
969                 seq_puts(seq, ",noextent_cache");
970         if (test_opt(sbi, DATA_FLUSH))
971                 seq_puts(seq, ",data_flush");
972
973         seq_puts(seq, ",mode=");
974         if (test_opt(sbi, ADAPTIVE))
975                 seq_puts(seq, "adaptive");
976         else if (test_opt(sbi, LFS))
977                 seq_puts(seq, "lfs");
978         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
979         if (F2FS_IO_SIZE_BITS(sbi))
980                 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
981 #ifdef CONFIG_F2FS_FAULT_INJECTION
982         if (test_opt(sbi, FAULT_INJECTION))
983                 seq_puts(seq, ",fault_injection");
984 #endif
985
986         return 0;
987 }
988
989 static int segment_info_seq_show(struct seq_file *seq, void *offset)
990 {
991         struct super_block *sb = seq->private;
992         struct f2fs_sb_info *sbi = F2FS_SB(sb);
993         unsigned int total_segs =
994                         le32_to_cpu(sbi->raw_super->segment_count_main);
995         int i;
996
997         seq_puts(seq, "format: segment_type|valid_blocks\n"
998                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
999
1000         for (i = 0; i < total_segs; i++) {
1001                 struct seg_entry *se = get_seg_entry(sbi, i);
1002
1003                 if ((i % 10) == 0)
1004                         seq_printf(seq, "%-10d", i);
1005                 seq_printf(seq, "%d|%-3u", se->type,
1006                                         get_valid_blocks(sbi, i, false));
1007                 if ((i % 10) == 9 || i == (total_segs - 1))
1008                         seq_putc(seq, '\n');
1009                 else
1010                         seq_putc(seq, ' ');
1011         }
1012
1013         return 0;
1014 }
1015
1016 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
1017 {
1018         struct super_block *sb = seq->private;
1019         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1020         unsigned int total_segs =
1021                         le32_to_cpu(sbi->raw_super->segment_count_main);
1022         int i, j;
1023
1024         seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
1025                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
1026
1027         for (i = 0; i < total_segs; i++) {
1028                 struct seg_entry *se = get_seg_entry(sbi, i);
1029
1030                 seq_printf(seq, "%-10d", i);
1031                 seq_printf(seq, "%d|%-3u|", se->type,
1032                                         get_valid_blocks(sbi, i, false));
1033                 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
1034                         seq_printf(seq, " %.2x", se->cur_valid_map[j]);
1035                 seq_putc(seq, '\n');
1036         }
1037         return 0;
1038 }
1039
1040 #define F2FS_PROC_FILE_DEF(_name)                                       \
1041 static int _name##_open_fs(struct inode *inode, struct file *file)      \
1042 {                                                                       \
1043         return single_open(file, _name##_seq_show, PDE_DATA(inode));    \
1044 }                                                                       \
1045                                                                         \
1046 static const struct file_operations f2fs_seq_##_name##_fops = {         \
1047         .open = _name##_open_fs,                                        \
1048         .read = seq_read,                                               \
1049         .llseek = seq_lseek,                                            \
1050         .release = single_release,                                      \
1051 };
1052
1053 F2FS_PROC_FILE_DEF(segment_info);
1054 F2FS_PROC_FILE_DEF(segment_bits);
1055
1056 static void default_options(struct f2fs_sb_info *sbi)
1057 {
1058         /* init some FS parameters */
1059         sbi->active_logs = NR_CURSEG_TYPE;
1060
1061         set_opt(sbi, BG_GC);
1062         set_opt(sbi, INLINE_XATTR);
1063         set_opt(sbi, INLINE_DATA);
1064         set_opt(sbi, INLINE_DENTRY);
1065         set_opt(sbi, EXTENT_CACHE);
1066         set_opt(sbi, NOHEAP);
1067         sbi->sb->s_flags |= MS_LAZYTIME;
1068         set_opt(sbi, FLUSH_MERGE);
1069         if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1070                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1071                 set_opt(sbi, DISCARD);
1072         } else {
1073                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1074         }
1075
1076 #ifdef CONFIG_F2FS_FS_XATTR
1077         set_opt(sbi, XATTR_USER);
1078 #endif
1079 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1080         set_opt(sbi, POSIX_ACL);
1081 #endif
1082
1083 #ifdef CONFIG_F2FS_FAULT_INJECTION
1084         f2fs_build_fault_attr(sbi, 0);
1085 #endif
1086 }
1087
1088 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1089 {
1090         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1091         struct f2fs_mount_info org_mount_opt;
1092         int err, active_logs;
1093         bool need_restart_gc = false;
1094         bool need_stop_gc = false;
1095         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1096 #ifdef CONFIG_F2FS_FAULT_INJECTION
1097         struct f2fs_fault_info ffi = sbi->fault_info;
1098 #endif
1099
1100         /*
1101          * Save the old mount options in case we
1102          * need to restore them.
1103          */
1104         org_mount_opt = sbi->mount_opt;
1105         active_logs = sbi->active_logs;
1106
1107         /* recover superblocks we couldn't write due to previous RO mount */
1108         if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1109                 err = f2fs_commit_super(sbi, false);
1110                 f2fs_msg(sb, KERN_INFO,
1111                         "Try to recover all the superblocks, ret: %d", err);
1112                 if (!err)
1113                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1114         }
1115
1116         sbi->mount_opt.opt = 0;
1117         default_options(sbi);
1118
1119         /* parse mount options */
1120         err = parse_options(sb, data);
1121         if (err)
1122                 goto restore_opts;
1123
1124         /*
1125          * Previous and new state of filesystem is RO,
1126          * so skip checking GC and FLUSH_MERGE conditions.
1127          */
1128         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1129                 goto skip;
1130
1131         /* disallow enable/disable extent_cache dynamically */
1132         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1133                 err = -EINVAL;
1134                 f2fs_msg(sbi->sb, KERN_WARNING,
1135                                 "switch extent_cache option is not allowed");
1136                 goto restore_opts;
1137         }
1138
1139         /*
1140          * We stop the GC thread if FS is mounted as RO
1141          * or if background_gc = off is passed in mount
1142          * option. Also sync the filesystem.
1143          */
1144         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1145                 if (sbi->gc_thread) {
1146                         stop_gc_thread(sbi);
1147                         need_restart_gc = true;
1148                 }
1149         } else if (!sbi->gc_thread) {
1150                 err = start_gc_thread(sbi);
1151                 if (err)
1152                         goto restore_opts;
1153                 need_stop_gc = true;
1154         }
1155
1156         if (*flags & MS_RDONLY) {
1157                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1158                 sync_inodes_sb(sb);
1159
1160                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1161                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1162                 f2fs_sync_fs(sb, 1);
1163                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1164         }
1165
1166         /*
1167          * We stop issue flush thread if FS is mounted as RO
1168          * or if flush_merge is not passed in mount option.
1169          */
1170         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1171                 clear_opt(sbi, FLUSH_MERGE);
1172                 destroy_flush_cmd_control(sbi, false);
1173         } else {
1174                 err = create_flush_cmd_control(sbi);
1175                 if (err)
1176                         goto restore_gc;
1177         }
1178 skip:
1179         /* Update the POSIXACL Flag */
1180         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1181                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1182
1183         return 0;
1184 restore_gc:
1185         if (need_restart_gc) {
1186                 if (start_gc_thread(sbi))
1187                         f2fs_msg(sbi->sb, KERN_WARNING,
1188                                 "background gc thread has stopped");
1189         } else if (need_stop_gc) {
1190                 stop_gc_thread(sbi);
1191         }
1192 restore_opts:
1193         sbi->mount_opt = org_mount_opt;
1194         sbi->active_logs = active_logs;
1195 #ifdef CONFIG_F2FS_FAULT_INJECTION
1196         sbi->fault_info = ffi;
1197 #endif
1198         return err;
1199 }
1200
1201 static struct super_operations f2fs_sops = {
1202         .alloc_inode    = f2fs_alloc_inode,
1203         .drop_inode     = f2fs_drop_inode,
1204         .destroy_inode  = f2fs_destroy_inode,
1205         .write_inode    = f2fs_write_inode,
1206         .dirty_inode    = f2fs_dirty_inode,
1207         .show_options   = f2fs_show_options,
1208         .evict_inode    = f2fs_evict_inode,
1209         .put_super      = f2fs_put_super,
1210         .sync_fs        = f2fs_sync_fs,
1211         .freeze_fs      = f2fs_freeze,
1212         .unfreeze_fs    = f2fs_unfreeze,
1213         .statfs         = f2fs_statfs,
1214         .remount_fs     = f2fs_remount,
1215 };
1216
1217 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1218 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1219 {
1220         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1221                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1222                                 ctx, len, NULL);
1223 }
1224
1225 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1226                                                         void *fs_data)
1227 {
1228         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1229                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1230                                 ctx, len, fs_data, XATTR_CREATE);
1231 }
1232
1233 static unsigned f2fs_max_namelen(struct inode *inode)
1234 {
1235         return S_ISLNK(inode->i_mode) ?
1236                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1237 }
1238
1239 static const struct fscrypt_operations f2fs_cryptops = {
1240         .key_prefix     = "f2fs:",
1241         .get_context    = f2fs_get_context,
1242         .set_context    = f2fs_set_context,
1243         .is_encrypted   = f2fs_encrypted_inode,
1244         .empty_dir      = f2fs_empty_dir,
1245         .max_namelen    = f2fs_max_namelen,
1246 };
1247 #else
1248 static const struct fscrypt_operations f2fs_cryptops = {
1249         .is_encrypted   = f2fs_encrypted_inode,
1250 };
1251 #endif
1252
1253 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1254                 u64 ino, u32 generation)
1255 {
1256         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1257         struct inode *inode;
1258
1259         if (check_nid_range(sbi, ino))
1260                 return ERR_PTR(-ESTALE);
1261
1262         /*
1263          * f2fs_iget isn't quite right if the inode is currently unallocated!
1264          * However f2fs_iget currently does appropriate checks to handle stale
1265          * inodes so everything is OK.
1266          */
1267         inode = f2fs_iget(sb, ino);
1268         if (IS_ERR(inode))
1269                 return ERR_CAST(inode);
1270         if (unlikely(generation && inode->i_generation != generation)) {
1271                 /* we didn't find the right inode.. */
1272                 iput(inode);
1273                 return ERR_PTR(-ESTALE);
1274         }
1275         return inode;
1276 }
1277
1278 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1279                 int fh_len, int fh_type)
1280 {
1281         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1282                                     f2fs_nfs_get_inode);
1283 }
1284
1285 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1286                 int fh_len, int fh_type)
1287 {
1288         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1289                                     f2fs_nfs_get_inode);
1290 }
1291
1292 static const struct export_operations f2fs_export_ops = {
1293         .fh_to_dentry = f2fs_fh_to_dentry,
1294         .fh_to_parent = f2fs_fh_to_parent,
1295         .get_parent = f2fs_get_parent,
1296 };
1297
1298 static loff_t max_file_blocks(void)
1299 {
1300         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1301         loff_t leaf_count = ADDRS_PER_BLOCK;
1302
1303         /* two direct node blocks */
1304         result += (leaf_count * 2);
1305
1306         /* two indirect node blocks */
1307         leaf_count *= NIDS_PER_BLOCK;
1308         result += (leaf_count * 2);
1309
1310         /* one double indirect node block */
1311         leaf_count *= NIDS_PER_BLOCK;
1312         result += leaf_count;
1313
1314         return result;
1315 }
1316
1317 static int __f2fs_commit_super(struct buffer_head *bh,
1318                         struct f2fs_super_block *super)
1319 {
1320         lock_buffer(bh);
1321         if (super)
1322                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1323         set_buffer_uptodate(bh);
1324         set_buffer_dirty(bh);
1325         unlock_buffer(bh);
1326
1327         /* it's rare case, we can do fua all the time */
1328         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1329 }
1330
1331 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1332                                         struct buffer_head *bh)
1333 {
1334         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1335                                         (bh->b_data + F2FS_SUPER_OFFSET);
1336         struct super_block *sb = sbi->sb;
1337         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1338         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1339         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1340         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1341         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1342         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1343         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1344         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1345         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1346         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1347         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1348         u32 segment_count = le32_to_cpu(raw_super->segment_count);
1349         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1350         u64 main_end_blkaddr = main_blkaddr +
1351                                 (segment_count_main << log_blocks_per_seg);
1352         u64 seg_end_blkaddr = segment0_blkaddr +
1353                                 (segment_count << log_blocks_per_seg);
1354
1355         if (segment0_blkaddr != cp_blkaddr) {
1356                 f2fs_msg(sb, KERN_INFO,
1357                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1358                         segment0_blkaddr, cp_blkaddr);
1359                 return true;
1360         }
1361
1362         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1363                                                         sit_blkaddr) {
1364                 f2fs_msg(sb, KERN_INFO,
1365                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1366                         cp_blkaddr, sit_blkaddr,
1367                         segment_count_ckpt << log_blocks_per_seg);
1368                 return true;
1369         }
1370
1371         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1372                                                         nat_blkaddr) {
1373                 f2fs_msg(sb, KERN_INFO,
1374                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1375                         sit_blkaddr, nat_blkaddr,
1376                         segment_count_sit << log_blocks_per_seg);
1377                 return true;
1378         }
1379
1380         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1381                                                         ssa_blkaddr) {
1382                 f2fs_msg(sb, KERN_INFO,
1383                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1384                         nat_blkaddr, ssa_blkaddr,
1385                         segment_count_nat << log_blocks_per_seg);
1386                 return true;
1387         }
1388
1389         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1390                                                         main_blkaddr) {
1391                 f2fs_msg(sb, KERN_INFO,
1392                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1393                         ssa_blkaddr, main_blkaddr,
1394                         segment_count_ssa << log_blocks_per_seg);
1395                 return true;
1396         }
1397
1398         if (main_end_blkaddr > seg_end_blkaddr) {
1399                 f2fs_msg(sb, KERN_INFO,
1400                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1401                         main_blkaddr,
1402                         segment0_blkaddr +
1403                                 (segment_count << log_blocks_per_seg),
1404                         segment_count_main << log_blocks_per_seg);
1405                 return true;
1406         } else if (main_end_blkaddr < seg_end_blkaddr) {
1407                 int err = 0;
1408                 char *res;
1409
1410                 /* fix in-memory information all the time */
1411                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1412                                 segment0_blkaddr) >> log_blocks_per_seg);
1413
1414                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1415                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1416                         res = "internally";
1417                 } else {
1418                         err = __f2fs_commit_super(bh, NULL);
1419                         res = err ? "failed" : "done";
1420                 }
1421                 f2fs_msg(sb, KERN_INFO,
1422                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
1423                         res, main_blkaddr,
1424                         segment0_blkaddr +
1425                                 (segment_count << log_blocks_per_seg),
1426                         segment_count_main << log_blocks_per_seg);
1427                 if (err)
1428                         return true;
1429         }
1430         return false;
1431 }
1432
1433 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1434                                 struct buffer_head *bh)
1435 {
1436         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1437                                         (bh->b_data + F2FS_SUPER_OFFSET);
1438         struct super_block *sb = sbi->sb;
1439         unsigned int blocksize;
1440
1441         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1442                 f2fs_msg(sb, KERN_INFO,
1443                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
1444                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1445                 return 1;
1446         }
1447
1448         /* Currently, support only 4KB page cache size */
1449         if (F2FS_BLKSIZE != PAGE_SIZE) {
1450                 f2fs_msg(sb, KERN_INFO,
1451                         "Invalid page_cache_size (%lu), supports only 4KB\n",
1452                         PAGE_SIZE);
1453                 return 1;
1454         }
1455
1456         /* Currently, support only 4KB block size */
1457         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1458         if (blocksize != F2FS_BLKSIZE) {
1459                 f2fs_msg(sb, KERN_INFO,
1460                         "Invalid blocksize (%u), supports only 4KB\n",
1461                         blocksize);
1462                 return 1;
1463         }
1464
1465         /* check log blocks per segment */
1466         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1467                 f2fs_msg(sb, KERN_INFO,
1468                         "Invalid log blocks per segment (%u)\n",
1469                         le32_to_cpu(raw_super->log_blocks_per_seg));
1470                 return 1;
1471         }
1472
1473         /* Currently, support 512/1024/2048/4096 bytes sector size */
1474         if (le32_to_cpu(raw_super->log_sectorsize) >
1475                                 F2FS_MAX_LOG_SECTOR_SIZE ||
1476                 le32_to_cpu(raw_super->log_sectorsize) <
1477                                 F2FS_MIN_LOG_SECTOR_SIZE) {
1478                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1479                         le32_to_cpu(raw_super->log_sectorsize));
1480                 return 1;
1481         }
1482         if (le32_to_cpu(raw_super->log_sectors_per_block) +
1483                 le32_to_cpu(raw_super->log_sectorsize) !=
1484                         F2FS_MAX_LOG_SECTOR_SIZE) {
1485                 f2fs_msg(sb, KERN_INFO,
1486                         "Invalid log sectors per block(%u) log sectorsize(%u)",
1487                         le32_to_cpu(raw_super->log_sectors_per_block),
1488                         le32_to_cpu(raw_super->log_sectorsize));
1489                 return 1;
1490         }
1491
1492         /* check reserved ino info */
1493         if (le32_to_cpu(raw_super->node_ino) != 1 ||
1494                 le32_to_cpu(raw_super->meta_ino) != 2 ||
1495                 le32_to_cpu(raw_super->root_ino) != 3) {
1496                 f2fs_msg(sb, KERN_INFO,
1497                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1498                         le32_to_cpu(raw_super->node_ino),
1499                         le32_to_cpu(raw_super->meta_ino),
1500                         le32_to_cpu(raw_super->root_ino));
1501                 return 1;
1502         }
1503
1504         if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
1505                 f2fs_msg(sb, KERN_INFO,
1506                         "Invalid segment count (%u)",
1507                         le32_to_cpu(raw_super->segment_count));
1508                 return 1;
1509         }
1510
1511         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1512         if (sanity_check_area_boundary(sbi, bh))
1513                 return 1;
1514
1515         return 0;
1516 }
1517
1518 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1519 {
1520         unsigned int total, fsmeta;
1521         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1522         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1523         unsigned int ovp_segments, reserved_segments;
1524
1525         total = le32_to_cpu(raw_super->segment_count);
1526         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1527         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1528         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1529         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1530         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1531
1532         if (unlikely(fsmeta >= total))
1533                 return 1;
1534
1535         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1536         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1537
1538         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
1539                         ovp_segments == 0 || reserved_segments == 0)) {
1540                 f2fs_msg(sbi->sb, KERN_ERR,
1541                         "Wrong layout: check mkfs.f2fs version");
1542                 return 1;
1543         }
1544
1545         if (unlikely(f2fs_cp_error(sbi))) {
1546                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1547                 return 1;
1548         }
1549         return 0;
1550 }
1551
1552 static void init_sb_info(struct f2fs_sb_info *sbi)
1553 {
1554         struct f2fs_super_block *raw_super = sbi->raw_super;
1555         int i;
1556
1557         sbi->log_sectors_per_block =
1558                 le32_to_cpu(raw_super->log_sectors_per_block);
1559         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1560         sbi->blocksize = 1 << sbi->log_blocksize;
1561         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1562         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1563         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1564         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1565         sbi->total_sections = le32_to_cpu(raw_super->section_count);
1566         sbi->total_node_count =
1567                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1568                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1569         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1570         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1571         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1572         sbi->cur_victim_sec = NULL_SECNO;
1573         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1574
1575         sbi->dir_level = DEF_DIR_LEVEL;
1576         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1577         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1578         clear_sbi_flag(sbi, SBI_NEED_FSCK);
1579
1580         for (i = 0; i < NR_COUNT_TYPE; i++)
1581                 atomic_set(&sbi->nr_pages[i], 0);
1582
1583         atomic_set(&sbi->wb_sync_req, 0);
1584
1585         INIT_LIST_HEAD(&sbi->s_list);
1586         mutex_init(&sbi->umount_mutex);
1587         mutex_init(&sbi->wio_mutex[NODE]);
1588         mutex_init(&sbi->wio_mutex[DATA]);
1589         spin_lock_init(&sbi->cp_lock);
1590 }
1591
1592 static int init_percpu_info(struct f2fs_sb_info *sbi)
1593 {
1594         int err;
1595
1596         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1597         if (err)
1598                 return err;
1599
1600         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1601                                                                 GFP_KERNEL);
1602 }
1603
1604 #ifdef CONFIG_BLK_DEV_ZONED
1605 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
1606 {
1607         struct block_device *bdev = FDEV(devi).bdev;
1608         sector_t nr_sectors = bdev->bd_part->nr_sects;
1609         sector_t sector = 0;
1610         struct blk_zone *zones;
1611         unsigned int i, nr_zones;
1612         unsigned int n = 0;
1613         int err = -EIO;
1614
1615         if (!f2fs_sb_mounted_blkzoned(sbi->sb))
1616                 return 0;
1617
1618         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
1619                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
1620                 return -EINVAL;
1621         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
1622         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
1623                                 __ilog2_u32(sbi->blocks_per_blkz))
1624                 return -EINVAL;
1625         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
1626         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
1627                                         sbi->log_blocks_per_blkz;
1628         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
1629                 FDEV(devi).nr_blkz++;
1630
1631         FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
1632         if (!FDEV(devi).blkz_type)
1633                 return -ENOMEM;
1634
1635 #define F2FS_REPORT_NR_ZONES   4096
1636
1637         zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
1638                         GFP_KERNEL);
1639         if (!zones)
1640                 return -ENOMEM;
1641
1642         /* Get block zones type */
1643         while (zones && sector < nr_sectors) {
1644
1645                 nr_zones = F2FS_REPORT_NR_ZONES;
1646                 err = blkdev_report_zones(bdev, sector,
1647                                           zones, &nr_zones,
1648                                           GFP_KERNEL);
1649                 if (err)
1650                         break;
1651                 if (!nr_zones) {
1652                         err = -EIO;
1653                         break;
1654                 }
1655
1656                 for (i = 0; i < nr_zones; i++) {
1657                         FDEV(devi).blkz_type[n] = zones[i].type;
1658                         sector += zones[i].len;
1659                         n++;
1660                 }
1661         }
1662
1663         kfree(zones);
1664
1665         return err;
1666 }
1667 #endif
1668
1669 /*
1670  * Read f2fs raw super block.
1671  * Because we have two copies of super block, so read both of them
1672  * to get the first valid one. If any one of them is broken, we pass
1673  * them recovery flag back to the caller.
1674  */
1675 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1676                         struct f2fs_super_block **raw_super,
1677                         int *valid_super_block, int *recovery)
1678 {
1679         struct super_block *sb = sbi->sb;
1680         int block;
1681         struct buffer_head *bh;
1682         struct f2fs_super_block *super;
1683         int err = 0;
1684
1685         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1686         if (!super)
1687                 return -ENOMEM;
1688
1689         for (block = 0; block < 2; block++) {
1690                 bh = sb_bread(sb, block);
1691                 if (!bh) {
1692                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1693                                 block + 1);
1694                         err = -EIO;
1695                         continue;
1696                 }
1697
1698                 /* sanity checking of raw super */
1699                 if (sanity_check_raw_super(sbi, bh)) {
1700                         f2fs_msg(sb, KERN_ERR,
1701                                 "Can't find valid F2FS filesystem in %dth superblock",
1702                                 block + 1);
1703                         err = -EINVAL;
1704                         brelse(bh);
1705                         continue;
1706                 }
1707
1708                 if (!*raw_super) {
1709                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1710                                                         sizeof(*super));
1711                         *valid_super_block = block;
1712                         *raw_super = super;
1713                 }
1714                 brelse(bh);
1715         }
1716
1717         /* Fail to read any one of the superblocks*/
1718         if (err < 0)
1719                 *recovery = 1;
1720
1721         /* No valid superblock */
1722         if (!*raw_super)
1723                 kfree(super);
1724         else
1725                 err = 0;
1726
1727         return err;
1728 }
1729
1730 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1731 {
1732         struct buffer_head *bh;
1733         int err;
1734
1735         if ((recover && f2fs_readonly(sbi->sb)) ||
1736                                 bdev_read_only(sbi->sb->s_bdev)) {
1737                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1738                 return -EROFS;
1739         }
1740
1741         /* write back-up superblock first */
1742         bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1743         if (!bh)
1744                 return -EIO;
1745         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1746         brelse(bh);
1747
1748         /* if we are in recovery path, skip writing valid superblock */
1749         if (recover || err)
1750                 return err;
1751
1752         /* write current valid superblock */
1753         bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1754         if (!bh)
1755                 return -EIO;
1756         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1757         brelse(bh);
1758         return err;
1759 }
1760
1761 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
1762 {
1763         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1764         unsigned int max_devices = MAX_DEVICES;
1765         int i;
1766
1767         /* Initialize single device information */
1768         if (!RDEV(0).path[0]) {
1769                 if (!bdev_is_zoned(sbi->sb->s_bdev))
1770                         return 0;
1771                 max_devices = 1;
1772         }
1773
1774         /*
1775          * Initialize multiple devices information, or single
1776          * zoned block device information.
1777          */
1778         sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
1779                                 GFP_KERNEL);
1780         if (!sbi->devs)
1781                 return -ENOMEM;
1782
1783         for (i = 0; i < max_devices; i++) {
1784
1785                 if (i > 0 && !RDEV(i).path[0])
1786                         break;
1787
1788                 if (max_devices == 1) {
1789                         /* Single zoned block device mount */
1790                         FDEV(0).bdev =
1791                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
1792                                         sbi->sb->s_mode, sbi->sb->s_type);
1793                 } else {
1794                         /* Multi-device mount */
1795                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
1796                         FDEV(i).total_segments =
1797                                 le32_to_cpu(RDEV(i).total_segments);
1798                         if (i == 0) {
1799                                 FDEV(i).start_blk = 0;
1800                                 FDEV(i).end_blk = FDEV(i).start_blk +
1801                                     (FDEV(i).total_segments <<
1802                                     sbi->log_blocks_per_seg) - 1 +
1803                                     le32_to_cpu(raw_super->segment0_blkaddr);
1804                         } else {
1805                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
1806                                 FDEV(i).end_blk = FDEV(i).start_blk +
1807                                         (FDEV(i).total_segments <<
1808                                         sbi->log_blocks_per_seg) - 1;
1809                         }
1810                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
1811                                         sbi->sb->s_mode, sbi->sb->s_type);
1812                 }
1813                 if (IS_ERR(FDEV(i).bdev))
1814                         return PTR_ERR(FDEV(i).bdev);
1815
1816                 /* to release errored devices */
1817                 sbi->s_ndevs = i + 1;
1818
1819 #ifdef CONFIG_BLK_DEV_ZONED
1820                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
1821                                 !f2fs_sb_mounted_blkzoned(sbi->sb)) {
1822                         f2fs_msg(sbi->sb, KERN_ERR,
1823                                 "Zoned block device feature not enabled\n");
1824                         return -EINVAL;
1825                 }
1826                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
1827                         if (init_blkz_info(sbi, i)) {
1828                                 f2fs_msg(sbi->sb, KERN_ERR,
1829                                         "Failed to initialize F2FS blkzone information");
1830                                 return -EINVAL;
1831                         }
1832                         if (max_devices == 1)
1833                                 break;
1834                         f2fs_msg(sbi->sb, KERN_INFO,
1835                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
1836                                 i, FDEV(i).path,
1837                                 FDEV(i).total_segments,
1838                                 FDEV(i).start_blk, FDEV(i).end_blk,
1839                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
1840                                 "Host-aware" : "Host-managed");
1841                         continue;
1842                 }
1843 #endif
1844                 f2fs_msg(sbi->sb, KERN_INFO,
1845                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
1846                                 i, FDEV(i).path,
1847                                 FDEV(i).total_segments,
1848                                 FDEV(i).start_blk, FDEV(i).end_blk);
1849         }
1850         f2fs_msg(sbi->sb, KERN_INFO,
1851                         "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
1852         return 0;
1853 }
1854
1855 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1856 {
1857         struct f2fs_sb_info *sbi;
1858         struct f2fs_super_block *raw_super;
1859         struct inode *root;
1860         int err;
1861         bool retry = true, need_fsck = false;
1862         char *options = NULL;
1863         int recovery, i, valid_super_block;
1864         struct curseg_info *seg_i;
1865
1866 try_onemore:
1867         err = -EINVAL;
1868         raw_super = NULL;
1869         valid_super_block = -1;
1870         recovery = 0;
1871
1872         /* allocate memory for f2fs-specific super block info */
1873         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1874         if (!sbi)
1875                 return -ENOMEM;
1876
1877         sbi->sb = sb;
1878
1879         /* Load the checksum driver */
1880         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1881         if (IS_ERR(sbi->s_chksum_driver)) {
1882                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1883                 err = PTR_ERR(sbi->s_chksum_driver);
1884                 sbi->s_chksum_driver = NULL;
1885                 goto free_sbi;
1886         }
1887
1888         /* set a block size */
1889         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1890                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1891                 goto free_sbi;
1892         }
1893
1894         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1895                                                                 &recovery);
1896         if (err)
1897                 goto free_sbi;
1898
1899         sb->s_fs_info = sbi;
1900         sbi->raw_super = raw_super;
1901
1902         /*
1903          * The BLKZONED feature indicates that the drive was formatted with
1904          * zone alignment optimization. This is optional for host-aware
1905          * devices, but mandatory for host-managed zoned block devices.
1906          */
1907 #ifndef CONFIG_BLK_DEV_ZONED
1908         if (f2fs_sb_mounted_blkzoned(sb)) {
1909                 f2fs_msg(sb, KERN_ERR,
1910                          "Zoned block device support is not enabled\n");
1911                 goto free_sb_buf;
1912         }
1913 #endif
1914         default_options(sbi);
1915         /* parse mount options */
1916         options = kstrdup((const char *)data, GFP_KERNEL);
1917         if (data && !options) {
1918                 err = -ENOMEM;
1919                 goto free_sb_buf;
1920         }
1921
1922         err = parse_options(sb, options);
1923         if (err)
1924                 goto free_options;
1925
1926         sbi->max_file_blocks = max_file_blocks();
1927         sb->s_maxbytes = sbi->max_file_blocks <<
1928                                 le32_to_cpu(raw_super->log_blocksize);
1929         sb->s_max_links = F2FS_LINK_MAX;
1930         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1931
1932         sb->s_op = &f2fs_sops;
1933         sb->s_cop = &f2fs_cryptops;
1934         sb->s_xattr = f2fs_xattr_handlers;
1935         sb->s_export_op = &f2fs_export_ops;
1936         sb->s_magic = F2FS_SUPER_MAGIC;
1937         sb->s_time_gran = 1;
1938         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1939                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1940         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1941
1942         /* init f2fs-specific super block info */
1943         sbi->valid_super_block = valid_super_block;
1944         mutex_init(&sbi->gc_mutex);
1945         mutex_init(&sbi->cp_mutex);
1946         init_rwsem(&sbi->node_write);
1947         init_rwsem(&sbi->node_change);
1948
1949         /* disallow all the data/node/meta page writes */
1950         set_sbi_flag(sbi, SBI_POR_DOING);
1951         spin_lock_init(&sbi->stat_lock);
1952
1953         init_rwsem(&sbi->read_io.io_rwsem);
1954         sbi->read_io.sbi = sbi;
1955         sbi->read_io.bio = NULL;
1956         for (i = 0; i < NR_PAGE_TYPE; i++) {
1957                 init_rwsem(&sbi->write_io[i].io_rwsem);
1958                 sbi->write_io[i].sbi = sbi;
1959                 sbi->write_io[i].bio = NULL;
1960         }
1961
1962         init_rwsem(&sbi->cp_rwsem);
1963         init_waitqueue_head(&sbi->cp_wait);
1964         init_sb_info(sbi);
1965
1966         err = init_percpu_info(sbi);
1967         if (err)
1968                 goto free_options;
1969
1970         if (F2FS_IO_SIZE(sbi) > 1) {
1971                 sbi->write_io_dummy =
1972                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
1973                 if (!sbi->write_io_dummy)
1974                         goto free_options;
1975         }
1976
1977         /* get an inode for meta space */
1978         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1979         if (IS_ERR(sbi->meta_inode)) {
1980                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1981                 err = PTR_ERR(sbi->meta_inode);
1982                 goto free_io_dummy;
1983         }
1984
1985         err = get_valid_checkpoint(sbi);
1986         if (err) {
1987                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1988                 goto free_meta_inode;
1989         }
1990
1991         /* Initialize device list */
1992         err = f2fs_scan_devices(sbi);
1993         if (err) {
1994                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
1995                 goto free_devices;
1996         }
1997
1998         sbi->total_valid_node_count =
1999                                 le32_to_cpu(sbi->ckpt->valid_node_count);
2000         percpu_counter_set(&sbi->total_valid_inode_count,
2001                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
2002         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2003         sbi->total_valid_block_count =
2004                                 le64_to_cpu(sbi->ckpt->valid_block_count);
2005         sbi->last_valid_block_count = sbi->total_valid_block_count;
2006
2007         for (i = 0; i < NR_INODE_TYPE; i++) {
2008                 INIT_LIST_HEAD(&sbi->inode_list[i]);
2009                 spin_lock_init(&sbi->inode_lock[i]);
2010         }
2011
2012         init_extent_cache_info(sbi);
2013
2014         init_ino_entry_info(sbi);
2015
2016         /* setup f2fs internal modules */
2017         err = build_segment_manager(sbi);
2018         if (err) {
2019                 f2fs_msg(sb, KERN_ERR,
2020                         "Failed to initialize F2FS segment manager");
2021                 goto free_sm;
2022         }
2023         err = build_node_manager(sbi);
2024         if (err) {
2025                 f2fs_msg(sb, KERN_ERR,
2026                         "Failed to initialize F2FS node manager");
2027                 goto free_nm;
2028         }
2029
2030         /* For write statistics */
2031         if (sb->s_bdev->bd_part)
2032                 sbi->sectors_written_start =
2033                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2034
2035         /* Read accumulated write IO statistics if exists */
2036         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2037         if (__exist_node_summaries(sbi))
2038                 sbi->kbytes_written =
2039                         le64_to_cpu(seg_i->journal->info.kbytes_written);
2040
2041         build_gc_manager(sbi);
2042
2043         /* get an inode for node space */
2044         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2045         if (IS_ERR(sbi->node_inode)) {
2046                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2047                 err = PTR_ERR(sbi->node_inode);
2048                 goto free_nm;
2049         }
2050
2051         f2fs_join_shrinker(sbi);
2052
2053         err = f2fs_build_stats(sbi);
2054         if (err)
2055                 goto free_nm;
2056
2057         /* if there are nt orphan nodes free them */
2058         err = recover_orphan_inodes(sbi);
2059         if (err)
2060                 goto free_node_inode;
2061
2062         /* read root inode and dentry */
2063         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2064         if (IS_ERR(root)) {
2065                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2066                 err = PTR_ERR(root);
2067                 goto free_node_inode;
2068         }
2069         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2070                 iput(root);
2071                 err = -EINVAL;
2072                 goto free_node_inode;
2073         }
2074
2075         sb->s_root = d_make_root(root); /* allocate root dentry */
2076         if (!sb->s_root) {
2077                 err = -ENOMEM;
2078                 goto free_root_inode;
2079         }
2080
2081         if (f2fs_proc_root)
2082                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
2083
2084         if (sbi->s_proc) {
2085                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
2086                                  &f2fs_seq_segment_info_fops, sb);
2087                 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
2088                                  &f2fs_seq_segment_bits_fops, sb);
2089         }
2090
2091         sbi->s_kobj.kset = f2fs_kset;
2092         init_completion(&sbi->s_kobj_unregister);
2093         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
2094                                                         "%s", sb->s_id);
2095         if (err)
2096                 goto free_proc;
2097
2098         /* recover fsynced data */
2099         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2100                 /*
2101                  * mount should be failed, when device has readonly mode, and
2102                  * previous checkpoint was not done by clean system shutdown.
2103                  */
2104                 if (bdev_read_only(sb->s_bdev) &&
2105                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2106                         err = -EROFS;
2107                         goto free_kobj;
2108                 }
2109
2110                 if (need_fsck)
2111                         set_sbi_flag(sbi, SBI_NEED_FSCK);
2112
2113                 if (!retry)
2114                         goto skip_recovery;
2115
2116                 err = recover_fsync_data(sbi, false);
2117                 if (err < 0) {
2118                         need_fsck = true;
2119                         f2fs_msg(sb, KERN_ERR,
2120                                 "Cannot recover all fsync data errno=%d", err);
2121                         goto free_kobj;
2122                 }
2123         } else {
2124                 err = recover_fsync_data(sbi, true);
2125
2126                 if (!f2fs_readonly(sb) && err > 0) {
2127                         err = -EINVAL;
2128                         f2fs_msg(sb, KERN_ERR,
2129                                 "Need to recover fsync data");
2130                         goto free_kobj;
2131                 }
2132         }
2133 skip_recovery:
2134         /* recover_fsync_data() cleared this already */
2135         clear_sbi_flag(sbi, SBI_POR_DOING);
2136
2137         /*
2138          * If filesystem is not mounted as read-only then
2139          * do start the gc_thread.
2140          */
2141         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2142                 /* After POR, we can run background GC thread.*/
2143                 err = start_gc_thread(sbi);
2144                 if (err)
2145                         goto free_kobj;
2146         }
2147         kfree(options);
2148
2149         /* recover broken superblock */
2150         if (recovery) {
2151                 err = f2fs_commit_super(sbi, true);
2152                 f2fs_msg(sb, KERN_INFO,
2153                         "Try to recover %dth superblock, ret: %d",
2154                         sbi->valid_super_block ? 1 : 2, err);
2155         }
2156
2157         f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2158                                 cur_cp_version(F2FS_CKPT(sbi)));
2159         f2fs_update_time(sbi, CP_TIME);
2160         f2fs_update_time(sbi, REQ_TIME);
2161         return 0;
2162
2163 free_kobj:
2164         f2fs_sync_inode_meta(sbi);
2165         kobject_del(&sbi->s_kobj);
2166         kobject_put(&sbi->s_kobj);
2167         wait_for_completion(&sbi->s_kobj_unregister);
2168 free_proc:
2169         if (sbi->s_proc) {
2170                 remove_proc_entry("segment_info", sbi->s_proc);
2171                 remove_proc_entry("segment_bits", sbi->s_proc);
2172                 remove_proc_entry(sb->s_id, f2fs_proc_root);
2173         }
2174 free_root_inode:
2175         dput(sb->s_root);
2176         sb->s_root = NULL;
2177 free_node_inode:
2178         truncate_inode_pages_final(NODE_MAPPING(sbi));
2179         mutex_lock(&sbi->umount_mutex);
2180         release_ino_entry(sbi, true);
2181         f2fs_leave_shrinker(sbi);
2182         /*
2183          * Some dirty meta pages can be produced by recover_orphan_inodes()
2184          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2185          * followed by write_checkpoint() through f2fs_write_node_pages(), which
2186          * falls into an infinite loop in sync_meta_pages().
2187          */
2188         truncate_inode_pages_final(META_MAPPING(sbi));
2189         iput(sbi->node_inode);
2190         mutex_unlock(&sbi->umount_mutex);
2191         f2fs_destroy_stats(sbi);
2192 free_nm:
2193         destroy_node_manager(sbi);
2194 free_sm:
2195         destroy_segment_manager(sbi);
2196 free_devices:
2197         destroy_device_list(sbi);
2198         kfree(sbi->ckpt);
2199 free_meta_inode:
2200         make_bad_inode(sbi->meta_inode);
2201         iput(sbi->meta_inode);
2202 free_io_dummy:
2203         mempool_destroy(sbi->write_io_dummy);
2204 free_options:
2205         destroy_percpu_info(sbi);
2206         kfree(options);
2207 free_sb_buf:
2208         kfree(raw_super);
2209 free_sbi:
2210         if (sbi->s_chksum_driver)
2211                 crypto_free_shash(sbi->s_chksum_driver);
2212         kfree(sbi);
2213
2214         /* give only one another chance */
2215         if (retry) {
2216                 retry = false;
2217                 shrink_dcache_sb(sb);
2218                 goto try_onemore;
2219         }
2220         return err;
2221 }
2222
2223 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2224                         const char *dev_name, void *data)
2225 {
2226         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2227 }
2228
2229 static void kill_f2fs_super(struct super_block *sb)
2230 {
2231         if (sb->s_root)
2232                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2233         kill_block_super(sb);
2234 }
2235
2236 static struct file_system_type f2fs_fs_type = {
2237         .owner          = THIS_MODULE,
2238         .name           = "f2fs",
2239         .mount          = f2fs_mount,
2240         .kill_sb        = kill_f2fs_super,
2241         .fs_flags       = FS_REQUIRES_DEV,
2242 };
2243 MODULE_ALIAS_FS("f2fs");
2244
2245 static int __init init_inodecache(void)
2246 {
2247         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2248                         sizeof(struct f2fs_inode_info), 0,
2249                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2250         if (!f2fs_inode_cachep)
2251                 return -ENOMEM;
2252         return 0;
2253 }
2254
2255 static void destroy_inodecache(void)
2256 {
2257         /*
2258          * Make sure all delayed rcu free inodes are flushed before we
2259          * destroy cache.
2260          */
2261         rcu_barrier();
2262         kmem_cache_destroy(f2fs_inode_cachep);
2263 }
2264
2265 static int __init init_f2fs_fs(void)
2266 {
2267         int err;
2268
2269         f2fs_build_trace_ios();
2270
2271         err = init_inodecache();
2272         if (err)
2273                 goto fail;
2274         err = create_node_manager_caches();
2275         if (err)
2276                 goto free_inodecache;
2277         err = create_segment_manager_caches();
2278         if (err)
2279                 goto free_node_manager_caches;
2280         err = create_checkpoint_caches();
2281         if (err)
2282                 goto free_segment_manager_caches;
2283         err = create_extent_cache();
2284         if (err)
2285                 goto free_checkpoint_caches;
2286         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
2287         if (!f2fs_kset) {
2288                 err = -ENOMEM;
2289                 goto free_extent_cache;
2290         }
2291         err = register_shrinker(&f2fs_shrinker_info);
2292         if (err)
2293                 goto free_kset;
2294
2295         err = register_filesystem(&f2fs_fs_type);
2296         if (err)
2297                 goto free_shrinker;
2298         err = f2fs_create_root_stats();
2299         if (err)
2300                 goto free_filesystem;
2301         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
2302         return 0;
2303
2304 free_filesystem:
2305         unregister_filesystem(&f2fs_fs_type);
2306 free_shrinker:
2307         unregister_shrinker(&f2fs_shrinker_info);
2308 free_kset:
2309         kset_unregister(f2fs_kset);
2310 free_extent_cache:
2311         destroy_extent_cache();
2312 free_checkpoint_caches:
2313         destroy_checkpoint_caches();
2314 free_segment_manager_caches:
2315         destroy_segment_manager_caches();
2316 free_node_manager_caches:
2317         destroy_node_manager_caches();
2318 free_inodecache:
2319         destroy_inodecache();
2320 fail:
2321         return err;
2322 }
2323
2324 static void __exit exit_f2fs_fs(void)
2325 {
2326         remove_proc_entry("fs/f2fs", NULL);
2327         f2fs_destroy_root_stats();
2328         unregister_filesystem(&f2fs_fs_type);
2329         unregister_shrinker(&f2fs_shrinker_info);
2330         kset_unregister(f2fs_kset);
2331         destroy_extent_cache();
2332         destroy_checkpoint_caches();
2333         destroy_segment_manager_caches();
2334         destroy_node_manager_caches();
2335         destroy_inodecache();
2336         f2fs_destroy_trace_ios();
2337 }
2338
2339 module_init(init_f2fs_fs)
2340 module_exit(exit_f2fs_fs)
2341
2342 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2343 MODULE_DESCRIPTION("Flash Friendly File System");
2344 MODULE_LICENSE("GPL");
2345