Merge tag 'for-5.12/block-2021-02-17' of git://git.kernel.dk/linux-block
[sfrench/cifs-2.6.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include <trace/events/f2fs.h>
24
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26
27 static struct kmem_cache *discard_entry_slab;
28 static struct kmem_cache *discard_cmd_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34         unsigned long tmp = 0;
35         int shift = 24, idx = 0;
36
37 #if BITS_PER_LONG == 64
38         shift = 56;
39 #endif
40         while (shift >= 0) {
41                 tmp |= (unsigned long)str[idx++] << shift;
42                 shift -= BITS_PER_BYTE;
43         }
44         return tmp;
45 }
46
47 /*
48  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49  * MSB and LSB are reversed in a byte by f2fs_set_bit.
50  */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53         int num = 0;
54
55 #if BITS_PER_LONG == 64
56         if ((word & 0xffffffff00000000UL) == 0)
57                 num += 32;
58         else
59                 word >>= 32;
60 #endif
61         if ((word & 0xffff0000) == 0)
62                 num += 16;
63         else
64                 word >>= 16;
65
66         if ((word & 0xff00) == 0)
67                 num += 8;
68         else
69                 word >>= 8;
70
71         if ((word & 0xf0) == 0)
72                 num += 4;
73         else
74                 word >>= 4;
75
76         if ((word & 0xc) == 0)
77                 num += 2;
78         else
79                 word >>= 2;
80
81         if ((word & 0x2) == 0)
82                 num += 1;
83         return num;
84 }
85
86 /*
87  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88  * f2fs_set_bit makes MSB and LSB reversed in a byte.
89  * @size must be integral times of unsigned long.
90  * Example:
91  *                             MSB <--> LSB
92  *   f2fs_set_bit(0, bitmap) => 1000 0000
93  *   f2fs_set_bit(7, bitmap) => 0000 0001
94  */
95 static unsigned long __find_rev_next_bit(const unsigned long *addr,
96                         unsigned long size, unsigned long offset)
97 {
98         const unsigned long *p = addr + BIT_WORD(offset);
99         unsigned long result = size;
100         unsigned long tmp;
101
102         if (offset >= size)
103                 return size;
104
105         size -= (offset & ~(BITS_PER_LONG - 1));
106         offset %= BITS_PER_LONG;
107
108         while (1) {
109                 if (*p == 0)
110                         goto pass;
111
112                 tmp = __reverse_ulong((unsigned char *)p);
113
114                 tmp &= ~0UL >> offset;
115                 if (size < BITS_PER_LONG)
116                         tmp &= (~0UL << (BITS_PER_LONG - size));
117                 if (tmp)
118                         goto found;
119 pass:
120                 if (size <= BITS_PER_LONG)
121                         break;
122                 size -= BITS_PER_LONG;
123                 offset = 0;
124                 p++;
125         }
126         return result;
127 found:
128         return result - size + __reverse_ffs(tmp);
129 }
130
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132                         unsigned long size, unsigned long offset)
133 {
134         const unsigned long *p = addr + BIT_WORD(offset);
135         unsigned long result = size;
136         unsigned long tmp;
137
138         if (offset >= size)
139                 return size;
140
141         size -= (offset & ~(BITS_PER_LONG - 1));
142         offset %= BITS_PER_LONG;
143
144         while (1) {
145                 if (*p == ~0UL)
146                         goto pass;
147
148                 tmp = __reverse_ulong((unsigned char *)p);
149
150                 if (offset)
151                         tmp |= ~0UL << (BITS_PER_LONG - offset);
152                 if (size < BITS_PER_LONG)
153                         tmp |= ~0UL >> size;
154                 if (tmp != ~0UL)
155                         goto found;
156 pass:
157                 if (size <= BITS_PER_LONG)
158                         break;
159                 size -= BITS_PER_LONG;
160                 offset = 0;
161                 p++;
162         }
163         return result;
164 found:
165         return result - size + __reverse_ffz(tmp);
166 }
167
168 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
169 {
170         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
171         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
172         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
173
174         if (f2fs_lfs_mode(sbi))
175                 return false;
176         if (sbi->gc_mode == GC_URGENT_HIGH)
177                 return true;
178         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
179                 return true;
180
181         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
182                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
183 }
184
185 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
186 {
187         struct inmem_pages *new;
188
189         f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE);
190
191         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
192
193         /* add atomic page indices to the list */
194         new->page = page;
195         INIT_LIST_HEAD(&new->list);
196
197         /* increase reference count with clean state */
198         get_page(page);
199         mutex_lock(&F2FS_I(inode)->inmem_lock);
200         list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
201         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
202         mutex_unlock(&F2FS_I(inode)->inmem_lock);
203
204         trace_f2fs_register_inmem_page(page, INMEM);
205 }
206
207 static int __revoke_inmem_pages(struct inode *inode,
208                                 struct list_head *head, bool drop, bool recover,
209                                 bool trylock)
210 {
211         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
212         struct inmem_pages *cur, *tmp;
213         int err = 0;
214
215         list_for_each_entry_safe(cur, tmp, head, list) {
216                 struct page *page = cur->page;
217
218                 if (drop)
219                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
220
221                 if (trylock) {
222                         /*
223                          * to avoid deadlock in between page lock and
224                          * inmem_lock.
225                          */
226                         if (!trylock_page(page))
227                                 continue;
228                 } else {
229                         lock_page(page);
230                 }
231
232                 f2fs_wait_on_page_writeback(page, DATA, true, true);
233
234                 if (recover) {
235                         struct dnode_of_data dn;
236                         struct node_info ni;
237
238                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
239 retry:
240                         set_new_dnode(&dn, inode, NULL, NULL, 0);
241                         err = f2fs_get_dnode_of_data(&dn, page->index,
242                                                                 LOOKUP_NODE);
243                         if (err) {
244                                 if (err == -ENOMEM) {
245                                         congestion_wait(BLK_RW_ASYNC,
246                                                         DEFAULT_IO_TIMEOUT);
247                                         cond_resched();
248                                         goto retry;
249                                 }
250                                 err = -EAGAIN;
251                                 goto next;
252                         }
253
254                         err = f2fs_get_node_info(sbi, dn.nid, &ni);
255                         if (err) {
256                                 f2fs_put_dnode(&dn);
257                                 return err;
258                         }
259
260                         if (cur->old_addr == NEW_ADDR) {
261                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
262                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
263                         } else
264                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
265                                         cur->old_addr, ni.version, true, true);
266                         f2fs_put_dnode(&dn);
267                 }
268 next:
269                 /* we don't need to invalidate this in the sccessful status */
270                 if (drop || recover) {
271                         ClearPageUptodate(page);
272                         clear_cold_data(page);
273                 }
274                 f2fs_clear_page_private(page);
275                 f2fs_put_page(page, 1);
276
277                 list_del(&cur->list);
278                 kmem_cache_free(inmem_entry_slab, cur);
279                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
280         }
281         return err;
282 }
283
284 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
285 {
286         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
287         struct inode *inode;
288         struct f2fs_inode_info *fi;
289         unsigned int count = sbi->atomic_files;
290         unsigned int looped = 0;
291 next:
292         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
293         if (list_empty(head)) {
294                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
295                 return;
296         }
297         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
298         inode = igrab(&fi->vfs_inode);
299         if (inode)
300                 list_move_tail(&fi->inmem_ilist, head);
301         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
302
303         if (inode) {
304                 if (gc_failure) {
305                         if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
306                                 goto skip;
307                 }
308                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
309                 f2fs_drop_inmem_pages(inode);
310 skip:
311                 iput(inode);
312         }
313         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
314         cond_resched();
315         if (gc_failure) {
316                 if (++looped >= count)
317                         return;
318         }
319         goto next;
320 }
321
322 void f2fs_drop_inmem_pages(struct inode *inode)
323 {
324         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
325         struct f2fs_inode_info *fi = F2FS_I(inode);
326
327         while (!list_empty(&fi->inmem_pages)) {
328                 mutex_lock(&fi->inmem_lock);
329                 __revoke_inmem_pages(inode, &fi->inmem_pages,
330                                                 true, false, true);
331                 mutex_unlock(&fi->inmem_lock);
332         }
333
334         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
335
336         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
337         if (!list_empty(&fi->inmem_ilist))
338                 list_del_init(&fi->inmem_ilist);
339         if (f2fs_is_atomic_file(inode)) {
340                 clear_inode_flag(inode, FI_ATOMIC_FILE);
341                 sbi->atomic_files--;
342         }
343         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
344 }
345
346 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
347 {
348         struct f2fs_inode_info *fi = F2FS_I(inode);
349         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
350         struct list_head *head = &fi->inmem_pages;
351         struct inmem_pages *cur = NULL;
352
353         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
354
355         mutex_lock(&fi->inmem_lock);
356         list_for_each_entry(cur, head, list) {
357                 if (cur->page == page)
358                         break;
359         }
360
361         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
362         list_del(&cur->list);
363         mutex_unlock(&fi->inmem_lock);
364
365         dec_page_count(sbi, F2FS_INMEM_PAGES);
366         kmem_cache_free(inmem_entry_slab, cur);
367
368         ClearPageUptodate(page);
369         f2fs_clear_page_private(page);
370         f2fs_put_page(page, 0);
371
372         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
373 }
374
375 static int __f2fs_commit_inmem_pages(struct inode *inode)
376 {
377         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
378         struct f2fs_inode_info *fi = F2FS_I(inode);
379         struct inmem_pages *cur, *tmp;
380         struct f2fs_io_info fio = {
381                 .sbi = sbi,
382                 .ino = inode->i_ino,
383                 .type = DATA,
384                 .op = REQ_OP_WRITE,
385                 .op_flags = REQ_SYNC | REQ_PRIO,
386                 .io_type = FS_DATA_IO,
387         };
388         struct list_head revoke_list;
389         bool submit_bio = false;
390         int err = 0;
391
392         INIT_LIST_HEAD(&revoke_list);
393
394         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
395                 struct page *page = cur->page;
396
397                 lock_page(page);
398                 if (page->mapping == inode->i_mapping) {
399                         trace_f2fs_commit_inmem_page(page, INMEM);
400
401                         f2fs_wait_on_page_writeback(page, DATA, true, true);
402
403                         set_page_dirty(page);
404                         if (clear_page_dirty_for_io(page)) {
405                                 inode_dec_dirty_pages(inode);
406                                 f2fs_remove_dirty_inode(inode);
407                         }
408 retry:
409                         fio.page = page;
410                         fio.old_blkaddr = NULL_ADDR;
411                         fio.encrypted_page = NULL;
412                         fio.need_lock = LOCK_DONE;
413                         err = f2fs_do_write_data_page(&fio);
414                         if (err) {
415                                 if (err == -ENOMEM) {
416                                         congestion_wait(BLK_RW_ASYNC,
417                                                         DEFAULT_IO_TIMEOUT);
418                                         cond_resched();
419                                         goto retry;
420                                 }
421                                 unlock_page(page);
422                                 break;
423                         }
424                         /* record old blkaddr for revoking */
425                         cur->old_addr = fio.old_blkaddr;
426                         submit_bio = true;
427                 }
428                 unlock_page(page);
429                 list_move_tail(&cur->list, &revoke_list);
430         }
431
432         if (submit_bio)
433                 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
434
435         if (err) {
436                 /*
437                  * try to revoke all committed pages, but still we could fail
438                  * due to no memory or other reason, if that happened, EAGAIN
439                  * will be returned, which means in such case, transaction is
440                  * already not integrity, caller should use journal to do the
441                  * recovery or rewrite & commit last transaction. For other
442                  * error number, revoking was done by filesystem itself.
443                  */
444                 err = __revoke_inmem_pages(inode, &revoke_list,
445                                                 false, true, false);
446
447                 /* drop all uncommitted pages */
448                 __revoke_inmem_pages(inode, &fi->inmem_pages,
449                                                 true, false, false);
450         } else {
451                 __revoke_inmem_pages(inode, &revoke_list,
452                                                 false, false, false);
453         }
454
455         return err;
456 }
457
458 int f2fs_commit_inmem_pages(struct inode *inode)
459 {
460         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
461         struct f2fs_inode_info *fi = F2FS_I(inode);
462         int err;
463
464         f2fs_balance_fs(sbi, true);
465
466         down_write(&fi->i_gc_rwsem[WRITE]);
467
468         f2fs_lock_op(sbi);
469         set_inode_flag(inode, FI_ATOMIC_COMMIT);
470
471         mutex_lock(&fi->inmem_lock);
472         err = __f2fs_commit_inmem_pages(inode);
473         mutex_unlock(&fi->inmem_lock);
474
475         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
476
477         f2fs_unlock_op(sbi);
478         up_write(&fi->i_gc_rwsem[WRITE]);
479
480         return err;
481 }
482
483 /*
484  * This function balances dirty node and dentry pages.
485  * In addition, it controls garbage collection.
486  */
487 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
488 {
489         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
490                 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
491                 f2fs_stop_checkpoint(sbi, false);
492         }
493
494         /* balance_fs_bg is able to be pending */
495         if (need && excess_cached_nats(sbi))
496                 f2fs_balance_fs_bg(sbi, false);
497
498         if (!f2fs_is_checkpoint_ready(sbi))
499                 return;
500
501         /*
502          * We should do GC or end up with checkpoint, if there are so many dirty
503          * dir/node pages without enough free segments.
504          */
505         if (has_not_enough_free_secs(sbi, 0, 0)) {
506                 down_write(&sbi->gc_lock);
507                 f2fs_gc(sbi, false, false, NULL_SEGNO);
508         }
509 }
510
511 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
512 {
513         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
514                 return;
515
516         /* try to shrink extent cache when there is no enough memory */
517         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
518                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
519
520         /* check the # of cached NAT entries */
521         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
522                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
523
524         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
525                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
526         else
527                 f2fs_build_free_nids(sbi, false, false);
528
529         if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
530                 excess_prefree_segs(sbi))
531                 goto do_sync;
532
533         /* there is background inflight IO or foreground operation recently */
534         if (is_inflight_io(sbi, REQ_TIME) ||
535                 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
536                 return;
537
538         /* exceed periodical checkpoint timeout threshold */
539         if (f2fs_time_over(sbi, CP_TIME))
540                 goto do_sync;
541
542         /* checkpoint is the only way to shrink partial cached entries */
543         if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
544                 f2fs_available_free_memory(sbi, INO_ENTRIES))
545                 return;
546
547 do_sync:
548         if (test_opt(sbi, DATA_FLUSH) && from_bg) {
549                 struct blk_plug plug;
550
551                 mutex_lock(&sbi->flush_lock);
552
553                 blk_start_plug(&plug);
554                 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
555                 blk_finish_plug(&plug);
556
557                 mutex_unlock(&sbi->flush_lock);
558         }
559         f2fs_sync_fs(sbi->sb, true);
560         stat_inc_bg_cp_count(sbi->stat_info);
561 }
562
563 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
564                                 struct block_device *bdev)
565 {
566         int ret = blkdev_issue_flush(bdev);
567
568         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
569                                 test_opt(sbi, FLUSH_MERGE), ret);
570         return ret;
571 }
572
573 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
574 {
575         int ret = 0;
576         int i;
577
578         if (!f2fs_is_multi_device(sbi))
579                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
580
581         for (i = 0; i < sbi->s_ndevs; i++) {
582                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
583                         continue;
584                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
585                 if (ret)
586                         break;
587         }
588         return ret;
589 }
590
591 static int issue_flush_thread(void *data)
592 {
593         struct f2fs_sb_info *sbi = data;
594         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
595         wait_queue_head_t *q = &fcc->flush_wait_queue;
596 repeat:
597         if (kthread_should_stop())
598                 return 0;
599
600         if (!llist_empty(&fcc->issue_list)) {
601                 struct flush_cmd *cmd, *next;
602                 int ret;
603
604                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
605                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
606
607                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
608
609                 ret = submit_flush_wait(sbi, cmd->ino);
610                 atomic_inc(&fcc->issued_flush);
611
612                 llist_for_each_entry_safe(cmd, next,
613                                           fcc->dispatch_list, llnode) {
614                         cmd->ret = ret;
615                         complete(&cmd->wait);
616                 }
617                 fcc->dispatch_list = NULL;
618         }
619
620         wait_event_interruptible(*q,
621                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
622         goto repeat;
623 }
624
625 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
626 {
627         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
628         struct flush_cmd cmd;
629         int ret;
630
631         if (test_opt(sbi, NOBARRIER))
632                 return 0;
633
634         if (!test_opt(sbi, FLUSH_MERGE)) {
635                 atomic_inc(&fcc->queued_flush);
636                 ret = submit_flush_wait(sbi, ino);
637                 atomic_dec(&fcc->queued_flush);
638                 atomic_inc(&fcc->issued_flush);
639                 return ret;
640         }
641
642         if (atomic_inc_return(&fcc->queued_flush) == 1 ||
643             f2fs_is_multi_device(sbi)) {
644                 ret = submit_flush_wait(sbi, ino);
645                 atomic_dec(&fcc->queued_flush);
646
647                 atomic_inc(&fcc->issued_flush);
648                 return ret;
649         }
650
651         cmd.ino = ino;
652         init_completion(&cmd.wait);
653
654         llist_add(&cmd.llnode, &fcc->issue_list);
655
656         /* update issue_list before we wake up issue_flush thread */
657         smp_mb();
658
659         if (waitqueue_active(&fcc->flush_wait_queue))
660                 wake_up(&fcc->flush_wait_queue);
661
662         if (fcc->f2fs_issue_flush) {
663                 wait_for_completion(&cmd.wait);
664                 atomic_dec(&fcc->queued_flush);
665         } else {
666                 struct llist_node *list;
667
668                 list = llist_del_all(&fcc->issue_list);
669                 if (!list) {
670                         wait_for_completion(&cmd.wait);
671                         atomic_dec(&fcc->queued_flush);
672                 } else {
673                         struct flush_cmd *tmp, *next;
674
675                         ret = submit_flush_wait(sbi, ino);
676
677                         llist_for_each_entry_safe(tmp, next, list, llnode) {
678                                 if (tmp == &cmd) {
679                                         cmd.ret = ret;
680                                         atomic_dec(&fcc->queued_flush);
681                                         continue;
682                                 }
683                                 tmp->ret = ret;
684                                 complete(&tmp->wait);
685                         }
686                 }
687         }
688
689         return cmd.ret;
690 }
691
692 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
693 {
694         dev_t dev = sbi->sb->s_bdev->bd_dev;
695         struct flush_cmd_control *fcc;
696         int err = 0;
697
698         if (SM_I(sbi)->fcc_info) {
699                 fcc = SM_I(sbi)->fcc_info;
700                 if (fcc->f2fs_issue_flush)
701                         return err;
702                 goto init_thread;
703         }
704
705         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
706         if (!fcc)
707                 return -ENOMEM;
708         atomic_set(&fcc->issued_flush, 0);
709         atomic_set(&fcc->queued_flush, 0);
710         init_waitqueue_head(&fcc->flush_wait_queue);
711         init_llist_head(&fcc->issue_list);
712         SM_I(sbi)->fcc_info = fcc;
713         if (!test_opt(sbi, FLUSH_MERGE))
714                 return err;
715
716 init_thread:
717         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
718                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
719         if (IS_ERR(fcc->f2fs_issue_flush)) {
720                 err = PTR_ERR(fcc->f2fs_issue_flush);
721                 kfree(fcc);
722                 SM_I(sbi)->fcc_info = NULL;
723                 return err;
724         }
725
726         return err;
727 }
728
729 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
730 {
731         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
732
733         if (fcc && fcc->f2fs_issue_flush) {
734                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
735
736                 fcc->f2fs_issue_flush = NULL;
737                 kthread_stop(flush_thread);
738         }
739         if (free) {
740                 kfree(fcc);
741                 SM_I(sbi)->fcc_info = NULL;
742         }
743 }
744
745 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
746 {
747         int ret = 0, i;
748
749         if (!f2fs_is_multi_device(sbi))
750                 return 0;
751
752         if (test_opt(sbi, NOBARRIER))
753                 return 0;
754
755         for (i = 1; i < sbi->s_ndevs; i++) {
756                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
757                         continue;
758                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
759                 if (ret)
760                         break;
761
762                 spin_lock(&sbi->dev_lock);
763                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
764                 spin_unlock(&sbi->dev_lock);
765         }
766
767         return ret;
768 }
769
770 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
771                 enum dirty_type dirty_type)
772 {
773         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
774
775         /* need not be added */
776         if (IS_CURSEG(sbi, segno))
777                 return;
778
779         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
780                 dirty_i->nr_dirty[dirty_type]++;
781
782         if (dirty_type == DIRTY) {
783                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
784                 enum dirty_type t = sentry->type;
785
786                 if (unlikely(t >= DIRTY)) {
787                         f2fs_bug_on(sbi, 1);
788                         return;
789                 }
790                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
791                         dirty_i->nr_dirty[t]++;
792
793                 if (__is_large_section(sbi)) {
794                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
795                         block_t valid_blocks =
796                                 get_valid_blocks(sbi, segno, true);
797
798                         f2fs_bug_on(sbi, unlikely(!valid_blocks ||
799                                         valid_blocks == BLKS_PER_SEC(sbi)));
800
801                         if (!IS_CURSEC(sbi, secno))
802                                 set_bit(secno, dirty_i->dirty_secmap);
803                 }
804         }
805 }
806
807 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
808                 enum dirty_type dirty_type)
809 {
810         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
811         block_t valid_blocks;
812
813         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
814                 dirty_i->nr_dirty[dirty_type]--;
815
816         if (dirty_type == DIRTY) {
817                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
818                 enum dirty_type t = sentry->type;
819
820                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
821                         dirty_i->nr_dirty[t]--;
822
823                 valid_blocks = get_valid_blocks(sbi, segno, true);
824                 if (valid_blocks == 0) {
825                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
826                                                 dirty_i->victim_secmap);
827 #ifdef CONFIG_F2FS_CHECK_FS
828                         clear_bit(segno, SIT_I(sbi)->invalid_segmap);
829 #endif
830                 }
831                 if (__is_large_section(sbi)) {
832                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
833
834                         if (!valid_blocks ||
835                                         valid_blocks == BLKS_PER_SEC(sbi)) {
836                                 clear_bit(secno, dirty_i->dirty_secmap);
837                                 return;
838                         }
839
840                         if (!IS_CURSEC(sbi, secno))
841                                 set_bit(secno, dirty_i->dirty_secmap);
842                 }
843         }
844 }
845
846 /*
847  * Should not occur error such as -ENOMEM.
848  * Adding dirty entry into seglist is not critical operation.
849  * If a given segment is one of current working segments, it won't be added.
850  */
851 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
852 {
853         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
854         unsigned short valid_blocks, ckpt_valid_blocks;
855         unsigned int usable_blocks;
856
857         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
858                 return;
859
860         usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
861         mutex_lock(&dirty_i->seglist_lock);
862
863         valid_blocks = get_valid_blocks(sbi, segno, false);
864         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
865
866         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
867                 ckpt_valid_blocks == usable_blocks)) {
868                 __locate_dirty_segment(sbi, segno, PRE);
869                 __remove_dirty_segment(sbi, segno, DIRTY);
870         } else if (valid_blocks < usable_blocks) {
871                 __locate_dirty_segment(sbi, segno, DIRTY);
872         } else {
873                 /* Recovery routine with SSR needs this */
874                 __remove_dirty_segment(sbi, segno, DIRTY);
875         }
876
877         mutex_unlock(&dirty_i->seglist_lock);
878 }
879
880 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
881 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
882 {
883         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
884         unsigned int segno;
885
886         mutex_lock(&dirty_i->seglist_lock);
887         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
888                 if (get_valid_blocks(sbi, segno, false))
889                         continue;
890                 if (IS_CURSEG(sbi, segno))
891                         continue;
892                 __locate_dirty_segment(sbi, segno, PRE);
893                 __remove_dirty_segment(sbi, segno, DIRTY);
894         }
895         mutex_unlock(&dirty_i->seglist_lock);
896 }
897
898 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
899 {
900         int ovp_hole_segs =
901                 (overprovision_segments(sbi) - reserved_segments(sbi));
902         block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
903         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
904         block_t holes[2] = {0, 0};      /* DATA and NODE */
905         block_t unusable;
906         struct seg_entry *se;
907         unsigned int segno;
908
909         mutex_lock(&dirty_i->seglist_lock);
910         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
911                 se = get_seg_entry(sbi, segno);
912                 if (IS_NODESEG(se->type))
913                         holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
914                                                         se->valid_blocks;
915                 else
916                         holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
917                                                         se->valid_blocks;
918         }
919         mutex_unlock(&dirty_i->seglist_lock);
920
921         unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
922         if (unusable > ovp_holes)
923                 return unusable - ovp_holes;
924         return 0;
925 }
926
927 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
928 {
929         int ovp_hole_segs =
930                 (overprovision_segments(sbi) - reserved_segments(sbi));
931         if (unusable > F2FS_OPTION(sbi).unusable_cap)
932                 return -EAGAIN;
933         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
934                 dirty_segments(sbi) > ovp_hole_segs)
935                 return -EAGAIN;
936         return 0;
937 }
938
939 /* This is only used by SBI_CP_DISABLED */
940 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
941 {
942         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
943         unsigned int segno = 0;
944
945         mutex_lock(&dirty_i->seglist_lock);
946         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
947                 if (get_valid_blocks(sbi, segno, false))
948                         continue;
949                 if (get_ckpt_valid_blocks(sbi, segno))
950                         continue;
951                 mutex_unlock(&dirty_i->seglist_lock);
952                 return segno;
953         }
954         mutex_unlock(&dirty_i->seglist_lock);
955         return NULL_SEGNO;
956 }
957
958 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
959                 struct block_device *bdev, block_t lstart,
960                 block_t start, block_t len)
961 {
962         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
963         struct list_head *pend_list;
964         struct discard_cmd *dc;
965
966         f2fs_bug_on(sbi, !len);
967
968         pend_list = &dcc->pend_list[plist_idx(len)];
969
970         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
971         INIT_LIST_HEAD(&dc->list);
972         dc->bdev = bdev;
973         dc->lstart = lstart;
974         dc->start = start;
975         dc->len = len;
976         dc->ref = 0;
977         dc->state = D_PREP;
978         dc->queued = 0;
979         dc->error = 0;
980         init_completion(&dc->wait);
981         list_add_tail(&dc->list, pend_list);
982         spin_lock_init(&dc->lock);
983         dc->bio_ref = 0;
984         atomic_inc(&dcc->discard_cmd_cnt);
985         dcc->undiscard_blks += len;
986
987         return dc;
988 }
989
990 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
991                                 struct block_device *bdev, block_t lstart,
992                                 block_t start, block_t len,
993                                 struct rb_node *parent, struct rb_node **p,
994                                 bool leftmost)
995 {
996         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
997         struct discard_cmd *dc;
998
999         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1000
1001         rb_link_node(&dc->rb_node, parent, p);
1002         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1003
1004         return dc;
1005 }
1006
1007 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1008                                                         struct discard_cmd *dc)
1009 {
1010         if (dc->state == D_DONE)
1011                 atomic_sub(dc->queued, &dcc->queued_discard);
1012
1013         list_del(&dc->list);
1014         rb_erase_cached(&dc->rb_node, &dcc->root);
1015         dcc->undiscard_blks -= dc->len;
1016
1017         kmem_cache_free(discard_cmd_slab, dc);
1018
1019         atomic_dec(&dcc->discard_cmd_cnt);
1020 }
1021
1022 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1023                                                         struct discard_cmd *dc)
1024 {
1025         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1026         unsigned long flags;
1027
1028         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1029
1030         spin_lock_irqsave(&dc->lock, flags);
1031         if (dc->bio_ref) {
1032                 spin_unlock_irqrestore(&dc->lock, flags);
1033                 return;
1034         }
1035         spin_unlock_irqrestore(&dc->lock, flags);
1036
1037         f2fs_bug_on(sbi, dc->ref);
1038
1039         if (dc->error == -EOPNOTSUPP)
1040                 dc->error = 0;
1041
1042         if (dc->error)
1043                 printk_ratelimited(
1044                         "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1045                         KERN_INFO, sbi->sb->s_id,
1046                         dc->lstart, dc->start, dc->len, dc->error);
1047         __detach_discard_cmd(dcc, dc);
1048 }
1049
1050 static void f2fs_submit_discard_endio(struct bio *bio)
1051 {
1052         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1053         unsigned long flags;
1054
1055         spin_lock_irqsave(&dc->lock, flags);
1056         if (!dc->error)
1057                 dc->error = blk_status_to_errno(bio->bi_status);
1058         dc->bio_ref--;
1059         if (!dc->bio_ref && dc->state == D_SUBMIT) {
1060                 dc->state = D_DONE;
1061                 complete_all(&dc->wait);
1062         }
1063         spin_unlock_irqrestore(&dc->lock, flags);
1064         bio_put(bio);
1065 }
1066
1067 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1068                                 block_t start, block_t end)
1069 {
1070 #ifdef CONFIG_F2FS_CHECK_FS
1071         struct seg_entry *sentry;
1072         unsigned int segno;
1073         block_t blk = start;
1074         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1075         unsigned long *map;
1076
1077         while (blk < end) {
1078                 segno = GET_SEGNO(sbi, blk);
1079                 sentry = get_seg_entry(sbi, segno);
1080                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1081
1082                 if (end < START_BLOCK(sbi, segno + 1))
1083                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1084                 else
1085                         size = max_blocks;
1086                 map = (unsigned long *)(sentry->cur_valid_map);
1087                 offset = __find_rev_next_bit(map, size, offset);
1088                 f2fs_bug_on(sbi, offset != size);
1089                 blk = START_BLOCK(sbi, segno + 1);
1090         }
1091 #endif
1092 }
1093
1094 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1095                                 struct discard_policy *dpolicy,
1096                                 int discard_type, unsigned int granularity)
1097 {
1098         /* common policy */
1099         dpolicy->type = discard_type;
1100         dpolicy->sync = true;
1101         dpolicy->ordered = false;
1102         dpolicy->granularity = granularity;
1103
1104         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1105         dpolicy->io_aware_gran = MAX_PLIST_NUM;
1106         dpolicy->timeout = false;
1107
1108         if (discard_type == DPOLICY_BG) {
1109                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1110                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1111                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1112                 dpolicy->io_aware = true;
1113                 dpolicy->sync = false;
1114                 dpolicy->ordered = true;
1115                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1116                         dpolicy->granularity = 1;
1117                         dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1118                 }
1119         } else if (discard_type == DPOLICY_FORCE) {
1120                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1121                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1122                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1123                 dpolicy->io_aware = false;
1124         } else if (discard_type == DPOLICY_FSTRIM) {
1125                 dpolicy->io_aware = false;
1126         } else if (discard_type == DPOLICY_UMOUNT) {
1127                 dpolicy->io_aware = false;
1128                 /* we need to issue all to keep CP_TRIMMED_FLAG */
1129                 dpolicy->granularity = 1;
1130                 dpolicy->timeout = true;
1131         }
1132 }
1133
1134 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1135                                 struct block_device *bdev, block_t lstart,
1136                                 block_t start, block_t len);
1137 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1138 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1139                                                 struct discard_policy *dpolicy,
1140                                                 struct discard_cmd *dc,
1141                                                 unsigned int *issued)
1142 {
1143         struct block_device *bdev = dc->bdev;
1144         struct request_queue *q = bdev_get_queue(bdev);
1145         unsigned int max_discard_blocks =
1146                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1147         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1148         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1149                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1150         int flag = dpolicy->sync ? REQ_SYNC : 0;
1151         block_t lstart, start, len, total_len;
1152         int err = 0;
1153
1154         if (dc->state != D_PREP)
1155                 return 0;
1156
1157         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1158                 return 0;
1159
1160         trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1161
1162         lstart = dc->lstart;
1163         start = dc->start;
1164         len = dc->len;
1165         total_len = len;
1166
1167         dc->len = 0;
1168
1169         while (total_len && *issued < dpolicy->max_requests && !err) {
1170                 struct bio *bio = NULL;
1171                 unsigned long flags;
1172                 bool last = true;
1173
1174                 if (len > max_discard_blocks) {
1175                         len = max_discard_blocks;
1176                         last = false;
1177                 }
1178
1179                 (*issued)++;
1180                 if (*issued == dpolicy->max_requests)
1181                         last = true;
1182
1183                 dc->len += len;
1184
1185                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1186                         f2fs_show_injection_info(sbi, FAULT_DISCARD);
1187                         err = -EIO;
1188                         goto submit;
1189                 }
1190                 err = __blkdev_issue_discard(bdev,
1191                                         SECTOR_FROM_BLOCK(start),
1192                                         SECTOR_FROM_BLOCK(len),
1193                                         GFP_NOFS, 0, &bio);
1194 submit:
1195                 if (err) {
1196                         spin_lock_irqsave(&dc->lock, flags);
1197                         if (dc->state == D_PARTIAL)
1198                                 dc->state = D_SUBMIT;
1199                         spin_unlock_irqrestore(&dc->lock, flags);
1200
1201                         break;
1202                 }
1203
1204                 f2fs_bug_on(sbi, !bio);
1205
1206                 /*
1207                  * should keep before submission to avoid D_DONE
1208                  * right away
1209                  */
1210                 spin_lock_irqsave(&dc->lock, flags);
1211                 if (last)
1212                         dc->state = D_SUBMIT;
1213                 else
1214                         dc->state = D_PARTIAL;
1215                 dc->bio_ref++;
1216                 spin_unlock_irqrestore(&dc->lock, flags);
1217
1218                 atomic_inc(&dcc->queued_discard);
1219                 dc->queued++;
1220                 list_move_tail(&dc->list, wait_list);
1221
1222                 /* sanity check on discard range */
1223                 __check_sit_bitmap(sbi, lstart, lstart + len);
1224
1225                 bio->bi_private = dc;
1226                 bio->bi_end_io = f2fs_submit_discard_endio;
1227                 bio->bi_opf |= flag;
1228                 submit_bio(bio);
1229
1230                 atomic_inc(&dcc->issued_discard);
1231
1232                 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1233
1234                 lstart += len;
1235                 start += len;
1236                 total_len -= len;
1237                 len = total_len;
1238         }
1239
1240         if (!err && len) {
1241                 dcc->undiscard_blks -= len;
1242                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1243         }
1244         return err;
1245 }
1246
1247 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1248                                 struct block_device *bdev, block_t lstart,
1249                                 block_t start, block_t len,
1250                                 struct rb_node **insert_p,
1251                                 struct rb_node *insert_parent)
1252 {
1253         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1254         struct rb_node **p;
1255         struct rb_node *parent = NULL;
1256         bool leftmost = true;
1257
1258         if (insert_p && insert_parent) {
1259                 parent = insert_parent;
1260                 p = insert_p;
1261                 goto do_insert;
1262         }
1263
1264         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1265                                                         lstart, &leftmost);
1266 do_insert:
1267         __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1268                                                                 p, leftmost);
1269 }
1270
1271 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1272                                                 struct discard_cmd *dc)
1273 {
1274         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1275 }
1276
1277 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1278                                 struct discard_cmd *dc, block_t blkaddr)
1279 {
1280         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1281         struct discard_info di = dc->di;
1282         bool modified = false;
1283
1284         if (dc->state == D_DONE || dc->len == 1) {
1285                 __remove_discard_cmd(sbi, dc);
1286                 return;
1287         }
1288
1289         dcc->undiscard_blks -= di.len;
1290
1291         if (blkaddr > di.lstart) {
1292                 dc->len = blkaddr - dc->lstart;
1293                 dcc->undiscard_blks += dc->len;
1294                 __relocate_discard_cmd(dcc, dc);
1295                 modified = true;
1296         }
1297
1298         if (blkaddr < di.lstart + di.len - 1) {
1299                 if (modified) {
1300                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1301                                         di.start + blkaddr + 1 - di.lstart,
1302                                         di.lstart + di.len - 1 - blkaddr,
1303                                         NULL, NULL);
1304                 } else {
1305                         dc->lstart++;
1306                         dc->len--;
1307                         dc->start++;
1308                         dcc->undiscard_blks += dc->len;
1309                         __relocate_discard_cmd(dcc, dc);
1310                 }
1311         }
1312 }
1313
1314 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1315                                 struct block_device *bdev, block_t lstart,
1316                                 block_t start, block_t len)
1317 {
1318         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1319         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1320         struct discard_cmd *dc;
1321         struct discard_info di = {0};
1322         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1323         struct request_queue *q = bdev_get_queue(bdev);
1324         unsigned int max_discard_blocks =
1325                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1326         block_t end = lstart + len;
1327
1328         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1329                                         NULL, lstart,
1330                                         (struct rb_entry **)&prev_dc,
1331                                         (struct rb_entry **)&next_dc,
1332                                         &insert_p, &insert_parent, true, NULL);
1333         if (dc)
1334                 prev_dc = dc;
1335
1336         if (!prev_dc) {
1337                 di.lstart = lstart;
1338                 di.len = next_dc ? next_dc->lstart - lstart : len;
1339                 di.len = min(di.len, len);
1340                 di.start = start;
1341         }
1342
1343         while (1) {
1344                 struct rb_node *node;
1345                 bool merged = false;
1346                 struct discard_cmd *tdc = NULL;
1347
1348                 if (prev_dc) {
1349                         di.lstart = prev_dc->lstart + prev_dc->len;
1350                         if (di.lstart < lstart)
1351                                 di.lstart = lstart;
1352                         if (di.lstart >= end)
1353                                 break;
1354
1355                         if (!next_dc || next_dc->lstart > end)
1356                                 di.len = end - di.lstart;
1357                         else
1358                                 di.len = next_dc->lstart - di.lstart;
1359                         di.start = start + di.lstart - lstart;
1360                 }
1361
1362                 if (!di.len)
1363                         goto next;
1364
1365                 if (prev_dc && prev_dc->state == D_PREP &&
1366                         prev_dc->bdev == bdev &&
1367                         __is_discard_back_mergeable(&di, &prev_dc->di,
1368                                                         max_discard_blocks)) {
1369                         prev_dc->di.len += di.len;
1370                         dcc->undiscard_blks += di.len;
1371                         __relocate_discard_cmd(dcc, prev_dc);
1372                         di = prev_dc->di;
1373                         tdc = prev_dc;
1374                         merged = true;
1375                 }
1376
1377                 if (next_dc && next_dc->state == D_PREP &&
1378                         next_dc->bdev == bdev &&
1379                         __is_discard_front_mergeable(&di, &next_dc->di,
1380                                                         max_discard_blocks)) {
1381                         next_dc->di.lstart = di.lstart;
1382                         next_dc->di.len += di.len;
1383                         next_dc->di.start = di.start;
1384                         dcc->undiscard_blks += di.len;
1385                         __relocate_discard_cmd(dcc, next_dc);
1386                         if (tdc)
1387                                 __remove_discard_cmd(sbi, tdc);
1388                         merged = true;
1389                 }
1390
1391                 if (!merged) {
1392                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1393                                                         di.len, NULL, NULL);
1394                 }
1395  next:
1396                 prev_dc = next_dc;
1397                 if (!prev_dc)
1398                         break;
1399
1400                 node = rb_next(&prev_dc->rb_node);
1401                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1402         }
1403 }
1404
1405 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1406                 struct block_device *bdev, block_t blkstart, block_t blklen)
1407 {
1408         block_t lblkstart = blkstart;
1409
1410         if (!f2fs_bdev_support_discard(bdev))
1411                 return 0;
1412
1413         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1414
1415         if (f2fs_is_multi_device(sbi)) {
1416                 int devi = f2fs_target_device_index(sbi, blkstart);
1417
1418                 blkstart -= FDEV(devi).start_blk;
1419         }
1420         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1421         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1422         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1423         return 0;
1424 }
1425
1426 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1427                                         struct discard_policy *dpolicy)
1428 {
1429         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1430         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1431         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1432         struct discard_cmd *dc;
1433         struct blk_plug plug;
1434         unsigned int pos = dcc->next_pos;
1435         unsigned int issued = 0;
1436         bool io_interrupted = false;
1437
1438         mutex_lock(&dcc->cmd_lock);
1439         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1440                                         NULL, pos,
1441                                         (struct rb_entry **)&prev_dc,
1442                                         (struct rb_entry **)&next_dc,
1443                                         &insert_p, &insert_parent, true, NULL);
1444         if (!dc)
1445                 dc = next_dc;
1446
1447         blk_start_plug(&plug);
1448
1449         while (dc) {
1450                 struct rb_node *node;
1451                 int err = 0;
1452
1453                 if (dc->state != D_PREP)
1454                         goto next;
1455
1456                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1457                         io_interrupted = true;
1458                         break;
1459                 }
1460
1461                 dcc->next_pos = dc->lstart + dc->len;
1462                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1463
1464                 if (issued >= dpolicy->max_requests)
1465                         break;
1466 next:
1467                 node = rb_next(&dc->rb_node);
1468                 if (err)
1469                         __remove_discard_cmd(sbi, dc);
1470                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1471         }
1472
1473         blk_finish_plug(&plug);
1474
1475         if (!dc)
1476                 dcc->next_pos = 0;
1477
1478         mutex_unlock(&dcc->cmd_lock);
1479
1480         if (!issued && io_interrupted)
1481                 issued = -1;
1482
1483         return issued;
1484 }
1485 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1486                                         struct discard_policy *dpolicy);
1487
1488 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1489                                         struct discard_policy *dpolicy)
1490 {
1491         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1492         struct list_head *pend_list;
1493         struct discard_cmd *dc, *tmp;
1494         struct blk_plug plug;
1495         int i, issued;
1496         bool io_interrupted = false;
1497
1498         if (dpolicy->timeout)
1499                 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1500
1501 retry:
1502         issued = 0;
1503         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1504                 if (dpolicy->timeout &&
1505                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1506                         break;
1507
1508                 if (i + 1 < dpolicy->granularity)
1509                         break;
1510
1511                 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1512                         return __issue_discard_cmd_orderly(sbi, dpolicy);
1513
1514                 pend_list = &dcc->pend_list[i];
1515
1516                 mutex_lock(&dcc->cmd_lock);
1517                 if (list_empty(pend_list))
1518                         goto next;
1519                 if (unlikely(dcc->rbtree_check))
1520                         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1521                                                         &dcc->root, false));
1522                 blk_start_plug(&plug);
1523                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1524                         f2fs_bug_on(sbi, dc->state != D_PREP);
1525
1526                         if (dpolicy->timeout &&
1527                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1528                                 break;
1529
1530                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1531                                                 !is_idle(sbi, DISCARD_TIME)) {
1532                                 io_interrupted = true;
1533                                 break;
1534                         }
1535
1536                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1537
1538                         if (issued >= dpolicy->max_requests)
1539                                 break;
1540                 }
1541                 blk_finish_plug(&plug);
1542 next:
1543                 mutex_unlock(&dcc->cmd_lock);
1544
1545                 if (issued >= dpolicy->max_requests || io_interrupted)
1546                         break;
1547         }
1548
1549         if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1550                 __wait_all_discard_cmd(sbi, dpolicy);
1551                 goto retry;
1552         }
1553
1554         if (!issued && io_interrupted)
1555                 issued = -1;
1556
1557         return issued;
1558 }
1559
1560 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1561 {
1562         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1563         struct list_head *pend_list;
1564         struct discard_cmd *dc, *tmp;
1565         int i;
1566         bool dropped = false;
1567
1568         mutex_lock(&dcc->cmd_lock);
1569         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1570                 pend_list = &dcc->pend_list[i];
1571                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1572                         f2fs_bug_on(sbi, dc->state != D_PREP);
1573                         __remove_discard_cmd(sbi, dc);
1574                         dropped = true;
1575                 }
1576         }
1577         mutex_unlock(&dcc->cmd_lock);
1578
1579         return dropped;
1580 }
1581
1582 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1583 {
1584         __drop_discard_cmd(sbi);
1585 }
1586
1587 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1588                                                         struct discard_cmd *dc)
1589 {
1590         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1591         unsigned int len = 0;
1592
1593         wait_for_completion_io(&dc->wait);
1594         mutex_lock(&dcc->cmd_lock);
1595         f2fs_bug_on(sbi, dc->state != D_DONE);
1596         dc->ref--;
1597         if (!dc->ref) {
1598                 if (!dc->error)
1599                         len = dc->len;
1600                 __remove_discard_cmd(sbi, dc);
1601         }
1602         mutex_unlock(&dcc->cmd_lock);
1603
1604         return len;
1605 }
1606
1607 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1608                                                 struct discard_policy *dpolicy,
1609                                                 block_t start, block_t end)
1610 {
1611         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1612         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1613                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1614         struct discard_cmd *dc, *tmp;
1615         bool need_wait;
1616         unsigned int trimmed = 0;
1617
1618 next:
1619         need_wait = false;
1620
1621         mutex_lock(&dcc->cmd_lock);
1622         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1623                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1624                         continue;
1625                 if (dc->len < dpolicy->granularity)
1626                         continue;
1627                 if (dc->state == D_DONE && !dc->ref) {
1628                         wait_for_completion_io(&dc->wait);
1629                         if (!dc->error)
1630                                 trimmed += dc->len;
1631                         __remove_discard_cmd(sbi, dc);
1632                 } else {
1633                         dc->ref++;
1634                         need_wait = true;
1635                         break;
1636                 }
1637         }
1638         mutex_unlock(&dcc->cmd_lock);
1639
1640         if (need_wait) {
1641                 trimmed += __wait_one_discard_bio(sbi, dc);
1642                 goto next;
1643         }
1644
1645         return trimmed;
1646 }
1647
1648 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1649                                                 struct discard_policy *dpolicy)
1650 {
1651         struct discard_policy dp;
1652         unsigned int discard_blks;
1653
1654         if (dpolicy)
1655                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1656
1657         /* wait all */
1658         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1659         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1660         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1661         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1662
1663         return discard_blks;
1664 }
1665
1666 /* This should be covered by global mutex, &sit_i->sentry_lock */
1667 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1668 {
1669         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1670         struct discard_cmd *dc;
1671         bool need_wait = false;
1672
1673         mutex_lock(&dcc->cmd_lock);
1674         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1675                                                         NULL, blkaddr);
1676         if (dc) {
1677                 if (dc->state == D_PREP) {
1678                         __punch_discard_cmd(sbi, dc, blkaddr);
1679                 } else {
1680                         dc->ref++;
1681                         need_wait = true;
1682                 }
1683         }
1684         mutex_unlock(&dcc->cmd_lock);
1685
1686         if (need_wait)
1687                 __wait_one_discard_bio(sbi, dc);
1688 }
1689
1690 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1691 {
1692         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1693
1694         if (dcc && dcc->f2fs_issue_discard) {
1695                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1696
1697                 dcc->f2fs_issue_discard = NULL;
1698                 kthread_stop(discard_thread);
1699         }
1700 }
1701
1702 /* This comes from f2fs_put_super */
1703 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1704 {
1705         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1706         struct discard_policy dpolicy;
1707         bool dropped;
1708
1709         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1710                                         dcc->discard_granularity);
1711         __issue_discard_cmd(sbi, &dpolicy);
1712         dropped = __drop_discard_cmd(sbi);
1713
1714         /* just to make sure there is no pending discard commands */
1715         __wait_all_discard_cmd(sbi, NULL);
1716
1717         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1718         return dropped;
1719 }
1720
1721 static int issue_discard_thread(void *data)
1722 {
1723         struct f2fs_sb_info *sbi = data;
1724         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1725         wait_queue_head_t *q = &dcc->discard_wait_queue;
1726         struct discard_policy dpolicy;
1727         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1728         int issued;
1729
1730         set_freezable();
1731
1732         do {
1733                 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1734                                         dcc->discard_granularity);
1735
1736                 wait_event_interruptible_timeout(*q,
1737                                 kthread_should_stop() || freezing(current) ||
1738                                 dcc->discard_wake,
1739                                 msecs_to_jiffies(wait_ms));
1740
1741                 if (dcc->discard_wake)
1742                         dcc->discard_wake = 0;
1743
1744                 /* clean up pending candidates before going to sleep */
1745                 if (atomic_read(&dcc->queued_discard))
1746                         __wait_all_discard_cmd(sbi, NULL);
1747
1748                 if (try_to_freeze())
1749                         continue;
1750                 if (f2fs_readonly(sbi->sb))
1751                         continue;
1752                 if (kthread_should_stop())
1753                         return 0;
1754                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1755                         wait_ms = dpolicy.max_interval;
1756                         continue;
1757                 }
1758
1759                 if (sbi->gc_mode == GC_URGENT_HIGH)
1760                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1761
1762                 sb_start_intwrite(sbi->sb);
1763
1764                 issued = __issue_discard_cmd(sbi, &dpolicy);
1765                 if (issued > 0) {
1766                         __wait_all_discard_cmd(sbi, &dpolicy);
1767                         wait_ms = dpolicy.min_interval;
1768                 } else if (issued == -1){
1769                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1770                         if (!wait_ms)
1771                                 wait_ms = dpolicy.mid_interval;
1772                 } else {
1773                         wait_ms = dpolicy.max_interval;
1774                 }
1775
1776                 sb_end_intwrite(sbi->sb);
1777
1778         } while (!kthread_should_stop());
1779         return 0;
1780 }
1781
1782 #ifdef CONFIG_BLK_DEV_ZONED
1783 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1784                 struct block_device *bdev, block_t blkstart, block_t blklen)
1785 {
1786         sector_t sector, nr_sects;
1787         block_t lblkstart = blkstart;
1788         int devi = 0;
1789
1790         if (f2fs_is_multi_device(sbi)) {
1791                 devi = f2fs_target_device_index(sbi, blkstart);
1792                 if (blkstart < FDEV(devi).start_blk ||
1793                     blkstart > FDEV(devi).end_blk) {
1794                         f2fs_err(sbi, "Invalid block %x", blkstart);
1795                         return -EIO;
1796                 }
1797                 blkstart -= FDEV(devi).start_blk;
1798         }
1799
1800         /* For sequential zones, reset the zone write pointer */
1801         if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1802                 sector = SECTOR_FROM_BLOCK(blkstart);
1803                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1804
1805                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1806                                 nr_sects != bdev_zone_sectors(bdev)) {
1807                         f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1808                                  devi, sbi->s_ndevs ? FDEV(devi).path : "",
1809                                  blkstart, blklen);
1810                         return -EIO;
1811                 }
1812                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1813                 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1814                                         sector, nr_sects, GFP_NOFS);
1815         }
1816
1817         /* For conventional zones, use regular discard if supported */
1818         return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1819 }
1820 #endif
1821
1822 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1823                 struct block_device *bdev, block_t blkstart, block_t blklen)
1824 {
1825 #ifdef CONFIG_BLK_DEV_ZONED
1826         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1827                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1828 #endif
1829         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1830 }
1831
1832 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1833                                 block_t blkstart, block_t blklen)
1834 {
1835         sector_t start = blkstart, len = 0;
1836         struct block_device *bdev;
1837         struct seg_entry *se;
1838         unsigned int offset;
1839         block_t i;
1840         int err = 0;
1841
1842         bdev = f2fs_target_device(sbi, blkstart, NULL);
1843
1844         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1845                 if (i != start) {
1846                         struct block_device *bdev2 =
1847                                 f2fs_target_device(sbi, i, NULL);
1848
1849                         if (bdev2 != bdev) {
1850                                 err = __issue_discard_async(sbi, bdev,
1851                                                 start, len);
1852                                 if (err)
1853                                         return err;
1854                                 bdev = bdev2;
1855                                 start = i;
1856                                 len = 0;
1857                         }
1858                 }
1859
1860                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1861                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1862
1863                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1864                         sbi->discard_blks--;
1865         }
1866
1867         if (len)
1868                 err = __issue_discard_async(sbi, bdev, start, len);
1869         return err;
1870 }
1871
1872 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1873                                                         bool check_only)
1874 {
1875         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1876         int max_blocks = sbi->blocks_per_seg;
1877         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1878         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1879         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1880         unsigned long *discard_map = (unsigned long *)se->discard_map;
1881         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1882         unsigned int start = 0, end = -1;
1883         bool force = (cpc->reason & CP_DISCARD);
1884         struct discard_entry *de = NULL;
1885         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1886         int i;
1887
1888         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1889                 return false;
1890
1891         if (!force) {
1892                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1893                         SM_I(sbi)->dcc_info->nr_discards >=
1894                                 SM_I(sbi)->dcc_info->max_discards)
1895                         return false;
1896         }
1897
1898         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1899         for (i = 0; i < entries; i++)
1900                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1901                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1902
1903         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1904                                 SM_I(sbi)->dcc_info->max_discards) {
1905                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1906                 if (start >= max_blocks)
1907                         break;
1908
1909                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1910                 if (force && start && end != max_blocks
1911                                         && (end - start) < cpc->trim_minlen)
1912                         continue;
1913
1914                 if (check_only)
1915                         return true;
1916
1917                 if (!de) {
1918                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1919                                                                 GFP_F2FS_ZERO);
1920                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1921                         list_add_tail(&de->list, head);
1922                 }
1923
1924                 for (i = start; i < end; i++)
1925                         __set_bit_le(i, (void *)de->discard_map);
1926
1927                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1928         }
1929         return false;
1930 }
1931
1932 static void release_discard_addr(struct discard_entry *entry)
1933 {
1934         list_del(&entry->list);
1935         kmem_cache_free(discard_entry_slab, entry);
1936 }
1937
1938 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1939 {
1940         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1941         struct discard_entry *entry, *this;
1942
1943         /* drop caches */
1944         list_for_each_entry_safe(entry, this, head, list)
1945                 release_discard_addr(entry);
1946 }
1947
1948 /*
1949  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1950  */
1951 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1952 {
1953         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1954         unsigned int segno;
1955
1956         mutex_lock(&dirty_i->seglist_lock);
1957         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1958                 __set_test_and_free(sbi, segno, false);
1959         mutex_unlock(&dirty_i->seglist_lock);
1960 }
1961
1962 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1963                                                 struct cp_control *cpc)
1964 {
1965         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1966         struct list_head *head = &dcc->entry_list;
1967         struct discard_entry *entry, *this;
1968         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1969         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1970         unsigned int start = 0, end = -1;
1971         unsigned int secno, start_segno;
1972         bool force = (cpc->reason & CP_DISCARD);
1973         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
1974
1975         mutex_lock(&dirty_i->seglist_lock);
1976
1977         while (1) {
1978                 int i;
1979
1980                 if (need_align && end != -1)
1981                         end--;
1982                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1983                 if (start >= MAIN_SEGS(sbi))
1984                         break;
1985                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1986                                                                 start + 1);
1987
1988                 if (need_align) {
1989                         start = rounddown(start, sbi->segs_per_sec);
1990                         end = roundup(end, sbi->segs_per_sec);
1991                 }
1992
1993                 for (i = start; i < end; i++) {
1994                         if (test_and_clear_bit(i, prefree_map))
1995                                 dirty_i->nr_dirty[PRE]--;
1996                 }
1997
1998                 if (!f2fs_realtime_discard_enable(sbi))
1999                         continue;
2000
2001                 if (force && start >= cpc->trim_start &&
2002                                         (end - 1) <= cpc->trim_end)
2003                                 continue;
2004
2005                 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2006                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2007                                 (end - start) << sbi->log_blocks_per_seg);
2008                         continue;
2009                 }
2010 next:
2011                 secno = GET_SEC_FROM_SEG(sbi, start);
2012                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2013                 if (!IS_CURSEC(sbi, secno) &&
2014                         !get_valid_blocks(sbi, start, true))
2015                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2016                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2017
2018                 start = start_segno + sbi->segs_per_sec;
2019                 if (start < end)
2020                         goto next;
2021                 else
2022                         end = start - 1;
2023         }
2024         mutex_unlock(&dirty_i->seglist_lock);
2025
2026         /* send small discards */
2027         list_for_each_entry_safe(entry, this, head, list) {
2028                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2029                 bool is_valid = test_bit_le(0, entry->discard_map);
2030
2031 find_next:
2032                 if (is_valid) {
2033                         next_pos = find_next_zero_bit_le(entry->discard_map,
2034                                         sbi->blocks_per_seg, cur_pos);
2035                         len = next_pos - cur_pos;
2036
2037                         if (f2fs_sb_has_blkzoned(sbi) ||
2038                             (force && len < cpc->trim_minlen))
2039                                 goto skip;
2040
2041                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2042                                                                         len);
2043                         total_len += len;
2044                 } else {
2045                         next_pos = find_next_bit_le(entry->discard_map,
2046                                         sbi->blocks_per_seg, cur_pos);
2047                 }
2048 skip:
2049                 cur_pos = next_pos;
2050                 is_valid = !is_valid;
2051
2052                 if (cur_pos < sbi->blocks_per_seg)
2053                         goto find_next;
2054
2055                 release_discard_addr(entry);
2056                 dcc->nr_discards -= total_len;
2057         }
2058
2059         wake_up_discard_thread(sbi, false);
2060 }
2061
2062 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2063 {
2064         dev_t dev = sbi->sb->s_bdev->bd_dev;
2065         struct discard_cmd_control *dcc;
2066         int err = 0, i;
2067
2068         if (SM_I(sbi)->dcc_info) {
2069                 dcc = SM_I(sbi)->dcc_info;
2070                 goto init_thread;
2071         }
2072
2073         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2074         if (!dcc)
2075                 return -ENOMEM;
2076
2077         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2078         INIT_LIST_HEAD(&dcc->entry_list);
2079         for (i = 0; i < MAX_PLIST_NUM; i++)
2080                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2081         INIT_LIST_HEAD(&dcc->wait_list);
2082         INIT_LIST_HEAD(&dcc->fstrim_list);
2083         mutex_init(&dcc->cmd_lock);
2084         atomic_set(&dcc->issued_discard, 0);
2085         atomic_set(&dcc->queued_discard, 0);
2086         atomic_set(&dcc->discard_cmd_cnt, 0);
2087         dcc->nr_discards = 0;
2088         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2089         dcc->undiscard_blks = 0;
2090         dcc->next_pos = 0;
2091         dcc->root = RB_ROOT_CACHED;
2092         dcc->rbtree_check = false;
2093
2094         init_waitqueue_head(&dcc->discard_wait_queue);
2095         SM_I(sbi)->dcc_info = dcc;
2096 init_thread:
2097         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2098                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2099         if (IS_ERR(dcc->f2fs_issue_discard)) {
2100                 err = PTR_ERR(dcc->f2fs_issue_discard);
2101                 kfree(dcc);
2102                 SM_I(sbi)->dcc_info = NULL;
2103                 return err;
2104         }
2105
2106         return err;
2107 }
2108
2109 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2110 {
2111         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2112
2113         if (!dcc)
2114                 return;
2115
2116         f2fs_stop_discard_thread(sbi);
2117
2118         /*
2119          * Recovery can cache discard commands, so in error path of
2120          * fill_super(), it needs to give a chance to handle them.
2121          */
2122         if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2123                 f2fs_issue_discard_timeout(sbi);
2124
2125         kfree(dcc);
2126         SM_I(sbi)->dcc_info = NULL;
2127 }
2128
2129 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2130 {
2131         struct sit_info *sit_i = SIT_I(sbi);
2132
2133         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2134                 sit_i->dirty_sentries++;
2135                 return false;
2136         }
2137
2138         return true;
2139 }
2140
2141 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2142                                         unsigned int segno, int modified)
2143 {
2144         struct seg_entry *se = get_seg_entry(sbi, segno);
2145         se->type = type;
2146         if (modified)
2147                 __mark_sit_entry_dirty(sbi, segno);
2148 }
2149
2150 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2151                                                                 block_t blkaddr)
2152 {
2153         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2154
2155         if (segno == NULL_SEGNO)
2156                 return 0;
2157         return get_seg_entry(sbi, segno)->mtime;
2158 }
2159
2160 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2161                                                 unsigned long long old_mtime)
2162 {
2163         struct seg_entry *se;
2164         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2165         unsigned long long ctime = get_mtime(sbi, false);
2166         unsigned long long mtime = old_mtime ? old_mtime : ctime;
2167
2168         if (segno == NULL_SEGNO)
2169                 return;
2170
2171         se = get_seg_entry(sbi, segno);
2172
2173         if (!se->mtime)
2174                 se->mtime = mtime;
2175         else
2176                 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2177                                                 se->valid_blocks + 1);
2178
2179         if (ctime > SIT_I(sbi)->max_mtime)
2180                 SIT_I(sbi)->max_mtime = ctime;
2181 }
2182
2183 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2184 {
2185         struct seg_entry *se;
2186         unsigned int segno, offset;
2187         long int new_vblocks;
2188         bool exist;
2189 #ifdef CONFIG_F2FS_CHECK_FS
2190         bool mir_exist;
2191 #endif
2192
2193         segno = GET_SEGNO(sbi, blkaddr);
2194
2195         se = get_seg_entry(sbi, segno);
2196         new_vblocks = se->valid_blocks + del;
2197         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2198
2199         f2fs_bug_on(sbi, (new_vblocks < 0 ||
2200                         (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2201
2202         se->valid_blocks = new_vblocks;
2203
2204         /* Update valid block bitmap */
2205         if (del > 0) {
2206                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2207 #ifdef CONFIG_F2FS_CHECK_FS
2208                 mir_exist = f2fs_test_and_set_bit(offset,
2209                                                 se->cur_valid_map_mir);
2210                 if (unlikely(exist != mir_exist)) {
2211                         f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2212                                  blkaddr, exist);
2213                         f2fs_bug_on(sbi, 1);
2214                 }
2215 #endif
2216                 if (unlikely(exist)) {
2217                         f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2218                                  blkaddr);
2219                         f2fs_bug_on(sbi, 1);
2220                         se->valid_blocks--;
2221                         del = 0;
2222                 }
2223
2224                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2225                         sbi->discard_blks--;
2226
2227                 /*
2228                  * SSR should never reuse block which is checkpointed
2229                  * or newly invalidated.
2230                  */
2231                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2232                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2233                                 se->ckpt_valid_blocks++;
2234                 }
2235         } else {
2236                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2237 #ifdef CONFIG_F2FS_CHECK_FS
2238                 mir_exist = f2fs_test_and_clear_bit(offset,
2239                                                 se->cur_valid_map_mir);
2240                 if (unlikely(exist != mir_exist)) {
2241                         f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2242                                  blkaddr, exist);
2243                         f2fs_bug_on(sbi, 1);
2244                 }
2245 #endif
2246                 if (unlikely(!exist)) {
2247                         f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2248                                  blkaddr);
2249                         f2fs_bug_on(sbi, 1);
2250                         se->valid_blocks++;
2251                         del = 0;
2252                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2253                         /*
2254                          * If checkpoints are off, we must not reuse data that
2255                          * was used in the previous checkpoint. If it was used
2256                          * before, we must track that to know how much space we
2257                          * really have.
2258                          */
2259                         if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2260                                 spin_lock(&sbi->stat_lock);
2261                                 sbi->unusable_block_count++;
2262                                 spin_unlock(&sbi->stat_lock);
2263                         }
2264                 }
2265
2266                 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2267                         sbi->discard_blks++;
2268         }
2269         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2270                 se->ckpt_valid_blocks += del;
2271
2272         __mark_sit_entry_dirty(sbi, segno);
2273
2274         /* update total number of valid blocks to be written in ckpt area */
2275         SIT_I(sbi)->written_valid_blocks += del;
2276
2277         if (__is_large_section(sbi))
2278                 get_sec_entry(sbi, segno)->valid_blocks += del;
2279 }
2280
2281 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2282 {
2283         unsigned int segno = GET_SEGNO(sbi, addr);
2284         struct sit_info *sit_i = SIT_I(sbi);
2285
2286         f2fs_bug_on(sbi, addr == NULL_ADDR);
2287         if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2288                 return;
2289
2290         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2291
2292         /* add it into sit main buffer */
2293         down_write(&sit_i->sentry_lock);
2294
2295         update_segment_mtime(sbi, addr, 0);
2296         update_sit_entry(sbi, addr, -1);
2297
2298         /* add it into dirty seglist */
2299         locate_dirty_segment(sbi, segno);
2300
2301         up_write(&sit_i->sentry_lock);
2302 }
2303
2304 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2305 {
2306         struct sit_info *sit_i = SIT_I(sbi);
2307         unsigned int segno, offset;
2308         struct seg_entry *se;
2309         bool is_cp = false;
2310
2311         if (!__is_valid_data_blkaddr(blkaddr))
2312                 return true;
2313
2314         down_read(&sit_i->sentry_lock);
2315
2316         segno = GET_SEGNO(sbi, blkaddr);
2317         se = get_seg_entry(sbi, segno);
2318         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2319
2320         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2321                 is_cp = true;
2322
2323         up_read(&sit_i->sentry_lock);
2324
2325         return is_cp;
2326 }
2327
2328 /*
2329  * This function should be resided under the curseg_mutex lock
2330  */
2331 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2332                                         struct f2fs_summary *sum)
2333 {
2334         struct curseg_info *curseg = CURSEG_I(sbi, type);
2335         void *addr = curseg->sum_blk;
2336         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2337         memcpy(addr, sum, sizeof(struct f2fs_summary));
2338 }
2339
2340 /*
2341  * Calculate the number of current summary pages for writing
2342  */
2343 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2344 {
2345         int valid_sum_count = 0;
2346         int i, sum_in_page;
2347
2348         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2349                 if (sbi->ckpt->alloc_type[i] == SSR)
2350                         valid_sum_count += sbi->blocks_per_seg;
2351                 else {
2352                         if (for_ra)
2353                                 valid_sum_count += le16_to_cpu(
2354                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2355                         else
2356                                 valid_sum_count += curseg_blkoff(sbi, i);
2357                 }
2358         }
2359
2360         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2361                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2362         if (valid_sum_count <= sum_in_page)
2363                 return 1;
2364         else if ((valid_sum_count - sum_in_page) <=
2365                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2366                 return 2;
2367         return 3;
2368 }
2369
2370 /*
2371  * Caller should put this summary page
2372  */
2373 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2374 {
2375         if (unlikely(f2fs_cp_error(sbi)))
2376                 return ERR_PTR(-EIO);
2377         return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2378 }
2379
2380 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2381                                         void *src, block_t blk_addr)
2382 {
2383         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2384
2385         memcpy(page_address(page), src, PAGE_SIZE);
2386         set_page_dirty(page);
2387         f2fs_put_page(page, 1);
2388 }
2389
2390 static void write_sum_page(struct f2fs_sb_info *sbi,
2391                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2392 {
2393         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2394 }
2395
2396 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2397                                                 int type, block_t blk_addr)
2398 {
2399         struct curseg_info *curseg = CURSEG_I(sbi, type);
2400         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2401         struct f2fs_summary_block *src = curseg->sum_blk;
2402         struct f2fs_summary_block *dst;
2403
2404         dst = (struct f2fs_summary_block *)page_address(page);
2405         memset(dst, 0, PAGE_SIZE);
2406
2407         mutex_lock(&curseg->curseg_mutex);
2408
2409         down_read(&curseg->journal_rwsem);
2410         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2411         up_read(&curseg->journal_rwsem);
2412
2413         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2414         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2415
2416         mutex_unlock(&curseg->curseg_mutex);
2417
2418         set_page_dirty(page);
2419         f2fs_put_page(page, 1);
2420 }
2421
2422 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2423                                 struct curseg_info *curseg, int type)
2424 {
2425         unsigned int segno = curseg->segno + 1;
2426         struct free_segmap_info *free_i = FREE_I(sbi);
2427
2428         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2429                 return !test_bit(segno, free_i->free_segmap);
2430         return 0;
2431 }
2432
2433 /*
2434  * Find a new segment from the free segments bitmap to right order
2435  * This function should be returned with success, otherwise BUG
2436  */
2437 static void get_new_segment(struct f2fs_sb_info *sbi,
2438                         unsigned int *newseg, bool new_sec, int dir)
2439 {
2440         struct free_segmap_info *free_i = FREE_I(sbi);
2441         unsigned int segno, secno, zoneno;
2442         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2443         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2444         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2445         unsigned int left_start = hint;
2446         bool init = true;
2447         int go_left = 0;
2448         int i;
2449
2450         spin_lock(&free_i->segmap_lock);
2451
2452         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2453                 segno = find_next_zero_bit(free_i->free_segmap,
2454                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2455                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2456                         goto got_it;
2457         }
2458 find_other_zone:
2459         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2460         if (secno >= MAIN_SECS(sbi)) {
2461                 if (dir == ALLOC_RIGHT) {
2462                         secno = find_next_zero_bit(free_i->free_secmap,
2463                                                         MAIN_SECS(sbi), 0);
2464                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2465                 } else {
2466                         go_left = 1;
2467                         left_start = hint - 1;
2468                 }
2469         }
2470         if (go_left == 0)
2471                 goto skip_left;
2472
2473         while (test_bit(left_start, free_i->free_secmap)) {
2474                 if (left_start > 0) {
2475                         left_start--;
2476                         continue;
2477                 }
2478                 left_start = find_next_zero_bit(free_i->free_secmap,
2479                                                         MAIN_SECS(sbi), 0);
2480                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2481                 break;
2482         }
2483         secno = left_start;
2484 skip_left:
2485         segno = GET_SEG_FROM_SEC(sbi, secno);
2486         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2487
2488         /* give up on finding another zone */
2489         if (!init)
2490                 goto got_it;
2491         if (sbi->secs_per_zone == 1)
2492                 goto got_it;
2493         if (zoneno == old_zoneno)
2494                 goto got_it;
2495         if (dir == ALLOC_LEFT) {
2496                 if (!go_left && zoneno + 1 >= total_zones)
2497                         goto got_it;
2498                 if (go_left && zoneno == 0)
2499                         goto got_it;
2500         }
2501         for (i = 0; i < NR_CURSEG_TYPE; i++)
2502                 if (CURSEG_I(sbi, i)->zone == zoneno)
2503                         break;
2504
2505         if (i < NR_CURSEG_TYPE) {
2506                 /* zone is in user, try another */
2507                 if (go_left)
2508                         hint = zoneno * sbi->secs_per_zone - 1;
2509                 else if (zoneno + 1 >= total_zones)
2510                         hint = 0;
2511                 else
2512                         hint = (zoneno + 1) * sbi->secs_per_zone;
2513                 init = false;
2514                 goto find_other_zone;
2515         }
2516 got_it:
2517         /* set it as dirty segment in free segmap */
2518         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2519         __set_inuse(sbi, segno);
2520         *newseg = segno;
2521         spin_unlock(&free_i->segmap_lock);
2522 }
2523
2524 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2525 {
2526         struct curseg_info *curseg = CURSEG_I(sbi, type);
2527         struct summary_footer *sum_footer;
2528         unsigned short seg_type = curseg->seg_type;
2529
2530         curseg->inited = true;
2531         curseg->segno = curseg->next_segno;
2532         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2533         curseg->next_blkoff = 0;
2534         curseg->next_segno = NULL_SEGNO;
2535
2536         sum_footer = &(curseg->sum_blk->footer);
2537         memset(sum_footer, 0, sizeof(struct summary_footer));
2538
2539         sanity_check_seg_type(sbi, seg_type);
2540
2541         if (IS_DATASEG(seg_type))
2542                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2543         if (IS_NODESEG(seg_type))
2544                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2545         __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2546 }
2547
2548 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2549 {
2550         struct curseg_info *curseg = CURSEG_I(sbi, type);
2551         unsigned short seg_type = curseg->seg_type;
2552
2553         sanity_check_seg_type(sbi, seg_type);
2554
2555         /* if segs_per_sec is large than 1, we need to keep original policy. */
2556         if (__is_large_section(sbi))
2557                 return curseg->segno;
2558
2559         /* inmem log may not locate on any segment after mount */
2560         if (!curseg->inited)
2561                 return 0;
2562
2563         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2564                 return 0;
2565
2566         if (test_opt(sbi, NOHEAP) &&
2567                 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2568                 return 0;
2569
2570         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2571                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2572
2573         /* find segments from 0 to reuse freed segments */
2574         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2575                 return 0;
2576
2577         return curseg->segno;
2578 }
2579
2580 /*
2581  * Allocate a current working segment.
2582  * This function always allocates a free segment in LFS manner.
2583  */
2584 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2585 {
2586         struct curseg_info *curseg = CURSEG_I(sbi, type);
2587         unsigned short seg_type = curseg->seg_type;
2588         unsigned int segno = curseg->segno;
2589         int dir = ALLOC_LEFT;
2590
2591         if (curseg->inited)
2592                 write_sum_page(sbi, curseg->sum_blk,
2593                                 GET_SUM_BLOCK(sbi, segno));
2594         if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2595                 dir = ALLOC_RIGHT;
2596
2597         if (test_opt(sbi, NOHEAP))
2598                 dir = ALLOC_RIGHT;
2599
2600         segno = __get_next_segno(sbi, type);
2601         get_new_segment(sbi, &segno, new_sec, dir);
2602         curseg->next_segno = segno;
2603         reset_curseg(sbi, type, 1);
2604         curseg->alloc_type = LFS;
2605 }
2606
2607 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2608                         struct curseg_info *seg, block_t start)
2609 {
2610         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2611         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2612         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2613         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2614         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2615         int i, pos;
2616
2617         for (i = 0; i < entries; i++)
2618                 target_map[i] = ckpt_map[i] | cur_map[i];
2619
2620         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2621
2622         seg->next_blkoff = pos;
2623 }
2624
2625 /*
2626  * If a segment is written by LFS manner, next block offset is just obtained
2627  * by increasing the current block offset. However, if a segment is written by
2628  * SSR manner, next block offset obtained by calling __next_free_blkoff
2629  */
2630 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2631                                 struct curseg_info *seg)
2632 {
2633         if (seg->alloc_type == SSR)
2634                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2635         else
2636                 seg->next_blkoff++;
2637 }
2638
2639 /*
2640  * This function always allocates a used segment(from dirty seglist) by SSR
2641  * manner, so it should recover the existing segment information of valid blocks
2642  */
2643 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2644 {
2645         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2646         struct curseg_info *curseg = CURSEG_I(sbi, type);
2647         unsigned int new_segno = curseg->next_segno;
2648         struct f2fs_summary_block *sum_node;
2649         struct page *sum_page;
2650
2651         if (flush)
2652                 write_sum_page(sbi, curseg->sum_blk,
2653                                         GET_SUM_BLOCK(sbi, curseg->segno));
2654
2655         __set_test_and_inuse(sbi, new_segno);
2656
2657         mutex_lock(&dirty_i->seglist_lock);
2658         __remove_dirty_segment(sbi, new_segno, PRE);
2659         __remove_dirty_segment(sbi, new_segno, DIRTY);
2660         mutex_unlock(&dirty_i->seglist_lock);
2661
2662         reset_curseg(sbi, type, 1);
2663         curseg->alloc_type = SSR;
2664         __next_free_blkoff(sbi, curseg, 0);
2665
2666         sum_page = f2fs_get_sum_page(sbi, new_segno);
2667         if (IS_ERR(sum_page)) {
2668                 /* GC won't be able to use stale summary pages by cp_error */
2669                 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2670                 return;
2671         }
2672         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2673         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2674         f2fs_put_page(sum_page, 1);
2675 }
2676
2677 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2678                                 int alloc_mode, unsigned long long age);
2679
2680 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2681                                         int target_type, int alloc_mode,
2682                                         unsigned long long age)
2683 {
2684         struct curseg_info *curseg = CURSEG_I(sbi, type);
2685
2686         curseg->seg_type = target_type;
2687
2688         if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2689                 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2690
2691                 curseg->seg_type = se->type;
2692                 change_curseg(sbi, type, true);
2693         } else {
2694                 /* allocate cold segment by default */
2695                 curseg->seg_type = CURSEG_COLD_DATA;
2696                 new_curseg(sbi, type, true);
2697         }
2698         stat_inc_seg_type(sbi, curseg);
2699 }
2700
2701 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2702 {
2703         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2704
2705         if (!sbi->am.atgc_enabled)
2706                 return;
2707
2708         down_read(&SM_I(sbi)->curseg_lock);
2709
2710         mutex_lock(&curseg->curseg_mutex);
2711         down_write(&SIT_I(sbi)->sentry_lock);
2712
2713         get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2714
2715         up_write(&SIT_I(sbi)->sentry_lock);
2716         mutex_unlock(&curseg->curseg_mutex);
2717
2718         up_read(&SM_I(sbi)->curseg_lock);
2719
2720 }
2721 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2722 {
2723         __f2fs_init_atgc_curseg(sbi);
2724 }
2725
2726 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2727 {
2728         struct curseg_info *curseg = CURSEG_I(sbi, type);
2729
2730         mutex_lock(&curseg->curseg_mutex);
2731         if (!curseg->inited)
2732                 goto out;
2733
2734         if (get_valid_blocks(sbi, curseg->segno, false)) {
2735                 write_sum_page(sbi, curseg->sum_blk,
2736                                 GET_SUM_BLOCK(sbi, curseg->segno));
2737         } else {
2738                 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2739                 __set_test_and_free(sbi, curseg->segno, true);
2740                 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2741         }
2742 out:
2743         mutex_unlock(&curseg->curseg_mutex);
2744 }
2745
2746 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2747 {
2748         __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2749
2750         if (sbi->am.atgc_enabled)
2751                 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2752 }
2753
2754 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2755 {
2756         struct curseg_info *curseg = CURSEG_I(sbi, type);
2757
2758         mutex_lock(&curseg->curseg_mutex);
2759         if (!curseg->inited)
2760                 goto out;
2761         if (get_valid_blocks(sbi, curseg->segno, false))
2762                 goto out;
2763
2764         mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2765         __set_test_and_inuse(sbi, curseg->segno);
2766         mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2767 out:
2768         mutex_unlock(&curseg->curseg_mutex);
2769 }
2770
2771 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2772 {
2773         __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2774
2775         if (sbi->am.atgc_enabled)
2776                 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2777 }
2778
2779 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2780                                 int alloc_mode, unsigned long long age)
2781 {
2782         struct curseg_info *curseg = CURSEG_I(sbi, type);
2783         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2784         unsigned segno = NULL_SEGNO;
2785         unsigned short seg_type = curseg->seg_type;
2786         int i, cnt;
2787         bool reversed = false;
2788
2789         sanity_check_seg_type(sbi, seg_type);
2790
2791         /* f2fs_need_SSR() already forces to do this */
2792         if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2793                 curseg->next_segno = segno;
2794                 return 1;
2795         }
2796
2797         /* For node segments, let's do SSR more intensively */
2798         if (IS_NODESEG(seg_type)) {
2799                 if (seg_type >= CURSEG_WARM_NODE) {
2800                         reversed = true;
2801                         i = CURSEG_COLD_NODE;
2802                 } else {
2803                         i = CURSEG_HOT_NODE;
2804                 }
2805                 cnt = NR_CURSEG_NODE_TYPE;
2806         } else {
2807                 if (seg_type >= CURSEG_WARM_DATA) {
2808                         reversed = true;
2809                         i = CURSEG_COLD_DATA;
2810                 } else {
2811                         i = CURSEG_HOT_DATA;
2812                 }
2813                 cnt = NR_CURSEG_DATA_TYPE;
2814         }
2815
2816         for (; cnt-- > 0; reversed ? i-- : i++) {
2817                 if (i == seg_type)
2818                         continue;
2819                 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2820                         curseg->next_segno = segno;
2821                         return 1;
2822                 }
2823         }
2824
2825         /* find valid_blocks=0 in dirty list */
2826         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2827                 segno = get_free_segment(sbi);
2828                 if (segno != NULL_SEGNO) {
2829                         curseg->next_segno = segno;
2830                         return 1;
2831                 }
2832         }
2833         return 0;
2834 }
2835
2836 /*
2837  * flush out current segment and replace it with new segment
2838  * This function should be returned with success, otherwise BUG
2839  */
2840 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2841                                                 int type, bool force)
2842 {
2843         struct curseg_info *curseg = CURSEG_I(sbi, type);
2844
2845         if (force)
2846                 new_curseg(sbi, type, true);
2847         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2848                                         curseg->seg_type == CURSEG_WARM_NODE)
2849                 new_curseg(sbi, type, false);
2850         else if (curseg->alloc_type == LFS &&
2851                         is_next_segment_free(sbi, curseg, type) &&
2852                         likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2853                 new_curseg(sbi, type, false);
2854         else if (f2fs_need_SSR(sbi) &&
2855                         get_ssr_segment(sbi, type, SSR, 0))
2856                 change_curseg(sbi, type, true);
2857         else
2858                 new_curseg(sbi, type, false);
2859
2860         stat_inc_seg_type(sbi, curseg);
2861 }
2862
2863 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2864                                         unsigned int start, unsigned int end)
2865 {
2866         struct curseg_info *curseg = CURSEG_I(sbi, type);
2867         unsigned int segno;
2868
2869         down_read(&SM_I(sbi)->curseg_lock);
2870         mutex_lock(&curseg->curseg_mutex);
2871         down_write(&SIT_I(sbi)->sentry_lock);
2872
2873         segno = CURSEG_I(sbi, type)->segno;
2874         if (segno < start || segno > end)
2875                 goto unlock;
2876
2877         if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2878                 change_curseg(sbi, type, true);
2879         else
2880                 new_curseg(sbi, type, true);
2881
2882         stat_inc_seg_type(sbi, curseg);
2883
2884         locate_dirty_segment(sbi, segno);
2885 unlock:
2886         up_write(&SIT_I(sbi)->sentry_lock);
2887
2888         if (segno != curseg->segno)
2889                 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2890                             type, segno, curseg->segno);
2891
2892         mutex_unlock(&curseg->curseg_mutex);
2893         up_read(&SM_I(sbi)->curseg_lock);
2894 }
2895
2896 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2897 {
2898         struct curseg_info *curseg = CURSEG_I(sbi, type);
2899         unsigned int old_segno;
2900
2901         if (!curseg->inited)
2902                 goto alloc;
2903
2904         if (!curseg->next_blkoff &&
2905                 !get_valid_blocks(sbi, curseg->segno, false) &&
2906                 !get_ckpt_valid_blocks(sbi, curseg->segno))
2907                 return;
2908
2909 alloc:
2910         old_segno = curseg->segno;
2911         SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2912         locate_dirty_segment(sbi, old_segno);
2913 }
2914
2915 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2916 {
2917         down_write(&SIT_I(sbi)->sentry_lock);
2918         __allocate_new_segment(sbi, type);
2919         up_write(&SIT_I(sbi)->sentry_lock);
2920 }
2921
2922 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2923 {
2924         int i;
2925
2926         down_write(&SIT_I(sbi)->sentry_lock);
2927         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2928                 __allocate_new_segment(sbi, i);
2929         up_write(&SIT_I(sbi)->sentry_lock);
2930 }
2931
2932 static const struct segment_allocation default_salloc_ops = {
2933         .allocate_segment = allocate_segment_by_default,
2934 };
2935
2936 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2937                                                 struct cp_control *cpc)
2938 {
2939         __u64 trim_start = cpc->trim_start;
2940         bool has_candidate = false;
2941
2942         down_write(&SIT_I(sbi)->sentry_lock);
2943         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2944                 if (add_discard_addrs(sbi, cpc, true)) {
2945                         has_candidate = true;
2946                         break;
2947                 }
2948         }
2949         up_write(&SIT_I(sbi)->sentry_lock);
2950
2951         cpc->trim_start = trim_start;
2952         return has_candidate;
2953 }
2954
2955 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2956                                         struct discard_policy *dpolicy,
2957                                         unsigned int start, unsigned int end)
2958 {
2959         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2960         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2961         struct rb_node **insert_p = NULL, *insert_parent = NULL;
2962         struct discard_cmd *dc;
2963         struct blk_plug plug;
2964         int issued;
2965         unsigned int trimmed = 0;
2966
2967 next:
2968         issued = 0;
2969
2970         mutex_lock(&dcc->cmd_lock);
2971         if (unlikely(dcc->rbtree_check))
2972                 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2973                                                         &dcc->root, false));
2974
2975         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2976                                         NULL, start,
2977                                         (struct rb_entry **)&prev_dc,
2978                                         (struct rb_entry **)&next_dc,
2979                                         &insert_p, &insert_parent, true, NULL);
2980         if (!dc)
2981                 dc = next_dc;
2982
2983         blk_start_plug(&plug);
2984
2985         while (dc && dc->lstart <= end) {
2986                 struct rb_node *node;
2987                 int err = 0;
2988
2989                 if (dc->len < dpolicy->granularity)
2990                         goto skip;
2991
2992                 if (dc->state != D_PREP) {
2993                         list_move_tail(&dc->list, &dcc->fstrim_list);
2994                         goto skip;
2995                 }
2996
2997                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2998
2999                 if (issued >= dpolicy->max_requests) {
3000                         start = dc->lstart + dc->len;
3001
3002                         if (err)
3003                                 __remove_discard_cmd(sbi, dc);
3004
3005                         blk_finish_plug(&plug);
3006                         mutex_unlock(&dcc->cmd_lock);
3007                         trimmed += __wait_all_discard_cmd(sbi, NULL);
3008                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3009                         goto next;
3010                 }
3011 skip:
3012                 node = rb_next(&dc->rb_node);
3013                 if (err)
3014                         __remove_discard_cmd(sbi, dc);
3015                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3016
3017                 if (fatal_signal_pending(current))
3018                         break;
3019         }
3020
3021         blk_finish_plug(&plug);
3022         mutex_unlock(&dcc->cmd_lock);
3023
3024         return trimmed;
3025 }
3026
3027 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3028 {
3029         __u64 start = F2FS_BYTES_TO_BLK(range->start);
3030         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3031         unsigned int start_segno, end_segno;
3032         block_t start_block, end_block;
3033         struct cp_control cpc;
3034         struct discard_policy dpolicy;
3035         unsigned long long trimmed = 0;
3036         int err = 0;
3037         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3038
3039         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3040                 return -EINVAL;
3041
3042         if (end < MAIN_BLKADDR(sbi))
3043                 goto out;
3044
3045         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3046                 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3047                 return -EFSCORRUPTED;
3048         }
3049
3050         /* start/end segment number in main_area */
3051         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3052         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3053                                                 GET_SEGNO(sbi, end);
3054         if (need_align) {
3055                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3056                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3057         }
3058
3059         cpc.reason = CP_DISCARD;
3060         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3061         cpc.trim_start = start_segno;
3062         cpc.trim_end = end_segno;
3063
3064         if (sbi->discard_blks == 0)
3065                 goto out;
3066
3067         down_write(&sbi->gc_lock);
3068         err = f2fs_write_checkpoint(sbi, &cpc);
3069         up_write(&sbi->gc_lock);
3070         if (err)
3071                 goto out;
3072
3073         /*
3074          * We filed discard candidates, but actually we don't need to wait for
3075          * all of them, since they'll be issued in idle time along with runtime
3076          * discard option. User configuration looks like using runtime discard
3077          * or periodic fstrim instead of it.
3078          */
3079         if (f2fs_realtime_discard_enable(sbi))
3080                 goto out;
3081
3082         start_block = START_BLOCK(sbi, start_segno);
3083         end_block = START_BLOCK(sbi, end_segno + 1);
3084
3085         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3086         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3087                                         start_block, end_block);
3088
3089         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3090                                         start_block, end_block);
3091 out:
3092         if (!err)
3093                 range->len = F2FS_BLK_TO_BYTES(trimmed);
3094         return err;
3095 }
3096
3097 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3098                                         struct curseg_info *curseg)
3099 {
3100         return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3101                                                         curseg->segno);
3102 }
3103
3104 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3105 {
3106         switch (hint) {
3107         case WRITE_LIFE_SHORT:
3108                 return CURSEG_HOT_DATA;
3109         case WRITE_LIFE_EXTREME:
3110                 return CURSEG_COLD_DATA;
3111         default:
3112                 return CURSEG_WARM_DATA;
3113         }
3114 }
3115
3116 /* This returns write hints for each segment type. This hints will be
3117  * passed down to block layer. There are mapping tables which depend on
3118  * the mount option 'whint_mode'.
3119  *
3120  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3121  *
3122  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3123  *
3124  * User                  F2FS                     Block
3125  * ----                  ----                     -----
3126  *                       META                     WRITE_LIFE_NOT_SET
3127  *                       HOT_NODE                 "
3128  *                       WARM_NODE                "
3129  *                       COLD_NODE                "
3130  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3131  * extension list        "                        "
3132  *
3133  * -- buffered io
3134  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3135  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3136  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3137  * WRITE_LIFE_NONE       "                        "
3138  * WRITE_LIFE_MEDIUM     "                        "
3139  * WRITE_LIFE_LONG       "                        "
3140  *
3141  * -- direct io
3142  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3143  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3144  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3145  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3146  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3147  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3148  *
3149  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3150  *
3151  * User                  F2FS                     Block
3152  * ----                  ----                     -----
3153  *                       META                     WRITE_LIFE_MEDIUM;
3154  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3155  *                       WARM_NODE                "
3156  *                       COLD_NODE                WRITE_LIFE_NONE
3157  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3158  * extension list        "                        "
3159  *
3160  * -- buffered io
3161  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3162  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3163  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3164  * WRITE_LIFE_NONE       "                        "
3165  * WRITE_LIFE_MEDIUM     "                        "
3166  * WRITE_LIFE_LONG       "                        "
3167  *
3168  * -- direct io
3169  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3170  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3171  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3172  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3173  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3174  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3175  */
3176
3177 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3178                                 enum page_type type, enum temp_type temp)
3179 {
3180         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3181                 if (type == DATA) {
3182                         if (temp == WARM)
3183                                 return WRITE_LIFE_NOT_SET;
3184                         else if (temp == HOT)
3185                                 return WRITE_LIFE_SHORT;
3186                         else if (temp == COLD)
3187                                 return WRITE_LIFE_EXTREME;
3188                 } else {
3189                         return WRITE_LIFE_NOT_SET;
3190                 }
3191         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3192                 if (type == DATA) {
3193                         if (temp == WARM)
3194                                 return WRITE_LIFE_LONG;
3195                         else if (temp == HOT)
3196                                 return WRITE_LIFE_SHORT;
3197                         else if (temp == COLD)
3198                                 return WRITE_LIFE_EXTREME;
3199                 } else if (type == NODE) {
3200                         if (temp == WARM || temp == HOT)
3201                                 return WRITE_LIFE_NOT_SET;
3202                         else if (temp == COLD)
3203                                 return WRITE_LIFE_NONE;
3204                 } else if (type == META) {
3205                         return WRITE_LIFE_MEDIUM;
3206                 }
3207         }
3208         return WRITE_LIFE_NOT_SET;
3209 }
3210
3211 static int __get_segment_type_2(struct f2fs_io_info *fio)
3212 {
3213         if (fio->type == DATA)
3214                 return CURSEG_HOT_DATA;
3215         else
3216                 return CURSEG_HOT_NODE;
3217 }
3218
3219 static int __get_segment_type_4(struct f2fs_io_info *fio)
3220 {
3221         if (fio->type == DATA) {
3222                 struct inode *inode = fio->page->mapping->host;
3223
3224                 if (S_ISDIR(inode->i_mode))
3225                         return CURSEG_HOT_DATA;
3226                 else
3227                         return CURSEG_COLD_DATA;
3228         } else {
3229                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3230                         return CURSEG_WARM_NODE;
3231                 else
3232                         return CURSEG_COLD_NODE;
3233         }
3234 }
3235
3236 static int __get_segment_type_6(struct f2fs_io_info *fio)
3237 {
3238         if (fio->type == DATA) {
3239                 struct inode *inode = fio->page->mapping->host;
3240
3241                 if (is_cold_data(fio->page)) {
3242                         if (fio->sbi->am.atgc_enabled)
3243                                 return CURSEG_ALL_DATA_ATGC;
3244                         else
3245                                 return CURSEG_COLD_DATA;
3246                 }
3247                 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3248                         return CURSEG_COLD_DATA;
3249                 if (file_is_hot(inode) ||
3250                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
3251                                 f2fs_is_atomic_file(inode) ||
3252                                 f2fs_is_volatile_file(inode))
3253                         return CURSEG_HOT_DATA;
3254                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3255         } else {
3256                 if (IS_DNODE(fio->page))
3257                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3258                                                 CURSEG_HOT_NODE;
3259                 return CURSEG_COLD_NODE;
3260         }
3261 }
3262
3263 static int __get_segment_type(struct f2fs_io_info *fio)
3264 {
3265         int type = 0;
3266
3267         switch (F2FS_OPTION(fio->sbi).active_logs) {
3268         case 2:
3269                 type = __get_segment_type_2(fio);
3270                 break;
3271         case 4:
3272                 type = __get_segment_type_4(fio);
3273                 break;
3274         case 6:
3275                 type = __get_segment_type_6(fio);
3276                 break;
3277         default:
3278                 f2fs_bug_on(fio->sbi, true);
3279         }
3280
3281         if (IS_HOT(type))
3282                 fio->temp = HOT;
3283         else if (IS_WARM(type))
3284                 fio->temp = WARM;
3285         else
3286                 fio->temp = COLD;
3287         return type;
3288 }
3289
3290 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3291                 block_t old_blkaddr, block_t *new_blkaddr,
3292                 struct f2fs_summary *sum, int type,
3293                 struct f2fs_io_info *fio)
3294 {
3295         struct sit_info *sit_i = SIT_I(sbi);
3296         struct curseg_info *curseg = CURSEG_I(sbi, type);
3297         unsigned long long old_mtime;
3298         bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3299         struct seg_entry *se = NULL;
3300
3301         down_read(&SM_I(sbi)->curseg_lock);
3302
3303         mutex_lock(&curseg->curseg_mutex);
3304         down_write(&sit_i->sentry_lock);
3305
3306         if (from_gc) {
3307                 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3308                 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3309                 sanity_check_seg_type(sbi, se->type);
3310                 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3311         }
3312         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3313
3314         f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3315
3316         f2fs_wait_discard_bio(sbi, *new_blkaddr);
3317
3318         /*
3319          * __add_sum_entry should be resided under the curseg_mutex
3320          * because, this function updates a summary entry in the
3321          * current summary block.
3322          */
3323         __add_sum_entry(sbi, type, sum);
3324
3325         __refresh_next_blkoff(sbi, curseg);
3326
3327         stat_inc_block_count(sbi, curseg);
3328
3329         if (from_gc) {
3330                 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3331         } else {
3332                 update_segment_mtime(sbi, old_blkaddr, 0);
3333                 old_mtime = 0;
3334         }
3335         update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3336
3337         /*
3338          * SIT information should be updated before segment allocation,
3339          * since SSR needs latest valid block information.
3340          */
3341         update_sit_entry(sbi, *new_blkaddr, 1);
3342         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3343                 update_sit_entry(sbi, old_blkaddr, -1);
3344
3345         if (!__has_curseg_space(sbi, curseg)) {
3346                 if (from_gc)
3347                         get_atssr_segment(sbi, type, se->type,
3348                                                 AT_SSR, se->mtime);
3349                 else
3350                         sit_i->s_ops->allocate_segment(sbi, type, false);
3351         }
3352         /*
3353          * segment dirty status should be updated after segment allocation,
3354          * so we just need to update status only one time after previous
3355          * segment being closed.
3356          */
3357         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3358         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3359
3360         up_write(&sit_i->sentry_lock);
3361
3362         if (page && IS_NODESEG(type)) {
3363                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3364
3365                 f2fs_inode_chksum_set(sbi, page);
3366         }
3367
3368         if (F2FS_IO_ALIGNED(sbi))
3369                 fio->retry = false;
3370
3371         if (fio) {
3372                 struct f2fs_bio_info *io;
3373
3374                 INIT_LIST_HEAD(&fio->list);
3375                 fio->in_list = true;
3376                 io = sbi->write_io[fio->type] + fio->temp;
3377                 spin_lock(&io->io_lock);
3378                 list_add_tail(&fio->list, &io->io_list);
3379                 spin_unlock(&io->io_lock);
3380         }
3381
3382         mutex_unlock(&curseg->curseg_mutex);
3383
3384         up_read(&SM_I(sbi)->curseg_lock);
3385 }
3386
3387 static void update_device_state(struct f2fs_io_info *fio)
3388 {
3389         struct f2fs_sb_info *sbi = fio->sbi;
3390         unsigned int devidx;
3391
3392         if (!f2fs_is_multi_device(sbi))
3393                 return;
3394
3395         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3396
3397         /* update device state for fsync */
3398         f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3399
3400         /* update device state for checkpoint */
3401         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3402                 spin_lock(&sbi->dev_lock);
3403                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3404                 spin_unlock(&sbi->dev_lock);
3405         }
3406 }
3407
3408 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3409 {
3410         int type = __get_segment_type(fio);
3411         bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3412
3413         if (keep_order)
3414                 down_read(&fio->sbi->io_order_lock);
3415 reallocate:
3416         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3417                         &fio->new_blkaddr, sum, type, fio);
3418         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3419                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3420                                         fio->old_blkaddr, fio->old_blkaddr);
3421
3422         /* writeout dirty page into bdev */
3423         f2fs_submit_page_write(fio);
3424         if (fio->retry) {
3425                 fio->old_blkaddr = fio->new_blkaddr;
3426                 goto reallocate;
3427         }
3428
3429         update_device_state(fio);
3430
3431         if (keep_order)
3432                 up_read(&fio->sbi->io_order_lock);
3433 }
3434
3435 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3436                                         enum iostat_type io_type)
3437 {
3438         struct f2fs_io_info fio = {
3439                 .sbi = sbi,
3440                 .type = META,
3441                 .temp = HOT,
3442                 .op = REQ_OP_WRITE,
3443                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3444                 .old_blkaddr = page->index,
3445                 .new_blkaddr = page->index,
3446                 .page = page,
3447                 .encrypted_page = NULL,
3448                 .in_list = false,
3449         };
3450
3451         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3452                 fio.op_flags &= ~REQ_META;
3453
3454         set_page_writeback(page);
3455         ClearPageError(page);
3456         f2fs_submit_page_write(&fio);
3457
3458         stat_inc_meta_count(sbi, page->index);
3459         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3460 }
3461
3462 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3463 {
3464         struct f2fs_summary sum;
3465
3466         set_summary(&sum, nid, 0, 0);
3467         do_write_page(&sum, fio);
3468
3469         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3470 }
3471
3472 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3473                                         struct f2fs_io_info *fio)
3474 {
3475         struct f2fs_sb_info *sbi = fio->sbi;
3476         struct f2fs_summary sum;
3477
3478         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3479         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3480         do_write_page(&sum, fio);
3481         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3482
3483         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3484 }
3485
3486 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3487 {
3488         int err;
3489         struct f2fs_sb_info *sbi = fio->sbi;
3490         unsigned int segno;
3491
3492         fio->new_blkaddr = fio->old_blkaddr;
3493         /* i/o temperature is needed for passing down write hints */
3494         __get_segment_type(fio);
3495
3496         segno = GET_SEGNO(sbi, fio->new_blkaddr);
3497
3498         if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3499                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3500                 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3501                           __func__, segno);
3502                 return -EFSCORRUPTED;
3503         }
3504
3505         stat_inc_inplace_blocks(fio->sbi);
3506
3507         if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3508                 err = f2fs_merge_page_bio(fio);
3509         else
3510                 err = f2fs_submit_page_bio(fio);
3511         if (!err) {
3512                 update_device_state(fio);
3513                 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3514         }
3515
3516         return err;
3517 }
3518
3519 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3520                                                 unsigned int segno)
3521 {
3522         int i;
3523
3524         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3525                 if (CURSEG_I(sbi, i)->segno == segno)
3526                         break;
3527         }
3528         return i;
3529 }
3530
3531 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3532                                 block_t old_blkaddr, block_t new_blkaddr,
3533                                 bool recover_curseg, bool recover_newaddr,
3534                                 bool from_gc)
3535 {
3536         struct sit_info *sit_i = SIT_I(sbi);
3537         struct curseg_info *curseg;
3538         unsigned int segno, old_cursegno;
3539         struct seg_entry *se;
3540         int type;
3541         unsigned short old_blkoff;
3542
3543         segno = GET_SEGNO(sbi, new_blkaddr);
3544         se = get_seg_entry(sbi, segno);
3545         type = se->type;
3546
3547         down_write(&SM_I(sbi)->curseg_lock);
3548
3549         if (!recover_curseg) {
3550                 /* for recovery flow */
3551                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3552                         if (old_blkaddr == NULL_ADDR)
3553                                 type = CURSEG_COLD_DATA;
3554                         else
3555                                 type = CURSEG_WARM_DATA;
3556                 }
3557         } else {
3558                 if (IS_CURSEG(sbi, segno)) {
3559                         /* se->type is volatile as SSR allocation */
3560                         type = __f2fs_get_curseg(sbi, segno);
3561                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3562                 } else {
3563                         type = CURSEG_WARM_DATA;
3564                 }
3565         }
3566
3567         f2fs_bug_on(sbi, !IS_DATASEG(type));
3568         curseg = CURSEG_I(sbi, type);
3569
3570         mutex_lock(&curseg->curseg_mutex);
3571         down_write(&sit_i->sentry_lock);
3572
3573         old_cursegno = curseg->segno;
3574         old_blkoff = curseg->next_blkoff;
3575
3576         /* change the current segment */
3577         if (segno != curseg->segno) {
3578                 curseg->next_segno = segno;
3579                 change_curseg(sbi, type, true);
3580         }
3581
3582         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3583         __add_sum_entry(sbi, type, sum);
3584
3585         if (!recover_curseg || recover_newaddr) {
3586                 if (!from_gc)
3587                         update_segment_mtime(sbi, new_blkaddr, 0);
3588                 update_sit_entry(sbi, new_blkaddr, 1);
3589         }
3590         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3591                 invalidate_mapping_pages(META_MAPPING(sbi),
3592                                         old_blkaddr, old_blkaddr);
3593                 if (!from_gc)
3594                         update_segment_mtime(sbi, old_blkaddr, 0);
3595                 update_sit_entry(sbi, old_blkaddr, -1);
3596         }
3597
3598         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3599         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3600
3601         locate_dirty_segment(sbi, old_cursegno);
3602
3603         if (recover_curseg) {
3604                 if (old_cursegno != curseg->segno) {
3605                         curseg->next_segno = old_cursegno;
3606                         change_curseg(sbi, type, true);
3607                 }
3608                 curseg->next_blkoff = old_blkoff;
3609         }
3610
3611         up_write(&sit_i->sentry_lock);
3612         mutex_unlock(&curseg->curseg_mutex);
3613         up_write(&SM_I(sbi)->curseg_lock);
3614 }
3615
3616 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3617                                 block_t old_addr, block_t new_addr,
3618                                 unsigned char version, bool recover_curseg,
3619                                 bool recover_newaddr)
3620 {
3621         struct f2fs_summary sum;
3622
3623         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3624
3625         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3626                                         recover_curseg, recover_newaddr, false);
3627
3628         f2fs_update_data_blkaddr(dn, new_addr);
3629 }
3630
3631 void f2fs_wait_on_page_writeback(struct page *page,
3632                                 enum page_type type, bool ordered, bool locked)
3633 {
3634         if (PageWriteback(page)) {
3635                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3636
3637                 /* submit cached LFS IO */
3638                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3639                 /* sbumit cached IPU IO */
3640                 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3641                 if (ordered) {
3642                         wait_on_page_writeback(page);
3643                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3644                 } else {
3645                         wait_for_stable_page(page);
3646                 }
3647         }
3648 }
3649
3650 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3651 {
3652         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3653         struct page *cpage;
3654
3655         if (!f2fs_post_read_required(inode))
3656                 return;
3657
3658         if (!__is_valid_data_blkaddr(blkaddr))
3659                 return;
3660
3661         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3662         if (cpage) {
3663                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3664                 f2fs_put_page(cpage, 1);
3665         }
3666 }
3667
3668 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3669                                                                 block_t len)
3670 {
3671         block_t i;
3672
3673         for (i = 0; i < len; i++)
3674                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3675 }
3676
3677 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3678 {
3679         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3680         struct curseg_info *seg_i;
3681         unsigned char *kaddr;
3682         struct page *page;
3683         block_t start;
3684         int i, j, offset;
3685
3686         start = start_sum_block(sbi);
3687
3688         page = f2fs_get_meta_page(sbi, start++);
3689         if (IS_ERR(page))
3690                 return PTR_ERR(page);
3691         kaddr = (unsigned char *)page_address(page);
3692
3693         /* Step 1: restore nat cache */
3694         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3695         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3696
3697         /* Step 2: restore sit cache */
3698         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3699         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3700         offset = 2 * SUM_JOURNAL_SIZE;
3701
3702         /* Step 3: restore summary entries */
3703         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3704                 unsigned short blk_off;
3705                 unsigned int segno;
3706
3707                 seg_i = CURSEG_I(sbi, i);
3708                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3709                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3710                 seg_i->next_segno = segno;
3711                 reset_curseg(sbi, i, 0);
3712                 seg_i->alloc_type = ckpt->alloc_type[i];
3713                 seg_i->next_blkoff = blk_off;
3714
3715                 if (seg_i->alloc_type == SSR)
3716                         blk_off = sbi->blocks_per_seg;
3717
3718                 for (j = 0; j < blk_off; j++) {
3719                         struct f2fs_summary *s;
3720                         s = (struct f2fs_summary *)(kaddr + offset);
3721                         seg_i->sum_blk->entries[j] = *s;
3722                         offset += SUMMARY_SIZE;
3723                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3724                                                 SUM_FOOTER_SIZE)
3725                                 continue;
3726
3727                         f2fs_put_page(page, 1);
3728                         page = NULL;
3729
3730                         page = f2fs_get_meta_page(sbi, start++);
3731                         if (IS_ERR(page))
3732                                 return PTR_ERR(page);
3733                         kaddr = (unsigned char *)page_address(page);
3734                         offset = 0;
3735                 }
3736         }
3737         f2fs_put_page(page, 1);
3738         return 0;
3739 }
3740
3741 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3742 {
3743         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3744         struct f2fs_summary_block *sum;
3745         struct curseg_info *curseg;
3746         struct page *new;
3747         unsigned short blk_off;
3748         unsigned int segno = 0;
3749         block_t blk_addr = 0;
3750         int err = 0;
3751
3752         /* get segment number and block addr */
3753         if (IS_DATASEG(type)) {
3754                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3755                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3756                                                         CURSEG_HOT_DATA]);
3757                 if (__exist_node_summaries(sbi))
3758                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3759                 else
3760                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3761         } else {
3762                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3763                                                         CURSEG_HOT_NODE]);
3764                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3765                                                         CURSEG_HOT_NODE]);
3766                 if (__exist_node_summaries(sbi))
3767                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3768                                                         type - CURSEG_HOT_NODE);
3769                 else
3770                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3771         }
3772
3773         new = f2fs_get_meta_page(sbi, blk_addr);
3774         if (IS_ERR(new))
3775                 return PTR_ERR(new);
3776         sum = (struct f2fs_summary_block *)page_address(new);
3777
3778         if (IS_NODESEG(type)) {
3779                 if (__exist_node_summaries(sbi)) {
3780                         struct f2fs_summary *ns = &sum->entries[0];
3781                         int i;
3782                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3783                                 ns->version = 0;
3784                                 ns->ofs_in_node = 0;
3785                         }
3786                 } else {
3787                         err = f2fs_restore_node_summary(sbi, segno, sum);
3788                         if (err)
3789                                 goto out;
3790                 }
3791         }
3792
3793         /* set uncompleted segment to curseg */
3794         curseg = CURSEG_I(sbi, type);
3795         mutex_lock(&curseg->curseg_mutex);
3796
3797         /* update journal info */
3798         down_write(&curseg->journal_rwsem);
3799         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3800         up_write(&curseg->journal_rwsem);
3801
3802         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3803         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3804         curseg->next_segno = segno;
3805         reset_curseg(sbi, type, 0);
3806         curseg->alloc_type = ckpt->alloc_type[type];
3807         curseg->next_blkoff = blk_off;
3808         mutex_unlock(&curseg->curseg_mutex);
3809 out:
3810         f2fs_put_page(new, 1);
3811         return err;
3812 }
3813
3814 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3815 {
3816         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3817         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3818         int type = CURSEG_HOT_DATA;
3819         int err;
3820
3821         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3822                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3823
3824                 if (npages >= 2)
3825                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3826                                                         META_CP, true);
3827
3828                 /* restore for compacted data summary */
3829                 err = read_compacted_summaries(sbi);
3830                 if (err)
3831                         return err;
3832                 type = CURSEG_HOT_NODE;
3833         }
3834
3835         if (__exist_node_summaries(sbi))
3836                 f2fs_ra_meta_pages(sbi,
3837                                 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3838                                 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3839
3840         for (; type <= CURSEG_COLD_NODE; type++) {
3841                 err = read_normal_summaries(sbi, type);
3842                 if (err)
3843                         return err;
3844         }
3845
3846         /* sanity check for summary blocks */
3847         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3848                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3849                 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3850                          nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3851                 return -EINVAL;
3852         }
3853
3854         return 0;
3855 }
3856
3857 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3858 {
3859         struct page *page;
3860         unsigned char *kaddr;
3861         struct f2fs_summary *summary;
3862         struct curseg_info *seg_i;
3863         int written_size = 0;
3864         int i, j;
3865
3866         page = f2fs_grab_meta_page(sbi, blkaddr++);
3867         kaddr = (unsigned char *)page_address(page);
3868         memset(kaddr, 0, PAGE_SIZE);
3869
3870         /* Step 1: write nat cache */
3871         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3872         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3873         written_size += SUM_JOURNAL_SIZE;
3874
3875         /* Step 2: write sit cache */
3876         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3877         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3878         written_size += SUM_JOURNAL_SIZE;
3879
3880         /* Step 3: write summary entries */
3881         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3882                 unsigned short blkoff;
3883                 seg_i = CURSEG_I(sbi, i);
3884                 if (sbi->ckpt->alloc_type[i] == SSR)
3885                         blkoff = sbi->blocks_per_seg;
3886                 else
3887                         blkoff = curseg_blkoff(sbi, i);
3888
3889                 for (j = 0; j < blkoff; j++) {
3890                         if (!page) {
3891                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
3892                                 kaddr = (unsigned char *)page_address(page);
3893                                 memset(kaddr, 0, PAGE_SIZE);
3894                                 written_size = 0;
3895                         }
3896                         summary = (struct f2fs_summary *)(kaddr + written_size);
3897                         *summary = seg_i->sum_blk->entries[j];
3898                         written_size += SUMMARY_SIZE;
3899
3900                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3901                                                         SUM_FOOTER_SIZE)
3902                                 continue;
3903
3904                         set_page_dirty(page);
3905                         f2fs_put_page(page, 1);
3906                         page = NULL;
3907                 }
3908         }
3909         if (page) {
3910                 set_page_dirty(page);
3911                 f2fs_put_page(page, 1);
3912         }
3913 }
3914
3915 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3916                                         block_t blkaddr, int type)
3917 {
3918         int i, end;
3919         if (IS_DATASEG(type))
3920                 end = type + NR_CURSEG_DATA_TYPE;
3921         else
3922                 end = type + NR_CURSEG_NODE_TYPE;
3923
3924         for (i = type; i < end; i++)
3925                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3926 }
3927
3928 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3929 {
3930         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3931                 write_compacted_summaries(sbi, start_blk);
3932         else
3933                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3934 }
3935
3936 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3937 {
3938         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3939 }
3940
3941 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3942                                         unsigned int val, int alloc)
3943 {
3944         int i;
3945
3946         if (type == NAT_JOURNAL) {
3947                 for (i = 0; i < nats_in_cursum(journal); i++) {
3948                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3949                                 return i;
3950                 }
3951                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3952                         return update_nats_in_cursum(journal, 1);
3953         } else if (type == SIT_JOURNAL) {
3954                 for (i = 0; i < sits_in_cursum(journal); i++)
3955                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3956                                 return i;
3957                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3958                         return update_sits_in_cursum(journal, 1);
3959         }
3960         return -1;
3961 }
3962
3963 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3964                                         unsigned int segno)
3965 {
3966         return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3967 }
3968
3969 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3970                                         unsigned int start)
3971 {
3972         struct sit_info *sit_i = SIT_I(sbi);
3973         struct page *page;
3974         pgoff_t src_off, dst_off;
3975
3976         src_off = current_sit_addr(sbi, start);
3977         dst_off = next_sit_addr(sbi, src_off);
3978
3979         page = f2fs_grab_meta_page(sbi, dst_off);
3980         seg_info_to_sit_page(sbi, page, start);
3981
3982         set_page_dirty(page);
3983         set_to_next_sit(sit_i, start);
3984
3985         return page;
3986 }
3987
3988 static struct sit_entry_set *grab_sit_entry_set(void)
3989 {
3990         struct sit_entry_set *ses =
3991                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3992
3993         ses->entry_cnt = 0;
3994         INIT_LIST_HEAD(&ses->set_list);
3995         return ses;
3996 }
3997
3998 static void release_sit_entry_set(struct sit_entry_set *ses)
3999 {
4000         list_del(&ses->set_list);
4001         kmem_cache_free(sit_entry_set_slab, ses);
4002 }
4003
4004 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4005                                                 struct list_head *head)
4006 {
4007         struct sit_entry_set *next = ses;
4008
4009         if (list_is_last(&ses->set_list, head))
4010                 return;
4011
4012         list_for_each_entry_continue(next, head, set_list)
4013                 if (ses->entry_cnt <= next->entry_cnt)
4014                         break;
4015
4016         list_move_tail(&ses->set_list, &next->set_list);
4017 }
4018
4019 static void add_sit_entry(unsigned int segno, struct list_head *head)
4020 {
4021         struct sit_entry_set *ses;
4022         unsigned int start_segno = START_SEGNO(segno);
4023
4024         list_for_each_entry(ses, head, set_list) {
4025                 if (ses->start_segno == start_segno) {
4026                         ses->entry_cnt++;
4027                         adjust_sit_entry_set(ses, head);
4028                         return;
4029                 }
4030         }
4031
4032         ses = grab_sit_entry_set();
4033
4034         ses->start_segno = start_segno;
4035         ses->entry_cnt++;
4036         list_add(&ses->set_list, head);
4037 }
4038
4039 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4040 {
4041         struct f2fs_sm_info *sm_info = SM_I(sbi);
4042         struct list_head *set_list = &sm_info->sit_entry_set;
4043         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4044         unsigned int segno;
4045
4046         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4047                 add_sit_entry(segno, set_list);
4048 }
4049
4050 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4051 {
4052         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4053         struct f2fs_journal *journal = curseg->journal;
4054         int i;
4055
4056         down_write(&curseg->journal_rwsem);
4057         for (i = 0; i < sits_in_cursum(journal); i++) {
4058                 unsigned int segno;
4059                 bool dirtied;
4060
4061                 segno = le32_to_cpu(segno_in_journal(journal, i));
4062                 dirtied = __mark_sit_entry_dirty(sbi, segno);
4063
4064                 if (!dirtied)
4065                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4066         }
4067         update_sits_in_cursum(journal, -i);
4068         up_write(&curseg->journal_rwsem);
4069 }
4070
4071 /*
4072  * CP calls this function, which flushes SIT entries including sit_journal,
4073  * and moves prefree segs to free segs.
4074  */
4075 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4076 {
4077         struct sit_info *sit_i = SIT_I(sbi);
4078         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4079         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4080         struct f2fs_journal *journal = curseg->journal;
4081         struct sit_entry_set *ses, *tmp;
4082         struct list_head *head = &SM_I(sbi)->sit_entry_set;
4083         bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4084         struct seg_entry *se;
4085
4086         down_write(&sit_i->sentry_lock);
4087
4088         if (!sit_i->dirty_sentries)
4089                 goto out;
4090
4091         /*
4092          * add and account sit entries of dirty bitmap in sit entry
4093          * set temporarily
4094          */
4095         add_sits_in_set(sbi);
4096
4097         /*
4098          * if there are no enough space in journal to store dirty sit
4099          * entries, remove all entries from journal and add and account
4100          * them in sit entry set.
4101          */
4102         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4103                                                                 !to_journal)
4104                 remove_sits_in_journal(sbi);
4105
4106         /*
4107          * there are two steps to flush sit entries:
4108          * #1, flush sit entries to journal in current cold data summary block.
4109          * #2, flush sit entries to sit page.
4110          */
4111         list_for_each_entry_safe(ses, tmp, head, set_list) {
4112                 struct page *page = NULL;
4113                 struct f2fs_sit_block *raw_sit = NULL;
4114                 unsigned int start_segno = ses->start_segno;
4115                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4116                                                 (unsigned long)MAIN_SEGS(sbi));
4117                 unsigned int segno = start_segno;
4118
4119                 if (to_journal &&
4120                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4121                         to_journal = false;
4122
4123                 if (to_journal) {
4124                         down_write(&curseg->journal_rwsem);
4125                 } else {
4126                         page = get_next_sit_page(sbi, start_segno);
4127                         raw_sit = page_address(page);
4128                 }
4129
4130                 /* flush dirty sit entries in region of current sit set */
4131                 for_each_set_bit_from(segno, bitmap, end) {
4132                         int offset, sit_offset;
4133
4134                         se = get_seg_entry(sbi, segno);
4135 #ifdef CONFIG_F2FS_CHECK_FS
4136                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4137                                                 SIT_VBLOCK_MAP_SIZE))
4138                                 f2fs_bug_on(sbi, 1);
4139 #endif
4140
4141                         /* add discard candidates */
4142                         if (!(cpc->reason & CP_DISCARD)) {
4143                                 cpc->trim_start = segno;
4144                                 add_discard_addrs(sbi, cpc, false);
4145                         }
4146
4147                         if (to_journal) {
4148                                 offset = f2fs_lookup_journal_in_cursum(journal,
4149                                                         SIT_JOURNAL, segno, 1);
4150                                 f2fs_bug_on(sbi, offset < 0);
4151                                 segno_in_journal(journal, offset) =
4152                                                         cpu_to_le32(segno);
4153                                 seg_info_to_raw_sit(se,
4154                                         &sit_in_journal(journal, offset));
4155                                 check_block_count(sbi, segno,
4156                                         &sit_in_journal(journal, offset));
4157                         } else {
4158                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4159                                 seg_info_to_raw_sit(se,
4160                                                 &raw_sit->entries[sit_offset]);
4161                                 check_block_count(sbi, segno,
4162                                                 &raw_sit->entries[sit_offset]);
4163                         }
4164
4165                         __clear_bit(segno, bitmap);
4166                         sit_i->dirty_sentries--;
4167                         ses->entry_cnt--;
4168                 }
4169
4170                 if (to_journal)
4171                         up_write(&curseg->journal_rwsem);
4172                 else
4173                         f2fs_put_page(page, 1);
4174
4175                 f2fs_bug_on(sbi, ses->entry_cnt);
4176                 release_sit_entry_set(ses);
4177         }
4178
4179         f2fs_bug_on(sbi, !list_empty(head));
4180         f2fs_bug_on(sbi, sit_i->dirty_sentries);
4181 out:
4182         if (cpc->reason & CP_DISCARD) {
4183                 __u64 trim_start = cpc->trim_start;
4184
4185                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4186                         add_discard_addrs(sbi, cpc, false);
4187
4188                 cpc->trim_start = trim_start;
4189         }
4190         up_write(&sit_i->sentry_lock);
4191
4192         set_prefree_as_free_segments(sbi);
4193 }
4194
4195 static int build_sit_info(struct f2fs_sb_info *sbi)
4196 {
4197         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4198         struct sit_info *sit_i;
4199         unsigned int sit_segs, start;
4200         char *src_bitmap, *bitmap;
4201         unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4202
4203         /* allocate memory for SIT information */
4204         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4205         if (!sit_i)
4206                 return -ENOMEM;
4207
4208         SM_I(sbi)->sit_info = sit_i;
4209
4210         sit_i->sentries =
4211                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4212                                               MAIN_SEGS(sbi)),
4213                               GFP_KERNEL);
4214         if (!sit_i->sentries)
4215                 return -ENOMEM;
4216
4217         main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4218         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4219                                                                 GFP_KERNEL);
4220         if (!sit_i->dirty_sentries_bitmap)
4221                 return -ENOMEM;
4222
4223 #ifdef CONFIG_F2FS_CHECK_FS
4224         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4225 #else
4226         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4227 #endif
4228         sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4229         if (!sit_i->bitmap)
4230                 return -ENOMEM;
4231
4232         bitmap = sit_i->bitmap;
4233
4234         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4235                 sit_i->sentries[start].cur_valid_map = bitmap;
4236                 bitmap += SIT_VBLOCK_MAP_SIZE;
4237
4238                 sit_i->sentries[start].ckpt_valid_map = bitmap;
4239                 bitmap += SIT_VBLOCK_MAP_SIZE;
4240
4241 #ifdef CONFIG_F2FS_CHECK_FS
4242                 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4243                 bitmap += SIT_VBLOCK_MAP_SIZE;
4244 #endif
4245
4246                 sit_i->sentries[start].discard_map = bitmap;
4247                 bitmap += SIT_VBLOCK_MAP_SIZE;
4248         }
4249
4250         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4251         if (!sit_i->tmp_map)
4252                 return -ENOMEM;
4253
4254         if (__is_large_section(sbi)) {
4255                 sit_i->sec_entries =
4256                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4257                                                       MAIN_SECS(sbi)),
4258                                       GFP_KERNEL);
4259                 if (!sit_i->sec_entries)
4260                         return -ENOMEM;
4261         }
4262
4263         /* get information related with SIT */
4264         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4265
4266         /* setup SIT bitmap from ckeckpoint pack */
4267         sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4268         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4269
4270         sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4271         if (!sit_i->sit_bitmap)
4272                 return -ENOMEM;
4273
4274 #ifdef CONFIG_F2FS_CHECK_FS
4275         sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4276                                         sit_bitmap_size, GFP_KERNEL);
4277         if (!sit_i->sit_bitmap_mir)
4278                 return -ENOMEM;
4279
4280         sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4281                                         main_bitmap_size, GFP_KERNEL);
4282         if (!sit_i->invalid_segmap)
4283                 return -ENOMEM;
4284 #endif
4285
4286         /* init SIT information */
4287         sit_i->s_ops = &default_salloc_ops;
4288
4289         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4290         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4291         sit_i->written_valid_blocks = 0;
4292         sit_i->bitmap_size = sit_bitmap_size;
4293         sit_i->dirty_sentries = 0;
4294         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4295         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4296         sit_i->mounted_time = ktime_get_boottime_seconds();
4297         init_rwsem(&sit_i->sentry_lock);
4298         return 0;
4299 }
4300
4301 static int build_free_segmap(struct f2fs_sb_info *sbi)
4302 {
4303         struct free_segmap_info *free_i;
4304         unsigned int bitmap_size, sec_bitmap_size;
4305
4306         /* allocate memory for free segmap information */
4307         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4308         if (!free_i)
4309                 return -ENOMEM;
4310
4311         SM_I(sbi)->free_info = free_i;
4312
4313         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4314         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4315         if (!free_i->free_segmap)
4316                 return -ENOMEM;
4317
4318         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4319         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4320         if (!free_i->free_secmap)
4321                 return -ENOMEM;
4322
4323         /* set all segments as dirty temporarily */
4324         memset(free_i->free_segmap, 0xff, bitmap_size);
4325         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4326
4327         /* init free segmap information */
4328         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4329         free_i->free_segments = 0;
4330         free_i->free_sections = 0;
4331         spin_lock_init(&free_i->segmap_lock);
4332         return 0;
4333 }
4334
4335 static int build_curseg(struct f2fs_sb_info *sbi)
4336 {
4337         struct curseg_info *array;
4338         int i;
4339
4340         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4341                                         sizeof(*array)), GFP_KERNEL);
4342         if (!array)
4343                 return -ENOMEM;
4344
4345         SM_I(sbi)->curseg_array = array;
4346
4347         for (i = 0; i < NO_CHECK_TYPE; i++) {
4348                 mutex_init(&array[i].curseg_mutex);
4349                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4350                 if (!array[i].sum_blk)
4351                         return -ENOMEM;
4352                 init_rwsem(&array[i].journal_rwsem);
4353                 array[i].journal = f2fs_kzalloc(sbi,
4354                                 sizeof(struct f2fs_journal), GFP_KERNEL);
4355                 if (!array[i].journal)
4356                         return -ENOMEM;
4357                 if (i < NR_PERSISTENT_LOG)
4358                         array[i].seg_type = CURSEG_HOT_DATA + i;
4359                 else if (i == CURSEG_COLD_DATA_PINNED)
4360                         array[i].seg_type = CURSEG_COLD_DATA;
4361                 else if (i == CURSEG_ALL_DATA_ATGC)
4362                         array[i].seg_type = CURSEG_COLD_DATA;
4363                 array[i].segno = NULL_SEGNO;
4364                 array[i].next_blkoff = 0;
4365                 array[i].inited = false;
4366         }
4367         return restore_curseg_summaries(sbi);
4368 }
4369
4370 static int build_sit_entries(struct f2fs_sb_info *sbi)
4371 {
4372         struct sit_info *sit_i = SIT_I(sbi);
4373         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4374         struct f2fs_journal *journal = curseg->journal;
4375         struct seg_entry *se;
4376         struct f2fs_sit_entry sit;
4377         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4378         unsigned int i, start, end;
4379         unsigned int readed, start_blk = 0;
4380         int err = 0;
4381         block_t total_node_blocks = 0;
4382
4383         do {
4384                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4385                                                         META_SIT, true);
4386
4387                 start = start_blk * sit_i->sents_per_block;
4388                 end = (start_blk + readed) * sit_i->sents_per_block;
4389
4390                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4391                         struct f2fs_sit_block *sit_blk;
4392                         struct page *page;
4393
4394                         se = &sit_i->sentries[start];
4395                         page = get_current_sit_page(sbi, start);
4396                         if (IS_ERR(page))
4397                                 return PTR_ERR(page);
4398                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4399                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4400                         f2fs_put_page(page, 1);
4401
4402                         err = check_block_count(sbi, start, &sit);
4403                         if (err)
4404                                 return err;
4405                         seg_info_from_raw_sit(se, &sit);
4406                         if (IS_NODESEG(se->type))
4407                                 total_node_blocks += se->valid_blocks;
4408
4409                         /* build discard map only one time */
4410                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4411                                 memset(se->discard_map, 0xff,
4412                                         SIT_VBLOCK_MAP_SIZE);
4413                         } else {
4414                                 memcpy(se->discard_map,
4415                                         se->cur_valid_map,
4416                                         SIT_VBLOCK_MAP_SIZE);
4417                                 sbi->discard_blks +=
4418                                         sbi->blocks_per_seg -
4419                                         se->valid_blocks;
4420                         }
4421
4422                         if (__is_large_section(sbi))
4423                                 get_sec_entry(sbi, start)->valid_blocks +=
4424                                                         se->valid_blocks;
4425                 }
4426                 start_blk += readed;
4427         } while (start_blk < sit_blk_cnt);
4428
4429         down_read(&curseg->journal_rwsem);
4430         for (i = 0; i < sits_in_cursum(journal); i++) {
4431                 unsigned int old_valid_blocks;
4432
4433                 start = le32_to_cpu(segno_in_journal(journal, i));
4434                 if (start >= MAIN_SEGS(sbi)) {
4435                         f2fs_err(sbi, "Wrong journal entry on segno %u",
4436                                  start);
4437                         err = -EFSCORRUPTED;
4438                         break;
4439                 }
4440
4441                 se = &sit_i->sentries[start];
4442                 sit = sit_in_journal(journal, i);
4443
4444                 old_valid_blocks = se->valid_blocks;
4445                 if (IS_NODESEG(se->type))
4446                         total_node_blocks -= old_valid_blocks;
4447
4448                 err = check_block_count(sbi, start, &sit);
4449                 if (err)
4450                         break;
4451                 seg_info_from_raw_sit(se, &sit);
4452                 if (IS_NODESEG(se->type))
4453                         total_node_blocks += se->valid_blocks;
4454
4455                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4456                         memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4457                 } else {
4458                         memcpy(se->discard_map, se->cur_valid_map,
4459                                                 SIT_VBLOCK_MAP_SIZE);
4460                         sbi->discard_blks += old_valid_blocks;
4461                         sbi->discard_blks -= se->valid_blocks;
4462                 }
4463
4464                 if (__is_large_section(sbi)) {
4465                         get_sec_entry(sbi, start)->valid_blocks +=
4466                                                         se->valid_blocks;
4467                         get_sec_entry(sbi, start)->valid_blocks -=
4468                                                         old_valid_blocks;
4469                 }
4470         }
4471         up_read(&curseg->journal_rwsem);
4472
4473         if (!err && total_node_blocks != valid_node_count(sbi)) {
4474                 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4475                          total_node_blocks, valid_node_count(sbi));
4476                 err = -EFSCORRUPTED;
4477         }
4478
4479         return err;
4480 }
4481
4482 static void init_free_segmap(struct f2fs_sb_info *sbi)
4483 {
4484         unsigned int start;
4485         int type;
4486         struct seg_entry *sentry;
4487
4488         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4489                 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4490                         continue;
4491                 sentry = get_seg_entry(sbi, start);
4492                 if (!sentry->valid_blocks)
4493                         __set_free(sbi, start);
4494                 else
4495                         SIT_I(sbi)->written_valid_blocks +=
4496                                                 sentry->valid_blocks;
4497         }
4498
4499         /* set use the current segments */
4500         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4501                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4502                 __set_test_and_inuse(sbi, curseg_t->segno);
4503         }
4504 }
4505
4506 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4507 {
4508         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4509         struct free_segmap_info *free_i = FREE_I(sbi);
4510         unsigned int segno = 0, offset = 0, secno;
4511         block_t valid_blocks, usable_blks_in_seg;
4512         block_t blks_per_sec = BLKS_PER_SEC(sbi);
4513
4514         while (1) {
4515                 /* find dirty segment based on free segmap */
4516                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4517                 if (segno >= MAIN_SEGS(sbi))
4518                         break;
4519                 offset = segno + 1;
4520                 valid_blocks = get_valid_blocks(sbi, segno, false);
4521                 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4522                 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4523                         continue;
4524                 if (valid_blocks > usable_blks_in_seg) {
4525                         f2fs_bug_on(sbi, 1);
4526                         continue;
4527                 }
4528                 mutex_lock(&dirty_i->seglist_lock);
4529                 __locate_dirty_segment(sbi, segno, DIRTY);
4530                 mutex_unlock(&dirty_i->seglist_lock);
4531         }
4532
4533         if (!__is_large_section(sbi))
4534                 return;
4535
4536         mutex_lock(&dirty_i->seglist_lock);
4537         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4538                 valid_blocks = get_valid_blocks(sbi, segno, true);
4539                 secno = GET_SEC_FROM_SEG(sbi, segno);
4540
4541                 if (!valid_blocks || valid_blocks == blks_per_sec)
4542                         continue;
4543                 if (IS_CURSEC(sbi, secno))
4544                         continue;
4545                 set_bit(secno, dirty_i->dirty_secmap);
4546         }
4547         mutex_unlock(&dirty_i->seglist_lock);
4548 }
4549
4550 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4551 {
4552         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4553         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4554
4555         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4556         if (!dirty_i->victim_secmap)
4557                 return -ENOMEM;
4558         return 0;
4559 }
4560
4561 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4562 {
4563         struct dirty_seglist_info *dirty_i;
4564         unsigned int bitmap_size, i;
4565
4566         /* allocate memory for dirty segments list information */
4567         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4568                                                                 GFP_KERNEL);
4569         if (!dirty_i)
4570                 return -ENOMEM;
4571
4572         SM_I(sbi)->dirty_info = dirty_i;
4573         mutex_init(&dirty_i->seglist_lock);
4574
4575         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4576
4577         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4578                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4579                                                                 GFP_KERNEL);
4580                 if (!dirty_i->dirty_segmap[i])
4581                         return -ENOMEM;
4582         }
4583
4584         if (__is_large_section(sbi)) {
4585                 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4586                 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4587                                                 bitmap_size, GFP_KERNEL);
4588                 if (!dirty_i->dirty_secmap)
4589                         return -ENOMEM;
4590         }
4591
4592         init_dirty_segmap(sbi);
4593         return init_victim_secmap(sbi);
4594 }
4595
4596 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4597 {
4598         int i;
4599
4600         /*
4601          * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4602          * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4603          */
4604         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4605                 struct curseg_info *curseg = CURSEG_I(sbi, i);
4606                 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4607                 unsigned int blkofs = curseg->next_blkoff;
4608
4609                 sanity_check_seg_type(sbi, curseg->seg_type);
4610
4611                 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4612                         goto out;
4613
4614                 if (curseg->alloc_type == SSR)
4615                         continue;
4616
4617                 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4618                         if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4619                                 continue;
4620 out:
4621                         f2fs_err(sbi,
4622                                  "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4623                                  i, curseg->segno, curseg->alloc_type,
4624                                  curseg->next_blkoff, blkofs);
4625                         return -EFSCORRUPTED;
4626                 }
4627         }
4628         return 0;
4629 }
4630
4631 #ifdef CONFIG_BLK_DEV_ZONED
4632
4633 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4634                                     struct f2fs_dev_info *fdev,
4635                                     struct blk_zone *zone)
4636 {
4637         unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4638         block_t zone_block, wp_block, last_valid_block;
4639         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4640         int i, s, b, ret;
4641         struct seg_entry *se;
4642
4643         if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4644                 return 0;
4645
4646         wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4647         wp_segno = GET_SEGNO(sbi, wp_block);
4648         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4649         zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4650         zone_segno = GET_SEGNO(sbi, zone_block);
4651         zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4652
4653         if (zone_segno >= MAIN_SEGS(sbi))
4654                 return 0;
4655
4656         /*
4657          * Skip check of zones cursegs point to, since
4658          * fix_curseg_write_pointer() checks them.
4659          */
4660         for (i = 0; i < NO_CHECK_TYPE; i++)
4661                 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4662                                                    CURSEG_I(sbi, i)->segno))
4663                         return 0;
4664
4665         /*
4666          * Get last valid block of the zone.
4667          */
4668         last_valid_block = zone_block - 1;
4669         for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4670                 segno = zone_segno + s;
4671                 se = get_seg_entry(sbi, segno);
4672                 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4673                         if (f2fs_test_bit(b, se->cur_valid_map)) {
4674                                 last_valid_block = START_BLOCK(sbi, segno) + b;
4675                                 break;
4676                         }
4677                 if (last_valid_block >= zone_block)
4678                         break;
4679         }
4680
4681         /*
4682          * If last valid block is beyond the write pointer, report the
4683          * inconsistency. This inconsistency does not cause write error
4684          * because the zone will not be selected for write operation until
4685          * it get discarded. Just report it.
4686          */
4687         if (last_valid_block >= wp_block) {
4688                 f2fs_notice(sbi, "Valid block beyond write pointer: "
4689                             "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4690                             GET_SEGNO(sbi, last_valid_block),
4691                             GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4692                             wp_segno, wp_blkoff);
4693                 return 0;
4694         }
4695
4696         /*
4697          * If there is no valid block in the zone and if write pointer is
4698          * not at zone start, reset the write pointer.
4699          */
4700         if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4701                 f2fs_notice(sbi,
4702                             "Zone without valid block has non-zero write "
4703                             "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4704                             wp_segno, wp_blkoff);
4705                 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4706                                         zone->len >> log_sectors_per_block);
4707                 if (ret) {
4708                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4709                                  fdev->path, ret);
4710                         return ret;
4711                 }
4712         }
4713
4714         return 0;
4715 }
4716
4717 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4718                                                   block_t zone_blkaddr)
4719 {
4720         int i;
4721
4722         for (i = 0; i < sbi->s_ndevs; i++) {
4723                 if (!bdev_is_zoned(FDEV(i).bdev))
4724                         continue;
4725                 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4726                                 zone_blkaddr <= FDEV(i).end_blk))
4727                         return &FDEV(i);
4728         }
4729
4730         return NULL;
4731 }
4732
4733 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4734                               void *data) {
4735         memcpy(data, zone, sizeof(struct blk_zone));
4736         return 0;
4737 }
4738
4739 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4740 {
4741         struct curseg_info *cs = CURSEG_I(sbi, type);
4742         struct f2fs_dev_info *zbd;
4743         struct blk_zone zone;
4744         unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4745         block_t cs_zone_block, wp_block;
4746         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4747         sector_t zone_sector;
4748         int err;
4749
4750         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4751         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4752
4753         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4754         if (!zbd)
4755                 return 0;
4756
4757         /* report zone for the sector the curseg points to */
4758         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4759                 << log_sectors_per_block;
4760         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4761                                   report_one_zone_cb, &zone);
4762         if (err != 1) {
4763                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4764                          zbd->path, err);
4765                 return err;
4766         }
4767
4768         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4769                 return 0;
4770
4771         wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4772         wp_segno = GET_SEGNO(sbi, wp_block);
4773         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4774         wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4775
4776         if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4777                 wp_sector_off == 0)
4778                 return 0;
4779
4780         f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4781                     "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4782                     type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4783
4784         f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4785                     "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4786         allocate_segment_by_default(sbi, type, true);
4787
4788         /* check consistency of the zone curseg pointed to */
4789         if (check_zone_write_pointer(sbi, zbd, &zone))
4790                 return -EIO;
4791
4792         /* check newly assigned zone */
4793         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4794         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4795
4796         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4797         if (!zbd)
4798                 return 0;
4799
4800         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4801                 << log_sectors_per_block;
4802         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4803                                   report_one_zone_cb, &zone);
4804         if (err != 1) {
4805                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4806                          zbd->path, err);
4807                 return err;
4808         }
4809
4810         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4811                 return 0;
4812
4813         if (zone.wp != zone.start) {
4814                 f2fs_notice(sbi,
4815                             "New zone for curseg[%d] is not yet discarded. "
4816                             "Reset the zone: curseg[0x%x,0x%x]",
4817                             type, cs->segno, cs->next_blkoff);
4818                 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4819                                 zone_sector >> log_sectors_per_block,
4820                                 zone.len >> log_sectors_per_block);
4821                 if (err) {
4822                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4823                                  zbd->path, err);
4824                         return err;
4825                 }
4826         }
4827
4828         return 0;
4829 }
4830
4831 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4832 {
4833         int i, ret;
4834
4835         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4836                 ret = fix_curseg_write_pointer(sbi, i);
4837                 if (ret)
4838                         return ret;
4839         }
4840
4841         return 0;
4842 }
4843
4844 struct check_zone_write_pointer_args {
4845         struct f2fs_sb_info *sbi;
4846         struct f2fs_dev_info *fdev;
4847 };
4848
4849 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4850                                       void *data) {
4851         struct check_zone_write_pointer_args *args;
4852         args = (struct check_zone_write_pointer_args *)data;
4853
4854         return check_zone_write_pointer(args->sbi, args->fdev, zone);
4855 }
4856
4857 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4858 {
4859         int i, ret;
4860         struct check_zone_write_pointer_args args;
4861
4862         for (i = 0; i < sbi->s_ndevs; i++) {
4863                 if (!bdev_is_zoned(FDEV(i).bdev))
4864                         continue;
4865
4866                 args.sbi = sbi;
4867                 args.fdev = &FDEV(i);
4868                 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4869                                           check_zone_write_pointer_cb, &args);
4870                 if (ret < 0)
4871                         return ret;
4872         }
4873
4874         return 0;
4875 }
4876
4877 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4878                                                 unsigned int dev_idx)
4879 {
4880         if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4881                 return true;
4882         return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4883 }
4884
4885 /* Return the zone index in the given device */
4886 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4887                                         int dev_idx)
4888 {
4889         block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4890
4891         return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4892                                                 sbi->log_blocks_per_blkz;
4893 }
4894
4895 /*
4896  * Return the usable segments in a section based on the zone's
4897  * corresponding zone capacity. Zone is equal to a section.
4898  */
4899 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4900                 struct f2fs_sb_info *sbi, unsigned int segno)
4901 {
4902         unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4903
4904         dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4905         zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4906
4907         /* Conventional zone's capacity is always equal to zone size */
4908         if (is_conv_zone(sbi, zone_idx, dev_idx))
4909                 return sbi->segs_per_sec;
4910
4911         /*
4912          * If the zone_capacity_blocks array is NULL, then zone capacity
4913          * is equal to the zone size for all zones
4914          */
4915         if (!FDEV(dev_idx).zone_capacity_blocks)
4916                 return sbi->segs_per_sec;
4917
4918         /* Get the segment count beyond zone capacity block */
4919         unusable_segs_in_sec = (sbi->blocks_per_blkz -
4920                                 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
4921                                 sbi->log_blocks_per_seg;
4922         return sbi->segs_per_sec - unusable_segs_in_sec;
4923 }
4924
4925 /*
4926  * Return the number of usable blocks in a segment. The number of blocks
4927  * returned is always equal to the number of blocks in a segment for
4928  * segments fully contained within a sequential zone capacity or a
4929  * conventional zone. For segments partially contained in a sequential
4930  * zone capacity, the number of usable blocks up to the zone capacity
4931  * is returned. 0 is returned in all other cases.
4932  */
4933 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4934                         struct f2fs_sb_info *sbi, unsigned int segno)
4935 {
4936         block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4937         unsigned int zone_idx, dev_idx, secno;
4938
4939         secno = GET_SEC_FROM_SEG(sbi, segno);
4940         seg_start = START_BLOCK(sbi, segno);
4941         dev_idx = f2fs_target_device_index(sbi, seg_start);
4942         zone_idx = get_zone_idx(sbi, secno, dev_idx);
4943
4944         /*
4945          * Conventional zone's capacity is always equal to zone size,
4946          * so, blocks per segment is unchanged.
4947          */
4948         if (is_conv_zone(sbi, zone_idx, dev_idx))
4949                 return sbi->blocks_per_seg;
4950
4951         if (!FDEV(dev_idx).zone_capacity_blocks)
4952                 return sbi->blocks_per_seg;
4953
4954         sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4955         sec_cap_blkaddr = sec_start_blkaddr +
4956                                 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
4957
4958         /*
4959          * If segment starts before zone capacity and spans beyond
4960          * zone capacity, then usable blocks are from seg start to
4961          * zone capacity. If the segment starts after the zone capacity,
4962          * then there are no usable blocks.
4963          */
4964         if (seg_start >= sec_cap_blkaddr)
4965                 return 0;
4966         if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
4967                 return sec_cap_blkaddr - seg_start;
4968
4969         return sbi->blocks_per_seg;
4970 }
4971 #else
4972 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4973 {
4974         return 0;
4975 }
4976
4977 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4978 {
4979         return 0;
4980 }
4981
4982 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
4983                                                         unsigned int segno)
4984 {
4985         return 0;
4986 }
4987
4988 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
4989                                                         unsigned int segno)
4990 {
4991         return 0;
4992 }
4993 #endif
4994 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
4995                                         unsigned int segno)
4996 {
4997         if (f2fs_sb_has_blkzoned(sbi))
4998                 return f2fs_usable_zone_blks_in_seg(sbi, segno);
4999
5000         return sbi->blocks_per_seg;
5001 }
5002
5003 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5004                                         unsigned int segno)
5005 {
5006         if (f2fs_sb_has_blkzoned(sbi))
5007                 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5008
5009         return sbi->segs_per_sec;
5010 }
5011
5012 /*
5013  * Update min, max modified time for cost-benefit GC algorithm
5014  */
5015 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5016 {
5017         struct sit_info *sit_i = SIT_I(sbi);
5018         unsigned int segno;
5019
5020         down_write(&sit_i->sentry_lock);
5021
5022         sit_i->min_mtime = ULLONG_MAX;
5023
5024         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5025                 unsigned int i;
5026                 unsigned long long mtime = 0;
5027
5028                 for (i = 0; i < sbi->segs_per_sec; i++)
5029                         mtime += get_seg_entry(sbi, segno + i)->mtime;
5030
5031                 mtime = div_u64(mtime, sbi->segs_per_sec);
5032
5033                 if (sit_i->min_mtime > mtime)
5034                         sit_i->min_mtime = mtime;
5035         }
5036         sit_i->max_mtime = get_mtime(sbi, false);
5037         sit_i->dirty_max_mtime = 0;
5038         up_write(&sit_i->sentry_lock);
5039 }
5040
5041 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5042 {
5043         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5044         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5045         struct f2fs_sm_info *sm_info;
5046         int err;
5047
5048         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5049         if (!sm_info)
5050                 return -ENOMEM;
5051
5052         /* init sm info */
5053         sbi->sm_info = sm_info;
5054         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5055         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5056         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5057         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5058         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5059         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5060         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5061         sm_info->rec_prefree_segments = sm_info->main_segments *
5062                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5063         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5064                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5065
5066         if (!f2fs_lfs_mode(sbi))
5067                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5068         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5069         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5070         sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5071         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5072         sm_info->min_ssr_sections = reserved_sections(sbi);
5073
5074         INIT_LIST_HEAD(&sm_info->sit_entry_set);
5075
5076         init_rwsem(&sm_info->curseg_lock);
5077
5078         if (!f2fs_readonly(sbi->sb)) {
5079                 err = f2fs_create_flush_cmd_control(sbi);
5080                 if (err)
5081                         return err;
5082         }
5083
5084         err = create_discard_cmd_control(sbi);
5085         if (err)
5086                 return err;
5087
5088         err = build_sit_info(sbi);
5089         if (err)
5090                 return err;
5091         err = build_free_segmap(sbi);
5092         if (err)
5093                 return err;
5094         err = build_curseg(sbi);
5095         if (err)
5096                 return err;
5097
5098         /* reinit free segmap based on SIT */
5099         err = build_sit_entries(sbi);
5100         if (err)
5101                 return err;
5102
5103         init_free_segmap(sbi);
5104         err = build_dirty_segmap(sbi);
5105         if (err)
5106                 return err;
5107
5108         err = sanity_check_curseg(sbi);
5109         if (err)
5110                 return err;
5111
5112         init_min_max_mtime(sbi);
5113         return 0;
5114 }
5115
5116 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5117                 enum dirty_type dirty_type)
5118 {
5119         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5120
5121         mutex_lock(&dirty_i->seglist_lock);
5122         kvfree(dirty_i->dirty_segmap[dirty_type]);
5123         dirty_i->nr_dirty[dirty_type] = 0;
5124         mutex_unlock(&dirty_i->seglist_lock);
5125 }
5126
5127 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5128 {
5129         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5130         kvfree(dirty_i->victim_secmap);
5131 }
5132
5133 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5134 {
5135         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5136         int i;
5137
5138         if (!dirty_i)
5139                 return;
5140
5141         /* discard pre-free/dirty segments list */
5142         for (i = 0; i < NR_DIRTY_TYPE; i++)
5143                 discard_dirty_segmap(sbi, i);
5144
5145         if (__is_large_section(sbi)) {
5146                 mutex_lock(&dirty_i->seglist_lock);
5147                 kvfree(dirty_i->dirty_secmap);
5148                 mutex_unlock(&dirty_i->seglist_lock);
5149         }
5150
5151         destroy_victim_secmap(sbi);
5152         SM_I(sbi)->dirty_info = NULL;
5153         kfree(dirty_i);
5154 }
5155
5156 static void destroy_curseg(struct f2fs_sb_info *sbi)
5157 {
5158         struct curseg_info *array = SM_I(sbi)->curseg_array;
5159         int i;
5160
5161         if (!array)
5162                 return;
5163         SM_I(sbi)->curseg_array = NULL;
5164         for (i = 0; i < NR_CURSEG_TYPE; i++) {
5165                 kfree(array[i].sum_blk);
5166                 kfree(array[i].journal);
5167         }
5168         kfree(array);
5169 }
5170
5171 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5172 {
5173         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5174         if (!free_i)
5175                 return;
5176         SM_I(sbi)->free_info = NULL;
5177         kvfree(free_i->free_segmap);
5178         kvfree(free_i->free_secmap);
5179         kfree(free_i);
5180 }
5181
5182 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5183 {
5184         struct sit_info *sit_i = SIT_I(sbi);
5185
5186         if (!sit_i)
5187                 return;
5188
5189         if (sit_i->sentries)
5190                 kvfree(sit_i->bitmap);
5191         kfree(sit_i->tmp_map);
5192
5193         kvfree(sit_i->sentries);
5194         kvfree(sit_i->sec_entries);
5195         kvfree(sit_i->dirty_sentries_bitmap);
5196
5197         SM_I(sbi)->sit_info = NULL;
5198         kvfree(sit_i->sit_bitmap);
5199 #ifdef CONFIG_F2FS_CHECK_FS
5200         kvfree(sit_i->sit_bitmap_mir);
5201         kvfree(sit_i->invalid_segmap);
5202 #endif
5203         kfree(sit_i);
5204 }
5205
5206 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5207 {
5208         struct f2fs_sm_info *sm_info = SM_I(sbi);
5209
5210         if (!sm_info)
5211                 return;
5212         f2fs_destroy_flush_cmd_control(sbi, true);
5213         destroy_discard_cmd_control(sbi);
5214         destroy_dirty_segmap(sbi);
5215         destroy_curseg(sbi);
5216         destroy_free_segmap(sbi);
5217         destroy_sit_info(sbi);
5218         sbi->sm_info = NULL;
5219         kfree(sm_info);
5220 }
5221
5222 int __init f2fs_create_segment_manager_caches(void)
5223 {
5224         discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5225                         sizeof(struct discard_entry));
5226         if (!discard_entry_slab)
5227                 goto fail;
5228
5229         discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5230                         sizeof(struct discard_cmd));
5231         if (!discard_cmd_slab)
5232                 goto destroy_discard_entry;
5233
5234         sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5235                         sizeof(struct sit_entry_set));
5236         if (!sit_entry_set_slab)
5237                 goto destroy_discard_cmd;
5238
5239         inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5240                         sizeof(struct inmem_pages));
5241         if (!inmem_entry_slab)
5242                 goto destroy_sit_entry_set;
5243         return 0;
5244
5245 destroy_sit_entry_set:
5246         kmem_cache_destroy(sit_entry_set_slab);
5247 destroy_discard_cmd:
5248         kmem_cache_destroy(discard_cmd_slab);
5249 destroy_discard_entry:
5250         kmem_cache_destroy(discard_entry_slab);
5251 fail:
5252         return -ENOMEM;
5253 }
5254
5255 void f2fs_destroy_segment_manager_caches(void)
5256 {
5257         kmem_cache_destroy(sit_entry_set_slab);
5258         kmem_cache_destroy(discard_cmd_slab);
5259         kmem_cache_destroy(discard_entry_slab);
5260         kmem_cache_destroy(inmem_entry_slab);
5261 }