Merge tag 'xarray-6.0' of git://git.infradead.org/users/willy/xarray
[sfrench/cifs-2.6.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38                           __func__, nid);
39                 return -EFSCORRUPTED;
40         }
41         return 0;
42 }
43
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46         struct f2fs_nm_info *nm_i = NM_I(sbi);
47         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
48         struct sysinfo val;
49         unsigned long avail_ram;
50         unsigned long mem_size = 0;
51         bool res = false;
52
53         if (!nm_i)
54                 return true;
55
56         si_meminfo(&val);
57
58         /* only uses low memory */
59         avail_ram = val.totalram - val.totalhigh;
60
61         /*
62          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
63          */
64         if (type == FREE_NIDS) {
65                 mem_size = (nm_i->nid_cnt[FREE_NID] *
66                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
67                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68         } else if (type == NAT_ENTRIES) {
69                 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
70                                 sizeof(struct nat_entry)) >> PAGE_SHIFT;
71                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
72                 if (excess_cached_nats(sbi))
73                         res = false;
74         } else if (type == DIRTY_DENTS) {
75                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
76                         return false;
77                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
78                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
79         } else if (type == INO_ENTRIES) {
80                 int i;
81
82                 for (i = 0; i < MAX_INO_ENTRY; i++)
83                         mem_size += sbi->im[i].ino_num *
84                                                 sizeof(struct ino_entry);
85                 mem_size >>= PAGE_SHIFT;
86                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
87         } else if (type == EXTENT_CACHE) {
88                 mem_size = (atomic_read(&sbi->total_ext_tree) *
89                                 sizeof(struct extent_tree) +
90                                 atomic_read(&sbi->total_ext_node) *
91                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
92                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
93         } else if (type == DISCARD_CACHE) {
94                 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
95                                 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
96                 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
97         } else if (type == COMPRESS_PAGE) {
98 #ifdef CONFIG_F2FS_FS_COMPRESSION
99                 unsigned long free_ram = val.freeram;
100
101                 /*
102                  * free memory is lower than watermark or cached page count
103                  * exceed threshold, deny caching compress page.
104                  */
105                 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
106                         (COMPRESS_MAPPING(sbi)->nrpages <
107                          free_ram * sbi->compress_percent / 100);
108 #else
109                 res = false;
110 #endif
111         } else {
112                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
113                         return true;
114         }
115         return res;
116 }
117
118 static void clear_node_page_dirty(struct page *page)
119 {
120         if (PageDirty(page)) {
121                 f2fs_clear_page_cache_dirty_tag(page);
122                 clear_page_dirty_for_io(page);
123                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
124         }
125         ClearPageUptodate(page);
126 }
127
128 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
129 {
130         return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
131 }
132
133 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135         struct page *src_page;
136         struct page *dst_page;
137         pgoff_t dst_off;
138         void *src_addr;
139         void *dst_addr;
140         struct f2fs_nm_info *nm_i = NM_I(sbi);
141
142         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
143
144         /* get current nat block page with lock */
145         src_page = get_current_nat_page(sbi, nid);
146         if (IS_ERR(src_page))
147                 return src_page;
148         dst_page = f2fs_grab_meta_page(sbi, dst_off);
149         f2fs_bug_on(sbi, PageDirty(src_page));
150
151         src_addr = page_address(src_page);
152         dst_addr = page_address(dst_page);
153         memcpy(dst_addr, src_addr, PAGE_SIZE);
154         set_page_dirty(dst_page);
155         f2fs_put_page(src_page, 1);
156
157         set_to_next_nat(nm_i, nid);
158
159         return dst_page;
160 }
161
162 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
163                                                 nid_t nid, bool no_fail)
164 {
165         struct nat_entry *new;
166
167         new = f2fs_kmem_cache_alloc(nat_entry_slab,
168                                         GFP_F2FS_ZERO, no_fail, sbi);
169         if (new) {
170                 nat_set_nid(new, nid);
171                 nat_reset_flag(new);
172         }
173         return new;
174 }
175
176 static void __free_nat_entry(struct nat_entry *e)
177 {
178         kmem_cache_free(nat_entry_slab, e);
179 }
180
181 /* must be locked by nat_tree_lock */
182 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
183         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
184 {
185         if (no_fail)
186                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
187         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
188                 return NULL;
189
190         if (raw_ne)
191                 node_info_from_raw_nat(&ne->ni, raw_ne);
192
193         spin_lock(&nm_i->nat_list_lock);
194         list_add_tail(&ne->list, &nm_i->nat_entries);
195         spin_unlock(&nm_i->nat_list_lock);
196
197         nm_i->nat_cnt[TOTAL_NAT]++;
198         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
199         return ne;
200 }
201
202 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
203 {
204         struct nat_entry *ne;
205
206         ne = radix_tree_lookup(&nm_i->nat_root, n);
207
208         /* for recent accessed nat entry, move it to tail of lru list */
209         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
210                 spin_lock(&nm_i->nat_list_lock);
211                 if (!list_empty(&ne->list))
212                         list_move_tail(&ne->list, &nm_i->nat_entries);
213                 spin_unlock(&nm_i->nat_list_lock);
214         }
215
216         return ne;
217 }
218
219 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
220                 nid_t start, unsigned int nr, struct nat_entry **ep)
221 {
222         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
223 }
224
225 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
226 {
227         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
228         nm_i->nat_cnt[TOTAL_NAT]--;
229         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
230         __free_nat_entry(e);
231 }
232
233 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
234                                                         struct nat_entry *ne)
235 {
236         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
237         struct nat_entry_set *head;
238
239         head = radix_tree_lookup(&nm_i->nat_set_root, set);
240         if (!head) {
241                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
242                                                 GFP_NOFS, true, NULL);
243
244                 INIT_LIST_HEAD(&head->entry_list);
245                 INIT_LIST_HEAD(&head->set_list);
246                 head->set = set;
247                 head->entry_cnt = 0;
248                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
249         }
250         return head;
251 }
252
253 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
254                                                 struct nat_entry *ne)
255 {
256         struct nat_entry_set *head;
257         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
258
259         if (!new_ne)
260                 head = __grab_nat_entry_set(nm_i, ne);
261
262         /*
263          * update entry_cnt in below condition:
264          * 1. update NEW_ADDR to valid block address;
265          * 2. update old block address to new one;
266          */
267         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
268                                 !get_nat_flag(ne, IS_DIRTY)))
269                 head->entry_cnt++;
270
271         set_nat_flag(ne, IS_PREALLOC, new_ne);
272
273         if (get_nat_flag(ne, IS_DIRTY))
274                 goto refresh_list;
275
276         nm_i->nat_cnt[DIRTY_NAT]++;
277         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
278         set_nat_flag(ne, IS_DIRTY, true);
279 refresh_list:
280         spin_lock(&nm_i->nat_list_lock);
281         if (new_ne)
282                 list_del_init(&ne->list);
283         else
284                 list_move_tail(&ne->list, &head->entry_list);
285         spin_unlock(&nm_i->nat_list_lock);
286 }
287
288 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
289                 struct nat_entry_set *set, struct nat_entry *ne)
290 {
291         spin_lock(&nm_i->nat_list_lock);
292         list_move_tail(&ne->list, &nm_i->nat_entries);
293         spin_unlock(&nm_i->nat_list_lock);
294
295         set_nat_flag(ne, IS_DIRTY, false);
296         set->entry_cnt--;
297         nm_i->nat_cnt[DIRTY_NAT]--;
298         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
299 }
300
301 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
302                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
303 {
304         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
305                                                         start, nr);
306 }
307
308 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
309 {
310         return NODE_MAPPING(sbi) == page->mapping &&
311                         IS_DNODE(page) && is_cold_node(page);
312 }
313
314 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
315 {
316         spin_lock_init(&sbi->fsync_node_lock);
317         INIT_LIST_HEAD(&sbi->fsync_node_list);
318         sbi->fsync_seg_id = 0;
319         sbi->fsync_node_num = 0;
320 }
321
322 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
323                                                         struct page *page)
324 {
325         struct fsync_node_entry *fn;
326         unsigned long flags;
327         unsigned int seq_id;
328
329         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
330                                         GFP_NOFS, true, NULL);
331
332         get_page(page);
333         fn->page = page;
334         INIT_LIST_HEAD(&fn->list);
335
336         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
337         list_add_tail(&fn->list, &sbi->fsync_node_list);
338         fn->seq_id = sbi->fsync_seg_id++;
339         seq_id = fn->seq_id;
340         sbi->fsync_node_num++;
341         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
342
343         return seq_id;
344 }
345
346 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
347 {
348         struct fsync_node_entry *fn;
349         unsigned long flags;
350
351         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
353                 if (fn->page == page) {
354                         list_del(&fn->list);
355                         sbi->fsync_node_num--;
356                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
357                         kmem_cache_free(fsync_node_entry_slab, fn);
358                         put_page(page);
359                         return;
360                 }
361         }
362         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
363         f2fs_bug_on(sbi, 1);
364 }
365
366 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
367 {
368         unsigned long flags;
369
370         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
371         sbi->fsync_seg_id = 0;
372         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
373 }
374
375 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
376 {
377         struct f2fs_nm_info *nm_i = NM_I(sbi);
378         struct nat_entry *e;
379         bool need = false;
380
381         f2fs_down_read(&nm_i->nat_tree_lock);
382         e = __lookup_nat_cache(nm_i, nid);
383         if (e) {
384                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
385                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
386                         need = true;
387         }
388         f2fs_up_read(&nm_i->nat_tree_lock);
389         return need;
390 }
391
392 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
393 {
394         struct f2fs_nm_info *nm_i = NM_I(sbi);
395         struct nat_entry *e;
396         bool is_cp = true;
397
398         f2fs_down_read(&nm_i->nat_tree_lock);
399         e = __lookup_nat_cache(nm_i, nid);
400         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
401                 is_cp = false;
402         f2fs_up_read(&nm_i->nat_tree_lock);
403         return is_cp;
404 }
405
406 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
407 {
408         struct f2fs_nm_info *nm_i = NM_I(sbi);
409         struct nat_entry *e;
410         bool need_update = true;
411
412         f2fs_down_read(&nm_i->nat_tree_lock);
413         e = __lookup_nat_cache(nm_i, ino);
414         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
415                         (get_nat_flag(e, IS_CHECKPOINTED) ||
416                          get_nat_flag(e, HAS_FSYNCED_INODE)))
417                 need_update = false;
418         f2fs_up_read(&nm_i->nat_tree_lock);
419         return need_update;
420 }
421
422 /* must be locked by nat_tree_lock */
423 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
424                                                 struct f2fs_nat_entry *ne)
425 {
426         struct f2fs_nm_info *nm_i = NM_I(sbi);
427         struct nat_entry *new, *e;
428
429         /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
430         if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
431                 return;
432
433         new = __alloc_nat_entry(sbi, nid, false);
434         if (!new)
435                 return;
436
437         f2fs_down_write(&nm_i->nat_tree_lock);
438         e = __lookup_nat_cache(nm_i, nid);
439         if (!e)
440                 e = __init_nat_entry(nm_i, new, ne, false);
441         else
442                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
443                                 nat_get_blkaddr(e) !=
444                                         le32_to_cpu(ne->block_addr) ||
445                                 nat_get_version(e) != ne->version);
446         f2fs_up_write(&nm_i->nat_tree_lock);
447         if (e != new)
448                 __free_nat_entry(new);
449 }
450
451 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
452                         block_t new_blkaddr, bool fsync_done)
453 {
454         struct f2fs_nm_info *nm_i = NM_I(sbi);
455         struct nat_entry *e;
456         struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
457
458         f2fs_down_write(&nm_i->nat_tree_lock);
459         e = __lookup_nat_cache(nm_i, ni->nid);
460         if (!e) {
461                 e = __init_nat_entry(nm_i, new, NULL, true);
462                 copy_node_info(&e->ni, ni);
463                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
464         } else if (new_blkaddr == NEW_ADDR) {
465                 /*
466                  * when nid is reallocated,
467                  * previous nat entry can be remained in nat cache.
468                  * So, reinitialize it with new information.
469                  */
470                 copy_node_info(&e->ni, ni);
471                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
472         }
473         /* let's free early to reduce memory consumption */
474         if (e != new)
475                 __free_nat_entry(new);
476
477         /* sanity check */
478         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
479         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
480                         new_blkaddr == NULL_ADDR);
481         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
482                         new_blkaddr == NEW_ADDR);
483         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
484                         new_blkaddr == NEW_ADDR);
485
486         /* increment version no as node is removed */
487         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
488                 unsigned char version = nat_get_version(e);
489
490                 nat_set_version(e, inc_node_version(version));
491         }
492
493         /* change address */
494         nat_set_blkaddr(e, new_blkaddr);
495         if (!__is_valid_data_blkaddr(new_blkaddr))
496                 set_nat_flag(e, IS_CHECKPOINTED, false);
497         __set_nat_cache_dirty(nm_i, e);
498
499         /* update fsync_mark if its inode nat entry is still alive */
500         if (ni->nid != ni->ino)
501                 e = __lookup_nat_cache(nm_i, ni->ino);
502         if (e) {
503                 if (fsync_done && ni->nid == ni->ino)
504                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
505                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
506         }
507         f2fs_up_write(&nm_i->nat_tree_lock);
508 }
509
510 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
511 {
512         struct f2fs_nm_info *nm_i = NM_I(sbi);
513         int nr = nr_shrink;
514
515         if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
516                 return 0;
517
518         spin_lock(&nm_i->nat_list_lock);
519         while (nr_shrink) {
520                 struct nat_entry *ne;
521
522                 if (list_empty(&nm_i->nat_entries))
523                         break;
524
525                 ne = list_first_entry(&nm_i->nat_entries,
526                                         struct nat_entry, list);
527                 list_del(&ne->list);
528                 spin_unlock(&nm_i->nat_list_lock);
529
530                 __del_from_nat_cache(nm_i, ne);
531                 nr_shrink--;
532
533                 spin_lock(&nm_i->nat_list_lock);
534         }
535         spin_unlock(&nm_i->nat_list_lock);
536
537         f2fs_up_write(&nm_i->nat_tree_lock);
538         return nr - nr_shrink;
539 }
540
541 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
542                                 struct node_info *ni, bool checkpoint_context)
543 {
544         struct f2fs_nm_info *nm_i = NM_I(sbi);
545         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
546         struct f2fs_journal *journal = curseg->journal;
547         nid_t start_nid = START_NID(nid);
548         struct f2fs_nat_block *nat_blk;
549         struct page *page = NULL;
550         struct f2fs_nat_entry ne;
551         struct nat_entry *e;
552         pgoff_t index;
553         block_t blkaddr;
554         int i;
555
556         ni->nid = nid;
557 retry:
558         /* Check nat cache */
559         f2fs_down_read(&nm_i->nat_tree_lock);
560         e = __lookup_nat_cache(nm_i, nid);
561         if (e) {
562                 ni->ino = nat_get_ino(e);
563                 ni->blk_addr = nat_get_blkaddr(e);
564                 ni->version = nat_get_version(e);
565                 f2fs_up_read(&nm_i->nat_tree_lock);
566                 return 0;
567         }
568
569         /*
570          * Check current segment summary by trying to grab journal_rwsem first.
571          * This sem is on the critical path on the checkpoint requiring the above
572          * nat_tree_lock. Therefore, we should retry, if we failed to grab here
573          * while not bothering checkpoint.
574          */
575         if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
576                 down_read(&curseg->journal_rwsem);
577         } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
578                                 !down_read_trylock(&curseg->journal_rwsem)) {
579                 f2fs_up_read(&nm_i->nat_tree_lock);
580                 goto retry;
581         }
582
583         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
584         if (i >= 0) {
585                 ne = nat_in_journal(journal, i);
586                 node_info_from_raw_nat(ni, &ne);
587         }
588         up_read(&curseg->journal_rwsem);
589         if (i >= 0) {
590                 f2fs_up_read(&nm_i->nat_tree_lock);
591                 goto cache;
592         }
593
594         /* Fill node_info from nat page */
595         index = current_nat_addr(sbi, nid);
596         f2fs_up_read(&nm_i->nat_tree_lock);
597
598         page = f2fs_get_meta_page(sbi, index);
599         if (IS_ERR(page))
600                 return PTR_ERR(page);
601
602         nat_blk = (struct f2fs_nat_block *)page_address(page);
603         ne = nat_blk->entries[nid - start_nid];
604         node_info_from_raw_nat(ni, &ne);
605         f2fs_put_page(page, 1);
606 cache:
607         blkaddr = le32_to_cpu(ne.block_addr);
608         if (__is_valid_data_blkaddr(blkaddr) &&
609                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
610                 return -EFAULT;
611
612         /* cache nat entry */
613         cache_nat_entry(sbi, nid, &ne);
614         return 0;
615 }
616
617 /*
618  * readahead MAX_RA_NODE number of node pages.
619  */
620 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
621 {
622         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
623         struct blk_plug plug;
624         int i, end;
625         nid_t nid;
626
627         blk_start_plug(&plug);
628
629         /* Then, try readahead for siblings of the desired node */
630         end = start + n;
631         end = min(end, NIDS_PER_BLOCK);
632         for (i = start; i < end; i++) {
633                 nid = get_nid(parent, i, false);
634                 f2fs_ra_node_page(sbi, nid);
635         }
636
637         blk_finish_plug(&plug);
638 }
639
640 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
641 {
642         const long direct_index = ADDRS_PER_INODE(dn->inode);
643         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
644         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
645         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
646         int cur_level = dn->cur_level;
647         int max_level = dn->max_level;
648         pgoff_t base = 0;
649
650         if (!dn->max_level)
651                 return pgofs + 1;
652
653         while (max_level-- > cur_level)
654                 skipped_unit *= NIDS_PER_BLOCK;
655
656         switch (dn->max_level) {
657         case 3:
658                 base += 2 * indirect_blks;
659                 fallthrough;
660         case 2:
661                 base += 2 * direct_blks;
662                 fallthrough;
663         case 1:
664                 base += direct_index;
665                 break;
666         default:
667                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
668         }
669
670         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
671 }
672
673 /*
674  * The maximum depth is four.
675  * Offset[0] will have raw inode offset.
676  */
677 static int get_node_path(struct inode *inode, long block,
678                                 int offset[4], unsigned int noffset[4])
679 {
680         const long direct_index = ADDRS_PER_INODE(inode);
681         const long direct_blks = ADDRS_PER_BLOCK(inode);
682         const long dptrs_per_blk = NIDS_PER_BLOCK;
683         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
684         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
685         int n = 0;
686         int level = 0;
687
688         noffset[0] = 0;
689
690         if (block < direct_index) {
691                 offset[n] = block;
692                 goto got;
693         }
694         block -= direct_index;
695         if (block < direct_blks) {
696                 offset[n++] = NODE_DIR1_BLOCK;
697                 noffset[n] = 1;
698                 offset[n] = block;
699                 level = 1;
700                 goto got;
701         }
702         block -= direct_blks;
703         if (block < direct_blks) {
704                 offset[n++] = NODE_DIR2_BLOCK;
705                 noffset[n] = 2;
706                 offset[n] = block;
707                 level = 1;
708                 goto got;
709         }
710         block -= direct_blks;
711         if (block < indirect_blks) {
712                 offset[n++] = NODE_IND1_BLOCK;
713                 noffset[n] = 3;
714                 offset[n++] = block / direct_blks;
715                 noffset[n] = 4 + offset[n - 1];
716                 offset[n] = block % direct_blks;
717                 level = 2;
718                 goto got;
719         }
720         block -= indirect_blks;
721         if (block < indirect_blks) {
722                 offset[n++] = NODE_IND2_BLOCK;
723                 noffset[n] = 4 + dptrs_per_blk;
724                 offset[n++] = block / direct_blks;
725                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
726                 offset[n] = block % direct_blks;
727                 level = 2;
728                 goto got;
729         }
730         block -= indirect_blks;
731         if (block < dindirect_blks) {
732                 offset[n++] = NODE_DIND_BLOCK;
733                 noffset[n] = 5 + (dptrs_per_blk * 2);
734                 offset[n++] = block / indirect_blks;
735                 noffset[n] = 6 + (dptrs_per_blk * 2) +
736                               offset[n - 1] * (dptrs_per_blk + 1);
737                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
738                 noffset[n] = 7 + (dptrs_per_blk * 2) +
739                               offset[n - 2] * (dptrs_per_blk + 1) +
740                               offset[n - 1];
741                 offset[n] = block % direct_blks;
742                 level = 3;
743                 goto got;
744         } else {
745                 return -E2BIG;
746         }
747 got:
748         return level;
749 }
750
751 /*
752  * Caller should call f2fs_put_dnode(dn).
753  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
754  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
755  */
756 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
757 {
758         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
759         struct page *npage[4];
760         struct page *parent = NULL;
761         int offset[4];
762         unsigned int noffset[4];
763         nid_t nids[4];
764         int level, i = 0;
765         int err = 0;
766
767         level = get_node_path(dn->inode, index, offset, noffset);
768         if (level < 0)
769                 return level;
770
771         nids[0] = dn->inode->i_ino;
772         npage[0] = dn->inode_page;
773
774         if (!npage[0]) {
775                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
776                 if (IS_ERR(npage[0]))
777                         return PTR_ERR(npage[0]);
778         }
779
780         /* if inline_data is set, should not report any block indices */
781         if (f2fs_has_inline_data(dn->inode) && index) {
782                 err = -ENOENT;
783                 f2fs_put_page(npage[0], 1);
784                 goto release_out;
785         }
786
787         parent = npage[0];
788         if (level != 0)
789                 nids[1] = get_nid(parent, offset[0], true);
790         dn->inode_page = npage[0];
791         dn->inode_page_locked = true;
792
793         /* get indirect or direct nodes */
794         for (i = 1; i <= level; i++) {
795                 bool done = false;
796
797                 if (!nids[i] && mode == ALLOC_NODE) {
798                         /* alloc new node */
799                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
800                                 err = -ENOSPC;
801                                 goto release_pages;
802                         }
803
804                         dn->nid = nids[i];
805                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
806                         if (IS_ERR(npage[i])) {
807                                 f2fs_alloc_nid_failed(sbi, nids[i]);
808                                 err = PTR_ERR(npage[i]);
809                                 goto release_pages;
810                         }
811
812                         set_nid(parent, offset[i - 1], nids[i], i == 1);
813                         f2fs_alloc_nid_done(sbi, nids[i]);
814                         done = true;
815                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
816                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
817                         if (IS_ERR(npage[i])) {
818                                 err = PTR_ERR(npage[i]);
819                                 goto release_pages;
820                         }
821                         done = true;
822                 }
823                 if (i == 1) {
824                         dn->inode_page_locked = false;
825                         unlock_page(parent);
826                 } else {
827                         f2fs_put_page(parent, 1);
828                 }
829
830                 if (!done) {
831                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
832                         if (IS_ERR(npage[i])) {
833                                 err = PTR_ERR(npage[i]);
834                                 f2fs_put_page(npage[0], 0);
835                                 goto release_out;
836                         }
837                 }
838                 if (i < level) {
839                         parent = npage[i];
840                         nids[i + 1] = get_nid(parent, offset[i], false);
841                 }
842         }
843         dn->nid = nids[level];
844         dn->ofs_in_node = offset[level];
845         dn->node_page = npage[level];
846         dn->data_blkaddr = f2fs_data_blkaddr(dn);
847
848         if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
849                                         f2fs_sb_has_readonly(sbi)) {
850                 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
851                 block_t blkaddr;
852
853                 if (!c_len)
854                         goto out;
855
856                 blkaddr = f2fs_data_blkaddr(dn);
857                 if (blkaddr == COMPRESS_ADDR)
858                         blkaddr = data_blkaddr(dn->inode, dn->node_page,
859                                                 dn->ofs_in_node + 1);
860
861                 f2fs_update_extent_tree_range_compressed(dn->inode,
862                                         index, blkaddr,
863                                         F2FS_I(dn->inode)->i_cluster_size,
864                                         c_len);
865         }
866 out:
867         return 0;
868
869 release_pages:
870         f2fs_put_page(parent, 1);
871         if (i > 1)
872                 f2fs_put_page(npage[0], 0);
873 release_out:
874         dn->inode_page = NULL;
875         dn->node_page = NULL;
876         if (err == -ENOENT) {
877                 dn->cur_level = i;
878                 dn->max_level = level;
879                 dn->ofs_in_node = offset[level];
880         }
881         return err;
882 }
883
884 static int truncate_node(struct dnode_of_data *dn)
885 {
886         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
887         struct node_info ni;
888         int err;
889         pgoff_t index;
890
891         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
892         if (err)
893                 return err;
894
895         /* Deallocate node address */
896         f2fs_invalidate_blocks(sbi, ni.blk_addr);
897         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
898         set_node_addr(sbi, &ni, NULL_ADDR, false);
899
900         if (dn->nid == dn->inode->i_ino) {
901                 f2fs_remove_orphan_inode(sbi, dn->nid);
902                 dec_valid_inode_count(sbi);
903                 f2fs_inode_synced(dn->inode);
904         }
905
906         clear_node_page_dirty(dn->node_page);
907         set_sbi_flag(sbi, SBI_IS_DIRTY);
908
909         index = dn->node_page->index;
910         f2fs_put_page(dn->node_page, 1);
911
912         invalidate_mapping_pages(NODE_MAPPING(sbi),
913                         index, index);
914
915         dn->node_page = NULL;
916         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
917
918         return 0;
919 }
920
921 static int truncate_dnode(struct dnode_of_data *dn)
922 {
923         struct page *page;
924         int err;
925
926         if (dn->nid == 0)
927                 return 1;
928
929         /* get direct node */
930         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
931         if (PTR_ERR(page) == -ENOENT)
932                 return 1;
933         else if (IS_ERR(page))
934                 return PTR_ERR(page);
935
936         /* Make dnode_of_data for parameter */
937         dn->node_page = page;
938         dn->ofs_in_node = 0;
939         f2fs_truncate_data_blocks(dn);
940         err = truncate_node(dn);
941         if (err)
942                 return err;
943
944         return 1;
945 }
946
947 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
948                                                 int ofs, int depth)
949 {
950         struct dnode_of_data rdn = *dn;
951         struct page *page;
952         struct f2fs_node *rn;
953         nid_t child_nid;
954         unsigned int child_nofs;
955         int freed = 0;
956         int i, ret;
957
958         if (dn->nid == 0)
959                 return NIDS_PER_BLOCK + 1;
960
961         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
962
963         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
964         if (IS_ERR(page)) {
965                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
966                 return PTR_ERR(page);
967         }
968
969         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
970
971         rn = F2FS_NODE(page);
972         if (depth < 3) {
973                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
974                         child_nid = le32_to_cpu(rn->in.nid[i]);
975                         if (child_nid == 0)
976                                 continue;
977                         rdn.nid = child_nid;
978                         ret = truncate_dnode(&rdn);
979                         if (ret < 0)
980                                 goto out_err;
981                         if (set_nid(page, i, 0, false))
982                                 dn->node_changed = true;
983                 }
984         } else {
985                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
986                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
987                         child_nid = le32_to_cpu(rn->in.nid[i]);
988                         if (child_nid == 0) {
989                                 child_nofs += NIDS_PER_BLOCK + 1;
990                                 continue;
991                         }
992                         rdn.nid = child_nid;
993                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
994                         if (ret == (NIDS_PER_BLOCK + 1)) {
995                                 if (set_nid(page, i, 0, false))
996                                         dn->node_changed = true;
997                                 child_nofs += ret;
998                         } else if (ret < 0 && ret != -ENOENT) {
999                                 goto out_err;
1000                         }
1001                 }
1002                 freed = child_nofs;
1003         }
1004
1005         if (!ofs) {
1006                 /* remove current indirect node */
1007                 dn->node_page = page;
1008                 ret = truncate_node(dn);
1009                 if (ret)
1010                         goto out_err;
1011                 freed++;
1012         } else {
1013                 f2fs_put_page(page, 1);
1014         }
1015         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1016         return freed;
1017
1018 out_err:
1019         f2fs_put_page(page, 1);
1020         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1021         return ret;
1022 }
1023
1024 static int truncate_partial_nodes(struct dnode_of_data *dn,
1025                         struct f2fs_inode *ri, int *offset, int depth)
1026 {
1027         struct page *pages[2];
1028         nid_t nid[3];
1029         nid_t child_nid;
1030         int err = 0;
1031         int i;
1032         int idx = depth - 2;
1033
1034         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1035         if (!nid[0])
1036                 return 0;
1037
1038         /* get indirect nodes in the path */
1039         for (i = 0; i < idx + 1; i++) {
1040                 /* reference count'll be increased */
1041                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1042                 if (IS_ERR(pages[i])) {
1043                         err = PTR_ERR(pages[i]);
1044                         idx = i - 1;
1045                         goto fail;
1046                 }
1047                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1048         }
1049
1050         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1051
1052         /* free direct nodes linked to a partial indirect node */
1053         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1054                 child_nid = get_nid(pages[idx], i, false);
1055                 if (!child_nid)
1056                         continue;
1057                 dn->nid = child_nid;
1058                 err = truncate_dnode(dn);
1059                 if (err < 0)
1060                         goto fail;
1061                 if (set_nid(pages[idx], i, 0, false))
1062                         dn->node_changed = true;
1063         }
1064
1065         if (offset[idx + 1] == 0) {
1066                 dn->node_page = pages[idx];
1067                 dn->nid = nid[idx];
1068                 err = truncate_node(dn);
1069                 if (err)
1070                         goto fail;
1071         } else {
1072                 f2fs_put_page(pages[idx], 1);
1073         }
1074         offset[idx]++;
1075         offset[idx + 1] = 0;
1076         idx--;
1077 fail:
1078         for (i = idx; i >= 0; i--)
1079                 f2fs_put_page(pages[i], 1);
1080
1081         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1082
1083         return err;
1084 }
1085
1086 /*
1087  * All the block addresses of data and nodes should be nullified.
1088  */
1089 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1090 {
1091         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1092         int err = 0, cont = 1;
1093         int level, offset[4], noffset[4];
1094         unsigned int nofs = 0;
1095         struct f2fs_inode *ri;
1096         struct dnode_of_data dn;
1097         struct page *page;
1098
1099         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1100
1101         level = get_node_path(inode, from, offset, noffset);
1102         if (level < 0) {
1103                 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1104                 return level;
1105         }
1106
1107         page = f2fs_get_node_page(sbi, inode->i_ino);
1108         if (IS_ERR(page)) {
1109                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1110                 return PTR_ERR(page);
1111         }
1112
1113         set_new_dnode(&dn, inode, page, NULL, 0);
1114         unlock_page(page);
1115
1116         ri = F2FS_INODE(page);
1117         switch (level) {
1118         case 0:
1119         case 1:
1120                 nofs = noffset[1];
1121                 break;
1122         case 2:
1123                 nofs = noffset[1];
1124                 if (!offset[level - 1])
1125                         goto skip_partial;
1126                 err = truncate_partial_nodes(&dn, ri, offset, level);
1127                 if (err < 0 && err != -ENOENT)
1128                         goto fail;
1129                 nofs += 1 + NIDS_PER_BLOCK;
1130                 break;
1131         case 3:
1132                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1133                 if (!offset[level - 1])
1134                         goto skip_partial;
1135                 err = truncate_partial_nodes(&dn, ri, offset, level);
1136                 if (err < 0 && err != -ENOENT)
1137                         goto fail;
1138                 break;
1139         default:
1140                 BUG();
1141         }
1142
1143 skip_partial:
1144         while (cont) {
1145                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1146                 switch (offset[0]) {
1147                 case NODE_DIR1_BLOCK:
1148                 case NODE_DIR2_BLOCK:
1149                         err = truncate_dnode(&dn);
1150                         break;
1151
1152                 case NODE_IND1_BLOCK:
1153                 case NODE_IND2_BLOCK:
1154                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1155                         break;
1156
1157                 case NODE_DIND_BLOCK:
1158                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1159                         cont = 0;
1160                         break;
1161
1162                 default:
1163                         BUG();
1164                 }
1165                 if (err < 0 && err != -ENOENT)
1166                         goto fail;
1167                 if (offset[1] == 0 &&
1168                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1169                         lock_page(page);
1170                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1171                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1172                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1173                         set_page_dirty(page);
1174                         unlock_page(page);
1175                 }
1176                 offset[1] = 0;
1177                 offset[0]++;
1178                 nofs += err;
1179         }
1180 fail:
1181         f2fs_put_page(page, 0);
1182         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1183         return err > 0 ? 0 : err;
1184 }
1185
1186 /* caller must lock inode page */
1187 int f2fs_truncate_xattr_node(struct inode *inode)
1188 {
1189         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1190         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1191         struct dnode_of_data dn;
1192         struct page *npage;
1193         int err;
1194
1195         if (!nid)
1196                 return 0;
1197
1198         npage = f2fs_get_node_page(sbi, nid);
1199         if (IS_ERR(npage))
1200                 return PTR_ERR(npage);
1201
1202         set_new_dnode(&dn, inode, NULL, npage, nid);
1203         err = truncate_node(&dn);
1204         if (err) {
1205                 f2fs_put_page(npage, 1);
1206                 return err;
1207         }
1208
1209         f2fs_i_xnid_write(inode, 0);
1210
1211         return 0;
1212 }
1213
1214 /*
1215  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1216  * f2fs_unlock_op().
1217  */
1218 int f2fs_remove_inode_page(struct inode *inode)
1219 {
1220         struct dnode_of_data dn;
1221         int err;
1222
1223         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1224         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1225         if (err)
1226                 return err;
1227
1228         err = f2fs_truncate_xattr_node(inode);
1229         if (err) {
1230                 f2fs_put_dnode(&dn);
1231                 return err;
1232         }
1233
1234         /* remove potential inline_data blocks */
1235         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1236                                 S_ISLNK(inode->i_mode))
1237                 f2fs_truncate_data_blocks_range(&dn, 1);
1238
1239         /* 0 is possible, after f2fs_new_inode() has failed */
1240         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1241                 f2fs_put_dnode(&dn);
1242                 return -EIO;
1243         }
1244
1245         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1246                 f2fs_warn(F2FS_I_SB(inode),
1247                         "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1248                         inode->i_ino, (unsigned long long)inode->i_blocks);
1249                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1250         }
1251
1252         /* will put inode & node pages */
1253         err = truncate_node(&dn);
1254         if (err) {
1255                 f2fs_put_dnode(&dn);
1256                 return err;
1257         }
1258         return 0;
1259 }
1260
1261 struct page *f2fs_new_inode_page(struct inode *inode)
1262 {
1263         struct dnode_of_data dn;
1264
1265         /* allocate inode page for new inode */
1266         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1267
1268         /* caller should f2fs_put_page(page, 1); */
1269         return f2fs_new_node_page(&dn, 0);
1270 }
1271
1272 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1273 {
1274         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1275         struct node_info new_ni;
1276         struct page *page;
1277         int err;
1278
1279         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1280                 return ERR_PTR(-EPERM);
1281
1282         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1283         if (!page)
1284                 return ERR_PTR(-ENOMEM);
1285
1286         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1287                 goto fail;
1288
1289 #ifdef CONFIG_F2FS_CHECK_FS
1290         err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1291         if (err) {
1292                 dec_valid_node_count(sbi, dn->inode, !ofs);
1293                 goto fail;
1294         }
1295         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1296 #endif
1297         new_ni.nid = dn->nid;
1298         new_ni.ino = dn->inode->i_ino;
1299         new_ni.blk_addr = NULL_ADDR;
1300         new_ni.flag = 0;
1301         new_ni.version = 0;
1302         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1303
1304         f2fs_wait_on_page_writeback(page, NODE, true, true);
1305         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1306         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1307         if (!PageUptodate(page))
1308                 SetPageUptodate(page);
1309         if (set_page_dirty(page))
1310                 dn->node_changed = true;
1311
1312         if (f2fs_has_xattr_block(ofs))
1313                 f2fs_i_xnid_write(dn->inode, dn->nid);
1314
1315         if (ofs == 0)
1316                 inc_valid_inode_count(sbi);
1317         return page;
1318
1319 fail:
1320         clear_node_page_dirty(page);
1321         f2fs_put_page(page, 1);
1322         return ERR_PTR(err);
1323 }
1324
1325 /*
1326  * Caller should do after getting the following values.
1327  * 0: f2fs_put_page(page, 0)
1328  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1329  */
1330 static int read_node_page(struct page *page, blk_opf_t op_flags)
1331 {
1332         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1333         struct node_info ni;
1334         struct f2fs_io_info fio = {
1335                 .sbi = sbi,
1336                 .type = NODE,
1337                 .op = REQ_OP_READ,
1338                 .op_flags = op_flags,
1339                 .page = page,
1340                 .encrypted_page = NULL,
1341         };
1342         int err;
1343
1344         if (PageUptodate(page)) {
1345                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1346                         ClearPageUptodate(page);
1347                         return -EFSBADCRC;
1348                 }
1349                 return LOCKED_PAGE;
1350         }
1351
1352         err = f2fs_get_node_info(sbi, page->index, &ni, false);
1353         if (err)
1354                 return err;
1355
1356         /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1357         if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR) ||
1358                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1359                 ClearPageUptodate(page);
1360                 return -ENOENT;
1361         }
1362
1363         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1364
1365         err = f2fs_submit_page_bio(&fio);
1366
1367         if (!err)
1368                 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1369
1370         return err;
1371 }
1372
1373 /*
1374  * Readahead a node page
1375  */
1376 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1377 {
1378         struct page *apage;
1379         int err;
1380
1381         if (!nid)
1382                 return;
1383         if (f2fs_check_nid_range(sbi, nid))
1384                 return;
1385
1386         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1387         if (apage)
1388                 return;
1389
1390         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1391         if (!apage)
1392                 return;
1393
1394         err = read_node_page(apage, REQ_RAHEAD);
1395         f2fs_put_page(apage, err ? 1 : 0);
1396 }
1397
1398 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1399                                         struct page *parent, int start)
1400 {
1401         struct page *page;
1402         int err;
1403
1404         if (!nid)
1405                 return ERR_PTR(-ENOENT);
1406         if (f2fs_check_nid_range(sbi, nid))
1407                 return ERR_PTR(-EINVAL);
1408 repeat:
1409         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1410         if (!page)
1411                 return ERR_PTR(-ENOMEM);
1412
1413         err = read_node_page(page, 0);
1414         if (err < 0) {
1415                 goto out_put_err;
1416         } else if (err == LOCKED_PAGE) {
1417                 err = 0;
1418                 goto page_hit;
1419         }
1420
1421         if (parent)
1422                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1423
1424         lock_page(page);
1425
1426         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1427                 f2fs_put_page(page, 1);
1428                 goto repeat;
1429         }
1430
1431         if (unlikely(!PageUptodate(page))) {
1432                 err = -EIO;
1433                 goto out_err;
1434         }
1435
1436         if (!f2fs_inode_chksum_verify(sbi, page)) {
1437                 err = -EFSBADCRC;
1438                 goto out_err;
1439         }
1440 page_hit:
1441         if (likely(nid == nid_of_node(page)))
1442                 return page;
1443
1444         f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1445                           nid, nid_of_node(page), ino_of_node(page),
1446                           ofs_of_node(page), cpver_of_node(page),
1447                           next_blkaddr_of_node(page));
1448         set_sbi_flag(sbi, SBI_NEED_FSCK);
1449         err = -EINVAL;
1450 out_err:
1451         ClearPageUptodate(page);
1452 out_put_err:
1453         /* ENOENT comes from read_node_page which is not an error. */
1454         if (err != -ENOENT)
1455                 f2fs_handle_page_eio(sbi, page->index, NODE);
1456         f2fs_put_page(page, 1);
1457         return ERR_PTR(err);
1458 }
1459
1460 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1461 {
1462         return __get_node_page(sbi, nid, NULL, 0);
1463 }
1464
1465 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1466 {
1467         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1468         nid_t nid = get_nid(parent, start, false);
1469
1470         return __get_node_page(sbi, nid, parent, start);
1471 }
1472
1473 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1474 {
1475         struct inode *inode;
1476         struct page *page;
1477         int ret;
1478
1479         /* should flush inline_data before evict_inode */
1480         inode = ilookup(sbi->sb, ino);
1481         if (!inode)
1482                 return;
1483
1484         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1485                                         FGP_LOCK|FGP_NOWAIT, 0);
1486         if (!page)
1487                 goto iput_out;
1488
1489         if (!PageUptodate(page))
1490                 goto page_out;
1491
1492         if (!PageDirty(page))
1493                 goto page_out;
1494
1495         if (!clear_page_dirty_for_io(page))
1496                 goto page_out;
1497
1498         ret = f2fs_write_inline_data(inode, page);
1499         inode_dec_dirty_pages(inode);
1500         f2fs_remove_dirty_inode(inode);
1501         if (ret)
1502                 set_page_dirty(page);
1503 page_out:
1504         f2fs_put_page(page, 1);
1505 iput_out:
1506         iput(inode);
1507 }
1508
1509 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1510 {
1511         pgoff_t index;
1512         struct pagevec pvec;
1513         struct page *last_page = NULL;
1514         int nr_pages;
1515
1516         pagevec_init(&pvec);
1517         index = 0;
1518
1519         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1520                                 PAGECACHE_TAG_DIRTY))) {
1521                 int i;
1522
1523                 for (i = 0; i < nr_pages; i++) {
1524                         struct page *page = pvec.pages[i];
1525
1526                         if (unlikely(f2fs_cp_error(sbi))) {
1527                                 f2fs_put_page(last_page, 0);
1528                                 pagevec_release(&pvec);
1529                                 return ERR_PTR(-EIO);
1530                         }
1531
1532                         if (!IS_DNODE(page) || !is_cold_node(page))
1533                                 continue;
1534                         if (ino_of_node(page) != ino)
1535                                 continue;
1536
1537                         lock_page(page);
1538
1539                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1540 continue_unlock:
1541                                 unlock_page(page);
1542                                 continue;
1543                         }
1544                         if (ino_of_node(page) != ino)
1545                                 goto continue_unlock;
1546
1547                         if (!PageDirty(page)) {
1548                                 /* someone wrote it for us */
1549                                 goto continue_unlock;
1550                         }
1551
1552                         if (last_page)
1553                                 f2fs_put_page(last_page, 0);
1554
1555                         get_page(page);
1556                         last_page = page;
1557                         unlock_page(page);
1558                 }
1559                 pagevec_release(&pvec);
1560                 cond_resched();
1561         }
1562         return last_page;
1563 }
1564
1565 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1566                                 struct writeback_control *wbc, bool do_balance,
1567                                 enum iostat_type io_type, unsigned int *seq_id)
1568 {
1569         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1570         nid_t nid;
1571         struct node_info ni;
1572         struct f2fs_io_info fio = {
1573                 .sbi = sbi,
1574                 .ino = ino_of_node(page),
1575                 .type = NODE,
1576                 .op = REQ_OP_WRITE,
1577                 .op_flags = wbc_to_write_flags(wbc),
1578                 .page = page,
1579                 .encrypted_page = NULL,
1580                 .submitted = false,
1581                 .io_type = io_type,
1582                 .io_wbc = wbc,
1583         };
1584         unsigned int seq;
1585
1586         trace_f2fs_writepage(page, NODE);
1587
1588         if (unlikely(f2fs_cp_error(sbi))) {
1589                 ClearPageUptodate(page);
1590                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1591                 unlock_page(page);
1592                 return 0;
1593         }
1594
1595         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1596                 goto redirty_out;
1597
1598         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1599                         wbc->sync_mode == WB_SYNC_NONE &&
1600                         IS_DNODE(page) && is_cold_node(page))
1601                 goto redirty_out;
1602
1603         /* get old block addr of this node page */
1604         nid = nid_of_node(page);
1605         f2fs_bug_on(sbi, page->index != nid);
1606
1607         if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1608                 goto redirty_out;
1609
1610         if (wbc->for_reclaim) {
1611                 if (!f2fs_down_read_trylock(&sbi->node_write))
1612                         goto redirty_out;
1613         } else {
1614                 f2fs_down_read(&sbi->node_write);
1615         }
1616
1617         /* This page is already truncated */
1618         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1619                 ClearPageUptodate(page);
1620                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1621                 f2fs_up_read(&sbi->node_write);
1622                 unlock_page(page);
1623                 return 0;
1624         }
1625
1626         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1627                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1628                                         DATA_GENERIC_ENHANCE)) {
1629                 f2fs_up_read(&sbi->node_write);
1630                 goto redirty_out;
1631         }
1632
1633         if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1634                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1635
1636         /* should add to global list before clearing PAGECACHE status */
1637         if (f2fs_in_warm_node_list(sbi, page)) {
1638                 seq = f2fs_add_fsync_node_entry(sbi, page);
1639                 if (seq_id)
1640                         *seq_id = seq;
1641         }
1642
1643         set_page_writeback(page);
1644         ClearPageError(page);
1645
1646         fio.old_blkaddr = ni.blk_addr;
1647         f2fs_do_write_node_page(nid, &fio);
1648         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1649         dec_page_count(sbi, F2FS_DIRTY_NODES);
1650         f2fs_up_read(&sbi->node_write);
1651
1652         if (wbc->for_reclaim) {
1653                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1654                 submitted = NULL;
1655         }
1656
1657         unlock_page(page);
1658
1659         if (unlikely(f2fs_cp_error(sbi))) {
1660                 f2fs_submit_merged_write(sbi, NODE);
1661                 submitted = NULL;
1662         }
1663         if (submitted)
1664                 *submitted = fio.submitted;
1665
1666         if (do_balance)
1667                 f2fs_balance_fs(sbi, false);
1668         return 0;
1669
1670 redirty_out:
1671         redirty_page_for_writepage(wbc, page);
1672         return AOP_WRITEPAGE_ACTIVATE;
1673 }
1674
1675 int f2fs_move_node_page(struct page *node_page, int gc_type)
1676 {
1677         int err = 0;
1678
1679         if (gc_type == FG_GC) {
1680                 struct writeback_control wbc = {
1681                         .sync_mode = WB_SYNC_ALL,
1682                         .nr_to_write = 1,
1683                         .for_reclaim = 0,
1684                 };
1685
1686                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1687
1688                 set_page_dirty(node_page);
1689
1690                 if (!clear_page_dirty_for_io(node_page)) {
1691                         err = -EAGAIN;
1692                         goto out_page;
1693                 }
1694
1695                 if (__write_node_page(node_page, false, NULL,
1696                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1697                         err = -EAGAIN;
1698                         unlock_page(node_page);
1699                 }
1700                 goto release_page;
1701         } else {
1702                 /* set page dirty and write it */
1703                 if (!PageWriteback(node_page))
1704                         set_page_dirty(node_page);
1705         }
1706 out_page:
1707         unlock_page(node_page);
1708 release_page:
1709         f2fs_put_page(node_page, 0);
1710         return err;
1711 }
1712
1713 static int f2fs_write_node_page(struct page *page,
1714                                 struct writeback_control *wbc)
1715 {
1716         return __write_node_page(page, false, NULL, wbc, false,
1717                                                 FS_NODE_IO, NULL);
1718 }
1719
1720 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1721                         struct writeback_control *wbc, bool atomic,
1722                         unsigned int *seq_id)
1723 {
1724         pgoff_t index;
1725         struct pagevec pvec;
1726         int ret = 0;
1727         struct page *last_page = NULL;
1728         bool marked = false;
1729         nid_t ino = inode->i_ino;
1730         int nr_pages;
1731         int nwritten = 0;
1732
1733         if (atomic) {
1734                 last_page = last_fsync_dnode(sbi, ino);
1735                 if (IS_ERR_OR_NULL(last_page))
1736                         return PTR_ERR_OR_ZERO(last_page);
1737         }
1738 retry:
1739         pagevec_init(&pvec);
1740         index = 0;
1741
1742         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1743                                 PAGECACHE_TAG_DIRTY))) {
1744                 int i;
1745
1746                 for (i = 0; i < nr_pages; i++) {
1747                         struct page *page = pvec.pages[i];
1748                         bool submitted = false;
1749
1750                         if (unlikely(f2fs_cp_error(sbi))) {
1751                                 f2fs_put_page(last_page, 0);
1752                                 pagevec_release(&pvec);
1753                                 ret = -EIO;
1754                                 goto out;
1755                         }
1756
1757                         if (!IS_DNODE(page) || !is_cold_node(page))
1758                                 continue;
1759                         if (ino_of_node(page) != ino)
1760                                 continue;
1761
1762                         lock_page(page);
1763
1764                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1765 continue_unlock:
1766                                 unlock_page(page);
1767                                 continue;
1768                         }
1769                         if (ino_of_node(page) != ino)
1770                                 goto continue_unlock;
1771
1772                         if (!PageDirty(page) && page != last_page) {
1773                                 /* someone wrote it for us */
1774                                 goto continue_unlock;
1775                         }
1776
1777                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1778
1779                         set_fsync_mark(page, 0);
1780                         set_dentry_mark(page, 0);
1781
1782                         if (!atomic || page == last_page) {
1783                                 set_fsync_mark(page, 1);
1784                                 percpu_counter_inc(&sbi->rf_node_block_count);
1785                                 if (IS_INODE(page)) {
1786                                         if (is_inode_flag_set(inode,
1787                                                                 FI_DIRTY_INODE))
1788                                                 f2fs_update_inode(inode, page);
1789                                         set_dentry_mark(page,
1790                                                 f2fs_need_dentry_mark(sbi, ino));
1791                                 }
1792                                 /* may be written by other thread */
1793                                 if (!PageDirty(page))
1794                                         set_page_dirty(page);
1795                         }
1796
1797                         if (!clear_page_dirty_for_io(page))
1798                                 goto continue_unlock;
1799
1800                         ret = __write_node_page(page, atomic &&
1801                                                 page == last_page,
1802                                                 &submitted, wbc, true,
1803                                                 FS_NODE_IO, seq_id);
1804                         if (ret) {
1805                                 unlock_page(page);
1806                                 f2fs_put_page(last_page, 0);
1807                                 break;
1808                         } else if (submitted) {
1809                                 nwritten++;
1810                         }
1811
1812                         if (page == last_page) {
1813                                 f2fs_put_page(page, 0);
1814                                 marked = true;
1815                                 break;
1816                         }
1817                 }
1818                 pagevec_release(&pvec);
1819                 cond_resched();
1820
1821                 if (ret || marked)
1822                         break;
1823         }
1824         if (!ret && atomic && !marked) {
1825                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1826                            ino, last_page->index);
1827                 lock_page(last_page);
1828                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1829                 set_page_dirty(last_page);
1830                 unlock_page(last_page);
1831                 goto retry;
1832         }
1833 out:
1834         if (nwritten)
1835                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1836         return ret ? -EIO : 0;
1837 }
1838
1839 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1840 {
1841         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1842         bool clean;
1843
1844         if (inode->i_ino != ino)
1845                 return 0;
1846
1847         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1848                 return 0;
1849
1850         spin_lock(&sbi->inode_lock[DIRTY_META]);
1851         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1852         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1853
1854         if (clean)
1855                 return 0;
1856
1857         inode = igrab(inode);
1858         if (!inode)
1859                 return 0;
1860         return 1;
1861 }
1862
1863 static bool flush_dirty_inode(struct page *page)
1864 {
1865         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1866         struct inode *inode;
1867         nid_t ino = ino_of_node(page);
1868
1869         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1870         if (!inode)
1871                 return false;
1872
1873         f2fs_update_inode(inode, page);
1874         unlock_page(page);
1875
1876         iput(inode);
1877         return true;
1878 }
1879
1880 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1881 {
1882         pgoff_t index = 0;
1883         struct pagevec pvec;
1884         int nr_pages;
1885
1886         pagevec_init(&pvec);
1887
1888         while ((nr_pages = pagevec_lookup_tag(&pvec,
1889                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1890                 int i;
1891
1892                 for (i = 0; i < nr_pages; i++) {
1893                         struct page *page = pvec.pages[i];
1894
1895                         if (!IS_DNODE(page))
1896                                 continue;
1897
1898                         lock_page(page);
1899
1900                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1901 continue_unlock:
1902                                 unlock_page(page);
1903                                 continue;
1904                         }
1905
1906                         if (!PageDirty(page)) {
1907                                 /* someone wrote it for us */
1908                                 goto continue_unlock;
1909                         }
1910
1911                         /* flush inline_data, if it's async context. */
1912                         if (page_private_inline(page)) {
1913                                 clear_page_private_inline(page);
1914                                 unlock_page(page);
1915                                 flush_inline_data(sbi, ino_of_node(page));
1916                                 continue;
1917                         }
1918                         unlock_page(page);
1919                 }
1920                 pagevec_release(&pvec);
1921                 cond_resched();
1922         }
1923 }
1924
1925 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1926                                 struct writeback_control *wbc,
1927                                 bool do_balance, enum iostat_type io_type)
1928 {
1929         pgoff_t index;
1930         struct pagevec pvec;
1931         int step = 0;
1932         int nwritten = 0;
1933         int ret = 0;
1934         int nr_pages, done = 0;
1935
1936         pagevec_init(&pvec);
1937
1938 next_step:
1939         index = 0;
1940
1941         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1942                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1943                 int i;
1944
1945                 for (i = 0; i < nr_pages; i++) {
1946                         struct page *page = pvec.pages[i];
1947                         bool submitted = false;
1948                         bool may_dirty = true;
1949
1950                         /* give a priority to WB_SYNC threads */
1951                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1952                                         wbc->sync_mode == WB_SYNC_NONE) {
1953                                 done = 1;
1954                                 break;
1955                         }
1956
1957                         /*
1958                          * flushing sequence with step:
1959                          * 0. indirect nodes
1960                          * 1. dentry dnodes
1961                          * 2. file dnodes
1962                          */
1963                         if (step == 0 && IS_DNODE(page))
1964                                 continue;
1965                         if (step == 1 && (!IS_DNODE(page) ||
1966                                                 is_cold_node(page)))
1967                                 continue;
1968                         if (step == 2 && (!IS_DNODE(page) ||
1969                                                 !is_cold_node(page)))
1970                                 continue;
1971 lock_node:
1972                         if (wbc->sync_mode == WB_SYNC_ALL)
1973                                 lock_page(page);
1974                         else if (!trylock_page(page))
1975                                 continue;
1976
1977                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1978 continue_unlock:
1979                                 unlock_page(page);
1980                                 continue;
1981                         }
1982
1983                         if (!PageDirty(page)) {
1984                                 /* someone wrote it for us */
1985                                 goto continue_unlock;
1986                         }
1987
1988                         /* flush inline_data/inode, if it's async context. */
1989                         if (!do_balance)
1990                                 goto write_node;
1991
1992                         /* flush inline_data */
1993                         if (page_private_inline(page)) {
1994                                 clear_page_private_inline(page);
1995                                 unlock_page(page);
1996                                 flush_inline_data(sbi, ino_of_node(page));
1997                                 goto lock_node;
1998                         }
1999
2000                         /* flush dirty inode */
2001                         if (IS_INODE(page) && may_dirty) {
2002                                 may_dirty = false;
2003                                 if (flush_dirty_inode(page))
2004                                         goto lock_node;
2005                         }
2006 write_node:
2007                         f2fs_wait_on_page_writeback(page, NODE, true, true);
2008
2009                         if (!clear_page_dirty_for_io(page))
2010                                 goto continue_unlock;
2011
2012                         set_fsync_mark(page, 0);
2013                         set_dentry_mark(page, 0);
2014
2015                         ret = __write_node_page(page, false, &submitted,
2016                                                 wbc, do_balance, io_type, NULL);
2017                         if (ret)
2018                                 unlock_page(page);
2019                         else if (submitted)
2020                                 nwritten++;
2021
2022                         if (--wbc->nr_to_write == 0)
2023                                 break;
2024                 }
2025                 pagevec_release(&pvec);
2026                 cond_resched();
2027
2028                 if (wbc->nr_to_write == 0) {
2029                         step = 2;
2030                         break;
2031                 }
2032         }
2033
2034         if (step < 2) {
2035                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2036                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2037                         goto out;
2038                 step++;
2039                 goto next_step;
2040         }
2041 out:
2042         if (nwritten)
2043                 f2fs_submit_merged_write(sbi, NODE);
2044
2045         if (unlikely(f2fs_cp_error(sbi)))
2046                 return -EIO;
2047         return ret;
2048 }
2049
2050 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2051                                                 unsigned int seq_id)
2052 {
2053         struct fsync_node_entry *fn;
2054         struct page *page;
2055         struct list_head *head = &sbi->fsync_node_list;
2056         unsigned long flags;
2057         unsigned int cur_seq_id = 0;
2058         int ret2, ret = 0;
2059
2060         while (seq_id && cur_seq_id < seq_id) {
2061                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2062                 if (list_empty(head)) {
2063                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2064                         break;
2065                 }
2066                 fn = list_first_entry(head, struct fsync_node_entry, list);
2067                 if (fn->seq_id > seq_id) {
2068                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2069                         break;
2070                 }
2071                 cur_seq_id = fn->seq_id;
2072                 page = fn->page;
2073                 get_page(page);
2074                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2075
2076                 f2fs_wait_on_page_writeback(page, NODE, true, false);
2077                 if (TestClearPageError(page))
2078                         ret = -EIO;
2079
2080                 put_page(page);
2081
2082                 if (ret)
2083                         break;
2084         }
2085
2086         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2087         if (!ret)
2088                 ret = ret2;
2089
2090         return ret;
2091 }
2092
2093 static int f2fs_write_node_pages(struct address_space *mapping,
2094                             struct writeback_control *wbc)
2095 {
2096         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2097         struct blk_plug plug;
2098         long diff;
2099
2100         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2101                 goto skip_write;
2102
2103         /* balancing f2fs's metadata in background */
2104         f2fs_balance_fs_bg(sbi, true);
2105
2106         /* collect a number of dirty node pages and write together */
2107         if (wbc->sync_mode != WB_SYNC_ALL &&
2108                         get_pages(sbi, F2FS_DIRTY_NODES) <
2109                                         nr_pages_to_skip(sbi, NODE))
2110                 goto skip_write;
2111
2112         if (wbc->sync_mode == WB_SYNC_ALL)
2113                 atomic_inc(&sbi->wb_sync_req[NODE]);
2114         else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2115                 /* to avoid potential deadlock */
2116                 if (current->plug)
2117                         blk_finish_plug(current->plug);
2118                 goto skip_write;
2119         }
2120
2121         trace_f2fs_writepages(mapping->host, wbc, NODE);
2122
2123         diff = nr_pages_to_write(sbi, NODE, wbc);
2124         blk_start_plug(&plug);
2125         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2126         blk_finish_plug(&plug);
2127         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2128
2129         if (wbc->sync_mode == WB_SYNC_ALL)
2130                 atomic_dec(&sbi->wb_sync_req[NODE]);
2131         return 0;
2132
2133 skip_write:
2134         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2135         trace_f2fs_writepages(mapping->host, wbc, NODE);
2136         return 0;
2137 }
2138
2139 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2140                 struct folio *folio)
2141 {
2142         trace_f2fs_set_page_dirty(&folio->page, NODE);
2143
2144         if (!folio_test_uptodate(folio))
2145                 folio_mark_uptodate(folio);
2146 #ifdef CONFIG_F2FS_CHECK_FS
2147         if (IS_INODE(&folio->page))
2148                 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2149 #endif
2150         if (!folio_test_dirty(folio)) {
2151                 filemap_dirty_folio(mapping, folio);
2152                 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2153                 set_page_private_reference(&folio->page);
2154                 return true;
2155         }
2156         return false;
2157 }
2158
2159 /*
2160  * Structure of the f2fs node operations
2161  */
2162 const struct address_space_operations f2fs_node_aops = {
2163         .writepage      = f2fs_write_node_page,
2164         .writepages     = f2fs_write_node_pages,
2165         .dirty_folio    = f2fs_dirty_node_folio,
2166         .invalidate_folio = f2fs_invalidate_folio,
2167         .release_folio  = f2fs_release_folio,
2168 #ifdef CONFIG_MIGRATION
2169         .migratepage    = f2fs_migrate_page,
2170 #endif
2171 };
2172
2173 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2174                                                 nid_t n)
2175 {
2176         return radix_tree_lookup(&nm_i->free_nid_root, n);
2177 }
2178
2179 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2180                                 struct free_nid *i)
2181 {
2182         struct f2fs_nm_info *nm_i = NM_I(sbi);
2183         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2184
2185         if (err)
2186                 return err;
2187
2188         nm_i->nid_cnt[FREE_NID]++;
2189         list_add_tail(&i->list, &nm_i->free_nid_list);
2190         return 0;
2191 }
2192
2193 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2194                         struct free_nid *i, enum nid_state state)
2195 {
2196         struct f2fs_nm_info *nm_i = NM_I(sbi);
2197
2198         f2fs_bug_on(sbi, state != i->state);
2199         nm_i->nid_cnt[state]--;
2200         if (state == FREE_NID)
2201                 list_del(&i->list);
2202         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2203 }
2204
2205 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2206                         enum nid_state org_state, enum nid_state dst_state)
2207 {
2208         struct f2fs_nm_info *nm_i = NM_I(sbi);
2209
2210         f2fs_bug_on(sbi, org_state != i->state);
2211         i->state = dst_state;
2212         nm_i->nid_cnt[org_state]--;
2213         nm_i->nid_cnt[dst_state]++;
2214
2215         switch (dst_state) {
2216         case PREALLOC_NID:
2217                 list_del(&i->list);
2218                 break;
2219         case FREE_NID:
2220                 list_add_tail(&i->list, &nm_i->free_nid_list);
2221                 break;
2222         default:
2223                 BUG_ON(1);
2224         }
2225 }
2226
2227 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2228 {
2229         struct f2fs_nm_info *nm_i = NM_I(sbi);
2230         unsigned int i;
2231         bool ret = true;
2232
2233         f2fs_down_read(&nm_i->nat_tree_lock);
2234         for (i = 0; i < nm_i->nat_blocks; i++) {
2235                 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2236                         ret = false;
2237                         break;
2238                 }
2239         }
2240         f2fs_up_read(&nm_i->nat_tree_lock);
2241
2242         return ret;
2243 }
2244
2245 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2246                                                         bool set, bool build)
2247 {
2248         struct f2fs_nm_info *nm_i = NM_I(sbi);
2249         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2250         unsigned int nid_ofs = nid - START_NID(nid);
2251
2252         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2253                 return;
2254
2255         if (set) {
2256                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2257                         return;
2258                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2259                 nm_i->free_nid_count[nat_ofs]++;
2260         } else {
2261                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2262                         return;
2263                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2264                 if (!build)
2265                         nm_i->free_nid_count[nat_ofs]--;
2266         }
2267 }
2268
2269 /* return if the nid is recognized as free */
2270 static bool add_free_nid(struct f2fs_sb_info *sbi,
2271                                 nid_t nid, bool build, bool update)
2272 {
2273         struct f2fs_nm_info *nm_i = NM_I(sbi);
2274         struct free_nid *i, *e;
2275         struct nat_entry *ne;
2276         int err = -EINVAL;
2277         bool ret = false;
2278
2279         /* 0 nid should not be used */
2280         if (unlikely(nid == 0))
2281                 return false;
2282
2283         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2284                 return false;
2285
2286         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2287         i->nid = nid;
2288         i->state = FREE_NID;
2289
2290         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2291
2292         spin_lock(&nm_i->nid_list_lock);
2293
2294         if (build) {
2295                 /*
2296                  *   Thread A             Thread B
2297                  *  - f2fs_create
2298                  *   - f2fs_new_inode
2299                  *    - f2fs_alloc_nid
2300                  *     - __insert_nid_to_list(PREALLOC_NID)
2301                  *                     - f2fs_balance_fs_bg
2302                  *                      - f2fs_build_free_nids
2303                  *                       - __f2fs_build_free_nids
2304                  *                        - scan_nat_page
2305                  *                         - add_free_nid
2306                  *                          - __lookup_nat_cache
2307                  *  - f2fs_add_link
2308                  *   - f2fs_init_inode_metadata
2309                  *    - f2fs_new_inode_page
2310                  *     - f2fs_new_node_page
2311                  *      - set_node_addr
2312                  *  - f2fs_alloc_nid_done
2313                  *   - __remove_nid_from_list(PREALLOC_NID)
2314                  *                         - __insert_nid_to_list(FREE_NID)
2315                  */
2316                 ne = __lookup_nat_cache(nm_i, nid);
2317                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2318                                 nat_get_blkaddr(ne) != NULL_ADDR))
2319                         goto err_out;
2320
2321                 e = __lookup_free_nid_list(nm_i, nid);
2322                 if (e) {
2323                         if (e->state == FREE_NID)
2324                                 ret = true;
2325                         goto err_out;
2326                 }
2327         }
2328         ret = true;
2329         err = __insert_free_nid(sbi, i);
2330 err_out:
2331         if (update) {
2332                 update_free_nid_bitmap(sbi, nid, ret, build);
2333                 if (!build)
2334                         nm_i->available_nids++;
2335         }
2336         spin_unlock(&nm_i->nid_list_lock);
2337         radix_tree_preload_end();
2338
2339         if (err)
2340                 kmem_cache_free(free_nid_slab, i);
2341         return ret;
2342 }
2343
2344 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2345 {
2346         struct f2fs_nm_info *nm_i = NM_I(sbi);
2347         struct free_nid *i;
2348         bool need_free = false;
2349
2350         spin_lock(&nm_i->nid_list_lock);
2351         i = __lookup_free_nid_list(nm_i, nid);
2352         if (i && i->state == FREE_NID) {
2353                 __remove_free_nid(sbi, i, FREE_NID);
2354                 need_free = true;
2355         }
2356         spin_unlock(&nm_i->nid_list_lock);
2357
2358         if (need_free)
2359                 kmem_cache_free(free_nid_slab, i);
2360 }
2361
2362 static int scan_nat_page(struct f2fs_sb_info *sbi,
2363                         struct page *nat_page, nid_t start_nid)
2364 {
2365         struct f2fs_nm_info *nm_i = NM_I(sbi);
2366         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2367         block_t blk_addr;
2368         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2369         int i;
2370
2371         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2372
2373         i = start_nid % NAT_ENTRY_PER_BLOCK;
2374
2375         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2376                 if (unlikely(start_nid >= nm_i->max_nid))
2377                         break;
2378
2379                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2380
2381                 if (blk_addr == NEW_ADDR)
2382                         return -EINVAL;
2383
2384                 if (blk_addr == NULL_ADDR) {
2385                         add_free_nid(sbi, start_nid, true, true);
2386                 } else {
2387                         spin_lock(&NM_I(sbi)->nid_list_lock);
2388                         update_free_nid_bitmap(sbi, start_nid, false, true);
2389                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2390                 }
2391         }
2392
2393         return 0;
2394 }
2395
2396 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2397 {
2398         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2399         struct f2fs_journal *journal = curseg->journal;
2400         int i;
2401
2402         down_read(&curseg->journal_rwsem);
2403         for (i = 0; i < nats_in_cursum(journal); i++) {
2404                 block_t addr;
2405                 nid_t nid;
2406
2407                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2408                 nid = le32_to_cpu(nid_in_journal(journal, i));
2409                 if (addr == NULL_ADDR)
2410                         add_free_nid(sbi, nid, true, false);
2411                 else
2412                         remove_free_nid(sbi, nid);
2413         }
2414         up_read(&curseg->journal_rwsem);
2415 }
2416
2417 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2418 {
2419         struct f2fs_nm_info *nm_i = NM_I(sbi);
2420         unsigned int i, idx;
2421         nid_t nid;
2422
2423         f2fs_down_read(&nm_i->nat_tree_lock);
2424
2425         for (i = 0; i < nm_i->nat_blocks; i++) {
2426                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2427                         continue;
2428                 if (!nm_i->free_nid_count[i])
2429                         continue;
2430                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2431                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2432                                                 NAT_ENTRY_PER_BLOCK, idx);
2433                         if (idx >= NAT_ENTRY_PER_BLOCK)
2434                                 break;
2435
2436                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2437                         add_free_nid(sbi, nid, true, false);
2438
2439                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2440                                 goto out;
2441                 }
2442         }
2443 out:
2444         scan_curseg_cache(sbi);
2445
2446         f2fs_up_read(&nm_i->nat_tree_lock);
2447 }
2448
2449 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2450                                                 bool sync, bool mount)
2451 {
2452         struct f2fs_nm_info *nm_i = NM_I(sbi);
2453         int i = 0, ret;
2454         nid_t nid = nm_i->next_scan_nid;
2455
2456         if (unlikely(nid >= nm_i->max_nid))
2457                 nid = 0;
2458
2459         if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2460                 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2461
2462         /* Enough entries */
2463         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2464                 return 0;
2465
2466         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2467                 return 0;
2468
2469         if (!mount) {
2470                 /* try to find free nids in free_nid_bitmap */
2471                 scan_free_nid_bits(sbi);
2472
2473                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2474                         return 0;
2475         }
2476
2477         /* readahead nat pages to be scanned */
2478         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2479                                                         META_NAT, true);
2480
2481         f2fs_down_read(&nm_i->nat_tree_lock);
2482
2483         while (1) {
2484                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2485                                                 nm_i->nat_block_bitmap)) {
2486                         struct page *page = get_current_nat_page(sbi, nid);
2487
2488                         if (IS_ERR(page)) {
2489                                 ret = PTR_ERR(page);
2490                         } else {
2491                                 ret = scan_nat_page(sbi, page, nid);
2492                                 f2fs_put_page(page, 1);
2493                         }
2494
2495                         if (ret) {
2496                                 f2fs_up_read(&nm_i->nat_tree_lock);
2497                                 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2498                                 return ret;
2499                         }
2500                 }
2501
2502                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2503                 if (unlikely(nid >= nm_i->max_nid))
2504                         nid = 0;
2505
2506                 if (++i >= FREE_NID_PAGES)
2507                         break;
2508         }
2509
2510         /* go to the next free nat pages to find free nids abundantly */
2511         nm_i->next_scan_nid = nid;
2512
2513         /* find free nids from current sum_pages */
2514         scan_curseg_cache(sbi);
2515
2516         f2fs_up_read(&nm_i->nat_tree_lock);
2517
2518         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2519                                         nm_i->ra_nid_pages, META_NAT, false);
2520
2521         return 0;
2522 }
2523
2524 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2525 {
2526         int ret;
2527
2528         mutex_lock(&NM_I(sbi)->build_lock);
2529         ret = __f2fs_build_free_nids(sbi, sync, mount);
2530         mutex_unlock(&NM_I(sbi)->build_lock);
2531
2532         return ret;
2533 }
2534
2535 /*
2536  * If this function returns success, caller can obtain a new nid
2537  * from second parameter of this function.
2538  * The returned nid could be used ino as well as nid when inode is created.
2539  */
2540 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2541 {
2542         struct f2fs_nm_info *nm_i = NM_I(sbi);
2543         struct free_nid *i = NULL;
2544 retry:
2545         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2546                 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2547                 return false;
2548         }
2549
2550         spin_lock(&nm_i->nid_list_lock);
2551
2552         if (unlikely(nm_i->available_nids == 0)) {
2553                 spin_unlock(&nm_i->nid_list_lock);
2554                 return false;
2555         }
2556
2557         /* We should not use stale free nids created by f2fs_build_free_nids */
2558         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2559                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2560                 i = list_first_entry(&nm_i->free_nid_list,
2561                                         struct free_nid, list);
2562                 *nid = i->nid;
2563
2564                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2565                 nm_i->available_nids--;
2566
2567                 update_free_nid_bitmap(sbi, *nid, false, false);
2568
2569                 spin_unlock(&nm_i->nid_list_lock);
2570                 return true;
2571         }
2572         spin_unlock(&nm_i->nid_list_lock);
2573
2574         /* Let's scan nat pages and its caches to get free nids */
2575         if (!f2fs_build_free_nids(sbi, true, false))
2576                 goto retry;
2577         return false;
2578 }
2579
2580 /*
2581  * f2fs_alloc_nid() should be called prior to this function.
2582  */
2583 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2584 {
2585         struct f2fs_nm_info *nm_i = NM_I(sbi);
2586         struct free_nid *i;
2587
2588         spin_lock(&nm_i->nid_list_lock);
2589         i = __lookup_free_nid_list(nm_i, nid);
2590         f2fs_bug_on(sbi, !i);
2591         __remove_free_nid(sbi, i, PREALLOC_NID);
2592         spin_unlock(&nm_i->nid_list_lock);
2593
2594         kmem_cache_free(free_nid_slab, i);
2595 }
2596
2597 /*
2598  * f2fs_alloc_nid() should be called prior to this function.
2599  */
2600 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2601 {
2602         struct f2fs_nm_info *nm_i = NM_I(sbi);
2603         struct free_nid *i;
2604         bool need_free = false;
2605
2606         if (!nid)
2607                 return;
2608
2609         spin_lock(&nm_i->nid_list_lock);
2610         i = __lookup_free_nid_list(nm_i, nid);
2611         f2fs_bug_on(sbi, !i);
2612
2613         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2614                 __remove_free_nid(sbi, i, PREALLOC_NID);
2615                 need_free = true;
2616         } else {
2617                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2618         }
2619
2620         nm_i->available_nids++;
2621
2622         update_free_nid_bitmap(sbi, nid, true, false);
2623
2624         spin_unlock(&nm_i->nid_list_lock);
2625
2626         if (need_free)
2627                 kmem_cache_free(free_nid_slab, i);
2628 }
2629
2630 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2631 {
2632         struct f2fs_nm_info *nm_i = NM_I(sbi);
2633         int nr = nr_shrink;
2634
2635         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2636                 return 0;
2637
2638         if (!mutex_trylock(&nm_i->build_lock))
2639                 return 0;
2640
2641         while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2642                 struct free_nid *i, *next;
2643                 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2644
2645                 spin_lock(&nm_i->nid_list_lock);
2646                 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2647                         if (!nr_shrink || !batch ||
2648                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2649                                 break;
2650                         __remove_free_nid(sbi, i, FREE_NID);
2651                         kmem_cache_free(free_nid_slab, i);
2652                         nr_shrink--;
2653                         batch--;
2654                 }
2655                 spin_unlock(&nm_i->nid_list_lock);
2656         }
2657
2658         mutex_unlock(&nm_i->build_lock);
2659
2660         return nr - nr_shrink;
2661 }
2662
2663 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2664 {
2665         void *src_addr, *dst_addr;
2666         size_t inline_size;
2667         struct page *ipage;
2668         struct f2fs_inode *ri;
2669
2670         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2671         if (IS_ERR(ipage))
2672                 return PTR_ERR(ipage);
2673
2674         ri = F2FS_INODE(page);
2675         if (ri->i_inline & F2FS_INLINE_XATTR) {
2676                 if (!f2fs_has_inline_xattr(inode)) {
2677                         set_inode_flag(inode, FI_INLINE_XATTR);
2678                         stat_inc_inline_xattr(inode);
2679                 }
2680         } else {
2681                 if (f2fs_has_inline_xattr(inode)) {
2682                         stat_dec_inline_xattr(inode);
2683                         clear_inode_flag(inode, FI_INLINE_XATTR);
2684                 }
2685                 goto update_inode;
2686         }
2687
2688         dst_addr = inline_xattr_addr(inode, ipage);
2689         src_addr = inline_xattr_addr(inode, page);
2690         inline_size = inline_xattr_size(inode);
2691
2692         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2693         memcpy(dst_addr, src_addr, inline_size);
2694 update_inode:
2695         f2fs_update_inode(inode, ipage);
2696         f2fs_put_page(ipage, 1);
2697         return 0;
2698 }
2699
2700 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2701 {
2702         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2703         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2704         nid_t new_xnid;
2705         struct dnode_of_data dn;
2706         struct node_info ni;
2707         struct page *xpage;
2708         int err;
2709
2710         if (!prev_xnid)
2711                 goto recover_xnid;
2712
2713         /* 1: invalidate the previous xattr nid */
2714         err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2715         if (err)
2716                 return err;
2717
2718         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2719         dec_valid_node_count(sbi, inode, false);
2720         set_node_addr(sbi, &ni, NULL_ADDR, false);
2721
2722 recover_xnid:
2723         /* 2: update xattr nid in inode */
2724         if (!f2fs_alloc_nid(sbi, &new_xnid))
2725                 return -ENOSPC;
2726
2727         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2728         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2729         if (IS_ERR(xpage)) {
2730                 f2fs_alloc_nid_failed(sbi, new_xnid);
2731                 return PTR_ERR(xpage);
2732         }
2733
2734         f2fs_alloc_nid_done(sbi, new_xnid);
2735         f2fs_update_inode_page(inode);
2736
2737         /* 3: update and set xattr node page dirty */
2738         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2739
2740         set_page_dirty(xpage);
2741         f2fs_put_page(xpage, 1);
2742
2743         return 0;
2744 }
2745
2746 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2747 {
2748         struct f2fs_inode *src, *dst;
2749         nid_t ino = ino_of_node(page);
2750         struct node_info old_ni, new_ni;
2751         struct page *ipage;
2752         int err;
2753
2754         err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2755         if (err)
2756                 return err;
2757
2758         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2759                 return -EINVAL;
2760 retry:
2761         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2762         if (!ipage) {
2763                 memalloc_retry_wait(GFP_NOFS);
2764                 goto retry;
2765         }
2766
2767         /* Should not use this inode from free nid list */
2768         remove_free_nid(sbi, ino);
2769
2770         if (!PageUptodate(ipage))
2771                 SetPageUptodate(ipage);
2772         fill_node_footer(ipage, ino, ino, 0, true);
2773         set_cold_node(ipage, false);
2774
2775         src = F2FS_INODE(page);
2776         dst = F2FS_INODE(ipage);
2777
2778         memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2779         dst->i_size = 0;
2780         dst->i_blocks = cpu_to_le64(1);
2781         dst->i_links = cpu_to_le32(1);
2782         dst->i_xattr_nid = 0;
2783         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2784         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2785                 dst->i_extra_isize = src->i_extra_isize;
2786
2787                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2788                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2789                                                         i_inline_xattr_size))
2790                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2791
2792                 if (f2fs_sb_has_project_quota(sbi) &&
2793                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2794                                                                 i_projid))
2795                         dst->i_projid = src->i_projid;
2796
2797                 if (f2fs_sb_has_inode_crtime(sbi) &&
2798                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2799                                                         i_crtime_nsec)) {
2800                         dst->i_crtime = src->i_crtime;
2801                         dst->i_crtime_nsec = src->i_crtime_nsec;
2802                 }
2803         }
2804
2805         new_ni = old_ni;
2806         new_ni.ino = ino;
2807
2808         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2809                 WARN_ON(1);
2810         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2811         inc_valid_inode_count(sbi);
2812         set_page_dirty(ipage);
2813         f2fs_put_page(ipage, 1);
2814         return 0;
2815 }
2816
2817 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2818                         unsigned int segno, struct f2fs_summary_block *sum)
2819 {
2820         struct f2fs_node *rn;
2821         struct f2fs_summary *sum_entry;
2822         block_t addr;
2823         int i, idx, last_offset, nrpages;
2824
2825         /* scan the node segment */
2826         last_offset = sbi->blocks_per_seg;
2827         addr = START_BLOCK(sbi, segno);
2828         sum_entry = &sum->entries[0];
2829
2830         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2831                 nrpages = bio_max_segs(last_offset - i);
2832
2833                 /* readahead node pages */
2834                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2835
2836                 for (idx = addr; idx < addr + nrpages; idx++) {
2837                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2838
2839                         if (IS_ERR(page))
2840                                 return PTR_ERR(page);
2841
2842                         rn = F2FS_NODE(page);
2843                         sum_entry->nid = rn->footer.nid;
2844                         sum_entry->version = 0;
2845                         sum_entry->ofs_in_node = 0;
2846                         sum_entry++;
2847                         f2fs_put_page(page, 1);
2848                 }
2849
2850                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2851                                                         addr + nrpages);
2852         }
2853         return 0;
2854 }
2855
2856 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2857 {
2858         struct f2fs_nm_info *nm_i = NM_I(sbi);
2859         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2860         struct f2fs_journal *journal = curseg->journal;
2861         int i;
2862
2863         down_write(&curseg->journal_rwsem);
2864         for (i = 0; i < nats_in_cursum(journal); i++) {
2865                 struct nat_entry *ne;
2866                 struct f2fs_nat_entry raw_ne;
2867                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2868
2869                 if (f2fs_check_nid_range(sbi, nid))
2870                         continue;
2871
2872                 raw_ne = nat_in_journal(journal, i);
2873
2874                 ne = __lookup_nat_cache(nm_i, nid);
2875                 if (!ne) {
2876                         ne = __alloc_nat_entry(sbi, nid, true);
2877                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2878                 }
2879
2880                 /*
2881                  * if a free nat in journal has not been used after last
2882                  * checkpoint, we should remove it from available nids,
2883                  * since later we will add it again.
2884                  */
2885                 if (!get_nat_flag(ne, IS_DIRTY) &&
2886                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2887                         spin_lock(&nm_i->nid_list_lock);
2888                         nm_i->available_nids--;
2889                         spin_unlock(&nm_i->nid_list_lock);
2890                 }
2891
2892                 __set_nat_cache_dirty(nm_i, ne);
2893         }
2894         update_nats_in_cursum(journal, -i);
2895         up_write(&curseg->journal_rwsem);
2896 }
2897
2898 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2899                                                 struct list_head *head, int max)
2900 {
2901         struct nat_entry_set *cur;
2902
2903         if (nes->entry_cnt >= max)
2904                 goto add_out;
2905
2906         list_for_each_entry(cur, head, set_list) {
2907                 if (cur->entry_cnt >= nes->entry_cnt) {
2908                         list_add(&nes->set_list, cur->set_list.prev);
2909                         return;
2910                 }
2911         }
2912 add_out:
2913         list_add_tail(&nes->set_list, head);
2914 }
2915
2916 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2917                                                         unsigned int valid)
2918 {
2919         if (valid == 0) {
2920                 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2921                 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2922                 return;
2923         }
2924
2925         __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2926         if (valid == NAT_ENTRY_PER_BLOCK)
2927                 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2928         else
2929                 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2930 }
2931
2932 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2933                                                 struct page *page)
2934 {
2935         struct f2fs_nm_info *nm_i = NM_I(sbi);
2936         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2937         struct f2fs_nat_block *nat_blk = page_address(page);
2938         int valid = 0;
2939         int i = 0;
2940
2941         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2942                 return;
2943
2944         if (nat_index == 0) {
2945                 valid = 1;
2946                 i = 1;
2947         }
2948         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2949                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2950                         valid++;
2951         }
2952
2953         __update_nat_bits(nm_i, nat_index, valid);
2954 }
2955
2956 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2957 {
2958         struct f2fs_nm_info *nm_i = NM_I(sbi);
2959         unsigned int nat_ofs;
2960
2961         f2fs_down_read(&nm_i->nat_tree_lock);
2962
2963         for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2964                 unsigned int valid = 0, nid_ofs = 0;
2965
2966                 /* handle nid zero due to it should never be used */
2967                 if (unlikely(nat_ofs == 0)) {
2968                         valid = 1;
2969                         nid_ofs = 1;
2970                 }
2971
2972                 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2973                         if (!test_bit_le(nid_ofs,
2974                                         nm_i->free_nid_bitmap[nat_ofs]))
2975                                 valid++;
2976                 }
2977
2978                 __update_nat_bits(nm_i, nat_ofs, valid);
2979         }
2980
2981         f2fs_up_read(&nm_i->nat_tree_lock);
2982 }
2983
2984 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2985                 struct nat_entry_set *set, struct cp_control *cpc)
2986 {
2987         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2988         struct f2fs_journal *journal = curseg->journal;
2989         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2990         bool to_journal = true;
2991         struct f2fs_nat_block *nat_blk;
2992         struct nat_entry *ne, *cur;
2993         struct page *page = NULL;
2994
2995         /*
2996          * there are two steps to flush nat entries:
2997          * #1, flush nat entries to journal in current hot data summary block.
2998          * #2, flush nat entries to nat page.
2999          */
3000         if ((cpc->reason & CP_UMOUNT) ||
3001                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3002                 to_journal = false;
3003
3004         if (to_journal) {
3005                 down_write(&curseg->journal_rwsem);
3006         } else {
3007                 page = get_next_nat_page(sbi, start_nid);
3008                 if (IS_ERR(page))
3009                         return PTR_ERR(page);
3010
3011                 nat_blk = page_address(page);
3012                 f2fs_bug_on(sbi, !nat_blk);
3013         }
3014
3015         /* flush dirty nats in nat entry set */
3016         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3017                 struct f2fs_nat_entry *raw_ne;
3018                 nid_t nid = nat_get_nid(ne);
3019                 int offset;
3020
3021                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3022
3023                 if (to_journal) {
3024                         offset = f2fs_lookup_journal_in_cursum(journal,
3025                                                         NAT_JOURNAL, nid, 1);
3026                         f2fs_bug_on(sbi, offset < 0);
3027                         raw_ne = &nat_in_journal(journal, offset);
3028                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
3029                 } else {
3030                         raw_ne = &nat_blk->entries[nid - start_nid];
3031                 }
3032                 raw_nat_from_node_info(raw_ne, &ne->ni);
3033                 nat_reset_flag(ne);
3034                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3035                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3036                         add_free_nid(sbi, nid, false, true);
3037                 } else {
3038                         spin_lock(&NM_I(sbi)->nid_list_lock);
3039                         update_free_nid_bitmap(sbi, nid, false, false);
3040                         spin_unlock(&NM_I(sbi)->nid_list_lock);
3041                 }
3042         }
3043
3044         if (to_journal) {
3045                 up_write(&curseg->journal_rwsem);
3046         } else {
3047                 update_nat_bits(sbi, start_nid, page);
3048                 f2fs_put_page(page, 1);
3049         }
3050
3051         /* Allow dirty nats by node block allocation in write_begin */
3052         if (!set->entry_cnt) {
3053                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3054                 kmem_cache_free(nat_entry_set_slab, set);
3055         }
3056         return 0;
3057 }
3058
3059 /*
3060  * This function is called during the checkpointing process.
3061  */
3062 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3063 {
3064         struct f2fs_nm_info *nm_i = NM_I(sbi);
3065         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3066         struct f2fs_journal *journal = curseg->journal;
3067         struct nat_entry_set *setvec[SETVEC_SIZE];
3068         struct nat_entry_set *set, *tmp;
3069         unsigned int found;
3070         nid_t set_idx = 0;
3071         LIST_HEAD(sets);
3072         int err = 0;
3073
3074         /*
3075          * during unmount, let's flush nat_bits before checking
3076          * nat_cnt[DIRTY_NAT].
3077          */
3078         if (cpc->reason & CP_UMOUNT) {
3079                 f2fs_down_write(&nm_i->nat_tree_lock);
3080                 remove_nats_in_journal(sbi);
3081                 f2fs_up_write(&nm_i->nat_tree_lock);
3082         }
3083
3084         if (!nm_i->nat_cnt[DIRTY_NAT])
3085                 return 0;
3086
3087         f2fs_down_write(&nm_i->nat_tree_lock);
3088
3089         /*
3090          * if there are no enough space in journal to store dirty nat
3091          * entries, remove all entries from journal and merge them
3092          * into nat entry set.
3093          */
3094         if (cpc->reason & CP_UMOUNT ||
3095                 !__has_cursum_space(journal,
3096                         nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3097                 remove_nats_in_journal(sbi);
3098
3099         while ((found = __gang_lookup_nat_set(nm_i,
3100                                         set_idx, SETVEC_SIZE, setvec))) {
3101                 unsigned idx;
3102
3103                 set_idx = setvec[found - 1]->set + 1;
3104                 for (idx = 0; idx < found; idx++)
3105                         __adjust_nat_entry_set(setvec[idx], &sets,
3106                                                 MAX_NAT_JENTRIES(journal));
3107         }
3108
3109         /* flush dirty nats in nat entry set */
3110         list_for_each_entry_safe(set, tmp, &sets, set_list) {
3111                 err = __flush_nat_entry_set(sbi, set, cpc);
3112                 if (err)
3113                         break;
3114         }
3115
3116         f2fs_up_write(&nm_i->nat_tree_lock);
3117         /* Allow dirty nats by node block allocation in write_begin */
3118
3119         return err;
3120 }
3121
3122 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3123 {
3124         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3125         struct f2fs_nm_info *nm_i = NM_I(sbi);
3126         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3127         unsigned int i;
3128         __u64 cp_ver = cur_cp_version(ckpt);
3129         block_t nat_bits_addr;
3130
3131         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3132         nm_i->nat_bits = f2fs_kvzalloc(sbi,
3133                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3134         if (!nm_i->nat_bits)
3135                 return -ENOMEM;
3136
3137         nm_i->full_nat_bits = nm_i->nat_bits + 8;
3138         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3139
3140         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3141                 return 0;
3142
3143         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3144                                                 nm_i->nat_bits_blocks;
3145         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3146                 struct page *page;
3147
3148                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3149                 if (IS_ERR(page))
3150                         return PTR_ERR(page);
3151
3152                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3153                                         page_address(page), F2FS_BLKSIZE);
3154                 f2fs_put_page(page, 1);
3155         }
3156
3157         cp_ver |= (cur_cp_crc(ckpt) << 32);
3158         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3159                 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3160                 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3161                         cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3162                 return 0;
3163         }
3164
3165         f2fs_notice(sbi, "Found nat_bits in checkpoint");
3166         return 0;
3167 }
3168
3169 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3170 {
3171         struct f2fs_nm_info *nm_i = NM_I(sbi);
3172         unsigned int i = 0;
3173         nid_t nid, last_nid;
3174
3175         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3176                 return;
3177
3178         for (i = 0; i < nm_i->nat_blocks; i++) {
3179                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3180                 if (i >= nm_i->nat_blocks)
3181                         break;
3182
3183                 __set_bit_le(i, nm_i->nat_block_bitmap);
3184
3185                 nid = i * NAT_ENTRY_PER_BLOCK;
3186                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3187
3188                 spin_lock(&NM_I(sbi)->nid_list_lock);
3189                 for (; nid < last_nid; nid++)
3190                         update_free_nid_bitmap(sbi, nid, true, true);
3191                 spin_unlock(&NM_I(sbi)->nid_list_lock);
3192         }
3193
3194         for (i = 0; i < nm_i->nat_blocks; i++) {
3195                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3196                 if (i >= nm_i->nat_blocks)
3197                         break;
3198
3199                 __set_bit_le(i, nm_i->nat_block_bitmap);
3200         }
3201 }
3202
3203 static int init_node_manager(struct f2fs_sb_info *sbi)
3204 {
3205         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3206         struct f2fs_nm_info *nm_i = NM_I(sbi);
3207         unsigned char *version_bitmap;
3208         unsigned int nat_segs;
3209         int err;
3210
3211         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3212
3213         /* segment_count_nat includes pair segment so divide to 2. */
3214         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3215         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3216         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3217
3218         /* not used nids: 0, node, meta, (and root counted as valid node) */
3219         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3220                                                 F2FS_RESERVED_NODE_NUM;
3221         nm_i->nid_cnt[FREE_NID] = 0;
3222         nm_i->nid_cnt[PREALLOC_NID] = 0;
3223         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3224         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3225         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3226         nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3227
3228         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3229         INIT_LIST_HEAD(&nm_i->free_nid_list);
3230         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3231         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3232         INIT_LIST_HEAD(&nm_i->nat_entries);
3233         spin_lock_init(&nm_i->nat_list_lock);
3234
3235         mutex_init(&nm_i->build_lock);
3236         spin_lock_init(&nm_i->nid_list_lock);
3237         init_f2fs_rwsem(&nm_i->nat_tree_lock);
3238
3239         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3240         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3241         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3242         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3243                                         GFP_KERNEL);
3244         if (!nm_i->nat_bitmap)
3245                 return -ENOMEM;
3246
3247         err = __get_nat_bitmaps(sbi);
3248         if (err)
3249                 return err;
3250
3251 #ifdef CONFIG_F2FS_CHECK_FS
3252         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3253                                         GFP_KERNEL);
3254         if (!nm_i->nat_bitmap_mir)
3255                 return -ENOMEM;
3256 #endif
3257
3258         return 0;
3259 }
3260
3261 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3262 {
3263         struct f2fs_nm_info *nm_i = NM_I(sbi);
3264         int i;
3265
3266         nm_i->free_nid_bitmap =
3267                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3268                                               nm_i->nat_blocks),
3269                               GFP_KERNEL);
3270         if (!nm_i->free_nid_bitmap)
3271                 return -ENOMEM;
3272
3273         for (i = 0; i < nm_i->nat_blocks; i++) {
3274                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3275                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3276                 if (!nm_i->free_nid_bitmap[i])
3277                         return -ENOMEM;
3278         }
3279
3280         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3281                                                                 GFP_KERNEL);
3282         if (!nm_i->nat_block_bitmap)
3283                 return -ENOMEM;
3284
3285         nm_i->free_nid_count =
3286                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3287                                               nm_i->nat_blocks),
3288                               GFP_KERNEL);
3289         if (!nm_i->free_nid_count)
3290                 return -ENOMEM;
3291         return 0;
3292 }
3293
3294 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3295 {
3296         int err;
3297
3298         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3299                                                         GFP_KERNEL);
3300         if (!sbi->nm_info)
3301                 return -ENOMEM;
3302
3303         err = init_node_manager(sbi);
3304         if (err)
3305                 return err;
3306
3307         err = init_free_nid_cache(sbi);
3308         if (err)
3309                 return err;
3310
3311         /* load free nid status from nat_bits table */
3312         load_free_nid_bitmap(sbi);
3313
3314         return f2fs_build_free_nids(sbi, true, true);
3315 }
3316
3317 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3318 {
3319         struct f2fs_nm_info *nm_i = NM_I(sbi);
3320         struct free_nid *i, *next_i;
3321         struct nat_entry *natvec[NATVEC_SIZE];
3322         struct nat_entry_set *setvec[SETVEC_SIZE];
3323         nid_t nid = 0;
3324         unsigned int found;
3325
3326         if (!nm_i)
3327                 return;
3328
3329         /* destroy free nid list */
3330         spin_lock(&nm_i->nid_list_lock);
3331         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3332                 __remove_free_nid(sbi, i, FREE_NID);
3333                 spin_unlock(&nm_i->nid_list_lock);
3334                 kmem_cache_free(free_nid_slab, i);
3335                 spin_lock(&nm_i->nid_list_lock);
3336         }
3337         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3338         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3339         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3340         spin_unlock(&nm_i->nid_list_lock);
3341
3342         /* destroy nat cache */
3343         f2fs_down_write(&nm_i->nat_tree_lock);
3344         while ((found = __gang_lookup_nat_cache(nm_i,
3345                                         nid, NATVEC_SIZE, natvec))) {
3346                 unsigned idx;
3347
3348                 nid = nat_get_nid(natvec[found - 1]) + 1;
3349                 for (idx = 0; idx < found; idx++) {
3350                         spin_lock(&nm_i->nat_list_lock);
3351                         list_del(&natvec[idx]->list);
3352                         spin_unlock(&nm_i->nat_list_lock);
3353
3354                         __del_from_nat_cache(nm_i, natvec[idx]);
3355                 }
3356         }
3357         f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3358
3359         /* destroy nat set cache */
3360         nid = 0;
3361         while ((found = __gang_lookup_nat_set(nm_i,
3362                                         nid, SETVEC_SIZE, setvec))) {
3363                 unsigned idx;
3364
3365                 nid = setvec[found - 1]->set + 1;
3366                 for (idx = 0; idx < found; idx++) {
3367                         /* entry_cnt is not zero, when cp_error was occurred */
3368                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3369                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3370                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3371                 }
3372         }
3373         f2fs_up_write(&nm_i->nat_tree_lock);
3374
3375         kvfree(nm_i->nat_block_bitmap);
3376         if (nm_i->free_nid_bitmap) {
3377                 int i;
3378
3379                 for (i = 0; i < nm_i->nat_blocks; i++)
3380                         kvfree(nm_i->free_nid_bitmap[i]);
3381                 kvfree(nm_i->free_nid_bitmap);
3382         }
3383         kvfree(nm_i->free_nid_count);
3384
3385         kvfree(nm_i->nat_bitmap);
3386         kvfree(nm_i->nat_bits);
3387 #ifdef CONFIG_F2FS_CHECK_FS
3388         kvfree(nm_i->nat_bitmap_mir);
3389 #endif
3390         sbi->nm_info = NULL;
3391         kfree(nm_i);
3392 }
3393
3394 int __init f2fs_create_node_manager_caches(void)
3395 {
3396         nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3397                         sizeof(struct nat_entry));
3398         if (!nat_entry_slab)
3399                 goto fail;
3400
3401         free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3402                         sizeof(struct free_nid));
3403         if (!free_nid_slab)
3404                 goto destroy_nat_entry;
3405
3406         nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3407                         sizeof(struct nat_entry_set));
3408         if (!nat_entry_set_slab)
3409                 goto destroy_free_nid;
3410
3411         fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3412                         sizeof(struct fsync_node_entry));
3413         if (!fsync_node_entry_slab)
3414                 goto destroy_nat_entry_set;
3415         return 0;
3416
3417 destroy_nat_entry_set:
3418         kmem_cache_destroy(nat_entry_set_slab);
3419 destroy_free_nid:
3420         kmem_cache_destroy(free_nid_slab);
3421 destroy_nat_entry:
3422         kmem_cache_destroy(nat_entry_slab);
3423 fail:
3424         return -ENOMEM;
3425 }
3426
3427 void f2fs_destroy_node_manager_caches(void)
3428 {
3429         kmem_cache_destroy(fsync_node_entry_slab);
3430         kmem_cache_destroy(nat_entry_set_slab);
3431         kmem_cache_destroy(free_nid_slab);
3432         kmem_cache_destroy(nat_entry_slab);
3433 }