Merge tag 'zstd-linus-v6.2' of https://github.com/terrelln/linux
[sfrench/cifs-2.6.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38                           __func__, nid);
39                 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40                 return -EFSCORRUPTED;
41         }
42         return 0;
43 }
44
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47         struct f2fs_nm_info *nm_i = NM_I(sbi);
48         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49         struct sysinfo val;
50         unsigned long avail_ram;
51         unsigned long mem_size = 0;
52         bool res = false;
53
54         if (!nm_i)
55                 return true;
56
57         si_meminfo(&val);
58
59         /* only uses low memory */
60         avail_ram = val.totalram - val.totalhigh;
61
62         /*
63          * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64          */
65         if (type == FREE_NIDS) {
66                 mem_size = (nm_i->nid_cnt[FREE_NID] *
67                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
68                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69         } else if (type == NAT_ENTRIES) {
70                 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71                                 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73                 if (excess_cached_nats(sbi))
74                         res = false;
75         } else if (type == DIRTY_DENTS) {
76                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77                         return false;
78                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80         } else if (type == INO_ENTRIES) {
81                 int i;
82
83                 for (i = 0; i < MAX_INO_ENTRY; i++)
84                         mem_size += sbi->im[i].ino_num *
85                                                 sizeof(struct ino_entry);
86                 mem_size >>= PAGE_SHIFT;
87                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88         } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89                 enum extent_type etype = type == READ_EXTENT_CACHE ?
90                                                 EX_READ : EX_BLOCK_AGE;
91                 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93                 mem_size = (atomic_read(&eti->total_ext_tree) *
94                                 sizeof(struct extent_tree) +
95                                 atomic_read(&eti->total_ext_node) *
96                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
97                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98         } else if (type == DISCARD_CACHE) {
99                 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100                                 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101                 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102         } else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104                 unsigned long free_ram = val.freeram;
105
106                 /*
107                  * free memory is lower than watermark or cached page count
108                  * exceed threshold, deny caching compress page.
109                  */
110                 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111                         (COMPRESS_MAPPING(sbi)->nrpages <
112                          free_ram * sbi->compress_percent / 100);
113 #else
114                 res = false;
115 #endif
116         } else {
117                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118                         return true;
119         }
120         return res;
121 }
122
123 static void clear_node_page_dirty(struct page *page)
124 {
125         if (PageDirty(page)) {
126                 f2fs_clear_page_cache_dirty_tag(page);
127                 clear_page_dirty_for_io(page);
128                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129         }
130         ClearPageUptodate(page);
131 }
132
133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135         return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137
138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140         struct page *src_page;
141         struct page *dst_page;
142         pgoff_t dst_off;
143         void *src_addr;
144         void *dst_addr;
145         struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149         /* get current nat block page with lock */
150         src_page = get_current_nat_page(sbi, nid);
151         if (IS_ERR(src_page))
152                 return src_page;
153         dst_page = f2fs_grab_meta_page(sbi, dst_off);
154         f2fs_bug_on(sbi, PageDirty(src_page));
155
156         src_addr = page_address(src_page);
157         dst_addr = page_address(dst_page);
158         memcpy(dst_addr, src_addr, PAGE_SIZE);
159         set_page_dirty(dst_page);
160         f2fs_put_page(src_page, 1);
161
162         set_to_next_nat(nm_i, nid);
163
164         return dst_page;
165 }
166
167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168                                                 nid_t nid, bool no_fail)
169 {
170         struct nat_entry *new;
171
172         new = f2fs_kmem_cache_alloc(nat_entry_slab,
173                                         GFP_F2FS_ZERO, no_fail, sbi);
174         if (new) {
175                 nat_set_nid(new, nid);
176                 nat_reset_flag(new);
177         }
178         return new;
179 }
180
181 static void __free_nat_entry(struct nat_entry *e)
182 {
183         kmem_cache_free(nat_entry_slab, e);
184 }
185
186 /* must be locked by nat_tree_lock */
187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190         if (no_fail)
191                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193                 return NULL;
194
195         if (raw_ne)
196                 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198         spin_lock(&nm_i->nat_list_lock);
199         list_add_tail(&ne->list, &nm_i->nat_entries);
200         spin_unlock(&nm_i->nat_list_lock);
201
202         nm_i->nat_cnt[TOTAL_NAT]++;
203         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204         return ne;
205 }
206
207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209         struct nat_entry *ne;
210
211         ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213         /* for recent accessed nat entry, move it to tail of lru list */
214         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215                 spin_lock(&nm_i->nat_list_lock);
216                 if (!list_empty(&ne->list))
217                         list_move_tail(&ne->list, &nm_i->nat_entries);
218                 spin_unlock(&nm_i->nat_list_lock);
219         }
220
221         return ne;
222 }
223
224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225                 nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229
230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233         nm_i->nat_cnt[TOTAL_NAT]--;
234         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235         __free_nat_entry(e);
236 }
237
238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239                                                         struct nat_entry *ne)
240 {
241         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242         struct nat_entry_set *head;
243
244         head = radix_tree_lookup(&nm_i->nat_set_root, set);
245         if (!head) {
246                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247                                                 GFP_NOFS, true, NULL);
248
249                 INIT_LIST_HEAD(&head->entry_list);
250                 INIT_LIST_HEAD(&head->set_list);
251                 head->set = set;
252                 head->entry_cnt = 0;
253                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254         }
255         return head;
256 }
257
258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259                                                 struct nat_entry *ne)
260 {
261         struct nat_entry_set *head;
262         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264         if (!new_ne)
265                 head = __grab_nat_entry_set(nm_i, ne);
266
267         /*
268          * update entry_cnt in below condition:
269          * 1. update NEW_ADDR to valid block address;
270          * 2. update old block address to new one;
271          */
272         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273                                 !get_nat_flag(ne, IS_DIRTY)))
274                 head->entry_cnt++;
275
276         set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278         if (get_nat_flag(ne, IS_DIRTY))
279                 goto refresh_list;
280
281         nm_i->nat_cnt[DIRTY_NAT]++;
282         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283         set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285         spin_lock(&nm_i->nat_list_lock);
286         if (new_ne)
287                 list_del_init(&ne->list);
288         else
289                 list_move_tail(&ne->list, &head->entry_list);
290         spin_unlock(&nm_i->nat_list_lock);
291 }
292
293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294                 struct nat_entry_set *set, struct nat_entry *ne)
295 {
296         spin_lock(&nm_i->nat_list_lock);
297         list_move_tail(&ne->list, &nm_i->nat_entries);
298         spin_unlock(&nm_i->nat_list_lock);
299
300         set_nat_flag(ne, IS_DIRTY, false);
301         set->entry_cnt--;
302         nm_i->nat_cnt[DIRTY_NAT]--;
303         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305
306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310                                                         start, nr);
311 }
312
313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314 {
315         return NODE_MAPPING(sbi) == page->mapping &&
316                         IS_DNODE(page) && is_cold_node(page);
317 }
318
319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321         spin_lock_init(&sbi->fsync_node_lock);
322         INIT_LIST_HEAD(&sbi->fsync_node_list);
323         sbi->fsync_seg_id = 0;
324         sbi->fsync_node_num = 0;
325 }
326
327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328                                                         struct page *page)
329 {
330         struct fsync_node_entry *fn;
331         unsigned long flags;
332         unsigned int seq_id;
333
334         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335                                         GFP_NOFS, true, NULL);
336
337         get_page(page);
338         fn->page = page;
339         INIT_LIST_HEAD(&fn->list);
340
341         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342         list_add_tail(&fn->list, &sbi->fsync_node_list);
343         fn->seq_id = sbi->fsync_seg_id++;
344         seq_id = fn->seq_id;
345         sbi->fsync_node_num++;
346         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348         return seq_id;
349 }
350
351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353         struct fsync_node_entry *fn;
354         unsigned long flags;
355
356         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358                 if (fn->page == page) {
359                         list_del(&fn->list);
360                         sbi->fsync_node_num--;
361                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362                         kmem_cache_free(fsync_node_entry_slab, fn);
363                         put_page(page);
364                         return;
365                 }
366         }
367         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368         f2fs_bug_on(sbi, 1);
369 }
370
371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373         unsigned long flags;
374
375         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376         sbi->fsync_seg_id = 0;
377         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379
380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382         struct f2fs_nm_info *nm_i = NM_I(sbi);
383         struct nat_entry *e;
384         bool need = false;
385
386         f2fs_down_read(&nm_i->nat_tree_lock);
387         e = __lookup_nat_cache(nm_i, nid);
388         if (e) {
389                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
391                         need = true;
392         }
393         f2fs_up_read(&nm_i->nat_tree_lock);
394         return need;
395 }
396
397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399         struct f2fs_nm_info *nm_i = NM_I(sbi);
400         struct nat_entry *e;
401         bool is_cp = true;
402
403         f2fs_down_read(&nm_i->nat_tree_lock);
404         e = __lookup_nat_cache(nm_i, nid);
405         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406                 is_cp = false;
407         f2fs_up_read(&nm_i->nat_tree_lock);
408         return is_cp;
409 }
410
411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413         struct f2fs_nm_info *nm_i = NM_I(sbi);
414         struct nat_entry *e;
415         bool need_update = true;
416
417         f2fs_down_read(&nm_i->nat_tree_lock);
418         e = __lookup_nat_cache(nm_i, ino);
419         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420                         (get_nat_flag(e, IS_CHECKPOINTED) ||
421                          get_nat_flag(e, HAS_FSYNCED_INODE)))
422                 need_update = false;
423         f2fs_up_read(&nm_i->nat_tree_lock);
424         return need_update;
425 }
426
427 /* must be locked by nat_tree_lock */
428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429                                                 struct f2fs_nat_entry *ne)
430 {
431         struct f2fs_nm_info *nm_i = NM_I(sbi);
432         struct nat_entry *new, *e;
433
434         /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435         if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436                 return;
437
438         new = __alloc_nat_entry(sbi, nid, false);
439         if (!new)
440                 return;
441
442         f2fs_down_write(&nm_i->nat_tree_lock);
443         e = __lookup_nat_cache(nm_i, nid);
444         if (!e)
445                 e = __init_nat_entry(nm_i, new, ne, false);
446         else
447                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448                                 nat_get_blkaddr(e) !=
449                                         le32_to_cpu(ne->block_addr) ||
450                                 nat_get_version(e) != ne->version);
451         f2fs_up_write(&nm_i->nat_tree_lock);
452         if (e != new)
453                 __free_nat_entry(new);
454 }
455
456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457                         block_t new_blkaddr, bool fsync_done)
458 {
459         struct f2fs_nm_info *nm_i = NM_I(sbi);
460         struct nat_entry *e;
461         struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463         f2fs_down_write(&nm_i->nat_tree_lock);
464         e = __lookup_nat_cache(nm_i, ni->nid);
465         if (!e) {
466                 e = __init_nat_entry(nm_i, new, NULL, true);
467                 copy_node_info(&e->ni, ni);
468                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469         } else if (new_blkaddr == NEW_ADDR) {
470                 /*
471                  * when nid is reallocated,
472                  * previous nat entry can be remained in nat cache.
473                  * So, reinitialize it with new information.
474                  */
475                 copy_node_info(&e->ni, ni);
476                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477         }
478         /* let's free early to reduce memory consumption */
479         if (e != new)
480                 __free_nat_entry(new);
481
482         /* sanity check */
483         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485                         new_blkaddr == NULL_ADDR);
486         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487                         new_blkaddr == NEW_ADDR);
488         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489                         new_blkaddr == NEW_ADDR);
490
491         /* increment version no as node is removed */
492         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493                 unsigned char version = nat_get_version(e);
494
495                 nat_set_version(e, inc_node_version(version));
496         }
497
498         /* change address */
499         nat_set_blkaddr(e, new_blkaddr);
500         if (!__is_valid_data_blkaddr(new_blkaddr))
501                 set_nat_flag(e, IS_CHECKPOINTED, false);
502         __set_nat_cache_dirty(nm_i, e);
503
504         /* update fsync_mark if its inode nat entry is still alive */
505         if (ni->nid != ni->ino)
506                 e = __lookup_nat_cache(nm_i, ni->ino);
507         if (e) {
508                 if (fsync_done && ni->nid == ni->ino)
509                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
510                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511         }
512         f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514
515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517         struct f2fs_nm_info *nm_i = NM_I(sbi);
518         int nr = nr_shrink;
519
520         if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521                 return 0;
522
523         spin_lock(&nm_i->nat_list_lock);
524         while (nr_shrink) {
525                 struct nat_entry *ne;
526
527                 if (list_empty(&nm_i->nat_entries))
528                         break;
529
530                 ne = list_first_entry(&nm_i->nat_entries,
531                                         struct nat_entry, list);
532                 list_del(&ne->list);
533                 spin_unlock(&nm_i->nat_list_lock);
534
535                 __del_from_nat_cache(nm_i, ne);
536                 nr_shrink--;
537
538                 spin_lock(&nm_i->nat_list_lock);
539         }
540         spin_unlock(&nm_i->nat_list_lock);
541
542         f2fs_up_write(&nm_i->nat_tree_lock);
543         return nr - nr_shrink;
544 }
545
546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547                                 struct node_info *ni, bool checkpoint_context)
548 {
549         struct f2fs_nm_info *nm_i = NM_I(sbi);
550         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551         struct f2fs_journal *journal = curseg->journal;
552         nid_t start_nid = START_NID(nid);
553         struct f2fs_nat_block *nat_blk;
554         struct page *page = NULL;
555         struct f2fs_nat_entry ne;
556         struct nat_entry *e;
557         pgoff_t index;
558         block_t blkaddr;
559         int i;
560
561         ni->nid = nid;
562 retry:
563         /* Check nat cache */
564         f2fs_down_read(&nm_i->nat_tree_lock);
565         e = __lookup_nat_cache(nm_i, nid);
566         if (e) {
567                 ni->ino = nat_get_ino(e);
568                 ni->blk_addr = nat_get_blkaddr(e);
569                 ni->version = nat_get_version(e);
570                 f2fs_up_read(&nm_i->nat_tree_lock);
571                 return 0;
572         }
573
574         /*
575          * Check current segment summary by trying to grab journal_rwsem first.
576          * This sem is on the critical path on the checkpoint requiring the above
577          * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578          * while not bothering checkpoint.
579          */
580         if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581                 down_read(&curseg->journal_rwsem);
582         } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583                                 !down_read_trylock(&curseg->journal_rwsem)) {
584                 f2fs_up_read(&nm_i->nat_tree_lock);
585                 goto retry;
586         }
587
588         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589         if (i >= 0) {
590                 ne = nat_in_journal(journal, i);
591                 node_info_from_raw_nat(ni, &ne);
592         }
593         up_read(&curseg->journal_rwsem);
594         if (i >= 0) {
595                 f2fs_up_read(&nm_i->nat_tree_lock);
596                 goto cache;
597         }
598
599         /* Fill node_info from nat page */
600         index = current_nat_addr(sbi, nid);
601         f2fs_up_read(&nm_i->nat_tree_lock);
602
603         page = f2fs_get_meta_page(sbi, index);
604         if (IS_ERR(page))
605                 return PTR_ERR(page);
606
607         nat_blk = (struct f2fs_nat_block *)page_address(page);
608         ne = nat_blk->entries[nid - start_nid];
609         node_info_from_raw_nat(ni, &ne);
610         f2fs_put_page(page, 1);
611 cache:
612         blkaddr = le32_to_cpu(ne.block_addr);
613         if (__is_valid_data_blkaddr(blkaddr) &&
614                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615                 return -EFAULT;
616
617         /* cache nat entry */
618         cache_nat_entry(sbi, nid, &ne);
619         return 0;
620 }
621
622 /*
623  * readahead MAX_RA_NODE number of node pages.
624  */
625 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626 {
627         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628         struct blk_plug plug;
629         int i, end;
630         nid_t nid;
631
632         blk_start_plug(&plug);
633
634         /* Then, try readahead for siblings of the desired node */
635         end = start + n;
636         end = min(end, NIDS_PER_BLOCK);
637         for (i = start; i < end; i++) {
638                 nid = get_nid(parent, i, false);
639                 f2fs_ra_node_page(sbi, nid);
640         }
641
642         blk_finish_plug(&plug);
643 }
644
645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646 {
647         const long direct_index = ADDRS_PER_INODE(dn->inode);
648         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651         int cur_level = dn->cur_level;
652         int max_level = dn->max_level;
653         pgoff_t base = 0;
654
655         if (!dn->max_level)
656                 return pgofs + 1;
657
658         while (max_level-- > cur_level)
659                 skipped_unit *= NIDS_PER_BLOCK;
660
661         switch (dn->max_level) {
662         case 3:
663                 base += 2 * indirect_blks;
664                 fallthrough;
665         case 2:
666                 base += 2 * direct_blks;
667                 fallthrough;
668         case 1:
669                 base += direct_index;
670                 break;
671         default:
672                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673         }
674
675         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676 }
677
678 /*
679  * The maximum depth is four.
680  * Offset[0] will have raw inode offset.
681  */
682 static int get_node_path(struct inode *inode, long block,
683                                 int offset[4], unsigned int noffset[4])
684 {
685         const long direct_index = ADDRS_PER_INODE(inode);
686         const long direct_blks = ADDRS_PER_BLOCK(inode);
687         const long dptrs_per_blk = NIDS_PER_BLOCK;
688         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690         int n = 0;
691         int level = 0;
692
693         noffset[0] = 0;
694
695         if (block < direct_index) {
696                 offset[n] = block;
697                 goto got;
698         }
699         block -= direct_index;
700         if (block < direct_blks) {
701                 offset[n++] = NODE_DIR1_BLOCK;
702                 noffset[n] = 1;
703                 offset[n] = block;
704                 level = 1;
705                 goto got;
706         }
707         block -= direct_blks;
708         if (block < direct_blks) {
709                 offset[n++] = NODE_DIR2_BLOCK;
710                 noffset[n] = 2;
711                 offset[n] = block;
712                 level = 1;
713                 goto got;
714         }
715         block -= direct_blks;
716         if (block < indirect_blks) {
717                 offset[n++] = NODE_IND1_BLOCK;
718                 noffset[n] = 3;
719                 offset[n++] = block / direct_blks;
720                 noffset[n] = 4 + offset[n - 1];
721                 offset[n] = block % direct_blks;
722                 level = 2;
723                 goto got;
724         }
725         block -= indirect_blks;
726         if (block < indirect_blks) {
727                 offset[n++] = NODE_IND2_BLOCK;
728                 noffset[n] = 4 + dptrs_per_blk;
729                 offset[n++] = block / direct_blks;
730                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731                 offset[n] = block % direct_blks;
732                 level = 2;
733                 goto got;
734         }
735         block -= indirect_blks;
736         if (block < dindirect_blks) {
737                 offset[n++] = NODE_DIND_BLOCK;
738                 noffset[n] = 5 + (dptrs_per_blk * 2);
739                 offset[n++] = block / indirect_blks;
740                 noffset[n] = 6 + (dptrs_per_blk * 2) +
741                               offset[n - 1] * (dptrs_per_blk + 1);
742                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743                 noffset[n] = 7 + (dptrs_per_blk * 2) +
744                               offset[n - 2] * (dptrs_per_blk + 1) +
745                               offset[n - 1];
746                 offset[n] = block % direct_blks;
747                 level = 3;
748                 goto got;
749         } else {
750                 return -E2BIG;
751         }
752 got:
753         return level;
754 }
755
756 /*
757  * Caller should call f2fs_put_dnode(dn).
758  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760  */
761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762 {
763         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764         struct page *npage[4];
765         struct page *parent = NULL;
766         int offset[4];
767         unsigned int noffset[4];
768         nid_t nids[4];
769         int level, i = 0;
770         int err = 0;
771
772         level = get_node_path(dn->inode, index, offset, noffset);
773         if (level < 0)
774                 return level;
775
776         nids[0] = dn->inode->i_ino;
777         npage[0] = dn->inode_page;
778
779         if (!npage[0]) {
780                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781                 if (IS_ERR(npage[0]))
782                         return PTR_ERR(npage[0]);
783         }
784
785         /* if inline_data is set, should not report any block indices */
786         if (f2fs_has_inline_data(dn->inode) && index) {
787                 err = -ENOENT;
788                 f2fs_put_page(npage[0], 1);
789                 goto release_out;
790         }
791
792         parent = npage[0];
793         if (level != 0)
794                 nids[1] = get_nid(parent, offset[0], true);
795         dn->inode_page = npage[0];
796         dn->inode_page_locked = true;
797
798         /* get indirect or direct nodes */
799         for (i = 1; i <= level; i++) {
800                 bool done = false;
801
802                 if (!nids[i] && mode == ALLOC_NODE) {
803                         /* alloc new node */
804                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805                                 err = -ENOSPC;
806                                 goto release_pages;
807                         }
808
809                         dn->nid = nids[i];
810                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
811                         if (IS_ERR(npage[i])) {
812                                 f2fs_alloc_nid_failed(sbi, nids[i]);
813                                 err = PTR_ERR(npage[i]);
814                                 goto release_pages;
815                         }
816
817                         set_nid(parent, offset[i - 1], nids[i], i == 1);
818                         f2fs_alloc_nid_done(sbi, nids[i]);
819                         done = true;
820                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822                         if (IS_ERR(npage[i])) {
823                                 err = PTR_ERR(npage[i]);
824                                 goto release_pages;
825                         }
826                         done = true;
827                 }
828                 if (i == 1) {
829                         dn->inode_page_locked = false;
830                         unlock_page(parent);
831                 } else {
832                         f2fs_put_page(parent, 1);
833                 }
834
835                 if (!done) {
836                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
837                         if (IS_ERR(npage[i])) {
838                                 err = PTR_ERR(npage[i]);
839                                 f2fs_put_page(npage[0], 0);
840                                 goto release_out;
841                         }
842                 }
843                 if (i < level) {
844                         parent = npage[i];
845                         nids[i + 1] = get_nid(parent, offset[i], false);
846                 }
847         }
848         dn->nid = nids[level];
849         dn->ofs_in_node = offset[level];
850         dn->node_page = npage[level];
851         dn->data_blkaddr = f2fs_data_blkaddr(dn);
852
853         if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854                                         f2fs_sb_has_readonly(sbi)) {
855                 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
856                 block_t blkaddr;
857
858                 if (!c_len)
859                         goto out;
860
861                 blkaddr = f2fs_data_blkaddr(dn);
862                 if (blkaddr == COMPRESS_ADDR)
863                         blkaddr = data_blkaddr(dn->inode, dn->node_page,
864                                                 dn->ofs_in_node + 1);
865
866                 f2fs_update_read_extent_tree_range_compressed(dn->inode,
867                                         index, blkaddr,
868                                         F2FS_I(dn->inode)->i_cluster_size,
869                                         c_len);
870         }
871 out:
872         return 0;
873
874 release_pages:
875         f2fs_put_page(parent, 1);
876         if (i > 1)
877                 f2fs_put_page(npage[0], 0);
878 release_out:
879         dn->inode_page = NULL;
880         dn->node_page = NULL;
881         if (err == -ENOENT) {
882                 dn->cur_level = i;
883                 dn->max_level = level;
884                 dn->ofs_in_node = offset[level];
885         }
886         return err;
887 }
888
889 static int truncate_node(struct dnode_of_data *dn)
890 {
891         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
892         struct node_info ni;
893         int err;
894         pgoff_t index;
895
896         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
897         if (err)
898                 return err;
899
900         /* Deallocate node address */
901         f2fs_invalidate_blocks(sbi, ni.blk_addr);
902         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
903         set_node_addr(sbi, &ni, NULL_ADDR, false);
904
905         if (dn->nid == dn->inode->i_ino) {
906                 f2fs_remove_orphan_inode(sbi, dn->nid);
907                 dec_valid_inode_count(sbi);
908                 f2fs_inode_synced(dn->inode);
909         }
910
911         clear_node_page_dirty(dn->node_page);
912         set_sbi_flag(sbi, SBI_IS_DIRTY);
913
914         index = dn->node_page->index;
915         f2fs_put_page(dn->node_page, 1);
916
917         invalidate_mapping_pages(NODE_MAPPING(sbi),
918                         index, index);
919
920         dn->node_page = NULL;
921         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
922
923         return 0;
924 }
925
926 static int truncate_dnode(struct dnode_of_data *dn)
927 {
928         struct page *page;
929         int err;
930
931         if (dn->nid == 0)
932                 return 1;
933
934         /* get direct node */
935         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
936         if (PTR_ERR(page) == -ENOENT)
937                 return 1;
938         else if (IS_ERR(page))
939                 return PTR_ERR(page);
940
941         /* Make dnode_of_data for parameter */
942         dn->node_page = page;
943         dn->ofs_in_node = 0;
944         f2fs_truncate_data_blocks(dn);
945         err = truncate_node(dn);
946         if (err)
947                 return err;
948
949         return 1;
950 }
951
952 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
953                                                 int ofs, int depth)
954 {
955         struct dnode_of_data rdn = *dn;
956         struct page *page;
957         struct f2fs_node *rn;
958         nid_t child_nid;
959         unsigned int child_nofs;
960         int freed = 0;
961         int i, ret;
962
963         if (dn->nid == 0)
964                 return NIDS_PER_BLOCK + 1;
965
966         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
967
968         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
969         if (IS_ERR(page)) {
970                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
971                 return PTR_ERR(page);
972         }
973
974         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
975
976         rn = F2FS_NODE(page);
977         if (depth < 3) {
978                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
979                         child_nid = le32_to_cpu(rn->in.nid[i]);
980                         if (child_nid == 0)
981                                 continue;
982                         rdn.nid = child_nid;
983                         ret = truncate_dnode(&rdn);
984                         if (ret < 0)
985                                 goto out_err;
986                         if (set_nid(page, i, 0, false))
987                                 dn->node_changed = true;
988                 }
989         } else {
990                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
991                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
992                         child_nid = le32_to_cpu(rn->in.nid[i]);
993                         if (child_nid == 0) {
994                                 child_nofs += NIDS_PER_BLOCK + 1;
995                                 continue;
996                         }
997                         rdn.nid = child_nid;
998                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
999                         if (ret == (NIDS_PER_BLOCK + 1)) {
1000                                 if (set_nid(page, i, 0, false))
1001                                         dn->node_changed = true;
1002                                 child_nofs += ret;
1003                         } else if (ret < 0 && ret != -ENOENT) {
1004                                 goto out_err;
1005                         }
1006                 }
1007                 freed = child_nofs;
1008         }
1009
1010         if (!ofs) {
1011                 /* remove current indirect node */
1012                 dn->node_page = page;
1013                 ret = truncate_node(dn);
1014                 if (ret)
1015                         goto out_err;
1016                 freed++;
1017         } else {
1018                 f2fs_put_page(page, 1);
1019         }
1020         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1021         return freed;
1022
1023 out_err:
1024         f2fs_put_page(page, 1);
1025         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1026         return ret;
1027 }
1028
1029 static int truncate_partial_nodes(struct dnode_of_data *dn,
1030                         struct f2fs_inode *ri, int *offset, int depth)
1031 {
1032         struct page *pages[2];
1033         nid_t nid[3];
1034         nid_t child_nid;
1035         int err = 0;
1036         int i;
1037         int idx = depth - 2;
1038
1039         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1040         if (!nid[0])
1041                 return 0;
1042
1043         /* get indirect nodes in the path */
1044         for (i = 0; i < idx + 1; i++) {
1045                 /* reference count'll be increased */
1046                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1047                 if (IS_ERR(pages[i])) {
1048                         err = PTR_ERR(pages[i]);
1049                         idx = i - 1;
1050                         goto fail;
1051                 }
1052                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1053         }
1054
1055         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1056
1057         /* free direct nodes linked to a partial indirect node */
1058         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1059                 child_nid = get_nid(pages[idx], i, false);
1060                 if (!child_nid)
1061                         continue;
1062                 dn->nid = child_nid;
1063                 err = truncate_dnode(dn);
1064                 if (err < 0)
1065                         goto fail;
1066                 if (set_nid(pages[idx], i, 0, false))
1067                         dn->node_changed = true;
1068         }
1069
1070         if (offset[idx + 1] == 0) {
1071                 dn->node_page = pages[idx];
1072                 dn->nid = nid[idx];
1073                 err = truncate_node(dn);
1074                 if (err)
1075                         goto fail;
1076         } else {
1077                 f2fs_put_page(pages[idx], 1);
1078         }
1079         offset[idx]++;
1080         offset[idx + 1] = 0;
1081         idx--;
1082 fail:
1083         for (i = idx; i >= 0; i--)
1084                 f2fs_put_page(pages[i], 1);
1085
1086         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1087
1088         return err;
1089 }
1090
1091 /*
1092  * All the block addresses of data and nodes should be nullified.
1093  */
1094 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1095 {
1096         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1097         int err = 0, cont = 1;
1098         int level, offset[4], noffset[4];
1099         unsigned int nofs = 0;
1100         struct f2fs_inode *ri;
1101         struct dnode_of_data dn;
1102         struct page *page;
1103
1104         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1105
1106         level = get_node_path(inode, from, offset, noffset);
1107         if (level < 0) {
1108                 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1109                 return level;
1110         }
1111
1112         page = f2fs_get_node_page(sbi, inode->i_ino);
1113         if (IS_ERR(page)) {
1114                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1115                 return PTR_ERR(page);
1116         }
1117
1118         set_new_dnode(&dn, inode, page, NULL, 0);
1119         unlock_page(page);
1120
1121         ri = F2FS_INODE(page);
1122         switch (level) {
1123         case 0:
1124         case 1:
1125                 nofs = noffset[1];
1126                 break;
1127         case 2:
1128                 nofs = noffset[1];
1129                 if (!offset[level - 1])
1130                         goto skip_partial;
1131                 err = truncate_partial_nodes(&dn, ri, offset, level);
1132                 if (err < 0 && err != -ENOENT)
1133                         goto fail;
1134                 nofs += 1 + NIDS_PER_BLOCK;
1135                 break;
1136         case 3:
1137                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1138                 if (!offset[level - 1])
1139                         goto skip_partial;
1140                 err = truncate_partial_nodes(&dn, ri, offset, level);
1141                 if (err < 0 && err != -ENOENT)
1142                         goto fail;
1143                 break;
1144         default:
1145                 BUG();
1146         }
1147
1148 skip_partial:
1149         while (cont) {
1150                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1151                 switch (offset[0]) {
1152                 case NODE_DIR1_BLOCK:
1153                 case NODE_DIR2_BLOCK:
1154                         err = truncate_dnode(&dn);
1155                         break;
1156
1157                 case NODE_IND1_BLOCK:
1158                 case NODE_IND2_BLOCK:
1159                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1160                         break;
1161
1162                 case NODE_DIND_BLOCK:
1163                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1164                         cont = 0;
1165                         break;
1166
1167                 default:
1168                         BUG();
1169                 }
1170                 if (err < 0 && err != -ENOENT)
1171                         goto fail;
1172                 if (offset[1] == 0 &&
1173                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1174                         lock_page(page);
1175                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1176                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1177                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1178                         set_page_dirty(page);
1179                         unlock_page(page);
1180                 }
1181                 offset[1] = 0;
1182                 offset[0]++;
1183                 nofs += err;
1184         }
1185 fail:
1186         f2fs_put_page(page, 0);
1187         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1188         return err > 0 ? 0 : err;
1189 }
1190
1191 /* caller must lock inode page */
1192 int f2fs_truncate_xattr_node(struct inode *inode)
1193 {
1194         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1195         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1196         struct dnode_of_data dn;
1197         struct page *npage;
1198         int err;
1199
1200         if (!nid)
1201                 return 0;
1202
1203         npage = f2fs_get_node_page(sbi, nid);
1204         if (IS_ERR(npage))
1205                 return PTR_ERR(npage);
1206
1207         set_new_dnode(&dn, inode, NULL, npage, nid);
1208         err = truncate_node(&dn);
1209         if (err) {
1210                 f2fs_put_page(npage, 1);
1211                 return err;
1212         }
1213
1214         f2fs_i_xnid_write(inode, 0);
1215
1216         return 0;
1217 }
1218
1219 /*
1220  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1221  * f2fs_unlock_op().
1222  */
1223 int f2fs_remove_inode_page(struct inode *inode)
1224 {
1225         struct dnode_of_data dn;
1226         int err;
1227
1228         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1229         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1230         if (err)
1231                 return err;
1232
1233         err = f2fs_truncate_xattr_node(inode);
1234         if (err) {
1235                 f2fs_put_dnode(&dn);
1236                 return err;
1237         }
1238
1239         /* remove potential inline_data blocks */
1240         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1241                                 S_ISLNK(inode->i_mode))
1242                 f2fs_truncate_data_blocks_range(&dn, 1);
1243
1244         /* 0 is possible, after f2fs_new_inode() has failed */
1245         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1246                 f2fs_put_dnode(&dn);
1247                 return -EIO;
1248         }
1249
1250         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1251                 f2fs_warn(F2FS_I_SB(inode),
1252                         "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1253                         inode->i_ino, (unsigned long long)inode->i_blocks);
1254                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1255         }
1256
1257         /* will put inode & node pages */
1258         err = truncate_node(&dn);
1259         if (err) {
1260                 f2fs_put_dnode(&dn);
1261                 return err;
1262         }
1263         return 0;
1264 }
1265
1266 struct page *f2fs_new_inode_page(struct inode *inode)
1267 {
1268         struct dnode_of_data dn;
1269
1270         /* allocate inode page for new inode */
1271         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1272
1273         /* caller should f2fs_put_page(page, 1); */
1274         return f2fs_new_node_page(&dn, 0);
1275 }
1276
1277 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1278 {
1279         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1280         struct node_info new_ni;
1281         struct page *page;
1282         int err;
1283
1284         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1285                 return ERR_PTR(-EPERM);
1286
1287         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1288         if (!page)
1289                 return ERR_PTR(-ENOMEM);
1290
1291         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1292                 goto fail;
1293
1294 #ifdef CONFIG_F2FS_CHECK_FS
1295         err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1296         if (err) {
1297                 dec_valid_node_count(sbi, dn->inode, !ofs);
1298                 goto fail;
1299         }
1300         if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1301                 err = -EFSCORRUPTED;
1302                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1303                 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1304                 goto fail;
1305         }
1306 #endif
1307         new_ni.nid = dn->nid;
1308         new_ni.ino = dn->inode->i_ino;
1309         new_ni.blk_addr = NULL_ADDR;
1310         new_ni.flag = 0;
1311         new_ni.version = 0;
1312         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1313
1314         f2fs_wait_on_page_writeback(page, NODE, true, true);
1315         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1316         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1317         if (!PageUptodate(page))
1318                 SetPageUptodate(page);
1319         if (set_page_dirty(page))
1320                 dn->node_changed = true;
1321
1322         if (f2fs_has_xattr_block(ofs))
1323                 f2fs_i_xnid_write(dn->inode, dn->nid);
1324
1325         if (ofs == 0)
1326                 inc_valid_inode_count(sbi);
1327         return page;
1328
1329 fail:
1330         clear_node_page_dirty(page);
1331         f2fs_put_page(page, 1);
1332         return ERR_PTR(err);
1333 }
1334
1335 /*
1336  * Caller should do after getting the following values.
1337  * 0: f2fs_put_page(page, 0)
1338  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1339  */
1340 static int read_node_page(struct page *page, blk_opf_t op_flags)
1341 {
1342         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1343         struct node_info ni;
1344         struct f2fs_io_info fio = {
1345                 .sbi = sbi,
1346                 .type = NODE,
1347                 .op = REQ_OP_READ,
1348                 .op_flags = op_flags,
1349                 .page = page,
1350                 .encrypted_page = NULL,
1351         };
1352         int err;
1353
1354         if (PageUptodate(page)) {
1355                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1356                         ClearPageUptodate(page);
1357                         return -EFSBADCRC;
1358                 }
1359                 return LOCKED_PAGE;
1360         }
1361
1362         err = f2fs_get_node_info(sbi, page->index, &ni, false);
1363         if (err)
1364                 return err;
1365
1366         /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1367         if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1368                 ClearPageUptodate(page);
1369                 return -ENOENT;
1370         }
1371
1372         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1373
1374         err = f2fs_submit_page_bio(&fio);
1375
1376         if (!err)
1377                 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1378
1379         return err;
1380 }
1381
1382 /*
1383  * Readahead a node page
1384  */
1385 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1386 {
1387         struct page *apage;
1388         int err;
1389
1390         if (!nid)
1391                 return;
1392         if (f2fs_check_nid_range(sbi, nid))
1393                 return;
1394
1395         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1396         if (apage)
1397                 return;
1398
1399         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1400         if (!apage)
1401                 return;
1402
1403         err = read_node_page(apage, REQ_RAHEAD);
1404         f2fs_put_page(apage, err ? 1 : 0);
1405 }
1406
1407 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1408                                         struct page *parent, int start)
1409 {
1410         struct page *page;
1411         int err;
1412
1413         if (!nid)
1414                 return ERR_PTR(-ENOENT);
1415         if (f2fs_check_nid_range(sbi, nid))
1416                 return ERR_PTR(-EINVAL);
1417 repeat:
1418         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1419         if (!page)
1420                 return ERR_PTR(-ENOMEM);
1421
1422         err = read_node_page(page, 0);
1423         if (err < 0) {
1424                 goto out_put_err;
1425         } else if (err == LOCKED_PAGE) {
1426                 err = 0;
1427                 goto page_hit;
1428         }
1429
1430         if (parent)
1431                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1432
1433         lock_page(page);
1434
1435         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1436                 f2fs_put_page(page, 1);
1437                 goto repeat;
1438         }
1439
1440         if (unlikely(!PageUptodate(page))) {
1441                 err = -EIO;
1442                 goto out_err;
1443         }
1444
1445         if (!f2fs_inode_chksum_verify(sbi, page)) {
1446                 err = -EFSBADCRC;
1447                 goto out_err;
1448         }
1449 page_hit:
1450         if (likely(nid == nid_of_node(page)))
1451                 return page;
1452
1453         f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1454                           nid, nid_of_node(page), ino_of_node(page),
1455                           ofs_of_node(page), cpver_of_node(page),
1456                           next_blkaddr_of_node(page));
1457         set_sbi_flag(sbi, SBI_NEED_FSCK);
1458         err = -EINVAL;
1459 out_err:
1460         ClearPageUptodate(page);
1461 out_put_err:
1462         /* ENOENT comes from read_node_page which is not an error. */
1463         if (err != -ENOENT)
1464                 f2fs_handle_page_eio(sbi, page->index, NODE);
1465         f2fs_put_page(page, 1);
1466         return ERR_PTR(err);
1467 }
1468
1469 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1470 {
1471         return __get_node_page(sbi, nid, NULL, 0);
1472 }
1473
1474 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1475 {
1476         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1477         nid_t nid = get_nid(parent, start, false);
1478
1479         return __get_node_page(sbi, nid, parent, start);
1480 }
1481
1482 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1483 {
1484         struct inode *inode;
1485         struct page *page;
1486         int ret;
1487
1488         /* should flush inline_data before evict_inode */
1489         inode = ilookup(sbi->sb, ino);
1490         if (!inode)
1491                 return;
1492
1493         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1494                                         FGP_LOCK|FGP_NOWAIT, 0);
1495         if (!page)
1496                 goto iput_out;
1497
1498         if (!PageUptodate(page))
1499                 goto page_out;
1500
1501         if (!PageDirty(page))
1502                 goto page_out;
1503
1504         if (!clear_page_dirty_for_io(page))
1505                 goto page_out;
1506
1507         ret = f2fs_write_inline_data(inode, page);
1508         inode_dec_dirty_pages(inode);
1509         f2fs_remove_dirty_inode(inode);
1510         if (ret)
1511                 set_page_dirty(page);
1512 page_out:
1513         f2fs_put_page(page, 1);
1514 iput_out:
1515         iput(inode);
1516 }
1517
1518 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1519 {
1520         pgoff_t index;
1521         struct pagevec pvec;
1522         struct page *last_page = NULL;
1523         int nr_pages;
1524
1525         pagevec_init(&pvec);
1526         index = 0;
1527
1528         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1529                                 PAGECACHE_TAG_DIRTY))) {
1530                 int i;
1531
1532                 for (i = 0; i < nr_pages; i++) {
1533                         struct page *page = pvec.pages[i];
1534
1535                         if (unlikely(f2fs_cp_error(sbi))) {
1536                                 f2fs_put_page(last_page, 0);
1537                                 pagevec_release(&pvec);
1538                                 return ERR_PTR(-EIO);
1539                         }
1540
1541                         if (!IS_DNODE(page) || !is_cold_node(page))
1542                                 continue;
1543                         if (ino_of_node(page) != ino)
1544                                 continue;
1545
1546                         lock_page(page);
1547
1548                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1549 continue_unlock:
1550                                 unlock_page(page);
1551                                 continue;
1552                         }
1553                         if (ino_of_node(page) != ino)
1554                                 goto continue_unlock;
1555
1556                         if (!PageDirty(page)) {
1557                                 /* someone wrote it for us */
1558                                 goto continue_unlock;
1559                         }
1560
1561                         if (last_page)
1562                                 f2fs_put_page(last_page, 0);
1563
1564                         get_page(page);
1565                         last_page = page;
1566                         unlock_page(page);
1567                 }
1568                 pagevec_release(&pvec);
1569                 cond_resched();
1570         }
1571         return last_page;
1572 }
1573
1574 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1575                                 struct writeback_control *wbc, bool do_balance,
1576                                 enum iostat_type io_type, unsigned int *seq_id)
1577 {
1578         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1579         nid_t nid;
1580         struct node_info ni;
1581         struct f2fs_io_info fio = {
1582                 .sbi = sbi,
1583                 .ino = ino_of_node(page),
1584                 .type = NODE,
1585                 .op = REQ_OP_WRITE,
1586                 .op_flags = wbc_to_write_flags(wbc),
1587                 .page = page,
1588                 .encrypted_page = NULL,
1589                 .submitted = false,
1590                 .io_type = io_type,
1591                 .io_wbc = wbc,
1592         };
1593         unsigned int seq;
1594
1595         trace_f2fs_writepage(page, NODE);
1596
1597         if (unlikely(f2fs_cp_error(sbi))) {
1598                 ClearPageUptodate(page);
1599                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1600                 unlock_page(page);
1601                 return 0;
1602         }
1603
1604         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1605                 goto redirty_out;
1606
1607         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1608                         wbc->sync_mode == WB_SYNC_NONE &&
1609                         IS_DNODE(page) && is_cold_node(page))
1610                 goto redirty_out;
1611
1612         /* get old block addr of this node page */
1613         nid = nid_of_node(page);
1614         f2fs_bug_on(sbi, page->index != nid);
1615
1616         if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1617                 goto redirty_out;
1618
1619         if (wbc->for_reclaim) {
1620                 if (!f2fs_down_read_trylock(&sbi->node_write))
1621                         goto redirty_out;
1622         } else {
1623                 f2fs_down_read(&sbi->node_write);
1624         }
1625
1626         /* This page is already truncated */
1627         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1628                 ClearPageUptodate(page);
1629                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1630                 f2fs_up_read(&sbi->node_write);
1631                 unlock_page(page);
1632                 return 0;
1633         }
1634
1635         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1636                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1637                                         DATA_GENERIC_ENHANCE)) {
1638                 f2fs_up_read(&sbi->node_write);
1639                 goto redirty_out;
1640         }
1641
1642         if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1643                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1644
1645         /* should add to global list before clearing PAGECACHE status */
1646         if (f2fs_in_warm_node_list(sbi, page)) {
1647                 seq = f2fs_add_fsync_node_entry(sbi, page);
1648                 if (seq_id)
1649                         *seq_id = seq;
1650         }
1651
1652         set_page_writeback(page);
1653         ClearPageError(page);
1654
1655         fio.old_blkaddr = ni.blk_addr;
1656         f2fs_do_write_node_page(nid, &fio);
1657         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1658         dec_page_count(sbi, F2FS_DIRTY_NODES);
1659         f2fs_up_read(&sbi->node_write);
1660
1661         if (wbc->for_reclaim) {
1662                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1663                 submitted = NULL;
1664         }
1665
1666         unlock_page(page);
1667
1668         if (unlikely(f2fs_cp_error(sbi))) {
1669                 f2fs_submit_merged_write(sbi, NODE);
1670                 submitted = NULL;
1671         }
1672         if (submitted)
1673                 *submitted = fio.submitted;
1674
1675         if (do_balance)
1676                 f2fs_balance_fs(sbi, false);
1677         return 0;
1678
1679 redirty_out:
1680         redirty_page_for_writepage(wbc, page);
1681         return AOP_WRITEPAGE_ACTIVATE;
1682 }
1683
1684 int f2fs_move_node_page(struct page *node_page, int gc_type)
1685 {
1686         int err = 0;
1687
1688         if (gc_type == FG_GC) {
1689                 struct writeback_control wbc = {
1690                         .sync_mode = WB_SYNC_ALL,
1691                         .nr_to_write = 1,
1692                         .for_reclaim = 0,
1693                 };
1694
1695                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1696
1697                 set_page_dirty(node_page);
1698
1699                 if (!clear_page_dirty_for_io(node_page)) {
1700                         err = -EAGAIN;
1701                         goto out_page;
1702                 }
1703
1704                 if (__write_node_page(node_page, false, NULL,
1705                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1706                         err = -EAGAIN;
1707                         unlock_page(node_page);
1708                 }
1709                 goto release_page;
1710         } else {
1711                 /* set page dirty and write it */
1712                 if (!PageWriteback(node_page))
1713                         set_page_dirty(node_page);
1714         }
1715 out_page:
1716         unlock_page(node_page);
1717 release_page:
1718         f2fs_put_page(node_page, 0);
1719         return err;
1720 }
1721
1722 static int f2fs_write_node_page(struct page *page,
1723                                 struct writeback_control *wbc)
1724 {
1725         return __write_node_page(page, false, NULL, wbc, false,
1726                                                 FS_NODE_IO, NULL);
1727 }
1728
1729 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1730                         struct writeback_control *wbc, bool atomic,
1731                         unsigned int *seq_id)
1732 {
1733         pgoff_t index;
1734         struct pagevec pvec;
1735         int ret = 0;
1736         struct page *last_page = NULL;
1737         bool marked = false;
1738         nid_t ino = inode->i_ino;
1739         int nr_pages;
1740         int nwritten = 0;
1741
1742         if (atomic) {
1743                 last_page = last_fsync_dnode(sbi, ino);
1744                 if (IS_ERR_OR_NULL(last_page))
1745                         return PTR_ERR_OR_ZERO(last_page);
1746         }
1747 retry:
1748         pagevec_init(&pvec);
1749         index = 0;
1750
1751         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1752                                 PAGECACHE_TAG_DIRTY))) {
1753                 int i;
1754
1755                 for (i = 0; i < nr_pages; i++) {
1756                         struct page *page = pvec.pages[i];
1757                         bool submitted = false;
1758
1759                         if (unlikely(f2fs_cp_error(sbi))) {
1760                                 f2fs_put_page(last_page, 0);
1761                                 pagevec_release(&pvec);
1762                                 ret = -EIO;
1763                                 goto out;
1764                         }
1765
1766                         if (!IS_DNODE(page) || !is_cold_node(page))
1767                                 continue;
1768                         if (ino_of_node(page) != ino)
1769                                 continue;
1770
1771                         lock_page(page);
1772
1773                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1774 continue_unlock:
1775                                 unlock_page(page);
1776                                 continue;
1777                         }
1778                         if (ino_of_node(page) != ino)
1779                                 goto continue_unlock;
1780
1781                         if (!PageDirty(page) && page != last_page) {
1782                                 /* someone wrote it for us */
1783                                 goto continue_unlock;
1784                         }
1785
1786                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1787
1788                         set_fsync_mark(page, 0);
1789                         set_dentry_mark(page, 0);
1790
1791                         if (!atomic || page == last_page) {
1792                                 set_fsync_mark(page, 1);
1793                                 percpu_counter_inc(&sbi->rf_node_block_count);
1794                                 if (IS_INODE(page)) {
1795                                         if (is_inode_flag_set(inode,
1796                                                                 FI_DIRTY_INODE))
1797                                                 f2fs_update_inode(inode, page);
1798                                         set_dentry_mark(page,
1799                                                 f2fs_need_dentry_mark(sbi, ino));
1800                                 }
1801                                 /* may be written by other thread */
1802                                 if (!PageDirty(page))
1803                                         set_page_dirty(page);
1804                         }
1805
1806                         if (!clear_page_dirty_for_io(page))
1807                                 goto continue_unlock;
1808
1809                         ret = __write_node_page(page, atomic &&
1810                                                 page == last_page,
1811                                                 &submitted, wbc, true,
1812                                                 FS_NODE_IO, seq_id);
1813                         if (ret) {
1814                                 unlock_page(page);
1815                                 f2fs_put_page(last_page, 0);
1816                                 break;
1817                         } else if (submitted) {
1818                                 nwritten++;
1819                         }
1820
1821                         if (page == last_page) {
1822                                 f2fs_put_page(page, 0);
1823                                 marked = true;
1824                                 break;
1825                         }
1826                 }
1827                 pagevec_release(&pvec);
1828                 cond_resched();
1829
1830                 if (ret || marked)
1831                         break;
1832         }
1833         if (!ret && atomic && !marked) {
1834                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1835                            ino, last_page->index);
1836                 lock_page(last_page);
1837                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1838                 set_page_dirty(last_page);
1839                 unlock_page(last_page);
1840                 goto retry;
1841         }
1842 out:
1843         if (nwritten)
1844                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1845         return ret ? -EIO : 0;
1846 }
1847
1848 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1849 {
1850         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1851         bool clean;
1852
1853         if (inode->i_ino != ino)
1854                 return 0;
1855
1856         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1857                 return 0;
1858
1859         spin_lock(&sbi->inode_lock[DIRTY_META]);
1860         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1861         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1862
1863         if (clean)
1864                 return 0;
1865
1866         inode = igrab(inode);
1867         if (!inode)
1868                 return 0;
1869         return 1;
1870 }
1871
1872 static bool flush_dirty_inode(struct page *page)
1873 {
1874         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1875         struct inode *inode;
1876         nid_t ino = ino_of_node(page);
1877
1878         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1879         if (!inode)
1880                 return false;
1881
1882         f2fs_update_inode(inode, page);
1883         unlock_page(page);
1884
1885         iput(inode);
1886         return true;
1887 }
1888
1889 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1890 {
1891         pgoff_t index = 0;
1892         struct pagevec pvec;
1893         int nr_pages;
1894
1895         pagevec_init(&pvec);
1896
1897         while ((nr_pages = pagevec_lookup_tag(&pvec,
1898                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1899                 int i;
1900
1901                 for (i = 0; i < nr_pages; i++) {
1902                         struct page *page = pvec.pages[i];
1903
1904                         if (!IS_DNODE(page))
1905                                 continue;
1906
1907                         lock_page(page);
1908
1909                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1910 continue_unlock:
1911                                 unlock_page(page);
1912                                 continue;
1913                         }
1914
1915                         if (!PageDirty(page)) {
1916                                 /* someone wrote it for us */
1917                                 goto continue_unlock;
1918                         }
1919
1920                         /* flush inline_data, if it's async context. */
1921                         if (page_private_inline(page)) {
1922                                 clear_page_private_inline(page);
1923                                 unlock_page(page);
1924                                 flush_inline_data(sbi, ino_of_node(page));
1925                                 continue;
1926                         }
1927                         unlock_page(page);
1928                 }
1929                 pagevec_release(&pvec);
1930                 cond_resched();
1931         }
1932 }
1933
1934 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1935                                 struct writeback_control *wbc,
1936                                 bool do_balance, enum iostat_type io_type)
1937 {
1938         pgoff_t index;
1939         struct pagevec pvec;
1940         int step = 0;
1941         int nwritten = 0;
1942         int ret = 0;
1943         int nr_pages, done = 0;
1944
1945         pagevec_init(&pvec);
1946
1947 next_step:
1948         index = 0;
1949
1950         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1951                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1952                 int i;
1953
1954                 for (i = 0; i < nr_pages; i++) {
1955                         struct page *page = pvec.pages[i];
1956                         bool submitted = false;
1957
1958                         /* give a priority to WB_SYNC threads */
1959                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1960                                         wbc->sync_mode == WB_SYNC_NONE) {
1961                                 done = 1;
1962                                 break;
1963                         }
1964
1965                         /*
1966                          * flushing sequence with step:
1967                          * 0. indirect nodes
1968                          * 1. dentry dnodes
1969                          * 2. file dnodes
1970                          */
1971                         if (step == 0 && IS_DNODE(page))
1972                                 continue;
1973                         if (step == 1 && (!IS_DNODE(page) ||
1974                                                 is_cold_node(page)))
1975                                 continue;
1976                         if (step == 2 && (!IS_DNODE(page) ||
1977                                                 !is_cold_node(page)))
1978                                 continue;
1979 lock_node:
1980                         if (wbc->sync_mode == WB_SYNC_ALL)
1981                                 lock_page(page);
1982                         else if (!trylock_page(page))
1983                                 continue;
1984
1985                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1986 continue_unlock:
1987                                 unlock_page(page);
1988                                 continue;
1989                         }
1990
1991                         if (!PageDirty(page)) {
1992                                 /* someone wrote it for us */
1993                                 goto continue_unlock;
1994                         }
1995
1996                         /* flush inline_data/inode, if it's async context. */
1997                         if (!do_balance)
1998                                 goto write_node;
1999
2000                         /* flush inline_data */
2001                         if (page_private_inline(page)) {
2002                                 clear_page_private_inline(page);
2003                                 unlock_page(page);
2004                                 flush_inline_data(sbi, ino_of_node(page));
2005                                 goto lock_node;
2006                         }
2007
2008                         /* flush dirty inode */
2009                         if (IS_INODE(page) && flush_dirty_inode(page))
2010                                 goto lock_node;
2011 write_node:
2012                         f2fs_wait_on_page_writeback(page, NODE, true, true);
2013
2014                         if (!clear_page_dirty_for_io(page))
2015                                 goto continue_unlock;
2016
2017                         set_fsync_mark(page, 0);
2018                         set_dentry_mark(page, 0);
2019
2020                         ret = __write_node_page(page, false, &submitted,
2021                                                 wbc, do_balance, io_type, NULL);
2022                         if (ret)
2023                                 unlock_page(page);
2024                         else if (submitted)
2025                                 nwritten++;
2026
2027                         if (--wbc->nr_to_write == 0)
2028                                 break;
2029                 }
2030                 pagevec_release(&pvec);
2031                 cond_resched();
2032
2033                 if (wbc->nr_to_write == 0) {
2034                         step = 2;
2035                         break;
2036                 }
2037         }
2038
2039         if (step < 2) {
2040                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2041                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2042                         goto out;
2043                 step++;
2044                 goto next_step;
2045         }
2046 out:
2047         if (nwritten)
2048                 f2fs_submit_merged_write(sbi, NODE);
2049
2050         if (unlikely(f2fs_cp_error(sbi)))
2051                 return -EIO;
2052         return ret;
2053 }
2054
2055 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2056                                                 unsigned int seq_id)
2057 {
2058         struct fsync_node_entry *fn;
2059         struct page *page;
2060         struct list_head *head = &sbi->fsync_node_list;
2061         unsigned long flags;
2062         unsigned int cur_seq_id = 0;
2063         int ret2, ret = 0;
2064
2065         while (seq_id && cur_seq_id < seq_id) {
2066                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2067                 if (list_empty(head)) {
2068                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2069                         break;
2070                 }
2071                 fn = list_first_entry(head, struct fsync_node_entry, list);
2072                 if (fn->seq_id > seq_id) {
2073                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2074                         break;
2075                 }
2076                 cur_seq_id = fn->seq_id;
2077                 page = fn->page;
2078                 get_page(page);
2079                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2080
2081                 f2fs_wait_on_page_writeback(page, NODE, true, false);
2082                 if (TestClearPageError(page))
2083                         ret = -EIO;
2084
2085                 put_page(page);
2086
2087                 if (ret)
2088                         break;
2089         }
2090
2091         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2092         if (!ret)
2093                 ret = ret2;
2094
2095         return ret;
2096 }
2097
2098 static int f2fs_write_node_pages(struct address_space *mapping,
2099                             struct writeback_control *wbc)
2100 {
2101         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2102         struct blk_plug plug;
2103         long diff;
2104
2105         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2106                 goto skip_write;
2107
2108         /* balancing f2fs's metadata in background */
2109         f2fs_balance_fs_bg(sbi, true);
2110
2111         /* collect a number of dirty node pages and write together */
2112         if (wbc->sync_mode != WB_SYNC_ALL &&
2113                         get_pages(sbi, F2FS_DIRTY_NODES) <
2114                                         nr_pages_to_skip(sbi, NODE))
2115                 goto skip_write;
2116
2117         if (wbc->sync_mode == WB_SYNC_ALL)
2118                 atomic_inc(&sbi->wb_sync_req[NODE]);
2119         else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2120                 /* to avoid potential deadlock */
2121                 if (current->plug)
2122                         blk_finish_plug(current->plug);
2123                 goto skip_write;
2124         }
2125
2126         trace_f2fs_writepages(mapping->host, wbc, NODE);
2127
2128         diff = nr_pages_to_write(sbi, NODE, wbc);
2129         blk_start_plug(&plug);
2130         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2131         blk_finish_plug(&plug);
2132         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2133
2134         if (wbc->sync_mode == WB_SYNC_ALL)
2135                 atomic_dec(&sbi->wb_sync_req[NODE]);
2136         return 0;
2137
2138 skip_write:
2139         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2140         trace_f2fs_writepages(mapping->host, wbc, NODE);
2141         return 0;
2142 }
2143
2144 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2145                 struct folio *folio)
2146 {
2147         trace_f2fs_set_page_dirty(&folio->page, NODE);
2148
2149         if (!folio_test_uptodate(folio))
2150                 folio_mark_uptodate(folio);
2151 #ifdef CONFIG_F2FS_CHECK_FS
2152         if (IS_INODE(&folio->page))
2153                 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2154 #endif
2155         if (filemap_dirty_folio(mapping, folio)) {
2156                 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2157                 set_page_private_reference(&folio->page);
2158                 return true;
2159         }
2160         return false;
2161 }
2162
2163 /*
2164  * Structure of the f2fs node operations
2165  */
2166 const struct address_space_operations f2fs_node_aops = {
2167         .writepage      = f2fs_write_node_page,
2168         .writepages     = f2fs_write_node_pages,
2169         .dirty_folio    = f2fs_dirty_node_folio,
2170         .invalidate_folio = f2fs_invalidate_folio,
2171         .release_folio  = f2fs_release_folio,
2172         .migrate_folio  = filemap_migrate_folio,
2173 };
2174
2175 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2176                                                 nid_t n)
2177 {
2178         return radix_tree_lookup(&nm_i->free_nid_root, n);
2179 }
2180
2181 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2182                                 struct free_nid *i)
2183 {
2184         struct f2fs_nm_info *nm_i = NM_I(sbi);
2185         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2186
2187         if (err)
2188                 return err;
2189
2190         nm_i->nid_cnt[FREE_NID]++;
2191         list_add_tail(&i->list, &nm_i->free_nid_list);
2192         return 0;
2193 }
2194
2195 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2196                         struct free_nid *i, enum nid_state state)
2197 {
2198         struct f2fs_nm_info *nm_i = NM_I(sbi);
2199
2200         f2fs_bug_on(sbi, state != i->state);
2201         nm_i->nid_cnt[state]--;
2202         if (state == FREE_NID)
2203                 list_del(&i->list);
2204         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2205 }
2206
2207 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2208                         enum nid_state org_state, enum nid_state dst_state)
2209 {
2210         struct f2fs_nm_info *nm_i = NM_I(sbi);
2211
2212         f2fs_bug_on(sbi, org_state != i->state);
2213         i->state = dst_state;
2214         nm_i->nid_cnt[org_state]--;
2215         nm_i->nid_cnt[dst_state]++;
2216
2217         switch (dst_state) {
2218         case PREALLOC_NID:
2219                 list_del(&i->list);
2220                 break;
2221         case FREE_NID:
2222                 list_add_tail(&i->list, &nm_i->free_nid_list);
2223                 break;
2224         default:
2225                 BUG_ON(1);
2226         }
2227 }
2228
2229 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2230 {
2231         struct f2fs_nm_info *nm_i = NM_I(sbi);
2232         unsigned int i;
2233         bool ret = true;
2234
2235         f2fs_down_read(&nm_i->nat_tree_lock);
2236         for (i = 0; i < nm_i->nat_blocks; i++) {
2237                 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2238                         ret = false;
2239                         break;
2240                 }
2241         }
2242         f2fs_up_read(&nm_i->nat_tree_lock);
2243
2244         return ret;
2245 }
2246
2247 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2248                                                         bool set, bool build)
2249 {
2250         struct f2fs_nm_info *nm_i = NM_I(sbi);
2251         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2252         unsigned int nid_ofs = nid - START_NID(nid);
2253
2254         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2255                 return;
2256
2257         if (set) {
2258                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2259                         return;
2260                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2261                 nm_i->free_nid_count[nat_ofs]++;
2262         } else {
2263                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2264                         return;
2265                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2266                 if (!build)
2267                         nm_i->free_nid_count[nat_ofs]--;
2268         }
2269 }
2270
2271 /* return if the nid is recognized as free */
2272 static bool add_free_nid(struct f2fs_sb_info *sbi,
2273                                 nid_t nid, bool build, bool update)
2274 {
2275         struct f2fs_nm_info *nm_i = NM_I(sbi);
2276         struct free_nid *i, *e;
2277         struct nat_entry *ne;
2278         int err = -EINVAL;
2279         bool ret = false;
2280
2281         /* 0 nid should not be used */
2282         if (unlikely(nid == 0))
2283                 return false;
2284
2285         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2286                 return false;
2287
2288         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2289         i->nid = nid;
2290         i->state = FREE_NID;
2291
2292         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2293
2294         spin_lock(&nm_i->nid_list_lock);
2295
2296         if (build) {
2297                 /*
2298                  *   Thread A             Thread B
2299                  *  - f2fs_create
2300                  *   - f2fs_new_inode
2301                  *    - f2fs_alloc_nid
2302                  *     - __insert_nid_to_list(PREALLOC_NID)
2303                  *                     - f2fs_balance_fs_bg
2304                  *                      - f2fs_build_free_nids
2305                  *                       - __f2fs_build_free_nids
2306                  *                        - scan_nat_page
2307                  *                         - add_free_nid
2308                  *                          - __lookup_nat_cache
2309                  *  - f2fs_add_link
2310                  *   - f2fs_init_inode_metadata
2311                  *    - f2fs_new_inode_page
2312                  *     - f2fs_new_node_page
2313                  *      - set_node_addr
2314                  *  - f2fs_alloc_nid_done
2315                  *   - __remove_nid_from_list(PREALLOC_NID)
2316                  *                         - __insert_nid_to_list(FREE_NID)
2317                  */
2318                 ne = __lookup_nat_cache(nm_i, nid);
2319                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2320                                 nat_get_blkaddr(ne) != NULL_ADDR))
2321                         goto err_out;
2322
2323                 e = __lookup_free_nid_list(nm_i, nid);
2324                 if (e) {
2325                         if (e->state == FREE_NID)
2326                                 ret = true;
2327                         goto err_out;
2328                 }
2329         }
2330         ret = true;
2331         err = __insert_free_nid(sbi, i);
2332 err_out:
2333         if (update) {
2334                 update_free_nid_bitmap(sbi, nid, ret, build);
2335                 if (!build)
2336                         nm_i->available_nids++;
2337         }
2338         spin_unlock(&nm_i->nid_list_lock);
2339         radix_tree_preload_end();
2340
2341         if (err)
2342                 kmem_cache_free(free_nid_slab, i);
2343         return ret;
2344 }
2345
2346 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2347 {
2348         struct f2fs_nm_info *nm_i = NM_I(sbi);
2349         struct free_nid *i;
2350         bool need_free = false;
2351
2352         spin_lock(&nm_i->nid_list_lock);
2353         i = __lookup_free_nid_list(nm_i, nid);
2354         if (i && i->state == FREE_NID) {
2355                 __remove_free_nid(sbi, i, FREE_NID);
2356                 need_free = true;
2357         }
2358         spin_unlock(&nm_i->nid_list_lock);
2359
2360         if (need_free)
2361                 kmem_cache_free(free_nid_slab, i);
2362 }
2363
2364 static int scan_nat_page(struct f2fs_sb_info *sbi,
2365                         struct page *nat_page, nid_t start_nid)
2366 {
2367         struct f2fs_nm_info *nm_i = NM_I(sbi);
2368         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2369         block_t blk_addr;
2370         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2371         int i;
2372
2373         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2374
2375         i = start_nid % NAT_ENTRY_PER_BLOCK;
2376
2377         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2378                 if (unlikely(start_nid >= nm_i->max_nid))
2379                         break;
2380
2381                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2382
2383                 if (blk_addr == NEW_ADDR)
2384                         return -EINVAL;
2385
2386                 if (blk_addr == NULL_ADDR) {
2387                         add_free_nid(sbi, start_nid, true, true);
2388                 } else {
2389                         spin_lock(&NM_I(sbi)->nid_list_lock);
2390                         update_free_nid_bitmap(sbi, start_nid, false, true);
2391                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2392                 }
2393         }
2394
2395         return 0;
2396 }
2397
2398 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2399 {
2400         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2401         struct f2fs_journal *journal = curseg->journal;
2402         int i;
2403
2404         down_read(&curseg->journal_rwsem);
2405         for (i = 0; i < nats_in_cursum(journal); i++) {
2406                 block_t addr;
2407                 nid_t nid;
2408
2409                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2410                 nid = le32_to_cpu(nid_in_journal(journal, i));
2411                 if (addr == NULL_ADDR)
2412                         add_free_nid(sbi, nid, true, false);
2413                 else
2414                         remove_free_nid(sbi, nid);
2415         }
2416         up_read(&curseg->journal_rwsem);
2417 }
2418
2419 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2420 {
2421         struct f2fs_nm_info *nm_i = NM_I(sbi);
2422         unsigned int i, idx;
2423         nid_t nid;
2424
2425         f2fs_down_read(&nm_i->nat_tree_lock);
2426
2427         for (i = 0; i < nm_i->nat_blocks; i++) {
2428                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2429                         continue;
2430                 if (!nm_i->free_nid_count[i])
2431                         continue;
2432                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2433                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2434                                                 NAT_ENTRY_PER_BLOCK, idx);
2435                         if (idx >= NAT_ENTRY_PER_BLOCK)
2436                                 break;
2437
2438                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2439                         add_free_nid(sbi, nid, true, false);
2440
2441                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2442                                 goto out;
2443                 }
2444         }
2445 out:
2446         scan_curseg_cache(sbi);
2447
2448         f2fs_up_read(&nm_i->nat_tree_lock);
2449 }
2450
2451 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2452                                                 bool sync, bool mount)
2453 {
2454         struct f2fs_nm_info *nm_i = NM_I(sbi);
2455         int i = 0, ret;
2456         nid_t nid = nm_i->next_scan_nid;
2457
2458         if (unlikely(nid >= nm_i->max_nid))
2459                 nid = 0;
2460
2461         if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2462                 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2463
2464         /* Enough entries */
2465         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2466                 return 0;
2467
2468         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2469                 return 0;
2470
2471         if (!mount) {
2472                 /* try to find free nids in free_nid_bitmap */
2473                 scan_free_nid_bits(sbi);
2474
2475                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2476                         return 0;
2477         }
2478
2479         /* readahead nat pages to be scanned */
2480         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2481                                                         META_NAT, true);
2482
2483         f2fs_down_read(&nm_i->nat_tree_lock);
2484
2485         while (1) {
2486                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2487                                                 nm_i->nat_block_bitmap)) {
2488                         struct page *page = get_current_nat_page(sbi, nid);
2489
2490                         if (IS_ERR(page)) {
2491                                 ret = PTR_ERR(page);
2492                         } else {
2493                                 ret = scan_nat_page(sbi, page, nid);
2494                                 f2fs_put_page(page, 1);
2495                         }
2496
2497                         if (ret) {
2498                                 f2fs_up_read(&nm_i->nat_tree_lock);
2499                                 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2500                                 return ret;
2501                         }
2502                 }
2503
2504                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2505                 if (unlikely(nid >= nm_i->max_nid))
2506                         nid = 0;
2507
2508                 if (++i >= FREE_NID_PAGES)
2509                         break;
2510         }
2511
2512         /* go to the next free nat pages to find free nids abundantly */
2513         nm_i->next_scan_nid = nid;
2514
2515         /* find free nids from current sum_pages */
2516         scan_curseg_cache(sbi);
2517
2518         f2fs_up_read(&nm_i->nat_tree_lock);
2519
2520         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2521                                         nm_i->ra_nid_pages, META_NAT, false);
2522
2523         return 0;
2524 }
2525
2526 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2527 {
2528         int ret;
2529
2530         mutex_lock(&NM_I(sbi)->build_lock);
2531         ret = __f2fs_build_free_nids(sbi, sync, mount);
2532         mutex_unlock(&NM_I(sbi)->build_lock);
2533
2534         return ret;
2535 }
2536
2537 /*
2538  * If this function returns success, caller can obtain a new nid
2539  * from second parameter of this function.
2540  * The returned nid could be used ino as well as nid when inode is created.
2541  */
2542 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2543 {
2544         struct f2fs_nm_info *nm_i = NM_I(sbi);
2545         struct free_nid *i = NULL;
2546 retry:
2547         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2548                 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2549                 return false;
2550         }
2551
2552         spin_lock(&nm_i->nid_list_lock);
2553
2554         if (unlikely(nm_i->available_nids == 0)) {
2555                 spin_unlock(&nm_i->nid_list_lock);
2556                 return false;
2557         }
2558
2559         /* We should not use stale free nids created by f2fs_build_free_nids */
2560         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2561                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2562                 i = list_first_entry(&nm_i->free_nid_list,
2563                                         struct free_nid, list);
2564                 *nid = i->nid;
2565
2566                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2567                 nm_i->available_nids--;
2568
2569                 update_free_nid_bitmap(sbi, *nid, false, false);
2570
2571                 spin_unlock(&nm_i->nid_list_lock);
2572                 return true;
2573         }
2574         spin_unlock(&nm_i->nid_list_lock);
2575
2576         /* Let's scan nat pages and its caches to get free nids */
2577         if (!f2fs_build_free_nids(sbi, true, false))
2578                 goto retry;
2579         return false;
2580 }
2581
2582 /*
2583  * f2fs_alloc_nid() should be called prior to this function.
2584  */
2585 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2586 {
2587         struct f2fs_nm_info *nm_i = NM_I(sbi);
2588         struct free_nid *i;
2589
2590         spin_lock(&nm_i->nid_list_lock);
2591         i = __lookup_free_nid_list(nm_i, nid);
2592         f2fs_bug_on(sbi, !i);
2593         __remove_free_nid(sbi, i, PREALLOC_NID);
2594         spin_unlock(&nm_i->nid_list_lock);
2595
2596         kmem_cache_free(free_nid_slab, i);
2597 }
2598
2599 /*
2600  * f2fs_alloc_nid() should be called prior to this function.
2601  */
2602 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2603 {
2604         struct f2fs_nm_info *nm_i = NM_I(sbi);
2605         struct free_nid *i;
2606         bool need_free = false;
2607
2608         if (!nid)
2609                 return;
2610
2611         spin_lock(&nm_i->nid_list_lock);
2612         i = __lookup_free_nid_list(nm_i, nid);
2613         f2fs_bug_on(sbi, !i);
2614
2615         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2616                 __remove_free_nid(sbi, i, PREALLOC_NID);
2617                 need_free = true;
2618         } else {
2619                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2620         }
2621
2622         nm_i->available_nids++;
2623
2624         update_free_nid_bitmap(sbi, nid, true, false);
2625
2626         spin_unlock(&nm_i->nid_list_lock);
2627
2628         if (need_free)
2629                 kmem_cache_free(free_nid_slab, i);
2630 }
2631
2632 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2633 {
2634         struct f2fs_nm_info *nm_i = NM_I(sbi);
2635         int nr = nr_shrink;
2636
2637         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2638                 return 0;
2639
2640         if (!mutex_trylock(&nm_i->build_lock))
2641                 return 0;
2642
2643         while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2644                 struct free_nid *i, *next;
2645                 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2646
2647                 spin_lock(&nm_i->nid_list_lock);
2648                 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2649                         if (!nr_shrink || !batch ||
2650                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2651                                 break;
2652                         __remove_free_nid(sbi, i, FREE_NID);
2653                         kmem_cache_free(free_nid_slab, i);
2654                         nr_shrink--;
2655                         batch--;
2656                 }
2657                 spin_unlock(&nm_i->nid_list_lock);
2658         }
2659
2660         mutex_unlock(&nm_i->build_lock);
2661
2662         return nr - nr_shrink;
2663 }
2664
2665 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2666 {
2667         void *src_addr, *dst_addr;
2668         size_t inline_size;
2669         struct page *ipage;
2670         struct f2fs_inode *ri;
2671
2672         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2673         if (IS_ERR(ipage))
2674                 return PTR_ERR(ipage);
2675
2676         ri = F2FS_INODE(page);
2677         if (ri->i_inline & F2FS_INLINE_XATTR) {
2678                 if (!f2fs_has_inline_xattr(inode)) {
2679                         set_inode_flag(inode, FI_INLINE_XATTR);
2680                         stat_inc_inline_xattr(inode);
2681                 }
2682         } else {
2683                 if (f2fs_has_inline_xattr(inode)) {
2684                         stat_dec_inline_xattr(inode);
2685                         clear_inode_flag(inode, FI_INLINE_XATTR);
2686                 }
2687                 goto update_inode;
2688         }
2689
2690         dst_addr = inline_xattr_addr(inode, ipage);
2691         src_addr = inline_xattr_addr(inode, page);
2692         inline_size = inline_xattr_size(inode);
2693
2694         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2695         memcpy(dst_addr, src_addr, inline_size);
2696 update_inode:
2697         f2fs_update_inode(inode, ipage);
2698         f2fs_put_page(ipage, 1);
2699         return 0;
2700 }
2701
2702 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2703 {
2704         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2705         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2706         nid_t new_xnid;
2707         struct dnode_of_data dn;
2708         struct node_info ni;
2709         struct page *xpage;
2710         int err;
2711
2712         if (!prev_xnid)
2713                 goto recover_xnid;
2714
2715         /* 1: invalidate the previous xattr nid */
2716         err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2717         if (err)
2718                 return err;
2719
2720         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2721         dec_valid_node_count(sbi, inode, false);
2722         set_node_addr(sbi, &ni, NULL_ADDR, false);
2723
2724 recover_xnid:
2725         /* 2: update xattr nid in inode */
2726         if (!f2fs_alloc_nid(sbi, &new_xnid))
2727                 return -ENOSPC;
2728
2729         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2730         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2731         if (IS_ERR(xpage)) {
2732                 f2fs_alloc_nid_failed(sbi, new_xnid);
2733                 return PTR_ERR(xpage);
2734         }
2735
2736         f2fs_alloc_nid_done(sbi, new_xnid);
2737         f2fs_update_inode_page(inode);
2738
2739         /* 3: update and set xattr node page dirty */
2740         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2741
2742         set_page_dirty(xpage);
2743         f2fs_put_page(xpage, 1);
2744
2745         return 0;
2746 }
2747
2748 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2749 {
2750         struct f2fs_inode *src, *dst;
2751         nid_t ino = ino_of_node(page);
2752         struct node_info old_ni, new_ni;
2753         struct page *ipage;
2754         int err;
2755
2756         err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2757         if (err)
2758                 return err;
2759
2760         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2761                 return -EINVAL;
2762 retry:
2763         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2764         if (!ipage) {
2765                 memalloc_retry_wait(GFP_NOFS);
2766                 goto retry;
2767         }
2768
2769         /* Should not use this inode from free nid list */
2770         remove_free_nid(sbi, ino);
2771
2772         if (!PageUptodate(ipage))
2773                 SetPageUptodate(ipage);
2774         fill_node_footer(ipage, ino, ino, 0, true);
2775         set_cold_node(ipage, false);
2776
2777         src = F2FS_INODE(page);
2778         dst = F2FS_INODE(ipage);
2779
2780         memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2781         dst->i_size = 0;
2782         dst->i_blocks = cpu_to_le64(1);
2783         dst->i_links = cpu_to_le32(1);
2784         dst->i_xattr_nid = 0;
2785         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2786         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2787                 dst->i_extra_isize = src->i_extra_isize;
2788
2789                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2790                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2791                                                         i_inline_xattr_size))
2792                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2793
2794                 if (f2fs_sb_has_project_quota(sbi) &&
2795                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2796                                                                 i_projid))
2797                         dst->i_projid = src->i_projid;
2798
2799                 if (f2fs_sb_has_inode_crtime(sbi) &&
2800                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2801                                                         i_crtime_nsec)) {
2802                         dst->i_crtime = src->i_crtime;
2803                         dst->i_crtime_nsec = src->i_crtime_nsec;
2804                 }
2805         }
2806
2807         new_ni = old_ni;
2808         new_ni.ino = ino;
2809
2810         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2811                 WARN_ON(1);
2812         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2813         inc_valid_inode_count(sbi);
2814         set_page_dirty(ipage);
2815         f2fs_put_page(ipage, 1);
2816         return 0;
2817 }
2818
2819 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2820                         unsigned int segno, struct f2fs_summary_block *sum)
2821 {
2822         struct f2fs_node *rn;
2823         struct f2fs_summary *sum_entry;
2824         block_t addr;
2825         int i, idx, last_offset, nrpages;
2826
2827         /* scan the node segment */
2828         last_offset = sbi->blocks_per_seg;
2829         addr = START_BLOCK(sbi, segno);
2830         sum_entry = &sum->entries[0];
2831
2832         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2833                 nrpages = bio_max_segs(last_offset - i);
2834
2835                 /* readahead node pages */
2836                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2837
2838                 for (idx = addr; idx < addr + nrpages; idx++) {
2839                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2840
2841                         if (IS_ERR(page))
2842                                 return PTR_ERR(page);
2843
2844                         rn = F2FS_NODE(page);
2845                         sum_entry->nid = rn->footer.nid;
2846                         sum_entry->version = 0;
2847                         sum_entry->ofs_in_node = 0;
2848                         sum_entry++;
2849                         f2fs_put_page(page, 1);
2850                 }
2851
2852                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2853                                                         addr + nrpages);
2854         }
2855         return 0;
2856 }
2857
2858 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2859 {
2860         struct f2fs_nm_info *nm_i = NM_I(sbi);
2861         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2862         struct f2fs_journal *journal = curseg->journal;
2863         int i;
2864
2865         down_write(&curseg->journal_rwsem);
2866         for (i = 0; i < nats_in_cursum(journal); i++) {
2867                 struct nat_entry *ne;
2868                 struct f2fs_nat_entry raw_ne;
2869                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2870
2871                 if (f2fs_check_nid_range(sbi, nid))
2872                         continue;
2873
2874                 raw_ne = nat_in_journal(journal, i);
2875
2876                 ne = __lookup_nat_cache(nm_i, nid);
2877                 if (!ne) {
2878                         ne = __alloc_nat_entry(sbi, nid, true);
2879                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2880                 }
2881
2882                 /*
2883                  * if a free nat in journal has not been used after last
2884                  * checkpoint, we should remove it from available nids,
2885                  * since later we will add it again.
2886                  */
2887                 if (!get_nat_flag(ne, IS_DIRTY) &&
2888                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2889                         spin_lock(&nm_i->nid_list_lock);
2890                         nm_i->available_nids--;
2891                         spin_unlock(&nm_i->nid_list_lock);
2892                 }
2893
2894                 __set_nat_cache_dirty(nm_i, ne);
2895         }
2896         update_nats_in_cursum(journal, -i);
2897         up_write(&curseg->journal_rwsem);
2898 }
2899
2900 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2901                                                 struct list_head *head, int max)
2902 {
2903         struct nat_entry_set *cur;
2904
2905         if (nes->entry_cnt >= max)
2906                 goto add_out;
2907
2908         list_for_each_entry(cur, head, set_list) {
2909                 if (cur->entry_cnt >= nes->entry_cnt) {
2910                         list_add(&nes->set_list, cur->set_list.prev);
2911                         return;
2912                 }
2913         }
2914 add_out:
2915         list_add_tail(&nes->set_list, head);
2916 }
2917
2918 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2919                                                         unsigned int valid)
2920 {
2921         if (valid == 0) {
2922                 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2923                 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2924                 return;
2925         }
2926
2927         __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2928         if (valid == NAT_ENTRY_PER_BLOCK)
2929                 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2930         else
2931                 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2932 }
2933
2934 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2935                                                 struct page *page)
2936 {
2937         struct f2fs_nm_info *nm_i = NM_I(sbi);
2938         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2939         struct f2fs_nat_block *nat_blk = page_address(page);
2940         int valid = 0;
2941         int i = 0;
2942
2943         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2944                 return;
2945
2946         if (nat_index == 0) {
2947                 valid = 1;
2948                 i = 1;
2949         }
2950         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2951                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2952                         valid++;
2953         }
2954
2955         __update_nat_bits(nm_i, nat_index, valid);
2956 }
2957
2958 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2959 {
2960         struct f2fs_nm_info *nm_i = NM_I(sbi);
2961         unsigned int nat_ofs;
2962
2963         f2fs_down_read(&nm_i->nat_tree_lock);
2964
2965         for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2966                 unsigned int valid = 0, nid_ofs = 0;
2967
2968                 /* handle nid zero due to it should never be used */
2969                 if (unlikely(nat_ofs == 0)) {
2970                         valid = 1;
2971                         nid_ofs = 1;
2972                 }
2973
2974                 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2975                         if (!test_bit_le(nid_ofs,
2976                                         nm_i->free_nid_bitmap[nat_ofs]))
2977                                 valid++;
2978                 }
2979
2980                 __update_nat_bits(nm_i, nat_ofs, valid);
2981         }
2982
2983         f2fs_up_read(&nm_i->nat_tree_lock);
2984 }
2985
2986 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2987                 struct nat_entry_set *set, struct cp_control *cpc)
2988 {
2989         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2990         struct f2fs_journal *journal = curseg->journal;
2991         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2992         bool to_journal = true;
2993         struct f2fs_nat_block *nat_blk;
2994         struct nat_entry *ne, *cur;
2995         struct page *page = NULL;
2996
2997         /*
2998          * there are two steps to flush nat entries:
2999          * #1, flush nat entries to journal in current hot data summary block.
3000          * #2, flush nat entries to nat page.
3001          */
3002         if ((cpc->reason & CP_UMOUNT) ||
3003                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3004                 to_journal = false;
3005
3006         if (to_journal) {
3007                 down_write(&curseg->journal_rwsem);
3008         } else {
3009                 page = get_next_nat_page(sbi, start_nid);
3010                 if (IS_ERR(page))
3011                         return PTR_ERR(page);
3012
3013                 nat_blk = page_address(page);
3014                 f2fs_bug_on(sbi, !nat_blk);
3015         }
3016
3017         /* flush dirty nats in nat entry set */
3018         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3019                 struct f2fs_nat_entry *raw_ne;
3020                 nid_t nid = nat_get_nid(ne);
3021                 int offset;
3022
3023                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3024
3025                 if (to_journal) {
3026                         offset = f2fs_lookup_journal_in_cursum(journal,
3027                                                         NAT_JOURNAL, nid, 1);
3028                         f2fs_bug_on(sbi, offset < 0);
3029                         raw_ne = &nat_in_journal(journal, offset);
3030                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
3031                 } else {
3032                         raw_ne = &nat_blk->entries[nid - start_nid];
3033                 }
3034                 raw_nat_from_node_info(raw_ne, &ne->ni);
3035                 nat_reset_flag(ne);
3036                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3037                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3038                         add_free_nid(sbi, nid, false, true);
3039                 } else {
3040                         spin_lock(&NM_I(sbi)->nid_list_lock);
3041                         update_free_nid_bitmap(sbi, nid, false, false);
3042                         spin_unlock(&NM_I(sbi)->nid_list_lock);
3043                 }
3044         }
3045
3046         if (to_journal) {
3047                 up_write(&curseg->journal_rwsem);
3048         } else {
3049                 update_nat_bits(sbi, start_nid, page);
3050                 f2fs_put_page(page, 1);
3051         }
3052
3053         /* Allow dirty nats by node block allocation in write_begin */
3054         if (!set->entry_cnt) {
3055                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3056                 kmem_cache_free(nat_entry_set_slab, set);
3057         }
3058         return 0;
3059 }
3060
3061 /*
3062  * This function is called during the checkpointing process.
3063  */
3064 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3065 {
3066         struct f2fs_nm_info *nm_i = NM_I(sbi);
3067         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3068         struct f2fs_journal *journal = curseg->journal;
3069         struct nat_entry_set *setvec[SETVEC_SIZE];
3070         struct nat_entry_set *set, *tmp;
3071         unsigned int found;
3072         nid_t set_idx = 0;
3073         LIST_HEAD(sets);
3074         int err = 0;
3075
3076         /*
3077          * during unmount, let's flush nat_bits before checking
3078          * nat_cnt[DIRTY_NAT].
3079          */
3080         if (cpc->reason & CP_UMOUNT) {
3081                 f2fs_down_write(&nm_i->nat_tree_lock);
3082                 remove_nats_in_journal(sbi);
3083                 f2fs_up_write(&nm_i->nat_tree_lock);
3084         }
3085
3086         if (!nm_i->nat_cnt[DIRTY_NAT])
3087                 return 0;
3088
3089         f2fs_down_write(&nm_i->nat_tree_lock);
3090
3091         /*
3092          * if there are no enough space in journal to store dirty nat
3093          * entries, remove all entries from journal and merge them
3094          * into nat entry set.
3095          */
3096         if (cpc->reason & CP_UMOUNT ||
3097                 !__has_cursum_space(journal,
3098                         nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3099                 remove_nats_in_journal(sbi);
3100
3101         while ((found = __gang_lookup_nat_set(nm_i,
3102                                         set_idx, SETVEC_SIZE, setvec))) {
3103                 unsigned idx;
3104
3105                 set_idx = setvec[found - 1]->set + 1;
3106                 for (idx = 0; idx < found; idx++)
3107                         __adjust_nat_entry_set(setvec[idx], &sets,
3108                                                 MAX_NAT_JENTRIES(journal));
3109         }
3110
3111         /* flush dirty nats in nat entry set */
3112         list_for_each_entry_safe(set, tmp, &sets, set_list) {
3113                 err = __flush_nat_entry_set(sbi, set, cpc);
3114                 if (err)
3115                         break;
3116         }
3117
3118         f2fs_up_write(&nm_i->nat_tree_lock);
3119         /* Allow dirty nats by node block allocation in write_begin */
3120
3121         return err;
3122 }
3123
3124 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3125 {
3126         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3127         struct f2fs_nm_info *nm_i = NM_I(sbi);
3128         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3129         unsigned int i;
3130         __u64 cp_ver = cur_cp_version(ckpt);
3131         block_t nat_bits_addr;
3132
3133         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3134         nm_i->nat_bits = f2fs_kvzalloc(sbi,
3135                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3136         if (!nm_i->nat_bits)
3137                 return -ENOMEM;
3138
3139         nm_i->full_nat_bits = nm_i->nat_bits + 8;
3140         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3141
3142         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3143                 return 0;
3144
3145         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3146                                                 nm_i->nat_bits_blocks;
3147         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3148                 struct page *page;
3149
3150                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3151                 if (IS_ERR(page))
3152                         return PTR_ERR(page);
3153
3154                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3155                                         page_address(page), F2FS_BLKSIZE);
3156                 f2fs_put_page(page, 1);
3157         }
3158
3159         cp_ver |= (cur_cp_crc(ckpt) << 32);
3160         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3161                 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3162                 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3163                         cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3164                 return 0;
3165         }
3166
3167         f2fs_notice(sbi, "Found nat_bits in checkpoint");
3168         return 0;
3169 }
3170
3171 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3172 {
3173         struct f2fs_nm_info *nm_i = NM_I(sbi);
3174         unsigned int i = 0;
3175         nid_t nid, last_nid;
3176
3177         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3178                 return;
3179
3180         for (i = 0; i < nm_i->nat_blocks; i++) {
3181                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3182                 if (i >= nm_i->nat_blocks)
3183                         break;
3184
3185                 __set_bit_le(i, nm_i->nat_block_bitmap);
3186
3187                 nid = i * NAT_ENTRY_PER_BLOCK;
3188                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3189
3190                 spin_lock(&NM_I(sbi)->nid_list_lock);
3191                 for (; nid < last_nid; nid++)
3192                         update_free_nid_bitmap(sbi, nid, true, true);
3193                 spin_unlock(&NM_I(sbi)->nid_list_lock);
3194         }
3195
3196         for (i = 0; i < nm_i->nat_blocks; i++) {
3197                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3198                 if (i >= nm_i->nat_blocks)
3199                         break;
3200
3201                 __set_bit_le(i, nm_i->nat_block_bitmap);
3202         }
3203 }
3204
3205 static int init_node_manager(struct f2fs_sb_info *sbi)
3206 {
3207         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3208         struct f2fs_nm_info *nm_i = NM_I(sbi);
3209         unsigned char *version_bitmap;
3210         unsigned int nat_segs;
3211         int err;
3212
3213         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3214
3215         /* segment_count_nat includes pair segment so divide to 2. */
3216         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3217         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3218         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3219
3220         /* not used nids: 0, node, meta, (and root counted as valid node) */
3221         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3222                                                 F2FS_RESERVED_NODE_NUM;
3223         nm_i->nid_cnt[FREE_NID] = 0;
3224         nm_i->nid_cnt[PREALLOC_NID] = 0;
3225         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3226         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3227         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3228         nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3229
3230         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3231         INIT_LIST_HEAD(&nm_i->free_nid_list);
3232         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3233         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3234         INIT_LIST_HEAD(&nm_i->nat_entries);
3235         spin_lock_init(&nm_i->nat_list_lock);
3236
3237         mutex_init(&nm_i->build_lock);
3238         spin_lock_init(&nm_i->nid_list_lock);
3239         init_f2fs_rwsem(&nm_i->nat_tree_lock);
3240
3241         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3242         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3243         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3244         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3245                                         GFP_KERNEL);
3246         if (!nm_i->nat_bitmap)
3247                 return -ENOMEM;
3248
3249         err = __get_nat_bitmaps(sbi);
3250         if (err)
3251                 return err;
3252
3253 #ifdef CONFIG_F2FS_CHECK_FS
3254         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3255                                         GFP_KERNEL);
3256         if (!nm_i->nat_bitmap_mir)
3257                 return -ENOMEM;
3258 #endif
3259
3260         return 0;
3261 }
3262
3263 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3264 {
3265         struct f2fs_nm_info *nm_i = NM_I(sbi);
3266         int i;
3267
3268         nm_i->free_nid_bitmap =
3269                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3270                                               nm_i->nat_blocks),
3271                               GFP_KERNEL);
3272         if (!nm_i->free_nid_bitmap)
3273                 return -ENOMEM;
3274
3275         for (i = 0; i < nm_i->nat_blocks; i++) {
3276                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3277                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3278                 if (!nm_i->free_nid_bitmap[i])
3279                         return -ENOMEM;
3280         }
3281
3282         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3283                                                                 GFP_KERNEL);
3284         if (!nm_i->nat_block_bitmap)
3285                 return -ENOMEM;
3286
3287         nm_i->free_nid_count =
3288                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3289                                               nm_i->nat_blocks),
3290                               GFP_KERNEL);
3291         if (!nm_i->free_nid_count)
3292                 return -ENOMEM;
3293         return 0;
3294 }
3295
3296 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3297 {
3298         int err;
3299
3300         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3301                                                         GFP_KERNEL);
3302         if (!sbi->nm_info)
3303                 return -ENOMEM;
3304
3305         err = init_node_manager(sbi);
3306         if (err)
3307                 return err;
3308
3309         err = init_free_nid_cache(sbi);
3310         if (err)
3311                 return err;
3312
3313         /* load free nid status from nat_bits table */
3314         load_free_nid_bitmap(sbi);
3315
3316         return f2fs_build_free_nids(sbi, true, true);
3317 }
3318
3319 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3320 {
3321         struct f2fs_nm_info *nm_i = NM_I(sbi);
3322         struct free_nid *i, *next_i;
3323         struct nat_entry *natvec[NATVEC_SIZE];
3324         struct nat_entry_set *setvec[SETVEC_SIZE];
3325         nid_t nid = 0;
3326         unsigned int found;
3327
3328         if (!nm_i)
3329                 return;
3330
3331         /* destroy free nid list */
3332         spin_lock(&nm_i->nid_list_lock);
3333         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3334                 __remove_free_nid(sbi, i, FREE_NID);
3335                 spin_unlock(&nm_i->nid_list_lock);
3336                 kmem_cache_free(free_nid_slab, i);
3337                 spin_lock(&nm_i->nid_list_lock);
3338         }
3339         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3340         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3341         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3342         spin_unlock(&nm_i->nid_list_lock);
3343
3344         /* destroy nat cache */
3345         f2fs_down_write(&nm_i->nat_tree_lock);
3346         while ((found = __gang_lookup_nat_cache(nm_i,
3347                                         nid, NATVEC_SIZE, natvec))) {
3348                 unsigned idx;
3349
3350                 nid = nat_get_nid(natvec[found - 1]) + 1;
3351                 for (idx = 0; idx < found; idx++) {
3352                         spin_lock(&nm_i->nat_list_lock);
3353                         list_del(&natvec[idx]->list);
3354                         spin_unlock(&nm_i->nat_list_lock);
3355
3356                         __del_from_nat_cache(nm_i, natvec[idx]);
3357                 }
3358         }
3359         f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3360
3361         /* destroy nat set cache */
3362         nid = 0;
3363         while ((found = __gang_lookup_nat_set(nm_i,
3364                                         nid, SETVEC_SIZE, setvec))) {
3365                 unsigned idx;
3366
3367                 nid = setvec[found - 1]->set + 1;
3368                 for (idx = 0; idx < found; idx++) {
3369                         /* entry_cnt is not zero, when cp_error was occurred */
3370                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3371                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3372                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3373                 }
3374         }
3375         f2fs_up_write(&nm_i->nat_tree_lock);
3376
3377         kvfree(nm_i->nat_block_bitmap);
3378         if (nm_i->free_nid_bitmap) {
3379                 int i;
3380
3381                 for (i = 0; i < nm_i->nat_blocks; i++)
3382                         kvfree(nm_i->free_nid_bitmap[i]);
3383                 kvfree(nm_i->free_nid_bitmap);
3384         }
3385         kvfree(nm_i->free_nid_count);
3386
3387         kvfree(nm_i->nat_bitmap);
3388         kvfree(nm_i->nat_bits);
3389 #ifdef CONFIG_F2FS_CHECK_FS
3390         kvfree(nm_i->nat_bitmap_mir);
3391 #endif
3392         sbi->nm_info = NULL;
3393         kfree(nm_i);
3394 }
3395
3396 int __init f2fs_create_node_manager_caches(void)
3397 {
3398         nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3399                         sizeof(struct nat_entry));
3400         if (!nat_entry_slab)
3401                 goto fail;
3402
3403         free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3404                         sizeof(struct free_nid));
3405         if (!free_nid_slab)
3406                 goto destroy_nat_entry;
3407
3408         nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3409                         sizeof(struct nat_entry_set));
3410         if (!nat_entry_set_slab)
3411                 goto destroy_free_nid;
3412
3413         fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3414                         sizeof(struct fsync_node_entry));
3415         if (!fsync_node_entry_slab)
3416                 goto destroy_nat_entry_set;
3417         return 0;
3418
3419 destroy_nat_entry_set:
3420         kmem_cache_destroy(nat_entry_set_slab);
3421 destroy_free_nid:
3422         kmem_cache_destroy(free_nid_slab);
3423 destroy_nat_entry:
3424         kmem_cache_destroy(nat_entry_slab);
3425 fail:
3426         return -ENOMEM;
3427 }
3428
3429 void f2fs_destroy_node_manager_caches(void)
3430 {
3431         kmem_cache_destroy(fsync_node_entry_slab);
3432         kmem_cache_destroy(nat_entry_set_slab);
3433         kmem_cache_destroy(free_nid_slab);
3434         kmem_cache_destroy(nat_entry_slab);
3435 }