Merge tag 'fsnotify_for_v6.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38                           __func__, nid);
39                 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40                 return -EFSCORRUPTED;
41         }
42         return 0;
43 }
44
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47         struct f2fs_nm_info *nm_i = NM_I(sbi);
48         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49         struct sysinfo val;
50         unsigned long avail_ram;
51         unsigned long mem_size = 0;
52         bool res = false;
53
54         if (!nm_i)
55                 return true;
56
57         si_meminfo(&val);
58
59         /* only uses low memory */
60         avail_ram = val.totalram - val.totalhigh;
61
62         /*
63          * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64          */
65         if (type == FREE_NIDS) {
66                 mem_size = (nm_i->nid_cnt[FREE_NID] *
67                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
68                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69         } else if (type == NAT_ENTRIES) {
70                 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71                                 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73                 if (excess_cached_nats(sbi))
74                         res = false;
75         } else if (type == DIRTY_DENTS) {
76                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77                         return false;
78                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80         } else if (type == INO_ENTRIES) {
81                 int i;
82
83                 for (i = 0; i < MAX_INO_ENTRY; i++)
84                         mem_size += sbi->im[i].ino_num *
85                                                 sizeof(struct ino_entry);
86                 mem_size >>= PAGE_SHIFT;
87                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88         } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89                 enum extent_type etype = type == READ_EXTENT_CACHE ?
90                                                 EX_READ : EX_BLOCK_AGE;
91                 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93                 mem_size = (atomic_read(&eti->total_ext_tree) *
94                                 sizeof(struct extent_tree) +
95                                 atomic_read(&eti->total_ext_node) *
96                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
97                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98         } else if (type == DISCARD_CACHE) {
99                 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100                                 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101                 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102         } else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104                 unsigned long free_ram = val.freeram;
105
106                 /*
107                  * free memory is lower than watermark or cached page count
108                  * exceed threshold, deny caching compress page.
109                  */
110                 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111                         (COMPRESS_MAPPING(sbi)->nrpages <
112                          free_ram * sbi->compress_percent / 100);
113 #else
114                 res = false;
115 #endif
116         } else {
117                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118                         return true;
119         }
120         return res;
121 }
122
123 static void clear_node_page_dirty(struct page *page)
124 {
125         if (PageDirty(page)) {
126                 f2fs_clear_page_cache_dirty_tag(page);
127                 clear_page_dirty_for_io(page);
128                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129         }
130         ClearPageUptodate(page);
131 }
132
133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135         return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137
138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140         struct page *src_page;
141         struct page *dst_page;
142         pgoff_t dst_off;
143         void *src_addr;
144         void *dst_addr;
145         struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149         /* get current nat block page with lock */
150         src_page = get_current_nat_page(sbi, nid);
151         if (IS_ERR(src_page))
152                 return src_page;
153         dst_page = f2fs_grab_meta_page(sbi, dst_off);
154         f2fs_bug_on(sbi, PageDirty(src_page));
155
156         src_addr = page_address(src_page);
157         dst_addr = page_address(dst_page);
158         memcpy(dst_addr, src_addr, PAGE_SIZE);
159         set_page_dirty(dst_page);
160         f2fs_put_page(src_page, 1);
161
162         set_to_next_nat(nm_i, nid);
163
164         return dst_page;
165 }
166
167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168                                                 nid_t nid, bool no_fail)
169 {
170         struct nat_entry *new;
171
172         new = f2fs_kmem_cache_alloc(nat_entry_slab,
173                                         GFP_F2FS_ZERO, no_fail, sbi);
174         if (new) {
175                 nat_set_nid(new, nid);
176                 nat_reset_flag(new);
177         }
178         return new;
179 }
180
181 static void __free_nat_entry(struct nat_entry *e)
182 {
183         kmem_cache_free(nat_entry_slab, e);
184 }
185
186 /* must be locked by nat_tree_lock */
187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190         if (no_fail)
191                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193                 return NULL;
194
195         if (raw_ne)
196                 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198         spin_lock(&nm_i->nat_list_lock);
199         list_add_tail(&ne->list, &nm_i->nat_entries);
200         spin_unlock(&nm_i->nat_list_lock);
201
202         nm_i->nat_cnt[TOTAL_NAT]++;
203         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204         return ne;
205 }
206
207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209         struct nat_entry *ne;
210
211         ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213         /* for recent accessed nat entry, move it to tail of lru list */
214         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215                 spin_lock(&nm_i->nat_list_lock);
216                 if (!list_empty(&ne->list))
217                         list_move_tail(&ne->list, &nm_i->nat_entries);
218                 spin_unlock(&nm_i->nat_list_lock);
219         }
220
221         return ne;
222 }
223
224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225                 nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229
230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233         nm_i->nat_cnt[TOTAL_NAT]--;
234         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235         __free_nat_entry(e);
236 }
237
238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239                                                         struct nat_entry *ne)
240 {
241         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242         struct nat_entry_set *head;
243
244         head = radix_tree_lookup(&nm_i->nat_set_root, set);
245         if (!head) {
246                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247                                                 GFP_NOFS, true, NULL);
248
249                 INIT_LIST_HEAD(&head->entry_list);
250                 INIT_LIST_HEAD(&head->set_list);
251                 head->set = set;
252                 head->entry_cnt = 0;
253                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254         }
255         return head;
256 }
257
258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259                                                 struct nat_entry *ne)
260 {
261         struct nat_entry_set *head;
262         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264         if (!new_ne)
265                 head = __grab_nat_entry_set(nm_i, ne);
266
267         /*
268          * update entry_cnt in below condition:
269          * 1. update NEW_ADDR to valid block address;
270          * 2. update old block address to new one;
271          */
272         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273                                 !get_nat_flag(ne, IS_DIRTY)))
274                 head->entry_cnt++;
275
276         set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278         if (get_nat_flag(ne, IS_DIRTY))
279                 goto refresh_list;
280
281         nm_i->nat_cnt[DIRTY_NAT]++;
282         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283         set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285         spin_lock(&nm_i->nat_list_lock);
286         if (new_ne)
287                 list_del_init(&ne->list);
288         else
289                 list_move_tail(&ne->list, &head->entry_list);
290         spin_unlock(&nm_i->nat_list_lock);
291 }
292
293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294                 struct nat_entry_set *set, struct nat_entry *ne)
295 {
296         spin_lock(&nm_i->nat_list_lock);
297         list_move_tail(&ne->list, &nm_i->nat_entries);
298         spin_unlock(&nm_i->nat_list_lock);
299
300         set_nat_flag(ne, IS_DIRTY, false);
301         set->entry_cnt--;
302         nm_i->nat_cnt[DIRTY_NAT]--;
303         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305
306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310                                                         start, nr);
311 }
312
313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314 {
315         return NODE_MAPPING(sbi) == page->mapping &&
316                         IS_DNODE(page) && is_cold_node(page);
317 }
318
319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321         spin_lock_init(&sbi->fsync_node_lock);
322         INIT_LIST_HEAD(&sbi->fsync_node_list);
323         sbi->fsync_seg_id = 0;
324         sbi->fsync_node_num = 0;
325 }
326
327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328                                                         struct page *page)
329 {
330         struct fsync_node_entry *fn;
331         unsigned long flags;
332         unsigned int seq_id;
333
334         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335                                         GFP_NOFS, true, NULL);
336
337         get_page(page);
338         fn->page = page;
339         INIT_LIST_HEAD(&fn->list);
340
341         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342         list_add_tail(&fn->list, &sbi->fsync_node_list);
343         fn->seq_id = sbi->fsync_seg_id++;
344         seq_id = fn->seq_id;
345         sbi->fsync_node_num++;
346         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348         return seq_id;
349 }
350
351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353         struct fsync_node_entry *fn;
354         unsigned long flags;
355
356         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358                 if (fn->page == page) {
359                         list_del(&fn->list);
360                         sbi->fsync_node_num--;
361                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362                         kmem_cache_free(fsync_node_entry_slab, fn);
363                         put_page(page);
364                         return;
365                 }
366         }
367         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368         f2fs_bug_on(sbi, 1);
369 }
370
371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373         unsigned long flags;
374
375         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376         sbi->fsync_seg_id = 0;
377         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379
380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382         struct f2fs_nm_info *nm_i = NM_I(sbi);
383         struct nat_entry *e;
384         bool need = false;
385
386         f2fs_down_read(&nm_i->nat_tree_lock);
387         e = __lookup_nat_cache(nm_i, nid);
388         if (e) {
389                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
391                         need = true;
392         }
393         f2fs_up_read(&nm_i->nat_tree_lock);
394         return need;
395 }
396
397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399         struct f2fs_nm_info *nm_i = NM_I(sbi);
400         struct nat_entry *e;
401         bool is_cp = true;
402
403         f2fs_down_read(&nm_i->nat_tree_lock);
404         e = __lookup_nat_cache(nm_i, nid);
405         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406                 is_cp = false;
407         f2fs_up_read(&nm_i->nat_tree_lock);
408         return is_cp;
409 }
410
411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413         struct f2fs_nm_info *nm_i = NM_I(sbi);
414         struct nat_entry *e;
415         bool need_update = true;
416
417         f2fs_down_read(&nm_i->nat_tree_lock);
418         e = __lookup_nat_cache(nm_i, ino);
419         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420                         (get_nat_flag(e, IS_CHECKPOINTED) ||
421                          get_nat_flag(e, HAS_FSYNCED_INODE)))
422                 need_update = false;
423         f2fs_up_read(&nm_i->nat_tree_lock);
424         return need_update;
425 }
426
427 /* must be locked by nat_tree_lock */
428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429                                                 struct f2fs_nat_entry *ne)
430 {
431         struct f2fs_nm_info *nm_i = NM_I(sbi);
432         struct nat_entry *new, *e;
433
434         /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435         if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436                 return;
437
438         new = __alloc_nat_entry(sbi, nid, false);
439         if (!new)
440                 return;
441
442         f2fs_down_write(&nm_i->nat_tree_lock);
443         e = __lookup_nat_cache(nm_i, nid);
444         if (!e)
445                 e = __init_nat_entry(nm_i, new, ne, false);
446         else
447                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448                                 nat_get_blkaddr(e) !=
449                                         le32_to_cpu(ne->block_addr) ||
450                                 nat_get_version(e) != ne->version);
451         f2fs_up_write(&nm_i->nat_tree_lock);
452         if (e != new)
453                 __free_nat_entry(new);
454 }
455
456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457                         block_t new_blkaddr, bool fsync_done)
458 {
459         struct f2fs_nm_info *nm_i = NM_I(sbi);
460         struct nat_entry *e;
461         struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463         f2fs_down_write(&nm_i->nat_tree_lock);
464         e = __lookup_nat_cache(nm_i, ni->nid);
465         if (!e) {
466                 e = __init_nat_entry(nm_i, new, NULL, true);
467                 copy_node_info(&e->ni, ni);
468                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469         } else if (new_blkaddr == NEW_ADDR) {
470                 /*
471                  * when nid is reallocated,
472                  * previous nat entry can be remained in nat cache.
473                  * So, reinitialize it with new information.
474                  */
475                 copy_node_info(&e->ni, ni);
476                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477         }
478         /* let's free early to reduce memory consumption */
479         if (e != new)
480                 __free_nat_entry(new);
481
482         /* sanity check */
483         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485                         new_blkaddr == NULL_ADDR);
486         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487                         new_blkaddr == NEW_ADDR);
488         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489                         new_blkaddr == NEW_ADDR);
490
491         /* increment version no as node is removed */
492         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493                 unsigned char version = nat_get_version(e);
494
495                 nat_set_version(e, inc_node_version(version));
496         }
497
498         /* change address */
499         nat_set_blkaddr(e, new_blkaddr);
500         if (!__is_valid_data_blkaddr(new_blkaddr))
501                 set_nat_flag(e, IS_CHECKPOINTED, false);
502         __set_nat_cache_dirty(nm_i, e);
503
504         /* update fsync_mark if its inode nat entry is still alive */
505         if (ni->nid != ni->ino)
506                 e = __lookup_nat_cache(nm_i, ni->ino);
507         if (e) {
508                 if (fsync_done && ni->nid == ni->ino)
509                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
510                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511         }
512         f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514
515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517         struct f2fs_nm_info *nm_i = NM_I(sbi);
518         int nr = nr_shrink;
519
520         if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521                 return 0;
522
523         spin_lock(&nm_i->nat_list_lock);
524         while (nr_shrink) {
525                 struct nat_entry *ne;
526
527                 if (list_empty(&nm_i->nat_entries))
528                         break;
529
530                 ne = list_first_entry(&nm_i->nat_entries,
531                                         struct nat_entry, list);
532                 list_del(&ne->list);
533                 spin_unlock(&nm_i->nat_list_lock);
534
535                 __del_from_nat_cache(nm_i, ne);
536                 nr_shrink--;
537
538                 spin_lock(&nm_i->nat_list_lock);
539         }
540         spin_unlock(&nm_i->nat_list_lock);
541
542         f2fs_up_write(&nm_i->nat_tree_lock);
543         return nr - nr_shrink;
544 }
545
546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547                                 struct node_info *ni, bool checkpoint_context)
548 {
549         struct f2fs_nm_info *nm_i = NM_I(sbi);
550         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551         struct f2fs_journal *journal = curseg->journal;
552         nid_t start_nid = START_NID(nid);
553         struct f2fs_nat_block *nat_blk;
554         struct page *page = NULL;
555         struct f2fs_nat_entry ne;
556         struct nat_entry *e;
557         pgoff_t index;
558         block_t blkaddr;
559         int i;
560
561         ni->nid = nid;
562 retry:
563         /* Check nat cache */
564         f2fs_down_read(&nm_i->nat_tree_lock);
565         e = __lookup_nat_cache(nm_i, nid);
566         if (e) {
567                 ni->ino = nat_get_ino(e);
568                 ni->blk_addr = nat_get_blkaddr(e);
569                 ni->version = nat_get_version(e);
570                 f2fs_up_read(&nm_i->nat_tree_lock);
571                 return 0;
572         }
573
574         /*
575          * Check current segment summary by trying to grab journal_rwsem first.
576          * This sem is on the critical path on the checkpoint requiring the above
577          * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578          * while not bothering checkpoint.
579          */
580         if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581                 down_read(&curseg->journal_rwsem);
582         } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583                                 !down_read_trylock(&curseg->journal_rwsem)) {
584                 f2fs_up_read(&nm_i->nat_tree_lock);
585                 goto retry;
586         }
587
588         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589         if (i >= 0) {
590                 ne = nat_in_journal(journal, i);
591                 node_info_from_raw_nat(ni, &ne);
592         }
593         up_read(&curseg->journal_rwsem);
594         if (i >= 0) {
595                 f2fs_up_read(&nm_i->nat_tree_lock);
596                 goto cache;
597         }
598
599         /* Fill node_info from nat page */
600         index = current_nat_addr(sbi, nid);
601         f2fs_up_read(&nm_i->nat_tree_lock);
602
603         page = f2fs_get_meta_page(sbi, index);
604         if (IS_ERR(page))
605                 return PTR_ERR(page);
606
607         nat_blk = (struct f2fs_nat_block *)page_address(page);
608         ne = nat_blk->entries[nid - start_nid];
609         node_info_from_raw_nat(ni, &ne);
610         f2fs_put_page(page, 1);
611 cache:
612         blkaddr = le32_to_cpu(ne.block_addr);
613         if (__is_valid_data_blkaddr(blkaddr) &&
614                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615                 return -EFAULT;
616
617         /* cache nat entry */
618         cache_nat_entry(sbi, nid, &ne);
619         return 0;
620 }
621
622 /*
623  * readahead MAX_RA_NODE number of node pages.
624  */
625 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626 {
627         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628         struct blk_plug plug;
629         int i, end;
630         nid_t nid;
631
632         blk_start_plug(&plug);
633
634         /* Then, try readahead for siblings of the desired node */
635         end = start + n;
636         end = min(end, NIDS_PER_BLOCK);
637         for (i = start; i < end; i++) {
638                 nid = get_nid(parent, i, false);
639                 f2fs_ra_node_page(sbi, nid);
640         }
641
642         blk_finish_plug(&plug);
643 }
644
645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646 {
647         const long direct_index = ADDRS_PER_INODE(dn->inode);
648         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651         int cur_level = dn->cur_level;
652         int max_level = dn->max_level;
653         pgoff_t base = 0;
654
655         if (!dn->max_level)
656                 return pgofs + 1;
657
658         while (max_level-- > cur_level)
659                 skipped_unit *= NIDS_PER_BLOCK;
660
661         switch (dn->max_level) {
662         case 3:
663                 base += 2 * indirect_blks;
664                 fallthrough;
665         case 2:
666                 base += 2 * direct_blks;
667                 fallthrough;
668         case 1:
669                 base += direct_index;
670                 break;
671         default:
672                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673         }
674
675         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676 }
677
678 /*
679  * The maximum depth is four.
680  * Offset[0] will have raw inode offset.
681  */
682 static int get_node_path(struct inode *inode, long block,
683                                 int offset[4], unsigned int noffset[4])
684 {
685         const long direct_index = ADDRS_PER_INODE(inode);
686         const long direct_blks = ADDRS_PER_BLOCK(inode);
687         const long dptrs_per_blk = NIDS_PER_BLOCK;
688         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690         int n = 0;
691         int level = 0;
692
693         noffset[0] = 0;
694
695         if (block < direct_index) {
696                 offset[n] = block;
697                 goto got;
698         }
699         block -= direct_index;
700         if (block < direct_blks) {
701                 offset[n++] = NODE_DIR1_BLOCK;
702                 noffset[n] = 1;
703                 offset[n] = block;
704                 level = 1;
705                 goto got;
706         }
707         block -= direct_blks;
708         if (block < direct_blks) {
709                 offset[n++] = NODE_DIR2_BLOCK;
710                 noffset[n] = 2;
711                 offset[n] = block;
712                 level = 1;
713                 goto got;
714         }
715         block -= direct_blks;
716         if (block < indirect_blks) {
717                 offset[n++] = NODE_IND1_BLOCK;
718                 noffset[n] = 3;
719                 offset[n++] = block / direct_blks;
720                 noffset[n] = 4 + offset[n - 1];
721                 offset[n] = block % direct_blks;
722                 level = 2;
723                 goto got;
724         }
725         block -= indirect_blks;
726         if (block < indirect_blks) {
727                 offset[n++] = NODE_IND2_BLOCK;
728                 noffset[n] = 4 + dptrs_per_blk;
729                 offset[n++] = block / direct_blks;
730                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731                 offset[n] = block % direct_blks;
732                 level = 2;
733                 goto got;
734         }
735         block -= indirect_blks;
736         if (block < dindirect_blks) {
737                 offset[n++] = NODE_DIND_BLOCK;
738                 noffset[n] = 5 + (dptrs_per_blk * 2);
739                 offset[n++] = block / indirect_blks;
740                 noffset[n] = 6 + (dptrs_per_blk * 2) +
741                               offset[n - 1] * (dptrs_per_blk + 1);
742                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743                 noffset[n] = 7 + (dptrs_per_blk * 2) +
744                               offset[n - 2] * (dptrs_per_blk + 1) +
745                               offset[n - 1];
746                 offset[n] = block % direct_blks;
747                 level = 3;
748                 goto got;
749         } else {
750                 return -E2BIG;
751         }
752 got:
753         return level;
754 }
755
756 /*
757  * Caller should call f2fs_put_dnode(dn).
758  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760  */
761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762 {
763         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764         struct page *npage[4];
765         struct page *parent = NULL;
766         int offset[4];
767         unsigned int noffset[4];
768         nid_t nids[4];
769         int level, i = 0;
770         int err = 0;
771
772         level = get_node_path(dn->inode, index, offset, noffset);
773         if (level < 0)
774                 return level;
775
776         nids[0] = dn->inode->i_ino;
777         npage[0] = dn->inode_page;
778
779         if (!npage[0]) {
780                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781                 if (IS_ERR(npage[0]))
782                         return PTR_ERR(npage[0]);
783         }
784
785         /* if inline_data is set, should not report any block indices */
786         if (f2fs_has_inline_data(dn->inode) && index) {
787                 err = -ENOENT;
788                 f2fs_put_page(npage[0], 1);
789                 goto release_out;
790         }
791
792         parent = npage[0];
793         if (level != 0)
794                 nids[1] = get_nid(parent, offset[0], true);
795         dn->inode_page = npage[0];
796         dn->inode_page_locked = true;
797
798         /* get indirect or direct nodes */
799         for (i = 1; i <= level; i++) {
800                 bool done = false;
801
802                 if (!nids[i] && mode == ALLOC_NODE) {
803                         /* alloc new node */
804                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805                                 err = -ENOSPC;
806                                 goto release_pages;
807                         }
808
809                         dn->nid = nids[i];
810                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
811                         if (IS_ERR(npage[i])) {
812                                 f2fs_alloc_nid_failed(sbi, nids[i]);
813                                 err = PTR_ERR(npage[i]);
814                                 goto release_pages;
815                         }
816
817                         set_nid(parent, offset[i - 1], nids[i], i == 1);
818                         f2fs_alloc_nid_done(sbi, nids[i]);
819                         done = true;
820                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822                         if (IS_ERR(npage[i])) {
823                                 err = PTR_ERR(npage[i]);
824                                 goto release_pages;
825                         }
826                         done = true;
827                 }
828                 if (i == 1) {
829                         dn->inode_page_locked = false;
830                         unlock_page(parent);
831                 } else {
832                         f2fs_put_page(parent, 1);
833                 }
834
835                 if (!done) {
836                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
837                         if (IS_ERR(npage[i])) {
838                                 err = PTR_ERR(npage[i]);
839                                 f2fs_put_page(npage[0], 0);
840                                 goto release_out;
841                         }
842                 }
843                 if (i < level) {
844                         parent = npage[i];
845                         nids[i + 1] = get_nid(parent, offset[i], false);
846                 }
847         }
848         dn->nid = nids[level];
849         dn->ofs_in_node = offset[level];
850         dn->node_page = npage[level];
851         dn->data_blkaddr = f2fs_data_blkaddr(dn);
852
853         if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854                                         f2fs_sb_has_readonly(sbi)) {
855                 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
856                 block_t blkaddr;
857
858                 if (!c_len)
859                         goto out;
860
861                 blkaddr = f2fs_data_blkaddr(dn);
862                 if (blkaddr == COMPRESS_ADDR)
863                         blkaddr = data_blkaddr(dn->inode, dn->node_page,
864                                                 dn->ofs_in_node + 1);
865
866                 f2fs_update_read_extent_tree_range_compressed(dn->inode,
867                                         index, blkaddr,
868                                         F2FS_I(dn->inode)->i_cluster_size,
869                                         c_len);
870         }
871 out:
872         return 0;
873
874 release_pages:
875         f2fs_put_page(parent, 1);
876         if (i > 1)
877                 f2fs_put_page(npage[0], 0);
878 release_out:
879         dn->inode_page = NULL;
880         dn->node_page = NULL;
881         if (err == -ENOENT) {
882                 dn->cur_level = i;
883                 dn->max_level = level;
884                 dn->ofs_in_node = offset[level];
885         }
886         return err;
887 }
888
889 static int truncate_node(struct dnode_of_data *dn)
890 {
891         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
892         struct node_info ni;
893         int err;
894         pgoff_t index;
895
896         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
897         if (err)
898                 return err;
899
900         /* Deallocate node address */
901         f2fs_invalidate_blocks(sbi, ni.blk_addr);
902         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
903         set_node_addr(sbi, &ni, NULL_ADDR, false);
904
905         if (dn->nid == dn->inode->i_ino) {
906                 f2fs_remove_orphan_inode(sbi, dn->nid);
907                 dec_valid_inode_count(sbi);
908                 f2fs_inode_synced(dn->inode);
909         }
910
911         clear_node_page_dirty(dn->node_page);
912         set_sbi_flag(sbi, SBI_IS_DIRTY);
913
914         index = dn->node_page->index;
915         f2fs_put_page(dn->node_page, 1);
916
917         invalidate_mapping_pages(NODE_MAPPING(sbi),
918                         index, index);
919
920         dn->node_page = NULL;
921         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
922
923         return 0;
924 }
925
926 static int truncate_dnode(struct dnode_of_data *dn)
927 {
928         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
929         struct page *page;
930         int err;
931
932         if (dn->nid == 0)
933                 return 1;
934
935         /* get direct node */
936         page = f2fs_get_node_page(sbi, dn->nid);
937         if (PTR_ERR(page) == -ENOENT)
938                 return 1;
939         else if (IS_ERR(page))
940                 return PTR_ERR(page);
941
942         if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
943                 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
944                                 dn->inode->i_ino, dn->nid, ino_of_node(page));
945                 set_sbi_flag(sbi, SBI_NEED_FSCK);
946                 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
947                 f2fs_put_page(page, 1);
948                 return -EFSCORRUPTED;
949         }
950
951         /* Make dnode_of_data for parameter */
952         dn->node_page = page;
953         dn->ofs_in_node = 0;
954         f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
955         err = truncate_node(dn);
956         if (err) {
957                 f2fs_put_page(page, 1);
958                 return err;
959         }
960
961         return 1;
962 }
963
964 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
965                                                 int ofs, int depth)
966 {
967         struct dnode_of_data rdn = *dn;
968         struct page *page;
969         struct f2fs_node *rn;
970         nid_t child_nid;
971         unsigned int child_nofs;
972         int freed = 0;
973         int i, ret;
974
975         if (dn->nid == 0)
976                 return NIDS_PER_BLOCK + 1;
977
978         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
979
980         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
981         if (IS_ERR(page)) {
982                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
983                 return PTR_ERR(page);
984         }
985
986         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
987
988         rn = F2FS_NODE(page);
989         if (depth < 3) {
990                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
991                         child_nid = le32_to_cpu(rn->in.nid[i]);
992                         if (child_nid == 0)
993                                 continue;
994                         rdn.nid = child_nid;
995                         ret = truncate_dnode(&rdn);
996                         if (ret < 0)
997                                 goto out_err;
998                         if (set_nid(page, i, 0, false))
999                                 dn->node_changed = true;
1000                 }
1001         } else {
1002                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1003                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1004                         child_nid = le32_to_cpu(rn->in.nid[i]);
1005                         if (child_nid == 0) {
1006                                 child_nofs += NIDS_PER_BLOCK + 1;
1007                                 continue;
1008                         }
1009                         rdn.nid = child_nid;
1010                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1011                         if (ret == (NIDS_PER_BLOCK + 1)) {
1012                                 if (set_nid(page, i, 0, false))
1013                                         dn->node_changed = true;
1014                                 child_nofs += ret;
1015                         } else if (ret < 0 && ret != -ENOENT) {
1016                                 goto out_err;
1017                         }
1018                 }
1019                 freed = child_nofs;
1020         }
1021
1022         if (!ofs) {
1023                 /* remove current indirect node */
1024                 dn->node_page = page;
1025                 ret = truncate_node(dn);
1026                 if (ret)
1027                         goto out_err;
1028                 freed++;
1029         } else {
1030                 f2fs_put_page(page, 1);
1031         }
1032         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1033         return freed;
1034
1035 out_err:
1036         f2fs_put_page(page, 1);
1037         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1038         return ret;
1039 }
1040
1041 static int truncate_partial_nodes(struct dnode_of_data *dn,
1042                         struct f2fs_inode *ri, int *offset, int depth)
1043 {
1044         struct page *pages[2];
1045         nid_t nid[3];
1046         nid_t child_nid;
1047         int err = 0;
1048         int i;
1049         int idx = depth - 2;
1050
1051         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1052         if (!nid[0])
1053                 return 0;
1054
1055         /* get indirect nodes in the path */
1056         for (i = 0; i < idx + 1; i++) {
1057                 /* reference count'll be increased */
1058                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1059                 if (IS_ERR(pages[i])) {
1060                         err = PTR_ERR(pages[i]);
1061                         idx = i - 1;
1062                         goto fail;
1063                 }
1064                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1065         }
1066
1067         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1068
1069         /* free direct nodes linked to a partial indirect node */
1070         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1071                 child_nid = get_nid(pages[idx], i, false);
1072                 if (!child_nid)
1073                         continue;
1074                 dn->nid = child_nid;
1075                 err = truncate_dnode(dn);
1076                 if (err < 0)
1077                         goto fail;
1078                 if (set_nid(pages[idx], i, 0, false))
1079                         dn->node_changed = true;
1080         }
1081
1082         if (offset[idx + 1] == 0) {
1083                 dn->node_page = pages[idx];
1084                 dn->nid = nid[idx];
1085                 err = truncate_node(dn);
1086                 if (err)
1087                         goto fail;
1088         } else {
1089                 f2fs_put_page(pages[idx], 1);
1090         }
1091         offset[idx]++;
1092         offset[idx + 1] = 0;
1093         idx--;
1094 fail:
1095         for (i = idx; i >= 0; i--)
1096                 f2fs_put_page(pages[i], 1);
1097
1098         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1099
1100         return err;
1101 }
1102
1103 /*
1104  * All the block addresses of data and nodes should be nullified.
1105  */
1106 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1107 {
1108         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1109         int err = 0, cont = 1;
1110         int level, offset[4], noffset[4];
1111         unsigned int nofs = 0;
1112         struct f2fs_inode *ri;
1113         struct dnode_of_data dn;
1114         struct page *page;
1115
1116         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1117
1118         level = get_node_path(inode, from, offset, noffset);
1119         if (level < 0) {
1120                 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1121                 return level;
1122         }
1123
1124         page = f2fs_get_node_page(sbi, inode->i_ino);
1125         if (IS_ERR(page)) {
1126                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1127                 return PTR_ERR(page);
1128         }
1129
1130         set_new_dnode(&dn, inode, page, NULL, 0);
1131         unlock_page(page);
1132
1133         ri = F2FS_INODE(page);
1134         switch (level) {
1135         case 0:
1136         case 1:
1137                 nofs = noffset[1];
1138                 break;
1139         case 2:
1140                 nofs = noffset[1];
1141                 if (!offset[level - 1])
1142                         goto skip_partial;
1143                 err = truncate_partial_nodes(&dn, ri, offset, level);
1144                 if (err < 0 && err != -ENOENT)
1145                         goto fail;
1146                 nofs += 1 + NIDS_PER_BLOCK;
1147                 break;
1148         case 3:
1149                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1150                 if (!offset[level - 1])
1151                         goto skip_partial;
1152                 err = truncate_partial_nodes(&dn, ri, offset, level);
1153                 if (err < 0 && err != -ENOENT)
1154                         goto fail;
1155                 break;
1156         default:
1157                 BUG();
1158         }
1159
1160 skip_partial:
1161         while (cont) {
1162                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1163                 switch (offset[0]) {
1164                 case NODE_DIR1_BLOCK:
1165                 case NODE_DIR2_BLOCK:
1166                         err = truncate_dnode(&dn);
1167                         break;
1168
1169                 case NODE_IND1_BLOCK:
1170                 case NODE_IND2_BLOCK:
1171                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1172                         break;
1173
1174                 case NODE_DIND_BLOCK:
1175                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1176                         cont = 0;
1177                         break;
1178
1179                 default:
1180                         BUG();
1181                 }
1182                 if (err < 0 && err != -ENOENT)
1183                         goto fail;
1184                 if (offset[1] == 0 &&
1185                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1186                         lock_page(page);
1187                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1188                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1189                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1190                         set_page_dirty(page);
1191                         unlock_page(page);
1192                 }
1193                 offset[1] = 0;
1194                 offset[0]++;
1195                 nofs += err;
1196         }
1197 fail:
1198         f2fs_put_page(page, 0);
1199         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1200         return err > 0 ? 0 : err;
1201 }
1202
1203 /* caller must lock inode page */
1204 int f2fs_truncate_xattr_node(struct inode *inode)
1205 {
1206         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1207         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1208         struct dnode_of_data dn;
1209         struct page *npage;
1210         int err;
1211
1212         if (!nid)
1213                 return 0;
1214
1215         npage = f2fs_get_node_page(sbi, nid);
1216         if (IS_ERR(npage))
1217                 return PTR_ERR(npage);
1218
1219         set_new_dnode(&dn, inode, NULL, npage, nid);
1220         err = truncate_node(&dn);
1221         if (err) {
1222                 f2fs_put_page(npage, 1);
1223                 return err;
1224         }
1225
1226         f2fs_i_xnid_write(inode, 0);
1227
1228         return 0;
1229 }
1230
1231 /*
1232  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1233  * f2fs_unlock_op().
1234  */
1235 int f2fs_remove_inode_page(struct inode *inode)
1236 {
1237         struct dnode_of_data dn;
1238         int err;
1239
1240         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1241         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1242         if (err)
1243                 return err;
1244
1245         err = f2fs_truncate_xattr_node(inode);
1246         if (err) {
1247                 f2fs_put_dnode(&dn);
1248                 return err;
1249         }
1250
1251         /* remove potential inline_data blocks */
1252         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1253                                 S_ISLNK(inode->i_mode))
1254                 f2fs_truncate_data_blocks_range(&dn, 1);
1255
1256         /* 0 is possible, after f2fs_new_inode() has failed */
1257         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1258                 f2fs_put_dnode(&dn);
1259                 return -EIO;
1260         }
1261
1262         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1263                 f2fs_warn(F2FS_I_SB(inode),
1264                         "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1265                         inode->i_ino, (unsigned long long)inode->i_blocks);
1266                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1267         }
1268
1269         /* will put inode & node pages */
1270         err = truncate_node(&dn);
1271         if (err) {
1272                 f2fs_put_dnode(&dn);
1273                 return err;
1274         }
1275         return 0;
1276 }
1277
1278 struct page *f2fs_new_inode_page(struct inode *inode)
1279 {
1280         struct dnode_of_data dn;
1281
1282         /* allocate inode page for new inode */
1283         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1284
1285         /* caller should f2fs_put_page(page, 1); */
1286         return f2fs_new_node_page(&dn, 0);
1287 }
1288
1289 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1290 {
1291         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1292         struct node_info new_ni;
1293         struct page *page;
1294         int err;
1295
1296         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1297                 return ERR_PTR(-EPERM);
1298
1299         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1300         if (!page)
1301                 return ERR_PTR(-ENOMEM);
1302
1303         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1304                 goto fail;
1305
1306 #ifdef CONFIG_F2FS_CHECK_FS
1307         err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1308         if (err) {
1309                 dec_valid_node_count(sbi, dn->inode, !ofs);
1310                 goto fail;
1311         }
1312         if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1313                 err = -EFSCORRUPTED;
1314                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1315                 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1316                 goto fail;
1317         }
1318 #endif
1319         new_ni.nid = dn->nid;
1320         new_ni.ino = dn->inode->i_ino;
1321         new_ni.blk_addr = NULL_ADDR;
1322         new_ni.flag = 0;
1323         new_ni.version = 0;
1324         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1325
1326         f2fs_wait_on_page_writeback(page, NODE, true, true);
1327         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1328         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1329         if (!PageUptodate(page))
1330                 SetPageUptodate(page);
1331         if (set_page_dirty(page))
1332                 dn->node_changed = true;
1333
1334         if (f2fs_has_xattr_block(ofs))
1335                 f2fs_i_xnid_write(dn->inode, dn->nid);
1336
1337         if (ofs == 0)
1338                 inc_valid_inode_count(sbi);
1339         return page;
1340
1341 fail:
1342         clear_node_page_dirty(page);
1343         f2fs_put_page(page, 1);
1344         return ERR_PTR(err);
1345 }
1346
1347 /*
1348  * Caller should do after getting the following values.
1349  * 0: f2fs_put_page(page, 0)
1350  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1351  */
1352 static int read_node_page(struct page *page, blk_opf_t op_flags)
1353 {
1354         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1355         struct node_info ni;
1356         struct f2fs_io_info fio = {
1357                 .sbi = sbi,
1358                 .type = NODE,
1359                 .op = REQ_OP_READ,
1360                 .op_flags = op_flags,
1361                 .page = page,
1362                 .encrypted_page = NULL,
1363         };
1364         int err;
1365
1366         if (PageUptodate(page)) {
1367                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1368                         ClearPageUptodate(page);
1369                         return -EFSBADCRC;
1370                 }
1371                 return LOCKED_PAGE;
1372         }
1373
1374         err = f2fs_get_node_info(sbi, page->index, &ni, false);
1375         if (err)
1376                 return err;
1377
1378         /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1379         if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1380                 ClearPageUptodate(page);
1381                 return -ENOENT;
1382         }
1383
1384         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1385
1386         err = f2fs_submit_page_bio(&fio);
1387
1388         if (!err)
1389                 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1390
1391         return err;
1392 }
1393
1394 /*
1395  * Readahead a node page
1396  */
1397 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1398 {
1399         struct page *apage;
1400         int err;
1401
1402         if (!nid)
1403                 return;
1404         if (f2fs_check_nid_range(sbi, nid))
1405                 return;
1406
1407         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1408         if (apage)
1409                 return;
1410
1411         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1412         if (!apage)
1413                 return;
1414
1415         err = read_node_page(apage, REQ_RAHEAD);
1416         f2fs_put_page(apage, err ? 1 : 0);
1417 }
1418
1419 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1420                                         struct page *parent, int start)
1421 {
1422         struct page *page;
1423         int err;
1424
1425         if (!nid)
1426                 return ERR_PTR(-ENOENT);
1427         if (f2fs_check_nid_range(sbi, nid))
1428                 return ERR_PTR(-EINVAL);
1429 repeat:
1430         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1431         if (!page)
1432                 return ERR_PTR(-ENOMEM);
1433
1434         err = read_node_page(page, 0);
1435         if (err < 0) {
1436                 goto out_put_err;
1437         } else if (err == LOCKED_PAGE) {
1438                 err = 0;
1439                 goto page_hit;
1440         }
1441
1442         if (parent)
1443                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1444
1445         lock_page(page);
1446
1447         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1448                 f2fs_put_page(page, 1);
1449                 goto repeat;
1450         }
1451
1452         if (unlikely(!PageUptodate(page))) {
1453                 err = -EIO;
1454                 goto out_err;
1455         }
1456
1457         if (!f2fs_inode_chksum_verify(sbi, page)) {
1458                 err = -EFSBADCRC;
1459                 goto out_err;
1460         }
1461 page_hit:
1462         if (likely(nid == nid_of_node(page)))
1463                 return page;
1464
1465         f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1466                           nid, nid_of_node(page), ino_of_node(page),
1467                           ofs_of_node(page), cpver_of_node(page),
1468                           next_blkaddr_of_node(page));
1469         set_sbi_flag(sbi, SBI_NEED_FSCK);
1470         err = -EINVAL;
1471 out_err:
1472         ClearPageUptodate(page);
1473 out_put_err:
1474         /* ENOENT comes from read_node_page which is not an error. */
1475         if (err != -ENOENT)
1476                 f2fs_handle_page_eio(sbi, page->index, NODE);
1477         f2fs_put_page(page, 1);
1478         return ERR_PTR(err);
1479 }
1480
1481 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1482 {
1483         return __get_node_page(sbi, nid, NULL, 0);
1484 }
1485
1486 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1487 {
1488         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1489         nid_t nid = get_nid(parent, start, false);
1490
1491         return __get_node_page(sbi, nid, parent, start);
1492 }
1493
1494 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1495 {
1496         struct inode *inode;
1497         struct page *page;
1498         int ret;
1499
1500         /* should flush inline_data before evict_inode */
1501         inode = ilookup(sbi->sb, ino);
1502         if (!inode)
1503                 return;
1504
1505         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1506                                         FGP_LOCK|FGP_NOWAIT, 0);
1507         if (!page)
1508                 goto iput_out;
1509
1510         if (!PageUptodate(page))
1511                 goto page_out;
1512
1513         if (!PageDirty(page))
1514                 goto page_out;
1515
1516         if (!clear_page_dirty_for_io(page))
1517                 goto page_out;
1518
1519         ret = f2fs_write_inline_data(inode, page);
1520         inode_dec_dirty_pages(inode);
1521         f2fs_remove_dirty_inode(inode);
1522         if (ret)
1523                 set_page_dirty(page);
1524 page_out:
1525         f2fs_put_page(page, 1);
1526 iput_out:
1527         iput(inode);
1528 }
1529
1530 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1531 {
1532         pgoff_t index;
1533         struct folio_batch fbatch;
1534         struct page *last_page = NULL;
1535         int nr_folios;
1536
1537         folio_batch_init(&fbatch);
1538         index = 0;
1539
1540         while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1541                                         (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1542                                         &fbatch))) {
1543                 int i;
1544
1545                 for (i = 0; i < nr_folios; i++) {
1546                         struct page *page = &fbatch.folios[i]->page;
1547
1548                         if (unlikely(f2fs_cp_error(sbi))) {
1549                                 f2fs_put_page(last_page, 0);
1550                                 folio_batch_release(&fbatch);
1551                                 return ERR_PTR(-EIO);
1552                         }
1553
1554                         if (!IS_DNODE(page) || !is_cold_node(page))
1555                                 continue;
1556                         if (ino_of_node(page) != ino)
1557                                 continue;
1558
1559                         lock_page(page);
1560
1561                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1562 continue_unlock:
1563                                 unlock_page(page);
1564                                 continue;
1565                         }
1566                         if (ino_of_node(page) != ino)
1567                                 goto continue_unlock;
1568
1569                         if (!PageDirty(page)) {
1570                                 /* someone wrote it for us */
1571                                 goto continue_unlock;
1572                         }
1573
1574                         if (last_page)
1575                                 f2fs_put_page(last_page, 0);
1576
1577                         get_page(page);
1578                         last_page = page;
1579                         unlock_page(page);
1580                 }
1581                 folio_batch_release(&fbatch);
1582                 cond_resched();
1583         }
1584         return last_page;
1585 }
1586
1587 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1588                                 struct writeback_control *wbc, bool do_balance,
1589                                 enum iostat_type io_type, unsigned int *seq_id)
1590 {
1591         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1592         nid_t nid;
1593         struct node_info ni;
1594         struct f2fs_io_info fio = {
1595                 .sbi = sbi,
1596                 .ino = ino_of_node(page),
1597                 .type = NODE,
1598                 .op = REQ_OP_WRITE,
1599                 .op_flags = wbc_to_write_flags(wbc),
1600                 .page = page,
1601                 .encrypted_page = NULL,
1602                 .submitted = 0,
1603                 .io_type = io_type,
1604                 .io_wbc = wbc,
1605         };
1606         unsigned int seq;
1607
1608         trace_f2fs_writepage(page, NODE);
1609
1610         if (unlikely(f2fs_cp_error(sbi))) {
1611                 /* keep node pages in remount-ro mode */
1612                 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1613                         goto redirty_out;
1614                 ClearPageUptodate(page);
1615                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1616                 unlock_page(page);
1617                 return 0;
1618         }
1619
1620         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1621                 goto redirty_out;
1622
1623         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1624                         wbc->sync_mode == WB_SYNC_NONE &&
1625                         IS_DNODE(page) && is_cold_node(page))
1626                 goto redirty_out;
1627
1628         /* get old block addr of this node page */
1629         nid = nid_of_node(page);
1630         f2fs_bug_on(sbi, page->index != nid);
1631
1632         if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1633                 goto redirty_out;
1634
1635         if (wbc->for_reclaim) {
1636                 if (!f2fs_down_read_trylock(&sbi->node_write))
1637                         goto redirty_out;
1638         } else {
1639                 f2fs_down_read(&sbi->node_write);
1640         }
1641
1642         /* This page is already truncated */
1643         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1644                 ClearPageUptodate(page);
1645                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1646                 f2fs_up_read(&sbi->node_write);
1647                 unlock_page(page);
1648                 return 0;
1649         }
1650
1651         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1652                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1653                                         DATA_GENERIC_ENHANCE)) {
1654                 f2fs_up_read(&sbi->node_write);
1655                 goto redirty_out;
1656         }
1657
1658         if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1659                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1660
1661         /* should add to global list before clearing PAGECACHE status */
1662         if (f2fs_in_warm_node_list(sbi, page)) {
1663                 seq = f2fs_add_fsync_node_entry(sbi, page);
1664                 if (seq_id)
1665                         *seq_id = seq;
1666         }
1667
1668         set_page_writeback(page);
1669
1670         fio.old_blkaddr = ni.blk_addr;
1671         f2fs_do_write_node_page(nid, &fio);
1672         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1673         dec_page_count(sbi, F2FS_DIRTY_NODES);
1674         f2fs_up_read(&sbi->node_write);
1675
1676         if (wbc->for_reclaim) {
1677                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1678                 submitted = NULL;
1679         }
1680
1681         unlock_page(page);
1682
1683         if (unlikely(f2fs_cp_error(sbi))) {
1684                 f2fs_submit_merged_write(sbi, NODE);
1685                 submitted = NULL;
1686         }
1687         if (submitted)
1688                 *submitted = fio.submitted;
1689
1690         if (do_balance)
1691                 f2fs_balance_fs(sbi, false);
1692         return 0;
1693
1694 redirty_out:
1695         redirty_page_for_writepage(wbc, page);
1696         return AOP_WRITEPAGE_ACTIVATE;
1697 }
1698
1699 int f2fs_move_node_page(struct page *node_page, int gc_type)
1700 {
1701         int err = 0;
1702
1703         if (gc_type == FG_GC) {
1704                 struct writeback_control wbc = {
1705                         .sync_mode = WB_SYNC_ALL,
1706                         .nr_to_write = 1,
1707                         .for_reclaim = 0,
1708                 };
1709
1710                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1711
1712                 set_page_dirty(node_page);
1713
1714                 if (!clear_page_dirty_for_io(node_page)) {
1715                         err = -EAGAIN;
1716                         goto out_page;
1717                 }
1718
1719                 if (__write_node_page(node_page, false, NULL,
1720                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1721                         err = -EAGAIN;
1722                         unlock_page(node_page);
1723                 }
1724                 goto release_page;
1725         } else {
1726                 /* set page dirty and write it */
1727                 if (!PageWriteback(node_page))
1728                         set_page_dirty(node_page);
1729         }
1730 out_page:
1731         unlock_page(node_page);
1732 release_page:
1733         f2fs_put_page(node_page, 0);
1734         return err;
1735 }
1736
1737 static int f2fs_write_node_page(struct page *page,
1738                                 struct writeback_control *wbc)
1739 {
1740         return __write_node_page(page, false, NULL, wbc, false,
1741                                                 FS_NODE_IO, NULL);
1742 }
1743
1744 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1745                         struct writeback_control *wbc, bool atomic,
1746                         unsigned int *seq_id)
1747 {
1748         pgoff_t index;
1749         struct folio_batch fbatch;
1750         int ret = 0;
1751         struct page *last_page = NULL;
1752         bool marked = false;
1753         nid_t ino = inode->i_ino;
1754         int nr_folios;
1755         int nwritten = 0;
1756
1757         if (atomic) {
1758                 last_page = last_fsync_dnode(sbi, ino);
1759                 if (IS_ERR_OR_NULL(last_page))
1760                         return PTR_ERR_OR_ZERO(last_page);
1761         }
1762 retry:
1763         folio_batch_init(&fbatch);
1764         index = 0;
1765
1766         while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1767                                         (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1768                                         &fbatch))) {
1769                 int i;
1770
1771                 for (i = 0; i < nr_folios; i++) {
1772                         struct page *page = &fbatch.folios[i]->page;
1773                         bool submitted = false;
1774
1775                         if (unlikely(f2fs_cp_error(sbi))) {
1776                                 f2fs_put_page(last_page, 0);
1777                                 folio_batch_release(&fbatch);
1778                                 ret = -EIO;
1779                                 goto out;
1780                         }
1781
1782                         if (!IS_DNODE(page) || !is_cold_node(page))
1783                                 continue;
1784                         if (ino_of_node(page) != ino)
1785                                 continue;
1786
1787                         lock_page(page);
1788
1789                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1790 continue_unlock:
1791                                 unlock_page(page);
1792                                 continue;
1793                         }
1794                         if (ino_of_node(page) != ino)
1795                                 goto continue_unlock;
1796
1797                         if (!PageDirty(page) && page != last_page) {
1798                                 /* someone wrote it for us */
1799                                 goto continue_unlock;
1800                         }
1801
1802                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1803
1804                         set_fsync_mark(page, 0);
1805                         set_dentry_mark(page, 0);
1806
1807                         if (!atomic || page == last_page) {
1808                                 set_fsync_mark(page, 1);
1809                                 percpu_counter_inc(&sbi->rf_node_block_count);
1810                                 if (IS_INODE(page)) {
1811                                         if (is_inode_flag_set(inode,
1812                                                                 FI_DIRTY_INODE))
1813                                                 f2fs_update_inode(inode, page);
1814                                         set_dentry_mark(page,
1815                                                 f2fs_need_dentry_mark(sbi, ino));
1816                                 }
1817                                 /* may be written by other thread */
1818                                 if (!PageDirty(page))
1819                                         set_page_dirty(page);
1820                         }
1821
1822                         if (!clear_page_dirty_for_io(page))
1823                                 goto continue_unlock;
1824
1825                         ret = __write_node_page(page, atomic &&
1826                                                 page == last_page,
1827                                                 &submitted, wbc, true,
1828                                                 FS_NODE_IO, seq_id);
1829                         if (ret) {
1830                                 unlock_page(page);
1831                                 f2fs_put_page(last_page, 0);
1832                                 break;
1833                         } else if (submitted) {
1834                                 nwritten++;
1835                         }
1836
1837                         if (page == last_page) {
1838                                 f2fs_put_page(page, 0);
1839                                 marked = true;
1840                                 break;
1841                         }
1842                 }
1843                 folio_batch_release(&fbatch);
1844                 cond_resched();
1845
1846                 if (ret || marked)
1847                         break;
1848         }
1849         if (!ret && atomic && !marked) {
1850                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1851                            ino, last_page->index);
1852                 lock_page(last_page);
1853                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1854                 set_page_dirty(last_page);
1855                 unlock_page(last_page);
1856                 goto retry;
1857         }
1858 out:
1859         if (nwritten)
1860                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1861         return ret ? -EIO : 0;
1862 }
1863
1864 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1865 {
1866         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1867         bool clean;
1868
1869         if (inode->i_ino != ino)
1870                 return 0;
1871
1872         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1873                 return 0;
1874
1875         spin_lock(&sbi->inode_lock[DIRTY_META]);
1876         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1877         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1878
1879         if (clean)
1880                 return 0;
1881
1882         inode = igrab(inode);
1883         if (!inode)
1884                 return 0;
1885         return 1;
1886 }
1887
1888 static bool flush_dirty_inode(struct page *page)
1889 {
1890         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1891         struct inode *inode;
1892         nid_t ino = ino_of_node(page);
1893
1894         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1895         if (!inode)
1896                 return false;
1897
1898         f2fs_update_inode(inode, page);
1899         unlock_page(page);
1900
1901         iput(inode);
1902         return true;
1903 }
1904
1905 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1906 {
1907         pgoff_t index = 0;
1908         struct folio_batch fbatch;
1909         int nr_folios;
1910
1911         folio_batch_init(&fbatch);
1912
1913         while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1914                                         (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1915                                         &fbatch))) {
1916                 int i;
1917
1918                 for (i = 0; i < nr_folios; i++) {
1919                         struct page *page = &fbatch.folios[i]->page;
1920
1921                         if (!IS_DNODE(page))
1922                                 continue;
1923
1924                         lock_page(page);
1925
1926                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1927 continue_unlock:
1928                                 unlock_page(page);
1929                                 continue;
1930                         }
1931
1932                         if (!PageDirty(page)) {
1933                                 /* someone wrote it for us */
1934                                 goto continue_unlock;
1935                         }
1936
1937                         /* flush inline_data, if it's async context. */
1938                         if (page_private_inline(page)) {
1939                                 clear_page_private_inline(page);
1940                                 unlock_page(page);
1941                                 flush_inline_data(sbi, ino_of_node(page));
1942                                 continue;
1943                         }
1944                         unlock_page(page);
1945                 }
1946                 folio_batch_release(&fbatch);
1947                 cond_resched();
1948         }
1949 }
1950
1951 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1952                                 struct writeback_control *wbc,
1953                                 bool do_balance, enum iostat_type io_type)
1954 {
1955         pgoff_t index;
1956         struct folio_batch fbatch;
1957         int step = 0;
1958         int nwritten = 0;
1959         int ret = 0;
1960         int nr_folios, done = 0;
1961
1962         folio_batch_init(&fbatch);
1963
1964 next_step:
1965         index = 0;
1966
1967         while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1968                                 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1969                                 &fbatch))) {
1970                 int i;
1971
1972                 for (i = 0; i < nr_folios; i++) {
1973                         struct page *page = &fbatch.folios[i]->page;
1974                         bool submitted = false;
1975
1976                         /* give a priority to WB_SYNC threads */
1977                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1978                                         wbc->sync_mode == WB_SYNC_NONE) {
1979                                 done = 1;
1980                                 break;
1981                         }
1982
1983                         /*
1984                          * flushing sequence with step:
1985                          * 0. indirect nodes
1986                          * 1. dentry dnodes
1987                          * 2. file dnodes
1988                          */
1989                         if (step == 0 && IS_DNODE(page))
1990                                 continue;
1991                         if (step == 1 && (!IS_DNODE(page) ||
1992                                                 is_cold_node(page)))
1993                                 continue;
1994                         if (step == 2 && (!IS_DNODE(page) ||
1995                                                 !is_cold_node(page)))
1996                                 continue;
1997 lock_node:
1998                         if (wbc->sync_mode == WB_SYNC_ALL)
1999                                 lock_page(page);
2000                         else if (!trylock_page(page))
2001                                 continue;
2002
2003                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2004 continue_unlock:
2005                                 unlock_page(page);
2006                                 continue;
2007                         }
2008
2009                         if (!PageDirty(page)) {
2010                                 /* someone wrote it for us */
2011                                 goto continue_unlock;
2012                         }
2013
2014                         /* flush inline_data/inode, if it's async context. */
2015                         if (!do_balance)
2016                                 goto write_node;
2017
2018                         /* flush inline_data */
2019                         if (page_private_inline(page)) {
2020                                 clear_page_private_inline(page);
2021                                 unlock_page(page);
2022                                 flush_inline_data(sbi, ino_of_node(page));
2023                                 goto lock_node;
2024                         }
2025
2026                         /* flush dirty inode */
2027                         if (IS_INODE(page) && flush_dirty_inode(page))
2028                                 goto lock_node;
2029 write_node:
2030                         f2fs_wait_on_page_writeback(page, NODE, true, true);
2031
2032                         if (!clear_page_dirty_for_io(page))
2033                                 goto continue_unlock;
2034
2035                         set_fsync_mark(page, 0);
2036                         set_dentry_mark(page, 0);
2037
2038                         ret = __write_node_page(page, false, &submitted,
2039                                                 wbc, do_balance, io_type, NULL);
2040                         if (ret)
2041                                 unlock_page(page);
2042                         else if (submitted)
2043                                 nwritten++;
2044
2045                         if (--wbc->nr_to_write == 0)
2046                                 break;
2047                 }
2048                 folio_batch_release(&fbatch);
2049                 cond_resched();
2050
2051                 if (wbc->nr_to_write == 0) {
2052                         step = 2;
2053                         break;
2054                 }
2055         }
2056
2057         if (step < 2) {
2058                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2059                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2060                         goto out;
2061                 step++;
2062                 goto next_step;
2063         }
2064 out:
2065         if (nwritten)
2066                 f2fs_submit_merged_write(sbi, NODE);
2067
2068         if (unlikely(f2fs_cp_error(sbi)))
2069                 return -EIO;
2070         return ret;
2071 }
2072
2073 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2074                                                 unsigned int seq_id)
2075 {
2076         struct fsync_node_entry *fn;
2077         struct page *page;
2078         struct list_head *head = &sbi->fsync_node_list;
2079         unsigned long flags;
2080         unsigned int cur_seq_id = 0;
2081
2082         while (seq_id && cur_seq_id < seq_id) {
2083                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2084                 if (list_empty(head)) {
2085                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2086                         break;
2087                 }
2088                 fn = list_first_entry(head, struct fsync_node_entry, list);
2089                 if (fn->seq_id > seq_id) {
2090                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2091                         break;
2092                 }
2093                 cur_seq_id = fn->seq_id;
2094                 page = fn->page;
2095                 get_page(page);
2096                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2097
2098                 f2fs_wait_on_page_writeback(page, NODE, true, false);
2099
2100                 put_page(page);
2101         }
2102
2103         return filemap_check_errors(NODE_MAPPING(sbi));
2104 }
2105
2106 static int f2fs_write_node_pages(struct address_space *mapping,
2107                             struct writeback_control *wbc)
2108 {
2109         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2110         struct blk_plug plug;
2111         long diff;
2112
2113         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2114                 goto skip_write;
2115
2116         /* balancing f2fs's metadata in background */
2117         f2fs_balance_fs_bg(sbi, true);
2118
2119         /* collect a number of dirty node pages and write together */
2120         if (wbc->sync_mode != WB_SYNC_ALL &&
2121                         get_pages(sbi, F2FS_DIRTY_NODES) <
2122                                         nr_pages_to_skip(sbi, NODE))
2123                 goto skip_write;
2124
2125         if (wbc->sync_mode == WB_SYNC_ALL)
2126                 atomic_inc(&sbi->wb_sync_req[NODE]);
2127         else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2128                 /* to avoid potential deadlock */
2129                 if (current->plug)
2130                         blk_finish_plug(current->plug);
2131                 goto skip_write;
2132         }
2133
2134         trace_f2fs_writepages(mapping->host, wbc, NODE);
2135
2136         diff = nr_pages_to_write(sbi, NODE, wbc);
2137         blk_start_plug(&plug);
2138         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2139         blk_finish_plug(&plug);
2140         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2141
2142         if (wbc->sync_mode == WB_SYNC_ALL)
2143                 atomic_dec(&sbi->wb_sync_req[NODE]);
2144         return 0;
2145
2146 skip_write:
2147         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2148         trace_f2fs_writepages(mapping->host, wbc, NODE);
2149         return 0;
2150 }
2151
2152 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2153                 struct folio *folio)
2154 {
2155         trace_f2fs_set_page_dirty(&folio->page, NODE);
2156
2157         if (!folio_test_uptodate(folio))
2158                 folio_mark_uptodate(folio);
2159 #ifdef CONFIG_F2FS_CHECK_FS
2160         if (IS_INODE(&folio->page))
2161                 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2162 #endif
2163         if (filemap_dirty_folio(mapping, folio)) {
2164                 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2165                 set_page_private_reference(&folio->page);
2166                 return true;
2167         }
2168         return false;
2169 }
2170
2171 /*
2172  * Structure of the f2fs node operations
2173  */
2174 const struct address_space_operations f2fs_node_aops = {
2175         .writepage      = f2fs_write_node_page,
2176         .writepages     = f2fs_write_node_pages,
2177         .dirty_folio    = f2fs_dirty_node_folio,
2178         .invalidate_folio = f2fs_invalidate_folio,
2179         .release_folio  = f2fs_release_folio,
2180         .migrate_folio  = filemap_migrate_folio,
2181 };
2182
2183 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2184                                                 nid_t n)
2185 {
2186         return radix_tree_lookup(&nm_i->free_nid_root, n);
2187 }
2188
2189 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2190                                 struct free_nid *i)
2191 {
2192         struct f2fs_nm_info *nm_i = NM_I(sbi);
2193         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2194
2195         if (err)
2196                 return err;
2197
2198         nm_i->nid_cnt[FREE_NID]++;
2199         list_add_tail(&i->list, &nm_i->free_nid_list);
2200         return 0;
2201 }
2202
2203 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2204                         struct free_nid *i, enum nid_state state)
2205 {
2206         struct f2fs_nm_info *nm_i = NM_I(sbi);
2207
2208         f2fs_bug_on(sbi, state != i->state);
2209         nm_i->nid_cnt[state]--;
2210         if (state == FREE_NID)
2211                 list_del(&i->list);
2212         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2213 }
2214
2215 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2216                         enum nid_state org_state, enum nid_state dst_state)
2217 {
2218         struct f2fs_nm_info *nm_i = NM_I(sbi);
2219
2220         f2fs_bug_on(sbi, org_state != i->state);
2221         i->state = dst_state;
2222         nm_i->nid_cnt[org_state]--;
2223         nm_i->nid_cnt[dst_state]++;
2224
2225         switch (dst_state) {
2226         case PREALLOC_NID:
2227                 list_del(&i->list);
2228                 break;
2229         case FREE_NID:
2230                 list_add_tail(&i->list, &nm_i->free_nid_list);
2231                 break;
2232         default:
2233                 BUG_ON(1);
2234         }
2235 }
2236
2237 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2238 {
2239         struct f2fs_nm_info *nm_i = NM_I(sbi);
2240         unsigned int i;
2241         bool ret = true;
2242
2243         f2fs_down_read(&nm_i->nat_tree_lock);
2244         for (i = 0; i < nm_i->nat_blocks; i++) {
2245                 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2246                         ret = false;
2247                         break;
2248                 }
2249         }
2250         f2fs_up_read(&nm_i->nat_tree_lock);
2251
2252         return ret;
2253 }
2254
2255 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2256                                                         bool set, bool build)
2257 {
2258         struct f2fs_nm_info *nm_i = NM_I(sbi);
2259         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2260         unsigned int nid_ofs = nid - START_NID(nid);
2261
2262         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2263                 return;
2264
2265         if (set) {
2266                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2267                         return;
2268                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2269                 nm_i->free_nid_count[nat_ofs]++;
2270         } else {
2271                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2272                         return;
2273                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2274                 if (!build)
2275                         nm_i->free_nid_count[nat_ofs]--;
2276         }
2277 }
2278
2279 /* return if the nid is recognized as free */
2280 static bool add_free_nid(struct f2fs_sb_info *sbi,
2281                                 nid_t nid, bool build, bool update)
2282 {
2283         struct f2fs_nm_info *nm_i = NM_I(sbi);
2284         struct free_nid *i, *e;
2285         struct nat_entry *ne;
2286         int err = -EINVAL;
2287         bool ret = false;
2288
2289         /* 0 nid should not be used */
2290         if (unlikely(nid == 0))
2291                 return false;
2292
2293         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2294                 return false;
2295
2296         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2297         i->nid = nid;
2298         i->state = FREE_NID;
2299
2300         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2301
2302         spin_lock(&nm_i->nid_list_lock);
2303
2304         if (build) {
2305                 /*
2306                  *   Thread A             Thread B
2307                  *  - f2fs_create
2308                  *   - f2fs_new_inode
2309                  *    - f2fs_alloc_nid
2310                  *     - __insert_nid_to_list(PREALLOC_NID)
2311                  *                     - f2fs_balance_fs_bg
2312                  *                      - f2fs_build_free_nids
2313                  *                       - __f2fs_build_free_nids
2314                  *                        - scan_nat_page
2315                  *                         - add_free_nid
2316                  *                          - __lookup_nat_cache
2317                  *  - f2fs_add_link
2318                  *   - f2fs_init_inode_metadata
2319                  *    - f2fs_new_inode_page
2320                  *     - f2fs_new_node_page
2321                  *      - set_node_addr
2322                  *  - f2fs_alloc_nid_done
2323                  *   - __remove_nid_from_list(PREALLOC_NID)
2324                  *                         - __insert_nid_to_list(FREE_NID)
2325                  */
2326                 ne = __lookup_nat_cache(nm_i, nid);
2327                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2328                                 nat_get_blkaddr(ne) != NULL_ADDR))
2329                         goto err_out;
2330
2331                 e = __lookup_free_nid_list(nm_i, nid);
2332                 if (e) {
2333                         if (e->state == FREE_NID)
2334                                 ret = true;
2335                         goto err_out;
2336                 }
2337         }
2338         ret = true;
2339         err = __insert_free_nid(sbi, i);
2340 err_out:
2341         if (update) {
2342                 update_free_nid_bitmap(sbi, nid, ret, build);
2343                 if (!build)
2344                         nm_i->available_nids++;
2345         }
2346         spin_unlock(&nm_i->nid_list_lock);
2347         radix_tree_preload_end();
2348
2349         if (err)
2350                 kmem_cache_free(free_nid_slab, i);
2351         return ret;
2352 }
2353
2354 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2355 {
2356         struct f2fs_nm_info *nm_i = NM_I(sbi);
2357         struct free_nid *i;
2358         bool need_free = false;
2359
2360         spin_lock(&nm_i->nid_list_lock);
2361         i = __lookup_free_nid_list(nm_i, nid);
2362         if (i && i->state == FREE_NID) {
2363                 __remove_free_nid(sbi, i, FREE_NID);
2364                 need_free = true;
2365         }
2366         spin_unlock(&nm_i->nid_list_lock);
2367
2368         if (need_free)
2369                 kmem_cache_free(free_nid_slab, i);
2370 }
2371
2372 static int scan_nat_page(struct f2fs_sb_info *sbi,
2373                         struct page *nat_page, nid_t start_nid)
2374 {
2375         struct f2fs_nm_info *nm_i = NM_I(sbi);
2376         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2377         block_t blk_addr;
2378         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2379         int i;
2380
2381         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2382
2383         i = start_nid % NAT_ENTRY_PER_BLOCK;
2384
2385         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2386                 if (unlikely(start_nid >= nm_i->max_nid))
2387                         break;
2388
2389                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2390
2391                 if (blk_addr == NEW_ADDR)
2392                         return -EINVAL;
2393
2394                 if (blk_addr == NULL_ADDR) {
2395                         add_free_nid(sbi, start_nid, true, true);
2396                 } else {
2397                         spin_lock(&NM_I(sbi)->nid_list_lock);
2398                         update_free_nid_bitmap(sbi, start_nid, false, true);
2399                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2400                 }
2401         }
2402
2403         return 0;
2404 }
2405
2406 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2407 {
2408         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2409         struct f2fs_journal *journal = curseg->journal;
2410         int i;
2411
2412         down_read(&curseg->journal_rwsem);
2413         for (i = 0; i < nats_in_cursum(journal); i++) {
2414                 block_t addr;
2415                 nid_t nid;
2416
2417                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2418                 nid = le32_to_cpu(nid_in_journal(journal, i));
2419                 if (addr == NULL_ADDR)
2420                         add_free_nid(sbi, nid, true, false);
2421                 else
2422                         remove_free_nid(sbi, nid);
2423         }
2424         up_read(&curseg->journal_rwsem);
2425 }
2426
2427 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2428 {
2429         struct f2fs_nm_info *nm_i = NM_I(sbi);
2430         unsigned int i, idx;
2431         nid_t nid;
2432
2433         f2fs_down_read(&nm_i->nat_tree_lock);
2434
2435         for (i = 0; i < nm_i->nat_blocks; i++) {
2436                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2437                         continue;
2438                 if (!nm_i->free_nid_count[i])
2439                         continue;
2440                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2441                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2442                                                 NAT_ENTRY_PER_BLOCK, idx);
2443                         if (idx >= NAT_ENTRY_PER_BLOCK)
2444                                 break;
2445
2446                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2447                         add_free_nid(sbi, nid, true, false);
2448
2449                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2450                                 goto out;
2451                 }
2452         }
2453 out:
2454         scan_curseg_cache(sbi);
2455
2456         f2fs_up_read(&nm_i->nat_tree_lock);
2457 }
2458
2459 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2460                                                 bool sync, bool mount)
2461 {
2462         struct f2fs_nm_info *nm_i = NM_I(sbi);
2463         int i = 0, ret;
2464         nid_t nid = nm_i->next_scan_nid;
2465
2466         if (unlikely(nid >= nm_i->max_nid))
2467                 nid = 0;
2468
2469         if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2470                 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2471
2472         /* Enough entries */
2473         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2474                 return 0;
2475
2476         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2477                 return 0;
2478
2479         if (!mount) {
2480                 /* try to find free nids in free_nid_bitmap */
2481                 scan_free_nid_bits(sbi);
2482
2483                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2484                         return 0;
2485         }
2486
2487         /* readahead nat pages to be scanned */
2488         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2489                                                         META_NAT, true);
2490
2491         f2fs_down_read(&nm_i->nat_tree_lock);
2492
2493         while (1) {
2494                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2495                                                 nm_i->nat_block_bitmap)) {
2496                         struct page *page = get_current_nat_page(sbi, nid);
2497
2498                         if (IS_ERR(page)) {
2499                                 ret = PTR_ERR(page);
2500                         } else {
2501                                 ret = scan_nat_page(sbi, page, nid);
2502                                 f2fs_put_page(page, 1);
2503                         }
2504
2505                         if (ret) {
2506                                 f2fs_up_read(&nm_i->nat_tree_lock);
2507                                 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2508                                 return ret;
2509                         }
2510                 }
2511
2512                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2513                 if (unlikely(nid >= nm_i->max_nid))
2514                         nid = 0;
2515
2516                 if (++i >= FREE_NID_PAGES)
2517                         break;
2518         }
2519
2520         /* go to the next free nat pages to find free nids abundantly */
2521         nm_i->next_scan_nid = nid;
2522
2523         /* find free nids from current sum_pages */
2524         scan_curseg_cache(sbi);
2525
2526         f2fs_up_read(&nm_i->nat_tree_lock);
2527
2528         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2529                                         nm_i->ra_nid_pages, META_NAT, false);
2530
2531         return 0;
2532 }
2533
2534 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2535 {
2536         int ret;
2537
2538         mutex_lock(&NM_I(sbi)->build_lock);
2539         ret = __f2fs_build_free_nids(sbi, sync, mount);
2540         mutex_unlock(&NM_I(sbi)->build_lock);
2541
2542         return ret;
2543 }
2544
2545 /*
2546  * If this function returns success, caller can obtain a new nid
2547  * from second parameter of this function.
2548  * The returned nid could be used ino as well as nid when inode is created.
2549  */
2550 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2551 {
2552         struct f2fs_nm_info *nm_i = NM_I(sbi);
2553         struct free_nid *i = NULL;
2554 retry:
2555         if (time_to_inject(sbi, FAULT_ALLOC_NID))
2556                 return false;
2557
2558         spin_lock(&nm_i->nid_list_lock);
2559
2560         if (unlikely(nm_i->available_nids == 0)) {
2561                 spin_unlock(&nm_i->nid_list_lock);
2562                 return false;
2563         }
2564
2565         /* We should not use stale free nids created by f2fs_build_free_nids */
2566         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2567                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2568                 i = list_first_entry(&nm_i->free_nid_list,
2569                                         struct free_nid, list);
2570                 *nid = i->nid;
2571
2572                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2573                 nm_i->available_nids--;
2574
2575                 update_free_nid_bitmap(sbi, *nid, false, false);
2576
2577                 spin_unlock(&nm_i->nid_list_lock);
2578                 return true;
2579         }
2580         spin_unlock(&nm_i->nid_list_lock);
2581
2582         /* Let's scan nat pages and its caches to get free nids */
2583         if (!f2fs_build_free_nids(sbi, true, false))
2584                 goto retry;
2585         return false;
2586 }
2587
2588 /*
2589  * f2fs_alloc_nid() should be called prior to this function.
2590  */
2591 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2592 {
2593         struct f2fs_nm_info *nm_i = NM_I(sbi);
2594         struct free_nid *i;
2595
2596         spin_lock(&nm_i->nid_list_lock);
2597         i = __lookup_free_nid_list(nm_i, nid);
2598         f2fs_bug_on(sbi, !i);
2599         __remove_free_nid(sbi, i, PREALLOC_NID);
2600         spin_unlock(&nm_i->nid_list_lock);
2601
2602         kmem_cache_free(free_nid_slab, i);
2603 }
2604
2605 /*
2606  * f2fs_alloc_nid() should be called prior to this function.
2607  */
2608 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2609 {
2610         struct f2fs_nm_info *nm_i = NM_I(sbi);
2611         struct free_nid *i;
2612         bool need_free = false;
2613
2614         if (!nid)
2615                 return;
2616
2617         spin_lock(&nm_i->nid_list_lock);
2618         i = __lookup_free_nid_list(nm_i, nid);
2619         f2fs_bug_on(sbi, !i);
2620
2621         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2622                 __remove_free_nid(sbi, i, PREALLOC_NID);
2623                 need_free = true;
2624         } else {
2625                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2626         }
2627
2628         nm_i->available_nids++;
2629
2630         update_free_nid_bitmap(sbi, nid, true, false);
2631
2632         spin_unlock(&nm_i->nid_list_lock);
2633
2634         if (need_free)
2635                 kmem_cache_free(free_nid_slab, i);
2636 }
2637
2638 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2639 {
2640         struct f2fs_nm_info *nm_i = NM_I(sbi);
2641         int nr = nr_shrink;
2642
2643         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2644                 return 0;
2645
2646         if (!mutex_trylock(&nm_i->build_lock))
2647                 return 0;
2648
2649         while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2650                 struct free_nid *i, *next;
2651                 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2652
2653                 spin_lock(&nm_i->nid_list_lock);
2654                 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2655                         if (!nr_shrink || !batch ||
2656                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2657                                 break;
2658                         __remove_free_nid(sbi, i, FREE_NID);
2659                         kmem_cache_free(free_nid_slab, i);
2660                         nr_shrink--;
2661                         batch--;
2662                 }
2663                 spin_unlock(&nm_i->nid_list_lock);
2664         }
2665
2666         mutex_unlock(&nm_i->build_lock);
2667
2668         return nr - nr_shrink;
2669 }
2670
2671 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2672 {
2673         void *src_addr, *dst_addr;
2674         size_t inline_size;
2675         struct page *ipage;
2676         struct f2fs_inode *ri;
2677
2678         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2679         if (IS_ERR(ipage))
2680                 return PTR_ERR(ipage);
2681
2682         ri = F2FS_INODE(page);
2683         if (ri->i_inline & F2FS_INLINE_XATTR) {
2684                 if (!f2fs_has_inline_xattr(inode)) {
2685                         set_inode_flag(inode, FI_INLINE_XATTR);
2686                         stat_inc_inline_xattr(inode);
2687                 }
2688         } else {
2689                 if (f2fs_has_inline_xattr(inode)) {
2690                         stat_dec_inline_xattr(inode);
2691                         clear_inode_flag(inode, FI_INLINE_XATTR);
2692                 }
2693                 goto update_inode;
2694         }
2695
2696         dst_addr = inline_xattr_addr(inode, ipage);
2697         src_addr = inline_xattr_addr(inode, page);
2698         inline_size = inline_xattr_size(inode);
2699
2700         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2701         memcpy(dst_addr, src_addr, inline_size);
2702 update_inode:
2703         f2fs_update_inode(inode, ipage);
2704         f2fs_put_page(ipage, 1);
2705         return 0;
2706 }
2707
2708 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2709 {
2710         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2711         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2712         nid_t new_xnid;
2713         struct dnode_of_data dn;
2714         struct node_info ni;
2715         struct page *xpage;
2716         int err;
2717
2718         if (!prev_xnid)
2719                 goto recover_xnid;
2720
2721         /* 1: invalidate the previous xattr nid */
2722         err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2723         if (err)
2724                 return err;
2725
2726         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2727         dec_valid_node_count(sbi, inode, false);
2728         set_node_addr(sbi, &ni, NULL_ADDR, false);
2729
2730 recover_xnid:
2731         /* 2: update xattr nid in inode */
2732         if (!f2fs_alloc_nid(sbi, &new_xnid))
2733                 return -ENOSPC;
2734
2735         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2736         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2737         if (IS_ERR(xpage)) {
2738                 f2fs_alloc_nid_failed(sbi, new_xnid);
2739                 return PTR_ERR(xpage);
2740         }
2741
2742         f2fs_alloc_nid_done(sbi, new_xnid);
2743         f2fs_update_inode_page(inode);
2744
2745         /* 3: update and set xattr node page dirty */
2746         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2747
2748         set_page_dirty(xpage);
2749         f2fs_put_page(xpage, 1);
2750
2751         return 0;
2752 }
2753
2754 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2755 {
2756         struct f2fs_inode *src, *dst;
2757         nid_t ino = ino_of_node(page);
2758         struct node_info old_ni, new_ni;
2759         struct page *ipage;
2760         int err;
2761
2762         err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2763         if (err)
2764                 return err;
2765
2766         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2767                 return -EINVAL;
2768 retry:
2769         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2770         if (!ipage) {
2771                 memalloc_retry_wait(GFP_NOFS);
2772                 goto retry;
2773         }
2774
2775         /* Should not use this inode from free nid list */
2776         remove_free_nid(sbi, ino);
2777
2778         if (!PageUptodate(ipage))
2779                 SetPageUptodate(ipage);
2780         fill_node_footer(ipage, ino, ino, 0, true);
2781         set_cold_node(ipage, false);
2782
2783         src = F2FS_INODE(page);
2784         dst = F2FS_INODE(ipage);
2785
2786         memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2787         dst->i_size = 0;
2788         dst->i_blocks = cpu_to_le64(1);
2789         dst->i_links = cpu_to_le32(1);
2790         dst->i_xattr_nid = 0;
2791         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2792         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2793                 dst->i_extra_isize = src->i_extra_isize;
2794
2795                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2796                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2797                                                         i_inline_xattr_size))
2798                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2799
2800                 if (f2fs_sb_has_project_quota(sbi) &&
2801                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2802                                                                 i_projid))
2803                         dst->i_projid = src->i_projid;
2804
2805                 if (f2fs_sb_has_inode_crtime(sbi) &&
2806                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2807                                                         i_crtime_nsec)) {
2808                         dst->i_crtime = src->i_crtime;
2809                         dst->i_crtime_nsec = src->i_crtime_nsec;
2810                 }
2811         }
2812
2813         new_ni = old_ni;
2814         new_ni.ino = ino;
2815
2816         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2817                 WARN_ON(1);
2818         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2819         inc_valid_inode_count(sbi);
2820         set_page_dirty(ipage);
2821         f2fs_put_page(ipage, 1);
2822         return 0;
2823 }
2824
2825 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2826                         unsigned int segno, struct f2fs_summary_block *sum)
2827 {
2828         struct f2fs_node *rn;
2829         struct f2fs_summary *sum_entry;
2830         block_t addr;
2831         int i, idx, last_offset, nrpages;
2832
2833         /* scan the node segment */
2834         last_offset = sbi->blocks_per_seg;
2835         addr = START_BLOCK(sbi, segno);
2836         sum_entry = &sum->entries[0];
2837
2838         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2839                 nrpages = bio_max_segs(last_offset - i);
2840
2841                 /* readahead node pages */
2842                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2843
2844                 for (idx = addr; idx < addr + nrpages; idx++) {
2845                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2846
2847                         if (IS_ERR(page))
2848                                 return PTR_ERR(page);
2849
2850                         rn = F2FS_NODE(page);
2851                         sum_entry->nid = rn->footer.nid;
2852                         sum_entry->version = 0;
2853                         sum_entry->ofs_in_node = 0;
2854                         sum_entry++;
2855                         f2fs_put_page(page, 1);
2856                 }
2857
2858                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2859                                                         addr + nrpages);
2860         }
2861         return 0;
2862 }
2863
2864 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2865 {
2866         struct f2fs_nm_info *nm_i = NM_I(sbi);
2867         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2868         struct f2fs_journal *journal = curseg->journal;
2869         int i;
2870
2871         down_write(&curseg->journal_rwsem);
2872         for (i = 0; i < nats_in_cursum(journal); i++) {
2873                 struct nat_entry *ne;
2874                 struct f2fs_nat_entry raw_ne;
2875                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2876
2877                 if (f2fs_check_nid_range(sbi, nid))
2878                         continue;
2879
2880                 raw_ne = nat_in_journal(journal, i);
2881
2882                 ne = __lookup_nat_cache(nm_i, nid);
2883                 if (!ne) {
2884                         ne = __alloc_nat_entry(sbi, nid, true);
2885                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2886                 }
2887
2888                 /*
2889                  * if a free nat in journal has not been used after last
2890                  * checkpoint, we should remove it from available nids,
2891                  * since later we will add it again.
2892                  */
2893                 if (!get_nat_flag(ne, IS_DIRTY) &&
2894                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2895                         spin_lock(&nm_i->nid_list_lock);
2896                         nm_i->available_nids--;
2897                         spin_unlock(&nm_i->nid_list_lock);
2898                 }
2899
2900                 __set_nat_cache_dirty(nm_i, ne);
2901         }
2902         update_nats_in_cursum(journal, -i);
2903         up_write(&curseg->journal_rwsem);
2904 }
2905
2906 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2907                                                 struct list_head *head, int max)
2908 {
2909         struct nat_entry_set *cur;
2910
2911         if (nes->entry_cnt >= max)
2912                 goto add_out;
2913
2914         list_for_each_entry(cur, head, set_list) {
2915                 if (cur->entry_cnt >= nes->entry_cnt) {
2916                         list_add(&nes->set_list, cur->set_list.prev);
2917                         return;
2918                 }
2919         }
2920 add_out:
2921         list_add_tail(&nes->set_list, head);
2922 }
2923
2924 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2925                                                         unsigned int valid)
2926 {
2927         if (valid == 0) {
2928                 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2929                 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2930                 return;
2931         }
2932
2933         __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2934         if (valid == NAT_ENTRY_PER_BLOCK)
2935                 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2936         else
2937                 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2938 }
2939
2940 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2941                                                 struct page *page)
2942 {
2943         struct f2fs_nm_info *nm_i = NM_I(sbi);
2944         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2945         struct f2fs_nat_block *nat_blk = page_address(page);
2946         int valid = 0;
2947         int i = 0;
2948
2949         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2950                 return;
2951
2952         if (nat_index == 0) {
2953                 valid = 1;
2954                 i = 1;
2955         }
2956         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2957                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2958                         valid++;
2959         }
2960
2961         __update_nat_bits(nm_i, nat_index, valid);
2962 }
2963
2964 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2965 {
2966         struct f2fs_nm_info *nm_i = NM_I(sbi);
2967         unsigned int nat_ofs;
2968
2969         f2fs_down_read(&nm_i->nat_tree_lock);
2970
2971         for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2972                 unsigned int valid = 0, nid_ofs = 0;
2973
2974                 /* handle nid zero due to it should never be used */
2975                 if (unlikely(nat_ofs == 0)) {
2976                         valid = 1;
2977                         nid_ofs = 1;
2978                 }
2979
2980                 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2981                         if (!test_bit_le(nid_ofs,
2982                                         nm_i->free_nid_bitmap[nat_ofs]))
2983                                 valid++;
2984                 }
2985
2986                 __update_nat_bits(nm_i, nat_ofs, valid);
2987         }
2988
2989         f2fs_up_read(&nm_i->nat_tree_lock);
2990 }
2991
2992 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2993                 struct nat_entry_set *set, struct cp_control *cpc)
2994 {
2995         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2996         struct f2fs_journal *journal = curseg->journal;
2997         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2998         bool to_journal = true;
2999         struct f2fs_nat_block *nat_blk;
3000         struct nat_entry *ne, *cur;
3001         struct page *page = NULL;
3002
3003         /*
3004          * there are two steps to flush nat entries:
3005          * #1, flush nat entries to journal in current hot data summary block.
3006          * #2, flush nat entries to nat page.
3007          */
3008         if ((cpc->reason & CP_UMOUNT) ||
3009                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3010                 to_journal = false;
3011
3012         if (to_journal) {
3013                 down_write(&curseg->journal_rwsem);
3014         } else {
3015                 page = get_next_nat_page(sbi, start_nid);
3016                 if (IS_ERR(page))
3017                         return PTR_ERR(page);
3018
3019                 nat_blk = page_address(page);
3020                 f2fs_bug_on(sbi, !nat_blk);
3021         }
3022
3023         /* flush dirty nats in nat entry set */
3024         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3025                 struct f2fs_nat_entry *raw_ne;
3026                 nid_t nid = nat_get_nid(ne);
3027                 int offset;
3028
3029                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3030
3031                 if (to_journal) {
3032                         offset = f2fs_lookup_journal_in_cursum(journal,
3033                                                         NAT_JOURNAL, nid, 1);
3034                         f2fs_bug_on(sbi, offset < 0);
3035                         raw_ne = &nat_in_journal(journal, offset);
3036                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
3037                 } else {
3038                         raw_ne = &nat_blk->entries[nid - start_nid];
3039                 }
3040                 raw_nat_from_node_info(raw_ne, &ne->ni);
3041                 nat_reset_flag(ne);
3042                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3043                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3044                         add_free_nid(sbi, nid, false, true);
3045                 } else {
3046                         spin_lock(&NM_I(sbi)->nid_list_lock);
3047                         update_free_nid_bitmap(sbi, nid, false, false);
3048                         spin_unlock(&NM_I(sbi)->nid_list_lock);
3049                 }
3050         }
3051
3052         if (to_journal) {
3053                 up_write(&curseg->journal_rwsem);
3054         } else {
3055                 update_nat_bits(sbi, start_nid, page);
3056                 f2fs_put_page(page, 1);
3057         }
3058
3059         /* Allow dirty nats by node block allocation in write_begin */
3060         if (!set->entry_cnt) {
3061                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3062                 kmem_cache_free(nat_entry_set_slab, set);
3063         }
3064         return 0;
3065 }
3066
3067 /*
3068  * This function is called during the checkpointing process.
3069  */
3070 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3071 {
3072         struct f2fs_nm_info *nm_i = NM_I(sbi);
3073         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3074         struct f2fs_journal *journal = curseg->journal;
3075         struct nat_entry_set *setvec[NAT_VEC_SIZE];
3076         struct nat_entry_set *set, *tmp;
3077         unsigned int found;
3078         nid_t set_idx = 0;
3079         LIST_HEAD(sets);
3080         int err = 0;
3081
3082         /*
3083          * during unmount, let's flush nat_bits before checking
3084          * nat_cnt[DIRTY_NAT].
3085          */
3086         if (cpc->reason & CP_UMOUNT) {
3087                 f2fs_down_write(&nm_i->nat_tree_lock);
3088                 remove_nats_in_journal(sbi);
3089                 f2fs_up_write(&nm_i->nat_tree_lock);
3090         }
3091
3092         if (!nm_i->nat_cnt[DIRTY_NAT])
3093                 return 0;
3094
3095         f2fs_down_write(&nm_i->nat_tree_lock);
3096
3097         /*
3098          * if there are no enough space in journal to store dirty nat
3099          * entries, remove all entries from journal and merge them
3100          * into nat entry set.
3101          */
3102         if (cpc->reason & CP_UMOUNT ||
3103                 !__has_cursum_space(journal,
3104                         nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3105                 remove_nats_in_journal(sbi);
3106
3107         while ((found = __gang_lookup_nat_set(nm_i,
3108                                         set_idx, NAT_VEC_SIZE, setvec))) {
3109                 unsigned idx;
3110
3111                 set_idx = setvec[found - 1]->set + 1;
3112                 for (idx = 0; idx < found; idx++)
3113                         __adjust_nat_entry_set(setvec[idx], &sets,
3114                                                 MAX_NAT_JENTRIES(journal));
3115         }
3116
3117         /* flush dirty nats in nat entry set */
3118         list_for_each_entry_safe(set, tmp, &sets, set_list) {
3119                 err = __flush_nat_entry_set(sbi, set, cpc);
3120                 if (err)
3121                         break;
3122         }
3123
3124         f2fs_up_write(&nm_i->nat_tree_lock);
3125         /* Allow dirty nats by node block allocation in write_begin */
3126
3127         return err;
3128 }
3129
3130 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3131 {
3132         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3133         struct f2fs_nm_info *nm_i = NM_I(sbi);
3134         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3135         unsigned int i;
3136         __u64 cp_ver = cur_cp_version(ckpt);
3137         block_t nat_bits_addr;
3138
3139         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3140         nm_i->nat_bits = f2fs_kvzalloc(sbi,
3141                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3142         if (!nm_i->nat_bits)
3143                 return -ENOMEM;
3144
3145         nm_i->full_nat_bits = nm_i->nat_bits + 8;
3146         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3147
3148         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3149                 return 0;
3150
3151         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3152                                                 nm_i->nat_bits_blocks;
3153         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3154                 struct page *page;
3155
3156                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3157                 if (IS_ERR(page))
3158                         return PTR_ERR(page);
3159
3160                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3161                                         page_address(page), F2FS_BLKSIZE);
3162                 f2fs_put_page(page, 1);
3163         }
3164
3165         cp_ver |= (cur_cp_crc(ckpt) << 32);
3166         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3167                 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3168                 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3169                         cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3170                 return 0;
3171         }
3172
3173         f2fs_notice(sbi, "Found nat_bits in checkpoint");
3174         return 0;
3175 }
3176
3177 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3178 {
3179         struct f2fs_nm_info *nm_i = NM_I(sbi);
3180         unsigned int i = 0;
3181         nid_t nid, last_nid;
3182
3183         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3184                 return;
3185
3186         for (i = 0; i < nm_i->nat_blocks; i++) {
3187                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3188                 if (i >= nm_i->nat_blocks)
3189                         break;
3190
3191                 __set_bit_le(i, nm_i->nat_block_bitmap);
3192
3193                 nid = i * NAT_ENTRY_PER_BLOCK;
3194                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3195
3196                 spin_lock(&NM_I(sbi)->nid_list_lock);
3197                 for (; nid < last_nid; nid++)
3198                         update_free_nid_bitmap(sbi, nid, true, true);
3199                 spin_unlock(&NM_I(sbi)->nid_list_lock);
3200         }
3201
3202         for (i = 0; i < nm_i->nat_blocks; i++) {
3203                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3204                 if (i >= nm_i->nat_blocks)
3205                         break;
3206
3207                 __set_bit_le(i, nm_i->nat_block_bitmap);
3208         }
3209 }
3210
3211 static int init_node_manager(struct f2fs_sb_info *sbi)
3212 {
3213         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3214         struct f2fs_nm_info *nm_i = NM_I(sbi);
3215         unsigned char *version_bitmap;
3216         unsigned int nat_segs;
3217         int err;
3218
3219         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3220
3221         /* segment_count_nat includes pair segment so divide to 2. */
3222         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3223         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3224         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3225
3226         /* not used nids: 0, node, meta, (and root counted as valid node) */
3227         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3228                                                 F2FS_RESERVED_NODE_NUM;
3229         nm_i->nid_cnt[FREE_NID] = 0;
3230         nm_i->nid_cnt[PREALLOC_NID] = 0;
3231         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3232         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3233         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3234         nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3235
3236         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3237         INIT_LIST_HEAD(&nm_i->free_nid_list);
3238         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3239         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3240         INIT_LIST_HEAD(&nm_i->nat_entries);
3241         spin_lock_init(&nm_i->nat_list_lock);
3242
3243         mutex_init(&nm_i->build_lock);
3244         spin_lock_init(&nm_i->nid_list_lock);
3245         init_f2fs_rwsem(&nm_i->nat_tree_lock);
3246
3247         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3248         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3249         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3250         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3251                                         GFP_KERNEL);
3252         if (!nm_i->nat_bitmap)
3253                 return -ENOMEM;
3254
3255         err = __get_nat_bitmaps(sbi);
3256         if (err)
3257                 return err;
3258
3259 #ifdef CONFIG_F2FS_CHECK_FS
3260         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3261                                         GFP_KERNEL);
3262         if (!nm_i->nat_bitmap_mir)
3263                 return -ENOMEM;
3264 #endif
3265
3266         return 0;
3267 }
3268
3269 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3270 {
3271         struct f2fs_nm_info *nm_i = NM_I(sbi);
3272         int i;
3273
3274         nm_i->free_nid_bitmap =
3275                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3276                                               nm_i->nat_blocks),
3277                               GFP_KERNEL);
3278         if (!nm_i->free_nid_bitmap)
3279                 return -ENOMEM;
3280
3281         for (i = 0; i < nm_i->nat_blocks; i++) {
3282                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3283                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3284                 if (!nm_i->free_nid_bitmap[i])
3285                         return -ENOMEM;
3286         }
3287
3288         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3289                                                                 GFP_KERNEL);
3290         if (!nm_i->nat_block_bitmap)
3291                 return -ENOMEM;
3292
3293         nm_i->free_nid_count =
3294                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3295                                               nm_i->nat_blocks),
3296                               GFP_KERNEL);
3297         if (!nm_i->free_nid_count)
3298                 return -ENOMEM;
3299         return 0;
3300 }
3301
3302 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3303 {
3304         int err;
3305
3306         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3307                                                         GFP_KERNEL);
3308         if (!sbi->nm_info)
3309                 return -ENOMEM;
3310
3311         err = init_node_manager(sbi);
3312         if (err)
3313                 return err;
3314
3315         err = init_free_nid_cache(sbi);
3316         if (err)
3317                 return err;
3318
3319         /* load free nid status from nat_bits table */
3320         load_free_nid_bitmap(sbi);
3321
3322         return f2fs_build_free_nids(sbi, true, true);
3323 }
3324
3325 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3326 {
3327         struct f2fs_nm_info *nm_i = NM_I(sbi);
3328         struct free_nid *i, *next_i;
3329         void *vec[NAT_VEC_SIZE];
3330         struct nat_entry **natvec = (struct nat_entry **)vec;
3331         struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3332         nid_t nid = 0;
3333         unsigned int found;
3334
3335         if (!nm_i)
3336                 return;
3337
3338         /* destroy free nid list */
3339         spin_lock(&nm_i->nid_list_lock);
3340         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3341                 __remove_free_nid(sbi, i, FREE_NID);
3342                 spin_unlock(&nm_i->nid_list_lock);
3343                 kmem_cache_free(free_nid_slab, i);
3344                 spin_lock(&nm_i->nid_list_lock);
3345         }
3346         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3347         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3348         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3349         spin_unlock(&nm_i->nid_list_lock);
3350
3351         /* destroy nat cache */
3352         f2fs_down_write(&nm_i->nat_tree_lock);
3353         while ((found = __gang_lookup_nat_cache(nm_i,
3354                                         nid, NAT_VEC_SIZE, natvec))) {
3355                 unsigned idx;
3356
3357                 nid = nat_get_nid(natvec[found - 1]) + 1;
3358                 for (idx = 0; idx < found; idx++) {
3359                         spin_lock(&nm_i->nat_list_lock);
3360                         list_del(&natvec[idx]->list);
3361                         spin_unlock(&nm_i->nat_list_lock);
3362
3363                         __del_from_nat_cache(nm_i, natvec[idx]);
3364                 }
3365         }
3366         f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3367
3368         /* destroy nat set cache */
3369         nid = 0;
3370         memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3371         while ((found = __gang_lookup_nat_set(nm_i,
3372                                         nid, NAT_VEC_SIZE, setvec))) {
3373                 unsigned idx;
3374
3375                 nid = setvec[found - 1]->set + 1;
3376                 for (idx = 0; idx < found; idx++) {
3377                         /* entry_cnt is not zero, when cp_error was occurred */
3378                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3379                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3380                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3381                 }
3382         }
3383         f2fs_up_write(&nm_i->nat_tree_lock);
3384
3385         kvfree(nm_i->nat_block_bitmap);
3386         if (nm_i->free_nid_bitmap) {
3387                 int i;
3388
3389                 for (i = 0; i < nm_i->nat_blocks; i++)
3390                         kvfree(nm_i->free_nid_bitmap[i]);
3391                 kvfree(nm_i->free_nid_bitmap);
3392         }
3393         kvfree(nm_i->free_nid_count);
3394
3395         kvfree(nm_i->nat_bitmap);
3396         kvfree(nm_i->nat_bits);
3397 #ifdef CONFIG_F2FS_CHECK_FS
3398         kvfree(nm_i->nat_bitmap_mir);
3399 #endif
3400         sbi->nm_info = NULL;
3401         kfree(nm_i);
3402 }
3403
3404 int __init f2fs_create_node_manager_caches(void)
3405 {
3406         nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3407                         sizeof(struct nat_entry));
3408         if (!nat_entry_slab)
3409                 goto fail;
3410
3411         free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3412                         sizeof(struct free_nid));
3413         if (!free_nid_slab)
3414                 goto destroy_nat_entry;
3415
3416         nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3417                         sizeof(struct nat_entry_set));
3418         if (!nat_entry_set_slab)
3419                 goto destroy_free_nid;
3420
3421         fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3422                         sizeof(struct fsync_node_entry));
3423         if (!fsync_node_entry_slab)
3424                 goto destroy_nat_entry_set;
3425         return 0;
3426
3427 destroy_nat_entry_set:
3428         kmem_cache_destroy(nat_entry_set_slab);
3429 destroy_free_nid:
3430         kmem_cache_destroy(free_nid_slab);
3431 destroy_nat_entry:
3432         kmem_cache_destroy(nat_entry_slab);
3433 fail:
3434         return -ENOMEM;
3435 }
3436
3437 void f2fs_destroy_node_manager_caches(void)
3438 {
3439         kmem_cache_destroy(fsync_node_entry_slab);
3440         kmem_cache_destroy(nat_entry_set_slab);
3441         kmem_cache_destroy(free_nid_slab);
3442         kmem_cache_destroy(nat_entry_slab);
3443 }