perf annotate: Show full source location with 'l' hotkey
[sfrench/cifs-2.6.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include <trace/events/f2fs.h>
21
22 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
23
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
26 static struct kmem_cache *nat_entry_set_slab;
27 static struct kmem_cache *fsync_node_entry_slab;
28
29 /*
30  * Check whether the given nid is within node id range.
31  */
32 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
33 {
34         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
35                 set_sbi_flag(sbi, SBI_NEED_FSCK);
36                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
37                           __func__, nid);
38                 return -EFSCORRUPTED;
39         }
40         return 0;
41 }
42
43 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
44 {
45         struct f2fs_nm_info *nm_i = NM_I(sbi);
46         struct sysinfo val;
47         unsigned long avail_ram;
48         unsigned long mem_size = 0;
49         bool res = false;
50
51         si_meminfo(&val);
52
53         /* only uses low memory */
54         avail_ram = val.totalram - val.totalhigh;
55
56         /*
57          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
58          */
59         if (type == FREE_NIDS) {
60                 mem_size = (nm_i->nid_cnt[FREE_NID] *
61                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
62                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
63         } else if (type == NAT_ENTRIES) {
64                 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
65                                 sizeof(struct nat_entry)) >> PAGE_SHIFT;
66                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
67                 if (excess_cached_nats(sbi))
68                         res = false;
69         } else if (type == DIRTY_DENTS) {
70                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
71                         return false;
72                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
73                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
74         } else if (type == INO_ENTRIES) {
75                 int i;
76
77                 for (i = 0; i < MAX_INO_ENTRY; i++)
78                         mem_size += sbi->im[i].ino_num *
79                                                 sizeof(struct ino_entry);
80                 mem_size >>= PAGE_SHIFT;
81                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
82         } else if (type == EXTENT_CACHE) {
83                 mem_size = (atomic_read(&sbi->total_ext_tree) *
84                                 sizeof(struct extent_tree) +
85                                 atomic_read(&sbi->total_ext_node) *
86                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
87                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88         } else if (type == INMEM_PAGES) {
89                 /* it allows 20% / total_ram for inmemory pages */
90                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
91                 res = mem_size < (val.totalram / 5);
92         } else {
93                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
94                         return true;
95         }
96         return res;
97 }
98
99 static void clear_node_page_dirty(struct page *page)
100 {
101         if (PageDirty(page)) {
102                 f2fs_clear_page_cache_dirty_tag(page);
103                 clear_page_dirty_for_io(page);
104                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
105         }
106         ClearPageUptodate(page);
107 }
108
109 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
110 {
111         return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
112 }
113
114 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
115 {
116         struct page *src_page;
117         struct page *dst_page;
118         pgoff_t dst_off;
119         void *src_addr;
120         void *dst_addr;
121         struct f2fs_nm_info *nm_i = NM_I(sbi);
122
123         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
124
125         /* get current nat block page with lock */
126         src_page = get_current_nat_page(sbi, nid);
127         if (IS_ERR(src_page))
128                 return src_page;
129         dst_page = f2fs_grab_meta_page(sbi, dst_off);
130         f2fs_bug_on(sbi, PageDirty(src_page));
131
132         src_addr = page_address(src_page);
133         dst_addr = page_address(dst_page);
134         memcpy(dst_addr, src_addr, PAGE_SIZE);
135         set_page_dirty(dst_page);
136         f2fs_put_page(src_page, 1);
137
138         set_to_next_nat(nm_i, nid);
139
140         return dst_page;
141 }
142
143 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
144 {
145         struct nat_entry *new;
146
147         if (no_fail)
148                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
149         else
150                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
151         if (new) {
152                 nat_set_nid(new, nid);
153                 nat_reset_flag(new);
154         }
155         return new;
156 }
157
158 static void __free_nat_entry(struct nat_entry *e)
159 {
160         kmem_cache_free(nat_entry_slab, e);
161 }
162
163 /* must be locked by nat_tree_lock */
164 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
165         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
166 {
167         if (no_fail)
168                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
169         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
170                 return NULL;
171
172         if (raw_ne)
173                 node_info_from_raw_nat(&ne->ni, raw_ne);
174
175         spin_lock(&nm_i->nat_list_lock);
176         list_add_tail(&ne->list, &nm_i->nat_entries);
177         spin_unlock(&nm_i->nat_list_lock);
178
179         nm_i->nat_cnt[TOTAL_NAT]++;
180         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
181         return ne;
182 }
183
184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185 {
186         struct nat_entry *ne;
187
188         ne = radix_tree_lookup(&nm_i->nat_root, n);
189
190         /* for recent accessed nat entry, move it to tail of lru list */
191         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192                 spin_lock(&nm_i->nat_list_lock);
193                 if (!list_empty(&ne->list))
194                         list_move_tail(&ne->list, &nm_i->nat_entries);
195                 spin_unlock(&nm_i->nat_list_lock);
196         }
197
198         return ne;
199 }
200
201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202                 nid_t start, unsigned int nr, struct nat_entry **ep)
203 {
204         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
205 }
206
207 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
208 {
209         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210         nm_i->nat_cnt[TOTAL_NAT]--;
211         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
212         __free_nat_entry(e);
213 }
214
215 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
216                                                         struct nat_entry *ne)
217 {
218         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
219         struct nat_entry_set *head;
220
221         head = radix_tree_lookup(&nm_i->nat_set_root, set);
222         if (!head) {
223                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
224
225                 INIT_LIST_HEAD(&head->entry_list);
226                 INIT_LIST_HEAD(&head->set_list);
227                 head->set = set;
228                 head->entry_cnt = 0;
229                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
230         }
231         return head;
232 }
233
234 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
235                                                 struct nat_entry *ne)
236 {
237         struct nat_entry_set *head;
238         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
239
240         if (!new_ne)
241                 head = __grab_nat_entry_set(nm_i, ne);
242
243         /*
244          * update entry_cnt in below condition:
245          * 1. update NEW_ADDR to valid block address;
246          * 2. update old block address to new one;
247          */
248         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
249                                 !get_nat_flag(ne, IS_DIRTY)))
250                 head->entry_cnt++;
251
252         set_nat_flag(ne, IS_PREALLOC, new_ne);
253
254         if (get_nat_flag(ne, IS_DIRTY))
255                 goto refresh_list;
256
257         nm_i->nat_cnt[DIRTY_NAT]++;
258         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
259         set_nat_flag(ne, IS_DIRTY, true);
260 refresh_list:
261         spin_lock(&nm_i->nat_list_lock);
262         if (new_ne)
263                 list_del_init(&ne->list);
264         else
265                 list_move_tail(&ne->list, &head->entry_list);
266         spin_unlock(&nm_i->nat_list_lock);
267 }
268
269 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
270                 struct nat_entry_set *set, struct nat_entry *ne)
271 {
272         spin_lock(&nm_i->nat_list_lock);
273         list_move_tail(&ne->list, &nm_i->nat_entries);
274         spin_unlock(&nm_i->nat_list_lock);
275
276         set_nat_flag(ne, IS_DIRTY, false);
277         set->entry_cnt--;
278         nm_i->nat_cnt[DIRTY_NAT]--;
279         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
280 }
281
282 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
283                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
284 {
285         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
286                                                         start, nr);
287 }
288
289 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
290 {
291         return NODE_MAPPING(sbi) == page->mapping &&
292                         IS_DNODE(page) && is_cold_node(page);
293 }
294
295 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
296 {
297         spin_lock_init(&sbi->fsync_node_lock);
298         INIT_LIST_HEAD(&sbi->fsync_node_list);
299         sbi->fsync_seg_id = 0;
300         sbi->fsync_node_num = 0;
301 }
302
303 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
304                                                         struct page *page)
305 {
306         struct fsync_node_entry *fn;
307         unsigned long flags;
308         unsigned int seq_id;
309
310         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
311
312         get_page(page);
313         fn->page = page;
314         INIT_LIST_HEAD(&fn->list);
315
316         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
317         list_add_tail(&fn->list, &sbi->fsync_node_list);
318         fn->seq_id = sbi->fsync_seg_id++;
319         seq_id = fn->seq_id;
320         sbi->fsync_node_num++;
321         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
322
323         return seq_id;
324 }
325
326 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
327 {
328         struct fsync_node_entry *fn;
329         unsigned long flags;
330
331         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
332         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
333                 if (fn->page == page) {
334                         list_del(&fn->list);
335                         sbi->fsync_node_num--;
336                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
337                         kmem_cache_free(fsync_node_entry_slab, fn);
338                         put_page(page);
339                         return;
340                 }
341         }
342         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
343         f2fs_bug_on(sbi, 1);
344 }
345
346 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
347 {
348         unsigned long flags;
349
350         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
351         sbi->fsync_seg_id = 0;
352         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
353 }
354
355 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
356 {
357         struct f2fs_nm_info *nm_i = NM_I(sbi);
358         struct nat_entry *e;
359         bool need = false;
360
361         down_read(&nm_i->nat_tree_lock);
362         e = __lookup_nat_cache(nm_i, nid);
363         if (e) {
364                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
365                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
366                         need = true;
367         }
368         up_read(&nm_i->nat_tree_lock);
369         return need;
370 }
371
372 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
373 {
374         struct f2fs_nm_info *nm_i = NM_I(sbi);
375         struct nat_entry *e;
376         bool is_cp = true;
377
378         down_read(&nm_i->nat_tree_lock);
379         e = __lookup_nat_cache(nm_i, nid);
380         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
381                 is_cp = false;
382         up_read(&nm_i->nat_tree_lock);
383         return is_cp;
384 }
385
386 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
387 {
388         struct f2fs_nm_info *nm_i = NM_I(sbi);
389         struct nat_entry *e;
390         bool need_update = true;
391
392         down_read(&nm_i->nat_tree_lock);
393         e = __lookup_nat_cache(nm_i, ino);
394         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
395                         (get_nat_flag(e, IS_CHECKPOINTED) ||
396                          get_nat_flag(e, HAS_FSYNCED_INODE)))
397                 need_update = false;
398         up_read(&nm_i->nat_tree_lock);
399         return need_update;
400 }
401
402 /* must be locked by nat_tree_lock */
403 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
404                                                 struct f2fs_nat_entry *ne)
405 {
406         struct f2fs_nm_info *nm_i = NM_I(sbi);
407         struct nat_entry *new, *e;
408
409         new = __alloc_nat_entry(nid, false);
410         if (!new)
411                 return;
412
413         down_write(&nm_i->nat_tree_lock);
414         e = __lookup_nat_cache(nm_i, nid);
415         if (!e)
416                 e = __init_nat_entry(nm_i, new, ne, false);
417         else
418                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
419                                 nat_get_blkaddr(e) !=
420                                         le32_to_cpu(ne->block_addr) ||
421                                 nat_get_version(e) != ne->version);
422         up_write(&nm_i->nat_tree_lock);
423         if (e != new)
424                 __free_nat_entry(new);
425 }
426
427 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
428                         block_t new_blkaddr, bool fsync_done)
429 {
430         struct f2fs_nm_info *nm_i = NM_I(sbi);
431         struct nat_entry *e;
432         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
433
434         down_write(&nm_i->nat_tree_lock);
435         e = __lookup_nat_cache(nm_i, ni->nid);
436         if (!e) {
437                 e = __init_nat_entry(nm_i, new, NULL, true);
438                 copy_node_info(&e->ni, ni);
439                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
440         } else if (new_blkaddr == NEW_ADDR) {
441                 /*
442                  * when nid is reallocated,
443                  * previous nat entry can be remained in nat cache.
444                  * So, reinitialize it with new information.
445                  */
446                 copy_node_info(&e->ni, ni);
447                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
448         }
449         /* let's free early to reduce memory consumption */
450         if (e != new)
451                 __free_nat_entry(new);
452
453         /* sanity check */
454         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
455         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
456                         new_blkaddr == NULL_ADDR);
457         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
458                         new_blkaddr == NEW_ADDR);
459         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
460                         new_blkaddr == NEW_ADDR);
461
462         /* increment version no as node is removed */
463         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
464                 unsigned char version = nat_get_version(e);
465                 nat_set_version(e, inc_node_version(version));
466         }
467
468         /* change address */
469         nat_set_blkaddr(e, new_blkaddr);
470         if (!__is_valid_data_blkaddr(new_blkaddr))
471                 set_nat_flag(e, IS_CHECKPOINTED, false);
472         __set_nat_cache_dirty(nm_i, e);
473
474         /* update fsync_mark if its inode nat entry is still alive */
475         if (ni->nid != ni->ino)
476                 e = __lookup_nat_cache(nm_i, ni->ino);
477         if (e) {
478                 if (fsync_done && ni->nid == ni->ino)
479                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
480                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
481         }
482         up_write(&nm_i->nat_tree_lock);
483 }
484
485 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
486 {
487         struct f2fs_nm_info *nm_i = NM_I(sbi);
488         int nr = nr_shrink;
489
490         if (!down_write_trylock(&nm_i->nat_tree_lock))
491                 return 0;
492
493         spin_lock(&nm_i->nat_list_lock);
494         while (nr_shrink) {
495                 struct nat_entry *ne;
496
497                 if (list_empty(&nm_i->nat_entries))
498                         break;
499
500                 ne = list_first_entry(&nm_i->nat_entries,
501                                         struct nat_entry, list);
502                 list_del(&ne->list);
503                 spin_unlock(&nm_i->nat_list_lock);
504
505                 __del_from_nat_cache(nm_i, ne);
506                 nr_shrink--;
507
508                 spin_lock(&nm_i->nat_list_lock);
509         }
510         spin_unlock(&nm_i->nat_list_lock);
511
512         up_write(&nm_i->nat_tree_lock);
513         return nr - nr_shrink;
514 }
515
516 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
517                                                 struct node_info *ni)
518 {
519         struct f2fs_nm_info *nm_i = NM_I(sbi);
520         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
521         struct f2fs_journal *journal = curseg->journal;
522         nid_t start_nid = START_NID(nid);
523         struct f2fs_nat_block *nat_blk;
524         struct page *page = NULL;
525         struct f2fs_nat_entry ne;
526         struct nat_entry *e;
527         pgoff_t index;
528         block_t blkaddr;
529         int i;
530
531         ni->nid = nid;
532
533         /* Check nat cache */
534         down_read(&nm_i->nat_tree_lock);
535         e = __lookup_nat_cache(nm_i, nid);
536         if (e) {
537                 ni->ino = nat_get_ino(e);
538                 ni->blk_addr = nat_get_blkaddr(e);
539                 ni->version = nat_get_version(e);
540                 up_read(&nm_i->nat_tree_lock);
541                 return 0;
542         }
543
544         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
545
546         /* Check current segment summary */
547         down_read(&curseg->journal_rwsem);
548         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549         if (i >= 0) {
550                 ne = nat_in_journal(journal, i);
551                 node_info_from_raw_nat(ni, &ne);
552         }
553         up_read(&curseg->journal_rwsem);
554         if (i >= 0) {
555                 up_read(&nm_i->nat_tree_lock);
556                 goto cache;
557         }
558
559         /* Fill node_info from nat page */
560         index = current_nat_addr(sbi, nid);
561         up_read(&nm_i->nat_tree_lock);
562
563         page = f2fs_get_meta_page(sbi, index);
564         if (IS_ERR(page))
565                 return PTR_ERR(page);
566
567         nat_blk = (struct f2fs_nat_block *)page_address(page);
568         ne = nat_blk->entries[nid - start_nid];
569         node_info_from_raw_nat(ni, &ne);
570         f2fs_put_page(page, 1);
571 cache:
572         blkaddr = le32_to_cpu(ne.block_addr);
573         if (__is_valid_data_blkaddr(blkaddr) &&
574                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
575                 return -EFAULT;
576
577         /* cache nat entry */
578         cache_nat_entry(sbi, nid, &ne);
579         return 0;
580 }
581
582 /*
583  * readahead MAX_RA_NODE number of node pages.
584  */
585 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
586 {
587         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
588         struct blk_plug plug;
589         int i, end;
590         nid_t nid;
591
592         blk_start_plug(&plug);
593
594         /* Then, try readahead for siblings of the desired node */
595         end = start + n;
596         end = min(end, NIDS_PER_BLOCK);
597         for (i = start; i < end; i++) {
598                 nid = get_nid(parent, i, false);
599                 f2fs_ra_node_page(sbi, nid);
600         }
601
602         blk_finish_plug(&plug);
603 }
604
605 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
606 {
607         const long direct_index = ADDRS_PER_INODE(dn->inode);
608         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
609         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
610         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
611         int cur_level = dn->cur_level;
612         int max_level = dn->max_level;
613         pgoff_t base = 0;
614
615         if (!dn->max_level)
616                 return pgofs + 1;
617
618         while (max_level-- > cur_level)
619                 skipped_unit *= NIDS_PER_BLOCK;
620
621         switch (dn->max_level) {
622         case 3:
623                 base += 2 * indirect_blks;
624                 fallthrough;
625         case 2:
626                 base += 2 * direct_blks;
627                 fallthrough;
628         case 1:
629                 base += direct_index;
630                 break;
631         default:
632                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
633         }
634
635         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
636 }
637
638 /*
639  * The maximum depth is four.
640  * Offset[0] will have raw inode offset.
641  */
642 static int get_node_path(struct inode *inode, long block,
643                                 int offset[4], unsigned int noffset[4])
644 {
645         const long direct_index = ADDRS_PER_INODE(inode);
646         const long direct_blks = ADDRS_PER_BLOCK(inode);
647         const long dptrs_per_blk = NIDS_PER_BLOCK;
648         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
649         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
650         int n = 0;
651         int level = 0;
652
653         noffset[0] = 0;
654
655         if (block < direct_index) {
656                 offset[n] = block;
657                 goto got;
658         }
659         block -= direct_index;
660         if (block < direct_blks) {
661                 offset[n++] = NODE_DIR1_BLOCK;
662                 noffset[n] = 1;
663                 offset[n] = block;
664                 level = 1;
665                 goto got;
666         }
667         block -= direct_blks;
668         if (block < direct_blks) {
669                 offset[n++] = NODE_DIR2_BLOCK;
670                 noffset[n] = 2;
671                 offset[n] = block;
672                 level = 1;
673                 goto got;
674         }
675         block -= direct_blks;
676         if (block < indirect_blks) {
677                 offset[n++] = NODE_IND1_BLOCK;
678                 noffset[n] = 3;
679                 offset[n++] = block / direct_blks;
680                 noffset[n] = 4 + offset[n - 1];
681                 offset[n] = block % direct_blks;
682                 level = 2;
683                 goto got;
684         }
685         block -= indirect_blks;
686         if (block < indirect_blks) {
687                 offset[n++] = NODE_IND2_BLOCK;
688                 noffset[n] = 4 + dptrs_per_blk;
689                 offset[n++] = block / direct_blks;
690                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
691                 offset[n] = block % direct_blks;
692                 level = 2;
693                 goto got;
694         }
695         block -= indirect_blks;
696         if (block < dindirect_blks) {
697                 offset[n++] = NODE_DIND_BLOCK;
698                 noffset[n] = 5 + (dptrs_per_blk * 2);
699                 offset[n++] = block / indirect_blks;
700                 noffset[n] = 6 + (dptrs_per_blk * 2) +
701                               offset[n - 1] * (dptrs_per_blk + 1);
702                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
703                 noffset[n] = 7 + (dptrs_per_blk * 2) +
704                               offset[n - 2] * (dptrs_per_blk + 1) +
705                               offset[n - 1];
706                 offset[n] = block % direct_blks;
707                 level = 3;
708                 goto got;
709         } else {
710                 return -E2BIG;
711         }
712 got:
713         return level;
714 }
715
716 /*
717  * Caller should call f2fs_put_dnode(dn).
718  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
719  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
720  */
721 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
722 {
723         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
724         struct page *npage[4];
725         struct page *parent = NULL;
726         int offset[4];
727         unsigned int noffset[4];
728         nid_t nids[4];
729         int level, i = 0;
730         int err = 0;
731
732         level = get_node_path(dn->inode, index, offset, noffset);
733         if (level < 0)
734                 return level;
735
736         nids[0] = dn->inode->i_ino;
737         npage[0] = dn->inode_page;
738
739         if (!npage[0]) {
740                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
741                 if (IS_ERR(npage[0]))
742                         return PTR_ERR(npage[0]);
743         }
744
745         /* if inline_data is set, should not report any block indices */
746         if (f2fs_has_inline_data(dn->inode) && index) {
747                 err = -ENOENT;
748                 f2fs_put_page(npage[0], 1);
749                 goto release_out;
750         }
751
752         parent = npage[0];
753         if (level != 0)
754                 nids[1] = get_nid(parent, offset[0], true);
755         dn->inode_page = npage[0];
756         dn->inode_page_locked = true;
757
758         /* get indirect or direct nodes */
759         for (i = 1; i <= level; i++) {
760                 bool done = false;
761
762                 if (!nids[i] && mode == ALLOC_NODE) {
763                         /* alloc new node */
764                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
765                                 err = -ENOSPC;
766                                 goto release_pages;
767                         }
768
769                         dn->nid = nids[i];
770                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
771                         if (IS_ERR(npage[i])) {
772                                 f2fs_alloc_nid_failed(sbi, nids[i]);
773                                 err = PTR_ERR(npage[i]);
774                                 goto release_pages;
775                         }
776
777                         set_nid(parent, offset[i - 1], nids[i], i == 1);
778                         f2fs_alloc_nid_done(sbi, nids[i]);
779                         done = true;
780                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
781                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
782                         if (IS_ERR(npage[i])) {
783                                 err = PTR_ERR(npage[i]);
784                                 goto release_pages;
785                         }
786                         done = true;
787                 }
788                 if (i == 1) {
789                         dn->inode_page_locked = false;
790                         unlock_page(parent);
791                 } else {
792                         f2fs_put_page(parent, 1);
793                 }
794
795                 if (!done) {
796                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
797                         if (IS_ERR(npage[i])) {
798                                 err = PTR_ERR(npage[i]);
799                                 f2fs_put_page(npage[0], 0);
800                                 goto release_out;
801                         }
802                 }
803                 if (i < level) {
804                         parent = npage[i];
805                         nids[i + 1] = get_nid(parent, offset[i], false);
806                 }
807         }
808         dn->nid = nids[level];
809         dn->ofs_in_node = offset[level];
810         dn->node_page = npage[level];
811         dn->data_blkaddr = f2fs_data_blkaddr(dn);
812         return 0;
813
814 release_pages:
815         f2fs_put_page(parent, 1);
816         if (i > 1)
817                 f2fs_put_page(npage[0], 0);
818 release_out:
819         dn->inode_page = NULL;
820         dn->node_page = NULL;
821         if (err == -ENOENT) {
822                 dn->cur_level = i;
823                 dn->max_level = level;
824                 dn->ofs_in_node = offset[level];
825         }
826         return err;
827 }
828
829 static int truncate_node(struct dnode_of_data *dn)
830 {
831         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
832         struct node_info ni;
833         int err;
834         pgoff_t index;
835
836         err = f2fs_get_node_info(sbi, dn->nid, &ni);
837         if (err)
838                 return err;
839
840         /* Deallocate node address */
841         f2fs_invalidate_blocks(sbi, ni.blk_addr);
842         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
843         set_node_addr(sbi, &ni, NULL_ADDR, false);
844
845         if (dn->nid == dn->inode->i_ino) {
846                 f2fs_remove_orphan_inode(sbi, dn->nid);
847                 dec_valid_inode_count(sbi);
848                 f2fs_inode_synced(dn->inode);
849         }
850
851         clear_node_page_dirty(dn->node_page);
852         set_sbi_flag(sbi, SBI_IS_DIRTY);
853
854         index = dn->node_page->index;
855         f2fs_put_page(dn->node_page, 1);
856
857         invalidate_mapping_pages(NODE_MAPPING(sbi),
858                         index, index);
859
860         dn->node_page = NULL;
861         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
862
863         return 0;
864 }
865
866 static int truncate_dnode(struct dnode_of_data *dn)
867 {
868         struct page *page;
869         int err;
870
871         if (dn->nid == 0)
872                 return 1;
873
874         /* get direct node */
875         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
876         if (PTR_ERR(page) == -ENOENT)
877                 return 1;
878         else if (IS_ERR(page))
879                 return PTR_ERR(page);
880
881         /* Make dnode_of_data for parameter */
882         dn->node_page = page;
883         dn->ofs_in_node = 0;
884         f2fs_truncate_data_blocks(dn);
885         err = truncate_node(dn);
886         if (err)
887                 return err;
888
889         return 1;
890 }
891
892 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
893                                                 int ofs, int depth)
894 {
895         struct dnode_of_data rdn = *dn;
896         struct page *page;
897         struct f2fs_node *rn;
898         nid_t child_nid;
899         unsigned int child_nofs;
900         int freed = 0;
901         int i, ret;
902
903         if (dn->nid == 0)
904                 return NIDS_PER_BLOCK + 1;
905
906         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
907
908         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
909         if (IS_ERR(page)) {
910                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
911                 return PTR_ERR(page);
912         }
913
914         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
915
916         rn = F2FS_NODE(page);
917         if (depth < 3) {
918                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
919                         child_nid = le32_to_cpu(rn->in.nid[i]);
920                         if (child_nid == 0)
921                                 continue;
922                         rdn.nid = child_nid;
923                         ret = truncate_dnode(&rdn);
924                         if (ret < 0)
925                                 goto out_err;
926                         if (set_nid(page, i, 0, false))
927                                 dn->node_changed = true;
928                 }
929         } else {
930                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
931                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
932                         child_nid = le32_to_cpu(rn->in.nid[i]);
933                         if (child_nid == 0) {
934                                 child_nofs += NIDS_PER_BLOCK + 1;
935                                 continue;
936                         }
937                         rdn.nid = child_nid;
938                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
939                         if (ret == (NIDS_PER_BLOCK + 1)) {
940                                 if (set_nid(page, i, 0, false))
941                                         dn->node_changed = true;
942                                 child_nofs += ret;
943                         } else if (ret < 0 && ret != -ENOENT) {
944                                 goto out_err;
945                         }
946                 }
947                 freed = child_nofs;
948         }
949
950         if (!ofs) {
951                 /* remove current indirect node */
952                 dn->node_page = page;
953                 ret = truncate_node(dn);
954                 if (ret)
955                         goto out_err;
956                 freed++;
957         } else {
958                 f2fs_put_page(page, 1);
959         }
960         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
961         return freed;
962
963 out_err:
964         f2fs_put_page(page, 1);
965         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
966         return ret;
967 }
968
969 static int truncate_partial_nodes(struct dnode_of_data *dn,
970                         struct f2fs_inode *ri, int *offset, int depth)
971 {
972         struct page *pages[2];
973         nid_t nid[3];
974         nid_t child_nid;
975         int err = 0;
976         int i;
977         int idx = depth - 2;
978
979         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
980         if (!nid[0])
981                 return 0;
982
983         /* get indirect nodes in the path */
984         for (i = 0; i < idx + 1; i++) {
985                 /* reference count'll be increased */
986                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
987                 if (IS_ERR(pages[i])) {
988                         err = PTR_ERR(pages[i]);
989                         idx = i - 1;
990                         goto fail;
991                 }
992                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
993         }
994
995         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
996
997         /* free direct nodes linked to a partial indirect node */
998         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
999                 child_nid = get_nid(pages[idx], i, false);
1000                 if (!child_nid)
1001                         continue;
1002                 dn->nid = child_nid;
1003                 err = truncate_dnode(dn);
1004                 if (err < 0)
1005                         goto fail;
1006                 if (set_nid(pages[idx], i, 0, false))
1007                         dn->node_changed = true;
1008         }
1009
1010         if (offset[idx + 1] == 0) {
1011                 dn->node_page = pages[idx];
1012                 dn->nid = nid[idx];
1013                 err = truncate_node(dn);
1014                 if (err)
1015                         goto fail;
1016         } else {
1017                 f2fs_put_page(pages[idx], 1);
1018         }
1019         offset[idx]++;
1020         offset[idx + 1] = 0;
1021         idx--;
1022 fail:
1023         for (i = idx; i >= 0; i--)
1024                 f2fs_put_page(pages[i], 1);
1025
1026         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1027
1028         return err;
1029 }
1030
1031 /*
1032  * All the block addresses of data and nodes should be nullified.
1033  */
1034 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1035 {
1036         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1037         int err = 0, cont = 1;
1038         int level, offset[4], noffset[4];
1039         unsigned int nofs = 0;
1040         struct f2fs_inode *ri;
1041         struct dnode_of_data dn;
1042         struct page *page;
1043
1044         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1045
1046         level = get_node_path(inode, from, offset, noffset);
1047         if (level < 0) {
1048                 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1049                 return level;
1050         }
1051
1052         page = f2fs_get_node_page(sbi, inode->i_ino);
1053         if (IS_ERR(page)) {
1054                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1055                 return PTR_ERR(page);
1056         }
1057
1058         set_new_dnode(&dn, inode, page, NULL, 0);
1059         unlock_page(page);
1060
1061         ri = F2FS_INODE(page);
1062         switch (level) {
1063         case 0:
1064         case 1:
1065                 nofs = noffset[1];
1066                 break;
1067         case 2:
1068                 nofs = noffset[1];
1069                 if (!offset[level - 1])
1070                         goto skip_partial;
1071                 err = truncate_partial_nodes(&dn, ri, offset, level);
1072                 if (err < 0 && err != -ENOENT)
1073                         goto fail;
1074                 nofs += 1 + NIDS_PER_BLOCK;
1075                 break;
1076         case 3:
1077                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1078                 if (!offset[level - 1])
1079                         goto skip_partial;
1080                 err = truncate_partial_nodes(&dn, ri, offset, level);
1081                 if (err < 0 && err != -ENOENT)
1082                         goto fail;
1083                 break;
1084         default:
1085                 BUG();
1086         }
1087
1088 skip_partial:
1089         while (cont) {
1090                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1091                 switch (offset[0]) {
1092                 case NODE_DIR1_BLOCK:
1093                 case NODE_DIR2_BLOCK:
1094                         err = truncate_dnode(&dn);
1095                         break;
1096
1097                 case NODE_IND1_BLOCK:
1098                 case NODE_IND2_BLOCK:
1099                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1100                         break;
1101
1102                 case NODE_DIND_BLOCK:
1103                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1104                         cont = 0;
1105                         break;
1106
1107                 default:
1108                         BUG();
1109                 }
1110                 if (err < 0 && err != -ENOENT)
1111                         goto fail;
1112                 if (offset[1] == 0 &&
1113                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1114                         lock_page(page);
1115                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1116                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1117                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1118                         set_page_dirty(page);
1119                         unlock_page(page);
1120                 }
1121                 offset[1] = 0;
1122                 offset[0]++;
1123                 nofs += err;
1124         }
1125 fail:
1126         f2fs_put_page(page, 0);
1127         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1128         return err > 0 ? 0 : err;
1129 }
1130
1131 /* caller must lock inode page */
1132 int f2fs_truncate_xattr_node(struct inode *inode)
1133 {
1134         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1136         struct dnode_of_data dn;
1137         struct page *npage;
1138         int err;
1139
1140         if (!nid)
1141                 return 0;
1142
1143         npage = f2fs_get_node_page(sbi, nid);
1144         if (IS_ERR(npage))
1145                 return PTR_ERR(npage);
1146
1147         set_new_dnode(&dn, inode, NULL, npage, nid);
1148         err = truncate_node(&dn);
1149         if (err) {
1150                 f2fs_put_page(npage, 1);
1151                 return err;
1152         }
1153
1154         f2fs_i_xnid_write(inode, 0);
1155
1156         return 0;
1157 }
1158
1159 /*
1160  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1161  * f2fs_unlock_op().
1162  */
1163 int f2fs_remove_inode_page(struct inode *inode)
1164 {
1165         struct dnode_of_data dn;
1166         int err;
1167
1168         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1169         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1170         if (err)
1171                 return err;
1172
1173         err = f2fs_truncate_xattr_node(inode);
1174         if (err) {
1175                 f2fs_put_dnode(&dn);
1176                 return err;
1177         }
1178
1179         /* remove potential inline_data blocks */
1180         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181                                 S_ISLNK(inode->i_mode))
1182                 f2fs_truncate_data_blocks_range(&dn, 1);
1183
1184         /* 0 is possible, after f2fs_new_inode() has failed */
1185         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1186                 f2fs_put_dnode(&dn);
1187                 return -EIO;
1188         }
1189
1190         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1191                 f2fs_warn(F2FS_I_SB(inode),
1192                         "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1193                         inode->i_ino, (unsigned long long)inode->i_blocks);
1194                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1195         }
1196
1197         /* will put inode & node pages */
1198         err = truncate_node(&dn);
1199         if (err) {
1200                 f2fs_put_dnode(&dn);
1201                 return err;
1202         }
1203         return 0;
1204 }
1205
1206 struct page *f2fs_new_inode_page(struct inode *inode)
1207 {
1208         struct dnode_of_data dn;
1209
1210         /* allocate inode page for new inode */
1211         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1212
1213         /* caller should f2fs_put_page(page, 1); */
1214         return f2fs_new_node_page(&dn, 0);
1215 }
1216
1217 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1218 {
1219         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1220         struct node_info new_ni;
1221         struct page *page;
1222         int err;
1223
1224         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1225                 return ERR_PTR(-EPERM);
1226
1227         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1228         if (!page)
1229                 return ERR_PTR(-ENOMEM);
1230
1231         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1232                 goto fail;
1233
1234 #ifdef CONFIG_F2FS_CHECK_FS
1235         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1236         if (err) {
1237                 dec_valid_node_count(sbi, dn->inode, !ofs);
1238                 goto fail;
1239         }
1240         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1241 #endif
1242         new_ni.nid = dn->nid;
1243         new_ni.ino = dn->inode->i_ino;
1244         new_ni.blk_addr = NULL_ADDR;
1245         new_ni.flag = 0;
1246         new_ni.version = 0;
1247         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1248
1249         f2fs_wait_on_page_writeback(page, NODE, true, true);
1250         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1251         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1252         if (!PageUptodate(page))
1253                 SetPageUptodate(page);
1254         if (set_page_dirty(page))
1255                 dn->node_changed = true;
1256
1257         if (f2fs_has_xattr_block(ofs))
1258                 f2fs_i_xnid_write(dn->inode, dn->nid);
1259
1260         if (ofs == 0)
1261                 inc_valid_inode_count(sbi);
1262         return page;
1263
1264 fail:
1265         clear_node_page_dirty(page);
1266         f2fs_put_page(page, 1);
1267         return ERR_PTR(err);
1268 }
1269
1270 /*
1271  * Caller should do after getting the following values.
1272  * 0: f2fs_put_page(page, 0)
1273  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1274  */
1275 static int read_node_page(struct page *page, int op_flags)
1276 {
1277         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1278         struct node_info ni;
1279         struct f2fs_io_info fio = {
1280                 .sbi = sbi,
1281                 .type = NODE,
1282                 .op = REQ_OP_READ,
1283                 .op_flags = op_flags,
1284                 .page = page,
1285                 .encrypted_page = NULL,
1286         };
1287         int err;
1288
1289         if (PageUptodate(page)) {
1290                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1291                         ClearPageUptodate(page);
1292                         return -EFSBADCRC;
1293                 }
1294                 return LOCKED_PAGE;
1295         }
1296
1297         err = f2fs_get_node_info(sbi, page->index, &ni);
1298         if (err)
1299                 return err;
1300
1301         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1302                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1303                 ClearPageUptodate(page);
1304                 return -ENOENT;
1305         }
1306
1307         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1308
1309         err = f2fs_submit_page_bio(&fio);
1310
1311         if (!err)
1312                 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1313
1314         return err;
1315 }
1316
1317 /*
1318  * Readahead a node page
1319  */
1320 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1321 {
1322         struct page *apage;
1323         int err;
1324
1325         if (!nid)
1326                 return;
1327         if (f2fs_check_nid_range(sbi, nid))
1328                 return;
1329
1330         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1331         if (apage)
1332                 return;
1333
1334         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1335         if (!apage)
1336                 return;
1337
1338         err = read_node_page(apage, REQ_RAHEAD);
1339         f2fs_put_page(apage, err ? 1 : 0);
1340 }
1341
1342 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1343                                         struct page *parent, int start)
1344 {
1345         struct page *page;
1346         int err;
1347
1348         if (!nid)
1349                 return ERR_PTR(-ENOENT);
1350         if (f2fs_check_nid_range(sbi, nid))
1351                 return ERR_PTR(-EINVAL);
1352 repeat:
1353         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1354         if (!page)
1355                 return ERR_PTR(-ENOMEM);
1356
1357         err = read_node_page(page, 0);
1358         if (err < 0) {
1359                 f2fs_put_page(page, 1);
1360                 return ERR_PTR(err);
1361         } else if (err == LOCKED_PAGE) {
1362                 err = 0;
1363                 goto page_hit;
1364         }
1365
1366         if (parent)
1367                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1368
1369         lock_page(page);
1370
1371         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1372                 f2fs_put_page(page, 1);
1373                 goto repeat;
1374         }
1375
1376         if (unlikely(!PageUptodate(page))) {
1377                 err = -EIO;
1378                 goto out_err;
1379         }
1380
1381         if (!f2fs_inode_chksum_verify(sbi, page)) {
1382                 err = -EFSBADCRC;
1383                 goto out_err;
1384         }
1385 page_hit:
1386         if(unlikely(nid != nid_of_node(page))) {
1387                 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1388                           nid, nid_of_node(page), ino_of_node(page),
1389                           ofs_of_node(page), cpver_of_node(page),
1390                           next_blkaddr_of_node(page));
1391                 err = -EINVAL;
1392 out_err:
1393                 ClearPageUptodate(page);
1394                 f2fs_put_page(page, 1);
1395                 return ERR_PTR(err);
1396         }
1397         return page;
1398 }
1399
1400 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1401 {
1402         return __get_node_page(sbi, nid, NULL, 0);
1403 }
1404
1405 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1406 {
1407         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1408         nid_t nid = get_nid(parent, start, false);
1409
1410         return __get_node_page(sbi, nid, parent, start);
1411 }
1412
1413 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1414 {
1415         struct inode *inode;
1416         struct page *page;
1417         int ret;
1418
1419         /* should flush inline_data before evict_inode */
1420         inode = ilookup(sbi->sb, ino);
1421         if (!inode)
1422                 return;
1423
1424         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1425                                         FGP_LOCK|FGP_NOWAIT, 0);
1426         if (!page)
1427                 goto iput_out;
1428
1429         if (!PageUptodate(page))
1430                 goto page_out;
1431
1432         if (!PageDirty(page))
1433                 goto page_out;
1434
1435         if (!clear_page_dirty_for_io(page))
1436                 goto page_out;
1437
1438         ret = f2fs_write_inline_data(inode, page);
1439         inode_dec_dirty_pages(inode);
1440         f2fs_remove_dirty_inode(inode);
1441         if (ret)
1442                 set_page_dirty(page);
1443 page_out:
1444         f2fs_put_page(page, 1);
1445 iput_out:
1446         iput(inode);
1447 }
1448
1449 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1450 {
1451         pgoff_t index;
1452         struct pagevec pvec;
1453         struct page *last_page = NULL;
1454         int nr_pages;
1455
1456         pagevec_init(&pvec);
1457         index = 0;
1458
1459         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1460                                 PAGECACHE_TAG_DIRTY))) {
1461                 int i;
1462
1463                 for (i = 0; i < nr_pages; i++) {
1464                         struct page *page = pvec.pages[i];
1465
1466                         if (unlikely(f2fs_cp_error(sbi))) {
1467                                 f2fs_put_page(last_page, 0);
1468                                 pagevec_release(&pvec);
1469                                 return ERR_PTR(-EIO);
1470                         }
1471
1472                         if (!IS_DNODE(page) || !is_cold_node(page))
1473                                 continue;
1474                         if (ino_of_node(page) != ino)
1475                                 continue;
1476
1477                         lock_page(page);
1478
1479                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1480 continue_unlock:
1481                                 unlock_page(page);
1482                                 continue;
1483                         }
1484                         if (ino_of_node(page) != ino)
1485                                 goto continue_unlock;
1486
1487                         if (!PageDirty(page)) {
1488                                 /* someone wrote it for us */
1489                                 goto continue_unlock;
1490                         }
1491
1492                         if (last_page)
1493                                 f2fs_put_page(last_page, 0);
1494
1495                         get_page(page);
1496                         last_page = page;
1497                         unlock_page(page);
1498                 }
1499                 pagevec_release(&pvec);
1500                 cond_resched();
1501         }
1502         return last_page;
1503 }
1504
1505 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1506                                 struct writeback_control *wbc, bool do_balance,
1507                                 enum iostat_type io_type, unsigned int *seq_id)
1508 {
1509         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1510         nid_t nid;
1511         struct node_info ni;
1512         struct f2fs_io_info fio = {
1513                 .sbi = sbi,
1514                 .ino = ino_of_node(page),
1515                 .type = NODE,
1516                 .op = REQ_OP_WRITE,
1517                 .op_flags = wbc_to_write_flags(wbc),
1518                 .page = page,
1519                 .encrypted_page = NULL,
1520                 .submitted = false,
1521                 .io_type = io_type,
1522                 .io_wbc = wbc,
1523         };
1524         unsigned int seq;
1525
1526         trace_f2fs_writepage(page, NODE);
1527
1528         if (unlikely(f2fs_cp_error(sbi))) {
1529                 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1530                         ClearPageUptodate(page);
1531                         dec_page_count(sbi, F2FS_DIRTY_NODES);
1532                         unlock_page(page);
1533                         return 0;
1534                 }
1535                 goto redirty_out;
1536         }
1537
1538         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1539                 goto redirty_out;
1540
1541         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1542                         wbc->sync_mode == WB_SYNC_NONE &&
1543                         IS_DNODE(page) && is_cold_node(page))
1544                 goto redirty_out;
1545
1546         /* get old block addr of this node page */
1547         nid = nid_of_node(page);
1548         f2fs_bug_on(sbi, page->index != nid);
1549
1550         if (f2fs_get_node_info(sbi, nid, &ni))
1551                 goto redirty_out;
1552
1553         if (wbc->for_reclaim) {
1554                 if (!down_read_trylock(&sbi->node_write))
1555                         goto redirty_out;
1556         } else {
1557                 down_read(&sbi->node_write);
1558         }
1559
1560         /* This page is already truncated */
1561         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1562                 ClearPageUptodate(page);
1563                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1564                 up_read(&sbi->node_write);
1565                 unlock_page(page);
1566                 return 0;
1567         }
1568
1569         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1570                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1571                                         DATA_GENERIC_ENHANCE)) {
1572                 up_read(&sbi->node_write);
1573                 goto redirty_out;
1574         }
1575
1576         if (atomic && !test_opt(sbi, NOBARRIER))
1577                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1578
1579         /* should add to global list before clearing PAGECACHE status */
1580         if (f2fs_in_warm_node_list(sbi, page)) {
1581                 seq = f2fs_add_fsync_node_entry(sbi, page);
1582                 if (seq_id)
1583                         *seq_id = seq;
1584         }
1585
1586         set_page_writeback(page);
1587         ClearPageError(page);
1588
1589         fio.old_blkaddr = ni.blk_addr;
1590         f2fs_do_write_node_page(nid, &fio);
1591         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1592         dec_page_count(sbi, F2FS_DIRTY_NODES);
1593         up_read(&sbi->node_write);
1594
1595         if (wbc->for_reclaim) {
1596                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1597                 submitted = NULL;
1598         }
1599
1600         unlock_page(page);
1601
1602         if (unlikely(f2fs_cp_error(sbi))) {
1603                 f2fs_submit_merged_write(sbi, NODE);
1604                 submitted = NULL;
1605         }
1606         if (submitted)
1607                 *submitted = fio.submitted;
1608
1609         if (do_balance)
1610                 f2fs_balance_fs(sbi, false);
1611         return 0;
1612
1613 redirty_out:
1614         redirty_page_for_writepage(wbc, page);
1615         return AOP_WRITEPAGE_ACTIVATE;
1616 }
1617
1618 int f2fs_move_node_page(struct page *node_page, int gc_type)
1619 {
1620         int err = 0;
1621
1622         if (gc_type == FG_GC) {
1623                 struct writeback_control wbc = {
1624                         .sync_mode = WB_SYNC_ALL,
1625                         .nr_to_write = 1,
1626                         .for_reclaim = 0,
1627                 };
1628
1629                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1630
1631                 set_page_dirty(node_page);
1632
1633                 if (!clear_page_dirty_for_io(node_page)) {
1634                         err = -EAGAIN;
1635                         goto out_page;
1636                 }
1637
1638                 if (__write_node_page(node_page, false, NULL,
1639                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1640                         err = -EAGAIN;
1641                         unlock_page(node_page);
1642                 }
1643                 goto release_page;
1644         } else {
1645                 /* set page dirty and write it */
1646                 if (!PageWriteback(node_page))
1647                         set_page_dirty(node_page);
1648         }
1649 out_page:
1650         unlock_page(node_page);
1651 release_page:
1652         f2fs_put_page(node_page, 0);
1653         return err;
1654 }
1655
1656 static int f2fs_write_node_page(struct page *page,
1657                                 struct writeback_control *wbc)
1658 {
1659         return __write_node_page(page, false, NULL, wbc, false,
1660                                                 FS_NODE_IO, NULL);
1661 }
1662
1663 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1664                         struct writeback_control *wbc, bool atomic,
1665                         unsigned int *seq_id)
1666 {
1667         pgoff_t index;
1668         struct pagevec pvec;
1669         int ret = 0;
1670         struct page *last_page = NULL;
1671         bool marked = false;
1672         nid_t ino = inode->i_ino;
1673         int nr_pages;
1674         int nwritten = 0;
1675
1676         if (atomic) {
1677                 last_page = last_fsync_dnode(sbi, ino);
1678                 if (IS_ERR_OR_NULL(last_page))
1679                         return PTR_ERR_OR_ZERO(last_page);
1680         }
1681 retry:
1682         pagevec_init(&pvec);
1683         index = 0;
1684
1685         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1686                                 PAGECACHE_TAG_DIRTY))) {
1687                 int i;
1688
1689                 for (i = 0; i < nr_pages; i++) {
1690                         struct page *page = pvec.pages[i];
1691                         bool submitted = false;
1692
1693                         if (unlikely(f2fs_cp_error(sbi))) {
1694                                 f2fs_put_page(last_page, 0);
1695                                 pagevec_release(&pvec);
1696                                 ret = -EIO;
1697                                 goto out;
1698                         }
1699
1700                         if (!IS_DNODE(page) || !is_cold_node(page))
1701                                 continue;
1702                         if (ino_of_node(page) != ino)
1703                                 continue;
1704
1705                         lock_page(page);
1706
1707                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1708 continue_unlock:
1709                                 unlock_page(page);
1710                                 continue;
1711                         }
1712                         if (ino_of_node(page) != ino)
1713                                 goto continue_unlock;
1714
1715                         if (!PageDirty(page) && page != last_page) {
1716                                 /* someone wrote it for us */
1717                                 goto continue_unlock;
1718                         }
1719
1720                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1721
1722                         set_fsync_mark(page, 0);
1723                         set_dentry_mark(page, 0);
1724
1725                         if (!atomic || page == last_page) {
1726                                 set_fsync_mark(page, 1);
1727                                 if (IS_INODE(page)) {
1728                                         if (is_inode_flag_set(inode,
1729                                                                 FI_DIRTY_INODE))
1730                                                 f2fs_update_inode(inode, page);
1731                                         set_dentry_mark(page,
1732                                                 f2fs_need_dentry_mark(sbi, ino));
1733                                 }
1734                                 /* may be written by other thread */
1735                                 if (!PageDirty(page))
1736                                         set_page_dirty(page);
1737                         }
1738
1739                         if (!clear_page_dirty_for_io(page))
1740                                 goto continue_unlock;
1741
1742                         ret = __write_node_page(page, atomic &&
1743                                                 page == last_page,
1744                                                 &submitted, wbc, true,
1745                                                 FS_NODE_IO, seq_id);
1746                         if (ret) {
1747                                 unlock_page(page);
1748                                 f2fs_put_page(last_page, 0);
1749                                 break;
1750                         } else if (submitted) {
1751                                 nwritten++;
1752                         }
1753
1754                         if (page == last_page) {
1755                                 f2fs_put_page(page, 0);
1756                                 marked = true;
1757                                 break;
1758                         }
1759                 }
1760                 pagevec_release(&pvec);
1761                 cond_resched();
1762
1763                 if (ret || marked)
1764                         break;
1765         }
1766         if (!ret && atomic && !marked) {
1767                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1768                            ino, last_page->index);
1769                 lock_page(last_page);
1770                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1771                 set_page_dirty(last_page);
1772                 unlock_page(last_page);
1773                 goto retry;
1774         }
1775 out:
1776         if (nwritten)
1777                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1778         return ret ? -EIO: 0;
1779 }
1780
1781 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1782 {
1783         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1784         bool clean;
1785
1786         if (inode->i_ino != ino)
1787                 return 0;
1788
1789         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1790                 return 0;
1791
1792         spin_lock(&sbi->inode_lock[DIRTY_META]);
1793         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1794         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1795
1796         if (clean)
1797                 return 0;
1798
1799         inode = igrab(inode);
1800         if (!inode)
1801                 return 0;
1802         return 1;
1803 }
1804
1805 static bool flush_dirty_inode(struct page *page)
1806 {
1807         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1808         struct inode *inode;
1809         nid_t ino = ino_of_node(page);
1810
1811         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1812         if (!inode)
1813                 return false;
1814
1815         f2fs_update_inode(inode, page);
1816         unlock_page(page);
1817
1818         iput(inode);
1819         return true;
1820 }
1821
1822 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1823 {
1824         pgoff_t index = 0;
1825         struct pagevec pvec;
1826         int nr_pages;
1827
1828         pagevec_init(&pvec);
1829
1830         while ((nr_pages = pagevec_lookup_tag(&pvec,
1831                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1832                 int i;
1833
1834                 for (i = 0; i < nr_pages; i++) {
1835                         struct page *page = pvec.pages[i];
1836
1837                         if (!IS_DNODE(page))
1838                                 continue;
1839
1840                         lock_page(page);
1841
1842                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1843 continue_unlock:
1844                                 unlock_page(page);
1845                                 continue;
1846                         }
1847
1848                         if (!PageDirty(page)) {
1849                                 /* someone wrote it for us */
1850                                 goto continue_unlock;
1851                         }
1852
1853                         /* flush inline_data, if it's async context. */
1854                         if (is_inline_node(page)) {
1855                                 clear_inline_node(page);
1856                                 unlock_page(page);
1857                                 flush_inline_data(sbi, ino_of_node(page));
1858                                 continue;
1859                         }
1860                         unlock_page(page);
1861                 }
1862                 pagevec_release(&pvec);
1863                 cond_resched();
1864         }
1865 }
1866
1867 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1868                                 struct writeback_control *wbc,
1869                                 bool do_balance, enum iostat_type io_type)
1870 {
1871         pgoff_t index;
1872         struct pagevec pvec;
1873         int step = 0;
1874         int nwritten = 0;
1875         int ret = 0;
1876         int nr_pages, done = 0;
1877
1878         pagevec_init(&pvec);
1879
1880 next_step:
1881         index = 0;
1882
1883         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1884                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1885                 int i;
1886
1887                 for (i = 0; i < nr_pages; i++) {
1888                         struct page *page = pvec.pages[i];
1889                         bool submitted = false;
1890                         bool may_dirty = true;
1891
1892                         /* give a priority to WB_SYNC threads */
1893                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1894                                         wbc->sync_mode == WB_SYNC_NONE) {
1895                                 done = 1;
1896                                 break;
1897                         }
1898
1899                         /*
1900                          * flushing sequence with step:
1901                          * 0. indirect nodes
1902                          * 1. dentry dnodes
1903                          * 2. file dnodes
1904                          */
1905                         if (step == 0 && IS_DNODE(page))
1906                                 continue;
1907                         if (step == 1 && (!IS_DNODE(page) ||
1908                                                 is_cold_node(page)))
1909                                 continue;
1910                         if (step == 2 && (!IS_DNODE(page) ||
1911                                                 !is_cold_node(page)))
1912                                 continue;
1913 lock_node:
1914                         if (wbc->sync_mode == WB_SYNC_ALL)
1915                                 lock_page(page);
1916                         else if (!trylock_page(page))
1917                                 continue;
1918
1919                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1920 continue_unlock:
1921                                 unlock_page(page);
1922                                 continue;
1923                         }
1924
1925                         if (!PageDirty(page)) {
1926                                 /* someone wrote it for us */
1927                                 goto continue_unlock;
1928                         }
1929
1930                         /* flush inline_data/inode, if it's async context. */
1931                         if (!do_balance)
1932                                 goto write_node;
1933
1934                         /* flush inline_data */
1935                         if (is_inline_node(page)) {
1936                                 clear_inline_node(page);
1937                                 unlock_page(page);
1938                                 flush_inline_data(sbi, ino_of_node(page));
1939                                 goto lock_node;
1940                         }
1941
1942                         /* flush dirty inode */
1943                         if (IS_INODE(page) && may_dirty) {
1944                                 may_dirty = false;
1945                                 if (flush_dirty_inode(page))
1946                                         goto lock_node;
1947                         }
1948 write_node:
1949                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1950
1951                         if (!clear_page_dirty_for_io(page))
1952                                 goto continue_unlock;
1953
1954                         set_fsync_mark(page, 0);
1955                         set_dentry_mark(page, 0);
1956
1957                         ret = __write_node_page(page, false, &submitted,
1958                                                 wbc, do_balance, io_type, NULL);
1959                         if (ret)
1960                                 unlock_page(page);
1961                         else if (submitted)
1962                                 nwritten++;
1963
1964                         if (--wbc->nr_to_write == 0)
1965                                 break;
1966                 }
1967                 pagevec_release(&pvec);
1968                 cond_resched();
1969
1970                 if (wbc->nr_to_write == 0) {
1971                         step = 2;
1972                         break;
1973                 }
1974         }
1975
1976         if (step < 2) {
1977                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1978                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1979                         goto out;
1980                 step++;
1981                 goto next_step;
1982         }
1983 out:
1984         if (nwritten)
1985                 f2fs_submit_merged_write(sbi, NODE);
1986
1987         if (unlikely(f2fs_cp_error(sbi)))
1988                 return -EIO;
1989         return ret;
1990 }
1991
1992 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1993                                                 unsigned int seq_id)
1994 {
1995         struct fsync_node_entry *fn;
1996         struct page *page;
1997         struct list_head *head = &sbi->fsync_node_list;
1998         unsigned long flags;
1999         unsigned int cur_seq_id = 0;
2000         int ret2, ret = 0;
2001
2002         while (seq_id && cur_seq_id < seq_id) {
2003                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2004                 if (list_empty(head)) {
2005                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2006                         break;
2007                 }
2008                 fn = list_first_entry(head, struct fsync_node_entry, list);
2009                 if (fn->seq_id > seq_id) {
2010                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2011                         break;
2012                 }
2013                 cur_seq_id = fn->seq_id;
2014                 page = fn->page;
2015                 get_page(page);
2016                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2017
2018                 f2fs_wait_on_page_writeback(page, NODE, true, false);
2019                 if (TestClearPageError(page))
2020                         ret = -EIO;
2021
2022                 put_page(page);
2023
2024                 if (ret)
2025                         break;
2026         }
2027
2028         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2029         if (!ret)
2030                 ret = ret2;
2031
2032         return ret;
2033 }
2034
2035 static int f2fs_write_node_pages(struct address_space *mapping,
2036                             struct writeback_control *wbc)
2037 {
2038         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2039         struct blk_plug plug;
2040         long diff;
2041
2042         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2043                 goto skip_write;
2044
2045         /* balancing f2fs's metadata in background */
2046         f2fs_balance_fs_bg(sbi, true);
2047
2048         /* collect a number of dirty node pages and write together */
2049         if (wbc->sync_mode != WB_SYNC_ALL &&
2050                         get_pages(sbi, F2FS_DIRTY_NODES) <
2051                                         nr_pages_to_skip(sbi, NODE))
2052                 goto skip_write;
2053
2054         if (wbc->sync_mode == WB_SYNC_ALL)
2055                 atomic_inc(&sbi->wb_sync_req[NODE]);
2056         else if (atomic_read(&sbi->wb_sync_req[NODE]))
2057                 goto skip_write;
2058
2059         trace_f2fs_writepages(mapping->host, wbc, NODE);
2060
2061         diff = nr_pages_to_write(sbi, NODE, wbc);
2062         blk_start_plug(&plug);
2063         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2064         blk_finish_plug(&plug);
2065         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2066
2067         if (wbc->sync_mode == WB_SYNC_ALL)
2068                 atomic_dec(&sbi->wb_sync_req[NODE]);
2069         return 0;
2070
2071 skip_write:
2072         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2073         trace_f2fs_writepages(mapping->host, wbc, NODE);
2074         return 0;
2075 }
2076
2077 static int f2fs_set_node_page_dirty(struct page *page)
2078 {
2079         trace_f2fs_set_page_dirty(page, NODE);
2080
2081         if (!PageUptodate(page))
2082                 SetPageUptodate(page);
2083 #ifdef CONFIG_F2FS_CHECK_FS
2084         if (IS_INODE(page))
2085                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2086 #endif
2087         if (!PageDirty(page)) {
2088                 __set_page_dirty_nobuffers(page);
2089                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2090                 f2fs_set_page_private(page, 0);
2091                 return 1;
2092         }
2093         return 0;
2094 }
2095
2096 /*
2097  * Structure of the f2fs node operations
2098  */
2099 const struct address_space_operations f2fs_node_aops = {
2100         .writepage      = f2fs_write_node_page,
2101         .writepages     = f2fs_write_node_pages,
2102         .set_page_dirty = f2fs_set_node_page_dirty,
2103         .invalidatepage = f2fs_invalidate_page,
2104         .releasepage    = f2fs_release_page,
2105 #ifdef CONFIG_MIGRATION
2106         .migratepage    = f2fs_migrate_page,
2107 #endif
2108 };
2109
2110 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2111                                                 nid_t n)
2112 {
2113         return radix_tree_lookup(&nm_i->free_nid_root, n);
2114 }
2115
2116 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2117                                 struct free_nid *i)
2118 {
2119         struct f2fs_nm_info *nm_i = NM_I(sbi);
2120
2121         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2122         if (err)
2123                 return err;
2124
2125         nm_i->nid_cnt[FREE_NID]++;
2126         list_add_tail(&i->list, &nm_i->free_nid_list);
2127         return 0;
2128 }
2129
2130 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2131                         struct free_nid *i, enum nid_state state)
2132 {
2133         struct f2fs_nm_info *nm_i = NM_I(sbi);
2134
2135         f2fs_bug_on(sbi, state != i->state);
2136         nm_i->nid_cnt[state]--;
2137         if (state == FREE_NID)
2138                 list_del(&i->list);
2139         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2140 }
2141
2142 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2143                         enum nid_state org_state, enum nid_state dst_state)
2144 {
2145         struct f2fs_nm_info *nm_i = NM_I(sbi);
2146
2147         f2fs_bug_on(sbi, org_state != i->state);
2148         i->state = dst_state;
2149         nm_i->nid_cnt[org_state]--;
2150         nm_i->nid_cnt[dst_state]++;
2151
2152         switch (dst_state) {
2153         case PREALLOC_NID:
2154                 list_del(&i->list);
2155                 break;
2156         case FREE_NID:
2157                 list_add_tail(&i->list, &nm_i->free_nid_list);
2158                 break;
2159         default:
2160                 BUG_ON(1);
2161         }
2162 }
2163
2164 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2165                                                         bool set, bool build)
2166 {
2167         struct f2fs_nm_info *nm_i = NM_I(sbi);
2168         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2169         unsigned int nid_ofs = nid - START_NID(nid);
2170
2171         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2172                 return;
2173
2174         if (set) {
2175                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2176                         return;
2177                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2178                 nm_i->free_nid_count[nat_ofs]++;
2179         } else {
2180                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2181                         return;
2182                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2183                 if (!build)
2184                         nm_i->free_nid_count[nat_ofs]--;
2185         }
2186 }
2187
2188 /* return if the nid is recognized as free */
2189 static bool add_free_nid(struct f2fs_sb_info *sbi,
2190                                 nid_t nid, bool build, bool update)
2191 {
2192         struct f2fs_nm_info *nm_i = NM_I(sbi);
2193         struct free_nid *i, *e;
2194         struct nat_entry *ne;
2195         int err = -EINVAL;
2196         bool ret = false;
2197
2198         /* 0 nid should not be used */
2199         if (unlikely(nid == 0))
2200                 return false;
2201
2202         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2203                 return false;
2204
2205         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2206         i->nid = nid;
2207         i->state = FREE_NID;
2208
2209         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2210
2211         spin_lock(&nm_i->nid_list_lock);
2212
2213         if (build) {
2214                 /*
2215                  *   Thread A             Thread B
2216                  *  - f2fs_create
2217                  *   - f2fs_new_inode
2218                  *    - f2fs_alloc_nid
2219                  *     - __insert_nid_to_list(PREALLOC_NID)
2220                  *                     - f2fs_balance_fs_bg
2221                  *                      - f2fs_build_free_nids
2222                  *                       - __f2fs_build_free_nids
2223                  *                        - scan_nat_page
2224                  *                         - add_free_nid
2225                  *                          - __lookup_nat_cache
2226                  *  - f2fs_add_link
2227                  *   - f2fs_init_inode_metadata
2228                  *    - f2fs_new_inode_page
2229                  *     - f2fs_new_node_page
2230                  *      - set_node_addr
2231                  *  - f2fs_alloc_nid_done
2232                  *   - __remove_nid_from_list(PREALLOC_NID)
2233                  *                         - __insert_nid_to_list(FREE_NID)
2234                  */
2235                 ne = __lookup_nat_cache(nm_i, nid);
2236                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2237                                 nat_get_blkaddr(ne) != NULL_ADDR))
2238                         goto err_out;
2239
2240                 e = __lookup_free_nid_list(nm_i, nid);
2241                 if (e) {
2242                         if (e->state == FREE_NID)
2243                                 ret = true;
2244                         goto err_out;
2245                 }
2246         }
2247         ret = true;
2248         err = __insert_free_nid(sbi, i);
2249 err_out:
2250         if (update) {
2251                 update_free_nid_bitmap(sbi, nid, ret, build);
2252                 if (!build)
2253                         nm_i->available_nids++;
2254         }
2255         spin_unlock(&nm_i->nid_list_lock);
2256         radix_tree_preload_end();
2257
2258         if (err)
2259                 kmem_cache_free(free_nid_slab, i);
2260         return ret;
2261 }
2262
2263 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2264 {
2265         struct f2fs_nm_info *nm_i = NM_I(sbi);
2266         struct free_nid *i;
2267         bool need_free = false;
2268
2269         spin_lock(&nm_i->nid_list_lock);
2270         i = __lookup_free_nid_list(nm_i, nid);
2271         if (i && i->state == FREE_NID) {
2272                 __remove_free_nid(sbi, i, FREE_NID);
2273                 need_free = true;
2274         }
2275         spin_unlock(&nm_i->nid_list_lock);
2276
2277         if (need_free)
2278                 kmem_cache_free(free_nid_slab, i);
2279 }
2280
2281 static int scan_nat_page(struct f2fs_sb_info *sbi,
2282                         struct page *nat_page, nid_t start_nid)
2283 {
2284         struct f2fs_nm_info *nm_i = NM_I(sbi);
2285         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2286         block_t blk_addr;
2287         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2288         int i;
2289
2290         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2291
2292         i = start_nid % NAT_ENTRY_PER_BLOCK;
2293
2294         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2295                 if (unlikely(start_nid >= nm_i->max_nid))
2296                         break;
2297
2298                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2299
2300                 if (blk_addr == NEW_ADDR)
2301                         return -EINVAL;
2302
2303                 if (blk_addr == NULL_ADDR) {
2304                         add_free_nid(sbi, start_nid, true, true);
2305                 } else {
2306                         spin_lock(&NM_I(sbi)->nid_list_lock);
2307                         update_free_nid_bitmap(sbi, start_nid, false, true);
2308                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2309                 }
2310         }
2311
2312         return 0;
2313 }
2314
2315 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2316 {
2317         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2318         struct f2fs_journal *journal = curseg->journal;
2319         int i;
2320
2321         down_read(&curseg->journal_rwsem);
2322         for (i = 0; i < nats_in_cursum(journal); i++) {
2323                 block_t addr;
2324                 nid_t nid;
2325
2326                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2327                 nid = le32_to_cpu(nid_in_journal(journal, i));
2328                 if (addr == NULL_ADDR)
2329                         add_free_nid(sbi, nid, true, false);
2330                 else
2331                         remove_free_nid(sbi, nid);
2332         }
2333         up_read(&curseg->journal_rwsem);
2334 }
2335
2336 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2337 {
2338         struct f2fs_nm_info *nm_i = NM_I(sbi);
2339         unsigned int i, idx;
2340         nid_t nid;
2341
2342         down_read(&nm_i->nat_tree_lock);
2343
2344         for (i = 0; i < nm_i->nat_blocks; i++) {
2345                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2346                         continue;
2347                 if (!nm_i->free_nid_count[i])
2348                         continue;
2349                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2350                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2351                                                 NAT_ENTRY_PER_BLOCK, idx);
2352                         if (idx >= NAT_ENTRY_PER_BLOCK)
2353                                 break;
2354
2355                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2356                         add_free_nid(sbi, nid, true, false);
2357
2358                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2359                                 goto out;
2360                 }
2361         }
2362 out:
2363         scan_curseg_cache(sbi);
2364
2365         up_read(&nm_i->nat_tree_lock);
2366 }
2367
2368 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2369                                                 bool sync, bool mount)
2370 {
2371         struct f2fs_nm_info *nm_i = NM_I(sbi);
2372         int i = 0, ret;
2373         nid_t nid = nm_i->next_scan_nid;
2374
2375         if (unlikely(nid >= nm_i->max_nid))
2376                 nid = 0;
2377
2378         if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2379                 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2380
2381         /* Enough entries */
2382         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2383                 return 0;
2384
2385         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2386                 return 0;
2387
2388         if (!mount) {
2389                 /* try to find free nids in free_nid_bitmap */
2390                 scan_free_nid_bits(sbi);
2391
2392                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2393                         return 0;
2394         }
2395
2396         /* readahead nat pages to be scanned */
2397         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2398                                                         META_NAT, true);
2399
2400         down_read(&nm_i->nat_tree_lock);
2401
2402         while (1) {
2403                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2404                                                 nm_i->nat_block_bitmap)) {
2405                         struct page *page = get_current_nat_page(sbi, nid);
2406
2407                         if (IS_ERR(page)) {
2408                                 ret = PTR_ERR(page);
2409                         } else {
2410                                 ret = scan_nat_page(sbi, page, nid);
2411                                 f2fs_put_page(page, 1);
2412                         }
2413
2414                         if (ret) {
2415                                 up_read(&nm_i->nat_tree_lock);
2416                                 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2417                                 return ret;
2418                         }
2419                 }
2420
2421                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2422                 if (unlikely(nid >= nm_i->max_nid))
2423                         nid = 0;
2424
2425                 if (++i >= FREE_NID_PAGES)
2426                         break;
2427         }
2428
2429         /* go to the next free nat pages to find free nids abundantly */
2430         nm_i->next_scan_nid = nid;
2431
2432         /* find free nids from current sum_pages */
2433         scan_curseg_cache(sbi);
2434
2435         up_read(&nm_i->nat_tree_lock);
2436
2437         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2438                                         nm_i->ra_nid_pages, META_NAT, false);
2439
2440         return 0;
2441 }
2442
2443 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2444 {
2445         int ret;
2446
2447         mutex_lock(&NM_I(sbi)->build_lock);
2448         ret = __f2fs_build_free_nids(sbi, sync, mount);
2449         mutex_unlock(&NM_I(sbi)->build_lock);
2450
2451         return ret;
2452 }
2453
2454 /*
2455  * If this function returns success, caller can obtain a new nid
2456  * from second parameter of this function.
2457  * The returned nid could be used ino as well as nid when inode is created.
2458  */
2459 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2460 {
2461         struct f2fs_nm_info *nm_i = NM_I(sbi);
2462         struct free_nid *i = NULL;
2463 retry:
2464         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2465                 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2466                 return false;
2467         }
2468
2469         spin_lock(&nm_i->nid_list_lock);
2470
2471         if (unlikely(nm_i->available_nids == 0)) {
2472                 spin_unlock(&nm_i->nid_list_lock);
2473                 return false;
2474         }
2475
2476         /* We should not use stale free nids created by f2fs_build_free_nids */
2477         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2478                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2479                 i = list_first_entry(&nm_i->free_nid_list,
2480                                         struct free_nid, list);
2481                 *nid = i->nid;
2482
2483                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2484                 nm_i->available_nids--;
2485
2486                 update_free_nid_bitmap(sbi, *nid, false, false);
2487
2488                 spin_unlock(&nm_i->nid_list_lock);
2489                 return true;
2490         }
2491         spin_unlock(&nm_i->nid_list_lock);
2492
2493         /* Let's scan nat pages and its caches to get free nids */
2494         if (!f2fs_build_free_nids(sbi, true, false))
2495                 goto retry;
2496         return false;
2497 }
2498
2499 /*
2500  * f2fs_alloc_nid() should be called prior to this function.
2501  */
2502 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2503 {
2504         struct f2fs_nm_info *nm_i = NM_I(sbi);
2505         struct free_nid *i;
2506
2507         spin_lock(&nm_i->nid_list_lock);
2508         i = __lookup_free_nid_list(nm_i, nid);
2509         f2fs_bug_on(sbi, !i);
2510         __remove_free_nid(sbi, i, PREALLOC_NID);
2511         spin_unlock(&nm_i->nid_list_lock);
2512
2513         kmem_cache_free(free_nid_slab, i);
2514 }
2515
2516 /*
2517  * f2fs_alloc_nid() should be called prior to this function.
2518  */
2519 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2520 {
2521         struct f2fs_nm_info *nm_i = NM_I(sbi);
2522         struct free_nid *i;
2523         bool need_free = false;
2524
2525         if (!nid)
2526                 return;
2527
2528         spin_lock(&nm_i->nid_list_lock);
2529         i = __lookup_free_nid_list(nm_i, nid);
2530         f2fs_bug_on(sbi, !i);
2531
2532         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2533                 __remove_free_nid(sbi, i, PREALLOC_NID);
2534                 need_free = true;
2535         } else {
2536                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2537         }
2538
2539         nm_i->available_nids++;
2540
2541         update_free_nid_bitmap(sbi, nid, true, false);
2542
2543         spin_unlock(&nm_i->nid_list_lock);
2544
2545         if (need_free)
2546                 kmem_cache_free(free_nid_slab, i);
2547 }
2548
2549 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2550 {
2551         struct f2fs_nm_info *nm_i = NM_I(sbi);
2552         int nr = nr_shrink;
2553
2554         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2555                 return 0;
2556
2557         if (!mutex_trylock(&nm_i->build_lock))
2558                 return 0;
2559
2560         while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2561                 struct free_nid *i, *next;
2562                 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2563
2564                 spin_lock(&nm_i->nid_list_lock);
2565                 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2566                         if (!nr_shrink || !batch ||
2567                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2568                                 break;
2569                         __remove_free_nid(sbi, i, FREE_NID);
2570                         kmem_cache_free(free_nid_slab, i);
2571                         nr_shrink--;
2572                         batch--;
2573                 }
2574                 spin_unlock(&nm_i->nid_list_lock);
2575         }
2576
2577         mutex_unlock(&nm_i->build_lock);
2578
2579         return nr - nr_shrink;
2580 }
2581
2582 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2583 {
2584         void *src_addr, *dst_addr;
2585         size_t inline_size;
2586         struct page *ipage;
2587         struct f2fs_inode *ri;
2588
2589         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2590         if (IS_ERR(ipage))
2591                 return PTR_ERR(ipage);
2592
2593         ri = F2FS_INODE(page);
2594         if (ri->i_inline & F2FS_INLINE_XATTR) {
2595                 if (!f2fs_has_inline_xattr(inode)) {
2596                         set_inode_flag(inode, FI_INLINE_XATTR);
2597                         stat_inc_inline_xattr(inode);
2598                 }
2599         } else {
2600                 if (f2fs_has_inline_xattr(inode)) {
2601                         stat_dec_inline_xattr(inode);
2602                         clear_inode_flag(inode, FI_INLINE_XATTR);
2603                 }
2604                 goto update_inode;
2605         }
2606
2607         dst_addr = inline_xattr_addr(inode, ipage);
2608         src_addr = inline_xattr_addr(inode, page);
2609         inline_size = inline_xattr_size(inode);
2610
2611         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2612         memcpy(dst_addr, src_addr, inline_size);
2613 update_inode:
2614         f2fs_update_inode(inode, ipage);
2615         f2fs_put_page(ipage, 1);
2616         return 0;
2617 }
2618
2619 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2620 {
2621         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2622         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2623         nid_t new_xnid;
2624         struct dnode_of_data dn;
2625         struct node_info ni;
2626         struct page *xpage;
2627         int err;
2628
2629         if (!prev_xnid)
2630                 goto recover_xnid;
2631
2632         /* 1: invalidate the previous xattr nid */
2633         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2634         if (err)
2635                 return err;
2636
2637         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2638         dec_valid_node_count(sbi, inode, false);
2639         set_node_addr(sbi, &ni, NULL_ADDR, false);
2640
2641 recover_xnid:
2642         /* 2: update xattr nid in inode */
2643         if (!f2fs_alloc_nid(sbi, &new_xnid))
2644                 return -ENOSPC;
2645
2646         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2647         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2648         if (IS_ERR(xpage)) {
2649                 f2fs_alloc_nid_failed(sbi, new_xnid);
2650                 return PTR_ERR(xpage);
2651         }
2652
2653         f2fs_alloc_nid_done(sbi, new_xnid);
2654         f2fs_update_inode_page(inode);
2655
2656         /* 3: update and set xattr node page dirty */
2657         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2658
2659         set_page_dirty(xpage);
2660         f2fs_put_page(xpage, 1);
2661
2662         return 0;
2663 }
2664
2665 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2666 {
2667         struct f2fs_inode *src, *dst;
2668         nid_t ino = ino_of_node(page);
2669         struct node_info old_ni, new_ni;
2670         struct page *ipage;
2671         int err;
2672
2673         err = f2fs_get_node_info(sbi, ino, &old_ni);
2674         if (err)
2675                 return err;
2676
2677         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2678                 return -EINVAL;
2679 retry:
2680         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2681         if (!ipage) {
2682                 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2683                 goto retry;
2684         }
2685
2686         /* Should not use this inode from free nid list */
2687         remove_free_nid(sbi, ino);
2688
2689         if (!PageUptodate(ipage))
2690                 SetPageUptodate(ipage);
2691         fill_node_footer(ipage, ino, ino, 0, true);
2692         set_cold_node(ipage, false);
2693
2694         src = F2FS_INODE(page);
2695         dst = F2FS_INODE(ipage);
2696
2697         memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2698         dst->i_size = 0;
2699         dst->i_blocks = cpu_to_le64(1);
2700         dst->i_links = cpu_to_le32(1);
2701         dst->i_xattr_nid = 0;
2702         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2703         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2704                 dst->i_extra_isize = src->i_extra_isize;
2705
2706                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2707                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2708                                                         i_inline_xattr_size))
2709                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2710
2711                 if (f2fs_sb_has_project_quota(sbi) &&
2712                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2713                                                                 i_projid))
2714                         dst->i_projid = src->i_projid;
2715
2716                 if (f2fs_sb_has_inode_crtime(sbi) &&
2717                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2718                                                         i_crtime_nsec)) {
2719                         dst->i_crtime = src->i_crtime;
2720                         dst->i_crtime_nsec = src->i_crtime_nsec;
2721                 }
2722         }
2723
2724         new_ni = old_ni;
2725         new_ni.ino = ino;
2726
2727         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2728                 WARN_ON(1);
2729         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2730         inc_valid_inode_count(sbi);
2731         set_page_dirty(ipage);
2732         f2fs_put_page(ipage, 1);
2733         return 0;
2734 }
2735
2736 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2737                         unsigned int segno, struct f2fs_summary_block *sum)
2738 {
2739         struct f2fs_node *rn;
2740         struct f2fs_summary *sum_entry;
2741         block_t addr;
2742         int i, idx, last_offset, nrpages;
2743
2744         /* scan the node segment */
2745         last_offset = sbi->blocks_per_seg;
2746         addr = START_BLOCK(sbi, segno);
2747         sum_entry = &sum->entries[0];
2748
2749         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2750                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2751
2752                 /* readahead node pages */
2753                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2754
2755                 for (idx = addr; idx < addr + nrpages; idx++) {
2756                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2757
2758                         if (IS_ERR(page))
2759                                 return PTR_ERR(page);
2760
2761                         rn = F2FS_NODE(page);
2762                         sum_entry->nid = rn->footer.nid;
2763                         sum_entry->version = 0;
2764                         sum_entry->ofs_in_node = 0;
2765                         sum_entry++;
2766                         f2fs_put_page(page, 1);
2767                 }
2768
2769                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2770                                                         addr + nrpages);
2771         }
2772         return 0;
2773 }
2774
2775 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2776 {
2777         struct f2fs_nm_info *nm_i = NM_I(sbi);
2778         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2779         struct f2fs_journal *journal = curseg->journal;
2780         int i;
2781
2782         down_write(&curseg->journal_rwsem);
2783         for (i = 0; i < nats_in_cursum(journal); i++) {
2784                 struct nat_entry *ne;
2785                 struct f2fs_nat_entry raw_ne;
2786                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2787
2788                 raw_ne = nat_in_journal(journal, i);
2789
2790                 ne = __lookup_nat_cache(nm_i, nid);
2791                 if (!ne) {
2792                         ne = __alloc_nat_entry(nid, true);
2793                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2794                 }
2795
2796                 /*
2797                  * if a free nat in journal has not been used after last
2798                  * checkpoint, we should remove it from available nids,
2799                  * since later we will add it again.
2800                  */
2801                 if (!get_nat_flag(ne, IS_DIRTY) &&
2802                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2803                         spin_lock(&nm_i->nid_list_lock);
2804                         nm_i->available_nids--;
2805                         spin_unlock(&nm_i->nid_list_lock);
2806                 }
2807
2808                 __set_nat_cache_dirty(nm_i, ne);
2809         }
2810         update_nats_in_cursum(journal, -i);
2811         up_write(&curseg->journal_rwsem);
2812 }
2813
2814 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2815                                                 struct list_head *head, int max)
2816 {
2817         struct nat_entry_set *cur;
2818
2819         if (nes->entry_cnt >= max)
2820                 goto add_out;
2821
2822         list_for_each_entry(cur, head, set_list) {
2823                 if (cur->entry_cnt >= nes->entry_cnt) {
2824                         list_add(&nes->set_list, cur->set_list.prev);
2825                         return;
2826                 }
2827         }
2828 add_out:
2829         list_add_tail(&nes->set_list, head);
2830 }
2831
2832 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2833                                                 struct page *page)
2834 {
2835         struct f2fs_nm_info *nm_i = NM_I(sbi);
2836         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2837         struct f2fs_nat_block *nat_blk = page_address(page);
2838         int valid = 0;
2839         int i = 0;
2840
2841         if (!enabled_nat_bits(sbi, NULL))
2842                 return;
2843
2844         if (nat_index == 0) {
2845                 valid = 1;
2846                 i = 1;
2847         }
2848         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2849                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2850                         valid++;
2851         }
2852         if (valid == 0) {
2853                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2854                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2855                 return;
2856         }
2857
2858         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2859         if (valid == NAT_ENTRY_PER_BLOCK)
2860                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2861         else
2862                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2863 }
2864
2865 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2866                 struct nat_entry_set *set, struct cp_control *cpc)
2867 {
2868         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2869         struct f2fs_journal *journal = curseg->journal;
2870         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2871         bool to_journal = true;
2872         struct f2fs_nat_block *nat_blk;
2873         struct nat_entry *ne, *cur;
2874         struct page *page = NULL;
2875
2876         /*
2877          * there are two steps to flush nat entries:
2878          * #1, flush nat entries to journal in current hot data summary block.
2879          * #2, flush nat entries to nat page.
2880          */
2881         if (enabled_nat_bits(sbi, cpc) ||
2882                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2883                 to_journal = false;
2884
2885         if (to_journal) {
2886                 down_write(&curseg->journal_rwsem);
2887         } else {
2888                 page = get_next_nat_page(sbi, start_nid);
2889                 if (IS_ERR(page))
2890                         return PTR_ERR(page);
2891
2892                 nat_blk = page_address(page);
2893                 f2fs_bug_on(sbi, !nat_blk);
2894         }
2895
2896         /* flush dirty nats in nat entry set */
2897         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2898                 struct f2fs_nat_entry *raw_ne;
2899                 nid_t nid = nat_get_nid(ne);
2900                 int offset;
2901
2902                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2903
2904                 if (to_journal) {
2905                         offset = f2fs_lookup_journal_in_cursum(journal,
2906                                                         NAT_JOURNAL, nid, 1);
2907                         f2fs_bug_on(sbi, offset < 0);
2908                         raw_ne = &nat_in_journal(journal, offset);
2909                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2910                 } else {
2911                         raw_ne = &nat_blk->entries[nid - start_nid];
2912                 }
2913                 raw_nat_from_node_info(raw_ne, &ne->ni);
2914                 nat_reset_flag(ne);
2915                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2916                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2917                         add_free_nid(sbi, nid, false, true);
2918                 } else {
2919                         spin_lock(&NM_I(sbi)->nid_list_lock);
2920                         update_free_nid_bitmap(sbi, nid, false, false);
2921                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2922                 }
2923         }
2924
2925         if (to_journal) {
2926                 up_write(&curseg->journal_rwsem);
2927         } else {
2928                 __update_nat_bits(sbi, start_nid, page);
2929                 f2fs_put_page(page, 1);
2930         }
2931
2932         /* Allow dirty nats by node block allocation in write_begin */
2933         if (!set->entry_cnt) {
2934                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2935                 kmem_cache_free(nat_entry_set_slab, set);
2936         }
2937         return 0;
2938 }
2939
2940 /*
2941  * This function is called during the checkpointing process.
2942  */
2943 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2944 {
2945         struct f2fs_nm_info *nm_i = NM_I(sbi);
2946         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2947         struct f2fs_journal *journal = curseg->journal;
2948         struct nat_entry_set *setvec[SETVEC_SIZE];
2949         struct nat_entry_set *set, *tmp;
2950         unsigned int found;
2951         nid_t set_idx = 0;
2952         LIST_HEAD(sets);
2953         int err = 0;
2954
2955         /*
2956          * during unmount, let's flush nat_bits before checking
2957          * nat_cnt[DIRTY_NAT].
2958          */
2959         if (enabled_nat_bits(sbi, cpc)) {
2960                 down_write(&nm_i->nat_tree_lock);
2961                 remove_nats_in_journal(sbi);
2962                 up_write(&nm_i->nat_tree_lock);
2963         }
2964
2965         if (!nm_i->nat_cnt[DIRTY_NAT])
2966                 return 0;
2967
2968         down_write(&nm_i->nat_tree_lock);
2969
2970         /*
2971          * if there are no enough space in journal to store dirty nat
2972          * entries, remove all entries from journal and merge them
2973          * into nat entry set.
2974          */
2975         if (enabled_nat_bits(sbi, cpc) ||
2976                 !__has_cursum_space(journal,
2977                         nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2978                 remove_nats_in_journal(sbi);
2979
2980         while ((found = __gang_lookup_nat_set(nm_i,
2981                                         set_idx, SETVEC_SIZE, setvec))) {
2982                 unsigned idx;
2983                 set_idx = setvec[found - 1]->set + 1;
2984                 for (idx = 0; idx < found; idx++)
2985                         __adjust_nat_entry_set(setvec[idx], &sets,
2986                                                 MAX_NAT_JENTRIES(journal));
2987         }
2988
2989         /* flush dirty nats in nat entry set */
2990         list_for_each_entry_safe(set, tmp, &sets, set_list) {
2991                 err = __flush_nat_entry_set(sbi, set, cpc);
2992                 if (err)
2993                         break;
2994         }
2995
2996         up_write(&nm_i->nat_tree_lock);
2997         /* Allow dirty nats by node block allocation in write_begin */
2998
2999         return err;
3000 }
3001
3002 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3003 {
3004         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3005         struct f2fs_nm_info *nm_i = NM_I(sbi);
3006         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3007         unsigned int i;
3008         __u64 cp_ver = cur_cp_version(ckpt);
3009         block_t nat_bits_addr;
3010
3011         if (!enabled_nat_bits(sbi, NULL))
3012                 return 0;
3013
3014         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3015         nm_i->nat_bits = f2fs_kvzalloc(sbi,
3016                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3017         if (!nm_i->nat_bits)
3018                 return -ENOMEM;
3019
3020         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3021                                                 nm_i->nat_bits_blocks;
3022         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3023                 struct page *page;
3024
3025                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3026                 if (IS_ERR(page))
3027                         return PTR_ERR(page);
3028
3029                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3030                                         page_address(page), F2FS_BLKSIZE);
3031                 f2fs_put_page(page, 1);
3032         }
3033
3034         cp_ver |= (cur_cp_crc(ckpt) << 32);
3035         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3036                 disable_nat_bits(sbi, true);
3037                 return 0;
3038         }
3039
3040         nm_i->full_nat_bits = nm_i->nat_bits + 8;
3041         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3042
3043         f2fs_notice(sbi, "Found nat_bits in checkpoint");
3044         return 0;
3045 }
3046
3047 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3048 {
3049         struct f2fs_nm_info *nm_i = NM_I(sbi);
3050         unsigned int i = 0;
3051         nid_t nid, last_nid;
3052
3053         if (!enabled_nat_bits(sbi, NULL))
3054                 return;
3055
3056         for (i = 0; i < nm_i->nat_blocks; i++) {
3057                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3058                 if (i >= nm_i->nat_blocks)
3059                         break;
3060
3061                 __set_bit_le(i, nm_i->nat_block_bitmap);
3062
3063                 nid = i * NAT_ENTRY_PER_BLOCK;
3064                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3065
3066                 spin_lock(&NM_I(sbi)->nid_list_lock);
3067                 for (; nid < last_nid; nid++)
3068                         update_free_nid_bitmap(sbi, nid, true, true);
3069                 spin_unlock(&NM_I(sbi)->nid_list_lock);
3070         }
3071
3072         for (i = 0; i < nm_i->nat_blocks; i++) {
3073                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3074                 if (i >= nm_i->nat_blocks)
3075                         break;
3076
3077                 __set_bit_le(i, nm_i->nat_block_bitmap);
3078         }
3079 }
3080
3081 static int init_node_manager(struct f2fs_sb_info *sbi)
3082 {
3083         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3084         struct f2fs_nm_info *nm_i = NM_I(sbi);
3085         unsigned char *version_bitmap;
3086         unsigned int nat_segs;
3087         int err;
3088
3089         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3090
3091         /* segment_count_nat includes pair segment so divide to 2. */
3092         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3093         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3094         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3095
3096         /* not used nids: 0, node, meta, (and root counted as valid node) */
3097         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3098                                                 F2FS_RESERVED_NODE_NUM;
3099         nm_i->nid_cnt[FREE_NID] = 0;
3100         nm_i->nid_cnt[PREALLOC_NID] = 0;
3101         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3102         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3103         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3104
3105         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3106         INIT_LIST_HEAD(&nm_i->free_nid_list);
3107         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3108         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3109         INIT_LIST_HEAD(&nm_i->nat_entries);
3110         spin_lock_init(&nm_i->nat_list_lock);
3111
3112         mutex_init(&nm_i->build_lock);
3113         spin_lock_init(&nm_i->nid_list_lock);
3114         init_rwsem(&nm_i->nat_tree_lock);
3115
3116         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3117         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3118         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3119         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3120                                         GFP_KERNEL);
3121         if (!nm_i->nat_bitmap)
3122                 return -ENOMEM;
3123
3124         err = __get_nat_bitmaps(sbi);
3125         if (err)
3126                 return err;
3127
3128 #ifdef CONFIG_F2FS_CHECK_FS
3129         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3130                                         GFP_KERNEL);
3131         if (!nm_i->nat_bitmap_mir)
3132                 return -ENOMEM;
3133 #endif
3134
3135         return 0;
3136 }
3137
3138 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3139 {
3140         struct f2fs_nm_info *nm_i = NM_I(sbi);
3141         int i;
3142
3143         nm_i->free_nid_bitmap =
3144                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3145                                               nm_i->nat_blocks),
3146                               GFP_KERNEL);
3147         if (!nm_i->free_nid_bitmap)
3148                 return -ENOMEM;
3149
3150         for (i = 0; i < nm_i->nat_blocks; i++) {
3151                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3152                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3153                 if (!nm_i->free_nid_bitmap[i])
3154                         return -ENOMEM;
3155         }
3156
3157         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3158                                                                 GFP_KERNEL);
3159         if (!nm_i->nat_block_bitmap)
3160                 return -ENOMEM;
3161
3162         nm_i->free_nid_count =
3163                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3164                                               nm_i->nat_blocks),
3165                               GFP_KERNEL);
3166         if (!nm_i->free_nid_count)
3167                 return -ENOMEM;
3168         return 0;
3169 }
3170
3171 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3172 {
3173         int err;
3174
3175         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3176                                                         GFP_KERNEL);
3177         if (!sbi->nm_info)
3178                 return -ENOMEM;
3179
3180         err = init_node_manager(sbi);
3181         if (err)
3182                 return err;
3183
3184         err = init_free_nid_cache(sbi);
3185         if (err)
3186                 return err;
3187
3188         /* load free nid status from nat_bits table */
3189         load_free_nid_bitmap(sbi);
3190
3191         return f2fs_build_free_nids(sbi, true, true);
3192 }
3193
3194 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3195 {
3196         struct f2fs_nm_info *nm_i = NM_I(sbi);
3197         struct free_nid *i, *next_i;
3198         struct nat_entry *natvec[NATVEC_SIZE];
3199         struct nat_entry_set *setvec[SETVEC_SIZE];
3200         nid_t nid = 0;
3201         unsigned int found;
3202
3203         if (!nm_i)
3204                 return;
3205
3206         /* destroy free nid list */
3207         spin_lock(&nm_i->nid_list_lock);
3208         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3209                 __remove_free_nid(sbi, i, FREE_NID);
3210                 spin_unlock(&nm_i->nid_list_lock);
3211                 kmem_cache_free(free_nid_slab, i);
3212                 spin_lock(&nm_i->nid_list_lock);
3213         }
3214         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3215         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3216         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3217         spin_unlock(&nm_i->nid_list_lock);
3218
3219         /* destroy nat cache */
3220         down_write(&nm_i->nat_tree_lock);
3221         while ((found = __gang_lookup_nat_cache(nm_i,
3222                                         nid, NATVEC_SIZE, natvec))) {
3223                 unsigned idx;
3224
3225                 nid = nat_get_nid(natvec[found - 1]) + 1;
3226                 for (idx = 0; idx < found; idx++) {
3227                         spin_lock(&nm_i->nat_list_lock);
3228                         list_del(&natvec[idx]->list);
3229                         spin_unlock(&nm_i->nat_list_lock);
3230
3231                         __del_from_nat_cache(nm_i, natvec[idx]);
3232                 }
3233         }
3234         f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3235
3236         /* destroy nat set cache */
3237         nid = 0;
3238         while ((found = __gang_lookup_nat_set(nm_i,
3239                                         nid, SETVEC_SIZE, setvec))) {
3240                 unsigned idx;
3241
3242                 nid = setvec[found - 1]->set + 1;
3243                 for (idx = 0; idx < found; idx++) {
3244                         /* entry_cnt is not zero, when cp_error was occurred */
3245                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3246                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3247                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3248                 }
3249         }
3250         up_write(&nm_i->nat_tree_lock);
3251
3252         kvfree(nm_i->nat_block_bitmap);
3253         if (nm_i->free_nid_bitmap) {
3254                 int i;
3255
3256                 for (i = 0; i < nm_i->nat_blocks; i++)
3257                         kvfree(nm_i->free_nid_bitmap[i]);
3258                 kvfree(nm_i->free_nid_bitmap);
3259         }
3260         kvfree(nm_i->free_nid_count);
3261
3262         kvfree(nm_i->nat_bitmap);
3263         kvfree(nm_i->nat_bits);
3264 #ifdef CONFIG_F2FS_CHECK_FS
3265         kvfree(nm_i->nat_bitmap_mir);
3266 #endif
3267         sbi->nm_info = NULL;
3268         kfree(nm_i);
3269 }
3270
3271 int __init f2fs_create_node_manager_caches(void)
3272 {
3273         nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3274                         sizeof(struct nat_entry));
3275         if (!nat_entry_slab)
3276                 goto fail;
3277
3278         free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3279                         sizeof(struct free_nid));
3280         if (!free_nid_slab)
3281                 goto destroy_nat_entry;
3282
3283         nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3284                         sizeof(struct nat_entry_set));
3285         if (!nat_entry_set_slab)
3286                 goto destroy_free_nid;
3287
3288         fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3289                         sizeof(struct fsync_node_entry));
3290         if (!fsync_node_entry_slab)
3291                 goto destroy_nat_entry_set;
3292         return 0;
3293
3294 destroy_nat_entry_set:
3295         kmem_cache_destroy(nat_entry_set_slab);
3296 destroy_free_nid:
3297         kmem_cache_destroy(free_nid_slab);
3298 destroy_nat_entry:
3299         kmem_cache_destroy(nat_entry_slab);
3300 fail:
3301         return -ENOMEM;
3302 }
3303
3304 void f2fs_destroy_node_manager_caches(void)
3305 {
3306         kmem_cache_destroy(fsync_node_entry_slab);
3307         kmem_cache_destroy(nat_entry_set_slab);
3308         kmem_cache_destroy(free_nid_slab);
3309         kmem_cache_destroy(nat_entry_slab);
3310 }