ce4905a073b3c413a751efc0dec5069a1a5e32c7
[sfrench/cifs-2.6.git] / fs / f2fs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41         struct inode *inode = file_inode(vmf->vma->vm_file);
42         vm_fault_t ret;
43
44         ret = filemap_fault(vmf);
45         if (!ret)
46                 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
47                                                         F2FS_BLKSIZE);
48
49         trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51         return ret;
52 }
53
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56         struct page *page = vmf->page;
57         struct inode *inode = file_inode(vmf->vma->vm_file);
58         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59         struct dnode_of_data dn;
60         bool need_alloc = true;
61         int err = 0;
62
63         if (unlikely(IS_IMMUTABLE(inode)))
64                 return VM_FAULT_SIGBUS;
65
66         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67                 return VM_FAULT_SIGBUS;
68
69         if (unlikely(f2fs_cp_error(sbi))) {
70                 err = -EIO;
71                 goto err;
72         }
73
74         if (!f2fs_is_checkpoint_ready(sbi)) {
75                 err = -ENOSPC;
76                 goto err;
77         }
78
79         err = f2fs_convert_inline_inode(inode);
80         if (err)
81                 goto err;
82
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84         if (f2fs_compressed_file(inode)) {
85                 int ret = f2fs_is_compressed_cluster(inode, page->index);
86
87                 if (ret < 0) {
88                         err = ret;
89                         goto err;
90                 } else if (ret) {
91                         need_alloc = false;
92                 }
93         }
94 #endif
95         /* should do out of any locked page */
96         if (need_alloc)
97                 f2fs_balance_fs(sbi, true);
98
99         sb_start_pagefault(inode->i_sb);
100
101         f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102
103         file_update_time(vmf->vma->vm_file);
104         filemap_invalidate_lock_shared(inode->i_mapping);
105         lock_page(page);
106         if (unlikely(page->mapping != inode->i_mapping ||
107                         page_offset(page) > i_size_read(inode) ||
108                         !PageUptodate(page))) {
109                 unlock_page(page);
110                 err = -EFAULT;
111                 goto out_sem;
112         }
113
114         if (need_alloc) {
115                 /* block allocation */
116                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
117                 set_new_dnode(&dn, inode, NULL, NULL, 0);
118                 err = f2fs_get_block(&dn, page->index);
119                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
120         }
121
122 #ifdef CONFIG_F2FS_FS_COMPRESSION
123         if (!need_alloc) {
124                 set_new_dnode(&dn, inode, NULL, NULL, 0);
125                 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
126                 f2fs_put_dnode(&dn);
127         }
128 #endif
129         if (err) {
130                 unlock_page(page);
131                 goto out_sem;
132         }
133
134         f2fs_wait_on_page_writeback(page, DATA, false, true);
135
136         /* wait for GCed page writeback via META_MAPPING */
137         f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
138
139         /*
140          * check to see if the page is mapped already (no holes)
141          */
142         if (PageMappedToDisk(page))
143                 goto out_sem;
144
145         /* page is wholly or partially inside EOF */
146         if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
147                                                 i_size_read(inode)) {
148                 loff_t offset;
149
150                 offset = i_size_read(inode) & ~PAGE_MASK;
151                 zero_user_segment(page, offset, PAGE_SIZE);
152         }
153         set_page_dirty(page);
154         if (!PageUptodate(page))
155                 SetPageUptodate(page);
156
157         f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
158         f2fs_update_time(sbi, REQ_TIME);
159
160         trace_f2fs_vm_page_mkwrite(page, DATA);
161 out_sem:
162         filemap_invalidate_unlock_shared(inode->i_mapping);
163
164         sb_end_pagefault(inode->i_sb);
165 err:
166         return block_page_mkwrite_return(err);
167 }
168
169 static const struct vm_operations_struct f2fs_file_vm_ops = {
170         .fault          = f2fs_filemap_fault,
171         .map_pages      = filemap_map_pages,
172         .page_mkwrite   = f2fs_vm_page_mkwrite,
173 };
174
175 static int get_parent_ino(struct inode *inode, nid_t *pino)
176 {
177         struct dentry *dentry;
178
179         /*
180          * Make sure to get the non-deleted alias.  The alias associated with
181          * the open file descriptor being fsync()'ed may be deleted already.
182          */
183         dentry = d_find_alias(inode);
184         if (!dentry)
185                 return 0;
186
187         *pino = parent_ino(dentry);
188         dput(dentry);
189         return 1;
190 }
191
192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
193 {
194         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
195         enum cp_reason_type cp_reason = CP_NO_NEEDED;
196
197         if (!S_ISREG(inode->i_mode))
198                 cp_reason = CP_NON_REGULAR;
199         else if (f2fs_compressed_file(inode))
200                 cp_reason = CP_COMPRESSED;
201         else if (inode->i_nlink != 1)
202                 cp_reason = CP_HARDLINK;
203         else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
204                 cp_reason = CP_SB_NEED_CP;
205         else if (file_wrong_pino(inode))
206                 cp_reason = CP_WRONG_PINO;
207         else if (!f2fs_space_for_roll_forward(sbi))
208                 cp_reason = CP_NO_SPC_ROLL;
209         else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
210                 cp_reason = CP_NODE_NEED_CP;
211         else if (test_opt(sbi, FASTBOOT))
212                 cp_reason = CP_FASTBOOT_MODE;
213         else if (F2FS_OPTION(sbi).active_logs == 2)
214                 cp_reason = CP_SPEC_LOG_NUM;
215         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
216                 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
217                 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
218                                                         TRANS_DIR_INO))
219                 cp_reason = CP_RECOVER_DIR;
220
221         return cp_reason;
222 }
223
224 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
225 {
226         struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
227         bool ret = false;
228         /* But we need to avoid that there are some inode updates */
229         if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
230                 ret = true;
231         f2fs_put_page(i, 0);
232         return ret;
233 }
234
235 static void try_to_fix_pino(struct inode *inode)
236 {
237         struct f2fs_inode_info *fi = F2FS_I(inode);
238         nid_t pino;
239
240         f2fs_down_write(&fi->i_sem);
241         if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
242                         get_parent_ino(inode, &pino)) {
243                 f2fs_i_pino_write(inode, pino);
244                 file_got_pino(inode);
245         }
246         f2fs_up_write(&fi->i_sem);
247 }
248
249 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
250                                                 int datasync, bool atomic)
251 {
252         struct inode *inode = file->f_mapping->host;
253         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
254         nid_t ino = inode->i_ino;
255         int ret = 0;
256         enum cp_reason_type cp_reason = 0;
257         struct writeback_control wbc = {
258                 .sync_mode = WB_SYNC_ALL,
259                 .nr_to_write = LONG_MAX,
260                 .for_reclaim = 0,
261         };
262         unsigned int seq_id = 0;
263
264         if (unlikely(f2fs_readonly(inode->i_sb)))
265                 return 0;
266
267         trace_f2fs_sync_file_enter(inode);
268
269         if (S_ISDIR(inode->i_mode))
270                 goto go_write;
271
272         /* if fdatasync is triggered, let's do in-place-update */
273         if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
274                 set_inode_flag(inode, FI_NEED_IPU);
275         ret = file_write_and_wait_range(file, start, end);
276         clear_inode_flag(inode, FI_NEED_IPU);
277
278         if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
279                 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
280                 return ret;
281         }
282
283         /* if the inode is dirty, let's recover all the time */
284         if (!f2fs_skip_inode_update(inode, datasync)) {
285                 f2fs_write_inode(inode, NULL);
286                 goto go_write;
287         }
288
289         /*
290          * if there is no written data, don't waste time to write recovery info.
291          */
292         if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
293                         !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
294
295                 /* it may call write_inode just prior to fsync */
296                 if (need_inode_page_update(sbi, ino))
297                         goto go_write;
298
299                 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
300                                 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
301                         goto flush_out;
302                 goto out;
303         } else {
304                 /*
305                  * for OPU case, during fsync(), node can be persisted before
306                  * data when lower device doesn't support write barrier, result
307                  * in data corruption after SPO.
308                  * So for strict fsync mode, force to use atomic write sematics
309                  * to keep write order in between data/node and last node to
310                  * avoid potential data corruption.
311                  */
312                 if (F2FS_OPTION(sbi).fsync_mode ==
313                                 FSYNC_MODE_STRICT && !atomic)
314                         atomic = true;
315         }
316 go_write:
317         /*
318          * Both of fdatasync() and fsync() are able to be recovered from
319          * sudden-power-off.
320          */
321         f2fs_down_read(&F2FS_I(inode)->i_sem);
322         cp_reason = need_do_checkpoint(inode);
323         f2fs_up_read(&F2FS_I(inode)->i_sem);
324
325         if (cp_reason) {
326                 /* all the dirty node pages should be flushed for POR */
327                 ret = f2fs_sync_fs(inode->i_sb, 1);
328
329                 /*
330                  * We've secured consistency through sync_fs. Following pino
331                  * will be used only for fsynced inodes after checkpoint.
332                  */
333                 try_to_fix_pino(inode);
334                 clear_inode_flag(inode, FI_APPEND_WRITE);
335                 clear_inode_flag(inode, FI_UPDATE_WRITE);
336                 goto out;
337         }
338 sync_nodes:
339         atomic_inc(&sbi->wb_sync_req[NODE]);
340         ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
341         atomic_dec(&sbi->wb_sync_req[NODE]);
342         if (ret)
343                 goto out;
344
345         /* if cp_error was enabled, we should avoid infinite loop */
346         if (unlikely(f2fs_cp_error(sbi))) {
347                 ret = -EIO;
348                 goto out;
349         }
350
351         if (f2fs_need_inode_block_update(sbi, ino)) {
352                 f2fs_mark_inode_dirty_sync(inode, true);
353                 f2fs_write_inode(inode, NULL);
354                 goto sync_nodes;
355         }
356
357         /*
358          * If it's atomic_write, it's just fine to keep write ordering. So
359          * here we don't need to wait for node write completion, since we use
360          * node chain which serializes node blocks. If one of node writes are
361          * reordered, we can see simply broken chain, resulting in stopping
362          * roll-forward recovery. It means we'll recover all or none node blocks
363          * given fsync mark.
364          */
365         if (!atomic) {
366                 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
367                 if (ret)
368                         goto out;
369         }
370
371         /* once recovery info is written, don't need to tack this */
372         f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
373         clear_inode_flag(inode, FI_APPEND_WRITE);
374 flush_out:
375         if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
376             (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
377                 ret = f2fs_issue_flush(sbi, inode->i_ino);
378         if (!ret) {
379                 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
380                 clear_inode_flag(inode, FI_UPDATE_WRITE);
381                 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
382         }
383         f2fs_update_time(sbi, REQ_TIME);
384 out:
385         trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
386         return ret;
387 }
388
389 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
390 {
391         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
392                 return -EIO;
393         return f2fs_do_sync_file(file, start, end, datasync, false);
394 }
395
396 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
397                                 pgoff_t index, int whence)
398 {
399         switch (whence) {
400         case SEEK_DATA:
401                 if (__is_valid_data_blkaddr(blkaddr))
402                         return true;
403                 if (blkaddr == NEW_ADDR &&
404                     xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
405                         return true;
406                 break;
407         case SEEK_HOLE:
408                 if (blkaddr == NULL_ADDR)
409                         return true;
410                 break;
411         }
412         return false;
413 }
414
415 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
416 {
417         struct inode *inode = file->f_mapping->host;
418         loff_t maxbytes = inode->i_sb->s_maxbytes;
419         struct dnode_of_data dn;
420         pgoff_t pgofs, end_offset;
421         loff_t data_ofs = offset;
422         loff_t isize;
423         int err = 0;
424
425         inode_lock(inode);
426
427         isize = i_size_read(inode);
428         if (offset >= isize)
429                 goto fail;
430
431         /* handle inline data case */
432         if (f2fs_has_inline_data(inode)) {
433                 if (whence == SEEK_HOLE) {
434                         data_ofs = isize;
435                         goto found;
436                 } else if (whence == SEEK_DATA) {
437                         data_ofs = offset;
438                         goto found;
439                 }
440         }
441
442         pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
443
444         for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
445                 set_new_dnode(&dn, inode, NULL, NULL, 0);
446                 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
447                 if (err && err != -ENOENT) {
448                         goto fail;
449                 } else if (err == -ENOENT) {
450                         /* direct node does not exists */
451                         if (whence == SEEK_DATA) {
452                                 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
453                                 continue;
454                         } else {
455                                 goto found;
456                         }
457                 }
458
459                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
460
461                 /* find data/hole in dnode block */
462                 for (; dn.ofs_in_node < end_offset;
463                                 dn.ofs_in_node++, pgofs++,
464                                 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
465                         block_t blkaddr;
466
467                         blkaddr = f2fs_data_blkaddr(&dn);
468
469                         if (__is_valid_data_blkaddr(blkaddr) &&
470                                 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
471                                         blkaddr, DATA_GENERIC_ENHANCE)) {
472                                 f2fs_put_dnode(&dn);
473                                 goto fail;
474                         }
475
476                         if (__found_offset(file->f_mapping, blkaddr,
477                                                         pgofs, whence)) {
478                                 f2fs_put_dnode(&dn);
479                                 goto found;
480                         }
481                 }
482                 f2fs_put_dnode(&dn);
483         }
484
485         if (whence == SEEK_DATA)
486                 goto fail;
487 found:
488         if (whence == SEEK_HOLE && data_ofs > isize)
489                 data_ofs = isize;
490         inode_unlock(inode);
491         return vfs_setpos(file, data_ofs, maxbytes);
492 fail:
493         inode_unlock(inode);
494         return -ENXIO;
495 }
496
497 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
498 {
499         struct inode *inode = file->f_mapping->host;
500         loff_t maxbytes = inode->i_sb->s_maxbytes;
501
502         if (f2fs_compressed_file(inode))
503                 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
504
505         switch (whence) {
506         case SEEK_SET:
507         case SEEK_CUR:
508         case SEEK_END:
509                 return generic_file_llseek_size(file, offset, whence,
510                                                 maxbytes, i_size_read(inode));
511         case SEEK_DATA:
512         case SEEK_HOLE:
513                 if (offset < 0)
514                         return -ENXIO;
515                 return f2fs_seek_block(file, offset, whence);
516         }
517
518         return -EINVAL;
519 }
520
521 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
522 {
523         struct inode *inode = file_inode(file);
524
525         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
526                 return -EIO;
527
528         if (!f2fs_is_compress_backend_ready(inode))
529                 return -EOPNOTSUPP;
530
531         file_accessed(file);
532         vma->vm_ops = &f2fs_file_vm_ops;
533         set_inode_flag(inode, FI_MMAP_FILE);
534         return 0;
535 }
536
537 static int f2fs_file_open(struct inode *inode, struct file *filp)
538 {
539         int err = fscrypt_file_open(inode, filp);
540
541         if (err)
542                 return err;
543
544         if (!f2fs_is_compress_backend_ready(inode))
545                 return -EOPNOTSUPP;
546
547         err = fsverity_file_open(inode, filp);
548         if (err)
549                 return err;
550
551         filp->f_mode |= FMODE_NOWAIT;
552
553         return dquot_file_open(inode, filp);
554 }
555
556 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
557 {
558         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
559         struct f2fs_node *raw_node;
560         int nr_free = 0, ofs = dn->ofs_in_node, len = count;
561         __le32 *addr;
562         int base = 0;
563         bool compressed_cluster = false;
564         int cluster_index = 0, valid_blocks = 0;
565         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
566         bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
567
568         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
569                 base = get_extra_isize(dn->inode);
570
571         raw_node = F2FS_NODE(dn->node_page);
572         addr = blkaddr_in_node(raw_node) + base + ofs;
573
574         /* Assumption: truncateion starts with cluster */
575         for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
576                 block_t blkaddr = le32_to_cpu(*addr);
577
578                 if (f2fs_compressed_file(dn->inode) &&
579                                         !(cluster_index & (cluster_size - 1))) {
580                         if (compressed_cluster)
581                                 f2fs_i_compr_blocks_update(dn->inode,
582                                                         valid_blocks, false);
583                         compressed_cluster = (blkaddr == COMPRESS_ADDR);
584                         valid_blocks = 0;
585                 }
586
587                 if (blkaddr == NULL_ADDR)
588                         continue;
589
590                 dn->data_blkaddr = NULL_ADDR;
591                 f2fs_set_data_blkaddr(dn);
592
593                 if (__is_valid_data_blkaddr(blkaddr)) {
594                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
595                                         DATA_GENERIC_ENHANCE))
596                                 continue;
597                         if (compressed_cluster)
598                                 valid_blocks++;
599                 }
600
601                 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
602                         clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
603
604                 f2fs_invalidate_blocks(sbi, blkaddr);
605
606                 if (!released || blkaddr != COMPRESS_ADDR)
607                         nr_free++;
608         }
609
610         if (compressed_cluster)
611                 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
612
613         if (nr_free) {
614                 pgoff_t fofs;
615                 /*
616                  * once we invalidate valid blkaddr in range [ofs, ofs + count],
617                  * we will invalidate all blkaddr in the whole range.
618                  */
619                 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
620                                                         dn->inode) + ofs;
621                 f2fs_update_extent_cache_range(dn, fofs, 0, len);
622                 dec_valid_block_count(sbi, dn->inode, nr_free);
623         }
624         dn->ofs_in_node = ofs;
625
626         f2fs_update_time(sbi, REQ_TIME);
627         trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
628                                          dn->ofs_in_node, nr_free);
629 }
630
631 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
632 {
633         f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
634 }
635
636 static int truncate_partial_data_page(struct inode *inode, u64 from,
637                                                                 bool cache_only)
638 {
639         loff_t offset = from & (PAGE_SIZE - 1);
640         pgoff_t index = from >> PAGE_SHIFT;
641         struct address_space *mapping = inode->i_mapping;
642         struct page *page;
643
644         if (!offset && !cache_only)
645                 return 0;
646
647         if (cache_only) {
648                 page = find_lock_page(mapping, index);
649                 if (page && PageUptodate(page))
650                         goto truncate_out;
651                 f2fs_put_page(page, 1);
652                 return 0;
653         }
654
655         page = f2fs_get_lock_data_page(inode, index, true);
656         if (IS_ERR(page))
657                 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
658 truncate_out:
659         f2fs_wait_on_page_writeback(page, DATA, true, true);
660         zero_user(page, offset, PAGE_SIZE - offset);
661
662         /* An encrypted inode should have a key and truncate the last page. */
663         f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
664         if (!cache_only)
665                 set_page_dirty(page);
666         f2fs_put_page(page, 1);
667         return 0;
668 }
669
670 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
671 {
672         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
673         struct dnode_of_data dn;
674         pgoff_t free_from;
675         int count = 0, err = 0;
676         struct page *ipage;
677         bool truncate_page = false;
678
679         trace_f2fs_truncate_blocks_enter(inode, from);
680
681         free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
682
683         if (free_from >= max_file_blocks(inode))
684                 goto free_partial;
685
686         if (lock)
687                 f2fs_lock_op(sbi);
688
689         ipage = f2fs_get_node_page(sbi, inode->i_ino);
690         if (IS_ERR(ipage)) {
691                 err = PTR_ERR(ipage);
692                 goto out;
693         }
694
695         if (f2fs_has_inline_data(inode)) {
696                 f2fs_truncate_inline_inode(inode, ipage, from);
697                 f2fs_put_page(ipage, 1);
698                 truncate_page = true;
699                 goto out;
700         }
701
702         set_new_dnode(&dn, inode, ipage, NULL, 0);
703         err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
704         if (err) {
705                 if (err == -ENOENT)
706                         goto free_next;
707                 goto out;
708         }
709
710         count = ADDRS_PER_PAGE(dn.node_page, inode);
711
712         count -= dn.ofs_in_node;
713         f2fs_bug_on(sbi, count < 0);
714
715         if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
716                 f2fs_truncate_data_blocks_range(&dn, count);
717                 free_from += count;
718         }
719
720         f2fs_put_dnode(&dn);
721 free_next:
722         err = f2fs_truncate_inode_blocks(inode, free_from);
723 out:
724         if (lock)
725                 f2fs_unlock_op(sbi);
726 free_partial:
727         /* lastly zero out the first data page */
728         if (!err)
729                 err = truncate_partial_data_page(inode, from, truncate_page);
730
731         trace_f2fs_truncate_blocks_exit(inode, err);
732         return err;
733 }
734
735 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
736 {
737         u64 free_from = from;
738         int err;
739
740 #ifdef CONFIG_F2FS_FS_COMPRESSION
741         /*
742          * for compressed file, only support cluster size
743          * aligned truncation.
744          */
745         if (f2fs_compressed_file(inode))
746                 free_from = round_up(from,
747                                 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
748 #endif
749
750         err = f2fs_do_truncate_blocks(inode, free_from, lock);
751         if (err)
752                 return err;
753
754 #ifdef CONFIG_F2FS_FS_COMPRESSION
755         /*
756          * For compressed file, after release compress blocks, don't allow write
757          * direct, but we should allow write direct after truncate to zero.
758          */
759         if (f2fs_compressed_file(inode) && !free_from
760                         && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
761                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
762
763         if (from != free_from) {
764                 err = f2fs_truncate_partial_cluster(inode, from, lock);
765                 if (err)
766                         return err;
767         }
768 #endif
769
770         return 0;
771 }
772
773 int f2fs_truncate(struct inode *inode)
774 {
775         int err;
776
777         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
778                 return -EIO;
779
780         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
781                                 S_ISLNK(inode->i_mode)))
782                 return 0;
783
784         trace_f2fs_truncate(inode);
785
786         if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
787                 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
788                 return -EIO;
789         }
790
791         err = f2fs_dquot_initialize(inode);
792         if (err)
793                 return err;
794
795         /* we should check inline_data size */
796         if (!f2fs_may_inline_data(inode)) {
797                 err = f2fs_convert_inline_inode(inode);
798                 if (err)
799                         return err;
800         }
801
802         err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
803         if (err)
804                 return err;
805
806         inode->i_mtime = inode->i_ctime = current_time(inode);
807         f2fs_mark_inode_dirty_sync(inode, false);
808         return 0;
809 }
810
811 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
812                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
813 {
814         struct inode *inode = d_inode(path->dentry);
815         struct f2fs_inode_info *fi = F2FS_I(inode);
816         struct f2fs_inode *ri = NULL;
817         unsigned int flags;
818
819         if (f2fs_has_extra_attr(inode) &&
820                         f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
821                         F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
822                 stat->result_mask |= STATX_BTIME;
823                 stat->btime.tv_sec = fi->i_crtime.tv_sec;
824                 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
825         }
826
827         flags = fi->i_flags;
828         if (flags & F2FS_COMPR_FL)
829                 stat->attributes |= STATX_ATTR_COMPRESSED;
830         if (flags & F2FS_APPEND_FL)
831                 stat->attributes |= STATX_ATTR_APPEND;
832         if (IS_ENCRYPTED(inode))
833                 stat->attributes |= STATX_ATTR_ENCRYPTED;
834         if (flags & F2FS_IMMUTABLE_FL)
835                 stat->attributes |= STATX_ATTR_IMMUTABLE;
836         if (flags & F2FS_NODUMP_FL)
837                 stat->attributes |= STATX_ATTR_NODUMP;
838         if (IS_VERITY(inode))
839                 stat->attributes |= STATX_ATTR_VERITY;
840
841         stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
842                                   STATX_ATTR_APPEND |
843                                   STATX_ATTR_ENCRYPTED |
844                                   STATX_ATTR_IMMUTABLE |
845                                   STATX_ATTR_NODUMP |
846                                   STATX_ATTR_VERITY);
847
848         generic_fillattr(mnt_userns, inode, stat);
849
850         /* we need to show initial sectors used for inline_data/dentries */
851         if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
852                                         f2fs_has_inline_dentry(inode))
853                 stat->blocks += (stat->size + 511) >> 9;
854
855         return 0;
856 }
857
858 #ifdef CONFIG_F2FS_FS_POSIX_ACL
859 static void __setattr_copy(struct user_namespace *mnt_userns,
860                            struct inode *inode, const struct iattr *attr)
861 {
862         unsigned int ia_valid = attr->ia_valid;
863
864         i_uid_update(mnt_userns, attr, inode);
865         i_gid_update(mnt_userns, attr, inode);
866         if (ia_valid & ATTR_ATIME)
867                 inode->i_atime = attr->ia_atime;
868         if (ia_valid & ATTR_MTIME)
869                 inode->i_mtime = attr->ia_mtime;
870         if (ia_valid & ATTR_CTIME)
871                 inode->i_ctime = attr->ia_ctime;
872         if (ia_valid & ATTR_MODE) {
873                 umode_t mode = attr->ia_mode;
874                 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
875
876                 if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
877                         mode &= ~S_ISGID;
878                 set_acl_inode(inode, mode);
879         }
880 }
881 #else
882 #define __setattr_copy setattr_copy
883 #endif
884
885 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
886                  struct iattr *attr)
887 {
888         struct inode *inode = d_inode(dentry);
889         int err;
890
891         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
892                 return -EIO;
893
894         if (unlikely(IS_IMMUTABLE(inode)))
895                 return -EPERM;
896
897         if (unlikely(IS_APPEND(inode) &&
898                         (attr->ia_valid & (ATTR_MODE | ATTR_UID |
899                                   ATTR_GID | ATTR_TIMES_SET))))
900                 return -EPERM;
901
902         if ((attr->ia_valid & ATTR_SIZE) &&
903                 !f2fs_is_compress_backend_ready(inode))
904                 return -EOPNOTSUPP;
905
906         err = setattr_prepare(mnt_userns, dentry, attr);
907         if (err)
908                 return err;
909
910         err = fscrypt_prepare_setattr(dentry, attr);
911         if (err)
912                 return err;
913
914         err = fsverity_prepare_setattr(dentry, attr);
915         if (err)
916                 return err;
917
918         if (is_quota_modification(mnt_userns, inode, attr)) {
919                 err = f2fs_dquot_initialize(inode);
920                 if (err)
921                         return err;
922         }
923         if (i_uid_needs_update(mnt_userns, attr, inode) ||
924             i_gid_needs_update(mnt_userns, attr, inode)) {
925                 f2fs_lock_op(F2FS_I_SB(inode));
926                 err = dquot_transfer(mnt_userns, inode, attr);
927                 if (err) {
928                         set_sbi_flag(F2FS_I_SB(inode),
929                                         SBI_QUOTA_NEED_REPAIR);
930                         f2fs_unlock_op(F2FS_I_SB(inode));
931                         return err;
932                 }
933                 /*
934                  * update uid/gid under lock_op(), so that dquot and inode can
935                  * be updated atomically.
936                  */
937                 i_uid_update(mnt_userns, attr, inode);
938                 i_gid_update(mnt_userns, attr, inode);
939                 f2fs_mark_inode_dirty_sync(inode, true);
940                 f2fs_unlock_op(F2FS_I_SB(inode));
941         }
942
943         if (attr->ia_valid & ATTR_SIZE) {
944                 loff_t old_size = i_size_read(inode);
945
946                 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
947                         /*
948                          * should convert inline inode before i_size_write to
949                          * keep smaller than inline_data size with inline flag.
950                          */
951                         err = f2fs_convert_inline_inode(inode);
952                         if (err)
953                                 return err;
954                 }
955
956                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
957                 filemap_invalidate_lock(inode->i_mapping);
958
959                 truncate_setsize(inode, attr->ia_size);
960
961                 if (attr->ia_size <= old_size)
962                         err = f2fs_truncate(inode);
963                 /*
964                  * do not trim all blocks after i_size if target size is
965                  * larger than i_size.
966                  */
967                 filemap_invalidate_unlock(inode->i_mapping);
968                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
969                 if (err)
970                         return err;
971
972                 spin_lock(&F2FS_I(inode)->i_size_lock);
973                 inode->i_mtime = inode->i_ctime = current_time(inode);
974                 F2FS_I(inode)->last_disk_size = i_size_read(inode);
975                 spin_unlock(&F2FS_I(inode)->i_size_lock);
976         }
977
978         __setattr_copy(mnt_userns, inode, attr);
979
980         if (attr->ia_valid & ATTR_MODE) {
981                 err = posix_acl_chmod(mnt_userns, inode, f2fs_get_inode_mode(inode));
982
983                 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
984                         if (!err)
985                                 inode->i_mode = F2FS_I(inode)->i_acl_mode;
986                         clear_inode_flag(inode, FI_ACL_MODE);
987                 }
988         }
989
990         /* file size may changed here */
991         f2fs_mark_inode_dirty_sync(inode, true);
992
993         /* inode change will produce dirty node pages flushed by checkpoint */
994         f2fs_balance_fs(F2FS_I_SB(inode), true);
995
996         return err;
997 }
998
999 const struct inode_operations f2fs_file_inode_operations = {
1000         .getattr        = f2fs_getattr,
1001         .setattr        = f2fs_setattr,
1002         .get_acl        = f2fs_get_acl,
1003         .set_acl        = f2fs_set_acl,
1004         .listxattr      = f2fs_listxattr,
1005         .fiemap         = f2fs_fiemap,
1006         .fileattr_get   = f2fs_fileattr_get,
1007         .fileattr_set   = f2fs_fileattr_set,
1008 };
1009
1010 static int fill_zero(struct inode *inode, pgoff_t index,
1011                                         loff_t start, loff_t len)
1012 {
1013         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1014         struct page *page;
1015
1016         if (!len)
1017                 return 0;
1018
1019         f2fs_balance_fs(sbi, true);
1020
1021         f2fs_lock_op(sbi);
1022         page = f2fs_get_new_data_page(inode, NULL, index, false);
1023         f2fs_unlock_op(sbi);
1024
1025         if (IS_ERR(page))
1026                 return PTR_ERR(page);
1027
1028         f2fs_wait_on_page_writeback(page, DATA, true, true);
1029         zero_user(page, start, len);
1030         set_page_dirty(page);
1031         f2fs_put_page(page, 1);
1032         return 0;
1033 }
1034
1035 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1036 {
1037         int err;
1038
1039         while (pg_start < pg_end) {
1040                 struct dnode_of_data dn;
1041                 pgoff_t end_offset, count;
1042
1043                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1044                 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1045                 if (err) {
1046                         if (err == -ENOENT) {
1047                                 pg_start = f2fs_get_next_page_offset(&dn,
1048                                                                 pg_start);
1049                                 continue;
1050                         }
1051                         return err;
1052                 }
1053
1054                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1055                 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1056
1057                 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1058
1059                 f2fs_truncate_data_blocks_range(&dn, count);
1060                 f2fs_put_dnode(&dn);
1061
1062                 pg_start += count;
1063         }
1064         return 0;
1065 }
1066
1067 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1068 {
1069         pgoff_t pg_start, pg_end;
1070         loff_t off_start, off_end;
1071         int ret;
1072
1073         ret = f2fs_convert_inline_inode(inode);
1074         if (ret)
1075                 return ret;
1076
1077         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1078         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1079
1080         off_start = offset & (PAGE_SIZE - 1);
1081         off_end = (offset + len) & (PAGE_SIZE - 1);
1082
1083         if (pg_start == pg_end) {
1084                 ret = fill_zero(inode, pg_start, off_start,
1085                                                 off_end - off_start);
1086                 if (ret)
1087                         return ret;
1088         } else {
1089                 if (off_start) {
1090                         ret = fill_zero(inode, pg_start++, off_start,
1091                                                 PAGE_SIZE - off_start);
1092                         if (ret)
1093                                 return ret;
1094                 }
1095                 if (off_end) {
1096                         ret = fill_zero(inode, pg_end, 0, off_end);
1097                         if (ret)
1098                                 return ret;
1099                 }
1100
1101                 if (pg_start < pg_end) {
1102                         loff_t blk_start, blk_end;
1103                         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1104
1105                         f2fs_balance_fs(sbi, true);
1106
1107                         blk_start = (loff_t)pg_start << PAGE_SHIFT;
1108                         blk_end = (loff_t)pg_end << PAGE_SHIFT;
1109
1110                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1111                         filemap_invalidate_lock(inode->i_mapping);
1112
1113                         truncate_pagecache_range(inode, blk_start, blk_end - 1);
1114
1115                         f2fs_lock_op(sbi);
1116                         ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1117                         f2fs_unlock_op(sbi);
1118
1119                         filemap_invalidate_unlock(inode->i_mapping);
1120                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1121                 }
1122         }
1123
1124         return ret;
1125 }
1126
1127 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1128                                 int *do_replace, pgoff_t off, pgoff_t len)
1129 {
1130         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1131         struct dnode_of_data dn;
1132         int ret, done, i;
1133
1134 next_dnode:
1135         set_new_dnode(&dn, inode, NULL, NULL, 0);
1136         ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1137         if (ret && ret != -ENOENT) {
1138                 return ret;
1139         } else if (ret == -ENOENT) {
1140                 if (dn.max_level == 0)
1141                         return -ENOENT;
1142                 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1143                                                 dn.ofs_in_node, len);
1144                 blkaddr += done;
1145                 do_replace += done;
1146                 goto next;
1147         }
1148
1149         done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1150                                                         dn.ofs_in_node, len);
1151         for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1152                 *blkaddr = f2fs_data_blkaddr(&dn);
1153
1154                 if (__is_valid_data_blkaddr(*blkaddr) &&
1155                         !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1156                                         DATA_GENERIC_ENHANCE)) {
1157                         f2fs_put_dnode(&dn);
1158                         return -EFSCORRUPTED;
1159                 }
1160
1161                 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1162
1163                         if (f2fs_lfs_mode(sbi)) {
1164                                 f2fs_put_dnode(&dn);
1165                                 return -EOPNOTSUPP;
1166                         }
1167
1168                         /* do not invalidate this block address */
1169                         f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1170                         *do_replace = 1;
1171                 }
1172         }
1173         f2fs_put_dnode(&dn);
1174 next:
1175         len -= done;
1176         off += done;
1177         if (len)
1178                 goto next_dnode;
1179         return 0;
1180 }
1181
1182 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1183                                 int *do_replace, pgoff_t off, int len)
1184 {
1185         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1186         struct dnode_of_data dn;
1187         int ret, i;
1188
1189         for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1190                 if (*do_replace == 0)
1191                         continue;
1192
1193                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1194                 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1195                 if (ret) {
1196                         dec_valid_block_count(sbi, inode, 1);
1197                         f2fs_invalidate_blocks(sbi, *blkaddr);
1198                 } else {
1199                         f2fs_update_data_blkaddr(&dn, *blkaddr);
1200                 }
1201                 f2fs_put_dnode(&dn);
1202         }
1203         return 0;
1204 }
1205
1206 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1207                         block_t *blkaddr, int *do_replace,
1208                         pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1209 {
1210         struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1211         pgoff_t i = 0;
1212         int ret;
1213
1214         while (i < len) {
1215                 if (blkaddr[i] == NULL_ADDR && !full) {
1216                         i++;
1217                         continue;
1218                 }
1219
1220                 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1221                         struct dnode_of_data dn;
1222                         struct node_info ni;
1223                         size_t new_size;
1224                         pgoff_t ilen;
1225
1226                         set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1227                         ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1228                         if (ret)
1229                                 return ret;
1230
1231                         ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1232                         if (ret) {
1233                                 f2fs_put_dnode(&dn);
1234                                 return ret;
1235                         }
1236
1237                         ilen = min((pgoff_t)
1238                                 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1239                                                 dn.ofs_in_node, len - i);
1240                         do {
1241                                 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1242                                 f2fs_truncate_data_blocks_range(&dn, 1);
1243
1244                                 if (do_replace[i]) {
1245                                         f2fs_i_blocks_write(src_inode,
1246                                                         1, false, false);
1247                                         f2fs_i_blocks_write(dst_inode,
1248                                                         1, true, false);
1249                                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1250                                         blkaddr[i], ni.version, true, false);
1251
1252                                         do_replace[i] = 0;
1253                                 }
1254                                 dn.ofs_in_node++;
1255                                 i++;
1256                                 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1257                                 if (dst_inode->i_size < new_size)
1258                                         f2fs_i_size_write(dst_inode, new_size);
1259                         } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1260
1261                         f2fs_put_dnode(&dn);
1262                 } else {
1263                         struct page *psrc, *pdst;
1264
1265                         psrc = f2fs_get_lock_data_page(src_inode,
1266                                                         src + i, true);
1267                         if (IS_ERR(psrc))
1268                                 return PTR_ERR(psrc);
1269                         pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1270                                                                 true);
1271                         if (IS_ERR(pdst)) {
1272                                 f2fs_put_page(psrc, 1);
1273                                 return PTR_ERR(pdst);
1274                         }
1275                         memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1276                         set_page_dirty(pdst);
1277                         f2fs_put_page(pdst, 1);
1278                         f2fs_put_page(psrc, 1);
1279
1280                         ret = f2fs_truncate_hole(src_inode,
1281                                                 src + i, src + i + 1);
1282                         if (ret)
1283                                 return ret;
1284                         i++;
1285                 }
1286         }
1287         return 0;
1288 }
1289
1290 static int __exchange_data_block(struct inode *src_inode,
1291                         struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1292                         pgoff_t len, bool full)
1293 {
1294         block_t *src_blkaddr;
1295         int *do_replace;
1296         pgoff_t olen;
1297         int ret;
1298
1299         while (len) {
1300                 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1301
1302                 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1303                                         array_size(olen, sizeof(block_t)),
1304                                         GFP_NOFS);
1305                 if (!src_blkaddr)
1306                         return -ENOMEM;
1307
1308                 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1309                                         array_size(olen, sizeof(int)),
1310                                         GFP_NOFS);
1311                 if (!do_replace) {
1312                         kvfree(src_blkaddr);
1313                         return -ENOMEM;
1314                 }
1315
1316                 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1317                                         do_replace, src, olen);
1318                 if (ret)
1319                         goto roll_back;
1320
1321                 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1322                                         do_replace, src, dst, olen, full);
1323                 if (ret)
1324                         goto roll_back;
1325
1326                 src += olen;
1327                 dst += olen;
1328                 len -= olen;
1329
1330                 kvfree(src_blkaddr);
1331                 kvfree(do_replace);
1332         }
1333         return 0;
1334
1335 roll_back:
1336         __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1337         kvfree(src_blkaddr);
1338         kvfree(do_replace);
1339         return ret;
1340 }
1341
1342 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1343 {
1344         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1345         pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1346         pgoff_t start = offset >> PAGE_SHIFT;
1347         pgoff_t end = (offset + len) >> PAGE_SHIFT;
1348         int ret;
1349
1350         f2fs_balance_fs(sbi, true);
1351
1352         /* avoid gc operation during block exchange */
1353         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1354         filemap_invalidate_lock(inode->i_mapping);
1355
1356         f2fs_lock_op(sbi);
1357         f2fs_drop_extent_tree(inode);
1358         truncate_pagecache(inode, offset);
1359         ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1360         f2fs_unlock_op(sbi);
1361
1362         filemap_invalidate_unlock(inode->i_mapping);
1363         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1364         return ret;
1365 }
1366
1367 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1368 {
1369         loff_t new_size;
1370         int ret;
1371
1372         if (offset + len >= i_size_read(inode))
1373                 return -EINVAL;
1374
1375         /* collapse range should be aligned to block size of f2fs. */
1376         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1377                 return -EINVAL;
1378
1379         ret = f2fs_convert_inline_inode(inode);
1380         if (ret)
1381                 return ret;
1382
1383         /* write out all dirty pages from offset */
1384         ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1385         if (ret)
1386                 return ret;
1387
1388         ret = f2fs_do_collapse(inode, offset, len);
1389         if (ret)
1390                 return ret;
1391
1392         /* write out all moved pages, if possible */
1393         filemap_invalidate_lock(inode->i_mapping);
1394         filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1395         truncate_pagecache(inode, offset);
1396
1397         new_size = i_size_read(inode) - len;
1398         ret = f2fs_truncate_blocks(inode, new_size, true);
1399         filemap_invalidate_unlock(inode->i_mapping);
1400         if (!ret)
1401                 f2fs_i_size_write(inode, new_size);
1402         return ret;
1403 }
1404
1405 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1406                                                                 pgoff_t end)
1407 {
1408         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1409         pgoff_t index = start;
1410         unsigned int ofs_in_node = dn->ofs_in_node;
1411         blkcnt_t count = 0;
1412         int ret;
1413
1414         for (; index < end; index++, dn->ofs_in_node++) {
1415                 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1416                         count++;
1417         }
1418
1419         dn->ofs_in_node = ofs_in_node;
1420         ret = f2fs_reserve_new_blocks(dn, count);
1421         if (ret)
1422                 return ret;
1423
1424         dn->ofs_in_node = ofs_in_node;
1425         for (index = start; index < end; index++, dn->ofs_in_node++) {
1426                 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1427                 /*
1428                  * f2fs_reserve_new_blocks will not guarantee entire block
1429                  * allocation.
1430                  */
1431                 if (dn->data_blkaddr == NULL_ADDR) {
1432                         ret = -ENOSPC;
1433                         break;
1434                 }
1435
1436                 if (dn->data_blkaddr == NEW_ADDR)
1437                         continue;
1438
1439                 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1440                                         DATA_GENERIC_ENHANCE)) {
1441                         ret = -EFSCORRUPTED;
1442                         break;
1443                 }
1444
1445                 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1446                 dn->data_blkaddr = NEW_ADDR;
1447                 f2fs_set_data_blkaddr(dn);
1448         }
1449
1450         f2fs_update_extent_cache_range(dn, start, 0, index - start);
1451
1452         return ret;
1453 }
1454
1455 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1456                                                                 int mode)
1457 {
1458         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1459         struct address_space *mapping = inode->i_mapping;
1460         pgoff_t index, pg_start, pg_end;
1461         loff_t new_size = i_size_read(inode);
1462         loff_t off_start, off_end;
1463         int ret = 0;
1464
1465         ret = inode_newsize_ok(inode, (len + offset));
1466         if (ret)
1467                 return ret;
1468
1469         ret = f2fs_convert_inline_inode(inode);
1470         if (ret)
1471                 return ret;
1472
1473         ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1474         if (ret)
1475                 return ret;
1476
1477         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1478         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1479
1480         off_start = offset & (PAGE_SIZE - 1);
1481         off_end = (offset + len) & (PAGE_SIZE - 1);
1482
1483         if (pg_start == pg_end) {
1484                 ret = fill_zero(inode, pg_start, off_start,
1485                                                 off_end - off_start);
1486                 if (ret)
1487                         return ret;
1488
1489                 new_size = max_t(loff_t, new_size, offset + len);
1490         } else {
1491                 if (off_start) {
1492                         ret = fill_zero(inode, pg_start++, off_start,
1493                                                 PAGE_SIZE - off_start);
1494                         if (ret)
1495                                 return ret;
1496
1497                         new_size = max_t(loff_t, new_size,
1498                                         (loff_t)pg_start << PAGE_SHIFT);
1499                 }
1500
1501                 for (index = pg_start; index < pg_end;) {
1502                         struct dnode_of_data dn;
1503                         unsigned int end_offset;
1504                         pgoff_t end;
1505
1506                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1507                         filemap_invalidate_lock(mapping);
1508
1509                         truncate_pagecache_range(inode,
1510                                 (loff_t)index << PAGE_SHIFT,
1511                                 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1512
1513                         f2fs_lock_op(sbi);
1514
1515                         set_new_dnode(&dn, inode, NULL, NULL, 0);
1516                         ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1517                         if (ret) {
1518                                 f2fs_unlock_op(sbi);
1519                                 filemap_invalidate_unlock(mapping);
1520                                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1521                                 goto out;
1522                         }
1523
1524                         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1525                         end = min(pg_end, end_offset - dn.ofs_in_node + index);
1526
1527                         ret = f2fs_do_zero_range(&dn, index, end);
1528                         f2fs_put_dnode(&dn);
1529
1530                         f2fs_unlock_op(sbi);
1531                         filemap_invalidate_unlock(mapping);
1532                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1533
1534                         f2fs_balance_fs(sbi, dn.node_changed);
1535
1536                         if (ret)
1537                                 goto out;
1538
1539                         index = end;
1540                         new_size = max_t(loff_t, new_size,
1541                                         (loff_t)index << PAGE_SHIFT);
1542                 }
1543
1544                 if (off_end) {
1545                         ret = fill_zero(inode, pg_end, 0, off_end);
1546                         if (ret)
1547                                 goto out;
1548
1549                         new_size = max_t(loff_t, new_size, offset + len);
1550                 }
1551         }
1552
1553 out:
1554         if (new_size > i_size_read(inode)) {
1555                 if (mode & FALLOC_FL_KEEP_SIZE)
1556                         file_set_keep_isize(inode);
1557                 else
1558                         f2fs_i_size_write(inode, new_size);
1559         }
1560         return ret;
1561 }
1562
1563 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1564 {
1565         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1566         struct address_space *mapping = inode->i_mapping;
1567         pgoff_t nr, pg_start, pg_end, delta, idx;
1568         loff_t new_size;
1569         int ret = 0;
1570
1571         new_size = i_size_read(inode) + len;
1572         ret = inode_newsize_ok(inode, new_size);
1573         if (ret)
1574                 return ret;
1575
1576         if (offset >= i_size_read(inode))
1577                 return -EINVAL;
1578
1579         /* insert range should be aligned to block size of f2fs. */
1580         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1581                 return -EINVAL;
1582
1583         ret = f2fs_convert_inline_inode(inode);
1584         if (ret)
1585                 return ret;
1586
1587         f2fs_balance_fs(sbi, true);
1588
1589         filemap_invalidate_lock(mapping);
1590         ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1591         filemap_invalidate_unlock(mapping);
1592         if (ret)
1593                 return ret;
1594
1595         /* write out all dirty pages from offset */
1596         ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1597         if (ret)
1598                 return ret;
1599
1600         pg_start = offset >> PAGE_SHIFT;
1601         pg_end = (offset + len) >> PAGE_SHIFT;
1602         delta = pg_end - pg_start;
1603         idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1604
1605         /* avoid gc operation during block exchange */
1606         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1607         filemap_invalidate_lock(mapping);
1608         truncate_pagecache(inode, offset);
1609
1610         while (!ret && idx > pg_start) {
1611                 nr = idx - pg_start;
1612                 if (nr > delta)
1613                         nr = delta;
1614                 idx -= nr;
1615
1616                 f2fs_lock_op(sbi);
1617                 f2fs_drop_extent_tree(inode);
1618
1619                 ret = __exchange_data_block(inode, inode, idx,
1620                                         idx + delta, nr, false);
1621                 f2fs_unlock_op(sbi);
1622         }
1623         filemap_invalidate_unlock(mapping);
1624         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1625
1626         /* write out all moved pages, if possible */
1627         filemap_invalidate_lock(mapping);
1628         filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1629         truncate_pagecache(inode, offset);
1630         filemap_invalidate_unlock(mapping);
1631
1632         if (!ret)
1633                 f2fs_i_size_write(inode, new_size);
1634         return ret;
1635 }
1636
1637 static int expand_inode_data(struct inode *inode, loff_t offset,
1638                                         loff_t len, int mode)
1639 {
1640         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1641         struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1642                         .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1643                         .m_may_create = true };
1644         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1645                         .init_gc_type = FG_GC,
1646                         .should_migrate_blocks = false,
1647                         .err_gc_skipped = true,
1648                         .nr_free_secs = 0 };
1649         pgoff_t pg_start, pg_end;
1650         loff_t new_size = i_size_read(inode);
1651         loff_t off_end;
1652         block_t expanded = 0;
1653         int err;
1654
1655         err = inode_newsize_ok(inode, (len + offset));
1656         if (err)
1657                 return err;
1658
1659         err = f2fs_convert_inline_inode(inode);
1660         if (err)
1661                 return err;
1662
1663         f2fs_balance_fs(sbi, true);
1664
1665         pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1666         pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1667         off_end = (offset + len) & (PAGE_SIZE - 1);
1668
1669         map.m_lblk = pg_start;
1670         map.m_len = pg_end - pg_start;
1671         if (off_end)
1672                 map.m_len++;
1673
1674         if (!map.m_len)
1675                 return 0;
1676
1677         if (f2fs_is_pinned_file(inode)) {
1678                 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1679                 block_t sec_len = roundup(map.m_len, sec_blks);
1680
1681                 map.m_len = sec_blks;
1682 next_alloc:
1683                 if (has_not_enough_free_secs(sbi, 0,
1684                         GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1685                         f2fs_down_write(&sbi->gc_lock);
1686                         err = f2fs_gc(sbi, &gc_control);
1687                         if (err && err != -ENODATA)
1688                                 goto out_err;
1689                 }
1690
1691                 f2fs_down_write(&sbi->pin_sem);
1692
1693                 f2fs_lock_op(sbi);
1694                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1695                 f2fs_unlock_op(sbi);
1696
1697                 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1698                 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1699                 file_dont_truncate(inode);
1700
1701                 f2fs_up_write(&sbi->pin_sem);
1702
1703                 expanded += map.m_len;
1704                 sec_len -= map.m_len;
1705                 map.m_lblk += map.m_len;
1706                 if (!err && sec_len)
1707                         goto next_alloc;
1708
1709                 map.m_len = expanded;
1710         } else {
1711                 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1712                 expanded = map.m_len;
1713         }
1714 out_err:
1715         if (err) {
1716                 pgoff_t last_off;
1717
1718                 if (!expanded)
1719                         return err;
1720
1721                 last_off = pg_start + expanded - 1;
1722
1723                 /* update new size to the failed position */
1724                 new_size = (last_off == pg_end) ? offset + len :
1725                                         (loff_t)(last_off + 1) << PAGE_SHIFT;
1726         } else {
1727                 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1728         }
1729
1730         if (new_size > i_size_read(inode)) {
1731                 if (mode & FALLOC_FL_KEEP_SIZE)
1732                         file_set_keep_isize(inode);
1733                 else
1734                         f2fs_i_size_write(inode, new_size);
1735         }
1736
1737         return err;
1738 }
1739
1740 static long f2fs_fallocate(struct file *file, int mode,
1741                                 loff_t offset, loff_t len)
1742 {
1743         struct inode *inode = file_inode(file);
1744         long ret = 0;
1745
1746         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1747                 return -EIO;
1748         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1749                 return -ENOSPC;
1750         if (!f2fs_is_compress_backend_ready(inode))
1751                 return -EOPNOTSUPP;
1752
1753         /* f2fs only support ->fallocate for regular file */
1754         if (!S_ISREG(inode->i_mode))
1755                 return -EINVAL;
1756
1757         if (IS_ENCRYPTED(inode) &&
1758                 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1759                 return -EOPNOTSUPP;
1760
1761         /*
1762          * Pinned file should not support partial trucation since the block
1763          * can be used by applications.
1764          */
1765         if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1766                 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1767                         FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1768                 return -EOPNOTSUPP;
1769
1770         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1771                         FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1772                         FALLOC_FL_INSERT_RANGE))
1773                 return -EOPNOTSUPP;
1774
1775         inode_lock(inode);
1776
1777         ret = file_modified(file);
1778         if (ret)
1779                 goto out;
1780
1781         if (mode & FALLOC_FL_PUNCH_HOLE) {
1782                 if (offset >= inode->i_size)
1783                         goto out;
1784
1785                 ret = punch_hole(inode, offset, len);
1786         } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1787                 ret = f2fs_collapse_range(inode, offset, len);
1788         } else if (mode & FALLOC_FL_ZERO_RANGE) {
1789                 ret = f2fs_zero_range(inode, offset, len, mode);
1790         } else if (mode & FALLOC_FL_INSERT_RANGE) {
1791                 ret = f2fs_insert_range(inode, offset, len);
1792         } else {
1793                 ret = expand_inode_data(inode, offset, len, mode);
1794         }
1795
1796         if (!ret) {
1797                 inode->i_mtime = inode->i_ctime = current_time(inode);
1798                 f2fs_mark_inode_dirty_sync(inode, false);
1799                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1800         }
1801
1802 out:
1803         inode_unlock(inode);
1804
1805         trace_f2fs_fallocate(inode, mode, offset, len, ret);
1806         return ret;
1807 }
1808
1809 static int f2fs_release_file(struct inode *inode, struct file *filp)
1810 {
1811         /*
1812          * f2fs_relase_file is called at every close calls. So we should
1813          * not drop any inmemory pages by close called by other process.
1814          */
1815         if (!(filp->f_mode & FMODE_WRITE) ||
1816                         atomic_read(&inode->i_writecount) != 1)
1817                 return 0;
1818
1819         f2fs_abort_atomic_write(inode, true);
1820         return 0;
1821 }
1822
1823 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1824 {
1825         struct inode *inode = file_inode(file);
1826
1827         /*
1828          * If the process doing a transaction is crashed, we should do
1829          * roll-back. Otherwise, other reader/write can see corrupted database
1830          * until all the writers close its file. Since this should be done
1831          * before dropping file lock, it needs to do in ->flush.
1832          */
1833         if (F2FS_I(inode)->atomic_write_task == current)
1834                 f2fs_abort_atomic_write(inode, true);
1835         return 0;
1836 }
1837
1838 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1839 {
1840         struct f2fs_inode_info *fi = F2FS_I(inode);
1841         u32 masked_flags = fi->i_flags & mask;
1842
1843         /* mask can be shrunk by flags_valid selector */
1844         iflags &= mask;
1845
1846         /* Is it quota file? Do not allow user to mess with it */
1847         if (IS_NOQUOTA(inode))
1848                 return -EPERM;
1849
1850         if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1851                 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1852                         return -EOPNOTSUPP;
1853                 if (!f2fs_empty_dir(inode))
1854                         return -ENOTEMPTY;
1855         }
1856
1857         if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1858                 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1859                         return -EOPNOTSUPP;
1860                 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1861                         return -EINVAL;
1862         }
1863
1864         if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1865                 if (masked_flags & F2FS_COMPR_FL) {
1866                         if (!f2fs_disable_compressed_file(inode))
1867                                 return -EINVAL;
1868                 } else {
1869                         if (!f2fs_may_compress(inode))
1870                                 return -EINVAL;
1871                         if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
1872                                 return -EINVAL;
1873                         if (set_compress_context(inode))
1874                                 return -EOPNOTSUPP;
1875                 }
1876         }
1877
1878         fi->i_flags = iflags | (fi->i_flags & ~mask);
1879         f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1880                                         (fi->i_flags & F2FS_NOCOMP_FL));
1881
1882         if (fi->i_flags & F2FS_PROJINHERIT_FL)
1883                 set_inode_flag(inode, FI_PROJ_INHERIT);
1884         else
1885                 clear_inode_flag(inode, FI_PROJ_INHERIT);
1886
1887         inode->i_ctime = current_time(inode);
1888         f2fs_set_inode_flags(inode);
1889         f2fs_mark_inode_dirty_sync(inode, true);
1890         return 0;
1891 }
1892
1893 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1894
1895 /*
1896  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1897  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1898  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1899  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1900  *
1901  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1902  * FS_IOC_FSSETXATTR is done by the VFS.
1903  */
1904
1905 static const struct {
1906         u32 iflag;
1907         u32 fsflag;
1908 } f2fs_fsflags_map[] = {
1909         { F2FS_COMPR_FL,        FS_COMPR_FL },
1910         { F2FS_SYNC_FL,         FS_SYNC_FL },
1911         { F2FS_IMMUTABLE_FL,    FS_IMMUTABLE_FL },
1912         { F2FS_APPEND_FL,       FS_APPEND_FL },
1913         { F2FS_NODUMP_FL,       FS_NODUMP_FL },
1914         { F2FS_NOATIME_FL,      FS_NOATIME_FL },
1915         { F2FS_NOCOMP_FL,       FS_NOCOMP_FL },
1916         { F2FS_INDEX_FL,        FS_INDEX_FL },
1917         { F2FS_DIRSYNC_FL,      FS_DIRSYNC_FL },
1918         { F2FS_PROJINHERIT_FL,  FS_PROJINHERIT_FL },
1919         { F2FS_CASEFOLD_FL,     FS_CASEFOLD_FL },
1920 };
1921
1922 #define F2FS_GETTABLE_FS_FL (           \
1923                 FS_COMPR_FL |           \
1924                 FS_SYNC_FL |            \
1925                 FS_IMMUTABLE_FL |       \
1926                 FS_APPEND_FL |          \
1927                 FS_NODUMP_FL |          \
1928                 FS_NOATIME_FL |         \
1929                 FS_NOCOMP_FL |          \
1930                 FS_INDEX_FL |           \
1931                 FS_DIRSYNC_FL |         \
1932                 FS_PROJINHERIT_FL |     \
1933                 FS_ENCRYPT_FL |         \
1934                 FS_INLINE_DATA_FL |     \
1935                 FS_NOCOW_FL |           \
1936                 FS_VERITY_FL |          \
1937                 FS_CASEFOLD_FL)
1938
1939 #define F2FS_SETTABLE_FS_FL (           \
1940                 FS_COMPR_FL |           \
1941                 FS_SYNC_FL |            \
1942                 FS_IMMUTABLE_FL |       \
1943                 FS_APPEND_FL |          \
1944                 FS_NODUMP_FL |          \
1945                 FS_NOATIME_FL |         \
1946                 FS_NOCOMP_FL |          \
1947                 FS_DIRSYNC_FL |         \
1948                 FS_PROJINHERIT_FL |     \
1949                 FS_CASEFOLD_FL)
1950
1951 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1952 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1953 {
1954         u32 fsflags = 0;
1955         int i;
1956
1957         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1958                 if (iflags & f2fs_fsflags_map[i].iflag)
1959                         fsflags |= f2fs_fsflags_map[i].fsflag;
1960
1961         return fsflags;
1962 }
1963
1964 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1965 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1966 {
1967         u32 iflags = 0;
1968         int i;
1969
1970         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1971                 if (fsflags & f2fs_fsflags_map[i].fsflag)
1972                         iflags |= f2fs_fsflags_map[i].iflag;
1973
1974         return iflags;
1975 }
1976
1977 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1978 {
1979         struct inode *inode = file_inode(filp);
1980
1981         return put_user(inode->i_generation, (int __user *)arg);
1982 }
1983
1984 static int f2fs_ioc_start_atomic_write(struct file *filp)
1985 {
1986         struct inode *inode = file_inode(filp);
1987         struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
1988         struct f2fs_inode_info *fi = F2FS_I(inode);
1989         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1990         struct inode *pinode;
1991         int ret;
1992
1993         if (!inode_owner_or_capable(mnt_userns, inode))
1994                 return -EACCES;
1995
1996         if (!S_ISREG(inode->i_mode))
1997                 return -EINVAL;
1998
1999         if (filp->f_flags & O_DIRECT)
2000                 return -EINVAL;
2001
2002         ret = mnt_want_write_file(filp);
2003         if (ret)
2004                 return ret;
2005
2006         inode_lock(inode);
2007
2008         if (!f2fs_disable_compressed_file(inode)) {
2009                 ret = -EINVAL;
2010                 goto out;
2011         }
2012
2013         if (f2fs_is_atomic_file(inode))
2014                 goto out;
2015
2016         ret = f2fs_convert_inline_inode(inode);
2017         if (ret)
2018                 goto out;
2019
2020         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2021
2022         /*
2023          * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2024          * f2fs_is_atomic_file.
2025          */
2026         if (get_dirty_pages(inode))
2027                 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2028                           inode->i_ino, get_dirty_pages(inode));
2029         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2030         if (ret) {
2031                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2032                 goto out;
2033         }
2034
2035         /* Create a COW inode for atomic write */
2036         pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2037         if (IS_ERR(pinode)) {
2038                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2039                 ret = PTR_ERR(pinode);
2040                 goto out;
2041         }
2042
2043         ret = f2fs_get_tmpfile(mnt_userns, pinode, &fi->cow_inode);
2044         iput(pinode);
2045         if (ret) {
2046                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2047                 goto out;
2048         }
2049         f2fs_i_size_write(fi->cow_inode, i_size_read(inode));
2050
2051         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2052         sbi->atomic_files++;
2053         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2054
2055         set_inode_flag(inode, FI_ATOMIC_FILE);
2056         set_inode_flag(fi->cow_inode, FI_COW_FILE);
2057         clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2058         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2059
2060         f2fs_update_time(sbi, REQ_TIME);
2061         fi->atomic_write_task = current;
2062         stat_update_max_atomic_write(inode);
2063         fi->atomic_write_cnt = 0;
2064 out:
2065         inode_unlock(inode);
2066         mnt_drop_write_file(filp);
2067         return ret;
2068 }
2069
2070 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2071 {
2072         struct inode *inode = file_inode(filp);
2073         struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2074         int ret;
2075
2076         if (!inode_owner_or_capable(mnt_userns, inode))
2077                 return -EACCES;
2078
2079         ret = mnt_want_write_file(filp);
2080         if (ret)
2081                 return ret;
2082
2083         f2fs_balance_fs(F2FS_I_SB(inode), true);
2084
2085         inode_lock(inode);
2086
2087         if (f2fs_is_atomic_file(inode)) {
2088                 ret = f2fs_commit_atomic_write(inode);
2089                 if (ret)
2090                         goto unlock_out;
2091
2092                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2093                 if (!ret)
2094                         f2fs_abort_atomic_write(inode, false);
2095         } else {
2096                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2097         }
2098 unlock_out:
2099         inode_unlock(inode);
2100         mnt_drop_write_file(filp);
2101         return ret;
2102 }
2103
2104 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2105 {
2106         struct inode *inode = file_inode(filp);
2107         struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2108         int ret;
2109
2110         if (!inode_owner_or_capable(mnt_userns, inode))
2111                 return -EACCES;
2112
2113         ret = mnt_want_write_file(filp);
2114         if (ret)
2115                 return ret;
2116
2117         inode_lock(inode);
2118
2119         f2fs_abort_atomic_write(inode, true);
2120
2121         inode_unlock(inode);
2122
2123         mnt_drop_write_file(filp);
2124         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2125         return ret;
2126 }
2127
2128 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2129 {
2130         struct inode *inode = file_inode(filp);
2131         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2132         struct super_block *sb = sbi->sb;
2133         __u32 in;
2134         int ret = 0;
2135
2136         if (!capable(CAP_SYS_ADMIN))
2137                 return -EPERM;
2138
2139         if (get_user(in, (__u32 __user *)arg))
2140                 return -EFAULT;
2141
2142         if (in != F2FS_GOING_DOWN_FULLSYNC) {
2143                 ret = mnt_want_write_file(filp);
2144                 if (ret) {
2145                         if (ret == -EROFS) {
2146                                 ret = 0;
2147                                 f2fs_stop_checkpoint(sbi, false);
2148                                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2149                                 trace_f2fs_shutdown(sbi, in, ret);
2150                         }
2151                         return ret;
2152                 }
2153         }
2154
2155         switch (in) {
2156         case F2FS_GOING_DOWN_FULLSYNC:
2157                 ret = freeze_bdev(sb->s_bdev);
2158                 if (ret)
2159                         goto out;
2160                 f2fs_stop_checkpoint(sbi, false);
2161                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2162                 thaw_bdev(sb->s_bdev);
2163                 break;
2164         case F2FS_GOING_DOWN_METASYNC:
2165                 /* do checkpoint only */
2166                 ret = f2fs_sync_fs(sb, 1);
2167                 if (ret)
2168                         goto out;
2169                 f2fs_stop_checkpoint(sbi, false);
2170                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2171                 break;
2172         case F2FS_GOING_DOWN_NOSYNC:
2173                 f2fs_stop_checkpoint(sbi, false);
2174                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2175                 break;
2176         case F2FS_GOING_DOWN_METAFLUSH:
2177                 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2178                 f2fs_stop_checkpoint(sbi, false);
2179                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2180                 break;
2181         case F2FS_GOING_DOWN_NEED_FSCK:
2182                 set_sbi_flag(sbi, SBI_NEED_FSCK);
2183                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2184                 set_sbi_flag(sbi, SBI_IS_DIRTY);
2185                 /* do checkpoint only */
2186                 ret = f2fs_sync_fs(sb, 1);
2187                 goto out;
2188         default:
2189                 ret = -EINVAL;
2190                 goto out;
2191         }
2192
2193         f2fs_stop_gc_thread(sbi);
2194         f2fs_stop_discard_thread(sbi);
2195
2196         f2fs_drop_discard_cmd(sbi);
2197         clear_opt(sbi, DISCARD);
2198
2199         f2fs_update_time(sbi, REQ_TIME);
2200 out:
2201         if (in != F2FS_GOING_DOWN_FULLSYNC)
2202                 mnt_drop_write_file(filp);
2203
2204         trace_f2fs_shutdown(sbi, in, ret);
2205
2206         return ret;
2207 }
2208
2209 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2210 {
2211         struct inode *inode = file_inode(filp);
2212         struct super_block *sb = inode->i_sb;
2213         struct fstrim_range range;
2214         int ret;
2215
2216         if (!capable(CAP_SYS_ADMIN))
2217                 return -EPERM;
2218
2219         if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2220                 return -EOPNOTSUPP;
2221
2222         if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2223                                 sizeof(range)))
2224                 return -EFAULT;
2225
2226         ret = mnt_want_write_file(filp);
2227         if (ret)
2228                 return ret;
2229
2230         range.minlen = max((unsigned int)range.minlen,
2231                            bdev_discard_granularity(sb->s_bdev));
2232         ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2233         mnt_drop_write_file(filp);
2234         if (ret < 0)
2235                 return ret;
2236
2237         if (copy_to_user((struct fstrim_range __user *)arg, &range,
2238                                 sizeof(range)))
2239                 return -EFAULT;
2240         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2241         return 0;
2242 }
2243
2244 static bool uuid_is_nonzero(__u8 u[16])
2245 {
2246         int i;
2247
2248         for (i = 0; i < 16; i++)
2249                 if (u[i])
2250                         return true;
2251         return false;
2252 }
2253
2254 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2255 {
2256         struct inode *inode = file_inode(filp);
2257
2258         if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2259                 return -EOPNOTSUPP;
2260
2261         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2262
2263         return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2264 }
2265
2266 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2267 {
2268         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2269                 return -EOPNOTSUPP;
2270         return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2271 }
2272
2273 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2274 {
2275         struct inode *inode = file_inode(filp);
2276         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2277         int err;
2278
2279         if (!f2fs_sb_has_encrypt(sbi))
2280                 return -EOPNOTSUPP;
2281
2282         err = mnt_want_write_file(filp);
2283         if (err)
2284                 return err;
2285
2286         f2fs_down_write(&sbi->sb_lock);
2287
2288         if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2289                 goto got_it;
2290
2291         /* update superblock with uuid */
2292         generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2293
2294         err = f2fs_commit_super(sbi, false);
2295         if (err) {
2296                 /* undo new data */
2297                 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2298                 goto out_err;
2299         }
2300 got_it:
2301         if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2302                                                                         16))
2303                 err = -EFAULT;
2304 out_err:
2305         f2fs_up_write(&sbi->sb_lock);
2306         mnt_drop_write_file(filp);
2307         return err;
2308 }
2309
2310 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2311                                              unsigned long arg)
2312 {
2313         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2314                 return -EOPNOTSUPP;
2315
2316         return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2317 }
2318
2319 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2320 {
2321         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2322                 return -EOPNOTSUPP;
2323
2324         return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2325 }
2326
2327 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2328 {
2329         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2330                 return -EOPNOTSUPP;
2331
2332         return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2333 }
2334
2335 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2336                                                     unsigned long arg)
2337 {
2338         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2339                 return -EOPNOTSUPP;
2340
2341         return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2342 }
2343
2344 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2345                                               unsigned long arg)
2346 {
2347         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2348                 return -EOPNOTSUPP;
2349
2350         return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2351 }
2352
2353 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2354 {
2355         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2356                 return -EOPNOTSUPP;
2357
2358         return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2359 }
2360
2361 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2362 {
2363         struct inode *inode = file_inode(filp);
2364         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2365         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2366                         .no_bg_gc = false,
2367                         .should_migrate_blocks = false,
2368                         .nr_free_secs = 0 };
2369         __u32 sync;
2370         int ret;
2371
2372         if (!capable(CAP_SYS_ADMIN))
2373                 return -EPERM;
2374
2375         if (get_user(sync, (__u32 __user *)arg))
2376                 return -EFAULT;
2377
2378         if (f2fs_readonly(sbi->sb))
2379                 return -EROFS;
2380
2381         ret = mnt_want_write_file(filp);
2382         if (ret)
2383                 return ret;
2384
2385         if (!sync) {
2386                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2387                         ret = -EBUSY;
2388                         goto out;
2389                 }
2390         } else {
2391                 f2fs_down_write(&sbi->gc_lock);
2392         }
2393
2394         gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2395         gc_control.err_gc_skipped = sync;
2396         ret = f2fs_gc(sbi, &gc_control);
2397 out:
2398         mnt_drop_write_file(filp);
2399         return ret;
2400 }
2401
2402 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2403 {
2404         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2405         struct f2fs_gc_control gc_control = {
2406                         .init_gc_type = range->sync ? FG_GC : BG_GC,
2407                         .no_bg_gc = false,
2408                         .should_migrate_blocks = false,
2409                         .err_gc_skipped = range->sync,
2410                         .nr_free_secs = 0 };
2411         u64 end;
2412         int ret;
2413
2414         if (!capable(CAP_SYS_ADMIN))
2415                 return -EPERM;
2416         if (f2fs_readonly(sbi->sb))
2417                 return -EROFS;
2418
2419         end = range->start + range->len;
2420         if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2421                                         end >= MAX_BLKADDR(sbi))
2422                 return -EINVAL;
2423
2424         ret = mnt_want_write_file(filp);
2425         if (ret)
2426                 return ret;
2427
2428 do_more:
2429         if (!range->sync) {
2430                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2431                         ret = -EBUSY;
2432                         goto out;
2433                 }
2434         } else {
2435                 f2fs_down_write(&sbi->gc_lock);
2436         }
2437
2438         gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2439         ret = f2fs_gc(sbi, &gc_control);
2440         if (ret) {
2441                 if (ret == -EBUSY)
2442                         ret = -EAGAIN;
2443                 goto out;
2444         }
2445         range->start += CAP_BLKS_PER_SEC(sbi);
2446         if (range->start <= end)
2447                 goto do_more;
2448 out:
2449         mnt_drop_write_file(filp);
2450         return ret;
2451 }
2452
2453 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2454 {
2455         struct f2fs_gc_range range;
2456
2457         if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2458                                                         sizeof(range)))
2459                 return -EFAULT;
2460         return __f2fs_ioc_gc_range(filp, &range);
2461 }
2462
2463 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2464 {
2465         struct inode *inode = file_inode(filp);
2466         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2467         int ret;
2468
2469         if (!capable(CAP_SYS_ADMIN))
2470                 return -EPERM;
2471
2472         if (f2fs_readonly(sbi->sb))
2473                 return -EROFS;
2474
2475         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2476                 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2477                 return -EINVAL;
2478         }
2479
2480         ret = mnt_want_write_file(filp);
2481         if (ret)
2482                 return ret;
2483
2484         ret = f2fs_sync_fs(sbi->sb, 1);
2485
2486         mnt_drop_write_file(filp);
2487         return ret;
2488 }
2489
2490 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2491                                         struct file *filp,
2492                                         struct f2fs_defragment *range)
2493 {
2494         struct inode *inode = file_inode(filp);
2495         struct f2fs_map_blocks map = { .m_next_extent = NULL,
2496                                         .m_seg_type = NO_CHECK_TYPE,
2497                                         .m_may_create = false };
2498         struct extent_info ei = {0, 0, 0};
2499         pgoff_t pg_start, pg_end, next_pgofs;
2500         unsigned int blk_per_seg = sbi->blocks_per_seg;
2501         unsigned int total = 0, sec_num;
2502         block_t blk_end = 0;
2503         bool fragmented = false;
2504         int err;
2505
2506         pg_start = range->start >> PAGE_SHIFT;
2507         pg_end = (range->start + range->len) >> PAGE_SHIFT;
2508
2509         f2fs_balance_fs(sbi, true);
2510
2511         inode_lock(inode);
2512
2513         /* if in-place-update policy is enabled, don't waste time here */
2514         set_inode_flag(inode, FI_OPU_WRITE);
2515         if (f2fs_should_update_inplace(inode, NULL)) {
2516                 err = -EINVAL;
2517                 goto out;
2518         }
2519
2520         /* writeback all dirty pages in the range */
2521         err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2522                                                 range->start + range->len - 1);
2523         if (err)
2524                 goto out;
2525
2526         /*
2527          * lookup mapping info in extent cache, skip defragmenting if physical
2528          * block addresses are continuous.
2529          */
2530         if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2531                 if (ei.fofs + ei.len >= pg_end)
2532                         goto out;
2533         }
2534
2535         map.m_lblk = pg_start;
2536         map.m_next_pgofs = &next_pgofs;
2537
2538         /*
2539          * lookup mapping info in dnode page cache, skip defragmenting if all
2540          * physical block addresses are continuous even if there are hole(s)
2541          * in logical blocks.
2542          */
2543         while (map.m_lblk < pg_end) {
2544                 map.m_len = pg_end - map.m_lblk;
2545                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2546                 if (err)
2547                         goto out;
2548
2549                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2550                         map.m_lblk = next_pgofs;
2551                         continue;
2552                 }
2553
2554                 if (blk_end && blk_end != map.m_pblk)
2555                         fragmented = true;
2556
2557                 /* record total count of block that we're going to move */
2558                 total += map.m_len;
2559
2560                 blk_end = map.m_pblk + map.m_len;
2561
2562                 map.m_lblk += map.m_len;
2563         }
2564
2565         if (!fragmented) {
2566                 total = 0;
2567                 goto out;
2568         }
2569
2570         sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2571
2572         /*
2573          * make sure there are enough free section for LFS allocation, this can
2574          * avoid defragment running in SSR mode when free section are allocated
2575          * intensively
2576          */
2577         if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2578                 err = -EAGAIN;
2579                 goto out;
2580         }
2581
2582         map.m_lblk = pg_start;
2583         map.m_len = pg_end - pg_start;
2584         total = 0;
2585
2586         while (map.m_lblk < pg_end) {
2587                 pgoff_t idx;
2588                 int cnt = 0;
2589
2590 do_map:
2591                 map.m_len = pg_end - map.m_lblk;
2592                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2593                 if (err)
2594                         goto clear_out;
2595
2596                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2597                         map.m_lblk = next_pgofs;
2598                         goto check;
2599                 }
2600
2601                 set_inode_flag(inode, FI_SKIP_WRITES);
2602
2603                 idx = map.m_lblk;
2604                 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2605                         struct page *page;
2606
2607                         page = f2fs_get_lock_data_page(inode, idx, true);
2608                         if (IS_ERR(page)) {
2609                                 err = PTR_ERR(page);
2610                                 goto clear_out;
2611                         }
2612
2613                         set_page_dirty(page);
2614                         set_page_private_gcing(page);
2615                         f2fs_put_page(page, 1);
2616
2617                         idx++;
2618                         cnt++;
2619                         total++;
2620                 }
2621
2622                 map.m_lblk = idx;
2623 check:
2624                 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2625                         goto do_map;
2626
2627                 clear_inode_flag(inode, FI_SKIP_WRITES);
2628
2629                 err = filemap_fdatawrite(inode->i_mapping);
2630                 if (err)
2631                         goto out;
2632         }
2633 clear_out:
2634         clear_inode_flag(inode, FI_SKIP_WRITES);
2635 out:
2636         clear_inode_flag(inode, FI_OPU_WRITE);
2637         inode_unlock(inode);
2638         if (!err)
2639                 range->len = (u64)total << PAGE_SHIFT;
2640         return err;
2641 }
2642
2643 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2644 {
2645         struct inode *inode = file_inode(filp);
2646         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2647         struct f2fs_defragment range;
2648         int err;
2649
2650         if (!capable(CAP_SYS_ADMIN))
2651                 return -EPERM;
2652
2653         if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2654                 return -EINVAL;
2655
2656         if (f2fs_readonly(sbi->sb))
2657                 return -EROFS;
2658
2659         if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2660                                                         sizeof(range)))
2661                 return -EFAULT;
2662
2663         /* verify alignment of offset & size */
2664         if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2665                 return -EINVAL;
2666
2667         if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2668                                         max_file_blocks(inode)))
2669                 return -EINVAL;
2670
2671         err = mnt_want_write_file(filp);
2672         if (err)
2673                 return err;
2674
2675         err = f2fs_defragment_range(sbi, filp, &range);
2676         mnt_drop_write_file(filp);
2677
2678         f2fs_update_time(sbi, REQ_TIME);
2679         if (err < 0)
2680                 return err;
2681
2682         if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2683                                                         sizeof(range)))
2684                 return -EFAULT;
2685
2686         return 0;
2687 }
2688
2689 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2690                         struct file *file_out, loff_t pos_out, size_t len)
2691 {
2692         struct inode *src = file_inode(file_in);
2693         struct inode *dst = file_inode(file_out);
2694         struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2695         size_t olen = len, dst_max_i_size = 0;
2696         size_t dst_osize;
2697         int ret;
2698
2699         if (file_in->f_path.mnt != file_out->f_path.mnt ||
2700                                 src->i_sb != dst->i_sb)
2701                 return -EXDEV;
2702
2703         if (unlikely(f2fs_readonly(src->i_sb)))
2704                 return -EROFS;
2705
2706         if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2707                 return -EINVAL;
2708
2709         if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2710                 return -EOPNOTSUPP;
2711
2712         if (pos_out < 0 || pos_in < 0)
2713                 return -EINVAL;
2714
2715         if (src == dst) {
2716                 if (pos_in == pos_out)
2717                         return 0;
2718                 if (pos_out > pos_in && pos_out < pos_in + len)
2719                         return -EINVAL;
2720         }
2721
2722         inode_lock(src);
2723         if (src != dst) {
2724                 ret = -EBUSY;
2725                 if (!inode_trylock(dst))
2726                         goto out;
2727         }
2728
2729         ret = -EINVAL;
2730         if (pos_in + len > src->i_size || pos_in + len < pos_in)
2731                 goto out_unlock;
2732         if (len == 0)
2733                 olen = len = src->i_size - pos_in;
2734         if (pos_in + len == src->i_size)
2735                 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2736         if (len == 0) {
2737                 ret = 0;
2738                 goto out_unlock;
2739         }
2740
2741         dst_osize = dst->i_size;
2742         if (pos_out + olen > dst->i_size)
2743                 dst_max_i_size = pos_out + olen;
2744
2745         /* verify the end result is block aligned */
2746         if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2747                         !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2748                         !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2749                 goto out_unlock;
2750
2751         ret = f2fs_convert_inline_inode(src);
2752         if (ret)
2753                 goto out_unlock;
2754
2755         ret = f2fs_convert_inline_inode(dst);
2756         if (ret)
2757                 goto out_unlock;
2758
2759         /* write out all dirty pages from offset */
2760         ret = filemap_write_and_wait_range(src->i_mapping,
2761                                         pos_in, pos_in + len);
2762         if (ret)
2763                 goto out_unlock;
2764
2765         ret = filemap_write_and_wait_range(dst->i_mapping,
2766                                         pos_out, pos_out + len);
2767         if (ret)
2768                 goto out_unlock;
2769
2770         f2fs_balance_fs(sbi, true);
2771
2772         f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2773         if (src != dst) {
2774                 ret = -EBUSY;
2775                 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2776                         goto out_src;
2777         }
2778
2779         f2fs_lock_op(sbi);
2780         ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2781                                 pos_out >> F2FS_BLKSIZE_BITS,
2782                                 len >> F2FS_BLKSIZE_BITS, false);
2783
2784         if (!ret) {
2785                 if (dst_max_i_size)
2786                         f2fs_i_size_write(dst, dst_max_i_size);
2787                 else if (dst_osize != dst->i_size)
2788                         f2fs_i_size_write(dst, dst_osize);
2789         }
2790         f2fs_unlock_op(sbi);
2791
2792         if (src != dst)
2793                 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2794 out_src:
2795         f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2796 out_unlock:
2797         if (src != dst)
2798                 inode_unlock(dst);
2799 out:
2800         inode_unlock(src);
2801         return ret;
2802 }
2803
2804 static int __f2fs_ioc_move_range(struct file *filp,
2805                                 struct f2fs_move_range *range)
2806 {
2807         struct fd dst;
2808         int err;
2809
2810         if (!(filp->f_mode & FMODE_READ) ||
2811                         !(filp->f_mode & FMODE_WRITE))
2812                 return -EBADF;
2813
2814         dst = fdget(range->dst_fd);
2815         if (!dst.file)
2816                 return -EBADF;
2817
2818         if (!(dst.file->f_mode & FMODE_WRITE)) {
2819                 err = -EBADF;
2820                 goto err_out;
2821         }
2822
2823         err = mnt_want_write_file(filp);
2824         if (err)
2825                 goto err_out;
2826
2827         err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2828                                         range->pos_out, range->len);
2829
2830         mnt_drop_write_file(filp);
2831 err_out:
2832         fdput(dst);
2833         return err;
2834 }
2835
2836 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2837 {
2838         struct f2fs_move_range range;
2839
2840         if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2841                                                         sizeof(range)))
2842                 return -EFAULT;
2843         return __f2fs_ioc_move_range(filp, &range);
2844 }
2845
2846 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2847 {
2848         struct inode *inode = file_inode(filp);
2849         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2850         struct sit_info *sm = SIT_I(sbi);
2851         unsigned int start_segno = 0, end_segno = 0;
2852         unsigned int dev_start_segno = 0, dev_end_segno = 0;
2853         struct f2fs_flush_device range;
2854         struct f2fs_gc_control gc_control = {
2855                         .init_gc_type = FG_GC,
2856                         .should_migrate_blocks = true,
2857                         .err_gc_skipped = true,
2858                         .nr_free_secs = 0 };
2859         int ret;
2860
2861         if (!capable(CAP_SYS_ADMIN))
2862                 return -EPERM;
2863
2864         if (f2fs_readonly(sbi->sb))
2865                 return -EROFS;
2866
2867         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2868                 return -EINVAL;
2869
2870         if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2871                                                         sizeof(range)))
2872                 return -EFAULT;
2873
2874         if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2875                         __is_large_section(sbi)) {
2876                 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2877                           range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2878                 return -EINVAL;
2879         }
2880
2881         ret = mnt_want_write_file(filp);
2882         if (ret)
2883                 return ret;
2884
2885         if (range.dev_num != 0)
2886                 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2887         dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2888
2889         start_segno = sm->last_victim[FLUSH_DEVICE];
2890         if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2891                 start_segno = dev_start_segno;
2892         end_segno = min(start_segno + range.segments, dev_end_segno);
2893
2894         while (start_segno < end_segno) {
2895                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2896                         ret = -EBUSY;
2897                         goto out;
2898                 }
2899                 sm->last_victim[GC_CB] = end_segno + 1;
2900                 sm->last_victim[GC_GREEDY] = end_segno + 1;
2901                 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2902
2903                 gc_control.victim_segno = start_segno;
2904                 ret = f2fs_gc(sbi, &gc_control);
2905                 if (ret == -EAGAIN)
2906                         ret = 0;
2907                 else if (ret < 0)
2908                         break;
2909                 start_segno++;
2910         }
2911 out:
2912         mnt_drop_write_file(filp);
2913         return ret;
2914 }
2915
2916 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2917 {
2918         struct inode *inode = file_inode(filp);
2919         u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2920
2921         /* Must validate to set it with SQLite behavior in Android. */
2922         sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2923
2924         return put_user(sb_feature, (u32 __user *)arg);
2925 }
2926
2927 #ifdef CONFIG_QUOTA
2928 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2929 {
2930         struct dquot *transfer_to[MAXQUOTAS] = {};
2931         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2932         struct super_block *sb = sbi->sb;
2933         int err = 0;
2934
2935         transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2936         if (!IS_ERR(transfer_to[PRJQUOTA])) {
2937                 err = __dquot_transfer(inode, transfer_to);
2938                 if (err)
2939                         set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2940                 dqput(transfer_to[PRJQUOTA]);
2941         }
2942         return err;
2943 }
2944
2945 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2946 {
2947         struct f2fs_inode_info *fi = F2FS_I(inode);
2948         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2949         struct f2fs_inode *ri = NULL;
2950         kprojid_t kprojid;
2951         int err;
2952
2953         if (!f2fs_sb_has_project_quota(sbi)) {
2954                 if (projid != F2FS_DEF_PROJID)
2955                         return -EOPNOTSUPP;
2956                 else
2957                         return 0;
2958         }
2959
2960         if (!f2fs_has_extra_attr(inode))
2961                 return -EOPNOTSUPP;
2962
2963         kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2964
2965         if (projid_eq(kprojid, fi->i_projid))
2966                 return 0;
2967
2968         err = -EPERM;
2969         /* Is it quota file? Do not allow user to mess with it */
2970         if (IS_NOQUOTA(inode))
2971                 return err;
2972
2973         if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
2974                 return -EOVERFLOW;
2975
2976         err = f2fs_dquot_initialize(inode);
2977         if (err)
2978                 return err;
2979
2980         f2fs_lock_op(sbi);
2981         err = f2fs_transfer_project_quota(inode, kprojid);
2982         if (err)
2983                 goto out_unlock;
2984
2985         fi->i_projid = kprojid;
2986         inode->i_ctime = current_time(inode);
2987         f2fs_mark_inode_dirty_sync(inode, true);
2988 out_unlock:
2989         f2fs_unlock_op(sbi);
2990         return err;
2991 }
2992 #else
2993 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2994 {
2995         return 0;
2996 }
2997
2998 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2999 {
3000         if (projid != F2FS_DEF_PROJID)
3001                 return -EOPNOTSUPP;
3002         return 0;
3003 }
3004 #endif
3005
3006 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3007 {
3008         struct inode *inode = d_inode(dentry);
3009         struct f2fs_inode_info *fi = F2FS_I(inode);
3010         u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3011
3012         if (IS_ENCRYPTED(inode))
3013                 fsflags |= FS_ENCRYPT_FL;
3014         if (IS_VERITY(inode))
3015                 fsflags |= FS_VERITY_FL;
3016         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3017                 fsflags |= FS_INLINE_DATA_FL;
3018         if (is_inode_flag_set(inode, FI_PIN_FILE))
3019                 fsflags |= FS_NOCOW_FL;
3020
3021         fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3022
3023         if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3024                 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3025
3026         return 0;
3027 }
3028
3029 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3030                       struct dentry *dentry, struct fileattr *fa)
3031 {
3032         struct inode *inode = d_inode(dentry);
3033         u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3034         u32 iflags;
3035         int err;
3036
3037         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3038                 return -EIO;
3039         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3040                 return -ENOSPC;
3041         if (fsflags & ~F2FS_GETTABLE_FS_FL)
3042                 return -EOPNOTSUPP;
3043         fsflags &= F2FS_SETTABLE_FS_FL;
3044         if (!fa->flags_valid)
3045                 mask &= FS_COMMON_FL;
3046
3047         iflags = f2fs_fsflags_to_iflags(fsflags);
3048         if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3049                 return -EOPNOTSUPP;
3050
3051         err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3052         if (!err)
3053                 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3054
3055         return err;
3056 }
3057
3058 int f2fs_pin_file_control(struct inode *inode, bool inc)
3059 {
3060         struct f2fs_inode_info *fi = F2FS_I(inode);
3061         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3062
3063         /* Use i_gc_failures for normal file as a risk signal. */
3064         if (inc)
3065                 f2fs_i_gc_failures_write(inode,
3066                                 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3067
3068         if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3069                 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3070                           __func__, inode->i_ino,
3071                           fi->i_gc_failures[GC_FAILURE_PIN]);
3072                 clear_inode_flag(inode, FI_PIN_FILE);
3073                 return -EAGAIN;
3074         }
3075         return 0;
3076 }
3077
3078 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3079 {
3080         struct inode *inode = file_inode(filp);
3081         __u32 pin;
3082         int ret = 0;
3083
3084         if (get_user(pin, (__u32 __user *)arg))
3085                 return -EFAULT;
3086
3087         if (!S_ISREG(inode->i_mode))
3088                 return -EINVAL;
3089
3090         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3091                 return -EROFS;
3092
3093         ret = mnt_want_write_file(filp);
3094         if (ret)
3095                 return ret;
3096
3097         inode_lock(inode);
3098
3099         if (!pin) {
3100                 clear_inode_flag(inode, FI_PIN_FILE);
3101                 f2fs_i_gc_failures_write(inode, 0);
3102                 goto done;
3103         }
3104
3105         if (f2fs_should_update_outplace(inode, NULL)) {
3106                 ret = -EINVAL;
3107                 goto out;
3108         }
3109
3110         if (f2fs_pin_file_control(inode, false)) {
3111                 ret = -EAGAIN;
3112                 goto out;
3113         }
3114
3115         ret = f2fs_convert_inline_inode(inode);
3116         if (ret)
3117                 goto out;
3118
3119         if (!f2fs_disable_compressed_file(inode)) {
3120                 ret = -EOPNOTSUPP;
3121                 goto out;
3122         }
3123
3124         set_inode_flag(inode, FI_PIN_FILE);
3125         ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3126 done:
3127         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3128 out:
3129         inode_unlock(inode);
3130         mnt_drop_write_file(filp);
3131         return ret;
3132 }
3133
3134 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3135 {
3136         struct inode *inode = file_inode(filp);
3137         __u32 pin = 0;
3138
3139         if (is_inode_flag_set(inode, FI_PIN_FILE))
3140                 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3141         return put_user(pin, (u32 __user *)arg);
3142 }
3143
3144 int f2fs_precache_extents(struct inode *inode)
3145 {
3146         struct f2fs_inode_info *fi = F2FS_I(inode);
3147         struct f2fs_map_blocks map;
3148         pgoff_t m_next_extent;
3149         loff_t end;
3150         int err;
3151
3152         if (is_inode_flag_set(inode, FI_NO_EXTENT))
3153                 return -EOPNOTSUPP;
3154
3155         map.m_lblk = 0;
3156         map.m_next_pgofs = NULL;
3157         map.m_next_extent = &m_next_extent;
3158         map.m_seg_type = NO_CHECK_TYPE;
3159         map.m_may_create = false;
3160         end = max_file_blocks(inode);
3161
3162         while (map.m_lblk < end) {
3163                 map.m_len = end - map.m_lblk;
3164
3165                 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3166                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3167                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3168                 if (err)
3169                         return err;
3170
3171                 map.m_lblk = m_next_extent;
3172         }
3173
3174         return 0;
3175 }
3176
3177 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3178 {
3179         return f2fs_precache_extents(file_inode(filp));
3180 }
3181
3182 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3183 {
3184         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3185         __u64 block_count;
3186
3187         if (!capable(CAP_SYS_ADMIN))
3188                 return -EPERM;
3189
3190         if (f2fs_readonly(sbi->sb))
3191                 return -EROFS;
3192
3193         if (copy_from_user(&block_count, (void __user *)arg,
3194                            sizeof(block_count)))
3195                 return -EFAULT;
3196
3197         return f2fs_resize_fs(sbi, block_count);
3198 }
3199
3200 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3201 {
3202         struct inode *inode = file_inode(filp);
3203
3204         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3205
3206         if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3207                 f2fs_warn(F2FS_I_SB(inode),
3208                           "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3209                           inode->i_ino);
3210                 return -EOPNOTSUPP;
3211         }
3212
3213         return fsverity_ioctl_enable(filp, (const void __user *)arg);
3214 }
3215
3216 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3217 {
3218         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3219                 return -EOPNOTSUPP;
3220
3221         return fsverity_ioctl_measure(filp, (void __user *)arg);
3222 }
3223
3224 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3225 {
3226         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3227                 return -EOPNOTSUPP;
3228
3229         return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3230 }
3231
3232 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3233 {
3234         struct inode *inode = file_inode(filp);
3235         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3236         char *vbuf;
3237         int count;
3238         int err = 0;
3239
3240         vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3241         if (!vbuf)
3242                 return -ENOMEM;
3243
3244         f2fs_down_read(&sbi->sb_lock);
3245         count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3246                         ARRAY_SIZE(sbi->raw_super->volume_name),
3247                         UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3248         f2fs_up_read(&sbi->sb_lock);
3249
3250         if (copy_to_user((char __user *)arg, vbuf,
3251                                 min(FSLABEL_MAX, count)))
3252                 err = -EFAULT;
3253
3254         kfree(vbuf);
3255         return err;
3256 }
3257
3258 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3259 {
3260         struct inode *inode = file_inode(filp);
3261         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3262         char *vbuf;
3263         int err = 0;
3264
3265         if (!capable(CAP_SYS_ADMIN))
3266                 return -EPERM;
3267
3268         vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3269         if (IS_ERR(vbuf))
3270                 return PTR_ERR(vbuf);
3271
3272         err = mnt_want_write_file(filp);
3273         if (err)
3274                 goto out;
3275
3276         f2fs_down_write(&sbi->sb_lock);
3277
3278         memset(sbi->raw_super->volume_name, 0,
3279                         sizeof(sbi->raw_super->volume_name));
3280         utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3281                         sbi->raw_super->volume_name,
3282                         ARRAY_SIZE(sbi->raw_super->volume_name));
3283
3284         err = f2fs_commit_super(sbi, false);
3285
3286         f2fs_up_write(&sbi->sb_lock);
3287
3288         mnt_drop_write_file(filp);
3289 out:
3290         kfree(vbuf);
3291         return err;
3292 }
3293
3294 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3295 {
3296         struct inode *inode = file_inode(filp);
3297         __u64 blocks;
3298
3299         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3300                 return -EOPNOTSUPP;
3301
3302         if (!f2fs_compressed_file(inode))
3303                 return -EINVAL;
3304
3305         blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3306         return put_user(blocks, (u64 __user *)arg);
3307 }
3308
3309 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3310 {
3311         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3312         unsigned int released_blocks = 0;
3313         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3314         block_t blkaddr;
3315         int i;
3316
3317         for (i = 0; i < count; i++) {
3318                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3319                                                 dn->ofs_in_node + i);
3320
3321                 if (!__is_valid_data_blkaddr(blkaddr))
3322                         continue;
3323                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3324                                         DATA_GENERIC_ENHANCE)))
3325                         return -EFSCORRUPTED;
3326         }
3327
3328         while (count) {
3329                 int compr_blocks = 0;
3330
3331                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3332                         blkaddr = f2fs_data_blkaddr(dn);
3333
3334                         if (i == 0) {
3335                                 if (blkaddr == COMPRESS_ADDR)
3336                                         continue;
3337                                 dn->ofs_in_node += cluster_size;
3338                                 goto next;
3339                         }
3340
3341                         if (__is_valid_data_blkaddr(blkaddr))
3342                                 compr_blocks++;
3343
3344                         if (blkaddr != NEW_ADDR)
3345                                 continue;
3346
3347                         dn->data_blkaddr = NULL_ADDR;
3348                         f2fs_set_data_blkaddr(dn);
3349                 }
3350
3351                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3352                 dec_valid_block_count(sbi, dn->inode,
3353                                         cluster_size - compr_blocks);
3354
3355                 released_blocks += cluster_size - compr_blocks;
3356 next:
3357                 count -= cluster_size;
3358         }
3359
3360         return released_blocks;
3361 }
3362
3363 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3364 {
3365         struct inode *inode = file_inode(filp);
3366         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3367         pgoff_t page_idx = 0, last_idx;
3368         unsigned int released_blocks = 0;
3369         int ret;
3370         int writecount;
3371
3372         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3373                 return -EOPNOTSUPP;
3374
3375         if (!f2fs_compressed_file(inode))
3376                 return -EINVAL;
3377
3378         if (f2fs_readonly(sbi->sb))
3379                 return -EROFS;
3380
3381         ret = mnt_want_write_file(filp);
3382         if (ret)
3383                 return ret;
3384
3385         f2fs_balance_fs(F2FS_I_SB(inode), true);
3386
3387         inode_lock(inode);
3388
3389         writecount = atomic_read(&inode->i_writecount);
3390         if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3391                         (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3392                 ret = -EBUSY;
3393                 goto out;
3394         }
3395
3396         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3397                 ret = -EINVAL;
3398                 goto out;
3399         }
3400
3401         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3402         if (ret)
3403                 goto out;
3404
3405         set_inode_flag(inode, FI_COMPRESS_RELEASED);
3406         inode->i_ctime = current_time(inode);
3407         f2fs_mark_inode_dirty_sync(inode, true);
3408
3409         if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3410                 goto out;
3411
3412         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3413         filemap_invalidate_lock(inode->i_mapping);
3414
3415         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3416
3417         while (page_idx < last_idx) {
3418                 struct dnode_of_data dn;
3419                 pgoff_t end_offset, count;
3420
3421                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3422                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3423                 if (ret) {
3424                         if (ret == -ENOENT) {
3425                                 page_idx = f2fs_get_next_page_offset(&dn,
3426                                                                 page_idx);
3427                                 ret = 0;
3428                                 continue;
3429                         }
3430                         break;
3431                 }
3432
3433                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3434                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3435                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3436
3437                 ret = release_compress_blocks(&dn, count);
3438
3439                 f2fs_put_dnode(&dn);
3440
3441                 if (ret < 0)
3442                         break;
3443
3444                 page_idx += count;
3445                 released_blocks += ret;
3446         }
3447
3448         filemap_invalidate_unlock(inode->i_mapping);
3449         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3450 out:
3451         inode_unlock(inode);
3452
3453         mnt_drop_write_file(filp);
3454
3455         if (ret >= 0) {
3456                 ret = put_user(released_blocks, (u64 __user *)arg);
3457         } else if (released_blocks &&
3458                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3459                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3460                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3461                         "iblocks=%llu, released=%u, compr_blocks=%u, "
3462                         "run fsck to fix.",
3463                         __func__, inode->i_ino, inode->i_blocks,
3464                         released_blocks,
3465                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3466         }
3467
3468         return ret;
3469 }
3470
3471 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3472 {
3473         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3474         unsigned int reserved_blocks = 0;
3475         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3476         block_t blkaddr;
3477         int i;
3478
3479         for (i = 0; i < count; i++) {
3480                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3481                                                 dn->ofs_in_node + i);
3482
3483                 if (!__is_valid_data_blkaddr(blkaddr))
3484                         continue;
3485                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3486                                         DATA_GENERIC_ENHANCE)))
3487                         return -EFSCORRUPTED;
3488         }
3489
3490         while (count) {
3491                 int compr_blocks = 0;
3492                 blkcnt_t reserved;
3493                 int ret;
3494
3495                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3496                         blkaddr = f2fs_data_blkaddr(dn);
3497
3498                         if (i == 0) {
3499                                 if (blkaddr == COMPRESS_ADDR)
3500                                         continue;
3501                                 dn->ofs_in_node += cluster_size;
3502                                 goto next;
3503                         }
3504
3505                         if (__is_valid_data_blkaddr(blkaddr)) {
3506                                 compr_blocks++;
3507                                 continue;
3508                         }
3509
3510                         dn->data_blkaddr = NEW_ADDR;
3511                         f2fs_set_data_blkaddr(dn);
3512                 }
3513
3514                 reserved = cluster_size - compr_blocks;
3515                 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3516                 if (ret)
3517                         return ret;
3518
3519                 if (reserved != cluster_size - compr_blocks)
3520                         return -ENOSPC;
3521
3522                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3523
3524                 reserved_blocks += reserved;
3525 next:
3526                 count -= cluster_size;
3527         }
3528
3529         return reserved_blocks;
3530 }
3531
3532 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3533 {
3534         struct inode *inode = file_inode(filp);
3535         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3536         pgoff_t page_idx = 0, last_idx;
3537         unsigned int reserved_blocks = 0;
3538         int ret;
3539
3540         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3541                 return -EOPNOTSUPP;
3542
3543         if (!f2fs_compressed_file(inode))
3544                 return -EINVAL;
3545
3546         if (f2fs_readonly(sbi->sb))
3547                 return -EROFS;
3548
3549         ret = mnt_want_write_file(filp);
3550         if (ret)
3551                 return ret;
3552
3553         if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3554                 goto out;
3555
3556         f2fs_balance_fs(F2FS_I_SB(inode), true);
3557
3558         inode_lock(inode);
3559
3560         if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3561                 ret = -EINVAL;
3562                 goto unlock_inode;
3563         }
3564
3565         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3566         filemap_invalidate_lock(inode->i_mapping);
3567
3568         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3569
3570         while (page_idx < last_idx) {
3571                 struct dnode_of_data dn;
3572                 pgoff_t end_offset, count;
3573
3574                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3575                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3576                 if (ret) {
3577                         if (ret == -ENOENT) {
3578                                 page_idx = f2fs_get_next_page_offset(&dn,
3579                                                                 page_idx);
3580                                 ret = 0;
3581                                 continue;
3582                         }
3583                         break;
3584                 }
3585
3586                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3587                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3588                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3589
3590                 ret = reserve_compress_blocks(&dn, count);
3591
3592                 f2fs_put_dnode(&dn);
3593
3594                 if (ret < 0)
3595                         break;
3596
3597                 page_idx += count;
3598                 reserved_blocks += ret;
3599         }
3600
3601         filemap_invalidate_unlock(inode->i_mapping);
3602         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3603
3604         if (ret >= 0) {
3605                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3606                 inode->i_ctime = current_time(inode);
3607                 f2fs_mark_inode_dirty_sync(inode, true);
3608         }
3609 unlock_inode:
3610         inode_unlock(inode);
3611 out:
3612         mnt_drop_write_file(filp);
3613
3614         if (ret >= 0) {
3615                 ret = put_user(reserved_blocks, (u64 __user *)arg);
3616         } else if (reserved_blocks &&
3617                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3618                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3619                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3620                         "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3621                         "run fsck to fix.",
3622                         __func__, inode->i_ino, inode->i_blocks,
3623                         reserved_blocks,
3624                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3625         }
3626
3627         return ret;
3628 }
3629
3630 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3631                 pgoff_t off, block_t block, block_t len, u32 flags)
3632 {
3633         sector_t sector = SECTOR_FROM_BLOCK(block);
3634         sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3635         int ret = 0;
3636
3637         if (flags & F2FS_TRIM_FILE_DISCARD) {
3638                 if (bdev_max_secure_erase_sectors(bdev))
3639                         ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3640                                         GFP_NOFS);
3641                 else
3642                         ret = blkdev_issue_discard(bdev, sector, nr_sects,
3643                                         GFP_NOFS);
3644         }
3645
3646         if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3647                 if (IS_ENCRYPTED(inode))
3648                         ret = fscrypt_zeroout_range(inode, off, block, len);
3649                 else
3650                         ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3651                                         GFP_NOFS, 0);
3652         }
3653
3654         return ret;
3655 }
3656
3657 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3658 {
3659         struct inode *inode = file_inode(filp);
3660         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3661         struct address_space *mapping = inode->i_mapping;
3662         struct block_device *prev_bdev = NULL;
3663         struct f2fs_sectrim_range range;
3664         pgoff_t index, pg_end, prev_index = 0;
3665         block_t prev_block = 0, len = 0;
3666         loff_t end_addr;
3667         bool to_end = false;
3668         int ret = 0;
3669
3670         if (!(filp->f_mode & FMODE_WRITE))
3671                 return -EBADF;
3672
3673         if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3674                                 sizeof(range)))
3675                 return -EFAULT;
3676
3677         if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3678                         !S_ISREG(inode->i_mode))
3679                 return -EINVAL;
3680
3681         if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3682                         !f2fs_hw_support_discard(sbi)) ||
3683                         ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3684                          IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3685                 return -EOPNOTSUPP;
3686
3687         file_start_write(filp);
3688         inode_lock(inode);
3689
3690         if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3691                         range.start >= inode->i_size) {
3692                 ret = -EINVAL;
3693                 goto err;
3694         }
3695
3696         if (range.len == 0)
3697                 goto err;
3698
3699         if (inode->i_size - range.start > range.len) {
3700                 end_addr = range.start + range.len;
3701         } else {
3702                 end_addr = range.len == (u64)-1 ?
3703                         sbi->sb->s_maxbytes : inode->i_size;
3704                 to_end = true;
3705         }
3706
3707         if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3708                         (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3709                 ret = -EINVAL;
3710                 goto err;
3711         }
3712
3713         index = F2FS_BYTES_TO_BLK(range.start);
3714         pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3715
3716         ret = f2fs_convert_inline_inode(inode);
3717         if (ret)
3718                 goto err;
3719
3720         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3721         filemap_invalidate_lock(mapping);
3722
3723         ret = filemap_write_and_wait_range(mapping, range.start,
3724                         to_end ? LLONG_MAX : end_addr - 1);
3725         if (ret)
3726                 goto out;
3727
3728         truncate_inode_pages_range(mapping, range.start,
3729                         to_end ? -1 : end_addr - 1);
3730
3731         while (index < pg_end) {
3732                 struct dnode_of_data dn;
3733                 pgoff_t end_offset, count;
3734                 int i;
3735
3736                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3737                 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3738                 if (ret) {
3739                         if (ret == -ENOENT) {
3740                                 index = f2fs_get_next_page_offset(&dn, index);
3741                                 continue;
3742                         }
3743                         goto out;
3744                 }
3745
3746                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3747                 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3748                 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3749                         struct block_device *cur_bdev;
3750                         block_t blkaddr = f2fs_data_blkaddr(&dn);
3751
3752                         if (!__is_valid_data_blkaddr(blkaddr))
3753                                 continue;
3754
3755                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3756                                                 DATA_GENERIC_ENHANCE)) {
3757                                 ret = -EFSCORRUPTED;
3758                                 f2fs_put_dnode(&dn);
3759                                 goto out;
3760                         }
3761
3762                         cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3763                         if (f2fs_is_multi_device(sbi)) {
3764                                 int di = f2fs_target_device_index(sbi, blkaddr);
3765
3766                                 blkaddr -= FDEV(di).start_blk;
3767                         }
3768
3769                         if (len) {
3770                                 if (prev_bdev == cur_bdev &&
3771                                                 index == prev_index + len &&
3772                                                 blkaddr == prev_block + len) {
3773                                         len++;
3774                                 } else {
3775                                         ret = f2fs_secure_erase(prev_bdev,
3776                                                 inode, prev_index, prev_block,
3777                                                 len, range.flags);
3778                                         if (ret) {
3779                                                 f2fs_put_dnode(&dn);
3780                                                 goto out;
3781                                         }
3782
3783                                         len = 0;
3784                                 }
3785                         }
3786
3787                         if (!len) {
3788                                 prev_bdev = cur_bdev;
3789                                 prev_index = index;
3790                                 prev_block = blkaddr;
3791                                 len = 1;
3792                         }
3793                 }
3794
3795                 f2fs_put_dnode(&dn);
3796
3797                 if (fatal_signal_pending(current)) {
3798                         ret = -EINTR;
3799                         goto out;
3800                 }
3801                 cond_resched();
3802         }
3803
3804         if (len)
3805                 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3806                                 prev_block, len, range.flags);
3807 out:
3808         filemap_invalidate_unlock(mapping);
3809         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3810 err:
3811         inode_unlock(inode);
3812         file_end_write(filp);
3813
3814         return ret;
3815 }
3816
3817 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3818 {
3819         struct inode *inode = file_inode(filp);
3820         struct f2fs_comp_option option;
3821
3822         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3823                 return -EOPNOTSUPP;
3824
3825         inode_lock_shared(inode);
3826
3827         if (!f2fs_compressed_file(inode)) {
3828                 inode_unlock_shared(inode);
3829                 return -ENODATA;
3830         }
3831
3832         option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3833         option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3834
3835         inode_unlock_shared(inode);
3836
3837         if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3838                                 sizeof(option)))
3839                 return -EFAULT;
3840
3841         return 0;
3842 }
3843
3844 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3845 {
3846         struct inode *inode = file_inode(filp);
3847         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3848         struct f2fs_comp_option option;
3849         int ret = 0;
3850
3851         if (!f2fs_sb_has_compression(sbi))
3852                 return -EOPNOTSUPP;
3853
3854         if (!(filp->f_mode & FMODE_WRITE))
3855                 return -EBADF;
3856
3857         if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3858                                 sizeof(option)))
3859                 return -EFAULT;
3860
3861         if (!f2fs_compressed_file(inode) ||
3862                         option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3863                         option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3864                         option.algorithm >= COMPRESS_MAX)
3865                 return -EINVAL;
3866
3867         file_start_write(filp);
3868         inode_lock(inode);
3869
3870         if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3871                 ret = -EBUSY;
3872                 goto out;
3873         }
3874
3875         if (inode->i_size != 0) {
3876                 ret = -EFBIG;
3877                 goto out;
3878         }
3879
3880         F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3881         F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3882         F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
3883         f2fs_mark_inode_dirty_sync(inode, true);
3884
3885         if (!f2fs_is_compress_backend_ready(inode))
3886                 f2fs_warn(sbi, "compression algorithm is successfully set, "
3887                         "but current kernel doesn't support this algorithm.");
3888 out:
3889         inode_unlock(inode);
3890         file_end_write(filp);
3891
3892         return ret;
3893 }
3894
3895 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3896 {
3897         DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3898         struct address_space *mapping = inode->i_mapping;
3899         struct page *page;
3900         pgoff_t redirty_idx = page_idx;
3901         int i, page_len = 0, ret = 0;
3902
3903         page_cache_ra_unbounded(&ractl, len, 0);
3904
3905         for (i = 0; i < len; i++, page_idx++) {
3906                 page = read_cache_page(mapping, page_idx, NULL, NULL);
3907                 if (IS_ERR(page)) {
3908                         ret = PTR_ERR(page);
3909                         break;
3910                 }
3911                 page_len++;
3912         }
3913
3914         for (i = 0; i < page_len; i++, redirty_idx++) {
3915                 page = find_lock_page(mapping, redirty_idx);
3916
3917                 /* It will never fail, when page has pinned above */
3918                 f2fs_bug_on(F2FS_I_SB(inode), !page);
3919
3920                 set_page_dirty(page);
3921                 f2fs_put_page(page, 1);
3922                 f2fs_put_page(page, 0);
3923         }
3924
3925         return ret;
3926 }
3927
3928 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
3929 {
3930         struct inode *inode = file_inode(filp);
3931         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3932         struct f2fs_inode_info *fi = F2FS_I(inode);
3933         pgoff_t page_idx = 0, last_idx;
3934         unsigned int blk_per_seg = sbi->blocks_per_seg;
3935         int cluster_size = fi->i_cluster_size;
3936         int count, ret;
3937
3938         if (!f2fs_sb_has_compression(sbi) ||
3939                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
3940                 return -EOPNOTSUPP;
3941
3942         if (!(filp->f_mode & FMODE_WRITE))
3943                 return -EBADF;
3944
3945         if (!f2fs_compressed_file(inode))
3946                 return -EINVAL;
3947
3948         f2fs_balance_fs(F2FS_I_SB(inode), true);
3949
3950         file_start_write(filp);
3951         inode_lock(inode);
3952
3953         if (!f2fs_is_compress_backend_ready(inode)) {
3954                 ret = -EOPNOTSUPP;
3955                 goto out;
3956         }
3957
3958         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3959                 ret = -EINVAL;
3960                 goto out;
3961         }
3962
3963         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3964         if (ret)
3965                 goto out;
3966
3967         if (!atomic_read(&fi->i_compr_blocks))
3968                 goto out;
3969
3970         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3971
3972         count = last_idx - page_idx;
3973         while (count) {
3974                 int len = min(cluster_size, count);
3975
3976                 ret = redirty_blocks(inode, page_idx, len);
3977                 if (ret < 0)
3978                         break;
3979
3980                 if (get_dirty_pages(inode) >= blk_per_seg)
3981                         filemap_fdatawrite(inode->i_mapping);
3982
3983                 count -= len;
3984                 page_idx += len;
3985         }
3986
3987         if (!ret)
3988                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
3989                                                         LLONG_MAX);
3990
3991         if (ret)
3992                 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
3993                           __func__, ret);
3994 out:
3995         inode_unlock(inode);
3996         file_end_write(filp);
3997
3998         return ret;
3999 }
4000
4001 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4002 {
4003         struct inode *inode = file_inode(filp);
4004         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4005         pgoff_t page_idx = 0, last_idx;
4006         unsigned int blk_per_seg = sbi->blocks_per_seg;
4007         int cluster_size = F2FS_I(inode)->i_cluster_size;
4008         int count, ret;
4009
4010         if (!f2fs_sb_has_compression(sbi) ||
4011                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4012                 return -EOPNOTSUPP;
4013
4014         if (!(filp->f_mode & FMODE_WRITE))
4015                 return -EBADF;
4016
4017         if (!f2fs_compressed_file(inode))
4018                 return -EINVAL;
4019
4020         f2fs_balance_fs(F2FS_I_SB(inode), true);
4021
4022         file_start_write(filp);
4023         inode_lock(inode);
4024
4025         if (!f2fs_is_compress_backend_ready(inode)) {
4026                 ret = -EOPNOTSUPP;
4027                 goto out;
4028         }
4029
4030         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4031                 ret = -EINVAL;
4032                 goto out;
4033         }
4034
4035         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4036         if (ret)
4037                 goto out;
4038
4039         set_inode_flag(inode, FI_ENABLE_COMPRESS);
4040
4041         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4042
4043         count = last_idx - page_idx;
4044         while (count) {
4045                 int len = min(cluster_size, count);
4046
4047                 ret = redirty_blocks(inode, page_idx, len);
4048                 if (ret < 0)
4049                         break;
4050
4051                 if (get_dirty_pages(inode) >= blk_per_seg)
4052                         filemap_fdatawrite(inode->i_mapping);
4053
4054                 count -= len;
4055                 page_idx += len;
4056         }
4057
4058         if (!ret)
4059                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4060                                                         LLONG_MAX);
4061
4062         clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4063
4064         if (ret)
4065                 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4066                           __func__, ret);
4067 out:
4068         inode_unlock(inode);
4069         file_end_write(filp);
4070
4071         return ret;
4072 }
4073
4074 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4075 {
4076         switch (cmd) {
4077         case FS_IOC_GETVERSION:
4078                 return f2fs_ioc_getversion(filp, arg);
4079         case F2FS_IOC_START_ATOMIC_WRITE:
4080                 return f2fs_ioc_start_atomic_write(filp);
4081         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4082                 return f2fs_ioc_commit_atomic_write(filp);
4083         case F2FS_IOC_ABORT_ATOMIC_WRITE:
4084                 return f2fs_ioc_abort_atomic_write(filp);
4085         case F2FS_IOC_START_VOLATILE_WRITE:
4086         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4087                 return -EOPNOTSUPP;
4088         case F2FS_IOC_SHUTDOWN:
4089                 return f2fs_ioc_shutdown(filp, arg);
4090         case FITRIM:
4091                 return f2fs_ioc_fitrim(filp, arg);
4092         case FS_IOC_SET_ENCRYPTION_POLICY:
4093                 return f2fs_ioc_set_encryption_policy(filp, arg);
4094         case FS_IOC_GET_ENCRYPTION_POLICY:
4095                 return f2fs_ioc_get_encryption_policy(filp, arg);
4096         case FS_IOC_GET_ENCRYPTION_PWSALT:
4097                 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4098         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4099                 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4100         case FS_IOC_ADD_ENCRYPTION_KEY:
4101                 return f2fs_ioc_add_encryption_key(filp, arg);
4102         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4103                 return f2fs_ioc_remove_encryption_key(filp, arg);
4104         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4105                 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4106         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4107                 return f2fs_ioc_get_encryption_key_status(filp, arg);
4108         case FS_IOC_GET_ENCRYPTION_NONCE:
4109                 return f2fs_ioc_get_encryption_nonce(filp, arg);
4110         case F2FS_IOC_GARBAGE_COLLECT:
4111                 return f2fs_ioc_gc(filp, arg);
4112         case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4113                 return f2fs_ioc_gc_range(filp, arg);
4114         case F2FS_IOC_WRITE_CHECKPOINT:
4115                 return f2fs_ioc_write_checkpoint(filp, arg);
4116         case F2FS_IOC_DEFRAGMENT:
4117                 return f2fs_ioc_defragment(filp, arg);
4118         case F2FS_IOC_MOVE_RANGE:
4119                 return f2fs_ioc_move_range(filp, arg);
4120         case F2FS_IOC_FLUSH_DEVICE:
4121                 return f2fs_ioc_flush_device(filp, arg);
4122         case F2FS_IOC_GET_FEATURES:
4123                 return f2fs_ioc_get_features(filp, arg);
4124         case F2FS_IOC_GET_PIN_FILE:
4125                 return f2fs_ioc_get_pin_file(filp, arg);
4126         case F2FS_IOC_SET_PIN_FILE:
4127                 return f2fs_ioc_set_pin_file(filp, arg);
4128         case F2FS_IOC_PRECACHE_EXTENTS:
4129                 return f2fs_ioc_precache_extents(filp, arg);
4130         case F2FS_IOC_RESIZE_FS:
4131                 return f2fs_ioc_resize_fs(filp, arg);
4132         case FS_IOC_ENABLE_VERITY:
4133                 return f2fs_ioc_enable_verity(filp, arg);
4134         case FS_IOC_MEASURE_VERITY:
4135                 return f2fs_ioc_measure_verity(filp, arg);
4136         case FS_IOC_READ_VERITY_METADATA:
4137                 return f2fs_ioc_read_verity_metadata(filp, arg);
4138         case FS_IOC_GETFSLABEL:
4139                 return f2fs_ioc_getfslabel(filp, arg);
4140         case FS_IOC_SETFSLABEL:
4141                 return f2fs_ioc_setfslabel(filp, arg);
4142         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4143                 return f2fs_get_compress_blocks(filp, arg);
4144         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4145                 return f2fs_release_compress_blocks(filp, arg);
4146         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4147                 return f2fs_reserve_compress_blocks(filp, arg);
4148         case F2FS_IOC_SEC_TRIM_FILE:
4149                 return f2fs_sec_trim_file(filp, arg);
4150         case F2FS_IOC_GET_COMPRESS_OPTION:
4151                 return f2fs_ioc_get_compress_option(filp, arg);
4152         case F2FS_IOC_SET_COMPRESS_OPTION:
4153                 return f2fs_ioc_set_compress_option(filp, arg);
4154         case F2FS_IOC_DECOMPRESS_FILE:
4155                 return f2fs_ioc_decompress_file(filp, arg);
4156         case F2FS_IOC_COMPRESS_FILE:
4157                 return f2fs_ioc_compress_file(filp, arg);
4158         default:
4159                 return -ENOTTY;
4160         }
4161 }
4162
4163 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4164 {
4165         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4166                 return -EIO;
4167         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4168                 return -ENOSPC;
4169
4170         return __f2fs_ioctl(filp, cmd, arg);
4171 }
4172
4173 /*
4174  * Return %true if the given read or write request should use direct I/O, or
4175  * %false if it should use buffered I/O.
4176  */
4177 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4178                                 struct iov_iter *iter)
4179 {
4180         unsigned int align;
4181
4182         if (!(iocb->ki_flags & IOCB_DIRECT))
4183                 return false;
4184
4185         if (f2fs_force_buffered_io(inode, iocb, iter))
4186                 return false;
4187
4188         /*
4189          * Direct I/O not aligned to the disk's logical_block_size will be
4190          * attempted, but will fail with -EINVAL.
4191          *
4192          * f2fs additionally requires that direct I/O be aligned to the
4193          * filesystem block size, which is often a stricter requirement.
4194          * However, f2fs traditionally falls back to buffered I/O on requests
4195          * that are logical_block_size-aligned but not fs-block aligned.
4196          *
4197          * The below logic implements this behavior.
4198          */
4199         align = iocb->ki_pos | iov_iter_alignment(iter);
4200         if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4201             IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4202                 return false;
4203
4204         return true;
4205 }
4206
4207 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4208                                 unsigned int flags)
4209 {
4210         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4211
4212         dec_page_count(sbi, F2FS_DIO_READ);
4213         if (error)
4214                 return error;
4215         f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, size);
4216         return 0;
4217 }
4218
4219 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4220         .end_io = f2fs_dio_read_end_io,
4221 };
4222
4223 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4224 {
4225         struct file *file = iocb->ki_filp;
4226         struct inode *inode = file_inode(file);
4227         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4228         struct f2fs_inode_info *fi = F2FS_I(inode);
4229         const loff_t pos = iocb->ki_pos;
4230         const size_t count = iov_iter_count(to);
4231         struct iomap_dio *dio;
4232         ssize_t ret;
4233
4234         if (count == 0)
4235                 return 0; /* skip atime update */
4236
4237         trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4238
4239         if (iocb->ki_flags & IOCB_NOWAIT) {
4240                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4241                         ret = -EAGAIN;
4242                         goto out;
4243                 }
4244         } else {
4245                 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4246         }
4247
4248         /*
4249          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4250          * the higher-level function iomap_dio_rw() in order to ensure that the
4251          * F2FS_DIO_READ counter will be decremented correctly in all cases.
4252          */
4253         inc_page_count(sbi, F2FS_DIO_READ);
4254         dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4255                              &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4256         if (IS_ERR_OR_NULL(dio)) {
4257                 ret = PTR_ERR_OR_ZERO(dio);
4258                 if (ret != -EIOCBQUEUED)
4259                         dec_page_count(sbi, F2FS_DIO_READ);
4260         } else {
4261                 ret = iomap_dio_complete(dio);
4262         }
4263
4264         f2fs_up_read(&fi->i_gc_rwsem[READ]);
4265
4266         file_accessed(file);
4267 out:
4268         trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4269         return ret;
4270 }
4271
4272 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4273 {
4274         struct inode *inode = file_inode(iocb->ki_filp);
4275         const loff_t pos = iocb->ki_pos;
4276         ssize_t ret;
4277
4278         if (!f2fs_is_compress_backend_ready(inode))
4279                 return -EOPNOTSUPP;
4280
4281         if (trace_f2fs_dataread_start_enabled()) {
4282                 char *p = f2fs_kmalloc(F2FS_I_SB(inode), PATH_MAX, GFP_KERNEL);
4283                 char *path;
4284
4285                 if (!p)
4286                         goto skip_read_trace;
4287
4288                 path = dentry_path_raw(file_dentry(iocb->ki_filp), p, PATH_MAX);
4289                 if (IS_ERR(path)) {
4290                         kfree(p);
4291                         goto skip_read_trace;
4292                 }
4293
4294                 trace_f2fs_dataread_start(inode, pos, iov_iter_count(to),
4295                                         current->pid, path, current->comm);
4296                 kfree(p);
4297         }
4298 skip_read_trace:
4299         if (f2fs_should_use_dio(inode, iocb, to)) {
4300                 ret = f2fs_dio_read_iter(iocb, to);
4301         } else {
4302                 ret = filemap_read(iocb, to, 0);
4303                 if (ret > 0)
4304                         f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_READ_IO, ret);
4305         }
4306         if (trace_f2fs_dataread_end_enabled())
4307                 trace_f2fs_dataread_end(inode, pos, ret);
4308         return ret;
4309 }
4310
4311 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4312 {
4313         struct file *file = iocb->ki_filp;
4314         struct inode *inode = file_inode(file);
4315         ssize_t count;
4316         int err;
4317
4318         if (IS_IMMUTABLE(inode))
4319                 return -EPERM;
4320
4321         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4322                 return -EPERM;
4323
4324         count = generic_write_checks(iocb, from);
4325         if (count <= 0)
4326                 return count;
4327
4328         err = file_modified(file);
4329         if (err)
4330                 return err;
4331         return count;
4332 }
4333
4334 /*
4335  * Preallocate blocks for a write request, if it is possible and helpful to do
4336  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4337  * blocks were preallocated, or a negative errno value if something went
4338  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4339  * requested blocks (not just some of them) have been allocated.
4340  */
4341 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4342                                    bool dio)
4343 {
4344         struct inode *inode = file_inode(iocb->ki_filp);
4345         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4346         const loff_t pos = iocb->ki_pos;
4347         const size_t count = iov_iter_count(iter);
4348         struct f2fs_map_blocks map = {};
4349         int flag;
4350         int ret;
4351
4352         /* If it will be an out-of-place direct write, don't bother. */
4353         if (dio && f2fs_lfs_mode(sbi))
4354                 return 0;
4355         /*
4356          * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4357          * buffered IO, if DIO meets any holes.
4358          */
4359         if (dio && i_size_read(inode) &&
4360                 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4361                 return 0;
4362
4363         /* No-wait I/O can't allocate blocks. */
4364         if (iocb->ki_flags & IOCB_NOWAIT)
4365                 return 0;
4366
4367         /* If it will be a short write, don't bother. */
4368         if (fault_in_iov_iter_readable(iter, count))
4369                 return 0;
4370
4371         if (f2fs_has_inline_data(inode)) {
4372                 /* If the data will fit inline, don't bother. */
4373                 if (pos + count <= MAX_INLINE_DATA(inode))
4374                         return 0;
4375                 ret = f2fs_convert_inline_inode(inode);
4376                 if (ret)
4377                         return ret;
4378         }
4379
4380         /* Do not preallocate blocks that will be written partially in 4KB. */
4381         map.m_lblk = F2FS_BLK_ALIGN(pos);
4382         map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4383         if (map.m_len > map.m_lblk)
4384                 map.m_len -= map.m_lblk;
4385         else
4386                 map.m_len = 0;
4387         map.m_may_create = true;
4388         if (dio) {
4389                 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4390                 flag = F2FS_GET_BLOCK_PRE_DIO;
4391         } else {
4392                 map.m_seg_type = NO_CHECK_TYPE;
4393                 flag = F2FS_GET_BLOCK_PRE_AIO;
4394         }
4395
4396         ret = f2fs_map_blocks(inode, &map, 1, flag);
4397         /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4398         if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4399                 return ret;
4400         if (ret == 0)
4401                 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4402         return map.m_len;
4403 }
4404
4405 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4406                                         struct iov_iter *from)
4407 {
4408         struct file *file = iocb->ki_filp;
4409         struct inode *inode = file_inode(file);
4410         ssize_t ret;
4411
4412         if (iocb->ki_flags & IOCB_NOWAIT)
4413                 return -EOPNOTSUPP;
4414
4415         current->backing_dev_info = inode_to_bdi(inode);
4416         ret = generic_perform_write(iocb, from);
4417         current->backing_dev_info = NULL;
4418
4419         if (ret > 0) {
4420                 iocb->ki_pos += ret;
4421                 f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_IO, ret);
4422         }
4423         return ret;
4424 }
4425
4426 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4427                                  unsigned int flags)
4428 {
4429         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4430
4431         dec_page_count(sbi, F2FS_DIO_WRITE);
4432         if (error)
4433                 return error;
4434         f2fs_update_iostat(sbi, APP_DIRECT_IO, size);
4435         return 0;
4436 }
4437
4438 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4439         .end_io = f2fs_dio_write_end_io,
4440 };
4441
4442 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4443                                    bool *may_need_sync)
4444 {
4445         struct file *file = iocb->ki_filp;
4446         struct inode *inode = file_inode(file);
4447         struct f2fs_inode_info *fi = F2FS_I(inode);
4448         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4449         const bool do_opu = f2fs_lfs_mode(sbi);
4450         const loff_t pos = iocb->ki_pos;
4451         const ssize_t count = iov_iter_count(from);
4452         unsigned int dio_flags;
4453         struct iomap_dio *dio;
4454         ssize_t ret;
4455
4456         trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4457
4458         if (iocb->ki_flags & IOCB_NOWAIT) {
4459                 /* f2fs_convert_inline_inode() and block allocation can block */
4460                 if (f2fs_has_inline_data(inode) ||
4461                     !f2fs_overwrite_io(inode, pos, count)) {
4462                         ret = -EAGAIN;
4463                         goto out;
4464                 }
4465
4466                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4467                         ret = -EAGAIN;
4468                         goto out;
4469                 }
4470                 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4471                         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4472                         ret = -EAGAIN;
4473                         goto out;
4474                 }
4475         } else {
4476                 ret = f2fs_convert_inline_inode(inode);
4477                 if (ret)
4478                         goto out;
4479
4480                 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4481                 if (do_opu)
4482                         f2fs_down_read(&fi->i_gc_rwsem[READ]);
4483         }
4484
4485         /*
4486          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4487          * the higher-level function iomap_dio_rw() in order to ensure that the
4488          * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4489          */
4490         inc_page_count(sbi, F2FS_DIO_WRITE);
4491         dio_flags = 0;
4492         if (pos + count > inode->i_size)
4493                 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4494         dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4495                              &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4496         if (IS_ERR_OR_NULL(dio)) {
4497                 ret = PTR_ERR_OR_ZERO(dio);
4498                 if (ret == -ENOTBLK)
4499                         ret = 0;
4500                 if (ret != -EIOCBQUEUED)
4501                         dec_page_count(sbi, F2FS_DIO_WRITE);
4502         } else {
4503                 ret = iomap_dio_complete(dio);
4504         }
4505
4506         if (do_opu)
4507                 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4508         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4509
4510         if (ret < 0)
4511                 goto out;
4512         if (pos + ret > inode->i_size)
4513                 f2fs_i_size_write(inode, pos + ret);
4514         if (!do_opu)
4515                 set_inode_flag(inode, FI_UPDATE_WRITE);
4516
4517         if (iov_iter_count(from)) {
4518                 ssize_t ret2;
4519                 loff_t bufio_start_pos = iocb->ki_pos;
4520
4521                 /*
4522                  * The direct write was partial, so we need to fall back to a
4523                  * buffered write for the remainder.
4524                  */
4525
4526                 ret2 = f2fs_buffered_write_iter(iocb, from);
4527                 if (iov_iter_count(from))
4528                         f2fs_write_failed(inode, iocb->ki_pos);
4529                 if (ret2 < 0)
4530                         goto out;
4531
4532                 /*
4533                  * Ensure that the pagecache pages are written to disk and
4534                  * invalidated to preserve the expected O_DIRECT semantics.
4535                  */
4536                 if (ret2 > 0) {
4537                         loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4538
4539                         ret += ret2;
4540
4541                         ret2 = filemap_write_and_wait_range(file->f_mapping,
4542                                                             bufio_start_pos,
4543                                                             bufio_end_pos);
4544                         if (ret2 < 0)
4545                                 goto out;
4546                         invalidate_mapping_pages(file->f_mapping,
4547                                                  bufio_start_pos >> PAGE_SHIFT,
4548                                                  bufio_end_pos >> PAGE_SHIFT);
4549                 }
4550         } else {
4551                 /* iomap_dio_rw() already handled the generic_write_sync(). */
4552                 *may_need_sync = false;
4553         }
4554 out:
4555         trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4556         return ret;
4557 }
4558
4559 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4560 {
4561         struct inode *inode = file_inode(iocb->ki_filp);
4562         const loff_t orig_pos = iocb->ki_pos;
4563         const size_t orig_count = iov_iter_count(from);
4564         loff_t target_size;
4565         bool dio;
4566         bool may_need_sync = true;
4567         int preallocated;
4568         ssize_t ret;
4569
4570         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4571                 ret = -EIO;
4572                 goto out;
4573         }
4574
4575         if (!f2fs_is_compress_backend_ready(inode)) {
4576                 ret = -EOPNOTSUPP;
4577                 goto out;
4578         }
4579
4580         if (iocb->ki_flags & IOCB_NOWAIT) {
4581                 if (!inode_trylock(inode)) {
4582                         ret = -EAGAIN;
4583                         goto out;
4584                 }
4585         } else {
4586                 inode_lock(inode);
4587         }
4588
4589         ret = f2fs_write_checks(iocb, from);
4590         if (ret <= 0)
4591                 goto out_unlock;
4592
4593         /* Determine whether we will do a direct write or a buffered write. */
4594         dio = f2fs_should_use_dio(inode, iocb, from);
4595
4596         /* Possibly preallocate the blocks for the write. */
4597         target_size = iocb->ki_pos + iov_iter_count(from);
4598         preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4599         if (preallocated < 0) {
4600                 ret = preallocated;
4601         } else {
4602                 if (trace_f2fs_datawrite_start_enabled()) {
4603                         char *p = f2fs_kmalloc(F2FS_I_SB(inode),
4604                                                 PATH_MAX, GFP_KERNEL);
4605                         char *path;
4606
4607                         if (!p)
4608                                 goto skip_write_trace;
4609                         path = dentry_path_raw(file_dentry(iocb->ki_filp),
4610                                                                 p, PATH_MAX);
4611                         if (IS_ERR(path)) {
4612                                 kfree(p);
4613                                 goto skip_write_trace;
4614                         }
4615                         trace_f2fs_datawrite_start(inode, orig_pos, orig_count,
4616                                         current->pid, path, current->comm);
4617                         kfree(p);
4618                 }
4619 skip_write_trace:
4620                 /* Do the actual write. */
4621                 ret = dio ?
4622                         f2fs_dio_write_iter(iocb, from, &may_need_sync):
4623                         f2fs_buffered_write_iter(iocb, from);
4624
4625                 if (trace_f2fs_datawrite_end_enabled())
4626                         trace_f2fs_datawrite_end(inode, orig_pos, ret);
4627         }
4628
4629         /* Don't leave any preallocated blocks around past i_size. */
4630         if (preallocated && i_size_read(inode) < target_size) {
4631                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4632                 filemap_invalidate_lock(inode->i_mapping);
4633                 if (!f2fs_truncate(inode))
4634                         file_dont_truncate(inode);
4635                 filemap_invalidate_unlock(inode->i_mapping);
4636                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4637         } else {
4638                 file_dont_truncate(inode);
4639         }
4640
4641         clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4642 out_unlock:
4643         inode_unlock(inode);
4644 out:
4645         trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4646         if (ret > 0 && may_need_sync)
4647                 ret = generic_write_sync(iocb, ret);
4648         return ret;
4649 }
4650
4651 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4652                 int advice)
4653 {
4654         struct address_space *mapping;
4655         struct backing_dev_info *bdi;
4656         struct inode *inode = file_inode(filp);
4657         int err;
4658
4659         if (advice == POSIX_FADV_SEQUENTIAL) {
4660                 if (S_ISFIFO(inode->i_mode))
4661                         return -ESPIPE;
4662
4663                 mapping = filp->f_mapping;
4664                 if (!mapping || len < 0)
4665                         return -EINVAL;
4666
4667                 bdi = inode_to_bdi(mapping->host);
4668                 filp->f_ra.ra_pages = bdi->ra_pages *
4669                         F2FS_I_SB(inode)->seq_file_ra_mul;
4670                 spin_lock(&filp->f_lock);
4671                 filp->f_mode &= ~FMODE_RANDOM;
4672                 spin_unlock(&filp->f_lock);
4673                 return 0;
4674         }
4675
4676         err = generic_fadvise(filp, offset, len, advice);
4677         if (!err && advice == POSIX_FADV_DONTNEED &&
4678                 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4679                 f2fs_compressed_file(inode))
4680                 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4681
4682         return err;
4683 }
4684
4685 #ifdef CONFIG_COMPAT
4686 struct compat_f2fs_gc_range {
4687         u32 sync;
4688         compat_u64 start;
4689         compat_u64 len;
4690 };
4691 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE        _IOW(F2FS_IOCTL_MAGIC, 11,\
4692                                                 struct compat_f2fs_gc_range)
4693
4694 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4695 {
4696         struct compat_f2fs_gc_range __user *urange;
4697         struct f2fs_gc_range range;
4698         int err;
4699
4700         urange = compat_ptr(arg);
4701         err = get_user(range.sync, &urange->sync);
4702         err |= get_user(range.start, &urange->start);
4703         err |= get_user(range.len, &urange->len);
4704         if (err)
4705                 return -EFAULT;
4706
4707         return __f2fs_ioc_gc_range(file, &range);
4708 }
4709
4710 struct compat_f2fs_move_range {
4711         u32 dst_fd;
4712         compat_u64 pos_in;
4713         compat_u64 pos_out;
4714         compat_u64 len;
4715 };
4716 #define F2FS_IOC32_MOVE_RANGE           _IOWR(F2FS_IOCTL_MAGIC, 9,      \
4717                                         struct compat_f2fs_move_range)
4718
4719 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4720 {
4721         struct compat_f2fs_move_range __user *urange;
4722         struct f2fs_move_range range;
4723         int err;
4724
4725         urange = compat_ptr(arg);
4726         err = get_user(range.dst_fd, &urange->dst_fd);
4727         err |= get_user(range.pos_in, &urange->pos_in);
4728         err |= get_user(range.pos_out, &urange->pos_out);
4729         err |= get_user(range.len, &urange->len);
4730         if (err)
4731                 return -EFAULT;
4732
4733         return __f2fs_ioc_move_range(file, &range);
4734 }
4735
4736 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4737 {
4738         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4739                 return -EIO;
4740         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4741                 return -ENOSPC;
4742
4743         switch (cmd) {
4744         case FS_IOC32_GETVERSION:
4745                 cmd = FS_IOC_GETVERSION;
4746                 break;
4747         case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4748                 return f2fs_compat_ioc_gc_range(file, arg);
4749         case F2FS_IOC32_MOVE_RANGE:
4750                 return f2fs_compat_ioc_move_range(file, arg);
4751         case F2FS_IOC_START_ATOMIC_WRITE:
4752         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4753         case F2FS_IOC_START_VOLATILE_WRITE:
4754         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4755         case F2FS_IOC_ABORT_ATOMIC_WRITE:
4756         case F2FS_IOC_SHUTDOWN:
4757         case FITRIM:
4758         case FS_IOC_SET_ENCRYPTION_POLICY:
4759         case FS_IOC_GET_ENCRYPTION_PWSALT:
4760         case FS_IOC_GET_ENCRYPTION_POLICY:
4761         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4762         case FS_IOC_ADD_ENCRYPTION_KEY:
4763         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4764         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4765         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4766         case FS_IOC_GET_ENCRYPTION_NONCE:
4767         case F2FS_IOC_GARBAGE_COLLECT:
4768         case F2FS_IOC_WRITE_CHECKPOINT:
4769         case F2FS_IOC_DEFRAGMENT:
4770         case F2FS_IOC_FLUSH_DEVICE:
4771         case F2FS_IOC_GET_FEATURES:
4772         case F2FS_IOC_GET_PIN_FILE:
4773         case F2FS_IOC_SET_PIN_FILE:
4774         case F2FS_IOC_PRECACHE_EXTENTS:
4775         case F2FS_IOC_RESIZE_FS:
4776         case FS_IOC_ENABLE_VERITY:
4777         case FS_IOC_MEASURE_VERITY:
4778         case FS_IOC_READ_VERITY_METADATA:
4779         case FS_IOC_GETFSLABEL:
4780         case FS_IOC_SETFSLABEL:
4781         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4782         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4783         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4784         case F2FS_IOC_SEC_TRIM_FILE:
4785         case F2FS_IOC_GET_COMPRESS_OPTION:
4786         case F2FS_IOC_SET_COMPRESS_OPTION:
4787         case F2FS_IOC_DECOMPRESS_FILE:
4788         case F2FS_IOC_COMPRESS_FILE:
4789                 break;
4790         default:
4791                 return -ENOIOCTLCMD;
4792         }
4793         return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4794 }
4795 #endif
4796
4797 const struct file_operations f2fs_file_operations = {
4798         .llseek         = f2fs_llseek,
4799         .read_iter      = f2fs_file_read_iter,
4800         .write_iter     = f2fs_file_write_iter,
4801         .open           = f2fs_file_open,
4802         .release        = f2fs_release_file,
4803         .mmap           = f2fs_file_mmap,
4804         .flush          = f2fs_file_flush,
4805         .fsync          = f2fs_sync_file,
4806         .fallocate      = f2fs_fallocate,
4807         .unlocked_ioctl = f2fs_ioctl,
4808 #ifdef CONFIG_COMPAT
4809         .compat_ioctl   = f2fs_compat_ioctl,
4810 #endif
4811         .splice_read    = generic_file_splice_read,
4812         .splice_write   = iter_file_splice_write,
4813         .fadvise        = f2fs_file_fadvise,
4814 };