Merge tag '6.6-rc-smb3-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
[sfrench/cifs-2.6.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                          struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145  */
146 int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151
152                 if (ext4_has_inline_data(inode))
153                         return 0;
154
155                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156         }
157         return S_ISLNK(inode->i_mode) && inode->i_size &&
158                (inode->i_size < EXT4_N_BLOCKS * 4);
159 }
160
161 /*
162  * Called at the last iput() if i_nlink is zero.
163  */
164 void ext4_evict_inode(struct inode *inode)
165 {
166         handle_t *handle;
167         int err;
168         /*
169          * Credits for final inode cleanup and freeing:
170          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171          * (xattr block freeing), bitmap, group descriptor (inode freeing)
172          */
173         int extra_credits = 6;
174         struct ext4_xattr_inode_array *ea_inode_array = NULL;
175         bool freeze_protected = false;
176
177         trace_ext4_evict_inode(inode);
178
179         if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180                 ext4_evict_ea_inode(inode);
181         if (inode->i_nlink) {
182                 truncate_inode_pages_final(&inode->i_data);
183
184                 goto no_delete;
185         }
186
187         if (is_bad_inode(inode))
188                 goto no_delete;
189         dquot_initialize(inode);
190
191         if (ext4_should_order_data(inode))
192                 ext4_begin_ordered_truncate(inode, 0);
193         truncate_inode_pages_final(&inode->i_data);
194
195         /*
196          * For inodes with journalled data, transaction commit could have
197          * dirtied the inode. And for inodes with dioread_nolock, unwritten
198          * extents converting worker could merge extents and also have dirtied
199          * the inode. Flush worker is ignoring it because of I_FREEING flag but
200          * we still need to remove the inode from the writeback lists.
201          */
202         if (!list_empty_careful(&inode->i_io_list))
203                 inode_io_list_del(inode);
204
205         /*
206          * Protect us against freezing - iput() caller didn't have to have any
207          * protection against it. When we are in a running transaction though,
208          * we are already protected against freezing and we cannot grab further
209          * protection due to lock ordering constraints.
210          */
211         if (!ext4_journal_current_handle()) {
212                 sb_start_intwrite(inode->i_sb);
213                 freeze_protected = true;
214         }
215
216         if (!IS_NOQUOTA(inode))
217                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218
219         /*
220          * Block bitmap, group descriptor, and inode are accounted in both
221          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222          */
223         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
225         if (IS_ERR(handle)) {
226                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
227                 /*
228                  * If we're going to skip the normal cleanup, we still need to
229                  * make sure that the in-core orphan linked list is properly
230                  * cleaned up.
231                  */
232                 ext4_orphan_del(NULL, inode);
233                 if (freeze_protected)
234                         sb_end_intwrite(inode->i_sb);
235                 goto no_delete;
236         }
237
238         if (IS_SYNC(inode))
239                 ext4_handle_sync(handle);
240
241         /*
242          * Set inode->i_size to 0 before calling ext4_truncate(). We need
243          * special handling of symlinks here because i_size is used to
244          * determine whether ext4_inode_info->i_data contains symlink data or
245          * block mappings. Setting i_size to 0 will remove its fast symlink
246          * status. Erase i_data so that it becomes a valid empty block map.
247          */
248         if (ext4_inode_is_fast_symlink(inode))
249                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250         inode->i_size = 0;
251         err = ext4_mark_inode_dirty(handle, inode);
252         if (err) {
253                 ext4_warning(inode->i_sb,
254                              "couldn't mark inode dirty (err %d)", err);
255                 goto stop_handle;
256         }
257         if (inode->i_blocks) {
258                 err = ext4_truncate(inode);
259                 if (err) {
260                         ext4_error_err(inode->i_sb, -err,
261                                        "couldn't truncate inode %lu (err %d)",
262                                        inode->i_ino, err);
263                         goto stop_handle;
264                 }
265         }
266
267         /* Remove xattr references. */
268         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
269                                       extra_credits);
270         if (err) {
271                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272 stop_handle:
273                 ext4_journal_stop(handle);
274                 ext4_orphan_del(NULL, inode);
275                 if (freeze_protected)
276                         sb_end_intwrite(inode->i_sb);
277                 ext4_xattr_inode_array_free(ea_inode_array);
278                 goto no_delete;
279         }
280
281         /*
282          * Kill off the orphan record which ext4_truncate created.
283          * AKPM: I think this can be inside the above `if'.
284          * Note that ext4_orphan_del() has to be able to cope with the
285          * deletion of a non-existent orphan - this is because we don't
286          * know if ext4_truncate() actually created an orphan record.
287          * (Well, we could do this if we need to, but heck - it works)
288          */
289         ext4_orphan_del(handle, inode);
290         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
291
292         /*
293          * One subtle ordering requirement: if anything has gone wrong
294          * (transaction abort, IO errors, whatever), then we can still
295          * do these next steps (the fs will already have been marked as
296          * having errors), but we can't free the inode if the mark_dirty
297          * fails.
298          */
299         if (ext4_mark_inode_dirty(handle, inode))
300                 /* If that failed, just do the required in-core inode clear. */
301                 ext4_clear_inode(inode);
302         else
303                 ext4_free_inode(handle, inode);
304         ext4_journal_stop(handle);
305         if (freeze_protected)
306                 sb_end_intwrite(inode->i_sb);
307         ext4_xattr_inode_array_free(ea_inode_array);
308         return;
309 no_delete:
310         /*
311          * Check out some where else accidentally dirty the evicting inode,
312          * which may probably cause inode use-after-free issues later.
313          */
314         WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315
316         if (!list_empty(&EXT4_I(inode)->i_fc_list))
317                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
318         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
319 }
320
321 #ifdef CONFIG_QUOTA
322 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 {
324         return &EXT4_I(inode)->i_reserved_quota;
325 }
326 #endif
327
328 /*
329  * Called with i_data_sem down, which is important since we can call
330  * ext4_discard_preallocations() from here.
331  */
332 void ext4_da_update_reserve_space(struct inode *inode,
333                                         int used, int quota_claim)
334 {
335         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336         struct ext4_inode_info *ei = EXT4_I(inode);
337
338         spin_lock(&ei->i_block_reservation_lock);
339         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340         if (unlikely(used > ei->i_reserved_data_blocks)) {
341                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342                          "with only %d reserved data blocks",
343                          __func__, inode->i_ino, used,
344                          ei->i_reserved_data_blocks);
345                 WARN_ON(1);
346                 used = ei->i_reserved_data_blocks;
347         }
348
349         /* Update per-inode reservations */
350         ei->i_reserved_data_blocks -= used;
351         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352
353         spin_unlock(&ei->i_block_reservation_lock);
354
355         /* Update quota subsystem for data blocks */
356         if (quota_claim)
357                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
358         else {
359                 /*
360                  * We did fallocate with an offset that is already delayed
361                  * allocated. So on delayed allocated writeback we should
362                  * not re-claim the quota for fallocated blocks.
363                  */
364                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365         }
366
367         /*
368          * If we have done all the pending block allocations and if
369          * there aren't any writers on the inode, we can discard the
370          * inode's preallocations.
371          */
372         if ((ei->i_reserved_data_blocks == 0) &&
373             !inode_is_open_for_write(inode))
374                 ext4_discard_preallocations(inode, 0);
375 }
376
377 static int __check_block_validity(struct inode *inode, const char *func,
378                                 unsigned int line,
379                                 struct ext4_map_blocks *map)
380 {
381         if (ext4_has_feature_journal(inode->i_sb) &&
382             (inode->i_ino ==
383              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384                 return 0;
385         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386                 ext4_error_inode(inode, func, line, map->m_pblk,
387                                  "lblock %lu mapped to illegal pblock %llu "
388                                  "(length %d)", (unsigned long) map->m_lblk,
389                                  map->m_pblk, map->m_len);
390                 return -EFSCORRUPTED;
391         }
392         return 0;
393 }
394
395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396                        ext4_lblk_t len)
397 {
398         int ret;
399
400         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
402
403         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404         if (ret > 0)
405                 ret = 0;
406
407         return ret;
408 }
409
410 #define check_block_validity(inode, map)        \
411         __check_block_validity((inode), __func__, __LINE__, (map))
412
413 #ifdef ES_AGGRESSIVE_TEST
414 static void ext4_map_blocks_es_recheck(handle_t *handle,
415                                        struct inode *inode,
416                                        struct ext4_map_blocks *es_map,
417                                        struct ext4_map_blocks *map,
418                                        int flags)
419 {
420         int retval;
421
422         map->m_flags = 0;
423         /*
424          * There is a race window that the result is not the same.
425          * e.g. xfstests #223 when dioread_nolock enables.  The reason
426          * is that we lookup a block mapping in extent status tree with
427          * out taking i_data_sem.  So at the time the unwritten extent
428          * could be converted.
429          */
430         down_read(&EXT4_I(inode)->i_data_sem);
431         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
433         } else {
434                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
435         }
436         up_read((&EXT4_I(inode)->i_data_sem));
437
438         /*
439          * We don't check m_len because extent will be collpased in status
440          * tree.  So the m_len might not equal.
441          */
442         if (es_map->m_lblk != map->m_lblk ||
443             es_map->m_flags != map->m_flags ||
444             es_map->m_pblk != map->m_pblk) {
445                 printk("ES cache assertion failed for inode: %lu "
446                        "es_cached ex [%d/%d/%llu/%x] != "
447                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448                        inode->i_ino, es_map->m_lblk, es_map->m_len,
449                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
450                        map->m_len, map->m_pblk, map->m_flags,
451                        retval, flags);
452         }
453 }
454 #endif /* ES_AGGRESSIVE_TEST */
455
456 /*
457  * The ext4_map_blocks() function tries to look up the requested blocks,
458  * and returns if the blocks are already mapped.
459  *
460  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
461  * and store the allocated blocks in the result buffer head and mark it
462  * mapped.
463  *
464  * If file type is extents based, it will call ext4_ext_map_blocks(),
465  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
466  * based files
467  *
468  * On success, it returns the number of blocks being mapped or allocated.  if
469  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
470  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
471  *
472  * It returns 0 if plain look up failed (blocks have not been allocated), in
473  * that case, @map is returned as unmapped but we still do fill map->m_len to
474  * indicate the length of a hole starting at map->m_lblk.
475  *
476  * It returns the error in case of allocation failure.
477  */
478 int ext4_map_blocks(handle_t *handle, struct inode *inode,
479                     struct ext4_map_blocks *map, int flags)
480 {
481         struct extent_status es;
482         int retval;
483         int ret = 0;
484 #ifdef ES_AGGRESSIVE_TEST
485         struct ext4_map_blocks orig_map;
486
487         memcpy(&orig_map, map, sizeof(*map));
488 #endif
489
490         map->m_flags = 0;
491         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
492                   flags, map->m_len, (unsigned long) map->m_lblk);
493
494         /*
495          * ext4_map_blocks returns an int, and m_len is an unsigned int
496          */
497         if (unlikely(map->m_len > INT_MAX))
498                 map->m_len = INT_MAX;
499
500         /* We can handle the block number less than EXT_MAX_BLOCKS */
501         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
502                 return -EFSCORRUPTED;
503
504         /* Lookup extent status tree firstly */
505         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
506             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
507                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
508                         map->m_pblk = ext4_es_pblock(&es) +
509                                         map->m_lblk - es.es_lblk;
510                         map->m_flags |= ext4_es_is_written(&es) ?
511                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
512                         retval = es.es_len - (map->m_lblk - es.es_lblk);
513                         if (retval > map->m_len)
514                                 retval = map->m_len;
515                         map->m_len = retval;
516                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
517                         map->m_pblk = 0;
518                         retval = es.es_len - (map->m_lblk - es.es_lblk);
519                         if (retval > map->m_len)
520                                 retval = map->m_len;
521                         map->m_len = retval;
522                         retval = 0;
523                 } else {
524                         BUG();
525                 }
526
527                 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
528                         return retval;
529 #ifdef ES_AGGRESSIVE_TEST
530                 ext4_map_blocks_es_recheck(handle, inode, map,
531                                            &orig_map, flags);
532 #endif
533                 goto found;
534         }
535         /*
536          * In the query cache no-wait mode, nothing we can do more if we
537          * cannot find extent in the cache.
538          */
539         if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
540                 return 0;
541
542         /*
543          * Try to see if we can get the block without requesting a new
544          * file system block.
545          */
546         down_read(&EXT4_I(inode)->i_data_sem);
547         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
549         } else {
550                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
551         }
552         if (retval > 0) {
553                 unsigned int status;
554
555                 if (unlikely(retval != map->m_len)) {
556                         ext4_warning(inode->i_sb,
557                                      "ES len assertion failed for inode "
558                                      "%lu: retval %d != map->m_len %d",
559                                      inode->i_ino, retval, map->m_len);
560                         WARN_ON(1);
561                 }
562
563                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
564                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
565                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
566                     !(status & EXTENT_STATUS_WRITTEN) &&
567                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
568                                        map->m_lblk + map->m_len - 1))
569                         status |= EXTENT_STATUS_DELAYED;
570                 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
571                                       map->m_pblk, status);
572         }
573         up_read((&EXT4_I(inode)->i_data_sem));
574
575 found:
576         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577                 ret = check_block_validity(inode, map);
578                 if (ret != 0)
579                         return ret;
580         }
581
582         /* If it is only a block(s) look up */
583         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584                 return retval;
585
586         /*
587          * Returns if the blocks have already allocated
588          *
589          * Note that if blocks have been preallocated
590          * ext4_ext_get_block() returns the create = 0
591          * with buffer head unmapped.
592          */
593         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594                 /*
595                  * If we need to convert extent to unwritten
596                  * we continue and do the actual work in
597                  * ext4_ext_map_blocks()
598                  */
599                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
600                         return retval;
601
602         /*
603          * Here we clear m_flags because after allocating an new extent,
604          * it will be set again.
605          */
606         map->m_flags &= ~EXT4_MAP_FLAGS;
607
608         /*
609          * New blocks allocate and/or writing to unwritten extent
610          * will possibly result in updating i_data, so we take
611          * the write lock of i_data_sem, and call get_block()
612          * with create == 1 flag.
613          */
614         down_write(&EXT4_I(inode)->i_data_sem);
615
616         /*
617          * We need to check for EXT4 here because migrate
618          * could have changed the inode type in between
619          */
620         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
621                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
622         } else {
623                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
624
625                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
626                         /*
627                          * We allocated new blocks which will result in
628                          * i_data's format changing.  Force the migrate
629                          * to fail by clearing migrate flags
630                          */
631                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
632                 }
633         }
634
635         if (retval > 0) {
636                 unsigned int status;
637
638                 if (unlikely(retval != map->m_len)) {
639                         ext4_warning(inode->i_sb,
640                                      "ES len assertion failed for inode "
641                                      "%lu: retval %d != map->m_len %d",
642                                      inode->i_ino, retval, map->m_len);
643                         WARN_ON(1);
644                 }
645
646                 /*
647                  * We have to zeroout blocks before inserting them into extent
648                  * status tree. Otherwise someone could look them up there and
649                  * use them before they are really zeroed. We also have to
650                  * unmap metadata before zeroing as otherwise writeback can
651                  * overwrite zeros with stale data from block device.
652                  */
653                 if (flags & EXT4_GET_BLOCKS_ZERO &&
654                     map->m_flags & EXT4_MAP_MAPPED &&
655                     map->m_flags & EXT4_MAP_NEW) {
656                         ret = ext4_issue_zeroout(inode, map->m_lblk,
657                                                  map->m_pblk, map->m_len);
658                         if (ret) {
659                                 retval = ret;
660                                 goto out_sem;
661                         }
662                 }
663
664                 /*
665                  * If the extent has been zeroed out, we don't need to update
666                  * extent status tree.
667                  */
668                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
669                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
670                         if (ext4_es_is_written(&es))
671                                 goto out_sem;
672                 }
673                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
674                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
675                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
676                     !(status & EXTENT_STATUS_WRITTEN) &&
677                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
678                                        map->m_lblk + map->m_len - 1))
679                         status |= EXTENT_STATUS_DELAYED;
680                 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
681                                       map->m_pblk, status);
682         }
683
684 out_sem:
685         up_write((&EXT4_I(inode)->i_data_sem));
686         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
687                 ret = check_block_validity(inode, map);
688                 if (ret != 0)
689                         return ret;
690
691                 /*
692                  * Inodes with freshly allocated blocks where contents will be
693                  * visible after transaction commit must be on transaction's
694                  * ordered data list.
695                  */
696                 if (map->m_flags & EXT4_MAP_NEW &&
697                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
698                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
699                     !ext4_is_quota_file(inode) &&
700                     ext4_should_order_data(inode)) {
701                         loff_t start_byte =
702                                 (loff_t)map->m_lblk << inode->i_blkbits;
703                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
704
705                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
706                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
707                                                 start_byte, length);
708                         else
709                                 ret = ext4_jbd2_inode_add_write(handle, inode,
710                                                 start_byte, length);
711                         if (ret)
712                                 return ret;
713                 }
714         }
715         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
716                                 map->m_flags & EXT4_MAP_MAPPED))
717                 ext4_fc_track_range(handle, inode, map->m_lblk,
718                                         map->m_lblk + map->m_len - 1);
719         if (retval < 0)
720                 ext_debug(inode, "failed with err %d\n", retval);
721         return retval;
722 }
723
724 /*
725  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
726  * we have to be careful as someone else may be manipulating b_state as well.
727  */
728 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
729 {
730         unsigned long old_state;
731         unsigned long new_state;
732
733         flags &= EXT4_MAP_FLAGS;
734
735         /* Dummy buffer_head? Set non-atomically. */
736         if (!bh->b_page) {
737                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
738                 return;
739         }
740         /*
741          * Someone else may be modifying b_state. Be careful! This is ugly but
742          * once we get rid of using bh as a container for mapping information
743          * to pass to / from get_block functions, this can go away.
744          */
745         old_state = READ_ONCE(bh->b_state);
746         do {
747                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
748         } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
749 }
750
751 static int _ext4_get_block(struct inode *inode, sector_t iblock,
752                            struct buffer_head *bh, int flags)
753 {
754         struct ext4_map_blocks map;
755         int ret = 0;
756
757         if (ext4_has_inline_data(inode))
758                 return -ERANGE;
759
760         map.m_lblk = iblock;
761         map.m_len = bh->b_size >> inode->i_blkbits;
762
763         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
764                               flags);
765         if (ret > 0) {
766                 map_bh(bh, inode->i_sb, map.m_pblk);
767                 ext4_update_bh_state(bh, map.m_flags);
768                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
769                 ret = 0;
770         } else if (ret == 0) {
771                 /* hole case, need to fill in bh->b_size */
772                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
773         }
774         return ret;
775 }
776
777 int ext4_get_block(struct inode *inode, sector_t iblock,
778                    struct buffer_head *bh, int create)
779 {
780         return _ext4_get_block(inode, iblock, bh,
781                                create ? EXT4_GET_BLOCKS_CREATE : 0);
782 }
783
784 /*
785  * Get block function used when preparing for buffered write if we require
786  * creating an unwritten extent if blocks haven't been allocated.  The extent
787  * will be converted to written after the IO is complete.
788  */
789 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
790                              struct buffer_head *bh_result, int create)
791 {
792         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
793                    inode->i_ino, create);
794         return _ext4_get_block(inode, iblock, bh_result,
795                                EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
796 }
797
798 /* Maximum number of blocks we map for direct IO at once. */
799 #define DIO_MAX_BLOCKS 4096
800
801 /*
802  * `handle' can be NULL if create is zero
803  */
804 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
805                                 ext4_lblk_t block, int map_flags)
806 {
807         struct ext4_map_blocks map;
808         struct buffer_head *bh;
809         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
810         bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
811         int err;
812
813         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
814                     || handle != NULL || create == 0);
815         ASSERT(create == 0 || !nowait);
816
817         map.m_lblk = block;
818         map.m_len = 1;
819         err = ext4_map_blocks(handle, inode, &map, map_flags);
820
821         if (err == 0)
822                 return create ? ERR_PTR(-ENOSPC) : NULL;
823         if (err < 0)
824                 return ERR_PTR(err);
825
826         if (nowait)
827                 return sb_find_get_block(inode->i_sb, map.m_pblk);
828
829         bh = sb_getblk(inode->i_sb, map.m_pblk);
830         if (unlikely(!bh))
831                 return ERR_PTR(-ENOMEM);
832         if (map.m_flags & EXT4_MAP_NEW) {
833                 ASSERT(create != 0);
834                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
835                             || (handle != NULL));
836
837                 /*
838                  * Now that we do not always journal data, we should
839                  * keep in mind whether this should always journal the
840                  * new buffer as metadata.  For now, regular file
841                  * writes use ext4_get_block instead, so it's not a
842                  * problem.
843                  */
844                 lock_buffer(bh);
845                 BUFFER_TRACE(bh, "call get_create_access");
846                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
847                                                      EXT4_JTR_NONE);
848                 if (unlikely(err)) {
849                         unlock_buffer(bh);
850                         goto errout;
851                 }
852                 if (!buffer_uptodate(bh)) {
853                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
854                         set_buffer_uptodate(bh);
855                 }
856                 unlock_buffer(bh);
857                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
858                 err = ext4_handle_dirty_metadata(handle, inode, bh);
859                 if (unlikely(err))
860                         goto errout;
861         } else
862                 BUFFER_TRACE(bh, "not a new buffer");
863         return bh;
864 errout:
865         brelse(bh);
866         return ERR_PTR(err);
867 }
868
869 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
870                                ext4_lblk_t block, int map_flags)
871 {
872         struct buffer_head *bh;
873         int ret;
874
875         bh = ext4_getblk(handle, inode, block, map_flags);
876         if (IS_ERR(bh))
877                 return bh;
878         if (!bh || ext4_buffer_uptodate(bh))
879                 return bh;
880
881         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
882         if (ret) {
883                 put_bh(bh);
884                 return ERR_PTR(ret);
885         }
886         return bh;
887 }
888
889 /* Read a contiguous batch of blocks. */
890 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
891                      bool wait, struct buffer_head **bhs)
892 {
893         int i, err;
894
895         for (i = 0; i < bh_count; i++) {
896                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
897                 if (IS_ERR(bhs[i])) {
898                         err = PTR_ERR(bhs[i]);
899                         bh_count = i;
900                         goto out_brelse;
901                 }
902         }
903
904         for (i = 0; i < bh_count; i++)
905                 /* Note that NULL bhs[i] is valid because of holes. */
906                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
907                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
908
909         if (!wait)
910                 return 0;
911
912         for (i = 0; i < bh_count; i++)
913                 if (bhs[i])
914                         wait_on_buffer(bhs[i]);
915
916         for (i = 0; i < bh_count; i++) {
917                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
918                         err = -EIO;
919                         goto out_brelse;
920                 }
921         }
922         return 0;
923
924 out_brelse:
925         for (i = 0; i < bh_count; i++) {
926                 brelse(bhs[i]);
927                 bhs[i] = NULL;
928         }
929         return err;
930 }
931
932 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
933                            struct buffer_head *head,
934                            unsigned from,
935                            unsigned to,
936                            int *partial,
937                            int (*fn)(handle_t *handle, struct inode *inode,
938                                      struct buffer_head *bh))
939 {
940         struct buffer_head *bh;
941         unsigned block_start, block_end;
942         unsigned blocksize = head->b_size;
943         int err, ret = 0;
944         struct buffer_head *next;
945
946         for (bh = head, block_start = 0;
947              ret == 0 && (bh != head || !block_start);
948              block_start = block_end, bh = next) {
949                 next = bh->b_this_page;
950                 block_end = block_start + blocksize;
951                 if (block_end <= from || block_start >= to) {
952                         if (partial && !buffer_uptodate(bh))
953                                 *partial = 1;
954                         continue;
955                 }
956                 err = (*fn)(handle, inode, bh);
957                 if (!ret)
958                         ret = err;
959         }
960         return ret;
961 }
962
963 /*
964  * Helper for handling dirtying of journalled data. We also mark the folio as
965  * dirty so that writeback code knows about this page (and inode) contains
966  * dirty data. ext4_writepages() then commits appropriate transaction to
967  * make data stable.
968  */
969 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
970 {
971         folio_mark_dirty(bh->b_folio);
972         return ext4_handle_dirty_metadata(handle, NULL, bh);
973 }
974
975 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
976                                 struct buffer_head *bh)
977 {
978         int dirty = buffer_dirty(bh);
979         int ret;
980
981         if (!buffer_mapped(bh) || buffer_freed(bh))
982                 return 0;
983         /*
984          * __block_write_begin() could have dirtied some buffers. Clean
985          * the dirty bit as jbd2_journal_get_write_access() could complain
986          * otherwise about fs integrity issues. Setting of the dirty bit
987          * by __block_write_begin() isn't a real problem here as we clear
988          * the bit before releasing a page lock and thus writeback cannot
989          * ever write the buffer.
990          */
991         if (dirty)
992                 clear_buffer_dirty(bh);
993         BUFFER_TRACE(bh, "get write access");
994         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
995                                             EXT4_JTR_NONE);
996         if (!ret && dirty)
997                 ret = ext4_dirty_journalled_data(handle, bh);
998         return ret;
999 }
1000
1001 #ifdef CONFIG_FS_ENCRYPTION
1002 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1003                                   get_block_t *get_block)
1004 {
1005         unsigned from = pos & (PAGE_SIZE - 1);
1006         unsigned to = from + len;
1007         struct inode *inode = folio->mapping->host;
1008         unsigned block_start, block_end;
1009         sector_t block;
1010         int err = 0;
1011         unsigned blocksize = inode->i_sb->s_blocksize;
1012         unsigned bbits;
1013         struct buffer_head *bh, *head, *wait[2];
1014         int nr_wait = 0;
1015         int i;
1016
1017         BUG_ON(!folio_test_locked(folio));
1018         BUG_ON(from > PAGE_SIZE);
1019         BUG_ON(to > PAGE_SIZE);
1020         BUG_ON(from > to);
1021
1022         head = folio_buffers(folio);
1023         if (!head) {
1024                 create_empty_buffers(&folio->page, blocksize, 0);
1025                 head = folio_buffers(folio);
1026         }
1027         bbits = ilog2(blocksize);
1028         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1029
1030         for (bh = head, block_start = 0; bh != head || !block_start;
1031             block++, block_start = block_end, bh = bh->b_this_page) {
1032                 block_end = block_start + blocksize;
1033                 if (block_end <= from || block_start >= to) {
1034                         if (folio_test_uptodate(folio)) {
1035                                 set_buffer_uptodate(bh);
1036                         }
1037                         continue;
1038                 }
1039                 if (buffer_new(bh))
1040                         clear_buffer_new(bh);
1041                 if (!buffer_mapped(bh)) {
1042                         WARN_ON(bh->b_size != blocksize);
1043                         err = get_block(inode, block, bh, 1);
1044                         if (err)
1045                                 break;
1046                         if (buffer_new(bh)) {
1047                                 if (folio_test_uptodate(folio)) {
1048                                         clear_buffer_new(bh);
1049                                         set_buffer_uptodate(bh);
1050                                         mark_buffer_dirty(bh);
1051                                         continue;
1052                                 }
1053                                 if (block_end > to || block_start < from)
1054                                         folio_zero_segments(folio, to,
1055                                                             block_end,
1056                                                             block_start, from);
1057                                 continue;
1058                         }
1059                 }
1060                 if (folio_test_uptodate(folio)) {
1061                         set_buffer_uptodate(bh);
1062                         continue;
1063                 }
1064                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1065                     !buffer_unwritten(bh) &&
1066                     (block_start < from || block_end > to)) {
1067                         ext4_read_bh_lock(bh, 0, false);
1068                         wait[nr_wait++] = bh;
1069                 }
1070         }
1071         /*
1072          * If we issued read requests, let them complete.
1073          */
1074         for (i = 0; i < nr_wait; i++) {
1075                 wait_on_buffer(wait[i]);
1076                 if (!buffer_uptodate(wait[i]))
1077                         err = -EIO;
1078         }
1079         if (unlikely(err)) {
1080                 folio_zero_new_buffers(folio, from, to);
1081         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1082                 for (i = 0; i < nr_wait; i++) {
1083                         int err2;
1084
1085                         err2 = fscrypt_decrypt_pagecache_blocks(folio,
1086                                                 blocksize, bh_offset(wait[i]));
1087                         if (err2) {
1088                                 clear_buffer_uptodate(wait[i]);
1089                                 err = err2;
1090                         }
1091                 }
1092         }
1093
1094         return err;
1095 }
1096 #endif
1097
1098 /*
1099  * To preserve ordering, it is essential that the hole instantiation and
1100  * the data write be encapsulated in a single transaction.  We cannot
1101  * close off a transaction and start a new one between the ext4_get_block()
1102  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1103  * ext4_write_begin() is the right place.
1104  */
1105 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1106                             loff_t pos, unsigned len,
1107                             struct page **pagep, void **fsdata)
1108 {
1109         struct inode *inode = mapping->host;
1110         int ret, needed_blocks;
1111         handle_t *handle;
1112         int retries = 0;
1113         struct folio *folio;
1114         pgoff_t index;
1115         unsigned from, to;
1116
1117         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1118                 return -EIO;
1119
1120         trace_ext4_write_begin(inode, pos, len);
1121         /*
1122          * Reserve one block more for addition to orphan list in case
1123          * we allocate blocks but write fails for some reason
1124          */
1125         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1126         index = pos >> PAGE_SHIFT;
1127         from = pos & (PAGE_SIZE - 1);
1128         to = from + len;
1129
1130         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1131                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1132                                                     pagep);
1133                 if (ret < 0)
1134                         return ret;
1135                 if (ret == 1)
1136                         return 0;
1137         }
1138
1139         /*
1140          * __filemap_get_folio() can take a long time if the
1141          * system is thrashing due to memory pressure, or if the folio
1142          * is being written back.  So grab it first before we start
1143          * the transaction handle.  This also allows us to allocate
1144          * the folio (if needed) without using GFP_NOFS.
1145          */
1146 retry_grab:
1147         folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1148                                         mapping_gfp_mask(mapping));
1149         if (IS_ERR(folio))
1150                 return PTR_ERR(folio);
1151         /*
1152          * The same as page allocation, we prealloc buffer heads before
1153          * starting the handle.
1154          */
1155         if (!folio_buffers(folio))
1156                 create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0);
1157
1158         folio_unlock(folio);
1159
1160 retry_journal:
1161         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1162         if (IS_ERR(handle)) {
1163                 folio_put(folio);
1164                 return PTR_ERR(handle);
1165         }
1166
1167         folio_lock(folio);
1168         if (folio->mapping != mapping) {
1169                 /* The folio got truncated from under us */
1170                 folio_unlock(folio);
1171                 folio_put(folio);
1172                 ext4_journal_stop(handle);
1173                 goto retry_grab;
1174         }
1175         /* In case writeback began while the folio was unlocked */
1176         folio_wait_stable(folio);
1177
1178 #ifdef CONFIG_FS_ENCRYPTION
1179         if (ext4_should_dioread_nolock(inode))
1180                 ret = ext4_block_write_begin(folio, pos, len,
1181                                              ext4_get_block_unwritten);
1182         else
1183                 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1184 #else
1185         if (ext4_should_dioread_nolock(inode))
1186                 ret = __block_write_begin(&folio->page, pos, len,
1187                                           ext4_get_block_unwritten);
1188         else
1189                 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1190 #endif
1191         if (!ret && ext4_should_journal_data(inode)) {
1192                 ret = ext4_walk_page_buffers(handle, inode,
1193                                              folio_buffers(folio), from, to,
1194                                              NULL, do_journal_get_write_access);
1195         }
1196
1197         if (ret) {
1198                 bool extended = (pos + len > inode->i_size) &&
1199                                 !ext4_verity_in_progress(inode);
1200
1201                 folio_unlock(folio);
1202                 /*
1203                  * __block_write_begin may have instantiated a few blocks
1204                  * outside i_size.  Trim these off again. Don't need
1205                  * i_size_read because we hold i_rwsem.
1206                  *
1207                  * Add inode to orphan list in case we crash before
1208                  * truncate finishes
1209                  */
1210                 if (extended && ext4_can_truncate(inode))
1211                         ext4_orphan_add(handle, inode);
1212
1213                 ext4_journal_stop(handle);
1214                 if (extended) {
1215                         ext4_truncate_failed_write(inode);
1216                         /*
1217                          * If truncate failed early the inode might
1218                          * still be on the orphan list; we need to
1219                          * make sure the inode is removed from the
1220                          * orphan list in that case.
1221                          */
1222                         if (inode->i_nlink)
1223                                 ext4_orphan_del(NULL, inode);
1224                 }
1225
1226                 if (ret == -ENOSPC &&
1227                     ext4_should_retry_alloc(inode->i_sb, &retries))
1228                         goto retry_journal;
1229                 folio_put(folio);
1230                 return ret;
1231         }
1232         *pagep = &folio->page;
1233         return ret;
1234 }
1235
1236 /* For write_end() in data=journal mode */
1237 static int write_end_fn(handle_t *handle, struct inode *inode,
1238                         struct buffer_head *bh)
1239 {
1240         int ret;
1241         if (!buffer_mapped(bh) || buffer_freed(bh))
1242                 return 0;
1243         set_buffer_uptodate(bh);
1244         ret = ext4_dirty_journalled_data(handle, bh);
1245         clear_buffer_meta(bh);
1246         clear_buffer_prio(bh);
1247         return ret;
1248 }
1249
1250 /*
1251  * We need to pick up the new inode size which generic_commit_write gave us
1252  * `file' can be NULL - eg, when called from page_symlink().
1253  *
1254  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1255  * buffers are managed internally.
1256  */
1257 static int ext4_write_end(struct file *file,
1258                           struct address_space *mapping,
1259                           loff_t pos, unsigned len, unsigned copied,
1260                           struct page *page, void *fsdata)
1261 {
1262         struct folio *folio = page_folio(page);
1263         handle_t *handle = ext4_journal_current_handle();
1264         struct inode *inode = mapping->host;
1265         loff_t old_size = inode->i_size;
1266         int ret = 0, ret2;
1267         int i_size_changed = 0;
1268         bool verity = ext4_verity_in_progress(inode);
1269
1270         trace_ext4_write_end(inode, pos, len, copied);
1271
1272         if (ext4_has_inline_data(inode) &&
1273             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1274                 return ext4_write_inline_data_end(inode, pos, len, copied,
1275                                                   folio);
1276
1277         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1278         /*
1279          * it's important to update i_size while still holding folio lock:
1280          * page writeout could otherwise come in and zero beyond i_size.
1281          *
1282          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1283          * blocks are being written past EOF, so skip the i_size update.
1284          */
1285         if (!verity)
1286                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1287         folio_unlock(folio);
1288         folio_put(folio);
1289
1290         if (old_size < pos && !verity)
1291                 pagecache_isize_extended(inode, old_size, pos);
1292         /*
1293          * Don't mark the inode dirty under folio lock. First, it unnecessarily
1294          * makes the holding time of folio lock longer. Second, it forces lock
1295          * ordering of folio lock and transaction start for journaling
1296          * filesystems.
1297          */
1298         if (i_size_changed)
1299                 ret = ext4_mark_inode_dirty(handle, inode);
1300
1301         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1302                 /* if we have allocated more blocks and copied
1303                  * less. We will have blocks allocated outside
1304                  * inode->i_size. So truncate them
1305                  */
1306                 ext4_orphan_add(handle, inode);
1307
1308         ret2 = ext4_journal_stop(handle);
1309         if (!ret)
1310                 ret = ret2;
1311
1312         if (pos + len > inode->i_size && !verity) {
1313                 ext4_truncate_failed_write(inode);
1314                 /*
1315                  * If truncate failed early the inode might still be
1316                  * on the orphan list; we need to make sure the inode
1317                  * is removed from the orphan list in that case.
1318                  */
1319                 if (inode->i_nlink)
1320                         ext4_orphan_del(NULL, inode);
1321         }
1322
1323         return ret ? ret : copied;
1324 }
1325
1326 /*
1327  * This is a private version of folio_zero_new_buffers() which doesn't
1328  * set the buffer to be dirty, since in data=journalled mode we need
1329  * to call ext4_dirty_journalled_data() instead.
1330  */
1331 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1332                                             struct inode *inode,
1333                                             struct folio *folio,
1334                                             unsigned from, unsigned to)
1335 {
1336         unsigned int block_start = 0, block_end;
1337         struct buffer_head *head, *bh;
1338
1339         bh = head = folio_buffers(folio);
1340         do {
1341                 block_end = block_start + bh->b_size;
1342                 if (buffer_new(bh)) {
1343                         if (block_end > from && block_start < to) {
1344                                 if (!folio_test_uptodate(folio)) {
1345                                         unsigned start, size;
1346
1347                                         start = max(from, block_start);
1348                                         size = min(to, block_end) - start;
1349
1350                                         folio_zero_range(folio, start, size);
1351                                         write_end_fn(handle, inode, bh);
1352                                 }
1353                                 clear_buffer_new(bh);
1354                         }
1355                 }
1356                 block_start = block_end;
1357                 bh = bh->b_this_page;
1358         } while (bh != head);
1359 }
1360
1361 static int ext4_journalled_write_end(struct file *file,
1362                                      struct address_space *mapping,
1363                                      loff_t pos, unsigned len, unsigned copied,
1364                                      struct page *page, void *fsdata)
1365 {
1366         struct folio *folio = page_folio(page);
1367         handle_t *handle = ext4_journal_current_handle();
1368         struct inode *inode = mapping->host;
1369         loff_t old_size = inode->i_size;
1370         int ret = 0, ret2;
1371         int partial = 0;
1372         unsigned from, to;
1373         int size_changed = 0;
1374         bool verity = ext4_verity_in_progress(inode);
1375
1376         trace_ext4_journalled_write_end(inode, pos, len, copied);
1377         from = pos & (PAGE_SIZE - 1);
1378         to = from + len;
1379
1380         BUG_ON(!ext4_handle_valid(handle));
1381
1382         if (ext4_has_inline_data(inode))
1383                 return ext4_write_inline_data_end(inode, pos, len, copied,
1384                                                   folio);
1385
1386         if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1387                 copied = 0;
1388                 ext4_journalled_zero_new_buffers(handle, inode, folio,
1389                                                  from, to);
1390         } else {
1391                 if (unlikely(copied < len))
1392                         ext4_journalled_zero_new_buffers(handle, inode, folio,
1393                                                          from + copied, to);
1394                 ret = ext4_walk_page_buffers(handle, inode,
1395                                              folio_buffers(folio),
1396                                              from, from + copied, &partial,
1397                                              write_end_fn);
1398                 if (!partial)
1399                         folio_mark_uptodate(folio);
1400         }
1401         if (!verity)
1402                 size_changed = ext4_update_inode_size(inode, pos + copied);
1403         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1404         folio_unlock(folio);
1405         folio_put(folio);
1406
1407         if (old_size < pos && !verity)
1408                 pagecache_isize_extended(inode, old_size, pos);
1409
1410         if (size_changed) {
1411                 ret2 = ext4_mark_inode_dirty(handle, inode);
1412                 if (!ret)
1413                         ret = ret2;
1414         }
1415
1416         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1417                 /* if we have allocated more blocks and copied
1418                  * less. We will have blocks allocated outside
1419                  * inode->i_size. So truncate them
1420                  */
1421                 ext4_orphan_add(handle, inode);
1422
1423         ret2 = ext4_journal_stop(handle);
1424         if (!ret)
1425                 ret = ret2;
1426         if (pos + len > inode->i_size && !verity) {
1427                 ext4_truncate_failed_write(inode);
1428                 /*
1429                  * If truncate failed early the inode might still be
1430                  * on the orphan list; we need to make sure the inode
1431                  * is removed from the orphan list in that case.
1432                  */
1433                 if (inode->i_nlink)
1434                         ext4_orphan_del(NULL, inode);
1435         }
1436
1437         return ret ? ret : copied;
1438 }
1439
1440 /*
1441  * Reserve space for a single cluster
1442  */
1443 static int ext4_da_reserve_space(struct inode *inode)
1444 {
1445         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1446         struct ext4_inode_info *ei = EXT4_I(inode);
1447         int ret;
1448
1449         /*
1450          * We will charge metadata quota at writeout time; this saves
1451          * us from metadata over-estimation, though we may go over by
1452          * a small amount in the end.  Here we just reserve for data.
1453          */
1454         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1455         if (ret)
1456                 return ret;
1457
1458         spin_lock(&ei->i_block_reservation_lock);
1459         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1460                 spin_unlock(&ei->i_block_reservation_lock);
1461                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1462                 return -ENOSPC;
1463         }
1464         ei->i_reserved_data_blocks++;
1465         trace_ext4_da_reserve_space(inode);
1466         spin_unlock(&ei->i_block_reservation_lock);
1467
1468         return 0;       /* success */
1469 }
1470
1471 void ext4_da_release_space(struct inode *inode, int to_free)
1472 {
1473         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474         struct ext4_inode_info *ei = EXT4_I(inode);
1475
1476         if (!to_free)
1477                 return;         /* Nothing to release, exit */
1478
1479         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1480
1481         trace_ext4_da_release_space(inode, to_free);
1482         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1483                 /*
1484                  * if there aren't enough reserved blocks, then the
1485                  * counter is messed up somewhere.  Since this
1486                  * function is called from invalidate page, it's
1487                  * harmless to return without any action.
1488                  */
1489                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1490                          "ino %lu, to_free %d with only %d reserved "
1491                          "data blocks", inode->i_ino, to_free,
1492                          ei->i_reserved_data_blocks);
1493                 WARN_ON(1);
1494                 to_free = ei->i_reserved_data_blocks;
1495         }
1496         ei->i_reserved_data_blocks -= to_free;
1497
1498         /* update fs dirty data blocks counter */
1499         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1500
1501         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1502
1503         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1504 }
1505
1506 /*
1507  * Delayed allocation stuff
1508  */
1509
1510 struct mpage_da_data {
1511         /* These are input fields for ext4_do_writepages() */
1512         struct inode *inode;
1513         struct writeback_control *wbc;
1514         unsigned int can_map:1; /* Can writepages call map blocks? */
1515
1516         /* These are internal state of ext4_do_writepages() */
1517         pgoff_t first_page;     /* The first page to write */
1518         pgoff_t next_page;      /* Current page to examine */
1519         pgoff_t last_page;      /* Last page to examine */
1520         /*
1521          * Extent to map - this can be after first_page because that can be
1522          * fully mapped. We somewhat abuse m_flags to store whether the extent
1523          * is delalloc or unwritten.
1524          */
1525         struct ext4_map_blocks map;
1526         struct ext4_io_submit io_submit;        /* IO submission data */
1527         unsigned int do_map:1;
1528         unsigned int scanned_until_end:1;
1529         unsigned int journalled_more_data:1;
1530 };
1531
1532 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1533                                        bool invalidate)
1534 {
1535         unsigned nr, i;
1536         pgoff_t index, end;
1537         struct folio_batch fbatch;
1538         struct inode *inode = mpd->inode;
1539         struct address_space *mapping = inode->i_mapping;
1540
1541         /* This is necessary when next_page == 0. */
1542         if (mpd->first_page >= mpd->next_page)
1543                 return;
1544
1545         mpd->scanned_until_end = 0;
1546         index = mpd->first_page;
1547         end   = mpd->next_page - 1;
1548         if (invalidate) {
1549                 ext4_lblk_t start, last;
1550                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1551                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1552
1553                 /*
1554                  * avoid racing with extent status tree scans made by
1555                  * ext4_insert_delayed_block()
1556                  */
1557                 down_write(&EXT4_I(inode)->i_data_sem);
1558                 ext4_es_remove_extent(inode, start, last - start + 1);
1559                 up_write(&EXT4_I(inode)->i_data_sem);
1560         }
1561
1562         folio_batch_init(&fbatch);
1563         while (index <= end) {
1564                 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1565                 if (nr == 0)
1566                         break;
1567                 for (i = 0; i < nr; i++) {
1568                         struct folio *folio = fbatch.folios[i];
1569
1570                         if (folio->index < mpd->first_page)
1571                                 continue;
1572                         if (folio_next_index(folio) - 1 > end)
1573                                 continue;
1574                         BUG_ON(!folio_test_locked(folio));
1575                         BUG_ON(folio_test_writeback(folio));
1576                         if (invalidate) {
1577                                 if (folio_mapped(folio))
1578                                         folio_clear_dirty_for_io(folio);
1579                                 block_invalidate_folio(folio, 0,
1580                                                 folio_size(folio));
1581                                 folio_clear_uptodate(folio);
1582                         }
1583                         folio_unlock(folio);
1584                 }
1585                 folio_batch_release(&fbatch);
1586         }
1587 }
1588
1589 static void ext4_print_free_blocks(struct inode *inode)
1590 {
1591         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1592         struct super_block *sb = inode->i_sb;
1593         struct ext4_inode_info *ei = EXT4_I(inode);
1594
1595         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1596                EXT4_C2B(EXT4_SB(inode->i_sb),
1597                         ext4_count_free_clusters(sb)));
1598         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1599         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1600                (long long) EXT4_C2B(EXT4_SB(sb),
1601                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1602         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1603                (long long) EXT4_C2B(EXT4_SB(sb),
1604                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1605         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1606         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1607                  ei->i_reserved_data_blocks);
1608         return;
1609 }
1610
1611 /*
1612  * ext4_insert_delayed_block - adds a delayed block to the extents status
1613  *                             tree, incrementing the reserved cluster/block
1614  *                             count or making a pending reservation
1615  *                             where needed
1616  *
1617  * @inode - file containing the newly added block
1618  * @lblk - logical block to be added
1619  *
1620  * Returns 0 on success, negative error code on failure.
1621  */
1622 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1623 {
1624         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1625         int ret;
1626         bool allocated = false;
1627
1628         /*
1629          * If the cluster containing lblk is shared with a delayed,
1630          * written, or unwritten extent in a bigalloc file system, it's
1631          * already been accounted for and does not need to be reserved.
1632          * A pending reservation must be made for the cluster if it's
1633          * shared with a written or unwritten extent and doesn't already
1634          * have one.  Written and unwritten extents can be purged from the
1635          * extents status tree if the system is under memory pressure, so
1636          * it's necessary to examine the extent tree if a search of the
1637          * extents status tree doesn't get a match.
1638          */
1639         if (sbi->s_cluster_ratio == 1) {
1640                 ret = ext4_da_reserve_space(inode);
1641                 if (ret != 0)   /* ENOSPC */
1642                         return ret;
1643         } else {   /* bigalloc */
1644                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1645                         if (!ext4_es_scan_clu(inode,
1646                                               &ext4_es_is_mapped, lblk)) {
1647                                 ret = ext4_clu_mapped(inode,
1648                                                       EXT4_B2C(sbi, lblk));
1649                                 if (ret < 0)
1650                                         return ret;
1651                                 if (ret == 0) {
1652                                         ret = ext4_da_reserve_space(inode);
1653                                         if (ret != 0)   /* ENOSPC */
1654                                                 return ret;
1655                                 } else {
1656                                         allocated = true;
1657                                 }
1658                         } else {
1659                                 allocated = true;
1660                         }
1661                 }
1662         }
1663
1664         ext4_es_insert_delayed_block(inode, lblk, allocated);
1665         return 0;
1666 }
1667
1668 /*
1669  * This function is grabs code from the very beginning of
1670  * ext4_map_blocks, but assumes that the caller is from delayed write
1671  * time. This function looks up the requested blocks and sets the
1672  * buffer delay bit under the protection of i_data_sem.
1673  */
1674 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1675                               struct ext4_map_blocks *map,
1676                               struct buffer_head *bh)
1677 {
1678         struct extent_status es;
1679         int retval;
1680         sector_t invalid_block = ~((sector_t) 0xffff);
1681 #ifdef ES_AGGRESSIVE_TEST
1682         struct ext4_map_blocks orig_map;
1683
1684         memcpy(&orig_map, map, sizeof(*map));
1685 #endif
1686
1687         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1688                 invalid_block = ~0;
1689
1690         map->m_flags = 0;
1691         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1692                   (unsigned long) map->m_lblk);
1693
1694         /* Lookup extent status tree firstly */
1695         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1696                 if (ext4_es_is_hole(&es)) {
1697                         retval = 0;
1698                         down_read(&EXT4_I(inode)->i_data_sem);
1699                         goto add_delayed;
1700                 }
1701
1702                 /*
1703                  * Delayed extent could be allocated by fallocate.
1704                  * So we need to check it.
1705                  */
1706                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1707                         map_bh(bh, inode->i_sb, invalid_block);
1708                         set_buffer_new(bh);
1709                         set_buffer_delay(bh);
1710                         return 0;
1711                 }
1712
1713                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1714                 retval = es.es_len - (iblock - es.es_lblk);
1715                 if (retval > map->m_len)
1716                         retval = map->m_len;
1717                 map->m_len = retval;
1718                 if (ext4_es_is_written(&es))
1719                         map->m_flags |= EXT4_MAP_MAPPED;
1720                 else if (ext4_es_is_unwritten(&es))
1721                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1722                 else
1723                         BUG();
1724
1725 #ifdef ES_AGGRESSIVE_TEST
1726                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1727 #endif
1728                 return retval;
1729         }
1730
1731         /*
1732          * Try to see if we can get the block without requesting a new
1733          * file system block.
1734          */
1735         down_read(&EXT4_I(inode)->i_data_sem);
1736         if (ext4_has_inline_data(inode))
1737                 retval = 0;
1738         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1739                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1740         else
1741                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1742
1743 add_delayed:
1744         if (retval == 0) {
1745                 int ret;
1746
1747                 /*
1748                  * XXX: __block_prepare_write() unmaps passed block,
1749                  * is it OK?
1750                  */
1751
1752                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1753                 if (ret != 0) {
1754                         retval = ret;
1755                         goto out_unlock;
1756                 }
1757
1758                 map_bh(bh, inode->i_sb, invalid_block);
1759                 set_buffer_new(bh);
1760                 set_buffer_delay(bh);
1761         } else if (retval > 0) {
1762                 unsigned int status;
1763
1764                 if (unlikely(retval != map->m_len)) {
1765                         ext4_warning(inode->i_sb,
1766                                      "ES len assertion failed for inode "
1767                                      "%lu: retval %d != map->m_len %d",
1768                                      inode->i_ino, retval, map->m_len);
1769                         WARN_ON(1);
1770                 }
1771
1772                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1773                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1774                 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1775                                       map->m_pblk, status);
1776         }
1777
1778 out_unlock:
1779         up_read((&EXT4_I(inode)->i_data_sem));
1780
1781         return retval;
1782 }
1783
1784 /*
1785  * This is a special get_block_t callback which is used by
1786  * ext4_da_write_begin().  It will either return mapped block or
1787  * reserve space for a single block.
1788  *
1789  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1790  * We also have b_blocknr = -1 and b_bdev initialized properly
1791  *
1792  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1793  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1794  * initialized properly.
1795  */
1796 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1797                            struct buffer_head *bh, int create)
1798 {
1799         struct ext4_map_blocks map;
1800         int ret = 0;
1801
1802         BUG_ON(create == 0);
1803         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1804
1805         map.m_lblk = iblock;
1806         map.m_len = 1;
1807
1808         /*
1809          * first, we need to know whether the block is allocated already
1810          * preallocated blocks are unmapped but should treated
1811          * the same as allocated blocks.
1812          */
1813         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1814         if (ret <= 0)
1815                 return ret;
1816
1817         map_bh(bh, inode->i_sb, map.m_pblk);
1818         ext4_update_bh_state(bh, map.m_flags);
1819
1820         if (buffer_unwritten(bh)) {
1821                 /* A delayed write to unwritten bh should be marked
1822                  * new and mapped.  Mapped ensures that we don't do
1823                  * get_block multiple times when we write to the same
1824                  * offset and new ensures that we do proper zero out
1825                  * for partial write.
1826                  */
1827                 set_buffer_new(bh);
1828                 set_buffer_mapped(bh);
1829         }
1830         return 0;
1831 }
1832
1833 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1834 {
1835         mpd->first_page += folio_nr_pages(folio);
1836         folio_unlock(folio);
1837 }
1838
1839 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1840 {
1841         size_t len;
1842         loff_t size;
1843         int err;
1844
1845         BUG_ON(folio->index != mpd->first_page);
1846         folio_clear_dirty_for_io(folio);
1847         /*
1848          * We have to be very careful here!  Nothing protects writeback path
1849          * against i_size changes and the page can be writeably mapped into
1850          * page tables. So an application can be growing i_size and writing
1851          * data through mmap while writeback runs. folio_clear_dirty_for_io()
1852          * write-protects our page in page tables and the page cannot get
1853          * written to again until we release folio lock. So only after
1854          * folio_clear_dirty_for_io() we are safe to sample i_size for
1855          * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1856          * on the barrier provided by folio_test_clear_dirty() in
1857          * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1858          * after page tables are updated.
1859          */
1860         size = i_size_read(mpd->inode);
1861         len = folio_size(folio);
1862         if (folio_pos(folio) + len > size &&
1863             !ext4_verity_in_progress(mpd->inode))
1864                 len = size & ~PAGE_MASK;
1865         err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1866         if (!err)
1867                 mpd->wbc->nr_to_write--;
1868
1869         return err;
1870 }
1871
1872 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1873
1874 /*
1875  * mballoc gives us at most this number of blocks...
1876  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1877  * The rest of mballoc seems to handle chunks up to full group size.
1878  */
1879 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1880
1881 /*
1882  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1883  *
1884  * @mpd - extent of blocks
1885  * @lblk - logical number of the block in the file
1886  * @bh - buffer head we want to add to the extent
1887  *
1888  * The function is used to collect contig. blocks in the same state. If the
1889  * buffer doesn't require mapping for writeback and we haven't started the
1890  * extent of buffers to map yet, the function returns 'true' immediately - the
1891  * caller can write the buffer right away. Otherwise the function returns true
1892  * if the block has been added to the extent, false if the block couldn't be
1893  * added.
1894  */
1895 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1896                                    struct buffer_head *bh)
1897 {
1898         struct ext4_map_blocks *map = &mpd->map;
1899
1900         /* Buffer that doesn't need mapping for writeback? */
1901         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1902             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1903                 /* So far no extent to map => we write the buffer right away */
1904                 if (map->m_len == 0)
1905                         return true;
1906                 return false;
1907         }
1908
1909         /* First block in the extent? */
1910         if (map->m_len == 0) {
1911                 /* We cannot map unless handle is started... */
1912                 if (!mpd->do_map)
1913                         return false;
1914                 map->m_lblk = lblk;
1915                 map->m_len = 1;
1916                 map->m_flags = bh->b_state & BH_FLAGS;
1917                 return true;
1918         }
1919
1920         /* Don't go larger than mballoc is willing to allocate */
1921         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1922                 return false;
1923
1924         /* Can we merge the block to our big extent? */
1925         if (lblk == map->m_lblk + map->m_len &&
1926             (bh->b_state & BH_FLAGS) == map->m_flags) {
1927                 map->m_len++;
1928                 return true;
1929         }
1930         return false;
1931 }
1932
1933 /*
1934  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1935  *
1936  * @mpd - extent of blocks for mapping
1937  * @head - the first buffer in the page
1938  * @bh - buffer we should start processing from
1939  * @lblk - logical number of the block in the file corresponding to @bh
1940  *
1941  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1942  * the page for IO if all buffers in this page were mapped and there's no
1943  * accumulated extent of buffers to map or add buffers in the page to the
1944  * extent of buffers to map. The function returns 1 if the caller can continue
1945  * by processing the next page, 0 if it should stop adding buffers to the
1946  * extent to map because we cannot extend it anymore. It can also return value
1947  * < 0 in case of error during IO submission.
1948  */
1949 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1950                                    struct buffer_head *head,
1951                                    struct buffer_head *bh,
1952                                    ext4_lblk_t lblk)
1953 {
1954         struct inode *inode = mpd->inode;
1955         int err;
1956         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1957                                                         >> inode->i_blkbits;
1958
1959         if (ext4_verity_in_progress(inode))
1960                 blocks = EXT_MAX_BLOCKS;
1961
1962         do {
1963                 BUG_ON(buffer_locked(bh));
1964
1965                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1966                         /* Found extent to map? */
1967                         if (mpd->map.m_len)
1968                                 return 0;
1969                         /* Buffer needs mapping and handle is not started? */
1970                         if (!mpd->do_map)
1971                                 return 0;
1972                         /* Everything mapped so far and we hit EOF */
1973                         break;
1974                 }
1975         } while (lblk++, (bh = bh->b_this_page) != head);
1976         /* So far everything mapped? Submit the page for IO. */
1977         if (mpd->map.m_len == 0) {
1978                 err = mpage_submit_folio(mpd, head->b_folio);
1979                 if (err < 0)
1980                         return err;
1981                 mpage_folio_done(mpd, head->b_folio);
1982         }
1983         if (lblk >= blocks) {
1984                 mpd->scanned_until_end = 1;
1985                 return 0;
1986         }
1987         return 1;
1988 }
1989
1990 /*
1991  * mpage_process_folio - update folio buffers corresponding to changed extent
1992  *                       and may submit fully mapped page for IO
1993  * @mpd: description of extent to map, on return next extent to map
1994  * @folio: Contains these buffers.
1995  * @m_lblk: logical block mapping.
1996  * @m_pblk: corresponding physical mapping.
1997  * @map_bh: determines on return whether this page requires any further
1998  *                mapping or not.
1999  *
2000  * Scan given folio buffers corresponding to changed extent and update buffer
2001  * state according to new extent state.
2002  * We map delalloc buffers to their physical location, clear unwritten bits.
2003  * If the given folio is not fully mapped, we update @mpd to the next extent in
2004  * the given folio that needs mapping & return @map_bh as true.
2005  */
2006 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2007                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2008                               bool *map_bh)
2009 {
2010         struct buffer_head *head, *bh;
2011         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2012         ext4_lblk_t lblk = *m_lblk;
2013         ext4_fsblk_t pblock = *m_pblk;
2014         int err = 0;
2015         int blkbits = mpd->inode->i_blkbits;
2016         ssize_t io_end_size = 0;
2017         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2018
2019         bh = head = folio_buffers(folio);
2020         do {
2021                 if (lblk < mpd->map.m_lblk)
2022                         continue;
2023                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2024                         /*
2025                          * Buffer after end of mapped extent.
2026                          * Find next buffer in the folio to map.
2027                          */
2028                         mpd->map.m_len = 0;
2029                         mpd->map.m_flags = 0;
2030                         io_end_vec->size += io_end_size;
2031
2032                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2033                         if (err > 0)
2034                                 err = 0;
2035                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2036                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2037                                 if (IS_ERR(io_end_vec)) {
2038                                         err = PTR_ERR(io_end_vec);
2039                                         goto out;
2040                                 }
2041                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2042                         }
2043                         *map_bh = true;
2044                         goto out;
2045                 }
2046                 if (buffer_delay(bh)) {
2047                         clear_buffer_delay(bh);
2048                         bh->b_blocknr = pblock++;
2049                 }
2050                 clear_buffer_unwritten(bh);
2051                 io_end_size += (1 << blkbits);
2052         } while (lblk++, (bh = bh->b_this_page) != head);
2053
2054         io_end_vec->size += io_end_size;
2055         *map_bh = false;
2056 out:
2057         *m_lblk = lblk;
2058         *m_pblk = pblock;
2059         return err;
2060 }
2061
2062 /*
2063  * mpage_map_buffers - update buffers corresponding to changed extent and
2064  *                     submit fully mapped pages for IO
2065  *
2066  * @mpd - description of extent to map, on return next extent to map
2067  *
2068  * Scan buffers corresponding to changed extent (we expect corresponding pages
2069  * to be already locked) and update buffer state according to new extent state.
2070  * We map delalloc buffers to their physical location, clear unwritten bits,
2071  * and mark buffers as uninit when we perform writes to unwritten extents
2072  * and do extent conversion after IO is finished. If the last page is not fully
2073  * mapped, we update @map to the next extent in the last page that needs
2074  * mapping. Otherwise we submit the page for IO.
2075  */
2076 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2077 {
2078         struct folio_batch fbatch;
2079         unsigned nr, i;
2080         struct inode *inode = mpd->inode;
2081         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2082         pgoff_t start, end;
2083         ext4_lblk_t lblk;
2084         ext4_fsblk_t pblock;
2085         int err;
2086         bool map_bh = false;
2087
2088         start = mpd->map.m_lblk >> bpp_bits;
2089         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2090         lblk = start << bpp_bits;
2091         pblock = mpd->map.m_pblk;
2092
2093         folio_batch_init(&fbatch);
2094         while (start <= end) {
2095                 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2096                 if (nr == 0)
2097                         break;
2098                 for (i = 0; i < nr; i++) {
2099                         struct folio *folio = fbatch.folios[i];
2100
2101                         err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2102                                                  &map_bh);
2103                         /*
2104                          * If map_bh is true, means page may require further bh
2105                          * mapping, or maybe the page was submitted for IO.
2106                          * So we return to call further extent mapping.
2107                          */
2108                         if (err < 0 || map_bh)
2109                                 goto out;
2110                         /* Page fully mapped - let IO run! */
2111                         err = mpage_submit_folio(mpd, folio);
2112                         if (err < 0)
2113                                 goto out;
2114                         mpage_folio_done(mpd, folio);
2115                 }
2116                 folio_batch_release(&fbatch);
2117         }
2118         /* Extent fully mapped and matches with page boundary. We are done. */
2119         mpd->map.m_len = 0;
2120         mpd->map.m_flags = 0;
2121         return 0;
2122 out:
2123         folio_batch_release(&fbatch);
2124         return err;
2125 }
2126
2127 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2128 {
2129         struct inode *inode = mpd->inode;
2130         struct ext4_map_blocks *map = &mpd->map;
2131         int get_blocks_flags;
2132         int err, dioread_nolock;
2133
2134         trace_ext4_da_write_pages_extent(inode, map);
2135         /*
2136          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2137          * to convert an unwritten extent to be initialized (in the case
2138          * where we have written into one or more preallocated blocks).  It is
2139          * possible that we're going to need more metadata blocks than
2140          * previously reserved. However we must not fail because we're in
2141          * writeback and there is nothing we can do about it so it might result
2142          * in data loss.  So use reserved blocks to allocate metadata if
2143          * possible.
2144          *
2145          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2146          * the blocks in question are delalloc blocks.  This indicates
2147          * that the blocks and quotas has already been checked when
2148          * the data was copied into the page cache.
2149          */
2150         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2151                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2152                            EXT4_GET_BLOCKS_IO_SUBMIT;
2153         dioread_nolock = ext4_should_dioread_nolock(inode);
2154         if (dioread_nolock)
2155                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2156         if (map->m_flags & BIT(BH_Delay))
2157                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2158
2159         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2160         if (err < 0)
2161                 return err;
2162         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2163                 if (!mpd->io_submit.io_end->handle &&
2164                     ext4_handle_valid(handle)) {
2165                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2166                         handle->h_rsv_handle = NULL;
2167                 }
2168                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2169         }
2170
2171         BUG_ON(map->m_len == 0);
2172         return 0;
2173 }
2174
2175 /*
2176  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2177  *                               mpd->len and submit pages underlying it for IO
2178  *
2179  * @handle - handle for journal operations
2180  * @mpd - extent to map
2181  * @give_up_on_write - we set this to true iff there is a fatal error and there
2182  *                     is no hope of writing the data. The caller should discard
2183  *                     dirty pages to avoid infinite loops.
2184  *
2185  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2186  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2187  * them to initialized or split the described range from larger unwritten
2188  * extent. Note that we need not map all the described range since allocation
2189  * can return less blocks or the range is covered by more unwritten extents. We
2190  * cannot map more because we are limited by reserved transaction credits. On
2191  * the other hand we always make sure that the last touched page is fully
2192  * mapped so that it can be written out (and thus forward progress is
2193  * guaranteed). After mapping we submit all mapped pages for IO.
2194  */
2195 static int mpage_map_and_submit_extent(handle_t *handle,
2196                                        struct mpage_da_data *mpd,
2197                                        bool *give_up_on_write)
2198 {
2199         struct inode *inode = mpd->inode;
2200         struct ext4_map_blocks *map = &mpd->map;
2201         int err;
2202         loff_t disksize;
2203         int progress = 0;
2204         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2205         struct ext4_io_end_vec *io_end_vec;
2206
2207         io_end_vec = ext4_alloc_io_end_vec(io_end);
2208         if (IS_ERR(io_end_vec))
2209                 return PTR_ERR(io_end_vec);
2210         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2211         do {
2212                 err = mpage_map_one_extent(handle, mpd);
2213                 if (err < 0) {
2214                         struct super_block *sb = inode->i_sb;
2215
2216                         if (ext4_forced_shutdown(sb))
2217                                 goto invalidate_dirty_pages;
2218                         /*
2219                          * Let the uper layers retry transient errors.
2220                          * In the case of ENOSPC, if ext4_count_free_blocks()
2221                          * is non-zero, a commit should free up blocks.
2222                          */
2223                         if ((err == -ENOMEM) ||
2224                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2225                                 if (progress)
2226                                         goto update_disksize;
2227                                 return err;
2228                         }
2229                         ext4_msg(sb, KERN_CRIT,
2230                                  "Delayed block allocation failed for "
2231                                  "inode %lu at logical offset %llu with"
2232                                  " max blocks %u with error %d",
2233                                  inode->i_ino,
2234                                  (unsigned long long)map->m_lblk,
2235                                  (unsigned)map->m_len, -err);
2236                         ext4_msg(sb, KERN_CRIT,
2237                                  "This should not happen!! Data will "
2238                                  "be lost\n");
2239                         if (err == -ENOSPC)
2240                                 ext4_print_free_blocks(inode);
2241                 invalidate_dirty_pages:
2242                         *give_up_on_write = true;
2243                         return err;
2244                 }
2245                 progress = 1;
2246                 /*
2247                  * Update buffer state, submit mapped pages, and get us new
2248                  * extent to map
2249                  */
2250                 err = mpage_map_and_submit_buffers(mpd);
2251                 if (err < 0)
2252                         goto update_disksize;
2253         } while (map->m_len);
2254
2255 update_disksize:
2256         /*
2257          * Update on-disk size after IO is submitted.  Races with
2258          * truncate are avoided by checking i_size under i_data_sem.
2259          */
2260         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2261         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2262                 int err2;
2263                 loff_t i_size;
2264
2265                 down_write(&EXT4_I(inode)->i_data_sem);
2266                 i_size = i_size_read(inode);
2267                 if (disksize > i_size)
2268                         disksize = i_size;
2269                 if (disksize > EXT4_I(inode)->i_disksize)
2270                         EXT4_I(inode)->i_disksize = disksize;
2271                 up_write(&EXT4_I(inode)->i_data_sem);
2272                 err2 = ext4_mark_inode_dirty(handle, inode);
2273                 if (err2) {
2274                         ext4_error_err(inode->i_sb, -err2,
2275                                        "Failed to mark inode %lu dirty",
2276                                        inode->i_ino);
2277                 }
2278                 if (!err)
2279                         err = err2;
2280         }
2281         return err;
2282 }
2283
2284 /*
2285  * Calculate the total number of credits to reserve for one writepages
2286  * iteration. This is called from ext4_writepages(). We map an extent of
2287  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2288  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2289  * bpp - 1 blocks in bpp different extents.
2290  */
2291 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2292 {
2293         int bpp = ext4_journal_blocks_per_page(inode);
2294
2295         return ext4_meta_trans_blocks(inode,
2296                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2297 }
2298
2299 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2300                                      size_t len)
2301 {
2302         struct buffer_head *page_bufs = folio_buffers(folio);
2303         struct inode *inode = folio->mapping->host;
2304         int ret, err;
2305
2306         ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2307                                      NULL, do_journal_get_write_access);
2308         err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2309                                      NULL, write_end_fn);
2310         if (ret == 0)
2311                 ret = err;
2312         err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2313         if (ret == 0)
2314                 ret = err;
2315         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2316
2317         return ret;
2318 }
2319
2320 static int mpage_journal_page_buffers(handle_t *handle,
2321                                       struct mpage_da_data *mpd,
2322                                       struct folio *folio)
2323 {
2324         struct inode *inode = mpd->inode;
2325         loff_t size = i_size_read(inode);
2326         size_t len = folio_size(folio);
2327
2328         folio_clear_checked(folio);
2329         mpd->wbc->nr_to_write--;
2330
2331         if (folio_pos(folio) + len > size &&
2332             !ext4_verity_in_progress(inode))
2333                 len = size - folio_pos(folio);
2334
2335         return ext4_journal_folio_buffers(handle, folio, len);
2336 }
2337
2338 /*
2339  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2340  *                               needing mapping, submit mapped pages
2341  *
2342  * @mpd - where to look for pages
2343  *
2344  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2345  * IO immediately. If we cannot map blocks, we submit just already mapped
2346  * buffers in the page for IO and keep page dirty. When we can map blocks and
2347  * we find a page which isn't mapped we start accumulating extent of buffers
2348  * underlying these pages that needs mapping (formed by either delayed or
2349  * unwritten buffers). We also lock the pages containing these buffers. The
2350  * extent found is returned in @mpd structure (starting at mpd->lblk with
2351  * length mpd->len blocks).
2352  *
2353  * Note that this function can attach bios to one io_end structure which are
2354  * neither logically nor physically contiguous. Although it may seem as an
2355  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2356  * case as we need to track IO to all buffers underlying a page in one io_end.
2357  */
2358 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2359 {
2360         struct address_space *mapping = mpd->inode->i_mapping;
2361         struct folio_batch fbatch;
2362         unsigned int nr_folios;
2363         pgoff_t index = mpd->first_page;
2364         pgoff_t end = mpd->last_page;
2365         xa_mark_t tag;
2366         int i, err = 0;
2367         int blkbits = mpd->inode->i_blkbits;
2368         ext4_lblk_t lblk;
2369         struct buffer_head *head;
2370         handle_t *handle = NULL;
2371         int bpp = ext4_journal_blocks_per_page(mpd->inode);
2372
2373         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2374                 tag = PAGECACHE_TAG_TOWRITE;
2375         else
2376                 tag = PAGECACHE_TAG_DIRTY;
2377
2378         mpd->map.m_len = 0;
2379         mpd->next_page = index;
2380         if (ext4_should_journal_data(mpd->inode)) {
2381                 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2382                                             bpp);
2383                 if (IS_ERR(handle))
2384                         return PTR_ERR(handle);
2385         }
2386         folio_batch_init(&fbatch);
2387         while (index <= end) {
2388                 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2389                                 tag, &fbatch);
2390                 if (nr_folios == 0)
2391                         break;
2392
2393                 for (i = 0; i < nr_folios; i++) {
2394                         struct folio *folio = fbatch.folios[i];
2395
2396                         /*
2397                          * Accumulated enough dirty pages? This doesn't apply
2398                          * to WB_SYNC_ALL mode. For integrity sync we have to
2399                          * keep going because someone may be concurrently
2400                          * dirtying pages, and we might have synced a lot of
2401                          * newly appeared dirty pages, but have not synced all
2402                          * of the old dirty pages.
2403                          */
2404                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2405                             mpd->wbc->nr_to_write <=
2406                             mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2407                                 goto out;
2408
2409                         /* If we can't merge this page, we are done. */
2410                         if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2411                                 goto out;
2412
2413                         if (handle) {
2414                                 err = ext4_journal_ensure_credits(handle, bpp,
2415                                                                   0);
2416                                 if (err < 0)
2417                                         goto out;
2418                         }
2419
2420                         folio_lock(folio);
2421                         /*
2422                          * If the page is no longer dirty, or its mapping no
2423                          * longer corresponds to inode we are writing (which
2424                          * means it has been truncated or invalidated), or the
2425                          * page is already under writeback and we are not doing
2426                          * a data integrity writeback, skip the page
2427                          */
2428                         if (!folio_test_dirty(folio) ||
2429                             (folio_test_writeback(folio) &&
2430                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2431                             unlikely(folio->mapping != mapping)) {
2432                                 folio_unlock(folio);
2433                                 continue;
2434                         }
2435
2436                         folio_wait_writeback(folio);
2437                         BUG_ON(folio_test_writeback(folio));
2438
2439                         /*
2440                          * Should never happen but for buggy code in
2441                          * other subsystems that call
2442                          * set_page_dirty() without properly warning
2443                          * the file system first.  See [1] for more
2444                          * information.
2445                          *
2446                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2447                          */
2448                         if (!folio_buffers(folio)) {
2449                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2450                                 folio_clear_dirty(folio);
2451                                 folio_unlock(folio);
2452                                 continue;
2453                         }
2454
2455                         if (mpd->map.m_len == 0)
2456                                 mpd->first_page = folio->index;
2457                         mpd->next_page = folio_next_index(folio);
2458                         /*
2459                          * Writeout when we cannot modify metadata is simple.
2460                          * Just submit the page. For data=journal mode we
2461                          * first handle writeout of the page for checkpoint and
2462                          * only after that handle delayed page dirtying. This
2463                          * makes sure current data is checkpointed to the final
2464                          * location before possibly journalling it again which
2465                          * is desirable when the page is frequently dirtied
2466                          * through a pin.
2467                          */
2468                         if (!mpd->can_map) {
2469                                 err = mpage_submit_folio(mpd, folio);
2470                                 if (err < 0)
2471                                         goto out;
2472                                 /* Pending dirtying of journalled data? */
2473                                 if (folio_test_checked(folio)) {
2474                                         err = mpage_journal_page_buffers(handle,
2475                                                 mpd, folio);
2476                                         if (err < 0)
2477                                                 goto out;
2478                                         mpd->journalled_more_data = 1;
2479                                 }
2480                                 mpage_folio_done(mpd, folio);
2481                         } else {
2482                                 /* Add all dirty buffers to mpd */
2483                                 lblk = ((ext4_lblk_t)folio->index) <<
2484                                         (PAGE_SHIFT - blkbits);
2485                                 head = folio_buffers(folio);
2486                                 err = mpage_process_page_bufs(mpd, head, head,
2487                                                 lblk);
2488                                 if (err <= 0)
2489                                         goto out;
2490                                 err = 0;
2491                         }
2492                 }
2493                 folio_batch_release(&fbatch);
2494                 cond_resched();
2495         }
2496         mpd->scanned_until_end = 1;
2497         if (handle)
2498                 ext4_journal_stop(handle);
2499         return 0;
2500 out:
2501         folio_batch_release(&fbatch);
2502         if (handle)
2503                 ext4_journal_stop(handle);
2504         return err;
2505 }
2506
2507 static int ext4_do_writepages(struct mpage_da_data *mpd)
2508 {
2509         struct writeback_control *wbc = mpd->wbc;
2510         pgoff_t writeback_index = 0;
2511         long nr_to_write = wbc->nr_to_write;
2512         int range_whole = 0;
2513         int cycled = 1;
2514         handle_t *handle = NULL;
2515         struct inode *inode = mpd->inode;
2516         struct address_space *mapping = inode->i_mapping;
2517         int needed_blocks, rsv_blocks = 0, ret = 0;
2518         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2519         struct blk_plug plug;
2520         bool give_up_on_write = false;
2521
2522         trace_ext4_writepages(inode, wbc);
2523
2524         /*
2525          * No pages to write? This is mainly a kludge to avoid starting
2526          * a transaction for special inodes like journal inode on last iput()
2527          * because that could violate lock ordering on umount
2528          */
2529         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2530                 goto out_writepages;
2531
2532         /*
2533          * If the filesystem has aborted, it is read-only, so return
2534          * right away instead of dumping stack traces later on that
2535          * will obscure the real source of the problem.  We test
2536          * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2537          * the latter could be true if the filesystem is mounted
2538          * read-only, and in that case, ext4_writepages should
2539          * *never* be called, so if that ever happens, we would want
2540          * the stack trace.
2541          */
2542         if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2543                 ret = -EROFS;
2544                 goto out_writepages;
2545         }
2546
2547         /*
2548          * If we have inline data and arrive here, it means that
2549          * we will soon create the block for the 1st page, so
2550          * we'd better clear the inline data here.
2551          */
2552         if (ext4_has_inline_data(inode)) {
2553                 /* Just inode will be modified... */
2554                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2555                 if (IS_ERR(handle)) {
2556                         ret = PTR_ERR(handle);
2557                         goto out_writepages;
2558                 }
2559                 BUG_ON(ext4_test_inode_state(inode,
2560                                 EXT4_STATE_MAY_INLINE_DATA));
2561                 ext4_destroy_inline_data(handle, inode);
2562                 ext4_journal_stop(handle);
2563         }
2564
2565         /*
2566          * data=journal mode does not do delalloc so we just need to writeout /
2567          * journal already mapped buffers. On the other hand we need to commit
2568          * transaction to make data stable. We expect all the data to be
2569          * already in the journal (the only exception are DMA pinned pages
2570          * dirtied behind our back) so we commit transaction here and run the
2571          * writeback loop to checkpoint them. The checkpointing is not actually
2572          * necessary to make data persistent *but* quite a few places (extent
2573          * shifting operations, fsverity, ...) depend on being able to drop
2574          * pagecache pages after calling filemap_write_and_wait() and for that
2575          * checkpointing needs to happen.
2576          */
2577         if (ext4_should_journal_data(inode)) {
2578                 mpd->can_map = 0;
2579                 if (wbc->sync_mode == WB_SYNC_ALL)
2580                         ext4_fc_commit(sbi->s_journal,
2581                                        EXT4_I(inode)->i_datasync_tid);
2582         }
2583         mpd->journalled_more_data = 0;
2584
2585         if (ext4_should_dioread_nolock(inode)) {
2586                 /*
2587                  * We may need to convert up to one extent per block in
2588                  * the page and we may dirty the inode.
2589                  */
2590                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2591                                                 PAGE_SIZE >> inode->i_blkbits);
2592         }
2593
2594         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2595                 range_whole = 1;
2596
2597         if (wbc->range_cyclic) {
2598                 writeback_index = mapping->writeback_index;
2599                 if (writeback_index)
2600                         cycled = 0;
2601                 mpd->first_page = writeback_index;
2602                 mpd->last_page = -1;
2603         } else {
2604                 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2605                 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2606         }
2607
2608         ext4_io_submit_init(&mpd->io_submit, wbc);
2609 retry:
2610         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2611                 tag_pages_for_writeback(mapping, mpd->first_page,
2612                                         mpd->last_page);
2613         blk_start_plug(&plug);
2614
2615         /*
2616          * First writeback pages that don't need mapping - we can avoid
2617          * starting a transaction unnecessarily and also avoid being blocked
2618          * in the block layer on device congestion while having transaction
2619          * started.
2620          */
2621         mpd->do_map = 0;
2622         mpd->scanned_until_end = 0;
2623         mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2624         if (!mpd->io_submit.io_end) {
2625                 ret = -ENOMEM;
2626                 goto unplug;
2627         }
2628         ret = mpage_prepare_extent_to_map(mpd);
2629         /* Unlock pages we didn't use */
2630         mpage_release_unused_pages(mpd, false);
2631         /* Submit prepared bio */
2632         ext4_io_submit(&mpd->io_submit);
2633         ext4_put_io_end_defer(mpd->io_submit.io_end);
2634         mpd->io_submit.io_end = NULL;
2635         if (ret < 0)
2636                 goto unplug;
2637
2638         while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2639                 /* For each extent of pages we use new io_end */
2640                 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2641                 if (!mpd->io_submit.io_end) {
2642                         ret = -ENOMEM;
2643                         break;
2644                 }
2645
2646                 WARN_ON_ONCE(!mpd->can_map);
2647                 /*
2648                  * We have two constraints: We find one extent to map and we
2649                  * must always write out whole page (makes a difference when
2650                  * blocksize < pagesize) so that we don't block on IO when we
2651                  * try to write out the rest of the page. Journalled mode is
2652                  * not supported by delalloc.
2653                  */
2654                 BUG_ON(ext4_should_journal_data(inode));
2655                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2656
2657                 /* start a new transaction */
2658                 handle = ext4_journal_start_with_reserve(inode,
2659                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2660                 if (IS_ERR(handle)) {
2661                         ret = PTR_ERR(handle);
2662                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2663                                "%ld pages, ino %lu; err %d", __func__,
2664                                 wbc->nr_to_write, inode->i_ino, ret);
2665                         /* Release allocated io_end */
2666                         ext4_put_io_end(mpd->io_submit.io_end);
2667                         mpd->io_submit.io_end = NULL;
2668                         break;
2669                 }
2670                 mpd->do_map = 1;
2671
2672                 trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2673                 ret = mpage_prepare_extent_to_map(mpd);
2674                 if (!ret && mpd->map.m_len)
2675                         ret = mpage_map_and_submit_extent(handle, mpd,
2676                                         &give_up_on_write);
2677                 /*
2678                  * Caution: If the handle is synchronous,
2679                  * ext4_journal_stop() can wait for transaction commit
2680                  * to finish which may depend on writeback of pages to
2681                  * complete or on page lock to be released.  In that
2682                  * case, we have to wait until after we have
2683                  * submitted all the IO, released page locks we hold,
2684                  * and dropped io_end reference (for extent conversion
2685                  * to be able to complete) before stopping the handle.
2686                  */
2687                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2688                         ext4_journal_stop(handle);
2689                         handle = NULL;
2690                         mpd->do_map = 0;
2691                 }
2692                 /* Unlock pages we didn't use */
2693                 mpage_release_unused_pages(mpd, give_up_on_write);
2694                 /* Submit prepared bio */
2695                 ext4_io_submit(&mpd->io_submit);
2696
2697                 /*
2698                  * Drop our io_end reference we got from init. We have
2699                  * to be careful and use deferred io_end finishing if
2700                  * we are still holding the transaction as we can
2701                  * release the last reference to io_end which may end
2702                  * up doing unwritten extent conversion.
2703                  */
2704                 if (handle) {
2705                         ext4_put_io_end_defer(mpd->io_submit.io_end);
2706                         ext4_journal_stop(handle);
2707                 } else
2708                         ext4_put_io_end(mpd->io_submit.io_end);
2709                 mpd->io_submit.io_end = NULL;
2710
2711                 if (ret == -ENOSPC && sbi->s_journal) {
2712                         /*
2713                          * Commit the transaction which would
2714                          * free blocks released in the transaction
2715                          * and try again
2716                          */
2717                         jbd2_journal_force_commit_nested(sbi->s_journal);
2718                         ret = 0;
2719                         continue;
2720                 }
2721                 /* Fatal error - ENOMEM, EIO... */
2722                 if (ret)
2723                         break;
2724         }
2725 unplug:
2726         blk_finish_plug(&plug);
2727         if (!ret && !cycled && wbc->nr_to_write > 0) {
2728                 cycled = 1;
2729                 mpd->last_page = writeback_index - 1;
2730                 mpd->first_page = 0;
2731                 goto retry;
2732         }
2733
2734         /* Update index */
2735         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2736                 /*
2737                  * Set the writeback_index so that range_cyclic
2738                  * mode will write it back later
2739                  */
2740                 mapping->writeback_index = mpd->first_page;
2741
2742 out_writepages:
2743         trace_ext4_writepages_result(inode, wbc, ret,
2744                                      nr_to_write - wbc->nr_to_write);
2745         return ret;
2746 }
2747
2748 static int ext4_writepages(struct address_space *mapping,
2749                            struct writeback_control *wbc)
2750 {
2751         struct super_block *sb = mapping->host->i_sb;
2752         struct mpage_da_data mpd = {
2753                 .inode = mapping->host,
2754                 .wbc = wbc,
2755                 .can_map = 1,
2756         };
2757         int ret;
2758         int alloc_ctx;
2759
2760         if (unlikely(ext4_forced_shutdown(sb)))
2761                 return -EIO;
2762
2763         alloc_ctx = ext4_writepages_down_read(sb);
2764         ret = ext4_do_writepages(&mpd);
2765         /*
2766          * For data=journal writeback we could have come across pages marked
2767          * for delayed dirtying (PageChecked) which were just added to the
2768          * running transaction. Try once more to get them to stable storage.
2769          */
2770         if (!ret && mpd.journalled_more_data)
2771                 ret = ext4_do_writepages(&mpd);
2772         ext4_writepages_up_read(sb, alloc_ctx);
2773
2774         return ret;
2775 }
2776
2777 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2778 {
2779         struct writeback_control wbc = {
2780                 .sync_mode = WB_SYNC_ALL,
2781                 .nr_to_write = LONG_MAX,
2782                 .range_start = jinode->i_dirty_start,
2783                 .range_end = jinode->i_dirty_end,
2784         };
2785         struct mpage_da_data mpd = {
2786                 .inode = jinode->i_vfs_inode,
2787                 .wbc = &wbc,
2788                 .can_map = 0,
2789         };
2790         return ext4_do_writepages(&mpd);
2791 }
2792
2793 static int ext4_dax_writepages(struct address_space *mapping,
2794                                struct writeback_control *wbc)
2795 {
2796         int ret;
2797         long nr_to_write = wbc->nr_to_write;
2798         struct inode *inode = mapping->host;
2799         int alloc_ctx;
2800
2801         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2802                 return -EIO;
2803
2804         alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2805         trace_ext4_writepages(inode, wbc);
2806
2807         ret = dax_writeback_mapping_range(mapping,
2808                                           EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2809         trace_ext4_writepages_result(inode, wbc, ret,
2810                                      nr_to_write - wbc->nr_to_write);
2811         ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2812         return ret;
2813 }
2814
2815 static int ext4_nonda_switch(struct super_block *sb)
2816 {
2817         s64 free_clusters, dirty_clusters;
2818         struct ext4_sb_info *sbi = EXT4_SB(sb);
2819
2820         /*
2821          * switch to non delalloc mode if we are running low
2822          * on free block. The free block accounting via percpu
2823          * counters can get slightly wrong with percpu_counter_batch getting
2824          * accumulated on each CPU without updating global counters
2825          * Delalloc need an accurate free block accounting. So switch
2826          * to non delalloc when we are near to error range.
2827          */
2828         free_clusters =
2829                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2830         dirty_clusters =
2831                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2832         /*
2833          * Start pushing delalloc when 1/2 of free blocks are dirty.
2834          */
2835         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2836                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2837
2838         if (2 * free_clusters < 3 * dirty_clusters ||
2839             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2840                 /*
2841                  * free block count is less than 150% of dirty blocks
2842                  * or free blocks is less than watermark
2843                  */
2844                 return 1;
2845         }
2846         return 0;
2847 }
2848
2849 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2850                                loff_t pos, unsigned len,
2851                                struct page **pagep, void **fsdata)
2852 {
2853         int ret, retries = 0;
2854         struct folio *folio;
2855         pgoff_t index;
2856         struct inode *inode = mapping->host;
2857
2858         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2859                 return -EIO;
2860
2861         index = pos >> PAGE_SHIFT;
2862
2863         if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2864                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2865                 return ext4_write_begin(file, mapping, pos,
2866                                         len, pagep, fsdata);
2867         }
2868         *fsdata = (void *)0;
2869         trace_ext4_da_write_begin(inode, pos, len);
2870
2871         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2872                 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2873                                                       pagep, fsdata);
2874                 if (ret < 0)
2875                         return ret;
2876                 if (ret == 1)
2877                         return 0;
2878         }
2879
2880 retry:
2881         folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2882                         mapping_gfp_mask(mapping));
2883         if (IS_ERR(folio))
2884                 return PTR_ERR(folio);
2885
2886         /* In case writeback began while the folio was unlocked */
2887         folio_wait_stable(folio);
2888
2889 #ifdef CONFIG_FS_ENCRYPTION
2890         ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2891 #else
2892         ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2893 #endif
2894         if (ret < 0) {
2895                 folio_unlock(folio);
2896                 folio_put(folio);
2897                 /*
2898                  * block_write_begin may have instantiated a few blocks
2899                  * outside i_size.  Trim these off again. Don't need
2900                  * i_size_read because we hold inode lock.
2901                  */
2902                 if (pos + len > inode->i_size)
2903                         ext4_truncate_failed_write(inode);
2904
2905                 if (ret == -ENOSPC &&
2906                     ext4_should_retry_alloc(inode->i_sb, &retries))
2907                         goto retry;
2908                 return ret;
2909         }
2910
2911         *pagep = &folio->page;
2912         return ret;
2913 }
2914
2915 /*
2916  * Check if we should update i_disksize
2917  * when write to the end of file but not require block allocation
2918  */
2919 static int ext4_da_should_update_i_disksize(struct folio *folio,
2920                                             unsigned long offset)
2921 {
2922         struct buffer_head *bh;
2923         struct inode *inode = folio->mapping->host;
2924         unsigned int idx;
2925         int i;
2926
2927         bh = folio_buffers(folio);
2928         idx = offset >> inode->i_blkbits;
2929
2930         for (i = 0; i < idx; i++)
2931                 bh = bh->b_this_page;
2932
2933         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2934                 return 0;
2935         return 1;
2936 }
2937
2938 static int ext4_da_do_write_end(struct address_space *mapping,
2939                         loff_t pos, unsigned len, unsigned copied,
2940                         struct page *page)
2941 {
2942         struct inode *inode = mapping->host;
2943         loff_t old_size = inode->i_size;
2944         bool disksize_changed = false;
2945         loff_t new_i_size;
2946
2947         /*
2948          * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2949          * flag, which all that's needed to trigger page writeback.
2950          */
2951         copied = block_write_end(NULL, mapping, pos, len, copied, page, NULL);
2952         new_i_size = pos + copied;
2953
2954         /*
2955          * It's important to update i_size while still holding page lock,
2956          * because page writeout could otherwise come in and zero beyond
2957          * i_size.
2958          *
2959          * Since we are holding inode lock, we are sure i_disksize <=
2960          * i_size. We also know that if i_disksize < i_size, there are
2961          * delalloc writes pending in the range up to i_size. If the end of
2962          * the current write is <= i_size, there's no need to touch
2963          * i_disksize since writeback will push i_disksize up to i_size
2964          * eventually. If the end of the current write is > i_size and
2965          * inside an allocated block which ext4_da_should_update_i_disksize()
2966          * checked, we need to update i_disksize here as certain
2967          * ext4_writepages() paths not allocating blocks and update i_disksize.
2968          */
2969         if (new_i_size > inode->i_size) {
2970                 unsigned long end;
2971
2972                 i_size_write(inode, new_i_size);
2973                 end = (new_i_size - 1) & (PAGE_SIZE - 1);
2974                 if (copied && ext4_da_should_update_i_disksize(page_folio(page), end)) {
2975                         ext4_update_i_disksize(inode, new_i_size);
2976                         disksize_changed = true;
2977                 }
2978         }
2979
2980         unlock_page(page);
2981         put_page(page);
2982
2983         if (old_size < pos)
2984                 pagecache_isize_extended(inode, old_size, pos);
2985
2986         if (disksize_changed) {
2987                 handle_t *handle;
2988
2989                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
2990                 if (IS_ERR(handle))
2991                         return PTR_ERR(handle);
2992                 ext4_mark_inode_dirty(handle, inode);
2993                 ext4_journal_stop(handle);
2994         }
2995
2996         return copied;
2997 }
2998
2999 static int ext4_da_write_end(struct file *file,
3000                              struct address_space *mapping,
3001                              loff_t pos, unsigned len, unsigned copied,
3002                              struct page *page, void *fsdata)
3003 {
3004         struct inode *inode = mapping->host;
3005         int write_mode = (int)(unsigned long)fsdata;
3006         struct folio *folio = page_folio(page);
3007
3008         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3009                 return ext4_write_end(file, mapping, pos,
3010                                       len, copied, &folio->page, fsdata);
3011
3012         trace_ext4_da_write_end(inode, pos, len, copied);
3013
3014         if (write_mode != CONVERT_INLINE_DATA &&
3015             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3016             ext4_has_inline_data(inode))
3017                 return ext4_write_inline_data_end(inode, pos, len, copied,
3018                                                   folio);
3019
3020         if (unlikely(copied < len) && !PageUptodate(page))
3021                 copied = 0;
3022
3023         return ext4_da_do_write_end(mapping, pos, len, copied, &folio->page);
3024 }
3025
3026 /*
3027  * Force all delayed allocation blocks to be allocated for a given inode.
3028  */
3029 int ext4_alloc_da_blocks(struct inode *inode)
3030 {
3031         trace_ext4_alloc_da_blocks(inode);
3032
3033         if (!EXT4_I(inode)->i_reserved_data_blocks)
3034                 return 0;
3035
3036         /*
3037          * We do something simple for now.  The filemap_flush() will
3038          * also start triggering a write of the data blocks, which is
3039          * not strictly speaking necessary (and for users of
3040          * laptop_mode, not even desirable).  However, to do otherwise
3041          * would require replicating code paths in:
3042          *
3043          * ext4_writepages() ->
3044          *    write_cache_pages() ---> (via passed in callback function)
3045          *        __mpage_da_writepage() -->
3046          *           mpage_add_bh_to_extent()
3047          *           mpage_da_map_blocks()
3048          *
3049          * The problem is that write_cache_pages(), located in
3050          * mm/page-writeback.c, marks pages clean in preparation for
3051          * doing I/O, which is not desirable if we're not planning on
3052          * doing I/O at all.
3053          *
3054          * We could call write_cache_pages(), and then redirty all of
3055          * the pages by calling redirty_page_for_writepage() but that
3056          * would be ugly in the extreme.  So instead we would need to
3057          * replicate parts of the code in the above functions,
3058          * simplifying them because we wouldn't actually intend to
3059          * write out the pages, but rather only collect contiguous
3060          * logical block extents, call the multi-block allocator, and
3061          * then update the buffer heads with the block allocations.
3062          *
3063          * For now, though, we'll cheat by calling filemap_flush(),
3064          * which will map the blocks, and start the I/O, but not
3065          * actually wait for the I/O to complete.
3066          */
3067         return filemap_flush(inode->i_mapping);
3068 }
3069
3070 /*
3071  * bmap() is special.  It gets used by applications such as lilo and by
3072  * the swapper to find the on-disk block of a specific piece of data.
3073  *
3074  * Naturally, this is dangerous if the block concerned is still in the
3075  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3076  * filesystem and enables swap, then they may get a nasty shock when the
3077  * data getting swapped to that swapfile suddenly gets overwritten by
3078  * the original zero's written out previously to the journal and
3079  * awaiting writeback in the kernel's buffer cache.
3080  *
3081  * So, if we see any bmap calls here on a modified, data-journaled file,
3082  * take extra steps to flush any blocks which might be in the cache.
3083  */
3084 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3085 {
3086         struct inode *inode = mapping->host;
3087         sector_t ret = 0;
3088
3089         inode_lock_shared(inode);
3090         /*
3091          * We can get here for an inline file via the FIBMAP ioctl
3092          */
3093         if (ext4_has_inline_data(inode))
3094                 goto out;
3095
3096         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3097             (test_opt(inode->i_sb, DELALLOC) ||
3098              ext4_should_journal_data(inode))) {
3099                 /*
3100                  * With delalloc or journalled data we want to sync the file so
3101                  * that we can make sure we allocate blocks for file and data
3102                  * is in place for the user to see it
3103                  */
3104                 filemap_write_and_wait(mapping);
3105         }
3106
3107         ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3108
3109 out:
3110         inode_unlock_shared(inode);
3111         return ret;
3112 }
3113
3114 static int ext4_read_folio(struct file *file, struct folio *folio)
3115 {
3116         int ret = -EAGAIN;
3117         struct inode *inode = folio->mapping->host;
3118
3119         trace_ext4_read_folio(inode, folio);
3120
3121         if (ext4_has_inline_data(inode))
3122                 ret = ext4_readpage_inline(inode, folio);
3123
3124         if (ret == -EAGAIN)
3125                 return ext4_mpage_readpages(inode, NULL, folio);
3126
3127         return ret;
3128 }
3129
3130 static void ext4_readahead(struct readahead_control *rac)
3131 {
3132         struct inode *inode = rac->mapping->host;
3133
3134         /* If the file has inline data, no need to do readahead. */
3135         if (ext4_has_inline_data(inode))
3136                 return;
3137
3138         ext4_mpage_readpages(inode, rac, NULL);
3139 }
3140
3141 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3142                                 size_t length)
3143 {
3144         trace_ext4_invalidate_folio(folio, offset, length);
3145
3146         /* No journalling happens on data buffers when this function is used */
3147         WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3148
3149         block_invalidate_folio(folio, offset, length);
3150 }
3151
3152 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3153                                             size_t offset, size_t length)
3154 {
3155         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3156
3157         trace_ext4_journalled_invalidate_folio(folio, offset, length);
3158
3159         /*
3160          * If it's a full truncate we just forget about the pending dirtying
3161          */
3162         if (offset == 0 && length == folio_size(folio))
3163                 folio_clear_checked(folio);
3164
3165         return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3166 }
3167
3168 /* Wrapper for aops... */
3169 static void ext4_journalled_invalidate_folio(struct folio *folio,
3170                                            size_t offset,
3171                                            size_t length)
3172 {
3173         WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3174 }
3175
3176 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3177 {
3178         struct inode *inode = folio->mapping->host;
3179         journal_t *journal = EXT4_JOURNAL(inode);
3180
3181         trace_ext4_release_folio(inode, folio);
3182
3183         /* Page has dirty journalled data -> cannot release */
3184         if (folio_test_checked(folio))
3185                 return false;
3186         if (journal)
3187                 return jbd2_journal_try_to_free_buffers(journal, folio);
3188         else
3189                 return try_to_free_buffers(folio);
3190 }
3191
3192 static bool ext4_inode_datasync_dirty(struct inode *inode)
3193 {
3194         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3195
3196         if (journal) {
3197                 if (jbd2_transaction_committed(journal,
3198                         EXT4_I(inode)->i_datasync_tid))
3199                         return false;
3200                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3201                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3202                 return true;
3203         }
3204
3205         /* Any metadata buffers to write? */
3206         if (!list_empty(&inode->i_mapping->private_list))
3207                 return true;
3208         return inode->i_state & I_DIRTY_DATASYNC;
3209 }
3210
3211 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3212                            struct ext4_map_blocks *map, loff_t offset,
3213                            loff_t length, unsigned int flags)
3214 {
3215         u8 blkbits = inode->i_blkbits;
3216
3217         /*
3218          * Writes that span EOF might trigger an I/O size update on completion,
3219          * so consider them to be dirty for the purpose of O_DSYNC, even if
3220          * there is no other metadata changes being made or are pending.
3221          */
3222         iomap->flags = 0;
3223         if (ext4_inode_datasync_dirty(inode) ||
3224             offset + length > i_size_read(inode))
3225                 iomap->flags |= IOMAP_F_DIRTY;
3226
3227         if (map->m_flags & EXT4_MAP_NEW)
3228                 iomap->flags |= IOMAP_F_NEW;
3229
3230         if (flags & IOMAP_DAX)
3231                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3232         else
3233                 iomap->bdev = inode->i_sb->s_bdev;
3234         iomap->offset = (u64) map->m_lblk << blkbits;
3235         iomap->length = (u64) map->m_len << blkbits;
3236
3237         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3238             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3239                 iomap->flags |= IOMAP_F_MERGED;
3240
3241         /*
3242          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3243          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3244          * set. In order for any allocated unwritten extents to be converted
3245          * into written extents correctly within the ->end_io() handler, we
3246          * need to ensure that the iomap->type is set appropriately. Hence, the
3247          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3248          * been set first.
3249          */
3250         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3251                 iomap->type = IOMAP_UNWRITTEN;
3252                 iomap->addr = (u64) map->m_pblk << blkbits;
3253                 if (flags & IOMAP_DAX)
3254                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3255         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3256                 iomap->type = IOMAP_MAPPED;
3257                 iomap->addr = (u64) map->m_pblk << blkbits;
3258                 if (flags & IOMAP_DAX)
3259                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3260         } else {
3261                 iomap->type = IOMAP_HOLE;
3262                 iomap->addr = IOMAP_NULL_ADDR;
3263         }
3264 }
3265
3266 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3267                             unsigned int flags)
3268 {
3269         handle_t *handle;
3270         u8 blkbits = inode->i_blkbits;
3271         int ret, dio_credits, m_flags = 0, retries = 0;
3272
3273         /*
3274          * Trim the mapping request to the maximum value that we can map at
3275          * once for direct I/O.
3276          */
3277         if (map->m_len > DIO_MAX_BLOCKS)
3278                 map->m_len = DIO_MAX_BLOCKS;
3279         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3280
3281 retry:
3282         /*
3283          * Either we allocate blocks and then don't get an unwritten extent, so
3284          * in that case we have reserved enough credits. Or, the blocks are
3285          * already allocated and unwritten. In that case, the extent conversion
3286          * fits into the credits as well.
3287          */
3288         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3289         if (IS_ERR(handle))
3290                 return PTR_ERR(handle);
3291
3292         /*
3293          * DAX and direct I/O are the only two operations that are currently
3294          * supported with IOMAP_WRITE.
3295          */
3296         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3297         if (flags & IOMAP_DAX)
3298                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3299         /*
3300          * We use i_size instead of i_disksize here because delalloc writeback
3301          * can complete at any point during the I/O and subsequently push the
3302          * i_disksize out to i_size. This could be beyond where direct I/O is
3303          * happening and thus expose allocated blocks to direct I/O reads.
3304          */
3305         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3306                 m_flags = EXT4_GET_BLOCKS_CREATE;
3307         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3308                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3309
3310         ret = ext4_map_blocks(handle, inode, map, m_flags);
3311
3312         /*
3313          * We cannot fill holes in indirect tree based inodes as that could
3314          * expose stale data in the case of a crash. Use the magic error code
3315          * to fallback to buffered I/O.
3316          */
3317         if (!m_flags && !ret)
3318                 ret = -ENOTBLK;
3319
3320         ext4_journal_stop(handle);
3321         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3322                 goto retry;
3323
3324         return ret;
3325 }
3326
3327
3328 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3329                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3330 {
3331         int ret;
3332         struct ext4_map_blocks map;
3333         u8 blkbits = inode->i_blkbits;
3334
3335         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3336                 return -EINVAL;
3337
3338         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3339                 return -ERANGE;
3340
3341         /*
3342          * Calculate the first and last logical blocks respectively.
3343          */
3344         map.m_lblk = offset >> blkbits;
3345         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3346                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3347
3348         if (flags & IOMAP_WRITE) {
3349                 /*
3350                  * We check here if the blocks are already allocated, then we
3351                  * don't need to start a journal txn and we can directly return
3352                  * the mapping information. This could boost performance
3353                  * especially in multi-threaded overwrite requests.
3354                  */
3355                 if (offset + length <= i_size_read(inode)) {
3356                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3357                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3358                                 goto out;
3359                 }
3360                 ret = ext4_iomap_alloc(inode, &map, flags);
3361         } else {
3362                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3363         }
3364
3365         if (ret < 0)
3366                 return ret;
3367 out:
3368         /*
3369          * When inline encryption is enabled, sometimes I/O to an encrypted file
3370          * has to be broken up to guarantee DUN contiguity.  Handle this by
3371          * limiting the length of the mapping returned.
3372          */
3373         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3374
3375         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3376
3377         return 0;
3378 }
3379
3380 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3381                 loff_t length, unsigned flags, struct iomap *iomap,
3382                 struct iomap *srcmap)
3383 {
3384         int ret;
3385
3386         /*
3387          * Even for writes we don't need to allocate blocks, so just pretend
3388          * we are reading to save overhead of starting a transaction.
3389          */
3390         flags &= ~IOMAP_WRITE;
3391         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3392         WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3393         return ret;
3394 }
3395
3396 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3397                           ssize_t written, unsigned flags, struct iomap *iomap)
3398 {
3399         /*
3400          * Check to see whether an error occurred while writing out the data to
3401          * the allocated blocks. If so, return the magic error code so that we
3402          * fallback to buffered I/O and attempt to complete the remainder of
3403          * the I/O. Any blocks that may have been allocated in preparation for
3404          * the direct I/O will be reused during buffered I/O.
3405          */
3406         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3407                 return -ENOTBLK;
3408
3409         return 0;
3410 }
3411
3412 const struct iomap_ops ext4_iomap_ops = {
3413         .iomap_begin            = ext4_iomap_begin,
3414         .iomap_end              = ext4_iomap_end,
3415 };
3416
3417 const struct iomap_ops ext4_iomap_overwrite_ops = {
3418         .iomap_begin            = ext4_iomap_overwrite_begin,
3419         .iomap_end              = ext4_iomap_end,
3420 };
3421
3422 static bool ext4_iomap_is_delalloc(struct inode *inode,
3423                                    struct ext4_map_blocks *map)
3424 {
3425         struct extent_status es;
3426         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3427
3428         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3429                                   map->m_lblk, end, &es);
3430
3431         if (!es.es_len || es.es_lblk > end)
3432                 return false;
3433
3434         if (es.es_lblk > map->m_lblk) {
3435                 map->m_len = es.es_lblk - map->m_lblk;
3436                 return false;
3437         }
3438
3439         offset = map->m_lblk - es.es_lblk;
3440         map->m_len = es.es_len - offset;
3441
3442         return true;
3443 }
3444
3445 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3446                                    loff_t length, unsigned int flags,
3447                                    struct iomap *iomap, struct iomap *srcmap)
3448 {
3449         int ret;
3450         bool delalloc = false;
3451         struct ext4_map_blocks map;
3452         u8 blkbits = inode->i_blkbits;
3453
3454         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3455                 return -EINVAL;
3456
3457         if (ext4_has_inline_data(inode)) {
3458                 ret = ext4_inline_data_iomap(inode, iomap);
3459                 if (ret != -EAGAIN) {
3460                         if (ret == 0 && offset >= iomap->length)
3461                                 ret = -ENOENT;
3462                         return ret;
3463                 }
3464         }
3465
3466         /*
3467          * Calculate the first and last logical block respectively.
3468          */
3469         map.m_lblk = offset >> blkbits;
3470         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3471                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3472
3473         /*
3474          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3475          * So handle it here itself instead of querying ext4_map_blocks().
3476          * Since ext4_map_blocks() will warn about it and will return
3477          * -EIO error.
3478          */
3479         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3480                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3481
3482                 if (offset >= sbi->s_bitmap_maxbytes) {
3483                         map.m_flags = 0;
3484                         goto set_iomap;
3485                 }
3486         }
3487
3488         ret = ext4_map_blocks(NULL, inode, &map, 0);
3489         if (ret < 0)
3490                 return ret;
3491         if (ret == 0)
3492                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3493
3494 set_iomap:
3495         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3496         if (delalloc && iomap->type == IOMAP_HOLE)
3497                 iomap->type = IOMAP_DELALLOC;
3498
3499         return 0;
3500 }
3501
3502 const struct iomap_ops ext4_iomap_report_ops = {
3503         .iomap_begin = ext4_iomap_begin_report,
3504 };
3505
3506 /*
3507  * For data=journal mode, folio should be marked dirty only when it was
3508  * writeably mapped. When that happens, it was already attached to the
3509  * transaction and marked as jbddirty (we take care of this in
3510  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3511  * so we should have nothing to do here, except for the case when someone
3512  * had the page pinned and dirtied the page through this pin (e.g. by doing
3513  * direct IO to it). In that case we'd need to attach buffers here to the
3514  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3515  * folio and leave attached buffers clean, because the buffers' dirty state is
3516  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3517  * the journalling code will explode.  So what we do is to mark the folio
3518  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3519  * to the transaction appropriately.
3520  */
3521 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3522                 struct folio *folio)
3523 {
3524         WARN_ON_ONCE(!folio_buffers(folio));
3525         if (folio_maybe_dma_pinned(folio))
3526                 folio_set_checked(folio);
3527         return filemap_dirty_folio(mapping, folio);
3528 }
3529
3530 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3531 {
3532         WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3533         WARN_ON_ONCE(!folio_buffers(folio));
3534         return block_dirty_folio(mapping, folio);
3535 }
3536
3537 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3538                                     struct file *file, sector_t *span)
3539 {
3540         return iomap_swapfile_activate(sis, file, span,
3541                                        &ext4_iomap_report_ops);
3542 }
3543
3544 static const struct address_space_operations ext4_aops = {
3545         .read_folio             = ext4_read_folio,
3546         .readahead              = ext4_readahead,
3547         .writepages             = ext4_writepages,
3548         .write_begin            = ext4_write_begin,
3549         .write_end              = ext4_write_end,
3550         .dirty_folio            = ext4_dirty_folio,
3551         .bmap                   = ext4_bmap,
3552         .invalidate_folio       = ext4_invalidate_folio,
3553         .release_folio          = ext4_release_folio,
3554         .direct_IO              = noop_direct_IO,
3555         .migrate_folio          = buffer_migrate_folio,
3556         .is_partially_uptodate  = block_is_partially_uptodate,
3557         .error_remove_page      = generic_error_remove_page,
3558         .swap_activate          = ext4_iomap_swap_activate,
3559 };
3560
3561 static const struct address_space_operations ext4_journalled_aops = {
3562         .read_folio             = ext4_read_folio,
3563         .readahead              = ext4_readahead,
3564         .writepages             = ext4_writepages,
3565         .write_begin            = ext4_write_begin,
3566         .write_end              = ext4_journalled_write_end,
3567         .dirty_folio            = ext4_journalled_dirty_folio,
3568         .bmap                   = ext4_bmap,
3569         .invalidate_folio       = ext4_journalled_invalidate_folio,
3570         .release_folio          = ext4_release_folio,
3571         .direct_IO              = noop_direct_IO,
3572         .migrate_folio          = buffer_migrate_folio_norefs,
3573         .is_partially_uptodate  = block_is_partially_uptodate,
3574         .error_remove_page      = generic_error_remove_page,
3575         .swap_activate          = ext4_iomap_swap_activate,
3576 };
3577
3578 static const struct address_space_operations ext4_da_aops = {
3579         .read_folio             = ext4_read_folio,
3580         .readahead              = ext4_readahead,
3581         .writepages             = ext4_writepages,
3582         .write_begin            = ext4_da_write_begin,
3583         .write_end              = ext4_da_write_end,
3584         .dirty_folio            = ext4_dirty_folio,
3585         .bmap                   = ext4_bmap,
3586         .invalidate_folio       = ext4_invalidate_folio,
3587         .release_folio          = ext4_release_folio,
3588         .direct_IO              = noop_direct_IO,
3589         .migrate_folio          = buffer_migrate_folio,
3590         .is_partially_uptodate  = block_is_partially_uptodate,
3591         .error_remove_page      = generic_error_remove_page,
3592         .swap_activate          = ext4_iomap_swap_activate,
3593 };
3594
3595 static const struct address_space_operations ext4_dax_aops = {
3596         .writepages             = ext4_dax_writepages,
3597         .direct_IO              = noop_direct_IO,
3598         .dirty_folio            = noop_dirty_folio,
3599         .bmap                   = ext4_bmap,
3600         .swap_activate          = ext4_iomap_swap_activate,
3601 };
3602
3603 void ext4_set_aops(struct inode *inode)
3604 {
3605         switch (ext4_inode_journal_mode(inode)) {
3606         case EXT4_INODE_ORDERED_DATA_MODE:
3607         case EXT4_INODE_WRITEBACK_DATA_MODE:
3608                 break;
3609         case EXT4_INODE_JOURNAL_DATA_MODE:
3610                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3611                 return;
3612         default:
3613                 BUG();
3614         }
3615         if (IS_DAX(inode))
3616                 inode->i_mapping->a_ops = &ext4_dax_aops;
3617         else if (test_opt(inode->i_sb, DELALLOC))
3618                 inode->i_mapping->a_ops = &ext4_da_aops;
3619         else
3620                 inode->i_mapping->a_ops = &ext4_aops;
3621 }
3622
3623 static int __ext4_block_zero_page_range(handle_t *handle,
3624                 struct address_space *mapping, loff_t from, loff_t length)
3625 {
3626         ext4_fsblk_t index = from >> PAGE_SHIFT;
3627         unsigned offset = from & (PAGE_SIZE-1);
3628         unsigned blocksize, pos;
3629         ext4_lblk_t iblock;
3630         struct inode *inode = mapping->host;
3631         struct buffer_head *bh;
3632         struct folio *folio;
3633         int err = 0;
3634
3635         folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3636                                     FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3637                                     mapping_gfp_constraint(mapping, ~__GFP_FS));
3638         if (IS_ERR(folio))
3639                 return PTR_ERR(folio);
3640
3641         blocksize = inode->i_sb->s_blocksize;
3642
3643         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3644
3645         bh = folio_buffers(folio);
3646         if (!bh) {
3647                 create_empty_buffers(&folio->page, blocksize, 0);
3648                 bh = folio_buffers(folio);
3649         }
3650
3651         /* Find the buffer that contains "offset" */
3652         pos = blocksize;
3653         while (offset >= pos) {
3654                 bh = bh->b_this_page;
3655                 iblock++;
3656                 pos += blocksize;
3657         }
3658         if (buffer_freed(bh)) {
3659                 BUFFER_TRACE(bh, "freed: skip");
3660                 goto unlock;
3661         }
3662         if (!buffer_mapped(bh)) {
3663                 BUFFER_TRACE(bh, "unmapped");
3664                 ext4_get_block(inode, iblock, bh, 0);
3665                 /* unmapped? It's a hole - nothing to do */
3666                 if (!buffer_mapped(bh)) {
3667                         BUFFER_TRACE(bh, "still unmapped");
3668                         goto unlock;
3669                 }
3670         }
3671
3672         /* Ok, it's mapped. Make sure it's up-to-date */
3673         if (folio_test_uptodate(folio))
3674                 set_buffer_uptodate(bh);
3675
3676         if (!buffer_uptodate(bh)) {
3677                 err = ext4_read_bh_lock(bh, 0, true);
3678                 if (err)
3679                         goto unlock;
3680                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3681                         /* We expect the key to be set. */
3682                         BUG_ON(!fscrypt_has_encryption_key(inode));
3683                         err = fscrypt_decrypt_pagecache_blocks(folio,
3684                                                                blocksize,
3685                                                                bh_offset(bh));
3686                         if (err) {
3687                                 clear_buffer_uptodate(bh);
3688                                 goto unlock;
3689                         }
3690                 }
3691         }
3692         if (ext4_should_journal_data(inode)) {
3693                 BUFFER_TRACE(bh, "get write access");
3694                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3695                                                     EXT4_JTR_NONE);
3696                 if (err)
3697                         goto unlock;
3698         }
3699         folio_zero_range(folio, offset, length);
3700         BUFFER_TRACE(bh, "zeroed end of block");
3701
3702         if (ext4_should_journal_data(inode)) {
3703                 err = ext4_dirty_journalled_data(handle, bh);
3704         } else {
3705                 err = 0;
3706                 mark_buffer_dirty(bh);
3707                 if (ext4_should_order_data(inode))
3708                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3709                                         length);
3710         }
3711
3712 unlock:
3713         folio_unlock(folio);
3714         folio_put(folio);
3715         return err;
3716 }
3717
3718 /*
3719  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3720  * starting from file offset 'from'.  The range to be zero'd must
3721  * be contained with in one block.  If the specified range exceeds
3722  * the end of the block it will be shortened to end of the block
3723  * that corresponds to 'from'
3724  */
3725 static int ext4_block_zero_page_range(handle_t *handle,
3726                 struct address_space *mapping, loff_t from, loff_t length)
3727 {
3728         struct inode *inode = mapping->host;
3729         unsigned offset = from & (PAGE_SIZE-1);
3730         unsigned blocksize = inode->i_sb->s_blocksize;
3731         unsigned max = blocksize - (offset & (blocksize - 1));
3732
3733         /*
3734          * correct length if it does not fall between
3735          * 'from' and the end of the block
3736          */
3737         if (length > max || length < 0)
3738                 length = max;
3739
3740         if (IS_DAX(inode)) {
3741                 return dax_zero_range(inode, from, length, NULL,
3742                                       &ext4_iomap_ops);
3743         }
3744         return __ext4_block_zero_page_range(handle, mapping, from, length);
3745 }
3746
3747 /*
3748  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3749  * up to the end of the block which corresponds to `from'.
3750  * This required during truncate. We need to physically zero the tail end
3751  * of that block so it doesn't yield old data if the file is later grown.
3752  */
3753 static int ext4_block_truncate_page(handle_t *handle,
3754                 struct address_space *mapping, loff_t from)
3755 {
3756         unsigned offset = from & (PAGE_SIZE-1);
3757         unsigned length;
3758         unsigned blocksize;
3759         struct inode *inode = mapping->host;
3760
3761         /* If we are processing an encrypted inode during orphan list handling */
3762         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3763                 return 0;
3764
3765         blocksize = inode->i_sb->s_blocksize;
3766         length = blocksize - (offset & (blocksize - 1));
3767
3768         return ext4_block_zero_page_range(handle, mapping, from, length);
3769 }
3770
3771 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3772                              loff_t lstart, loff_t length)
3773 {
3774         struct super_block *sb = inode->i_sb;
3775         struct address_space *mapping = inode->i_mapping;
3776         unsigned partial_start, partial_end;
3777         ext4_fsblk_t start, end;
3778         loff_t byte_end = (lstart + length - 1);
3779         int err = 0;
3780
3781         partial_start = lstart & (sb->s_blocksize - 1);
3782         partial_end = byte_end & (sb->s_blocksize - 1);
3783
3784         start = lstart >> sb->s_blocksize_bits;
3785         end = byte_end >> sb->s_blocksize_bits;
3786
3787         /* Handle partial zero within the single block */
3788         if (start == end &&
3789             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3790                 err = ext4_block_zero_page_range(handle, mapping,
3791                                                  lstart, length);
3792                 return err;
3793         }
3794         /* Handle partial zero out on the start of the range */
3795         if (partial_start) {
3796                 err = ext4_block_zero_page_range(handle, mapping,
3797                                                  lstart, sb->s_blocksize);
3798                 if (err)
3799                         return err;
3800         }
3801         /* Handle partial zero out on the end of the range */
3802         if (partial_end != sb->s_blocksize - 1)
3803                 err = ext4_block_zero_page_range(handle, mapping,
3804                                                  byte_end - partial_end,
3805                                                  partial_end + 1);
3806         return err;
3807 }
3808
3809 int ext4_can_truncate(struct inode *inode)
3810 {
3811         if (S_ISREG(inode->i_mode))
3812                 return 1;
3813         if (S_ISDIR(inode->i_mode))
3814                 return 1;
3815         if (S_ISLNK(inode->i_mode))
3816                 return !ext4_inode_is_fast_symlink(inode);
3817         return 0;
3818 }
3819
3820 /*
3821  * We have to make sure i_disksize gets properly updated before we truncate
3822  * page cache due to hole punching or zero range. Otherwise i_disksize update
3823  * can get lost as it may have been postponed to submission of writeback but
3824  * that will never happen after we truncate page cache.
3825  */
3826 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3827                                       loff_t len)
3828 {
3829         handle_t *handle;
3830         int ret;
3831
3832         loff_t size = i_size_read(inode);
3833
3834         WARN_ON(!inode_is_locked(inode));
3835         if (offset > size || offset + len < size)
3836                 return 0;
3837
3838         if (EXT4_I(inode)->i_disksize >= size)
3839                 return 0;
3840
3841         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3842         if (IS_ERR(handle))
3843                 return PTR_ERR(handle);
3844         ext4_update_i_disksize(inode, size);
3845         ret = ext4_mark_inode_dirty(handle, inode);
3846         ext4_journal_stop(handle);
3847
3848         return ret;
3849 }
3850
3851 static void ext4_wait_dax_page(struct inode *inode)
3852 {
3853         filemap_invalidate_unlock(inode->i_mapping);
3854         schedule();
3855         filemap_invalidate_lock(inode->i_mapping);
3856 }
3857
3858 int ext4_break_layouts(struct inode *inode)
3859 {
3860         struct page *page;
3861         int error;
3862
3863         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3864                 return -EINVAL;
3865
3866         do {
3867                 page = dax_layout_busy_page(inode->i_mapping);
3868                 if (!page)
3869                         return 0;
3870
3871                 error = ___wait_var_event(&page->_refcount,
3872                                 atomic_read(&page->_refcount) == 1,
3873                                 TASK_INTERRUPTIBLE, 0, 0,
3874                                 ext4_wait_dax_page(inode));
3875         } while (error == 0);
3876
3877         return error;
3878 }
3879
3880 /*
3881  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3882  * associated with the given offset and length
3883  *
3884  * @inode:  File inode
3885  * @offset: The offset where the hole will begin
3886  * @len:    The length of the hole
3887  *
3888  * Returns: 0 on success or negative on failure
3889  */
3890
3891 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3892 {
3893         struct inode *inode = file_inode(file);
3894         struct super_block *sb = inode->i_sb;
3895         ext4_lblk_t first_block, stop_block;
3896         struct address_space *mapping = inode->i_mapping;
3897         loff_t first_block_offset, last_block_offset, max_length;
3898         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3899         handle_t *handle;
3900         unsigned int credits;
3901         int ret = 0, ret2 = 0;
3902
3903         trace_ext4_punch_hole(inode, offset, length, 0);
3904
3905         /*
3906          * Write out all dirty pages to avoid race conditions
3907          * Then release them.
3908          */
3909         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3910                 ret = filemap_write_and_wait_range(mapping, offset,
3911                                                    offset + length - 1);
3912                 if (ret)
3913                         return ret;
3914         }
3915
3916         inode_lock(inode);
3917
3918         /* No need to punch hole beyond i_size */
3919         if (offset >= inode->i_size)
3920                 goto out_mutex;
3921
3922         /*
3923          * If the hole extends beyond i_size, set the hole
3924          * to end after the page that contains i_size
3925          */
3926         if (offset + length > inode->i_size) {
3927                 length = inode->i_size +
3928                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3929                    offset;
3930         }
3931
3932         /*
3933          * For punch hole the length + offset needs to be within one block
3934          * before last range. Adjust the length if it goes beyond that limit.
3935          */
3936         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3937         if (offset + length > max_length)
3938                 length = max_length - offset;
3939
3940         if (offset & (sb->s_blocksize - 1) ||
3941             (offset + length) & (sb->s_blocksize - 1)) {
3942                 /*
3943                  * Attach jinode to inode for jbd2 if we do any zeroing of
3944                  * partial block
3945                  */
3946                 ret = ext4_inode_attach_jinode(inode);
3947                 if (ret < 0)
3948                         goto out_mutex;
3949
3950         }
3951
3952         /* Wait all existing dio workers, newcomers will block on i_rwsem */
3953         inode_dio_wait(inode);
3954
3955         ret = file_modified(file);
3956         if (ret)
3957                 goto out_mutex;
3958
3959         /*
3960          * Prevent page faults from reinstantiating pages we have released from
3961          * page cache.
3962          */
3963         filemap_invalidate_lock(mapping);
3964
3965         ret = ext4_break_layouts(inode);
3966         if (ret)
3967                 goto out_dio;
3968
3969         first_block_offset = round_up(offset, sb->s_blocksize);
3970         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3971
3972         /* Now release the pages and zero block aligned part of pages*/
3973         if (last_block_offset > first_block_offset) {
3974                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3975                 if (ret)
3976                         goto out_dio;
3977                 truncate_pagecache_range(inode, first_block_offset,
3978                                          last_block_offset);
3979         }
3980
3981         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3982                 credits = ext4_writepage_trans_blocks(inode);
3983         else
3984                 credits = ext4_blocks_for_truncate(inode);
3985         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3986         if (IS_ERR(handle)) {
3987                 ret = PTR_ERR(handle);
3988                 ext4_std_error(sb, ret);
3989                 goto out_dio;
3990         }
3991
3992         ret = ext4_zero_partial_blocks(handle, inode, offset,
3993                                        length);
3994         if (ret)
3995                 goto out_stop;
3996
3997         first_block = (offset + sb->s_blocksize - 1) >>
3998                 EXT4_BLOCK_SIZE_BITS(sb);
3999         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4000
4001         /* If there are blocks to remove, do it */
4002         if (stop_block > first_block) {
4003
4004                 down_write(&EXT4_I(inode)->i_data_sem);
4005                 ext4_discard_preallocations(inode, 0);
4006
4007                 ext4_es_remove_extent(inode, first_block,
4008                                       stop_block - first_block);
4009
4010                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4011                         ret = ext4_ext_remove_space(inode, first_block,
4012                                                     stop_block - 1);
4013                 else
4014                         ret = ext4_ind_remove_space(handle, inode, first_block,
4015                                                     stop_block);
4016
4017                 up_write(&EXT4_I(inode)->i_data_sem);
4018         }
4019         ext4_fc_track_range(handle, inode, first_block, stop_block);
4020         if (IS_SYNC(inode))
4021                 ext4_handle_sync(handle);
4022
4023         inode->i_mtime = inode_set_ctime_current(inode);
4024         ret2 = ext4_mark_inode_dirty(handle, inode);
4025         if (unlikely(ret2))
4026                 ret = ret2;
4027         if (ret >= 0)
4028                 ext4_update_inode_fsync_trans(handle, inode, 1);
4029 out_stop:
4030         ext4_journal_stop(handle);
4031 out_dio:
4032         filemap_invalidate_unlock(mapping);
4033 out_mutex:
4034         inode_unlock(inode);
4035         return ret;
4036 }
4037
4038 int ext4_inode_attach_jinode(struct inode *inode)
4039 {
4040         struct ext4_inode_info *ei = EXT4_I(inode);
4041         struct jbd2_inode *jinode;
4042
4043         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4044                 return 0;
4045
4046         jinode = jbd2_alloc_inode(GFP_KERNEL);
4047         spin_lock(&inode->i_lock);
4048         if (!ei->jinode) {
4049                 if (!jinode) {
4050                         spin_unlock(&inode->i_lock);
4051                         return -ENOMEM;
4052                 }
4053                 ei->jinode = jinode;
4054                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4055                 jinode = NULL;
4056         }
4057         spin_unlock(&inode->i_lock);
4058         if (unlikely(jinode != NULL))
4059                 jbd2_free_inode(jinode);
4060         return 0;
4061 }
4062
4063 /*
4064  * ext4_truncate()
4065  *
4066  * We block out ext4_get_block() block instantiations across the entire
4067  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4068  * simultaneously on behalf of the same inode.
4069  *
4070  * As we work through the truncate and commit bits of it to the journal there
4071  * is one core, guiding principle: the file's tree must always be consistent on
4072  * disk.  We must be able to restart the truncate after a crash.
4073  *
4074  * The file's tree may be transiently inconsistent in memory (although it
4075  * probably isn't), but whenever we close off and commit a journal transaction,
4076  * the contents of (the filesystem + the journal) must be consistent and
4077  * restartable.  It's pretty simple, really: bottom up, right to left (although
4078  * left-to-right works OK too).
4079  *
4080  * Note that at recovery time, journal replay occurs *before* the restart of
4081  * truncate against the orphan inode list.
4082  *
4083  * The committed inode has the new, desired i_size (which is the same as
4084  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4085  * that this inode's truncate did not complete and it will again call
4086  * ext4_truncate() to have another go.  So there will be instantiated blocks
4087  * to the right of the truncation point in a crashed ext4 filesystem.  But
4088  * that's fine - as long as they are linked from the inode, the post-crash
4089  * ext4_truncate() run will find them and release them.
4090  */
4091 int ext4_truncate(struct inode *inode)
4092 {
4093         struct ext4_inode_info *ei = EXT4_I(inode);
4094         unsigned int credits;
4095         int err = 0, err2;
4096         handle_t *handle;
4097         struct address_space *mapping = inode->i_mapping;
4098
4099         /*
4100          * There is a possibility that we're either freeing the inode
4101          * or it's a completely new inode. In those cases we might not
4102          * have i_rwsem locked because it's not necessary.
4103          */
4104         if (!(inode->i_state & (I_NEW|I_FREEING)))
4105                 WARN_ON(!inode_is_locked(inode));
4106         trace_ext4_truncate_enter(inode);
4107
4108         if (!ext4_can_truncate(inode))
4109                 goto out_trace;
4110
4111         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4112                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4113
4114         if (ext4_has_inline_data(inode)) {
4115                 int has_inline = 1;
4116
4117                 err = ext4_inline_data_truncate(inode, &has_inline);
4118                 if (err || has_inline)
4119                         goto out_trace;
4120         }
4121
4122         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4123         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4124                 err = ext4_inode_attach_jinode(inode);
4125                 if (err)
4126                         goto out_trace;
4127         }
4128
4129         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4130                 credits = ext4_writepage_trans_blocks(inode);
4131         else
4132                 credits = ext4_blocks_for_truncate(inode);
4133
4134         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4135         if (IS_ERR(handle)) {
4136                 err = PTR_ERR(handle);
4137                 goto out_trace;
4138         }
4139
4140         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4141                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4142
4143         /*
4144          * We add the inode to the orphan list, so that if this
4145          * truncate spans multiple transactions, and we crash, we will
4146          * resume the truncate when the filesystem recovers.  It also
4147          * marks the inode dirty, to catch the new size.
4148          *
4149          * Implication: the file must always be in a sane, consistent
4150          * truncatable state while each transaction commits.
4151          */
4152         err = ext4_orphan_add(handle, inode);
4153         if (err)
4154                 goto out_stop;
4155
4156         down_write(&EXT4_I(inode)->i_data_sem);
4157
4158         ext4_discard_preallocations(inode, 0);
4159
4160         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4161                 err = ext4_ext_truncate(handle, inode);
4162         else
4163                 ext4_ind_truncate(handle, inode);
4164
4165         up_write(&ei->i_data_sem);
4166         if (err)
4167                 goto out_stop;
4168
4169         if (IS_SYNC(inode))
4170                 ext4_handle_sync(handle);
4171
4172 out_stop:
4173         /*
4174          * If this was a simple ftruncate() and the file will remain alive,
4175          * then we need to clear up the orphan record which we created above.
4176          * However, if this was a real unlink then we were called by
4177          * ext4_evict_inode(), and we allow that function to clean up the
4178          * orphan info for us.
4179          */
4180         if (inode->i_nlink)
4181                 ext4_orphan_del(handle, inode);
4182
4183         inode->i_mtime = inode_set_ctime_current(inode);
4184         err2 = ext4_mark_inode_dirty(handle, inode);
4185         if (unlikely(err2 && !err))
4186                 err = err2;
4187         ext4_journal_stop(handle);
4188
4189 out_trace:
4190         trace_ext4_truncate_exit(inode);
4191         return err;
4192 }
4193
4194 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4195 {
4196         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4197                 return inode_peek_iversion_raw(inode);
4198         else
4199                 return inode_peek_iversion(inode);
4200 }
4201
4202 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4203                                  struct ext4_inode_info *ei)
4204 {
4205         struct inode *inode = &(ei->vfs_inode);
4206         u64 i_blocks = READ_ONCE(inode->i_blocks);
4207         struct super_block *sb = inode->i_sb;
4208
4209         if (i_blocks <= ~0U) {
4210                 /*
4211                  * i_blocks can be represented in a 32 bit variable
4212                  * as multiple of 512 bytes
4213                  */
4214                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4215                 raw_inode->i_blocks_high = 0;
4216                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4217                 return 0;
4218         }
4219
4220         /*
4221          * This should never happen since sb->s_maxbytes should not have
4222          * allowed this, sb->s_maxbytes was set according to the huge_file
4223          * feature in ext4_fill_super().
4224          */
4225         if (!ext4_has_feature_huge_file(sb))
4226                 return -EFSCORRUPTED;
4227
4228         if (i_blocks <= 0xffffffffffffULL) {
4229                 /*
4230                  * i_blocks can be represented in a 48 bit variable
4231                  * as multiple of 512 bytes
4232                  */
4233                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4234                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4235                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4236         } else {
4237                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4238                 /* i_block is stored in file system block size */
4239                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4240                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4241                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4242         }
4243         return 0;
4244 }
4245
4246 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4247 {
4248         struct ext4_inode_info *ei = EXT4_I(inode);
4249         uid_t i_uid;
4250         gid_t i_gid;
4251         projid_t i_projid;
4252         int block;
4253         int err;
4254
4255         err = ext4_inode_blocks_set(raw_inode, ei);
4256
4257         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4258         i_uid = i_uid_read(inode);
4259         i_gid = i_gid_read(inode);
4260         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4261         if (!(test_opt(inode->i_sb, NO_UID32))) {
4262                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4263                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4264                 /*
4265                  * Fix up interoperability with old kernels. Otherwise,
4266                  * old inodes get re-used with the upper 16 bits of the
4267                  * uid/gid intact.
4268                  */
4269                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4270                         raw_inode->i_uid_high = 0;
4271                         raw_inode->i_gid_high = 0;
4272                 } else {
4273                         raw_inode->i_uid_high =
4274                                 cpu_to_le16(high_16_bits(i_uid));
4275                         raw_inode->i_gid_high =
4276                                 cpu_to_le16(high_16_bits(i_gid));
4277                 }
4278         } else {
4279                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4280                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4281                 raw_inode->i_uid_high = 0;
4282                 raw_inode->i_gid_high = 0;
4283         }
4284         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4285
4286         EXT4_INODE_SET_CTIME(inode, raw_inode);
4287         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4288         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4289         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4290
4291         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4292         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4293         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4294                 raw_inode->i_file_acl_high =
4295                         cpu_to_le16(ei->i_file_acl >> 32);
4296         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4297         ext4_isize_set(raw_inode, ei->i_disksize);
4298
4299         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4300         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4301                 if (old_valid_dev(inode->i_rdev)) {
4302                         raw_inode->i_block[0] =
4303                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4304                         raw_inode->i_block[1] = 0;
4305                 } else {
4306                         raw_inode->i_block[0] = 0;
4307                         raw_inode->i_block[1] =
4308                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4309                         raw_inode->i_block[2] = 0;
4310                 }
4311         } else if (!ext4_has_inline_data(inode)) {
4312                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4313                         raw_inode->i_block[block] = ei->i_data[block];
4314         }
4315
4316         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4317                 u64 ivers = ext4_inode_peek_iversion(inode);
4318
4319                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4320                 if (ei->i_extra_isize) {
4321                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4322                                 raw_inode->i_version_hi =
4323                                         cpu_to_le32(ivers >> 32);
4324                         raw_inode->i_extra_isize =
4325                                 cpu_to_le16(ei->i_extra_isize);
4326                 }
4327         }
4328
4329         if (i_projid != EXT4_DEF_PROJID &&
4330             !ext4_has_feature_project(inode->i_sb))
4331                 err = err ?: -EFSCORRUPTED;
4332
4333         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4334             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4335                 raw_inode->i_projid = cpu_to_le32(i_projid);
4336
4337         ext4_inode_csum_set(inode, raw_inode, ei);
4338         return err;
4339 }
4340
4341 /*
4342  * ext4_get_inode_loc returns with an extra refcount against the inode's
4343  * underlying buffer_head on success. If we pass 'inode' and it does not
4344  * have in-inode xattr, we have all inode data in memory that is needed
4345  * to recreate the on-disk version of this inode.
4346  */
4347 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4348                                 struct inode *inode, struct ext4_iloc *iloc,
4349                                 ext4_fsblk_t *ret_block)
4350 {
4351         struct ext4_group_desc  *gdp;
4352         struct buffer_head      *bh;
4353         ext4_fsblk_t            block;
4354         struct blk_plug         plug;
4355         int                     inodes_per_block, inode_offset;
4356
4357         iloc->bh = NULL;
4358         if (ino < EXT4_ROOT_INO ||
4359             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4360                 return -EFSCORRUPTED;
4361
4362         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4363         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4364         if (!gdp)
4365                 return -EIO;
4366
4367         /*
4368          * Figure out the offset within the block group inode table
4369          */
4370         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4371         inode_offset = ((ino - 1) %
4372                         EXT4_INODES_PER_GROUP(sb));
4373         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4374
4375         block = ext4_inode_table(sb, gdp);
4376         if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4377             (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4378                 ext4_error(sb, "Invalid inode table block %llu in "
4379                            "block_group %u", block, iloc->block_group);
4380                 return -EFSCORRUPTED;
4381         }
4382         block += (inode_offset / inodes_per_block);
4383
4384         bh = sb_getblk(sb, block);
4385         if (unlikely(!bh))
4386                 return -ENOMEM;
4387         if (ext4_buffer_uptodate(bh))
4388                 goto has_buffer;
4389
4390         lock_buffer(bh);
4391         if (ext4_buffer_uptodate(bh)) {
4392                 /* Someone brought it uptodate while we waited */
4393                 unlock_buffer(bh);
4394                 goto has_buffer;
4395         }
4396
4397         /*
4398          * If we have all information of the inode in memory and this
4399          * is the only valid inode in the block, we need not read the
4400          * block.
4401          */
4402         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4403                 struct buffer_head *bitmap_bh;
4404                 int i, start;
4405
4406                 start = inode_offset & ~(inodes_per_block - 1);
4407
4408                 /* Is the inode bitmap in cache? */
4409                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4410                 if (unlikely(!bitmap_bh))
4411                         goto make_io;
4412
4413                 /*
4414                  * If the inode bitmap isn't in cache then the
4415                  * optimisation may end up performing two reads instead
4416                  * of one, so skip it.
4417                  */
4418                 if (!buffer_uptodate(bitmap_bh)) {
4419                         brelse(bitmap_bh);
4420                         goto make_io;
4421                 }
4422                 for (i = start; i < start + inodes_per_block; i++) {
4423                         if (i == inode_offset)
4424                                 continue;
4425                         if (ext4_test_bit(i, bitmap_bh->b_data))
4426                                 break;
4427                 }
4428                 brelse(bitmap_bh);
4429                 if (i == start + inodes_per_block) {
4430                         struct ext4_inode *raw_inode =
4431                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4432
4433                         /* all other inodes are free, so skip I/O */
4434                         memset(bh->b_data, 0, bh->b_size);
4435                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4436                                 ext4_fill_raw_inode(inode, raw_inode);
4437                         set_buffer_uptodate(bh);
4438                         unlock_buffer(bh);
4439                         goto has_buffer;
4440                 }
4441         }
4442
4443 make_io:
4444         /*
4445          * If we need to do any I/O, try to pre-readahead extra
4446          * blocks from the inode table.
4447          */
4448         blk_start_plug(&plug);
4449         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4450                 ext4_fsblk_t b, end, table;
4451                 unsigned num;
4452                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4453
4454                 table = ext4_inode_table(sb, gdp);
4455                 /* s_inode_readahead_blks is always a power of 2 */
4456                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4457                 if (table > b)
4458                         b = table;
4459                 end = b + ra_blks;
4460                 num = EXT4_INODES_PER_GROUP(sb);
4461                 if (ext4_has_group_desc_csum(sb))
4462                         num -= ext4_itable_unused_count(sb, gdp);
4463                 table += num / inodes_per_block;
4464                 if (end > table)
4465                         end = table;
4466                 while (b <= end)
4467                         ext4_sb_breadahead_unmovable(sb, b++);
4468         }
4469
4470         /*
4471          * There are other valid inodes in the buffer, this inode
4472          * has in-inode xattrs, or we don't have this inode in memory.
4473          * Read the block from disk.
4474          */
4475         trace_ext4_load_inode(sb, ino);
4476         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4477         blk_finish_plug(&plug);
4478         wait_on_buffer(bh);
4479         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4480         if (!buffer_uptodate(bh)) {
4481                 if (ret_block)
4482                         *ret_block = block;
4483                 brelse(bh);
4484                 return -EIO;
4485         }
4486 has_buffer:
4487         iloc->bh = bh;
4488         return 0;
4489 }
4490
4491 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4492                                         struct ext4_iloc *iloc)
4493 {
4494         ext4_fsblk_t err_blk = 0;
4495         int ret;
4496
4497         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4498                                         &err_blk);
4499
4500         if (ret == -EIO)
4501                 ext4_error_inode_block(inode, err_blk, EIO,
4502                                         "unable to read itable block");
4503
4504         return ret;
4505 }
4506
4507 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4508 {
4509         ext4_fsblk_t err_blk = 0;
4510         int ret;
4511
4512         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4513                                         &err_blk);
4514
4515         if (ret == -EIO)
4516                 ext4_error_inode_block(inode, err_blk, EIO,
4517                                         "unable to read itable block");
4518
4519         return ret;
4520 }
4521
4522
4523 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4524                           struct ext4_iloc *iloc)
4525 {
4526         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4527 }
4528
4529 static bool ext4_should_enable_dax(struct inode *inode)
4530 {
4531         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4532
4533         if (test_opt2(inode->i_sb, DAX_NEVER))
4534                 return false;
4535         if (!S_ISREG(inode->i_mode))
4536                 return false;
4537         if (ext4_should_journal_data(inode))
4538                 return false;
4539         if (ext4_has_inline_data(inode))
4540                 return false;
4541         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4542                 return false;
4543         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4544                 return false;
4545         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4546                 return false;
4547         if (test_opt(inode->i_sb, DAX_ALWAYS))
4548                 return true;
4549
4550         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4551 }
4552
4553 void ext4_set_inode_flags(struct inode *inode, bool init)
4554 {
4555         unsigned int flags = EXT4_I(inode)->i_flags;
4556         unsigned int new_fl = 0;
4557
4558         WARN_ON_ONCE(IS_DAX(inode) && init);
4559
4560         if (flags & EXT4_SYNC_FL)
4561                 new_fl |= S_SYNC;
4562         if (flags & EXT4_APPEND_FL)
4563                 new_fl |= S_APPEND;
4564         if (flags & EXT4_IMMUTABLE_FL)
4565                 new_fl |= S_IMMUTABLE;
4566         if (flags & EXT4_NOATIME_FL)
4567                 new_fl |= S_NOATIME;
4568         if (flags & EXT4_DIRSYNC_FL)
4569                 new_fl |= S_DIRSYNC;
4570
4571         /* Because of the way inode_set_flags() works we must preserve S_DAX
4572          * here if already set. */
4573         new_fl |= (inode->i_flags & S_DAX);
4574         if (init && ext4_should_enable_dax(inode))
4575                 new_fl |= S_DAX;
4576
4577         if (flags & EXT4_ENCRYPT_FL)
4578                 new_fl |= S_ENCRYPTED;
4579         if (flags & EXT4_CASEFOLD_FL)
4580                 new_fl |= S_CASEFOLD;
4581         if (flags & EXT4_VERITY_FL)
4582                 new_fl |= S_VERITY;
4583         inode_set_flags(inode, new_fl,
4584                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4585                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4586 }
4587
4588 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4589                                   struct ext4_inode_info *ei)
4590 {
4591         blkcnt_t i_blocks ;
4592         struct inode *inode = &(ei->vfs_inode);
4593         struct super_block *sb = inode->i_sb;
4594
4595         if (ext4_has_feature_huge_file(sb)) {
4596                 /* we are using combined 48 bit field */
4597                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4598                                         le32_to_cpu(raw_inode->i_blocks_lo);
4599                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4600                         /* i_blocks represent file system block size */
4601                         return i_blocks  << (inode->i_blkbits - 9);
4602                 } else {
4603                         return i_blocks;
4604                 }
4605         } else {
4606                 return le32_to_cpu(raw_inode->i_blocks_lo);
4607         }
4608 }
4609
4610 static inline int ext4_iget_extra_inode(struct inode *inode,
4611                                          struct ext4_inode *raw_inode,
4612                                          struct ext4_inode_info *ei)
4613 {
4614         __le32 *magic = (void *)raw_inode +
4615                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4616
4617         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4618             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4619                 int err;
4620
4621                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4622                 err = ext4_find_inline_data_nolock(inode);
4623                 if (!err && ext4_has_inline_data(inode))
4624                         ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4625                 return err;
4626         } else
4627                 EXT4_I(inode)->i_inline_off = 0;
4628         return 0;
4629 }
4630
4631 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4632 {
4633         if (!ext4_has_feature_project(inode->i_sb))
4634                 return -EOPNOTSUPP;
4635         *projid = EXT4_I(inode)->i_projid;
4636         return 0;
4637 }
4638
4639 /*
4640  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4641  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4642  * set.
4643  */
4644 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4645 {
4646         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4647                 inode_set_iversion_raw(inode, val);
4648         else
4649                 inode_set_iversion_queried(inode, val);
4650 }
4651
4652 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4653
4654 {
4655         if (flags & EXT4_IGET_EA_INODE) {
4656                 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4657                         return "missing EA_INODE flag";
4658                 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4659                     EXT4_I(inode)->i_file_acl)
4660                         return "ea_inode with extended attributes";
4661         } else {
4662                 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4663                         return "unexpected EA_INODE flag";
4664         }
4665         if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4666                 return "unexpected bad inode w/o EXT4_IGET_BAD";
4667         return NULL;
4668 }
4669
4670 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4671                           ext4_iget_flags flags, const char *function,
4672                           unsigned int line)
4673 {
4674         struct ext4_iloc iloc;
4675         struct ext4_inode *raw_inode;
4676         struct ext4_inode_info *ei;
4677         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4678         struct inode *inode;
4679         const char *err_str;
4680         journal_t *journal = EXT4_SB(sb)->s_journal;
4681         long ret;
4682         loff_t size;
4683         int block;
4684         uid_t i_uid;
4685         gid_t i_gid;
4686         projid_t i_projid;
4687
4688         if ((!(flags & EXT4_IGET_SPECIAL) &&
4689              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4690               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4691               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4692               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4693               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4694             (ino < EXT4_ROOT_INO) ||
4695             (ino > le32_to_cpu(es->s_inodes_count))) {
4696                 if (flags & EXT4_IGET_HANDLE)
4697                         return ERR_PTR(-ESTALE);
4698                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4699                              "inode #%lu: comm %s: iget: illegal inode #",
4700                              ino, current->comm);
4701                 return ERR_PTR(-EFSCORRUPTED);
4702         }
4703
4704         inode = iget_locked(sb, ino);
4705         if (!inode)
4706                 return ERR_PTR(-ENOMEM);
4707         if (!(inode->i_state & I_NEW)) {
4708                 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4709                         ext4_error_inode(inode, function, line, 0, err_str);
4710                         iput(inode);
4711                         return ERR_PTR(-EFSCORRUPTED);
4712                 }
4713                 return inode;
4714         }
4715
4716         ei = EXT4_I(inode);
4717         iloc.bh = NULL;
4718
4719         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4720         if (ret < 0)
4721                 goto bad_inode;
4722         raw_inode = ext4_raw_inode(&iloc);
4723
4724         if ((flags & EXT4_IGET_HANDLE) &&
4725             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4726                 ret = -ESTALE;
4727                 goto bad_inode;
4728         }
4729
4730         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4731                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4732                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4733                         EXT4_INODE_SIZE(inode->i_sb) ||
4734                     (ei->i_extra_isize & 3)) {
4735                         ext4_error_inode(inode, function, line, 0,
4736                                          "iget: bad extra_isize %u "
4737                                          "(inode size %u)",
4738                                          ei->i_extra_isize,
4739                                          EXT4_INODE_SIZE(inode->i_sb));
4740                         ret = -EFSCORRUPTED;
4741                         goto bad_inode;
4742                 }
4743         } else
4744                 ei->i_extra_isize = 0;
4745
4746         /* Precompute checksum seed for inode metadata */
4747         if (ext4_has_metadata_csum(sb)) {
4748                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4749                 __u32 csum;
4750                 __le32 inum = cpu_to_le32(inode->i_ino);
4751                 __le32 gen = raw_inode->i_generation;
4752                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4753                                    sizeof(inum));
4754                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4755                                               sizeof(gen));
4756         }
4757
4758         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4759             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4760              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4761                 ext4_error_inode_err(inode, function, line, 0,
4762                                 EFSBADCRC, "iget: checksum invalid");
4763                 ret = -EFSBADCRC;
4764                 goto bad_inode;
4765         }
4766
4767         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4768         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4769         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4770         if (ext4_has_feature_project(sb) &&
4771             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4772             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4773                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4774         else
4775                 i_projid = EXT4_DEF_PROJID;
4776
4777         if (!(test_opt(inode->i_sb, NO_UID32))) {
4778                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4779                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4780         }
4781         i_uid_write(inode, i_uid);
4782         i_gid_write(inode, i_gid);
4783         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4784         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4785
4786         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4787         ei->i_inline_off = 0;
4788         ei->i_dir_start_lookup = 0;
4789         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4790         /* We now have enough fields to check if the inode was active or not.
4791          * This is needed because nfsd might try to access dead inodes
4792          * the test is that same one that e2fsck uses
4793          * NeilBrown 1999oct15
4794          */
4795         if (inode->i_nlink == 0) {
4796                 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4797                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4798                     ino != EXT4_BOOT_LOADER_INO) {
4799                         /* this inode is deleted or unallocated */
4800                         if (flags & EXT4_IGET_SPECIAL) {
4801                                 ext4_error_inode(inode, function, line, 0,
4802                                                  "iget: special inode unallocated");
4803                                 ret = -EFSCORRUPTED;
4804                         } else
4805                                 ret = -ESTALE;
4806                         goto bad_inode;
4807                 }
4808                 /* The only unlinked inodes we let through here have
4809                  * valid i_mode and are being read by the orphan
4810                  * recovery code: that's fine, we're about to complete
4811                  * the process of deleting those.
4812                  * OR it is the EXT4_BOOT_LOADER_INO which is
4813                  * not initialized on a new filesystem. */
4814         }
4815         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4816         ext4_set_inode_flags(inode, true);
4817         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4818         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4819         if (ext4_has_feature_64bit(sb))
4820                 ei->i_file_acl |=
4821                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4822         inode->i_size = ext4_isize(sb, raw_inode);
4823         if ((size = i_size_read(inode)) < 0) {
4824                 ext4_error_inode(inode, function, line, 0,
4825                                  "iget: bad i_size value: %lld", size);
4826                 ret = -EFSCORRUPTED;
4827                 goto bad_inode;
4828         }
4829         /*
4830          * If dir_index is not enabled but there's dir with INDEX flag set,
4831          * we'd normally treat htree data as empty space. But with metadata
4832          * checksumming that corrupts checksums so forbid that.
4833          */
4834         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4835             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4836                 ext4_error_inode(inode, function, line, 0,
4837                          "iget: Dir with htree data on filesystem without dir_index feature.");
4838                 ret = -EFSCORRUPTED;
4839                 goto bad_inode;
4840         }
4841         ei->i_disksize = inode->i_size;
4842 #ifdef CONFIG_QUOTA
4843         ei->i_reserved_quota = 0;
4844 #endif
4845         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4846         ei->i_block_group = iloc.block_group;
4847         ei->i_last_alloc_group = ~0;
4848         /*
4849          * NOTE! The in-memory inode i_data array is in little-endian order
4850          * even on big-endian machines: we do NOT byteswap the block numbers!
4851          */
4852         for (block = 0; block < EXT4_N_BLOCKS; block++)
4853                 ei->i_data[block] = raw_inode->i_block[block];
4854         INIT_LIST_HEAD(&ei->i_orphan);
4855         ext4_fc_init_inode(&ei->vfs_inode);
4856
4857         /*
4858          * Set transaction id's of transactions that have to be committed
4859          * to finish f[data]sync. We set them to currently running transaction
4860          * as we cannot be sure that the inode or some of its metadata isn't
4861          * part of the transaction - the inode could have been reclaimed and
4862          * now it is reread from disk.
4863          */
4864         if (journal) {
4865                 transaction_t *transaction;
4866                 tid_t tid;
4867
4868                 read_lock(&journal->j_state_lock);
4869                 if (journal->j_running_transaction)
4870                         transaction = journal->j_running_transaction;
4871                 else
4872                         transaction = journal->j_committing_transaction;
4873                 if (transaction)
4874                         tid = transaction->t_tid;
4875                 else
4876                         tid = journal->j_commit_sequence;
4877                 read_unlock(&journal->j_state_lock);
4878                 ei->i_sync_tid = tid;
4879                 ei->i_datasync_tid = tid;
4880         }
4881
4882         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4883                 if (ei->i_extra_isize == 0) {
4884                         /* The extra space is currently unused. Use it. */
4885                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4886                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4887                                             EXT4_GOOD_OLD_INODE_SIZE;
4888                 } else {
4889                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4890                         if (ret)
4891                                 goto bad_inode;
4892                 }
4893         }
4894
4895         EXT4_INODE_GET_CTIME(inode, raw_inode);
4896         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4897         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4898         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4899
4900         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4901                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4902
4903                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4904                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4905                                 ivers |=
4906                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4907                 }
4908                 ext4_inode_set_iversion_queried(inode, ivers);
4909         }
4910
4911         ret = 0;
4912         if (ei->i_file_acl &&
4913             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4914                 ext4_error_inode(inode, function, line, 0,
4915                                  "iget: bad extended attribute block %llu",
4916                                  ei->i_file_acl);
4917                 ret = -EFSCORRUPTED;
4918                 goto bad_inode;
4919         } else if (!ext4_has_inline_data(inode)) {
4920                 /* validate the block references in the inode */
4921                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4922                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4923                         (S_ISLNK(inode->i_mode) &&
4924                         !ext4_inode_is_fast_symlink(inode)))) {
4925                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4926                                 ret = ext4_ext_check_inode(inode);
4927                         else
4928                                 ret = ext4_ind_check_inode(inode);
4929                 }
4930         }
4931         if (ret)
4932                 goto bad_inode;
4933
4934         if (S_ISREG(inode->i_mode)) {
4935                 inode->i_op = &ext4_file_inode_operations;
4936                 inode->i_fop = &ext4_file_operations;
4937                 ext4_set_aops(inode);
4938         } else if (S_ISDIR(inode->i_mode)) {
4939                 inode->i_op = &ext4_dir_inode_operations;
4940                 inode->i_fop = &ext4_dir_operations;
4941         } else if (S_ISLNK(inode->i_mode)) {
4942                 /* VFS does not allow setting these so must be corruption */
4943                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4944                         ext4_error_inode(inode, function, line, 0,
4945                                          "iget: immutable or append flags "
4946                                          "not allowed on symlinks");
4947                         ret = -EFSCORRUPTED;
4948                         goto bad_inode;
4949                 }
4950                 if (IS_ENCRYPTED(inode)) {
4951                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4952                 } else if (ext4_inode_is_fast_symlink(inode)) {
4953                         inode->i_link = (char *)ei->i_data;
4954                         inode->i_op = &ext4_fast_symlink_inode_operations;
4955                         nd_terminate_link(ei->i_data, inode->i_size,
4956                                 sizeof(ei->i_data) - 1);
4957                 } else {
4958                         inode->i_op = &ext4_symlink_inode_operations;
4959                 }
4960         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4961               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4962                 inode->i_op = &ext4_special_inode_operations;
4963                 if (raw_inode->i_block[0])
4964                         init_special_inode(inode, inode->i_mode,
4965                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4966                 else
4967                         init_special_inode(inode, inode->i_mode,
4968                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4969         } else if (ino == EXT4_BOOT_LOADER_INO) {
4970                 make_bad_inode(inode);
4971         } else {
4972                 ret = -EFSCORRUPTED;
4973                 ext4_error_inode(inode, function, line, 0,
4974                                  "iget: bogus i_mode (%o)", inode->i_mode);
4975                 goto bad_inode;
4976         }
4977         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
4978                 ext4_error_inode(inode, function, line, 0,
4979                                  "casefold flag without casefold feature");
4980                 ret = -EFSCORRUPTED;
4981                 goto bad_inode;
4982         }
4983         if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4984                 ext4_error_inode(inode, function, line, 0, err_str);
4985                 ret = -EFSCORRUPTED;
4986                 goto bad_inode;
4987         }
4988
4989         brelse(iloc.bh);
4990         unlock_new_inode(inode);
4991         return inode;
4992
4993 bad_inode:
4994         brelse(iloc.bh);
4995         iget_failed(inode);
4996         return ERR_PTR(ret);
4997 }
4998
4999 static void __ext4_update_other_inode_time(struct super_block *sb,
5000                                            unsigned long orig_ino,
5001                                            unsigned long ino,
5002                                            struct ext4_inode *raw_inode)
5003 {
5004         struct inode *inode;
5005
5006         inode = find_inode_by_ino_rcu(sb, ino);
5007         if (!inode)
5008                 return;
5009
5010         if (!inode_is_dirtytime_only(inode))
5011                 return;
5012
5013         spin_lock(&inode->i_lock);
5014         if (inode_is_dirtytime_only(inode)) {
5015                 struct ext4_inode_info  *ei = EXT4_I(inode);
5016
5017                 inode->i_state &= ~I_DIRTY_TIME;
5018                 spin_unlock(&inode->i_lock);
5019
5020                 spin_lock(&ei->i_raw_lock);
5021                 EXT4_INODE_SET_CTIME(inode, raw_inode);
5022                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5023                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5024                 ext4_inode_csum_set(inode, raw_inode, ei);
5025                 spin_unlock(&ei->i_raw_lock);
5026                 trace_ext4_other_inode_update_time(inode, orig_ino);
5027                 return;
5028         }
5029         spin_unlock(&inode->i_lock);
5030 }
5031
5032 /*
5033  * Opportunistically update the other time fields for other inodes in
5034  * the same inode table block.
5035  */
5036 static void ext4_update_other_inodes_time(struct super_block *sb,
5037                                           unsigned long orig_ino, char *buf)
5038 {
5039         unsigned long ino;
5040         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5041         int inode_size = EXT4_INODE_SIZE(sb);
5042
5043         /*
5044          * Calculate the first inode in the inode table block.  Inode
5045          * numbers are one-based.  That is, the first inode in a block
5046          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5047          */
5048         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5049         rcu_read_lock();
5050         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5051                 if (ino == orig_ino)
5052                         continue;
5053                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5054                                                (struct ext4_inode *)buf);
5055         }
5056         rcu_read_unlock();
5057 }
5058
5059 /*
5060  * Post the struct inode info into an on-disk inode location in the
5061  * buffer-cache.  This gobbles the caller's reference to the
5062  * buffer_head in the inode location struct.
5063  *
5064  * The caller must have write access to iloc->bh.
5065  */
5066 static int ext4_do_update_inode(handle_t *handle,
5067                                 struct inode *inode,
5068                                 struct ext4_iloc *iloc)
5069 {
5070         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5071         struct ext4_inode_info *ei = EXT4_I(inode);
5072         struct buffer_head *bh = iloc->bh;
5073         struct super_block *sb = inode->i_sb;
5074         int err;
5075         int need_datasync = 0, set_large_file = 0;
5076
5077         spin_lock(&ei->i_raw_lock);
5078
5079         /*
5080          * For fields not tracked in the in-memory inode, initialise them
5081          * to zero for new inodes.
5082          */
5083         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5084                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5085
5086         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5087                 need_datasync = 1;
5088         if (ei->i_disksize > 0x7fffffffULL) {
5089                 if (!ext4_has_feature_large_file(sb) ||
5090                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5091                         set_large_file = 1;
5092         }
5093
5094         err = ext4_fill_raw_inode(inode, raw_inode);
5095         spin_unlock(&ei->i_raw_lock);
5096         if (err) {
5097                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5098                 goto out_brelse;
5099         }
5100
5101         if (inode->i_sb->s_flags & SB_LAZYTIME)
5102                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5103                                               bh->b_data);
5104
5105         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5106         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5107         if (err)
5108                 goto out_error;
5109         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5110         if (set_large_file) {
5111                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5112                 err = ext4_journal_get_write_access(handle, sb,
5113                                                     EXT4_SB(sb)->s_sbh,
5114                                                     EXT4_JTR_NONE);
5115                 if (err)
5116                         goto out_error;
5117                 lock_buffer(EXT4_SB(sb)->s_sbh);
5118                 ext4_set_feature_large_file(sb);
5119                 ext4_superblock_csum_set(sb);
5120                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5121                 ext4_handle_sync(handle);
5122                 err = ext4_handle_dirty_metadata(handle, NULL,
5123                                                  EXT4_SB(sb)->s_sbh);
5124         }
5125         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5126 out_error:
5127         ext4_std_error(inode->i_sb, err);
5128 out_brelse:
5129         brelse(bh);
5130         return err;
5131 }
5132
5133 /*
5134  * ext4_write_inode()
5135  *
5136  * We are called from a few places:
5137  *
5138  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5139  *   Here, there will be no transaction running. We wait for any running
5140  *   transaction to commit.
5141  *
5142  * - Within flush work (sys_sync(), kupdate and such).
5143  *   We wait on commit, if told to.
5144  *
5145  * - Within iput_final() -> write_inode_now()
5146  *   We wait on commit, if told to.
5147  *
5148  * In all cases it is actually safe for us to return without doing anything,
5149  * because the inode has been copied into a raw inode buffer in
5150  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5151  * writeback.
5152  *
5153  * Note that we are absolutely dependent upon all inode dirtiers doing the
5154  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5155  * which we are interested.
5156  *
5157  * It would be a bug for them to not do this.  The code:
5158  *
5159  *      mark_inode_dirty(inode)
5160  *      stuff();
5161  *      inode->i_size = expr;
5162  *
5163  * is in error because write_inode() could occur while `stuff()' is running,
5164  * and the new i_size will be lost.  Plus the inode will no longer be on the
5165  * superblock's dirty inode list.
5166  */
5167 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5168 {
5169         int err;
5170
5171         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5172                 return 0;
5173
5174         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5175                 return -EIO;
5176
5177         if (EXT4_SB(inode->i_sb)->s_journal) {
5178                 if (ext4_journal_current_handle()) {
5179                         ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5180                         dump_stack();
5181                         return -EIO;
5182                 }
5183
5184                 /*
5185                  * No need to force transaction in WB_SYNC_NONE mode. Also
5186                  * ext4_sync_fs() will force the commit after everything is
5187                  * written.
5188                  */
5189                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5190                         return 0;
5191
5192                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5193                                                 EXT4_I(inode)->i_sync_tid);
5194         } else {
5195                 struct ext4_iloc iloc;
5196
5197                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5198                 if (err)
5199                         return err;
5200                 /*
5201                  * sync(2) will flush the whole buffer cache. No need to do
5202                  * it here separately for each inode.
5203                  */
5204                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5205                         sync_dirty_buffer(iloc.bh);
5206                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5207                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5208                                                "IO error syncing inode");
5209                         err = -EIO;
5210                 }
5211                 brelse(iloc.bh);
5212         }
5213         return err;
5214 }
5215
5216 /*
5217  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5218  * buffers that are attached to a folio straddling i_size and are undergoing
5219  * commit. In that case we have to wait for commit to finish and try again.
5220  */
5221 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5222 {
5223         unsigned offset;
5224         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5225         tid_t commit_tid = 0;
5226         int ret;
5227
5228         offset = inode->i_size & (PAGE_SIZE - 1);
5229         /*
5230          * If the folio is fully truncated, we don't need to wait for any commit
5231          * (and we even should not as __ext4_journalled_invalidate_folio() may
5232          * strip all buffers from the folio but keep the folio dirty which can then
5233          * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5234          * buffers). Also we don't need to wait for any commit if all buffers in
5235          * the folio remain valid. This is most beneficial for the common case of
5236          * blocksize == PAGESIZE.
5237          */
5238         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5239                 return;
5240         while (1) {
5241                 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5242                                       inode->i_size >> PAGE_SHIFT);
5243                 if (IS_ERR(folio))
5244                         return;
5245                 ret = __ext4_journalled_invalidate_folio(folio, offset,
5246                                                 folio_size(folio) - offset);
5247                 folio_unlock(folio);
5248                 folio_put(folio);
5249                 if (ret != -EBUSY)
5250                         return;
5251                 commit_tid = 0;
5252                 read_lock(&journal->j_state_lock);
5253                 if (journal->j_committing_transaction)
5254                         commit_tid = journal->j_committing_transaction->t_tid;
5255                 read_unlock(&journal->j_state_lock);
5256                 if (commit_tid)
5257                         jbd2_log_wait_commit(journal, commit_tid);
5258         }
5259 }
5260
5261 /*
5262  * ext4_setattr()
5263  *
5264  * Called from notify_change.
5265  *
5266  * We want to trap VFS attempts to truncate the file as soon as
5267  * possible.  In particular, we want to make sure that when the VFS
5268  * shrinks i_size, we put the inode on the orphan list and modify
5269  * i_disksize immediately, so that during the subsequent flushing of
5270  * dirty pages and freeing of disk blocks, we can guarantee that any
5271  * commit will leave the blocks being flushed in an unused state on
5272  * disk.  (On recovery, the inode will get truncated and the blocks will
5273  * be freed, so we have a strong guarantee that no future commit will
5274  * leave these blocks visible to the user.)
5275  *
5276  * Another thing we have to assure is that if we are in ordered mode
5277  * and inode is still attached to the committing transaction, we must
5278  * we start writeout of all the dirty pages which are being truncated.
5279  * This way we are sure that all the data written in the previous
5280  * transaction are already on disk (truncate waits for pages under
5281  * writeback).
5282  *
5283  * Called with inode->i_rwsem down.
5284  */
5285 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5286                  struct iattr *attr)
5287 {
5288         struct inode *inode = d_inode(dentry);
5289         int error, rc = 0;
5290         int orphan = 0;
5291         const unsigned int ia_valid = attr->ia_valid;
5292         bool inc_ivers = true;
5293
5294         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5295                 return -EIO;
5296
5297         if (unlikely(IS_IMMUTABLE(inode)))
5298                 return -EPERM;
5299
5300         if (unlikely(IS_APPEND(inode) &&
5301                      (ia_valid & (ATTR_MODE | ATTR_UID |
5302                                   ATTR_GID | ATTR_TIMES_SET))))
5303                 return -EPERM;
5304
5305         error = setattr_prepare(idmap, dentry, attr);
5306         if (error)
5307                 return error;
5308
5309         error = fscrypt_prepare_setattr(dentry, attr);
5310         if (error)
5311                 return error;
5312
5313         error = fsverity_prepare_setattr(dentry, attr);
5314         if (error)
5315                 return error;
5316
5317         if (is_quota_modification(idmap, inode, attr)) {
5318                 error = dquot_initialize(inode);
5319                 if (error)
5320                         return error;
5321         }
5322
5323         if (i_uid_needs_update(idmap, attr, inode) ||
5324             i_gid_needs_update(idmap, attr, inode)) {
5325                 handle_t *handle;
5326
5327                 /* (user+group)*(old+new) structure, inode write (sb,
5328                  * inode block, ? - but truncate inode update has it) */
5329                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5330                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5331                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5332                 if (IS_ERR(handle)) {
5333                         error = PTR_ERR(handle);
5334                         goto err_out;
5335                 }
5336
5337                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5338                  * counts xattr inode references.
5339                  */
5340                 down_read(&EXT4_I(inode)->xattr_sem);
5341                 error = dquot_transfer(idmap, inode, attr);
5342                 up_read(&EXT4_I(inode)->xattr_sem);
5343
5344                 if (error) {
5345                         ext4_journal_stop(handle);
5346                         return error;
5347                 }
5348                 /* Update corresponding info in inode so that everything is in
5349                  * one transaction */
5350                 i_uid_update(idmap, attr, inode);
5351                 i_gid_update(idmap, attr, inode);
5352                 error = ext4_mark_inode_dirty(handle, inode);
5353                 ext4_journal_stop(handle);
5354                 if (unlikely(error)) {
5355                         return error;
5356                 }
5357         }
5358
5359         if (attr->ia_valid & ATTR_SIZE) {
5360                 handle_t *handle;
5361                 loff_t oldsize = inode->i_size;
5362                 loff_t old_disksize;
5363                 int shrink = (attr->ia_size < inode->i_size);
5364
5365                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5366                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5367
5368                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5369                                 return -EFBIG;
5370                         }
5371                 }
5372                 if (!S_ISREG(inode->i_mode)) {
5373                         return -EINVAL;
5374                 }
5375
5376                 if (attr->ia_size == inode->i_size)
5377                         inc_ivers = false;
5378
5379                 if (shrink) {
5380                         if (ext4_should_order_data(inode)) {
5381                                 error = ext4_begin_ordered_truncate(inode,
5382                                                             attr->ia_size);
5383                                 if (error)
5384                                         goto err_out;
5385                         }
5386                         /*
5387                          * Blocks are going to be removed from the inode. Wait
5388                          * for dio in flight.
5389                          */
5390                         inode_dio_wait(inode);
5391                 }
5392
5393                 filemap_invalidate_lock(inode->i_mapping);
5394
5395                 rc = ext4_break_layouts(inode);
5396                 if (rc) {
5397                         filemap_invalidate_unlock(inode->i_mapping);
5398                         goto err_out;
5399                 }
5400
5401                 if (attr->ia_size != inode->i_size) {
5402                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5403                         if (IS_ERR(handle)) {
5404                                 error = PTR_ERR(handle);
5405                                 goto out_mmap_sem;
5406                         }
5407                         if (ext4_handle_valid(handle) && shrink) {
5408                                 error = ext4_orphan_add(handle, inode);
5409                                 orphan = 1;
5410                         }
5411                         /*
5412                          * Update c/mtime on truncate up, ext4_truncate() will
5413                          * update c/mtime in shrink case below
5414                          */
5415                         if (!shrink)
5416                                 inode->i_mtime = inode_set_ctime_current(inode);
5417
5418                         if (shrink)
5419                                 ext4_fc_track_range(handle, inode,
5420                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5421                                         inode->i_sb->s_blocksize_bits,
5422                                         EXT_MAX_BLOCKS - 1);
5423                         else
5424                                 ext4_fc_track_range(
5425                                         handle, inode,
5426                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5427                                         inode->i_sb->s_blocksize_bits,
5428                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5429                                         inode->i_sb->s_blocksize_bits);
5430
5431                         down_write(&EXT4_I(inode)->i_data_sem);
5432                         old_disksize = EXT4_I(inode)->i_disksize;
5433                         EXT4_I(inode)->i_disksize = attr->ia_size;
5434                         rc = ext4_mark_inode_dirty(handle, inode);
5435                         if (!error)
5436                                 error = rc;
5437                         /*
5438                          * We have to update i_size under i_data_sem together
5439                          * with i_disksize to avoid races with writeback code
5440                          * running ext4_wb_update_i_disksize().
5441                          */
5442                         if (!error)
5443                                 i_size_write(inode, attr->ia_size);
5444                         else
5445                                 EXT4_I(inode)->i_disksize = old_disksize;
5446                         up_write(&EXT4_I(inode)->i_data_sem);
5447                         ext4_journal_stop(handle);
5448                         if (error)
5449                                 goto out_mmap_sem;
5450                         if (!shrink) {
5451                                 pagecache_isize_extended(inode, oldsize,
5452                                                          inode->i_size);
5453                         } else if (ext4_should_journal_data(inode)) {
5454                                 ext4_wait_for_tail_page_commit(inode);
5455                         }
5456                 }
5457
5458                 /*
5459                  * Truncate pagecache after we've waited for commit
5460                  * in data=journal mode to make pages freeable.
5461                  */
5462                 truncate_pagecache(inode, inode->i_size);
5463                 /*
5464                  * Call ext4_truncate() even if i_size didn't change to
5465                  * truncate possible preallocated blocks.
5466                  */
5467                 if (attr->ia_size <= oldsize) {
5468                         rc = ext4_truncate(inode);
5469                         if (rc)
5470                                 error = rc;
5471                 }
5472 out_mmap_sem:
5473                 filemap_invalidate_unlock(inode->i_mapping);
5474         }
5475
5476         if (!error) {
5477                 if (inc_ivers)
5478                         inode_inc_iversion(inode);
5479                 setattr_copy(idmap, inode, attr);
5480                 mark_inode_dirty(inode);
5481         }
5482
5483         /*
5484          * If the call to ext4_truncate failed to get a transaction handle at
5485          * all, we need to clean up the in-core orphan list manually.
5486          */
5487         if (orphan && inode->i_nlink)
5488                 ext4_orphan_del(NULL, inode);
5489
5490         if (!error && (ia_valid & ATTR_MODE))
5491                 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5492
5493 err_out:
5494         if  (error)
5495                 ext4_std_error(inode->i_sb, error);
5496         if (!error)
5497                 error = rc;
5498         return error;
5499 }
5500
5501 u32 ext4_dio_alignment(struct inode *inode)
5502 {
5503         if (fsverity_active(inode))
5504                 return 0;
5505         if (ext4_should_journal_data(inode))
5506                 return 0;
5507         if (ext4_has_inline_data(inode))
5508                 return 0;
5509         if (IS_ENCRYPTED(inode)) {
5510                 if (!fscrypt_dio_supported(inode))
5511                         return 0;
5512                 return i_blocksize(inode);
5513         }
5514         return 1; /* use the iomap defaults */
5515 }
5516
5517 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5518                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5519 {
5520         struct inode *inode = d_inode(path->dentry);
5521         struct ext4_inode *raw_inode;
5522         struct ext4_inode_info *ei = EXT4_I(inode);
5523         unsigned int flags;
5524
5525         if ((request_mask & STATX_BTIME) &&
5526             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5527                 stat->result_mask |= STATX_BTIME;
5528                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5529                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5530         }
5531
5532         /*
5533          * Return the DIO alignment restrictions if requested.  We only return
5534          * this information when requested, since on encrypted files it might
5535          * take a fair bit of work to get if the file wasn't opened recently.
5536          */
5537         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5538                 u32 dio_align = ext4_dio_alignment(inode);
5539
5540                 stat->result_mask |= STATX_DIOALIGN;
5541                 if (dio_align == 1) {
5542                         struct block_device *bdev = inode->i_sb->s_bdev;
5543
5544                         /* iomap defaults */
5545                         stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5546                         stat->dio_offset_align = bdev_logical_block_size(bdev);
5547                 } else {
5548                         stat->dio_mem_align = dio_align;
5549                         stat->dio_offset_align = dio_align;
5550                 }
5551         }
5552
5553         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5554         if (flags & EXT4_APPEND_FL)
5555                 stat->attributes |= STATX_ATTR_APPEND;
5556         if (flags & EXT4_COMPR_FL)
5557                 stat->attributes |= STATX_ATTR_COMPRESSED;
5558         if (flags & EXT4_ENCRYPT_FL)
5559                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5560         if (flags & EXT4_IMMUTABLE_FL)
5561                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5562         if (flags & EXT4_NODUMP_FL)
5563                 stat->attributes |= STATX_ATTR_NODUMP;
5564         if (flags & EXT4_VERITY_FL)
5565                 stat->attributes |= STATX_ATTR_VERITY;
5566
5567         stat->attributes_mask |= (STATX_ATTR_APPEND |
5568                                   STATX_ATTR_COMPRESSED |
5569                                   STATX_ATTR_ENCRYPTED |
5570                                   STATX_ATTR_IMMUTABLE |
5571                                   STATX_ATTR_NODUMP |
5572                                   STATX_ATTR_VERITY);
5573
5574         generic_fillattr(idmap, request_mask, inode, stat);
5575         return 0;
5576 }
5577
5578 int ext4_file_getattr(struct mnt_idmap *idmap,
5579                       const struct path *path, struct kstat *stat,
5580                       u32 request_mask, unsigned int query_flags)
5581 {
5582         struct inode *inode = d_inode(path->dentry);
5583         u64 delalloc_blocks;
5584
5585         ext4_getattr(idmap, path, stat, request_mask, query_flags);
5586
5587         /*
5588          * If there is inline data in the inode, the inode will normally not
5589          * have data blocks allocated (it may have an external xattr block).
5590          * Report at least one sector for such files, so tools like tar, rsync,
5591          * others don't incorrectly think the file is completely sparse.
5592          */
5593         if (unlikely(ext4_has_inline_data(inode)))
5594                 stat->blocks += (stat->size + 511) >> 9;
5595
5596         /*
5597          * We can't update i_blocks if the block allocation is delayed
5598          * otherwise in the case of system crash before the real block
5599          * allocation is done, we will have i_blocks inconsistent with
5600          * on-disk file blocks.
5601          * We always keep i_blocks updated together with real
5602          * allocation. But to not confuse with user, stat
5603          * will return the blocks that include the delayed allocation
5604          * blocks for this file.
5605          */
5606         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5607                                    EXT4_I(inode)->i_reserved_data_blocks);
5608         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5609         return 0;
5610 }
5611
5612 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5613                                    int pextents)
5614 {
5615         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5616                 return ext4_ind_trans_blocks(inode, lblocks);
5617         return ext4_ext_index_trans_blocks(inode, pextents);
5618 }
5619
5620 /*
5621  * Account for index blocks, block groups bitmaps and block group
5622  * descriptor blocks if modify datablocks and index blocks
5623  * worse case, the indexs blocks spread over different block groups
5624  *
5625  * If datablocks are discontiguous, they are possible to spread over
5626  * different block groups too. If they are contiguous, with flexbg,
5627  * they could still across block group boundary.
5628  *
5629  * Also account for superblock, inode, quota and xattr blocks
5630  */
5631 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5632                                   int pextents)
5633 {
5634         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5635         int gdpblocks;
5636         int idxblocks;
5637         int ret;
5638
5639         /*
5640          * How many index blocks need to touch to map @lblocks logical blocks
5641          * to @pextents physical extents?
5642          */
5643         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5644
5645         ret = idxblocks;
5646
5647         /*
5648          * Now let's see how many group bitmaps and group descriptors need
5649          * to account
5650          */
5651         groups = idxblocks + pextents;
5652         gdpblocks = groups;
5653         if (groups > ngroups)
5654                 groups = ngroups;
5655         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5656                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5657
5658         /* bitmaps and block group descriptor blocks */
5659         ret += groups + gdpblocks;
5660
5661         /* Blocks for super block, inode, quota and xattr blocks */
5662         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5663
5664         return ret;
5665 }
5666
5667 /*
5668  * Calculate the total number of credits to reserve to fit
5669  * the modification of a single pages into a single transaction,
5670  * which may include multiple chunks of block allocations.
5671  *
5672  * This could be called via ext4_write_begin()
5673  *
5674  * We need to consider the worse case, when
5675  * one new block per extent.
5676  */
5677 int ext4_writepage_trans_blocks(struct inode *inode)
5678 {
5679         int bpp = ext4_journal_blocks_per_page(inode);
5680         int ret;
5681
5682         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5683
5684         /* Account for data blocks for journalled mode */
5685         if (ext4_should_journal_data(inode))
5686                 ret += bpp;
5687         return ret;
5688 }
5689
5690 /*
5691  * Calculate the journal credits for a chunk of data modification.
5692  *
5693  * This is called from DIO, fallocate or whoever calling
5694  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5695  *
5696  * journal buffers for data blocks are not included here, as DIO
5697  * and fallocate do no need to journal data buffers.
5698  */
5699 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5700 {
5701         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5702 }
5703
5704 /*
5705  * The caller must have previously called ext4_reserve_inode_write().
5706  * Give this, we know that the caller already has write access to iloc->bh.
5707  */
5708 int ext4_mark_iloc_dirty(handle_t *handle,
5709                          struct inode *inode, struct ext4_iloc *iloc)
5710 {
5711         int err = 0;
5712
5713         if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5714                 put_bh(iloc->bh);
5715                 return -EIO;
5716         }
5717         ext4_fc_track_inode(handle, inode);
5718
5719         /* the do_update_inode consumes one bh->b_count */
5720         get_bh(iloc->bh);
5721
5722         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5723         err = ext4_do_update_inode(handle, inode, iloc);
5724         put_bh(iloc->bh);
5725         return err;
5726 }
5727
5728 /*
5729  * On success, We end up with an outstanding reference count against
5730  * iloc->bh.  This _must_ be cleaned up later.
5731  */
5732
5733 int
5734 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5735                          struct ext4_iloc *iloc)
5736 {
5737         int err;
5738
5739         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5740                 return -EIO;
5741
5742         err = ext4_get_inode_loc(inode, iloc);
5743         if (!err) {
5744                 BUFFER_TRACE(iloc->bh, "get_write_access");
5745                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5746                                                     iloc->bh, EXT4_JTR_NONE);
5747                 if (err) {
5748                         brelse(iloc->bh);
5749                         iloc->bh = NULL;
5750                 }
5751         }
5752         ext4_std_error(inode->i_sb, err);
5753         return err;
5754 }
5755
5756 static int __ext4_expand_extra_isize(struct inode *inode,
5757                                      unsigned int new_extra_isize,
5758                                      struct ext4_iloc *iloc,
5759                                      handle_t *handle, int *no_expand)
5760 {
5761         struct ext4_inode *raw_inode;
5762         struct ext4_xattr_ibody_header *header;
5763         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5764         struct ext4_inode_info *ei = EXT4_I(inode);
5765         int error;
5766
5767         /* this was checked at iget time, but double check for good measure */
5768         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5769             (ei->i_extra_isize & 3)) {
5770                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5771                                  ei->i_extra_isize,
5772                                  EXT4_INODE_SIZE(inode->i_sb));
5773                 return -EFSCORRUPTED;
5774         }
5775         if ((new_extra_isize < ei->i_extra_isize) ||
5776             (new_extra_isize < 4) ||
5777             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5778                 return -EINVAL; /* Should never happen */
5779
5780         raw_inode = ext4_raw_inode(iloc);
5781
5782         header = IHDR(inode, raw_inode);
5783
5784         /* No extended attributes present */
5785         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5786             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5787                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5788                        EXT4_I(inode)->i_extra_isize, 0,
5789                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5790                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5791                 return 0;
5792         }
5793
5794         /*
5795          * We may need to allocate external xattr block so we need quotas
5796          * initialized. Here we can be called with various locks held so we
5797          * cannot affort to initialize quotas ourselves. So just bail.
5798          */
5799         if (dquot_initialize_needed(inode))
5800                 return -EAGAIN;
5801
5802         /* try to expand with EAs present */
5803         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5804                                            raw_inode, handle);
5805         if (error) {
5806                 /*
5807                  * Inode size expansion failed; don't try again
5808                  */
5809                 *no_expand = 1;
5810         }
5811
5812         return error;
5813 }
5814
5815 /*
5816  * Expand an inode by new_extra_isize bytes.
5817  * Returns 0 on success or negative error number on failure.
5818  */
5819 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5820                                           unsigned int new_extra_isize,
5821                                           struct ext4_iloc iloc,
5822                                           handle_t *handle)
5823 {
5824         int no_expand;
5825         int error;
5826
5827         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5828                 return -EOVERFLOW;
5829
5830         /*
5831          * In nojournal mode, we can immediately attempt to expand
5832          * the inode.  When journaled, we first need to obtain extra
5833          * buffer credits since we may write into the EA block
5834          * with this same handle. If journal_extend fails, then it will
5835          * only result in a minor loss of functionality for that inode.
5836          * If this is felt to be critical, then e2fsck should be run to
5837          * force a large enough s_min_extra_isize.
5838          */
5839         if (ext4_journal_extend(handle,
5840                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5841                 return -ENOSPC;
5842
5843         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5844                 return -EBUSY;
5845
5846         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5847                                           handle, &no_expand);
5848         ext4_write_unlock_xattr(inode, &no_expand);
5849
5850         return error;
5851 }
5852
5853 int ext4_expand_extra_isize(struct inode *inode,
5854                             unsigned int new_extra_isize,
5855                             struct ext4_iloc *iloc)
5856 {
5857         handle_t *handle;
5858         int no_expand;
5859         int error, rc;
5860
5861         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5862                 brelse(iloc->bh);
5863                 return -EOVERFLOW;
5864         }
5865
5866         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5867                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5868         if (IS_ERR(handle)) {
5869                 error = PTR_ERR(handle);
5870                 brelse(iloc->bh);
5871                 return error;
5872         }
5873
5874         ext4_write_lock_xattr(inode, &no_expand);
5875
5876         BUFFER_TRACE(iloc->bh, "get_write_access");
5877         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5878                                               EXT4_JTR_NONE);
5879         if (error) {
5880                 brelse(iloc->bh);
5881                 goto out_unlock;
5882         }
5883
5884         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5885                                           handle, &no_expand);
5886
5887         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5888         if (!error)
5889                 error = rc;
5890
5891 out_unlock:
5892         ext4_write_unlock_xattr(inode, &no_expand);
5893         ext4_journal_stop(handle);
5894         return error;
5895 }
5896
5897 /*
5898  * What we do here is to mark the in-core inode as clean with respect to inode
5899  * dirtiness (it may still be data-dirty).
5900  * This means that the in-core inode may be reaped by prune_icache
5901  * without having to perform any I/O.  This is a very good thing,
5902  * because *any* task may call prune_icache - even ones which
5903  * have a transaction open against a different journal.
5904  *
5905  * Is this cheating?  Not really.  Sure, we haven't written the
5906  * inode out, but prune_icache isn't a user-visible syncing function.
5907  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5908  * we start and wait on commits.
5909  */
5910 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5911                                 const char *func, unsigned int line)
5912 {
5913         struct ext4_iloc iloc;
5914         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5915         int err;
5916
5917         might_sleep();
5918         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5919         err = ext4_reserve_inode_write(handle, inode, &iloc);
5920         if (err)
5921                 goto out;
5922
5923         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5924                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5925                                                iloc, handle);
5926
5927         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5928 out:
5929         if (unlikely(err))
5930                 ext4_error_inode_err(inode, func, line, 0, err,
5931                                         "mark_inode_dirty error");
5932         return err;
5933 }
5934
5935 /*
5936  * ext4_dirty_inode() is called from __mark_inode_dirty()
5937  *
5938  * We're really interested in the case where a file is being extended.
5939  * i_size has been changed by generic_commit_write() and we thus need
5940  * to include the updated inode in the current transaction.
5941  *
5942  * Also, dquot_alloc_block() will always dirty the inode when blocks
5943  * are allocated to the file.
5944  *
5945  * If the inode is marked synchronous, we don't honour that here - doing
5946  * so would cause a commit on atime updates, which we don't bother doing.
5947  * We handle synchronous inodes at the highest possible level.
5948  */
5949 void ext4_dirty_inode(struct inode *inode, int flags)
5950 {
5951         handle_t *handle;
5952
5953         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5954         if (IS_ERR(handle))
5955                 return;
5956         ext4_mark_inode_dirty(handle, inode);
5957         ext4_journal_stop(handle);
5958 }
5959
5960 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5961 {
5962         journal_t *journal;
5963         handle_t *handle;
5964         int err;
5965         int alloc_ctx;
5966
5967         /*
5968          * We have to be very careful here: changing a data block's
5969          * journaling status dynamically is dangerous.  If we write a
5970          * data block to the journal, change the status and then delete
5971          * that block, we risk forgetting to revoke the old log record
5972          * from the journal and so a subsequent replay can corrupt data.
5973          * So, first we make sure that the journal is empty and that
5974          * nobody is changing anything.
5975          */
5976
5977         journal = EXT4_JOURNAL(inode);
5978         if (!journal)
5979                 return 0;
5980         if (is_journal_aborted(journal))
5981                 return -EROFS;
5982
5983         /* Wait for all existing dio workers */
5984         inode_dio_wait(inode);
5985
5986         /*
5987          * Before flushing the journal and switching inode's aops, we have
5988          * to flush all dirty data the inode has. There can be outstanding
5989          * delayed allocations, there can be unwritten extents created by
5990          * fallocate or buffered writes in dioread_nolock mode covered by
5991          * dirty data which can be converted only after flushing the dirty
5992          * data (and journalled aops don't know how to handle these cases).
5993          */
5994         if (val) {
5995                 filemap_invalidate_lock(inode->i_mapping);
5996                 err = filemap_write_and_wait(inode->i_mapping);
5997                 if (err < 0) {
5998                         filemap_invalidate_unlock(inode->i_mapping);
5999                         return err;
6000                 }
6001         }
6002
6003         alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6004         jbd2_journal_lock_updates(journal);
6005
6006         /*
6007          * OK, there are no updates running now, and all cached data is
6008          * synced to disk.  We are now in a completely consistent state
6009          * which doesn't have anything in the journal, and we know that
6010          * no filesystem updates are running, so it is safe to modify
6011          * the inode's in-core data-journaling state flag now.
6012          */
6013
6014         if (val)
6015                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6016         else {
6017                 err = jbd2_journal_flush(journal, 0);
6018                 if (err < 0) {
6019                         jbd2_journal_unlock_updates(journal);
6020                         ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6021                         return err;
6022                 }
6023                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6024         }
6025         ext4_set_aops(inode);
6026
6027         jbd2_journal_unlock_updates(journal);
6028         ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6029
6030         if (val)
6031                 filemap_invalidate_unlock(inode->i_mapping);
6032
6033         /* Finally we can mark the inode as dirty. */
6034
6035         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6036         if (IS_ERR(handle))
6037                 return PTR_ERR(handle);
6038
6039         ext4_fc_mark_ineligible(inode->i_sb,
6040                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6041         err = ext4_mark_inode_dirty(handle, inode);
6042         ext4_handle_sync(handle);
6043         ext4_journal_stop(handle);
6044         ext4_std_error(inode->i_sb, err);
6045
6046         return err;
6047 }
6048
6049 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6050                             struct buffer_head *bh)
6051 {
6052         return !buffer_mapped(bh);
6053 }
6054
6055 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6056 {
6057         struct vm_area_struct *vma = vmf->vma;
6058         struct folio *folio = page_folio(vmf->page);
6059         loff_t size;
6060         unsigned long len;
6061         int err;
6062         vm_fault_t ret;
6063         struct file *file = vma->vm_file;
6064         struct inode *inode = file_inode(file);
6065         struct address_space *mapping = inode->i_mapping;
6066         handle_t *handle;
6067         get_block_t *get_block;
6068         int retries = 0;
6069
6070         if (unlikely(IS_IMMUTABLE(inode)))
6071                 return VM_FAULT_SIGBUS;
6072
6073         sb_start_pagefault(inode->i_sb);
6074         file_update_time(vma->vm_file);
6075
6076         filemap_invalidate_lock_shared(mapping);
6077
6078         err = ext4_convert_inline_data(inode);
6079         if (err)
6080                 goto out_ret;
6081
6082         /*
6083          * On data journalling we skip straight to the transaction handle:
6084          * there's no delalloc; page truncated will be checked later; the
6085          * early return w/ all buffers mapped (calculates size/len) can't
6086          * be used; and there's no dioread_nolock, so only ext4_get_block.
6087          */
6088         if (ext4_should_journal_data(inode))
6089                 goto retry_alloc;
6090
6091         /* Delalloc case is easy... */
6092         if (test_opt(inode->i_sb, DELALLOC) &&
6093             !ext4_nonda_switch(inode->i_sb)) {
6094                 do {
6095                         err = block_page_mkwrite(vma, vmf,
6096                                                    ext4_da_get_block_prep);
6097                 } while (err == -ENOSPC &&
6098                        ext4_should_retry_alloc(inode->i_sb, &retries));
6099                 goto out_ret;
6100         }
6101
6102         folio_lock(folio);
6103         size = i_size_read(inode);
6104         /* Page got truncated from under us? */
6105         if (folio->mapping != mapping || folio_pos(folio) > size) {
6106                 folio_unlock(folio);
6107                 ret = VM_FAULT_NOPAGE;
6108                 goto out;
6109         }
6110
6111         len = folio_size(folio);
6112         if (folio_pos(folio) + len > size)
6113                 len = size - folio_pos(folio);
6114         /*
6115          * Return if we have all the buffers mapped. This avoids the need to do
6116          * journal_start/journal_stop which can block and take a long time
6117          *
6118          * This cannot be done for data journalling, as we have to add the
6119          * inode to the transaction's list to writeprotect pages on commit.
6120          */
6121         if (folio_buffers(folio)) {
6122                 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6123                                             0, len, NULL,
6124                                             ext4_bh_unmapped)) {
6125                         /* Wait so that we don't change page under IO */
6126                         folio_wait_stable(folio);
6127                         ret = VM_FAULT_LOCKED;
6128                         goto out;
6129                 }
6130         }
6131         folio_unlock(folio);
6132         /* OK, we need to fill the hole... */
6133         if (ext4_should_dioread_nolock(inode))
6134                 get_block = ext4_get_block_unwritten;
6135         else
6136                 get_block = ext4_get_block;
6137 retry_alloc:
6138         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6139                                     ext4_writepage_trans_blocks(inode));
6140         if (IS_ERR(handle)) {
6141                 ret = VM_FAULT_SIGBUS;
6142                 goto out;
6143         }
6144         /*
6145          * Data journalling can't use block_page_mkwrite() because it
6146          * will set_buffer_dirty() before do_journal_get_write_access()
6147          * thus might hit warning messages for dirty metadata buffers.
6148          */
6149         if (!ext4_should_journal_data(inode)) {
6150                 err = block_page_mkwrite(vma, vmf, get_block);
6151         } else {
6152                 folio_lock(folio);
6153                 size = i_size_read(inode);
6154                 /* Page got truncated from under us? */
6155                 if (folio->mapping != mapping || folio_pos(folio) > size) {
6156                         ret = VM_FAULT_NOPAGE;
6157                         goto out_error;
6158                 }
6159
6160                 len = folio_size(folio);
6161                 if (folio_pos(folio) + len > size)
6162                         len = size - folio_pos(folio);
6163
6164                 err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6165                 if (!err) {
6166                         ret = VM_FAULT_SIGBUS;
6167                         if (ext4_journal_folio_buffers(handle, folio, len))
6168                                 goto out_error;
6169                 } else {
6170                         folio_unlock(folio);
6171                 }
6172         }
6173         ext4_journal_stop(handle);
6174         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6175                 goto retry_alloc;
6176 out_ret:
6177         ret = vmf_fs_error(err);
6178 out:
6179         filemap_invalidate_unlock_shared(mapping);
6180         sb_end_pagefault(inode->i_sb);
6181         return ret;
6182 out_error:
6183         folio_unlock(folio);
6184         ext4_journal_stop(handle);
6185         goto out;
6186 }