block: rename CONFIG_DEBUG_BLK_CGROUP to CONFIG_BFQ_CGROUP_DEBUG
[sfrench/cifs-2.6.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29 #include "internal.h"
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/fs_dax.h>
33
34 static inline unsigned int pe_order(enum page_entry_size pe_size)
35 {
36         if (pe_size == PE_SIZE_PTE)
37                 return PAGE_SHIFT - PAGE_SHIFT;
38         if (pe_size == PE_SIZE_PMD)
39                 return PMD_SHIFT - PAGE_SHIFT;
40         if (pe_size == PE_SIZE_PUD)
41                 return PUD_SHIFT - PAGE_SHIFT;
42         return ~0;
43 }
44
45 /* We choose 4096 entries - same as per-zone page wait tables */
46 #define DAX_WAIT_TABLE_BITS 12
47 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
48
49 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
50 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
51 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
52
53 /* The order of a PMD entry */
54 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
55
56 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
57
58 static int __init init_dax_wait_table(void)
59 {
60         int i;
61
62         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
63                 init_waitqueue_head(wait_table + i);
64         return 0;
65 }
66 fs_initcall(init_dax_wait_table);
67
68 /*
69  * DAX pagecache entries use XArray value entries so they can't be mistaken
70  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
71  * and two more to tell us if the entry is a zero page or an empty entry that
72  * is just used for locking.  In total four special bits.
73  *
74  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
75  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
76  * block allocation.
77  */
78 #define DAX_SHIFT       (4)
79 #define DAX_LOCKED      (1UL << 0)
80 #define DAX_PMD         (1UL << 1)
81 #define DAX_ZERO_PAGE   (1UL << 2)
82 #define DAX_EMPTY       (1UL << 3)
83
84 static unsigned long dax_to_pfn(void *entry)
85 {
86         return xa_to_value(entry) >> DAX_SHIFT;
87 }
88
89 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
90 {
91         return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
92 }
93
94 static bool dax_is_locked(void *entry)
95 {
96         return xa_to_value(entry) & DAX_LOCKED;
97 }
98
99 static unsigned int dax_entry_order(void *entry)
100 {
101         if (xa_to_value(entry) & DAX_PMD)
102                 return PMD_ORDER;
103         return 0;
104 }
105
106 static unsigned long dax_is_pmd_entry(void *entry)
107 {
108         return xa_to_value(entry) & DAX_PMD;
109 }
110
111 static bool dax_is_pte_entry(void *entry)
112 {
113         return !(xa_to_value(entry) & DAX_PMD);
114 }
115
116 static int dax_is_zero_entry(void *entry)
117 {
118         return xa_to_value(entry) & DAX_ZERO_PAGE;
119 }
120
121 static int dax_is_empty_entry(void *entry)
122 {
123         return xa_to_value(entry) & DAX_EMPTY;
124 }
125
126 /*
127  * DAX page cache entry locking
128  */
129 struct exceptional_entry_key {
130         struct xarray *xa;
131         pgoff_t entry_start;
132 };
133
134 struct wait_exceptional_entry_queue {
135         wait_queue_entry_t wait;
136         struct exceptional_entry_key key;
137 };
138
139 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
140                 void *entry, struct exceptional_entry_key *key)
141 {
142         unsigned long hash;
143         unsigned long index = xas->xa_index;
144
145         /*
146          * If 'entry' is a PMD, align the 'index' that we use for the wait
147          * queue to the start of that PMD.  This ensures that all offsets in
148          * the range covered by the PMD map to the same bit lock.
149          */
150         if (dax_is_pmd_entry(entry))
151                 index &= ~PG_PMD_COLOUR;
152         key->xa = xas->xa;
153         key->entry_start = index;
154
155         hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
156         return wait_table + hash;
157 }
158
159 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
160                 unsigned int mode, int sync, void *keyp)
161 {
162         struct exceptional_entry_key *key = keyp;
163         struct wait_exceptional_entry_queue *ewait =
164                 container_of(wait, struct wait_exceptional_entry_queue, wait);
165
166         if (key->xa != ewait->key.xa ||
167             key->entry_start != ewait->key.entry_start)
168                 return 0;
169         return autoremove_wake_function(wait, mode, sync, NULL);
170 }
171
172 /*
173  * @entry may no longer be the entry at the index in the mapping.
174  * The important information it's conveying is whether the entry at
175  * this index used to be a PMD entry.
176  */
177 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
178 {
179         struct exceptional_entry_key key;
180         wait_queue_head_t *wq;
181
182         wq = dax_entry_waitqueue(xas, entry, &key);
183
184         /*
185          * Checking for locked entry and prepare_to_wait_exclusive() happens
186          * under the i_pages lock, ditto for entry handling in our callers.
187          * So at this point all tasks that could have seen our entry locked
188          * must be in the waitqueue and the following check will see them.
189          */
190         if (waitqueue_active(wq))
191                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
192 }
193
194 /*
195  * Look up entry in page cache, wait for it to become unlocked if it
196  * is a DAX entry and return it.  The caller must subsequently call
197  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
198  * if it did.
199  *
200  * Must be called with the i_pages lock held.
201  */
202 static void *get_unlocked_entry(struct xa_state *xas)
203 {
204         void *entry;
205         struct wait_exceptional_entry_queue ewait;
206         wait_queue_head_t *wq;
207
208         init_wait(&ewait.wait);
209         ewait.wait.func = wake_exceptional_entry_func;
210
211         for (;;) {
212                 entry = xas_find_conflict(xas);
213                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
214                                 !dax_is_locked(entry))
215                         return entry;
216
217                 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
218                 prepare_to_wait_exclusive(wq, &ewait.wait,
219                                           TASK_UNINTERRUPTIBLE);
220                 xas_unlock_irq(xas);
221                 xas_reset(xas);
222                 schedule();
223                 finish_wait(wq, &ewait.wait);
224                 xas_lock_irq(xas);
225         }
226 }
227
228 /*
229  * The only thing keeping the address space around is the i_pages lock
230  * (it's cycled in clear_inode() after removing the entries from i_pages)
231  * After we call xas_unlock_irq(), we cannot touch xas->xa.
232  */
233 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
234 {
235         struct wait_exceptional_entry_queue ewait;
236         wait_queue_head_t *wq;
237
238         init_wait(&ewait.wait);
239         ewait.wait.func = wake_exceptional_entry_func;
240
241         wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242         /*
243          * Unlike get_unlocked_entry() there is no guarantee that this
244          * path ever successfully retrieves an unlocked entry before an
245          * inode dies. Perform a non-exclusive wait in case this path
246          * never successfully performs its own wake up.
247          */
248         prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
249         xas_unlock_irq(xas);
250         schedule();
251         finish_wait(wq, &ewait.wait);
252 }
253
254 static void put_unlocked_entry(struct xa_state *xas, void *entry)
255 {
256         /* If we were the only waiter woken, wake the next one */
257         if (entry)
258                 dax_wake_entry(xas, entry, false);
259 }
260
261 /*
262  * We used the xa_state to get the entry, but then we locked the entry and
263  * dropped the xa_lock, so we know the xa_state is stale and must be reset
264  * before use.
265  */
266 static void dax_unlock_entry(struct xa_state *xas, void *entry)
267 {
268         void *old;
269
270         BUG_ON(dax_is_locked(entry));
271         xas_reset(xas);
272         xas_lock_irq(xas);
273         old = xas_store(xas, entry);
274         xas_unlock_irq(xas);
275         BUG_ON(!dax_is_locked(old));
276         dax_wake_entry(xas, entry, false);
277 }
278
279 /*
280  * Return: The entry stored at this location before it was locked.
281  */
282 static void *dax_lock_entry(struct xa_state *xas, void *entry)
283 {
284         unsigned long v = xa_to_value(entry);
285         return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
286 }
287
288 static unsigned long dax_entry_size(void *entry)
289 {
290         if (dax_is_zero_entry(entry))
291                 return 0;
292         else if (dax_is_empty_entry(entry))
293                 return 0;
294         else if (dax_is_pmd_entry(entry))
295                 return PMD_SIZE;
296         else
297                 return PAGE_SIZE;
298 }
299
300 static unsigned long dax_end_pfn(void *entry)
301 {
302         return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
303 }
304
305 /*
306  * Iterate through all mapped pfns represented by an entry, i.e. skip
307  * 'empty' and 'zero' entries.
308  */
309 #define for_each_mapped_pfn(entry, pfn) \
310         for (pfn = dax_to_pfn(entry); \
311                         pfn < dax_end_pfn(entry); pfn++)
312
313 /*
314  * TODO: for reflink+dax we need a way to associate a single page with
315  * multiple address_space instances at different linear_page_index()
316  * offsets.
317  */
318 static void dax_associate_entry(void *entry, struct address_space *mapping,
319                 struct vm_area_struct *vma, unsigned long address)
320 {
321         unsigned long size = dax_entry_size(entry), pfn, index;
322         int i = 0;
323
324         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
325                 return;
326
327         index = linear_page_index(vma, address & ~(size - 1));
328         for_each_mapped_pfn(entry, pfn) {
329                 struct page *page = pfn_to_page(pfn);
330
331                 WARN_ON_ONCE(page->mapping);
332                 page->mapping = mapping;
333                 page->index = index + i++;
334         }
335 }
336
337 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
338                 bool trunc)
339 {
340         unsigned long pfn;
341
342         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
343                 return;
344
345         for_each_mapped_pfn(entry, pfn) {
346                 struct page *page = pfn_to_page(pfn);
347
348                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
349                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
350                 page->mapping = NULL;
351                 page->index = 0;
352         }
353 }
354
355 static struct page *dax_busy_page(void *entry)
356 {
357         unsigned long pfn;
358
359         for_each_mapped_pfn(entry, pfn) {
360                 struct page *page = pfn_to_page(pfn);
361
362                 if (page_ref_count(page) > 1)
363                         return page;
364         }
365         return NULL;
366 }
367
368 /*
369  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
370  * @page: The page whose entry we want to lock
371  *
372  * Context: Process context.
373  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
374  * not be locked.
375  */
376 dax_entry_t dax_lock_page(struct page *page)
377 {
378         XA_STATE(xas, NULL, 0);
379         void *entry;
380
381         /* Ensure page->mapping isn't freed while we look at it */
382         rcu_read_lock();
383         for (;;) {
384                 struct address_space *mapping = READ_ONCE(page->mapping);
385
386                 entry = NULL;
387                 if (!mapping || !dax_mapping(mapping))
388                         break;
389
390                 /*
391                  * In the device-dax case there's no need to lock, a
392                  * struct dev_pagemap pin is sufficient to keep the
393                  * inode alive, and we assume we have dev_pagemap pin
394                  * otherwise we would not have a valid pfn_to_page()
395                  * translation.
396                  */
397                 entry = (void *)~0UL;
398                 if (S_ISCHR(mapping->host->i_mode))
399                         break;
400
401                 xas.xa = &mapping->i_pages;
402                 xas_lock_irq(&xas);
403                 if (mapping != page->mapping) {
404                         xas_unlock_irq(&xas);
405                         continue;
406                 }
407                 xas_set(&xas, page->index);
408                 entry = xas_load(&xas);
409                 if (dax_is_locked(entry)) {
410                         rcu_read_unlock();
411                         wait_entry_unlocked(&xas, entry);
412                         rcu_read_lock();
413                         continue;
414                 }
415                 dax_lock_entry(&xas, entry);
416                 xas_unlock_irq(&xas);
417                 break;
418         }
419         rcu_read_unlock();
420         return (dax_entry_t)entry;
421 }
422
423 void dax_unlock_page(struct page *page, dax_entry_t cookie)
424 {
425         struct address_space *mapping = page->mapping;
426         XA_STATE(xas, &mapping->i_pages, page->index);
427
428         if (S_ISCHR(mapping->host->i_mode))
429                 return;
430
431         dax_unlock_entry(&xas, (void *)cookie);
432 }
433
434 /*
435  * Find page cache entry at given index. If it is a DAX entry, return it
436  * with the entry locked. If the page cache doesn't contain an entry at
437  * that index, add a locked empty entry.
438  *
439  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
440  * either return that locked entry or will return VM_FAULT_FALLBACK.
441  * This will happen if there are any PTE entries within the PMD range
442  * that we are requesting.
443  *
444  * We always favor PTE entries over PMD entries. There isn't a flow where we
445  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
446  * insertion will fail if it finds any PTE entries already in the tree, and a
447  * PTE insertion will cause an existing PMD entry to be unmapped and
448  * downgraded to PTE entries.  This happens for both PMD zero pages as
449  * well as PMD empty entries.
450  *
451  * The exception to this downgrade path is for PMD entries that have
452  * real storage backing them.  We will leave these real PMD entries in
453  * the tree, and PTE writes will simply dirty the entire PMD entry.
454  *
455  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
456  * persistent memory the benefit is doubtful. We can add that later if we can
457  * show it helps.
458  *
459  * On error, this function does not return an ERR_PTR.  Instead it returns
460  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
461  * overlap with xarray value entries.
462  */
463 static void *grab_mapping_entry(struct xa_state *xas,
464                 struct address_space *mapping, unsigned long size_flag)
465 {
466         unsigned long index = xas->xa_index;
467         bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
468         void *entry;
469
470 retry:
471         xas_lock_irq(xas);
472         entry = get_unlocked_entry(xas);
473
474         if (entry) {
475                 if (!xa_is_value(entry)) {
476                         xas_set_err(xas, EIO);
477                         goto out_unlock;
478                 }
479
480                 if (size_flag & DAX_PMD) {
481                         if (dax_is_pte_entry(entry)) {
482                                 put_unlocked_entry(xas, entry);
483                                 goto fallback;
484                         }
485                 } else { /* trying to grab a PTE entry */
486                         if (dax_is_pmd_entry(entry) &&
487                             (dax_is_zero_entry(entry) ||
488                              dax_is_empty_entry(entry))) {
489                                 pmd_downgrade = true;
490                         }
491                 }
492         }
493
494         if (pmd_downgrade) {
495                 /*
496                  * Make sure 'entry' remains valid while we drop
497                  * the i_pages lock.
498                  */
499                 dax_lock_entry(xas, entry);
500
501                 /*
502                  * Besides huge zero pages the only other thing that gets
503                  * downgraded are empty entries which don't need to be
504                  * unmapped.
505                  */
506                 if (dax_is_zero_entry(entry)) {
507                         xas_unlock_irq(xas);
508                         unmap_mapping_pages(mapping,
509                                         xas->xa_index & ~PG_PMD_COLOUR,
510                                         PG_PMD_NR, false);
511                         xas_reset(xas);
512                         xas_lock_irq(xas);
513                 }
514
515                 dax_disassociate_entry(entry, mapping, false);
516                 xas_store(xas, NULL);   /* undo the PMD join */
517                 dax_wake_entry(xas, entry, true);
518                 mapping->nrexceptional--;
519                 entry = NULL;
520                 xas_set(xas, index);
521         }
522
523         if (entry) {
524                 dax_lock_entry(xas, entry);
525         } else {
526                 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
527                 dax_lock_entry(xas, entry);
528                 if (xas_error(xas))
529                         goto out_unlock;
530                 mapping->nrexceptional++;
531         }
532
533 out_unlock:
534         xas_unlock_irq(xas);
535         if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
536                 goto retry;
537         if (xas->xa_node == XA_ERROR(-ENOMEM))
538                 return xa_mk_internal(VM_FAULT_OOM);
539         if (xas_error(xas))
540                 return xa_mk_internal(VM_FAULT_SIGBUS);
541         return entry;
542 fallback:
543         xas_unlock_irq(xas);
544         return xa_mk_internal(VM_FAULT_FALLBACK);
545 }
546
547 /**
548  * dax_layout_busy_page - find first pinned page in @mapping
549  * @mapping: address space to scan for a page with ref count > 1
550  *
551  * DAX requires ZONE_DEVICE mapped pages. These pages are never
552  * 'onlined' to the page allocator so they are considered idle when
553  * page->count == 1. A filesystem uses this interface to determine if
554  * any page in the mapping is busy, i.e. for DMA, or other
555  * get_user_pages() usages.
556  *
557  * It is expected that the filesystem is holding locks to block the
558  * establishment of new mappings in this address_space. I.e. it expects
559  * to be able to run unmap_mapping_range() and subsequently not race
560  * mapping_mapped() becoming true.
561  */
562 struct page *dax_layout_busy_page(struct address_space *mapping)
563 {
564         XA_STATE(xas, &mapping->i_pages, 0);
565         void *entry;
566         unsigned int scanned = 0;
567         struct page *page = NULL;
568
569         /*
570          * In the 'limited' case get_user_pages() for dax is disabled.
571          */
572         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
573                 return NULL;
574
575         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
576                 return NULL;
577
578         /*
579          * If we race get_user_pages_fast() here either we'll see the
580          * elevated page count in the iteration and wait, or
581          * get_user_pages_fast() will see that the page it took a reference
582          * against is no longer mapped in the page tables and bail to the
583          * get_user_pages() slow path.  The slow path is protected by
584          * pte_lock() and pmd_lock(). New references are not taken without
585          * holding those locks, and unmap_mapping_range() will not zero the
586          * pte or pmd without holding the respective lock, so we are
587          * guaranteed to either see new references or prevent new
588          * references from being established.
589          */
590         unmap_mapping_range(mapping, 0, 0, 1);
591
592         xas_lock_irq(&xas);
593         xas_for_each(&xas, entry, ULONG_MAX) {
594                 if (WARN_ON_ONCE(!xa_is_value(entry)))
595                         continue;
596                 if (unlikely(dax_is_locked(entry)))
597                         entry = get_unlocked_entry(&xas);
598                 if (entry)
599                         page = dax_busy_page(entry);
600                 put_unlocked_entry(&xas, entry);
601                 if (page)
602                         break;
603                 if (++scanned % XA_CHECK_SCHED)
604                         continue;
605
606                 xas_pause(&xas);
607                 xas_unlock_irq(&xas);
608                 cond_resched();
609                 xas_lock_irq(&xas);
610         }
611         xas_unlock_irq(&xas);
612         return page;
613 }
614 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
615
616 static int __dax_invalidate_entry(struct address_space *mapping,
617                                           pgoff_t index, bool trunc)
618 {
619         XA_STATE(xas, &mapping->i_pages, index);
620         int ret = 0;
621         void *entry;
622
623         xas_lock_irq(&xas);
624         entry = get_unlocked_entry(&xas);
625         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
626                 goto out;
627         if (!trunc &&
628             (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
629              xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
630                 goto out;
631         dax_disassociate_entry(entry, mapping, trunc);
632         xas_store(&xas, NULL);
633         mapping->nrexceptional--;
634         ret = 1;
635 out:
636         put_unlocked_entry(&xas, entry);
637         xas_unlock_irq(&xas);
638         return ret;
639 }
640
641 /*
642  * Delete DAX entry at @index from @mapping.  Wait for it
643  * to be unlocked before deleting it.
644  */
645 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
646 {
647         int ret = __dax_invalidate_entry(mapping, index, true);
648
649         /*
650          * This gets called from truncate / punch_hole path. As such, the caller
651          * must hold locks protecting against concurrent modifications of the
652          * page cache (usually fs-private i_mmap_sem for writing). Since the
653          * caller has seen a DAX entry for this index, we better find it
654          * at that index as well...
655          */
656         WARN_ON_ONCE(!ret);
657         return ret;
658 }
659
660 /*
661  * Invalidate DAX entry if it is clean.
662  */
663 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
664                                       pgoff_t index)
665 {
666         return __dax_invalidate_entry(mapping, index, false);
667 }
668
669 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
670                 sector_t sector, size_t size, struct page *to,
671                 unsigned long vaddr)
672 {
673         void *vto, *kaddr;
674         pgoff_t pgoff;
675         long rc;
676         int id;
677
678         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
679         if (rc)
680                 return rc;
681
682         id = dax_read_lock();
683         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
684         if (rc < 0) {
685                 dax_read_unlock(id);
686                 return rc;
687         }
688         vto = kmap_atomic(to);
689         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
690         kunmap_atomic(vto);
691         dax_read_unlock(id);
692         return 0;
693 }
694
695 /*
696  * By this point grab_mapping_entry() has ensured that we have a locked entry
697  * of the appropriate size so we don't have to worry about downgrading PMDs to
698  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
699  * already in the tree, we will skip the insertion and just dirty the PMD as
700  * appropriate.
701  */
702 static void *dax_insert_entry(struct xa_state *xas,
703                 struct address_space *mapping, struct vm_fault *vmf,
704                 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
705 {
706         void *new_entry = dax_make_entry(pfn, flags);
707
708         if (dirty)
709                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
710
711         if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
712                 unsigned long index = xas->xa_index;
713                 /* we are replacing a zero page with block mapping */
714                 if (dax_is_pmd_entry(entry))
715                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
716                                         PG_PMD_NR, false);
717                 else /* pte entry */
718                         unmap_mapping_pages(mapping, index, 1, false);
719         }
720
721         xas_reset(xas);
722         xas_lock_irq(xas);
723         if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
724                 dax_disassociate_entry(entry, mapping, false);
725                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
726         }
727
728         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
729                 /*
730                  * Only swap our new entry into the page cache if the current
731                  * entry is a zero page or an empty entry.  If a normal PTE or
732                  * PMD entry is already in the cache, we leave it alone.  This
733                  * means that if we are trying to insert a PTE and the
734                  * existing entry is a PMD, we will just leave the PMD in the
735                  * tree and dirty it if necessary.
736                  */
737                 void *old = dax_lock_entry(xas, new_entry);
738                 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
739                                         DAX_LOCKED));
740                 entry = new_entry;
741         } else {
742                 xas_load(xas);  /* Walk the xa_state */
743         }
744
745         if (dirty)
746                 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
747
748         xas_unlock_irq(xas);
749         return entry;
750 }
751
752 static inline
753 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
754 {
755         unsigned long address;
756
757         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
758         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
759         return address;
760 }
761
762 /* Walk all mappings of a given index of a file and writeprotect them */
763 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
764                 unsigned long pfn)
765 {
766         struct vm_area_struct *vma;
767         pte_t pte, *ptep = NULL;
768         pmd_t *pmdp = NULL;
769         spinlock_t *ptl;
770
771         i_mmap_lock_read(mapping);
772         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
773                 struct mmu_notifier_range range;
774                 unsigned long address;
775
776                 cond_resched();
777
778                 if (!(vma->vm_flags & VM_SHARED))
779                         continue;
780
781                 address = pgoff_address(index, vma);
782
783                 /*
784                  * Note because we provide range to follow_pte_pmd it will
785                  * call mmu_notifier_invalidate_range_start() on our behalf
786                  * before taking any lock.
787                  */
788                 if (follow_pte_pmd(vma->vm_mm, address, &range,
789                                    &ptep, &pmdp, &ptl))
790                         continue;
791
792                 /*
793                  * No need to call mmu_notifier_invalidate_range() as we are
794                  * downgrading page table protection not changing it to point
795                  * to a new page.
796                  *
797                  * See Documentation/vm/mmu_notifier.rst
798                  */
799                 if (pmdp) {
800 #ifdef CONFIG_FS_DAX_PMD
801                         pmd_t pmd;
802
803                         if (pfn != pmd_pfn(*pmdp))
804                                 goto unlock_pmd;
805                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
806                                 goto unlock_pmd;
807
808                         flush_cache_page(vma, address, pfn);
809                         pmd = pmdp_invalidate(vma, address, pmdp);
810                         pmd = pmd_wrprotect(pmd);
811                         pmd = pmd_mkclean(pmd);
812                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
813 unlock_pmd:
814 #endif
815                         spin_unlock(ptl);
816                 } else {
817                         if (pfn != pte_pfn(*ptep))
818                                 goto unlock_pte;
819                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
820                                 goto unlock_pte;
821
822                         flush_cache_page(vma, address, pfn);
823                         pte = ptep_clear_flush(vma, address, ptep);
824                         pte = pte_wrprotect(pte);
825                         pte = pte_mkclean(pte);
826                         set_pte_at(vma->vm_mm, address, ptep, pte);
827 unlock_pte:
828                         pte_unmap_unlock(ptep, ptl);
829                 }
830
831                 mmu_notifier_invalidate_range_end(&range);
832         }
833         i_mmap_unlock_read(mapping);
834 }
835
836 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
837                 struct address_space *mapping, void *entry)
838 {
839         unsigned long pfn, index, count;
840         long ret = 0;
841
842         /*
843          * A page got tagged dirty in DAX mapping? Something is seriously
844          * wrong.
845          */
846         if (WARN_ON(!xa_is_value(entry)))
847                 return -EIO;
848
849         if (unlikely(dax_is_locked(entry))) {
850                 void *old_entry = entry;
851
852                 entry = get_unlocked_entry(xas);
853
854                 /* Entry got punched out / reallocated? */
855                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
856                         goto put_unlocked;
857                 /*
858                  * Entry got reallocated elsewhere? No need to writeback.
859                  * We have to compare pfns as we must not bail out due to
860                  * difference in lockbit or entry type.
861                  */
862                 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
863                         goto put_unlocked;
864                 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
865                                         dax_is_zero_entry(entry))) {
866                         ret = -EIO;
867                         goto put_unlocked;
868                 }
869
870                 /* Another fsync thread may have already done this entry */
871                 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
872                         goto put_unlocked;
873         }
874
875         /* Lock the entry to serialize with page faults */
876         dax_lock_entry(xas, entry);
877
878         /*
879          * We can clear the tag now but we have to be careful so that concurrent
880          * dax_writeback_one() calls for the same index cannot finish before we
881          * actually flush the caches. This is achieved as the calls will look
882          * at the entry only under the i_pages lock and once they do that
883          * they will see the entry locked and wait for it to unlock.
884          */
885         xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
886         xas_unlock_irq(xas);
887
888         /*
889          * If dax_writeback_mapping_range() was given a wbc->range_start
890          * in the middle of a PMD, the 'index' we use needs to be
891          * aligned to the start of the PMD.
892          * This allows us to flush for PMD_SIZE and not have to worry about
893          * partial PMD writebacks.
894          */
895         pfn = dax_to_pfn(entry);
896         count = 1UL << dax_entry_order(entry);
897         index = xas->xa_index & ~(count - 1);
898
899         dax_entry_mkclean(mapping, index, pfn);
900         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
901         /*
902          * After we have flushed the cache, we can clear the dirty tag. There
903          * cannot be new dirty data in the pfn after the flush has completed as
904          * the pfn mappings are writeprotected and fault waits for mapping
905          * entry lock.
906          */
907         xas_reset(xas);
908         xas_lock_irq(xas);
909         xas_store(xas, entry);
910         xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
911         dax_wake_entry(xas, entry, false);
912
913         trace_dax_writeback_one(mapping->host, index, count);
914         return ret;
915
916  put_unlocked:
917         put_unlocked_entry(xas, entry);
918         return ret;
919 }
920
921 /*
922  * Flush the mapping to the persistent domain within the byte range of [start,
923  * end]. This is required by data integrity operations to ensure file data is
924  * on persistent storage prior to completion of the operation.
925  */
926 int dax_writeback_mapping_range(struct address_space *mapping,
927                 struct block_device *bdev, struct writeback_control *wbc)
928 {
929         XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
930         struct inode *inode = mapping->host;
931         pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
932         struct dax_device *dax_dev;
933         void *entry;
934         int ret = 0;
935         unsigned int scanned = 0;
936
937         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
938                 return -EIO;
939
940         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
941                 return 0;
942
943         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
944         if (!dax_dev)
945                 return -EIO;
946
947         trace_dax_writeback_range(inode, xas.xa_index, end_index);
948
949         tag_pages_for_writeback(mapping, xas.xa_index, end_index);
950
951         xas_lock_irq(&xas);
952         xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
953                 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
954                 if (ret < 0) {
955                         mapping_set_error(mapping, ret);
956                         break;
957                 }
958                 if (++scanned % XA_CHECK_SCHED)
959                         continue;
960
961                 xas_pause(&xas);
962                 xas_unlock_irq(&xas);
963                 cond_resched();
964                 xas_lock_irq(&xas);
965         }
966         xas_unlock_irq(&xas);
967         put_dax(dax_dev);
968         trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
969         return ret;
970 }
971 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
972
973 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
974 {
975         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
976 }
977
978 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
979                          pfn_t *pfnp)
980 {
981         const sector_t sector = dax_iomap_sector(iomap, pos);
982         pgoff_t pgoff;
983         int id, rc;
984         long length;
985
986         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
987         if (rc)
988                 return rc;
989         id = dax_read_lock();
990         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
991                                    NULL, pfnp);
992         if (length < 0) {
993                 rc = length;
994                 goto out;
995         }
996         rc = -EINVAL;
997         if (PFN_PHYS(length) < size)
998                 goto out;
999         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1000                 goto out;
1001         /* For larger pages we need devmap */
1002         if (length > 1 && !pfn_t_devmap(*pfnp))
1003                 goto out;
1004         rc = 0;
1005 out:
1006         dax_read_unlock(id);
1007         return rc;
1008 }
1009
1010 /*
1011  * The user has performed a load from a hole in the file.  Allocating a new
1012  * page in the file would cause excessive storage usage for workloads with
1013  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1014  * If this page is ever written to we will re-fault and change the mapping to
1015  * point to real DAX storage instead.
1016  */
1017 static vm_fault_t dax_load_hole(struct xa_state *xas,
1018                 struct address_space *mapping, void **entry,
1019                 struct vm_fault *vmf)
1020 {
1021         struct inode *inode = mapping->host;
1022         unsigned long vaddr = vmf->address;
1023         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1024         vm_fault_t ret;
1025
1026         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1027                         DAX_ZERO_PAGE, false);
1028
1029         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1030         trace_dax_load_hole(inode, vmf, ret);
1031         return ret;
1032 }
1033
1034 static bool dax_range_is_aligned(struct block_device *bdev,
1035                                  unsigned int offset, unsigned int length)
1036 {
1037         unsigned short sector_size = bdev_logical_block_size(bdev);
1038
1039         if (!IS_ALIGNED(offset, sector_size))
1040                 return false;
1041         if (!IS_ALIGNED(length, sector_size))
1042                 return false;
1043
1044         return true;
1045 }
1046
1047 int __dax_zero_page_range(struct block_device *bdev,
1048                 struct dax_device *dax_dev, sector_t sector,
1049                 unsigned int offset, unsigned int size)
1050 {
1051         if (dax_range_is_aligned(bdev, offset, size)) {
1052                 sector_t start_sector = sector + (offset >> 9);
1053
1054                 return blkdev_issue_zeroout(bdev, start_sector,
1055                                 size >> 9, GFP_NOFS, 0);
1056         } else {
1057                 pgoff_t pgoff;
1058                 long rc, id;
1059                 void *kaddr;
1060
1061                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1062                 if (rc)
1063                         return rc;
1064
1065                 id = dax_read_lock();
1066                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1067                 if (rc < 0) {
1068                         dax_read_unlock(id);
1069                         return rc;
1070                 }
1071                 memset(kaddr + offset, 0, size);
1072                 dax_flush(dax_dev, kaddr + offset, size);
1073                 dax_read_unlock(id);
1074         }
1075         return 0;
1076 }
1077 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1078
1079 static loff_t
1080 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1081                 struct iomap *iomap)
1082 {
1083         struct block_device *bdev = iomap->bdev;
1084         struct dax_device *dax_dev = iomap->dax_dev;
1085         struct iov_iter *iter = data;
1086         loff_t end = pos + length, done = 0;
1087         ssize_t ret = 0;
1088         size_t xfer;
1089         int id;
1090
1091         if (iov_iter_rw(iter) == READ) {
1092                 end = min(end, i_size_read(inode));
1093                 if (pos >= end)
1094                         return 0;
1095
1096                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1097                         return iov_iter_zero(min(length, end - pos), iter);
1098         }
1099
1100         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1101                 return -EIO;
1102
1103         /*
1104          * Write can allocate block for an area which has a hole page mapped
1105          * into page tables. We have to tear down these mappings so that data
1106          * written by write(2) is visible in mmap.
1107          */
1108         if (iomap->flags & IOMAP_F_NEW) {
1109                 invalidate_inode_pages2_range(inode->i_mapping,
1110                                               pos >> PAGE_SHIFT,
1111                                               (end - 1) >> PAGE_SHIFT);
1112         }
1113
1114         id = dax_read_lock();
1115         while (pos < end) {
1116                 unsigned offset = pos & (PAGE_SIZE - 1);
1117                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1118                 const sector_t sector = dax_iomap_sector(iomap, pos);
1119                 ssize_t map_len;
1120                 pgoff_t pgoff;
1121                 void *kaddr;
1122
1123                 if (fatal_signal_pending(current)) {
1124                         ret = -EINTR;
1125                         break;
1126                 }
1127
1128                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1129                 if (ret)
1130                         break;
1131
1132                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1133                                 &kaddr, NULL);
1134                 if (map_len < 0) {
1135                         ret = map_len;
1136                         break;
1137                 }
1138
1139                 map_len = PFN_PHYS(map_len);
1140                 kaddr += offset;
1141                 map_len -= offset;
1142                 if (map_len > end - pos)
1143                         map_len = end - pos;
1144
1145                 /*
1146                  * The userspace address for the memory copy has already been
1147                  * validated via access_ok() in either vfs_read() or
1148                  * vfs_write(), depending on which operation we are doing.
1149                  */
1150                 if (iov_iter_rw(iter) == WRITE)
1151                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1152                                         map_len, iter);
1153                 else
1154                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1155                                         map_len, iter);
1156
1157                 pos += xfer;
1158                 length -= xfer;
1159                 done += xfer;
1160
1161                 if (xfer == 0)
1162                         ret = -EFAULT;
1163                 if (xfer < map_len)
1164                         break;
1165         }
1166         dax_read_unlock(id);
1167
1168         return done ? done : ret;
1169 }
1170
1171 /**
1172  * dax_iomap_rw - Perform I/O to a DAX file
1173  * @iocb:       The control block for this I/O
1174  * @iter:       The addresses to do I/O from or to
1175  * @ops:        iomap ops passed from the file system
1176  *
1177  * This function performs read and write operations to directly mapped
1178  * persistent memory.  The callers needs to take care of read/write exclusion
1179  * and evicting any page cache pages in the region under I/O.
1180  */
1181 ssize_t
1182 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1183                 const struct iomap_ops *ops)
1184 {
1185         struct address_space *mapping = iocb->ki_filp->f_mapping;
1186         struct inode *inode = mapping->host;
1187         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1188         unsigned flags = 0;
1189
1190         if (iov_iter_rw(iter) == WRITE) {
1191                 lockdep_assert_held_exclusive(&inode->i_rwsem);
1192                 flags |= IOMAP_WRITE;
1193         } else {
1194                 lockdep_assert_held(&inode->i_rwsem);
1195         }
1196
1197         while (iov_iter_count(iter)) {
1198                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1199                                 iter, dax_iomap_actor);
1200                 if (ret <= 0)
1201                         break;
1202                 pos += ret;
1203                 done += ret;
1204         }
1205
1206         iocb->ki_pos += done;
1207         return done ? done : ret;
1208 }
1209 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1210
1211 static vm_fault_t dax_fault_return(int error)
1212 {
1213         if (error == 0)
1214                 return VM_FAULT_NOPAGE;
1215         return vmf_error(error);
1216 }
1217
1218 /*
1219  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1220  * flushed on write-faults (non-cow), but not read-faults.
1221  */
1222 static bool dax_fault_is_synchronous(unsigned long flags,
1223                 struct vm_area_struct *vma, struct iomap *iomap)
1224 {
1225         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1226                 && (iomap->flags & IOMAP_F_DIRTY);
1227 }
1228
1229 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1230                                int *iomap_errp, const struct iomap_ops *ops)
1231 {
1232         struct vm_area_struct *vma = vmf->vma;
1233         struct address_space *mapping = vma->vm_file->f_mapping;
1234         XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1235         struct inode *inode = mapping->host;
1236         unsigned long vaddr = vmf->address;
1237         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1238         struct iomap iomap = { 0 };
1239         unsigned flags = IOMAP_FAULT;
1240         int error, major = 0;
1241         bool write = vmf->flags & FAULT_FLAG_WRITE;
1242         bool sync;
1243         vm_fault_t ret = 0;
1244         void *entry;
1245         pfn_t pfn;
1246
1247         trace_dax_pte_fault(inode, vmf, ret);
1248         /*
1249          * Check whether offset isn't beyond end of file now. Caller is supposed
1250          * to hold locks serializing us with truncate / punch hole so this is
1251          * a reliable test.
1252          */
1253         if (pos >= i_size_read(inode)) {
1254                 ret = VM_FAULT_SIGBUS;
1255                 goto out;
1256         }
1257
1258         if (write && !vmf->cow_page)
1259                 flags |= IOMAP_WRITE;
1260
1261         entry = grab_mapping_entry(&xas, mapping, 0);
1262         if (xa_is_internal(entry)) {
1263                 ret = xa_to_internal(entry);
1264                 goto out;
1265         }
1266
1267         /*
1268          * It is possible, particularly with mixed reads & writes to private
1269          * mappings, that we have raced with a PMD fault that overlaps with
1270          * the PTE we need to set up.  If so just return and the fault will be
1271          * retried.
1272          */
1273         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1274                 ret = VM_FAULT_NOPAGE;
1275                 goto unlock_entry;
1276         }
1277
1278         /*
1279          * Note that we don't bother to use iomap_apply here: DAX required
1280          * the file system block size to be equal the page size, which means
1281          * that we never have to deal with more than a single extent here.
1282          */
1283         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1284         if (iomap_errp)
1285                 *iomap_errp = error;
1286         if (error) {
1287                 ret = dax_fault_return(error);
1288                 goto unlock_entry;
1289         }
1290         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1291                 error = -EIO;   /* fs corruption? */
1292                 goto error_finish_iomap;
1293         }
1294
1295         if (vmf->cow_page) {
1296                 sector_t sector = dax_iomap_sector(&iomap, pos);
1297
1298                 switch (iomap.type) {
1299                 case IOMAP_HOLE:
1300                 case IOMAP_UNWRITTEN:
1301                         clear_user_highpage(vmf->cow_page, vaddr);
1302                         break;
1303                 case IOMAP_MAPPED:
1304                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1305                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1306                         break;
1307                 default:
1308                         WARN_ON_ONCE(1);
1309                         error = -EIO;
1310                         break;
1311                 }
1312
1313                 if (error)
1314                         goto error_finish_iomap;
1315
1316                 __SetPageUptodate(vmf->cow_page);
1317                 ret = finish_fault(vmf);
1318                 if (!ret)
1319                         ret = VM_FAULT_DONE_COW;
1320                 goto finish_iomap;
1321         }
1322
1323         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1324
1325         switch (iomap.type) {
1326         case IOMAP_MAPPED:
1327                 if (iomap.flags & IOMAP_F_NEW) {
1328                         count_vm_event(PGMAJFAULT);
1329                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1330                         major = VM_FAULT_MAJOR;
1331                 }
1332                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1333                 if (error < 0)
1334                         goto error_finish_iomap;
1335
1336                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1337                                                  0, write && !sync);
1338
1339                 /*
1340                  * If we are doing synchronous page fault and inode needs fsync,
1341                  * we can insert PTE into page tables only after that happens.
1342                  * Skip insertion for now and return the pfn so that caller can
1343                  * insert it after fsync is done.
1344                  */
1345                 if (sync) {
1346                         if (WARN_ON_ONCE(!pfnp)) {
1347                                 error = -EIO;
1348                                 goto error_finish_iomap;
1349                         }
1350                         *pfnp = pfn;
1351                         ret = VM_FAULT_NEEDDSYNC | major;
1352                         goto finish_iomap;
1353                 }
1354                 trace_dax_insert_mapping(inode, vmf, entry);
1355                 if (write)
1356                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1357                 else
1358                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1359
1360                 goto finish_iomap;
1361         case IOMAP_UNWRITTEN:
1362         case IOMAP_HOLE:
1363                 if (!write) {
1364                         ret = dax_load_hole(&xas, mapping, &entry, vmf);
1365                         goto finish_iomap;
1366                 }
1367                 /*FALLTHRU*/
1368         default:
1369                 WARN_ON_ONCE(1);
1370                 error = -EIO;
1371                 break;
1372         }
1373
1374  error_finish_iomap:
1375         ret = dax_fault_return(error);
1376  finish_iomap:
1377         if (ops->iomap_end) {
1378                 int copied = PAGE_SIZE;
1379
1380                 if (ret & VM_FAULT_ERROR)
1381                         copied = 0;
1382                 /*
1383                  * The fault is done by now and there's no way back (other
1384                  * thread may be already happily using PTE we have installed).
1385                  * Just ignore error from ->iomap_end since we cannot do much
1386                  * with it.
1387                  */
1388                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1389         }
1390  unlock_entry:
1391         dax_unlock_entry(&xas, entry);
1392  out:
1393         trace_dax_pte_fault_done(inode, vmf, ret);
1394         return ret | major;
1395 }
1396
1397 #ifdef CONFIG_FS_DAX_PMD
1398 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1399                 struct iomap *iomap, void **entry)
1400 {
1401         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1402         unsigned long pmd_addr = vmf->address & PMD_MASK;
1403         struct vm_area_struct *vma = vmf->vma;
1404         struct inode *inode = mapping->host;
1405         pgtable_t pgtable = NULL;
1406         struct page *zero_page;
1407         spinlock_t *ptl;
1408         pmd_t pmd_entry;
1409         pfn_t pfn;
1410
1411         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1412
1413         if (unlikely(!zero_page))
1414                 goto fallback;
1415
1416         pfn = page_to_pfn_t(zero_page);
1417         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1418                         DAX_PMD | DAX_ZERO_PAGE, false);
1419
1420         if (arch_needs_pgtable_deposit()) {
1421                 pgtable = pte_alloc_one(vma->vm_mm);
1422                 if (!pgtable)
1423                         return VM_FAULT_OOM;
1424         }
1425
1426         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1427         if (!pmd_none(*(vmf->pmd))) {
1428                 spin_unlock(ptl);
1429                 goto fallback;
1430         }
1431
1432         if (pgtable) {
1433                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1434                 mm_inc_nr_ptes(vma->vm_mm);
1435         }
1436         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1437         pmd_entry = pmd_mkhuge(pmd_entry);
1438         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1439         spin_unlock(ptl);
1440         trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1441         return VM_FAULT_NOPAGE;
1442
1443 fallback:
1444         if (pgtable)
1445                 pte_free(vma->vm_mm, pgtable);
1446         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1447         return VM_FAULT_FALLBACK;
1448 }
1449
1450 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1451                                const struct iomap_ops *ops)
1452 {
1453         struct vm_area_struct *vma = vmf->vma;
1454         struct address_space *mapping = vma->vm_file->f_mapping;
1455         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1456         unsigned long pmd_addr = vmf->address & PMD_MASK;
1457         bool write = vmf->flags & FAULT_FLAG_WRITE;
1458         bool sync;
1459         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1460         struct inode *inode = mapping->host;
1461         vm_fault_t result = VM_FAULT_FALLBACK;
1462         struct iomap iomap = { 0 };
1463         pgoff_t max_pgoff;
1464         void *entry;
1465         loff_t pos;
1466         int error;
1467         pfn_t pfn;
1468
1469         /*
1470          * Check whether offset isn't beyond end of file now. Caller is
1471          * supposed to hold locks serializing us with truncate / punch hole so
1472          * this is a reliable test.
1473          */
1474         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1475
1476         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1477
1478         /*
1479          * Make sure that the faulting address's PMD offset (color) matches
1480          * the PMD offset from the start of the file.  This is necessary so
1481          * that a PMD range in the page table overlaps exactly with a PMD
1482          * range in the page cache.
1483          */
1484         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1485             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1486                 goto fallback;
1487
1488         /* Fall back to PTEs if we're going to COW */
1489         if (write && !(vma->vm_flags & VM_SHARED))
1490                 goto fallback;
1491
1492         /* If the PMD would extend outside the VMA */
1493         if (pmd_addr < vma->vm_start)
1494                 goto fallback;
1495         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1496                 goto fallback;
1497
1498         if (xas.xa_index >= max_pgoff) {
1499                 result = VM_FAULT_SIGBUS;
1500                 goto out;
1501         }
1502
1503         /* If the PMD would extend beyond the file size */
1504         if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1505                 goto fallback;
1506
1507         /*
1508          * grab_mapping_entry() will make sure we get an empty PMD entry,
1509          * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1510          * entry is already in the array, for instance), it will return
1511          * VM_FAULT_FALLBACK.
1512          */
1513         entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1514         if (xa_is_internal(entry)) {
1515                 result = xa_to_internal(entry);
1516                 goto fallback;
1517         }
1518
1519         /*
1520          * It is possible, particularly with mixed reads & writes to private
1521          * mappings, that we have raced with a PTE fault that overlaps with
1522          * the PMD we need to set up.  If so just return and the fault will be
1523          * retried.
1524          */
1525         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1526                         !pmd_devmap(*vmf->pmd)) {
1527                 result = 0;
1528                 goto unlock_entry;
1529         }
1530
1531         /*
1532          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1533          * setting up a mapping, so really we're using iomap_begin() as a way
1534          * to look up our filesystem block.
1535          */
1536         pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1537         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1538         if (error)
1539                 goto unlock_entry;
1540
1541         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1542                 goto finish_iomap;
1543
1544         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1545
1546         switch (iomap.type) {
1547         case IOMAP_MAPPED:
1548                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1549                 if (error < 0)
1550                         goto finish_iomap;
1551
1552                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1553                                                 DAX_PMD, write && !sync);
1554
1555                 /*
1556                  * If we are doing synchronous page fault and inode needs fsync,
1557                  * we can insert PMD into page tables only after that happens.
1558                  * Skip insertion for now and return the pfn so that caller can
1559                  * insert it after fsync is done.
1560                  */
1561                 if (sync) {
1562                         if (WARN_ON_ONCE(!pfnp))
1563                                 goto finish_iomap;
1564                         *pfnp = pfn;
1565                         result = VM_FAULT_NEEDDSYNC;
1566                         goto finish_iomap;
1567                 }
1568
1569                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1570                 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1571                 break;
1572         case IOMAP_UNWRITTEN:
1573         case IOMAP_HOLE:
1574                 if (WARN_ON_ONCE(write))
1575                         break;
1576                 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1577                 break;
1578         default:
1579                 WARN_ON_ONCE(1);
1580                 break;
1581         }
1582
1583  finish_iomap:
1584         if (ops->iomap_end) {
1585                 int copied = PMD_SIZE;
1586
1587                 if (result == VM_FAULT_FALLBACK)
1588                         copied = 0;
1589                 /*
1590                  * The fault is done by now and there's no way back (other
1591                  * thread may be already happily using PMD we have installed).
1592                  * Just ignore error from ->iomap_end since we cannot do much
1593                  * with it.
1594                  */
1595                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1596                                 &iomap);
1597         }
1598  unlock_entry:
1599         dax_unlock_entry(&xas, entry);
1600  fallback:
1601         if (result == VM_FAULT_FALLBACK) {
1602                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1603                 count_vm_event(THP_FAULT_FALLBACK);
1604         }
1605 out:
1606         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1607         return result;
1608 }
1609 #else
1610 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1611                                const struct iomap_ops *ops)
1612 {
1613         return VM_FAULT_FALLBACK;
1614 }
1615 #endif /* CONFIG_FS_DAX_PMD */
1616
1617 /**
1618  * dax_iomap_fault - handle a page fault on a DAX file
1619  * @vmf: The description of the fault
1620  * @pe_size: Size of the page to fault in
1621  * @pfnp: PFN to insert for synchronous faults if fsync is required
1622  * @iomap_errp: Storage for detailed error code in case of error
1623  * @ops: Iomap ops passed from the file system
1624  *
1625  * When a page fault occurs, filesystems may call this helper in
1626  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1627  * has done all the necessary locking for page fault to proceed
1628  * successfully.
1629  */
1630 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1631                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1632 {
1633         switch (pe_size) {
1634         case PE_SIZE_PTE:
1635                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1636         case PE_SIZE_PMD:
1637                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1638         default:
1639                 return VM_FAULT_FALLBACK;
1640         }
1641 }
1642 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1643
1644 /*
1645  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1646  * @vmf: The description of the fault
1647  * @pfn: PFN to insert
1648  * @order: Order of entry to insert.
1649  *
1650  * This function inserts a writeable PTE or PMD entry into the page tables
1651  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1652  */
1653 static vm_fault_t
1654 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1655 {
1656         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1657         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1658         void *entry;
1659         vm_fault_t ret;
1660
1661         xas_lock_irq(&xas);
1662         entry = get_unlocked_entry(&xas);
1663         /* Did we race with someone splitting entry or so? */
1664         if (!entry ||
1665             (order == 0 && !dax_is_pte_entry(entry)) ||
1666             (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
1667                 put_unlocked_entry(&xas, entry);
1668                 xas_unlock_irq(&xas);
1669                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1670                                                       VM_FAULT_NOPAGE);
1671                 return VM_FAULT_NOPAGE;
1672         }
1673         xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1674         dax_lock_entry(&xas, entry);
1675         xas_unlock_irq(&xas);
1676         if (order == 0)
1677                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1678 #ifdef CONFIG_FS_DAX_PMD
1679         else if (order == PMD_ORDER)
1680                 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1681 #endif
1682         else
1683                 ret = VM_FAULT_FALLBACK;
1684         dax_unlock_entry(&xas, entry);
1685         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1686         return ret;
1687 }
1688
1689 /**
1690  * dax_finish_sync_fault - finish synchronous page fault
1691  * @vmf: The description of the fault
1692  * @pe_size: Size of entry to be inserted
1693  * @pfn: PFN to insert
1694  *
1695  * This function ensures that the file range touched by the page fault is
1696  * stored persistently on the media and handles inserting of appropriate page
1697  * table entry.
1698  */
1699 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1700                 enum page_entry_size pe_size, pfn_t pfn)
1701 {
1702         int err;
1703         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1704         unsigned int order = pe_order(pe_size);
1705         size_t len = PAGE_SIZE << order;
1706
1707         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1708         if (err)
1709                 return VM_FAULT_SIGBUS;
1710         return dax_insert_pfn_mkwrite(vmf, pfn, order);
1711 }
1712 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);