cifs: mapchars mount option ignored
[sfrench/cifs-2.6.git] / fs / cifs / misc.c
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29
30 extern mempool_t *cifs_sm_req_poolp;
31 extern mempool_t *cifs_req_poolp;
32
33 /* The xid serves as a useful identifier for each incoming vfs request,
34    in a similar way to the mid which is useful to track each sent smb,
35    and CurrentXid can also provide a running counter (although it
36    will eventually wrap past zero) of the total vfs operations handled
37    since the cifs fs was mounted */
38
39 unsigned int
40 _get_xid(void)
41 {
42         unsigned int xid;
43
44         spin_lock(&GlobalMid_Lock);
45         GlobalTotalActiveXid++;
46
47         /* keep high water mark for number of simultaneous ops in filesystem */
48         if (GlobalTotalActiveXid > GlobalMaxActiveXid)
49                 GlobalMaxActiveXid = GlobalTotalActiveXid;
50         if (GlobalTotalActiveXid > 65000)
51                 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
52         xid = GlobalCurrentXid++;
53         spin_unlock(&GlobalMid_Lock);
54         return xid;
55 }
56
57 void
58 _free_xid(unsigned int xid)
59 {
60         spin_lock(&GlobalMid_Lock);
61         /* if (GlobalTotalActiveXid == 0)
62                 BUG(); */
63         GlobalTotalActiveXid--;
64         spin_unlock(&GlobalMid_Lock);
65 }
66
67 struct cifs_ses *
68 sesInfoAlloc(void)
69 {
70         struct cifs_ses *ret_buf;
71
72         ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
73         if (ret_buf) {
74                 atomic_inc(&sesInfoAllocCount);
75                 spin_lock_init(&ret_buf->ses_lock);
76                 ret_buf->ses_status = SES_NEW;
77                 ++ret_buf->ses_count;
78                 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
79                 INIT_LIST_HEAD(&ret_buf->tcon_list);
80                 mutex_init(&ret_buf->session_mutex);
81                 spin_lock_init(&ret_buf->iface_lock);
82                 INIT_LIST_HEAD(&ret_buf->iface_list);
83                 spin_lock_init(&ret_buf->chan_lock);
84         }
85         return ret_buf;
86 }
87
88 void
89 sesInfoFree(struct cifs_ses *buf_to_free)
90 {
91         struct cifs_server_iface *iface = NULL, *niface = NULL;
92
93         if (buf_to_free == NULL) {
94                 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
95                 return;
96         }
97
98         atomic_dec(&sesInfoAllocCount);
99         kfree(buf_to_free->serverOS);
100         kfree(buf_to_free->serverDomain);
101         kfree(buf_to_free->serverNOS);
102         kfree_sensitive(buf_to_free->password);
103         kfree(buf_to_free->user_name);
104         kfree(buf_to_free->domainName);
105         kfree_sensitive(buf_to_free->auth_key.response);
106         spin_lock(&buf_to_free->iface_lock);
107         list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
108                                  iface_head)
109                 kref_put(&iface->refcount, release_iface);
110         spin_unlock(&buf_to_free->iface_lock);
111         kfree_sensitive(buf_to_free);
112 }
113
114 struct cifs_tcon *
115 tconInfoAlloc(void)
116 {
117         struct cifs_tcon *ret_buf;
118
119         ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
120         if (!ret_buf)
121                 return NULL;
122         ret_buf->cfids = init_cached_dirs();
123         if (!ret_buf->cfids) {
124                 kfree(ret_buf);
125                 return NULL;
126         }
127
128         atomic_inc(&tconInfoAllocCount);
129         ret_buf->status = TID_NEW;
130         ++ret_buf->tc_count;
131         spin_lock_init(&ret_buf->tc_lock);
132         INIT_LIST_HEAD(&ret_buf->openFileList);
133         INIT_LIST_HEAD(&ret_buf->tcon_list);
134         spin_lock_init(&ret_buf->open_file_lock);
135         spin_lock_init(&ret_buf->stat_lock);
136         atomic_set(&ret_buf->num_local_opens, 0);
137         atomic_set(&ret_buf->num_remote_opens, 0);
138 #ifdef CONFIG_CIFS_DFS_UPCALL
139         INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
140 #endif
141
142         return ret_buf;
143 }
144
145 void
146 tconInfoFree(struct cifs_tcon *tcon)
147 {
148         if (tcon == NULL) {
149                 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
150                 return;
151         }
152         free_cached_dirs(tcon->cfids);
153         atomic_dec(&tconInfoAllocCount);
154         kfree(tcon->nativeFileSystem);
155         kfree_sensitive(tcon->password);
156 #ifdef CONFIG_CIFS_DFS_UPCALL
157         dfs_put_root_smb_sessions(&tcon->dfs_ses_list);
158 #endif
159         kfree(tcon);
160 }
161
162 struct smb_hdr *
163 cifs_buf_get(void)
164 {
165         struct smb_hdr *ret_buf = NULL;
166         /*
167          * SMB2 header is bigger than CIFS one - no problems to clean some
168          * more bytes for CIFS.
169          */
170         size_t buf_size = sizeof(struct smb2_hdr);
171
172         /*
173          * We could use negotiated size instead of max_msgsize -
174          * but it may be more efficient to always alloc same size
175          * albeit slightly larger than necessary and maxbuffersize
176          * defaults to this and can not be bigger.
177          */
178         ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
179
180         /* clear the first few header bytes */
181         /* for most paths, more is cleared in header_assemble */
182         memset(ret_buf, 0, buf_size + 3);
183         atomic_inc(&buf_alloc_count);
184 #ifdef CONFIG_CIFS_STATS2
185         atomic_inc(&total_buf_alloc_count);
186 #endif /* CONFIG_CIFS_STATS2 */
187
188         return ret_buf;
189 }
190
191 void
192 cifs_buf_release(void *buf_to_free)
193 {
194         if (buf_to_free == NULL) {
195                 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
196                 return;
197         }
198         mempool_free(buf_to_free, cifs_req_poolp);
199
200         atomic_dec(&buf_alloc_count);
201         return;
202 }
203
204 struct smb_hdr *
205 cifs_small_buf_get(void)
206 {
207         struct smb_hdr *ret_buf = NULL;
208
209 /* We could use negotiated size instead of max_msgsize -
210    but it may be more efficient to always alloc same size
211    albeit slightly larger than necessary and maxbuffersize
212    defaults to this and can not be bigger */
213         ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
214         /* No need to clear memory here, cleared in header assemble */
215         /*      memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
216         atomic_inc(&small_buf_alloc_count);
217 #ifdef CONFIG_CIFS_STATS2
218         atomic_inc(&total_small_buf_alloc_count);
219 #endif /* CONFIG_CIFS_STATS2 */
220
221         return ret_buf;
222 }
223
224 void
225 cifs_small_buf_release(void *buf_to_free)
226 {
227
228         if (buf_to_free == NULL) {
229                 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
230                 return;
231         }
232         mempool_free(buf_to_free, cifs_sm_req_poolp);
233
234         atomic_dec(&small_buf_alloc_count);
235         return;
236 }
237
238 void
239 free_rsp_buf(int resp_buftype, void *rsp)
240 {
241         if (resp_buftype == CIFS_SMALL_BUFFER)
242                 cifs_small_buf_release(rsp);
243         else if (resp_buftype == CIFS_LARGE_BUFFER)
244                 cifs_buf_release(rsp);
245 }
246
247 /* NB: MID can not be set if treeCon not passed in, in that
248    case it is responsbility of caller to set the mid */
249 void
250 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
251                 const struct cifs_tcon *treeCon, int word_count
252                 /* length of fixed section (word count) in two byte units  */)
253 {
254         char *temp = (char *) buffer;
255
256         memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
257
258         buffer->smb_buf_length = cpu_to_be32(
259             (2 * word_count) + sizeof(struct smb_hdr) -
260             4 /*  RFC 1001 length field does not count */  +
261             2 /* for bcc field itself */) ;
262
263         buffer->Protocol[0] = 0xFF;
264         buffer->Protocol[1] = 'S';
265         buffer->Protocol[2] = 'M';
266         buffer->Protocol[3] = 'B';
267         buffer->Command = smb_command;
268         buffer->Flags = 0x00;   /* case sensitive */
269         buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
270         buffer->Pid = cpu_to_le16((__u16)current->tgid);
271         buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
272         if (treeCon) {
273                 buffer->Tid = treeCon->tid;
274                 if (treeCon->ses) {
275                         if (treeCon->ses->capabilities & CAP_UNICODE)
276                                 buffer->Flags2 |= SMBFLG2_UNICODE;
277                         if (treeCon->ses->capabilities & CAP_STATUS32)
278                                 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
279
280                         /* Uid is not converted */
281                         buffer->Uid = treeCon->ses->Suid;
282                         if (treeCon->ses->server)
283                                 buffer->Mid = get_next_mid(treeCon->ses->server);
284                 }
285                 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
286                         buffer->Flags2 |= SMBFLG2_DFS;
287                 if (treeCon->nocase)
288                         buffer->Flags  |= SMBFLG_CASELESS;
289                 if ((treeCon->ses) && (treeCon->ses->server))
290                         if (treeCon->ses->server->sign)
291                                 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
292         }
293
294 /*  endian conversion of flags is now done just before sending */
295         buffer->WordCount = (char) word_count;
296         return;
297 }
298
299 static int
300 check_smb_hdr(struct smb_hdr *smb)
301 {
302         /* does it have the right SMB "signature" ? */
303         if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
304                 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
305                          *(unsigned int *)smb->Protocol);
306                 return 1;
307         }
308
309         /* if it's a response then accept */
310         if (smb->Flags & SMBFLG_RESPONSE)
311                 return 0;
312
313         /* only one valid case where server sends us request */
314         if (smb->Command == SMB_COM_LOCKING_ANDX)
315                 return 0;
316
317         cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
318                  get_mid(smb));
319         return 1;
320 }
321
322 int
323 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
324 {
325         struct smb_hdr *smb = (struct smb_hdr *)buf;
326         __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
327         __u32 clc_len;  /* calculated length */
328         cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
329                  total_read, rfclen);
330
331         /* is this frame too small to even get to a BCC? */
332         if (total_read < 2 + sizeof(struct smb_hdr)) {
333                 if ((total_read >= sizeof(struct smb_hdr) - 1)
334                             && (smb->Status.CifsError != 0)) {
335                         /* it's an error return */
336                         smb->WordCount = 0;
337                         /* some error cases do not return wct and bcc */
338                         return 0;
339                 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
340                                 (smb->WordCount == 0)) {
341                         char *tmp = (char *)smb;
342                         /* Need to work around a bug in two servers here */
343                         /* First, check if the part of bcc they sent was zero */
344                         if (tmp[sizeof(struct smb_hdr)] == 0) {
345                                 /* some servers return only half of bcc
346                                  * on simple responses (wct, bcc both zero)
347                                  * in particular have seen this on
348                                  * ulogoffX and FindClose. This leaves
349                                  * one byte of bcc potentially unitialized
350                                  */
351                                 /* zero rest of bcc */
352                                 tmp[sizeof(struct smb_hdr)+1] = 0;
353                                 return 0;
354                         }
355                         cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
356                 } else {
357                         cifs_dbg(VFS, "Length less than smb header size\n");
358                 }
359                 return -EIO;
360         }
361
362         /* otherwise, there is enough to get to the BCC */
363         if (check_smb_hdr(smb))
364                 return -EIO;
365         clc_len = smbCalcSize(smb);
366
367         if (4 + rfclen != total_read) {
368                 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
369                          rfclen);
370                 return -EIO;
371         }
372
373         if (4 + rfclen != clc_len) {
374                 __u16 mid = get_mid(smb);
375                 /* check if bcc wrapped around for large read responses */
376                 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
377                         /* check if lengths match mod 64K */
378                         if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
379                                 return 0; /* bcc wrapped */
380                 }
381                 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
382                          clc_len, 4 + rfclen, mid);
383
384                 if (4 + rfclen < clc_len) {
385                         cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
386                                  rfclen, mid);
387                         return -EIO;
388                 } else if (rfclen > clc_len + 512) {
389                         /*
390                          * Some servers (Windows XP in particular) send more
391                          * data than the lengths in the SMB packet would
392                          * indicate on certain calls (byte range locks and
393                          * trans2 find first calls in particular). While the
394                          * client can handle such a frame by ignoring the
395                          * trailing data, we choose limit the amount of extra
396                          * data to 512 bytes.
397                          */
398                         cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
399                                  rfclen, mid);
400                         return -EIO;
401                 }
402         }
403         return 0;
404 }
405
406 bool
407 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
408 {
409         struct smb_hdr *buf = (struct smb_hdr *)buffer;
410         struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
411         struct TCP_Server_Info *pserver;
412         struct cifs_ses *ses;
413         struct cifs_tcon *tcon;
414         struct cifsInodeInfo *pCifsInode;
415         struct cifsFileInfo *netfile;
416
417         cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
418         if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
419            (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
420                 struct smb_com_transaction_change_notify_rsp *pSMBr =
421                         (struct smb_com_transaction_change_notify_rsp *)buf;
422                 struct file_notify_information *pnotify;
423                 __u32 data_offset = 0;
424                 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
425
426                 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
427                         data_offset = le32_to_cpu(pSMBr->DataOffset);
428
429                         if (data_offset >
430                             len - sizeof(struct file_notify_information)) {
431                                 cifs_dbg(FYI, "Invalid data_offset %u\n",
432                                          data_offset);
433                                 return true;
434                         }
435                         pnotify = (struct file_notify_information *)
436                                 ((char *)&pSMBr->hdr.Protocol + data_offset);
437                         cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
438                                  pnotify->FileName, pnotify->Action);
439                         /*   cifs_dump_mem("Rcvd notify Data: ",buf,
440                                 sizeof(struct smb_hdr)+60); */
441                         return true;
442                 }
443                 if (pSMBr->hdr.Status.CifsError) {
444                         cifs_dbg(FYI, "notify err 0x%x\n",
445                                  pSMBr->hdr.Status.CifsError);
446                         return true;
447                 }
448                 return false;
449         }
450         if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
451                 return false;
452         if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
453                 /* no sense logging error on invalid handle on oplock
454                    break - harmless race between close request and oplock
455                    break response is expected from time to time writing out
456                    large dirty files cached on the client */
457                 if ((NT_STATUS_INVALID_HANDLE) ==
458                    le32_to_cpu(pSMB->hdr.Status.CifsError)) {
459                         cifs_dbg(FYI, "Invalid handle on oplock break\n");
460                         return true;
461                 } else if (ERRbadfid ==
462                    le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
463                         return true;
464                 } else {
465                         return false; /* on valid oplock brk we get "request" */
466                 }
467         }
468         if (pSMB->hdr.WordCount != 8)
469                 return false;
470
471         cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
472                  pSMB->LockType, pSMB->OplockLevel);
473         if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
474                 return false;
475
476         /* If server is a channel, select the primary channel */
477         pserver = CIFS_SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
478
479         /* look up tcon based on tid & uid */
480         spin_lock(&cifs_tcp_ses_lock);
481         list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
482                 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
483                         if (tcon->tid != buf->Tid)
484                                 continue;
485
486                         cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
487                         spin_lock(&tcon->open_file_lock);
488                         list_for_each_entry(netfile, &tcon->openFileList, tlist) {
489                                 if (pSMB->Fid != netfile->fid.netfid)
490                                         continue;
491
492                                 cifs_dbg(FYI, "file id match, oplock break\n");
493                                 pCifsInode = CIFS_I(d_inode(netfile->dentry));
494
495                                 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
496                                         &pCifsInode->flags);
497
498                                 netfile->oplock_epoch = 0;
499                                 netfile->oplock_level = pSMB->OplockLevel;
500                                 netfile->oplock_break_cancelled = false;
501                                 cifs_queue_oplock_break(netfile);
502
503                                 spin_unlock(&tcon->open_file_lock);
504                                 spin_unlock(&cifs_tcp_ses_lock);
505                                 return true;
506                         }
507                         spin_unlock(&tcon->open_file_lock);
508                         spin_unlock(&cifs_tcp_ses_lock);
509                         cifs_dbg(FYI, "No matching file for oplock break\n");
510                         return true;
511                 }
512         }
513         spin_unlock(&cifs_tcp_ses_lock);
514         cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
515         return true;
516 }
517
518 void
519 dump_smb(void *buf, int smb_buf_length)
520 {
521         if (traceSMB == 0)
522                 return;
523
524         print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
525                        smb_buf_length, true);
526 }
527
528 void
529 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
530 {
531         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
532                 struct cifs_tcon *tcon = NULL;
533
534                 if (cifs_sb->master_tlink)
535                         tcon = cifs_sb_master_tcon(cifs_sb);
536
537                 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
538                 cifs_sb->mnt_cifs_serverino_autodisabled = true;
539                 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
540                          tcon ? tcon->tree_name : "new server");
541                 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
542                 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
543
544         }
545 }
546
547 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
548 {
549         oplock &= 0xF;
550
551         if (oplock == OPLOCK_EXCLUSIVE) {
552                 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
553                 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
554                          &cinode->netfs.inode);
555         } else if (oplock == OPLOCK_READ) {
556                 cinode->oplock = CIFS_CACHE_READ_FLG;
557                 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
558                          &cinode->netfs.inode);
559         } else
560                 cinode->oplock = 0;
561 }
562
563 /*
564  * We wait for oplock breaks to be processed before we attempt to perform
565  * writes.
566  */
567 int cifs_get_writer(struct cifsInodeInfo *cinode)
568 {
569         int rc;
570
571 start:
572         rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
573                          TASK_KILLABLE);
574         if (rc)
575                 return rc;
576
577         spin_lock(&cinode->writers_lock);
578         if (!cinode->writers)
579                 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
580         cinode->writers++;
581         /* Check to see if we have started servicing an oplock break */
582         if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
583                 cinode->writers--;
584                 if (cinode->writers == 0) {
585                         clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
586                         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
587                 }
588                 spin_unlock(&cinode->writers_lock);
589                 goto start;
590         }
591         spin_unlock(&cinode->writers_lock);
592         return 0;
593 }
594
595 void cifs_put_writer(struct cifsInodeInfo *cinode)
596 {
597         spin_lock(&cinode->writers_lock);
598         cinode->writers--;
599         if (cinode->writers == 0) {
600                 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
601                 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
602         }
603         spin_unlock(&cinode->writers_lock);
604 }
605
606 /**
607  * cifs_queue_oplock_break - queue the oplock break handler for cfile
608  * @cfile: The file to break the oplock on
609  *
610  * This function is called from the demultiplex thread when it
611  * receives an oplock break for @cfile.
612  *
613  * Assumes the tcon->open_file_lock is held.
614  * Assumes cfile->file_info_lock is NOT held.
615  */
616 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
617 {
618         /*
619          * Bump the handle refcount now while we hold the
620          * open_file_lock to enforce the validity of it for the oplock
621          * break handler. The matching put is done at the end of the
622          * handler.
623          */
624         cifsFileInfo_get(cfile);
625
626         queue_work(cifsoplockd_wq, &cfile->oplock_break);
627 }
628
629 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
630 {
631         clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
632         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
633 }
634
635 bool
636 backup_cred(struct cifs_sb_info *cifs_sb)
637 {
638         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
639                 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
640                         return true;
641         }
642         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
643                 if (in_group_p(cifs_sb->ctx->backupgid))
644                         return true;
645         }
646
647         return false;
648 }
649
650 void
651 cifs_del_pending_open(struct cifs_pending_open *open)
652 {
653         spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
654         list_del(&open->olist);
655         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
656 }
657
658 void
659 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
660                              struct cifs_pending_open *open)
661 {
662         memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
663         open->oplock = CIFS_OPLOCK_NO_CHANGE;
664         open->tlink = tlink;
665         fid->pending_open = open;
666         list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
667 }
668
669 void
670 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
671                       struct cifs_pending_open *open)
672 {
673         spin_lock(&tlink_tcon(tlink)->open_file_lock);
674         cifs_add_pending_open_locked(fid, tlink, open);
675         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
676 }
677
678 /*
679  * Critical section which runs after acquiring deferred_lock.
680  * As there is no reference count on cifs_deferred_close, pdclose
681  * should not be used outside deferred_lock.
682  */
683 bool
684 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
685 {
686         struct cifs_deferred_close *dclose;
687
688         list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
689                 if ((dclose->netfid == cfile->fid.netfid) &&
690                         (dclose->persistent_fid == cfile->fid.persistent_fid) &&
691                         (dclose->volatile_fid == cfile->fid.volatile_fid)) {
692                         *pdclose = dclose;
693                         return true;
694                 }
695         }
696         return false;
697 }
698
699 /*
700  * Critical section which runs after acquiring deferred_lock.
701  */
702 void
703 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
704 {
705         bool is_deferred = false;
706         struct cifs_deferred_close *pdclose;
707
708         is_deferred = cifs_is_deferred_close(cfile, &pdclose);
709         if (is_deferred) {
710                 kfree(dclose);
711                 return;
712         }
713
714         dclose->tlink = cfile->tlink;
715         dclose->netfid = cfile->fid.netfid;
716         dclose->persistent_fid = cfile->fid.persistent_fid;
717         dclose->volatile_fid = cfile->fid.volatile_fid;
718         list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
719 }
720
721 /*
722  * Critical section which runs after acquiring deferred_lock.
723  */
724 void
725 cifs_del_deferred_close(struct cifsFileInfo *cfile)
726 {
727         bool is_deferred = false;
728         struct cifs_deferred_close *dclose;
729
730         is_deferred = cifs_is_deferred_close(cfile, &dclose);
731         if (!is_deferred)
732                 return;
733         list_del(&dclose->dlist);
734         kfree(dclose);
735 }
736
737 void
738 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
739 {
740         struct cifsFileInfo *cfile = NULL;
741         struct file_list *tmp_list, *tmp_next_list;
742         struct list_head file_head;
743
744         if (cifs_inode == NULL)
745                 return;
746
747         INIT_LIST_HEAD(&file_head);
748         spin_lock(&cifs_inode->open_file_lock);
749         list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
750                 if (delayed_work_pending(&cfile->deferred)) {
751                         if (cancel_delayed_work(&cfile->deferred)) {
752                                 spin_lock(&cifs_inode->deferred_lock);
753                                 cifs_del_deferred_close(cfile);
754                                 spin_unlock(&cifs_inode->deferred_lock);
755
756                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
757                                 if (tmp_list == NULL)
758                                         break;
759                                 tmp_list->cfile = cfile;
760                                 list_add_tail(&tmp_list->list, &file_head);
761                         }
762                 }
763         }
764         spin_unlock(&cifs_inode->open_file_lock);
765
766         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
767                 _cifsFileInfo_put(tmp_list->cfile, false, false);
768                 list_del(&tmp_list->list);
769                 kfree(tmp_list);
770         }
771 }
772
773 void
774 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
775 {
776         struct cifsFileInfo *cfile;
777         struct file_list *tmp_list, *tmp_next_list;
778         struct list_head file_head;
779
780         INIT_LIST_HEAD(&file_head);
781         spin_lock(&tcon->open_file_lock);
782         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
783                 if (delayed_work_pending(&cfile->deferred)) {
784                         if (cancel_delayed_work(&cfile->deferred)) {
785                                 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
786                                 cifs_del_deferred_close(cfile);
787                                 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
788
789                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
790                                 if (tmp_list == NULL)
791                                         break;
792                                 tmp_list->cfile = cfile;
793                                 list_add_tail(&tmp_list->list, &file_head);
794                         }
795                 }
796         }
797         spin_unlock(&tcon->open_file_lock);
798
799         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
800                 _cifsFileInfo_put(tmp_list->cfile, true, false);
801                 list_del(&tmp_list->list);
802                 kfree(tmp_list);
803         }
804 }
805 void
806 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
807 {
808         struct cifsFileInfo *cfile;
809         struct file_list *tmp_list, *tmp_next_list;
810         struct list_head file_head;
811         void *page;
812         const char *full_path;
813
814         INIT_LIST_HEAD(&file_head);
815         page = alloc_dentry_path();
816         spin_lock(&tcon->open_file_lock);
817         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
818                 full_path = build_path_from_dentry(cfile->dentry, page);
819                 if (strstr(full_path, path)) {
820                         if (delayed_work_pending(&cfile->deferred)) {
821                                 if (cancel_delayed_work(&cfile->deferred)) {
822                                         spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
823                                         cifs_del_deferred_close(cfile);
824                                         spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
825
826                                         tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
827                                         if (tmp_list == NULL)
828                                                 break;
829                                         tmp_list->cfile = cfile;
830                                         list_add_tail(&tmp_list->list, &file_head);
831                                 }
832                         }
833                 }
834         }
835         spin_unlock(&tcon->open_file_lock);
836
837         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
838                 _cifsFileInfo_put(tmp_list->cfile, true, false);
839                 list_del(&tmp_list->list);
840                 kfree(tmp_list);
841         }
842         free_dentry_path(page);
843 }
844
845 /* parses DFS referral V3 structure
846  * caller is responsible for freeing target_nodes
847  * returns:
848  * - on success - 0
849  * - on failure - errno
850  */
851 int
852 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
853                     unsigned int *num_of_nodes,
854                     struct dfs_info3_param **target_nodes,
855                     const struct nls_table *nls_codepage, int remap,
856                     const char *searchName, bool is_unicode)
857 {
858         int i, rc = 0;
859         char *data_end;
860         struct dfs_referral_level_3 *ref;
861
862         *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
863
864         if (*num_of_nodes < 1) {
865                 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
866                          *num_of_nodes);
867                 rc = -EINVAL;
868                 goto parse_DFS_referrals_exit;
869         }
870
871         ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
872         if (ref->VersionNumber != cpu_to_le16(3)) {
873                 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
874                          le16_to_cpu(ref->VersionNumber));
875                 rc = -EINVAL;
876                 goto parse_DFS_referrals_exit;
877         }
878
879         /* get the upper boundary of the resp buffer */
880         data_end = (char *)rsp + rsp_size;
881
882         cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
883                  *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
884
885         *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
886                                 GFP_KERNEL);
887         if (*target_nodes == NULL) {
888                 rc = -ENOMEM;
889                 goto parse_DFS_referrals_exit;
890         }
891
892         /* collect necessary data from referrals */
893         for (i = 0; i < *num_of_nodes; i++) {
894                 char *temp;
895                 int max_len;
896                 struct dfs_info3_param *node = (*target_nodes)+i;
897
898                 node->flags = le32_to_cpu(rsp->DFSFlags);
899                 if (is_unicode) {
900                         __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
901                                                 GFP_KERNEL);
902                         if (tmp == NULL) {
903                                 rc = -ENOMEM;
904                                 goto parse_DFS_referrals_exit;
905                         }
906                         cifsConvertToUTF16((__le16 *) tmp, searchName,
907                                            PATH_MAX, nls_codepage, remap);
908                         node->path_consumed = cifs_utf16_bytes(tmp,
909                                         le16_to_cpu(rsp->PathConsumed),
910                                         nls_codepage);
911                         kfree(tmp);
912                 } else
913                         node->path_consumed = le16_to_cpu(rsp->PathConsumed);
914
915                 node->server_type = le16_to_cpu(ref->ServerType);
916                 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
917
918                 /* copy DfsPath */
919                 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
920                 max_len = data_end - temp;
921                 node->path_name = cifs_strndup_from_utf16(temp, max_len,
922                                                 is_unicode, nls_codepage);
923                 if (!node->path_name) {
924                         rc = -ENOMEM;
925                         goto parse_DFS_referrals_exit;
926                 }
927
928                 /* copy link target UNC */
929                 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
930                 max_len = data_end - temp;
931                 node->node_name = cifs_strndup_from_utf16(temp, max_len,
932                                                 is_unicode, nls_codepage);
933                 if (!node->node_name) {
934                         rc = -ENOMEM;
935                         goto parse_DFS_referrals_exit;
936                 }
937
938                 node->ttl = le32_to_cpu(ref->TimeToLive);
939
940                 ref++;
941         }
942
943 parse_DFS_referrals_exit:
944         if (rc) {
945                 free_dfs_info_array(*target_nodes, *num_of_nodes);
946                 *target_nodes = NULL;
947                 *num_of_nodes = 0;
948         }
949         return rc;
950 }
951
952 struct cifs_aio_ctx *
953 cifs_aio_ctx_alloc(void)
954 {
955         struct cifs_aio_ctx *ctx;
956
957         /*
958          * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
959          * to false so that we know when we have to unreference pages within
960          * cifs_aio_ctx_release()
961          */
962         ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
963         if (!ctx)
964                 return NULL;
965
966         INIT_LIST_HEAD(&ctx->list);
967         mutex_init(&ctx->aio_mutex);
968         init_completion(&ctx->done);
969         kref_init(&ctx->refcount);
970         return ctx;
971 }
972
973 void
974 cifs_aio_ctx_release(struct kref *refcount)
975 {
976         struct cifs_aio_ctx *ctx = container_of(refcount,
977                                         struct cifs_aio_ctx, refcount);
978
979         cifsFileInfo_put(ctx->cfile);
980
981         /*
982          * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
983          * which means that iov_iter_extract_pages() was a success and thus
984          * that we may have references or pins on pages that we need to
985          * release.
986          */
987         if (ctx->bv) {
988                 if (ctx->should_dirty || ctx->bv_need_unpin) {
989                         unsigned int i;
990
991                         for (i = 0; i < ctx->nr_pinned_pages; i++) {
992                                 struct page *page = ctx->bv[i].bv_page;
993
994                                 if (ctx->should_dirty)
995                                         set_page_dirty(page);
996                                 if (ctx->bv_need_unpin)
997                                         unpin_user_page(page);
998                         }
999                 }
1000                 kvfree(ctx->bv);
1001         }
1002
1003         kfree(ctx);
1004 }
1005
1006 /**
1007  * cifs_alloc_hash - allocate hash and hash context together
1008  * @name: The name of the crypto hash algo
1009  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1010  *
1011  * The caller has to make sure @sdesc is initialized to either NULL or
1012  * a valid context. It can be freed via cifs_free_hash().
1013  */
1014 int
1015 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1016 {
1017         int rc = 0;
1018         struct crypto_shash *alg = NULL;
1019
1020         if (*sdesc)
1021                 return 0;
1022
1023         alg = crypto_alloc_shash(name, 0, 0);
1024         if (IS_ERR(alg)) {
1025                 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1026                 rc = PTR_ERR(alg);
1027                 *sdesc = NULL;
1028                 return rc;
1029         }
1030
1031         *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1032         if (*sdesc == NULL) {
1033                 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1034                 crypto_free_shash(alg);
1035                 return -ENOMEM;
1036         }
1037
1038         (*sdesc)->tfm = alg;
1039         return 0;
1040 }
1041
1042 /**
1043  * cifs_free_hash - free hash and hash context together
1044  * @sdesc: Where to find the pointer to the hash TFM
1045  *
1046  * Freeing a NULL descriptor is safe.
1047  */
1048 void
1049 cifs_free_hash(struct shash_desc **sdesc)
1050 {
1051         if (unlikely(!sdesc) || !*sdesc)
1052                 return;
1053
1054         if ((*sdesc)->tfm) {
1055                 crypto_free_shash((*sdesc)->tfm);
1056                 (*sdesc)->tfm = NULL;
1057         }
1058
1059         kfree_sensitive(*sdesc);
1060         *sdesc = NULL;
1061 }
1062
1063 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1064 {
1065         const char *end;
1066
1067         /* skip initial slashes */
1068         while (*unc && (*unc == '\\' || *unc == '/'))
1069                 unc++;
1070
1071         end = unc;
1072
1073         while (*end && !(*end == '\\' || *end == '/'))
1074                 end++;
1075
1076         *h = unc;
1077         *len = end - unc;
1078 }
1079
1080 /**
1081  * copy_path_name - copy src path to dst, possibly truncating
1082  * @dst: The destination buffer
1083  * @src: The source name
1084  *
1085  * returns number of bytes written (including trailing nul)
1086  */
1087 int copy_path_name(char *dst, const char *src)
1088 {
1089         int name_len;
1090
1091         /*
1092          * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1093          * will truncate and strlen(dst) will be PATH_MAX-1
1094          */
1095         name_len = strscpy(dst, src, PATH_MAX);
1096         if (WARN_ON_ONCE(name_len < 0))
1097                 name_len = PATH_MAX-1;
1098
1099         /* we count the trailing nul */
1100         name_len++;
1101         return name_len;
1102 }
1103
1104 struct super_cb_data {
1105         void *data;
1106         struct super_block *sb;
1107 };
1108
1109 static void tcp_super_cb(struct super_block *sb, void *arg)
1110 {
1111         struct super_cb_data *sd = arg;
1112         struct TCP_Server_Info *server = sd->data;
1113         struct cifs_sb_info *cifs_sb;
1114         struct cifs_tcon *tcon;
1115
1116         if (sd->sb)
1117                 return;
1118
1119         cifs_sb = CIFS_SB(sb);
1120         tcon = cifs_sb_master_tcon(cifs_sb);
1121         if (tcon->ses->server == server)
1122                 sd->sb = sb;
1123 }
1124
1125 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1126                                             void *data)
1127 {
1128         struct super_cb_data sd = {
1129                 .data = data,
1130                 .sb = NULL,
1131         };
1132         struct file_system_type **fs_type = (struct file_system_type *[]) {
1133                 &cifs_fs_type, &smb3_fs_type, NULL,
1134         };
1135
1136         for (; *fs_type; fs_type++) {
1137                 iterate_supers_type(*fs_type, f, &sd);
1138                 if (sd.sb) {
1139                         /*
1140                          * Grab an active reference in order to prevent automounts (DFS links)
1141                          * of expiring and then freeing up our cifs superblock pointer while
1142                          * we're doing failover.
1143                          */
1144                         cifs_sb_active(sd.sb);
1145                         return sd.sb;
1146                 }
1147         }
1148         return ERR_PTR(-EINVAL);
1149 }
1150
1151 static void __cifs_put_super(struct super_block *sb)
1152 {
1153         if (!IS_ERR_OR_NULL(sb))
1154                 cifs_sb_deactive(sb);
1155 }
1156
1157 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1158 {
1159         return __cifs_get_super(tcp_super_cb, server);
1160 }
1161
1162 void cifs_put_tcp_super(struct super_block *sb)
1163 {
1164         __cifs_put_super(sb);
1165 }
1166
1167 #ifdef CONFIG_CIFS_DFS_UPCALL
1168 int match_target_ip(struct TCP_Server_Info *server,
1169                     const char *share, size_t share_len,
1170                     bool *result)
1171 {
1172         int rc;
1173         char *target;
1174         struct sockaddr_storage ss;
1175
1176         *result = false;
1177
1178         target = kzalloc(share_len + 3, GFP_KERNEL);
1179         if (!target)
1180                 return -ENOMEM;
1181
1182         scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1183
1184         cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1185
1186         rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1187         kfree(target);
1188
1189         if (rc < 0)
1190                 return rc;
1191
1192         spin_lock(&server->srv_lock);
1193         *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1194         spin_unlock(&server->srv_lock);
1195         cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1196         return 0;
1197 }
1198
1199 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1200 {
1201         kfree(cifs_sb->prepath);
1202
1203         if (prefix && *prefix) {
1204                 cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1205                 if (!cifs_sb->prepath)
1206                         return -ENOMEM;
1207
1208                 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1209         } else
1210                 cifs_sb->prepath = NULL;
1211
1212         cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1213         return 0;
1214 }
1215
1216 /*
1217  * Handle weird Windows SMB server behaviour. It responds with
1218  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1219  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1220  * non-ASCII unicode symbols.
1221  */
1222 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1223                                    struct cifs_tcon *tcon,
1224                                    struct cifs_sb_info *cifs_sb,
1225                                    const char *full_path,
1226                                    bool *islink)
1227 {
1228         struct cifs_ses *ses = tcon->ses;
1229         size_t len;
1230         char *path;
1231         char *ref_path;
1232
1233         *islink = false;
1234
1235         /*
1236          * Fast path - skip check when @full_path doesn't have a prefix path to
1237          * look up or tcon is not DFS.
1238          */
1239         if (strlen(full_path) < 2 || !cifs_sb ||
1240             (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1241             !is_tcon_dfs(tcon) || !ses->server->origin_fullpath)
1242                 return 0;
1243
1244         /*
1245          * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1246          * to get a referral to figure out whether it is an DFS link.
1247          */
1248         len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1249         path = kmalloc(len, GFP_KERNEL);
1250         if (!path)
1251                 return -ENOMEM;
1252
1253         scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1254         ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1255                                             cifs_remap(cifs_sb));
1256         kfree(path);
1257
1258         if (IS_ERR(ref_path)) {
1259                 if (PTR_ERR(ref_path) != -EINVAL)
1260                         return PTR_ERR(ref_path);
1261         } else {
1262                 struct dfs_info3_param *refs = NULL;
1263                 int num_refs = 0;
1264
1265                 /*
1266                  * XXX: we are not using dfs_cache_find() here because we might
1267                  * end filling all the DFS cache and thus potentially
1268                  * removing cached DFS targets that the client would eventually
1269                  * need during failover.
1270                  */
1271                 ses = CIFS_DFS_ROOT_SES(ses);
1272                 if (ses->server->ops->get_dfs_refer &&
1273                     !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1274                                                      &num_refs, cifs_sb->local_nls,
1275                                                      cifs_remap(cifs_sb)))
1276                         *islink = refs[0].server_type == DFS_TYPE_LINK;
1277                 free_dfs_info_array(refs, num_refs);
1278                 kfree(ref_path);
1279         }
1280         return 0;
1281 }
1282 #endif
1283
1284 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1285 {
1286         int timeout = 10;
1287         int rc;
1288
1289         spin_lock(&server->srv_lock);
1290         if (server->tcpStatus != CifsNeedReconnect) {
1291                 spin_unlock(&server->srv_lock);
1292                 return 0;
1293         }
1294         timeout *= server->nr_targets;
1295         spin_unlock(&server->srv_lock);
1296
1297         /*
1298          * Give demultiplex thread up to 10 seconds to each target available for
1299          * reconnect -- should be greater than cifs socket timeout which is 7
1300          * seconds.
1301          *
1302          * On "soft" mounts we wait once. Hard mounts keep retrying until
1303          * process is killed or server comes back on-line.
1304          */
1305         do {
1306                 rc = wait_event_interruptible_timeout(server->response_q,
1307                                                       (server->tcpStatus != CifsNeedReconnect),
1308                                                       timeout * HZ);
1309                 if (rc < 0) {
1310                         cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1311                                  __func__);
1312                         return -ERESTARTSYS;
1313                 }
1314
1315                 /* are we still trying to reconnect? */
1316                 spin_lock(&server->srv_lock);
1317                 if (server->tcpStatus != CifsNeedReconnect) {
1318                         spin_unlock(&server->srv_lock);
1319                         return 0;
1320                 }
1321                 spin_unlock(&server->srv_lock);
1322         } while (retry);
1323
1324         cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1325         return -EHOSTDOWN;
1326 }