EDAC/igen6: ecclog_llist can be static
[sfrench/cifs-2.6.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59                                         struct extent_io_tree *dirty_pages,
60                                         int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62                                        struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         blk_status_t status;
77         enum btrfs_wq_endio_type metadata;
78         struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
83 int __init btrfs_end_io_wq_init(void)
84 {
85         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86                                         sizeof(struct btrfs_end_io_wq),
87                                         0,
88                                         SLAB_MEM_SPREAD,
89                                         NULL);
90         if (!btrfs_end_io_wq_cache)
91                 return -ENOMEM;
92         return 0;
93 }
94
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97         kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101 {
102         if (fs_info->csum_shash)
103                 crypto_free_shash(fs_info->csum_shash);
104 }
105
106 /*
107  * async submit bios are used to offload expensive checksumming
108  * onto the worker threads.  They checksum file and metadata bios
109  * just before they are sent down the IO stack.
110  */
111 struct async_submit_bio {
112         void *private_data;
113         struct bio *bio;
114         extent_submit_bio_start_t *submit_bio_start;
115         int mirror_num;
116         /*
117          * bio_offset is optional, can be used if the pages in the bio
118          * can't tell us where in the file the bio should go
119          */
120         u64 bio_offset;
121         struct btrfs_work work;
122         blk_status_t status;
123 };
124
125 /*
126  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
127  * eb, the lockdep key is determined by the btrfs_root it belongs to and
128  * the level the eb occupies in the tree.
129  *
130  * Different roots are used for different purposes and may nest inside each
131  * other and they require separate keysets.  As lockdep keys should be
132  * static, assign keysets according to the purpose of the root as indicated
133  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
134  * roots have separate keysets.
135  *
136  * Lock-nesting across peer nodes is always done with the immediate parent
137  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
138  * subclass to avoid triggering lockdep warning in such cases.
139  *
140  * The key is set by the readpage_end_io_hook after the buffer has passed
141  * csum validation but before the pages are unlocked.  It is also set by
142  * btrfs_init_new_buffer on freshly allocated blocks.
143  *
144  * We also add a check to make sure the highest level of the tree is the
145  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
146  * needs update as well.
147  */
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 # if BTRFS_MAX_LEVEL != 8
150 #  error
151 # endif
152
153 static struct btrfs_lockdep_keyset {
154         u64                     id;             /* root objectid */
155         const char              *name_stem;     /* lock name stem */
156         char                    names[BTRFS_MAX_LEVEL + 1][20];
157         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
158 } btrfs_lockdep_keysets[] = {
159         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
160         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
161         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
162         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
163         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
164         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
165         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
166         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
167         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
168         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
169         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
170         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
171         { .id = 0,                              .name_stem = "tree"     },
172 };
173
174 void __init btrfs_init_lockdep(void)
175 {
176         int i, j;
177
178         /* initialize lockdep class names */
179         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
180                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
181
182                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
183                         snprintf(ks->names[j], sizeof(ks->names[j]),
184                                  "btrfs-%s-%02d", ks->name_stem, j);
185         }
186 }
187
188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189                                     int level)
190 {
191         struct btrfs_lockdep_keyset *ks;
192
193         BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195         /* find the matching keyset, id 0 is the default entry */
196         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197                 if (ks->id == objectid)
198                         break;
199
200         lockdep_set_class_and_name(&eb->lock,
201                                    &ks->keys[level], ks->names[level]);
202 }
203
204 #endif
205
206 /*
207  * Compute the csum of a btree block and store the result to provided buffer.
208  */
209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211         struct btrfs_fs_info *fs_info = buf->fs_info;
212         const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
213         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214         char *kaddr;
215         int i;
216
217         shash->tfm = fs_info->csum_shash;
218         crypto_shash_init(shash);
219         kaddr = page_address(buf->pages[0]);
220         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221                             PAGE_SIZE - BTRFS_CSUM_SIZE);
222
223         for (i = 1; i < num_pages; i++) {
224                 kaddr = page_address(buf->pages[i]);
225                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
226         }
227         memset(result, 0, BTRFS_CSUM_SIZE);
228         crypto_shash_final(shash, result);
229 }
230
231 /*
232  * we can't consider a given block up to date unless the transid of the
233  * block matches the transid in the parent node's pointer.  This is how we
234  * detect blocks that either didn't get written at all or got written
235  * in the wrong place.
236  */
237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238                                  struct extent_buffer *eb, u64 parent_transid,
239                                  int atomic)
240 {
241         struct extent_state *cached_state = NULL;
242         int ret;
243         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244
245         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246                 return 0;
247
248         if (atomic)
249                 return -EAGAIN;
250
251         if (need_lock) {
252                 btrfs_tree_read_lock(eb);
253                 btrfs_set_lock_blocking_read(eb);
254         }
255
256         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
257                          &cached_state);
258         if (extent_buffer_uptodate(eb) &&
259             btrfs_header_generation(eb) == parent_transid) {
260                 ret = 0;
261                 goto out;
262         }
263         btrfs_err_rl(eb->fs_info,
264                 "parent transid verify failed on %llu wanted %llu found %llu",
265                         eb->start,
266                         parent_transid, btrfs_header_generation(eb));
267         ret = 1;
268
269         /*
270          * Things reading via commit roots that don't have normal protection,
271          * like send, can have a really old block in cache that may point at a
272          * block that has been freed and re-allocated.  So don't clear uptodate
273          * if we find an eb that is under IO (dirty/writeback) because we could
274          * end up reading in the stale data and then writing it back out and
275          * making everybody very sad.
276          */
277         if (!extent_buffer_under_io(eb))
278                 clear_extent_buffer_uptodate(eb);
279 out:
280         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
281                              &cached_state);
282         if (need_lock)
283                 btrfs_tree_read_unlock_blocking(eb);
284         return ret;
285 }
286
287 static bool btrfs_supported_super_csum(u16 csum_type)
288 {
289         switch (csum_type) {
290         case BTRFS_CSUM_TYPE_CRC32:
291         case BTRFS_CSUM_TYPE_XXHASH:
292         case BTRFS_CSUM_TYPE_SHA256:
293         case BTRFS_CSUM_TYPE_BLAKE2:
294                 return true;
295         default:
296                 return false;
297         }
298 }
299
300 /*
301  * Return 0 if the superblock checksum type matches the checksum value of that
302  * algorithm. Pass the raw disk superblock data.
303  */
304 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305                                   char *raw_disk_sb)
306 {
307         struct btrfs_super_block *disk_sb =
308                 (struct btrfs_super_block *)raw_disk_sb;
309         char result[BTRFS_CSUM_SIZE];
310         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
311
312         shash->tfm = fs_info->csum_shash;
313
314         /*
315          * The super_block structure does not span the whole
316          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317          * filled with zeros and is included in the checksum.
318          */
319         crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
321
322         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
323                 return 1;
324
325         return 0;
326 }
327
328 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329                            struct btrfs_key *first_key, u64 parent_transid)
330 {
331         struct btrfs_fs_info *fs_info = eb->fs_info;
332         int found_level;
333         struct btrfs_key found_key;
334         int ret;
335
336         found_level = btrfs_header_level(eb);
337         if (found_level != level) {
338                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339                      KERN_ERR "BTRFS: tree level check failed\n");
340                 btrfs_err(fs_info,
341 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342                           eb->start, level, found_level);
343                 return -EIO;
344         }
345
346         if (!first_key)
347                 return 0;
348
349         /*
350          * For live tree block (new tree blocks in current transaction),
351          * we need proper lock context to avoid race, which is impossible here.
352          * So we only checks tree blocks which is read from disk, whose
353          * generation <= fs_info->last_trans_committed.
354          */
355         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356                 return 0;
357
358         /* We have @first_key, so this @eb must have at least one item */
359         if (btrfs_header_nritems(eb) == 0) {
360                 btrfs_err(fs_info,
361                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362                           eb->start);
363                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364                 return -EUCLEAN;
365         }
366
367         if (found_level)
368                 btrfs_node_key_to_cpu(eb, &found_key, 0);
369         else
370                 btrfs_item_key_to_cpu(eb, &found_key, 0);
371         ret = btrfs_comp_cpu_keys(first_key, &found_key);
372
373         if (ret) {
374                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375                      KERN_ERR "BTRFS: tree first key check failed\n");
376                 btrfs_err(fs_info,
377 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378                           eb->start, parent_transid, first_key->objectid,
379                           first_key->type, first_key->offset,
380                           found_key.objectid, found_key.type,
381                           found_key.offset);
382         }
383         return ret;
384 }
385
386 /*
387  * helper to read a given tree block, doing retries as required when
388  * the checksums don't match and we have alternate mirrors to try.
389  *
390  * @parent_transid:     expected transid, skip check if 0
391  * @level:              expected level, mandatory check
392  * @first_key:          expected key of first slot, skip check if NULL
393  */
394 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
395                                           u64 parent_transid, int level,
396                                           struct btrfs_key *first_key)
397 {
398         struct btrfs_fs_info *fs_info = eb->fs_info;
399         struct extent_io_tree *io_tree;
400         int failed = 0;
401         int ret;
402         int num_copies = 0;
403         int mirror_num = 0;
404         int failed_mirror = 0;
405
406         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
407         while (1) {
408                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
409                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
410                 if (!ret) {
411                         if (verify_parent_transid(io_tree, eb,
412                                                    parent_transid, 0))
413                                 ret = -EIO;
414                         else if (btrfs_verify_level_key(eb, level,
415                                                 first_key, parent_transid))
416                                 ret = -EUCLEAN;
417                         else
418                                 break;
419                 }
420
421                 num_copies = btrfs_num_copies(fs_info,
422                                               eb->start, eb->len);
423                 if (num_copies == 1)
424                         break;
425
426                 if (!failed_mirror) {
427                         failed = 1;
428                         failed_mirror = eb->read_mirror;
429                 }
430
431                 mirror_num++;
432                 if (mirror_num == failed_mirror)
433                         mirror_num++;
434
435                 if (mirror_num > num_copies)
436                         break;
437         }
438
439         if (failed && !ret && failed_mirror)
440                 btrfs_repair_eb_io_failure(eb, failed_mirror);
441
442         return ret;
443 }
444
445 /*
446  * checksum a dirty tree block before IO.  This has extra checks to make sure
447  * we only fill in the checksum field in the first page of a multi-page block
448  */
449
450 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
451 {
452         u64 start = page_offset(page);
453         u64 found_start;
454         u8 result[BTRFS_CSUM_SIZE];
455         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
456         struct extent_buffer *eb;
457         int ret;
458
459         eb = (struct extent_buffer *)page->private;
460         if (page != eb->pages[0])
461                 return 0;
462
463         found_start = btrfs_header_bytenr(eb);
464         /*
465          * Please do not consolidate these warnings into a single if.
466          * It is useful to know what went wrong.
467          */
468         if (WARN_ON(found_start != start))
469                 return -EUCLEAN;
470         if (WARN_ON(!PageUptodate(page)))
471                 return -EUCLEAN;
472
473         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
474                                     offsetof(struct btrfs_header, fsid),
475                                     BTRFS_FSID_SIZE) == 0);
476
477         csum_tree_block(eb, result);
478
479         if (btrfs_header_level(eb))
480                 ret = btrfs_check_node(eb);
481         else
482                 ret = btrfs_check_leaf_full(eb);
483
484         if (ret < 0) {
485                 btrfs_print_tree(eb, 0);
486                 btrfs_err(fs_info,
487                 "block=%llu write time tree block corruption detected",
488                           eb->start);
489                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
490                 return ret;
491         }
492         write_extent_buffer(eb, result, 0, csum_size);
493
494         return 0;
495 }
496
497 static int check_tree_block_fsid(struct extent_buffer *eb)
498 {
499         struct btrfs_fs_info *fs_info = eb->fs_info;
500         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
501         u8 fsid[BTRFS_FSID_SIZE];
502         u8 *metadata_uuid;
503
504         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505                            BTRFS_FSID_SIZE);
506         /*
507          * Checking the incompat flag is only valid for the current fs. For
508          * seed devices it's forbidden to have their uuid changed so reading
509          * ->fsid in this case is fine
510          */
511         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512                 metadata_uuid = fs_devices->metadata_uuid;
513         else
514                 metadata_uuid = fs_devices->fsid;
515
516         if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517                 return 0;
518
519         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521                         return 0;
522
523         return 1;
524 }
525
526 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527                                    struct page *page, u64 start, u64 end,
528                                    int mirror)
529 {
530         u64 found_start;
531         int found_level;
532         struct extent_buffer *eb;
533         struct btrfs_fs_info *fs_info;
534         u16 csum_size;
535         int ret = 0;
536         u8 result[BTRFS_CSUM_SIZE];
537         int reads_done;
538
539         if (!page->private)
540                 goto out;
541
542         eb = (struct extent_buffer *)page->private;
543         fs_info = eb->fs_info;
544         csum_size = btrfs_super_csum_size(fs_info->super_copy);
545
546         /* the pending IO might have been the only thing that kept this buffer
547          * in memory.  Make sure we have a ref for all this other checks
548          */
549         atomic_inc(&eb->refs);
550
551         reads_done = atomic_dec_and_test(&eb->io_pages);
552         if (!reads_done)
553                 goto err;
554
555         eb->read_mirror = mirror;
556         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557                 ret = -EIO;
558                 goto err;
559         }
560
561         found_start = btrfs_header_bytenr(eb);
562         if (found_start != eb->start) {
563                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564                              eb->start, found_start);
565                 ret = -EIO;
566                 goto err;
567         }
568         if (check_tree_block_fsid(eb)) {
569                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
570                              eb->start);
571                 ret = -EIO;
572                 goto err;
573         }
574         found_level = btrfs_header_level(eb);
575         if (found_level >= BTRFS_MAX_LEVEL) {
576                 btrfs_err(fs_info, "bad tree block level %d on %llu",
577                           (int)btrfs_header_level(eb), eb->start);
578                 ret = -EIO;
579                 goto err;
580         }
581
582         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
583                                        eb, found_level);
584
585         csum_tree_block(eb, result);
586
587         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
588                 u8 val[BTRFS_CSUM_SIZE] = { 0 };
589
590                 read_extent_buffer(eb, &val, 0, csum_size);
591                 btrfs_warn_rl(fs_info,
592         "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
593                               fs_info->sb->s_id, eb->start,
594                               CSUM_FMT_VALUE(csum_size, val),
595                               CSUM_FMT_VALUE(csum_size, result),
596                               btrfs_header_level(eb));
597                 ret = -EUCLEAN;
598                 goto err;
599         }
600
601         /*
602          * If this is a leaf block and it is corrupt, set the corrupt bit so
603          * that we don't try and read the other copies of this block, just
604          * return -EIO.
605          */
606         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
607                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
608                 ret = -EIO;
609         }
610
611         if (found_level > 0 && btrfs_check_node(eb))
612                 ret = -EIO;
613
614         if (!ret)
615                 set_extent_buffer_uptodate(eb);
616         else
617                 btrfs_err(fs_info,
618                           "block=%llu read time tree block corruption detected",
619                           eb->start);
620 err:
621         if (reads_done &&
622             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
623                 btree_readahead_hook(eb, ret);
624
625         if (ret) {
626                 /*
627                  * our io error hook is going to dec the io pages
628                  * again, we have to make sure it has something
629                  * to decrement
630                  */
631                 atomic_inc(&eb->io_pages);
632                 clear_extent_buffer_uptodate(eb);
633         }
634         free_extent_buffer(eb);
635 out:
636         return ret;
637 }
638
639 static void end_workqueue_bio(struct bio *bio)
640 {
641         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
642         struct btrfs_fs_info *fs_info;
643         struct btrfs_workqueue *wq;
644
645         fs_info = end_io_wq->info;
646         end_io_wq->status = bio->bi_status;
647
648         if (bio_op(bio) == REQ_OP_WRITE) {
649                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
650                         wq = fs_info->endio_meta_write_workers;
651                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
652                         wq = fs_info->endio_freespace_worker;
653                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
654                         wq = fs_info->endio_raid56_workers;
655                 else
656                         wq = fs_info->endio_write_workers;
657         } else {
658                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
659                         wq = fs_info->endio_raid56_workers;
660                 else if (end_io_wq->metadata)
661                         wq = fs_info->endio_meta_workers;
662                 else
663                         wq = fs_info->endio_workers;
664         }
665
666         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
667         btrfs_queue_work(wq, &end_io_wq->work);
668 }
669
670 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
671                         enum btrfs_wq_endio_type metadata)
672 {
673         struct btrfs_end_io_wq *end_io_wq;
674
675         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
676         if (!end_io_wq)
677                 return BLK_STS_RESOURCE;
678
679         end_io_wq->private = bio->bi_private;
680         end_io_wq->end_io = bio->bi_end_io;
681         end_io_wq->info = info;
682         end_io_wq->status = 0;
683         end_io_wq->bio = bio;
684         end_io_wq->metadata = metadata;
685
686         bio->bi_private = end_io_wq;
687         bio->bi_end_io = end_workqueue_bio;
688         return 0;
689 }
690
691 static void run_one_async_start(struct btrfs_work *work)
692 {
693         struct async_submit_bio *async;
694         blk_status_t ret;
695
696         async = container_of(work, struct  async_submit_bio, work);
697         ret = async->submit_bio_start(async->private_data, async->bio,
698                                       async->bio_offset);
699         if (ret)
700                 async->status = ret;
701 }
702
703 /*
704  * In order to insert checksums into the metadata in large chunks, we wait
705  * until bio submission time.   All the pages in the bio are checksummed and
706  * sums are attached onto the ordered extent record.
707  *
708  * At IO completion time the csums attached on the ordered extent record are
709  * inserted into the tree.
710  */
711 static void run_one_async_done(struct btrfs_work *work)
712 {
713         struct async_submit_bio *async;
714         struct inode *inode;
715         blk_status_t ret;
716
717         async = container_of(work, struct  async_submit_bio, work);
718         inode = async->private_data;
719
720         /* If an error occurred we just want to clean up the bio and move on */
721         if (async->status) {
722                 async->bio->bi_status = async->status;
723                 bio_endio(async->bio);
724                 return;
725         }
726
727         /*
728          * All of the bios that pass through here are from async helpers.
729          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
730          * This changes nothing when cgroups aren't in use.
731          */
732         async->bio->bi_opf |= REQ_CGROUP_PUNT;
733         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
734         if (ret) {
735                 async->bio->bi_status = ret;
736                 bio_endio(async->bio);
737         }
738 }
739
740 static void run_one_async_free(struct btrfs_work *work)
741 {
742         struct async_submit_bio *async;
743
744         async = container_of(work, struct  async_submit_bio, work);
745         kfree(async);
746 }
747
748 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
749                                  int mirror_num, unsigned long bio_flags,
750                                  u64 bio_offset, void *private_data,
751                                  extent_submit_bio_start_t *submit_bio_start)
752 {
753         struct async_submit_bio *async;
754
755         async = kmalloc(sizeof(*async), GFP_NOFS);
756         if (!async)
757                 return BLK_STS_RESOURCE;
758
759         async->private_data = private_data;
760         async->bio = bio;
761         async->mirror_num = mirror_num;
762         async->submit_bio_start = submit_bio_start;
763
764         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
765                         run_one_async_free);
766
767         async->bio_offset = bio_offset;
768
769         async->status = 0;
770
771         if (op_is_sync(bio->bi_opf))
772                 btrfs_set_work_high_priority(&async->work);
773
774         btrfs_queue_work(fs_info->workers, &async->work);
775         return 0;
776 }
777
778 static blk_status_t btree_csum_one_bio(struct bio *bio)
779 {
780         struct bio_vec *bvec;
781         struct btrfs_root *root;
782         int ret = 0;
783         struct bvec_iter_all iter_all;
784
785         ASSERT(!bio_flagged(bio, BIO_CLONED));
786         bio_for_each_segment_all(bvec, bio, iter_all) {
787                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
788                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
789                 if (ret)
790                         break;
791         }
792
793         return errno_to_blk_status(ret);
794 }
795
796 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
797                                              u64 bio_offset)
798 {
799         /*
800          * when we're called for a write, we're already in the async
801          * submission context.  Just jump into btrfs_map_bio
802          */
803         return btree_csum_one_bio(bio);
804 }
805
806 static int check_async_write(struct btrfs_fs_info *fs_info,
807                              struct btrfs_inode *bi)
808 {
809         if (atomic_read(&bi->sync_writers))
810                 return 0;
811         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
812                 return 0;
813         return 1;
814 }
815
816 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817                                        int mirror_num, unsigned long bio_flags)
818 {
819         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
820         int async = check_async_write(fs_info, BTRFS_I(inode));
821         blk_status_t ret;
822
823         if (bio_op(bio) != REQ_OP_WRITE) {
824                 /*
825                  * called for a read, do the setup so that checksum validation
826                  * can happen in the async kernel threads
827                  */
828                 ret = btrfs_bio_wq_end_io(fs_info, bio,
829                                           BTRFS_WQ_ENDIO_METADATA);
830                 if (ret)
831                         goto out_w_error;
832                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
833         } else if (!async) {
834                 ret = btree_csum_one_bio(bio);
835                 if (ret)
836                         goto out_w_error;
837                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
838         } else {
839                 /*
840                  * kthread helpers are used to submit writes so that
841                  * checksumming can happen in parallel across all CPUs
842                  */
843                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
844                                           0, inode, btree_submit_bio_start);
845         }
846
847         if (ret)
848                 goto out_w_error;
849         return 0;
850
851 out_w_error:
852         bio->bi_status = ret;
853         bio_endio(bio);
854         return ret;
855 }
856
857 #ifdef CONFIG_MIGRATION
858 static int btree_migratepage(struct address_space *mapping,
859                         struct page *newpage, struct page *page,
860                         enum migrate_mode mode)
861 {
862         /*
863          * we can't safely write a btree page from here,
864          * we haven't done the locking hook
865          */
866         if (PageDirty(page))
867                 return -EAGAIN;
868         /*
869          * Buffers may be managed in a filesystem specific way.
870          * We must have no buffers or drop them.
871          */
872         if (page_has_private(page) &&
873             !try_to_release_page(page, GFP_KERNEL))
874                 return -EAGAIN;
875         return migrate_page(mapping, newpage, page, mode);
876 }
877 #endif
878
879
880 static int btree_writepages(struct address_space *mapping,
881                             struct writeback_control *wbc)
882 {
883         struct btrfs_fs_info *fs_info;
884         int ret;
885
886         if (wbc->sync_mode == WB_SYNC_NONE) {
887
888                 if (wbc->for_kupdate)
889                         return 0;
890
891                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
892                 /* this is a bit racy, but that's ok */
893                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894                                              BTRFS_DIRTY_METADATA_THRESH,
895                                              fs_info->dirty_metadata_batch);
896                 if (ret < 0)
897                         return 0;
898         }
899         return btree_write_cache_pages(mapping, wbc);
900 }
901
902 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
903 {
904         if (PageWriteback(page) || PageDirty(page))
905                 return 0;
906
907         return try_release_extent_buffer(page);
908 }
909
910 static void btree_invalidatepage(struct page *page, unsigned int offset,
911                                  unsigned int length)
912 {
913         struct extent_io_tree *tree;
914         tree = &BTRFS_I(page->mapping->host)->io_tree;
915         extent_invalidatepage(tree, page, offset);
916         btree_releasepage(page, GFP_NOFS);
917         if (PagePrivate(page)) {
918                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919                            "page private not zero on page %llu",
920                            (unsigned long long)page_offset(page));
921                 detach_page_private(page);
922         }
923 }
924
925 static int btree_set_page_dirty(struct page *page)
926 {
927 #ifdef DEBUG
928         struct extent_buffer *eb;
929
930         BUG_ON(!PagePrivate(page));
931         eb = (struct extent_buffer *)page->private;
932         BUG_ON(!eb);
933         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934         BUG_ON(!atomic_read(&eb->refs));
935         btrfs_assert_tree_locked(eb);
936 #endif
937         return __set_page_dirty_nobuffers(page);
938 }
939
940 static const struct address_space_operations btree_aops = {
941         .writepages     = btree_writepages,
942         .releasepage    = btree_releasepage,
943         .invalidatepage = btree_invalidatepage,
944 #ifdef CONFIG_MIGRATION
945         .migratepage    = btree_migratepage,
946 #endif
947         .set_page_dirty = btree_set_page_dirty,
948 };
949
950 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
951 {
952         struct extent_buffer *buf = NULL;
953         int ret;
954
955         buf = btrfs_find_create_tree_block(fs_info, bytenr);
956         if (IS_ERR(buf))
957                 return;
958
959         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
960         if (ret < 0)
961                 free_extent_buffer_stale(buf);
962         else
963                 free_extent_buffer(buf);
964 }
965
966 struct extent_buffer *btrfs_find_create_tree_block(
967                                                 struct btrfs_fs_info *fs_info,
968                                                 u64 bytenr)
969 {
970         if (btrfs_is_testing(fs_info))
971                 return alloc_test_extent_buffer(fs_info, bytenr);
972         return alloc_extent_buffer(fs_info, bytenr);
973 }
974
975 /*
976  * Read tree block at logical address @bytenr and do variant basic but critical
977  * verification.
978  *
979  * @parent_transid:     expected transid of this tree block, skip check if 0
980  * @level:              expected level, mandatory check
981  * @first_key:          expected key in slot 0, skip check if NULL
982  */
983 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
984                                       u64 parent_transid, int level,
985                                       struct btrfs_key *first_key)
986 {
987         struct extent_buffer *buf = NULL;
988         int ret;
989
990         buf = btrfs_find_create_tree_block(fs_info, bytenr);
991         if (IS_ERR(buf))
992                 return buf;
993
994         ret = btree_read_extent_buffer_pages(buf, parent_transid,
995                                              level, first_key);
996         if (ret) {
997                 free_extent_buffer_stale(buf);
998                 return ERR_PTR(ret);
999         }
1000         return buf;
1001
1002 }
1003
1004 void btrfs_clean_tree_block(struct extent_buffer *buf)
1005 {
1006         struct btrfs_fs_info *fs_info = buf->fs_info;
1007         if (btrfs_header_generation(buf) ==
1008             fs_info->running_transaction->transid) {
1009                 btrfs_assert_tree_locked(buf);
1010
1011                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1012                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013                                                  -buf->len,
1014                                                  fs_info->dirty_metadata_batch);
1015                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1016                         btrfs_set_lock_blocking_write(buf);
1017                         clear_extent_buffer_dirty(buf);
1018                 }
1019         }
1020 }
1021
1022 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1023                          u64 objectid)
1024 {
1025         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1026         root->fs_info = fs_info;
1027         root->node = NULL;
1028         root->commit_root = NULL;
1029         root->state = 0;
1030         root->orphan_cleanup_state = 0;
1031
1032         root->last_trans = 0;
1033         root->highest_objectid = 0;
1034         root->nr_delalloc_inodes = 0;
1035         root->nr_ordered_extents = 0;
1036         root->inode_tree = RB_ROOT;
1037         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1038         root->block_rsv = NULL;
1039
1040         INIT_LIST_HEAD(&root->dirty_list);
1041         INIT_LIST_HEAD(&root->root_list);
1042         INIT_LIST_HEAD(&root->delalloc_inodes);
1043         INIT_LIST_HEAD(&root->delalloc_root);
1044         INIT_LIST_HEAD(&root->ordered_extents);
1045         INIT_LIST_HEAD(&root->ordered_root);
1046         INIT_LIST_HEAD(&root->reloc_dirty_list);
1047         INIT_LIST_HEAD(&root->logged_list[0]);
1048         INIT_LIST_HEAD(&root->logged_list[1]);
1049         spin_lock_init(&root->inode_lock);
1050         spin_lock_init(&root->delalloc_lock);
1051         spin_lock_init(&root->ordered_extent_lock);
1052         spin_lock_init(&root->accounting_lock);
1053         spin_lock_init(&root->log_extents_lock[0]);
1054         spin_lock_init(&root->log_extents_lock[1]);
1055         spin_lock_init(&root->qgroup_meta_rsv_lock);
1056         mutex_init(&root->objectid_mutex);
1057         mutex_init(&root->log_mutex);
1058         mutex_init(&root->ordered_extent_mutex);
1059         mutex_init(&root->delalloc_mutex);
1060         init_waitqueue_head(&root->qgroup_flush_wait);
1061         init_waitqueue_head(&root->log_writer_wait);
1062         init_waitqueue_head(&root->log_commit_wait[0]);
1063         init_waitqueue_head(&root->log_commit_wait[1]);
1064         INIT_LIST_HEAD(&root->log_ctxs[0]);
1065         INIT_LIST_HEAD(&root->log_ctxs[1]);
1066         atomic_set(&root->log_commit[0], 0);
1067         atomic_set(&root->log_commit[1], 0);
1068         atomic_set(&root->log_writers, 0);
1069         atomic_set(&root->log_batch, 0);
1070         refcount_set(&root->refs, 1);
1071         atomic_set(&root->snapshot_force_cow, 0);
1072         atomic_set(&root->nr_swapfiles, 0);
1073         root->log_transid = 0;
1074         root->log_transid_committed = -1;
1075         root->last_log_commit = 0;
1076         if (!dummy) {
1077                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1079                 extent_io_tree_init(fs_info, &root->log_csum_range,
1080                                     IO_TREE_LOG_CSUM_RANGE, NULL);
1081         }
1082
1083         memset(&root->root_key, 0, sizeof(root->root_key));
1084         memset(&root->root_item, 0, sizeof(root->root_item));
1085         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1086         root->root_key.objectid = objectid;
1087         root->anon_dev = 0;
1088
1089         spin_lock_init(&root->root_item_lock);
1090         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1091 #ifdef CONFIG_BTRFS_DEBUG
1092         INIT_LIST_HEAD(&root->leak_list);
1093         spin_lock(&fs_info->fs_roots_radix_lock);
1094         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095         spin_unlock(&fs_info->fs_roots_radix_lock);
1096 #endif
1097 }
1098
1099 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1100                                            u64 objectid, gfp_t flags)
1101 {
1102         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1103         if (root)
1104                 __setup_root(root, fs_info, objectid);
1105         return root;
1106 }
1107
1108 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109 /* Should only be used by the testing infrastructure */
1110 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1111 {
1112         struct btrfs_root *root;
1113
1114         if (!fs_info)
1115                 return ERR_PTR(-EINVAL);
1116
1117         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1118         if (!root)
1119                 return ERR_PTR(-ENOMEM);
1120
1121         /* We don't use the stripesize in selftest, set it as sectorsize */
1122         root->alloc_bytenr = 0;
1123
1124         return root;
1125 }
1126 #endif
1127
1128 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1129                                      u64 objectid)
1130 {
1131         struct btrfs_fs_info *fs_info = trans->fs_info;
1132         struct extent_buffer *leaf;
1133         struct btrfs_root *tree_root = fs_info->tree_root;
1134         struct btrfs_root *root;
1135         struct btrfs_key key;
1136         unsigned int nofs_flag;
1137         int ret = 0;
1138
1139         /*
1140          * We're holding a transaction handle, so use a NOFS memory allocation
1141          * context to avoid deadlock if reclaim happens.
1142          */
1143         nofs_flag = memalloc_nofs_save();
1144         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1145         memalloc_nofs_restore(nofs_flag);
1146         if (!root)
1147                 return ERR_PTR(-ENOMEM);
1148
1149         root->root_key.objectid = objectid;
1150         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151         root->root_key.offset = 0;
1152
1153         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154                                       BTRFS_NESTING_NORMAL);
1155         if (IS_ERR(leaf)) {
1156                 ret = PTR_ERR(leaf);
1157                 leaf = NULL;
1158                 goto fail;
1159         }
1160
1161         root->node = leaf;
1162         btrfs_mark_buffer_dirty(leaf);
1163
1164         root->commit_root = btrfs_root_node(root);
1165         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1166
1167         root->root_item.flags = 0;
1168         root->root_item.byte_limit = 0;
1169         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170         btrfs_set_root_generation(&root->root_item, trans->transid);
1171         btrfs_set_root_level(&root->root_item, 0);
1172         btrfs_set_root_refs(&root->root_item, 1);
1173         btrfs_set_root_used(&root->root_item, leaf->len);
1174         btrfs_set_root_last_snapshot(&root->root_item, 0);
1175         btrfs_set_root_dirid(&root->root_item, 0);
1176         if (is_fstree(objectid))
1177                 generate_random_guid(root->root_item.uuid);
1178         else
1179                 export_guid(root->root_item.uuid, &guid_null);
1180         root->root_item.drop_level = 0;
1181
1182         key.objectid = objectid;
1183         key.type = BTRFS_ROOT_ITEM_KEY;
1184         key.offset = 0;
1185         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1186         if (ret)
1187                 goto fail;
1188
1189         btrfs_tree_unlock(leaf);
1190
1191         return root;
1192
1193 fail:
1194         if (leaf)
1195                 btrfs_tree_unlock(leaf);
1196         btrfs_put_root(root);
1197
1198         return ERR_PTR(ret);
1199 }
1200
1201 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202                                          struct btrfs_fs_info *fs_info)
1203 {
1204         struct btrfs_root *root;
1205         struct extent_buffer *leaf;
1206
1207         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1208         if (!root)
1209                 return ERR_PTR(-ENOMEM);
1210
1211         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1214
1215         /*
1216          * DON'T set SHAREABLE bit for log trees.
1217          *
1218          * Log trees are not exposed to user space thus can't be snapshotted,
1219          * and they go away before a real commit is actually done.
1220          *
1221          * They do store pointers to file data extents, and those reference
1222          * counts still get updated (along with back refs to the log tree).
1223          */
1224
1225         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1226                         NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1227         if (IS_ERR(leaf)) {
1228                 btrfs_put_root(root);
1229                 return ERR_CAST(leaf);
1230         }
1231
1232         root->node = leaf;
1233
1234         btrfs_mark_buffer_dirty(root->node);
1235         btrfs_tree_unlock(root->node);
1236         return root;
1237 }
1238
1239 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240                              struct btrfs_fs_info *fs_info)
1241 {
1242         struct btrfs_root *log_root;
1243
1244         log_root = alloc_log_tree(trans, fs_info);
1245         if (IS_ERR(log_root))
1246                 return PTR_ERR(log_root);
1247         WARN_ON(fs_info->log_root_tree);
1248         fs_info->log_root_tree = log_root;
1249         return 0;
1250 }
1251
1252 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253                        struct btrfs_root *root)
1254 {
1255         struct btrfs_fs_info *fs_info = root->fs_info;
1256         struct btrfs_root *log_root;
1257         struct btrfs_inode_item *inode_item;
1258
1259         log_root = alloc_log_tree(trans, fs_info);
1260         if (IS_ERR(log_root))
1261                 return PTR_ERR(log_root);
1262
1263         log_root->last_trans = trans->transid;
1264         log_root->root_key.offset = root->root_key.objectid;
1265
1266         inode_item = &log_root->root_item.inode;
1267         btrfs_set_stack_inode_generation(inode_item, 1);
1268         btrfs_set_stack_inode_size(inode_item, 3);
1269         btrfs_set_stack_inode_nlink(inode_item, 1);
1270         btrfs_set_stack_inode_nbytes(inode_item,
1271                                      fs_info->nodesize);
1272         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1273
1274         btrfs_set_root_node(&log_root->root_item, log_root->node);
1275
1276         WARN_ON(root->log_root);
1277         root->log_root = log_root;
1278         root->log_transid = 0;
1279         root->log_transid_committed = -1;
1280         root->last_log_commit = 0;
1281         return 0;
1282 }
1283
1284 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1285                                         struct btrfs_key *key)
1286 {
1287         struct btrfs_root *root;
1288         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1289         struct btrfs_path *path;
1290         u64 generation;
1291         int ret;
1292         int level;
1293
1294         path = btrfs_alloc_path();
1295         if (!path)
1296                 return ERR_PTR(-ENOMEM);
1297
1298         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1299         if (!root) {
1300                 ret = -ENOMEM;
1301                 goto alloc_fail;
1302         }
1303
1304         ret = btrfs_find_root(tree_root, key, path,
1305                               &root->root_item, &root->root_key);
1306         if (ret) {
1307                 if (ret > 0)
1308                         ret = -ENOENT;
1309                 goto find_fail;
1310         }
1311
1312         generation = btrfs_root_generation(&root->root_item);
1313         level = btrfs_root_level(&root->root_item);
1314         root->node = read_tree_block(fs_info,
1315                                      btrfs_root_bytenr(&root->root_item),
1316                                      generation, level, NULL);
1317         if (IS_ERR(root->node)) {
1318                 ret = PTR_ERR(root->node);
1319                 root->node = NULL;
1320                 goto find_fail;
1321         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1322                 ret = -EIO;
1323                 goto find_fail;
1324         }
1325         root->commit_root = btrfs_root_node(root);
1326 out:
1327         btrfs_free_path(path);
1328         return root;
1329
1330 find_fail:
1331         btrfs_put_root(root);
1332 alloc_fail:
1333         root = ERR_PTR(ret);
1334         goto out;
1335 }
1336
1337 /*
1338  * Initialize subvolume root in-memory structure
1339  *
1340  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1341  */
1342 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1343 {
1344         int ret;
1345         unsigned int nofs_flag;
1346
1347         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1348         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1349                                         GFP_NOFS);
1350         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1351                 ret = -ENOMEM;
1352                 goto fail;
1353         }
1354
1355         /*
1356          * We might be called under a transaction (e.g. indirect backref
1357          * resolution) which could deadlock if it triggers memory reclaim
1358          */
1359         nofs_flag = memalloc_nofs_save();
1360         ret = btrfs_drew_lock_init(&root->snapshot_lock);
1361         memalloc_nofs_restore(nofs_flag);
1362         if (ret)
1363                 goto fail;
1364
1365         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1366             root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1367                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1368                 btrfs_check_and_init_root_item(&root->root_item);
1369         }
1370
1371         btrfs_init_free_ino_ctl(root);
1372         spin_lock_init(&root->ino_cache_lock);
1373         init_waitqueue_head(&root->ino_cache_wait);
1374
1375         /*
1376          * Don't assign anonymous block device to roots that are not exposed to
1377          * userspace, the id pool is limited to 1M
1378          */
1379         if (is_fstree(root->root_key.objectid) &&
1380             btrfs_root_refs(&root->root_item) > 0) {
1381                 if (!anon_dev) {
1382                         ret = get_anon_bdev(&root->anon_dev);
1383                         if (ret)
1384                                 goto fail;
1385                 } else {
1386                         root->anon_dev = anon_dev;
1387                 }
1388         }
1389
1390         mutex_lock(&root->objectid_mutex);
1391         ret = btrfs_find_highest_objectid(root,
1392                                         &root->highest_objectid);
1393         if (ret) {
1394                 mutex_unlock(&root->objectid_mutex);
1395                 goto fail;
1396         }
1397
1398         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1399
1400         mutex_unlock(&root->objectid_mutex);
1401
1402         return 0;
1403 fail:
1404         /* The caller is responsible to call btrfs_free_fs_root */
1405         return ret;
1406 }
1407
1408 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1409                                                u64 root_id)
1410 {
1411         struct btrfs_root *root;
1412
1413         spin_lock(&fs_info->fs_roots_radix_lock);
1414         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1415                                  (unsigned long)root_id);
1416         if (root)
1417                 root = btrfs_grab_root(root);
1418         spin_unlock(&fs_info->fs_roots_radix_lock);
1419         return root;
1420 }
1421
1422 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1423                          struct btrfs_root *root)
1424 {
1425         int ret;
1426
1427         ret = radix_tree_preload(GFP_NOFS);
1428         if (ret)
1429                 return ret;
1430
1431         spin_lock(&fs_info->fs_roots_radix_lock);
1432         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1433                                 (unsigned long)root->root_key.objectid,
1434                                 root);
1435         if (ret == 0) {
1436                 btrfs_grab_root(root);
1437                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1438         }
1439         spin_unlock(&fs_info->fs_roots_radix_lock);
1440         radix_tree_preload_end();
1441
1442         return ret;
1443 }
1444
1445 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1446 {
1447 #ifdef CONFIG_BTRFS_DEBUG
1448         struct btrfs_root *root;
1449
1450         while (!list_empty(&fs_info->allocated_roots)) {
1451                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1452
1453                 root = list_first_entry(&fs_info->allocated_roots,
1454                                         struct btrfs_root, leak_list);
1455                 btrfs_err(fs_info, "leaked root %s refcount %d",
1456                           btrfs_root_name(root->root_key.objectid, buf),
1457                           refcount_read(&root->refs));
1458                 while (refcount_read(&root->refs) > 1)
1459                         btrfs_put_root(root);
1460                 btrfs_put_root(root);
1461         }
1462 #endif
1463 }
1464
1465 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1466 {
1467         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1468         percpu_counter_destroy(&fs_info->delalloc_bytes);
1469         percpu_counter_destroy(&fs_info->dio_bytes);
1470         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1471         btrfs_free_csum_hash(fs_info);
1472         btrfs_free_stripe_hash_table(fs_info);
1473         btrfs_free_ref_cache(fs_info);
1474         kfree(fs_info->balance_ctl);
1475         kfree(fs_info->delayed_root);
1476         btrfs_put_root(fs_info->extent_root);
1477         btrfs_put_root(fs_info->tree_root);
1478         btrfs_put_root(fs_info->chunk_root);
1479         btrfs_put_root(fs_info->dev_root);
1480         btrfs_put_root(fs_info->csum_root);
1481         btrfs_put_root(fs_info->quota_root);
1482         btrfs_put_root(fs_info->uuid_root);
1483         btrfs_put_root(fs_info->free_space_root);
1484         btrfs_put_root(fs_info->fs_root);
1485         btrfs_put_root(fs_info->data_reloc_root);
1486         btrfs_check_leaked_roots(fs_info);
1487         btrfs_extent_buffer_leak_debug_check(fs_info);
1488         kfree(fs_info->super_copy);
1489         kfree(fs_info->super_for_commit);
1490         kvfree(fs_info);
1491 }
1492
1493
1494 /*
1495  * Get an in-memory reference of a root structure.
1496  *
1497  * For essential trees like root/extent tree, we grab it from fs_info directly.
1498  * For subvolume trees, we check the cached filesystem roots first. If not
1499  * found, then read it from disk and add it to cached fs roots.
1500  *
1501  * Caller should release the root by calling btrfs_put_root() after the usage.
1502  *
1503  * NOTE: Reloc and log trees can't be read by this function as they share the
1504  *       same root objectid.
1505  *
1506  * @objectid:   root id
1507  * @anon_dev:   preallocated anonymous block device number for new roots,
1508  *              pass 0 for new allocation.
1509  * @check_ref:  whether to check root item references, If true, return -ENOENT
1510  *              for orphan roots
1511  */
1512 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1513                                              u64 objectid, dev_t anon_dev,
1514                                              bool check_ref)
1515 {
1516         struct btrfs_root *root;
1517         struct btrfs_path *path;
1518         struct btrfs_key key;
1519         int ret;
1520
1521         if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1522                 return btrfs_grab_root(fs_info->tree_root);
1523         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1524                 return btrfs_grab_root(fs_info->extent_root);
1525         if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1526                 return btrfs_grab_root(fs_info->chunk_root);
1527         if (objectid == BTRFS_DEV_TREE_OBJECTID)
1528                 return btrfs_grab_root(fs_info->dev_root);
1529         if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1530                 return btrfs_grab_root(fs_info->csum_root);
1531         if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1532                 return btrfs_grab_root(fs_info->quota_root) ?
1533                         fs_info->quota_root : ERR_PTR(-ENOENT);
1534         if (objectid == BTRFS_UUID_TREE_OBJECTID)
1535                 return btrfs_grab_root(fs_info->uuid_root) ?
1536                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1537         if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1538                 return btrfs_grab_root(fs_info->free_space_root) ?
1539                         fs_info->free_space_root : ERR_PTR(-ENOENT);
1540 again:
1541         root = btrfs_lookup_fs_root(fs_info, objectid);
1542         if (root) {
1543                 /* Shouldn't get preallocated anon_dev for cached roots */
1544                 ASSERT(!anon_dev);
1545                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1546                         btrfs_put_root(root);
1547                         return ERR_PTR(-ENOENT);
1548                 }
1549                 return root;
1550         }
1551
1552         key.objectid = objectid;
1553         key.type = BTRFS_ROOT_ITEM_KEY;
1554         key.offset = (u64)-1;
1555         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1556         if (IS_ERR(root))
1557                 return root;
1558
1559         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1560                 ret = -ENOENT;
1561                 goto fail;
1562         }
1563
1564         ret = btrfs_init_fs_root(root, anon_dev);
1565         if (ret)
1566                 goto fail;
1567
1568         path = btrfs_alloc_path();
1569         if (!path) {
1570                 ret = -ENOMEM;
1571                 goto fail;
1572         }
1573         key.objectid = BTRFS_ORPHAN_OBJECTID;
1574         key.type = BTRFS_ORPHAN_ITEM_KEY;
1575         key.offset = objectid;
1576
1577         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1578         btrfs_free_path(path);
1579         if (ret < 0)
1580                 goto fail;
1581         if (ret == 0)
1582                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1583
1584         ret = btrfs_insert_fs_root(fs_info, root);
1585         if (ret) {
1586                 btrfs_put_root(root);
1587                 if (ret == -EEXIST)
1588                         goto again;
1589                 goto fail;
1590         }
1591         return root;
1592 fail:
1593         btrfs_put_root(root);
1594         return ERR_PTR(ret);
1595 }
1596
1597 /*
1598  * Get in-memory reference of a root structure
1599  *
1600  * @objectid:   tree objectid
1601  * @check_ref:  if set, verify that the tree exists and the item has at least
1602  *              one reference
1603  */
1604 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1605                                      u64 objectid, bool check_ref)
1606 {
1607         return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1608 }
1609
1610 /*
1611  * Get in-memory reference of a root structure, created as new, optionally pass
1612  * the anonymous block device id
1613  *
1614  * @objectid:   tree objectid
1615  * @anon_dev:   if zero, allocate a new anonymous block device or use the
1616  *              parameter value
1617  */
1618 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1619                                          u64 objectid, dev_t anon_dev)
1620 {
1621         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1622 }
1623
1624 /*
1625  * called by the kthread helper functions to finally call the bio end_io
1626  * functions.  This is where read checksum verification actually happens
1627  */
1628 static void end_workqueue_fn(struct btrfs_work *work)
1629 {
1630         struct bio *bio;
1631         struct btrfs_end_io_wq *end_io_wq;
1632
1633         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1634         bio = end_io_wq->bio;
1635
1636         bio->bi_status = end_io_wq->status;
1637         bio->bi_private = end_io_wq->private;
1638         bio->bi_end_io = end_io_wq->end_io;
1639         bio_endio(bio);
1640         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1641 }
1642
1643 static int cleaner_kthread(void *arg)
1644 {
1645         struct btrfs_root *root = arg;
1646         struct btrfs_fs_info *fs_info = root->fs_info;
1647         int again;
1648
1649         while (1) {
1650                 again = 0;
1651
1652                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1653
1654                 /* Make the cleaner go to sleep early. */
1655                 if (btrfs_need_cleaner_sleep(fs_info))
1656                         goto sleep;
1657
1658                 /*
1659                  * Do not do anything if we might cause open_ctree() to block
1660                  * before we have finished mounting the filesystem.
1661                  */
1662                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1663                         goto sleep;
1664
1665                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1666                         goto sleep;
1667
1668                 /*
1669                  * Avoid the problem that we change the status of the fs
1670                  * during the above check and trylock.
1671                  */
1672                 if (btrfs_need_cleaner_sleep(fs_info)) {
1673                         mutex_unlock(&fs_info->cleaner_mutex);
1674                         goto sleep;
1675                 }
1676
1677                 btrfs_run_delayed_iputs(fs_info);
1678
1679                 again = btrfs_clean_one_deleted_snapshot(root);
1680                 mutex_unlock(&fs_info->cleaner_mutex);
1681
1682                 /*
1683                  * The defragger has dealt with the R/O remount and umount,
1684                  * needn't do anything special here.
1685                  */
1686                 btrfs_run_defrag_inodes(fs_info);
1687
1688                 /*
1689                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1690                  * with relocation (btrfs_relocate_chunk) and relocation
1691                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1692                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1693                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1694                  * unused block groups.
1695                  */
1696                 btrfs_delete_unused_bgs(fs_info);
1697 sleep:
1698                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1699                 if (kthread_should_park())
1700                         kthread_parkme();
1701                 if (kthread_should_stop())
1702                         return 0;
1703                 if (!again) {
1704                         set_current_state(TASK_INTERRUPTIBLE);
1705                         schedule();
1706                         __set_current_state(TASK_RUNNING);
1707                 }
1708         }
1709 }
1710
1711 static int transaction_kthread(void *arg)
1712 {
1713         struct btrfs_root *root = arg;
1714         struct btrfs_fs_info *fs_info = root->fs_info;
1715         struct btrfs_trans_handle *trans;
1716         struct btrfs_transaction *cur;
1717         u64 transid;
1718         time64_t now;
1719         unsigned long delay;
1720         bool cannot_commit;
1721
1722         do {
1723                 cannot_commit = false;
1724                 delay = HZ * fs_info->commit_interval;
1725                 mutex_lock(&fs_info->transaction_kthread_mutex);
1726
1727                 spin_lock(&fs_info->trans_lock);
1728                 cur = fs_info->running_transaction;
1729                 if (!cur) {
1730                         spin_unlock(&fs_info->trans_lock);
1731                         goto sleep;
1732                 }
1733
1734                 now = ktime_get_seconds();
1735                 if (cur->state < TRANS_STATE_COMMIT_START &&
1736                     (now < cur->start_time ||
1737                      now - cur->start_time < fs_info->commit_interval)) {
1738                         spin_unlock(&fs_info->trans_lock);
1739                         delay = HZ * 5;
1740                         goto sleep;
1741                 }
1742                 transid = cur->transid;
1743                 spin_unlock(&fs_info->trans_lock);
1744
1745                 /* If the file system is aborted, this will always fail. */
1746                 trans = btrfs_attach_transaction(root);
1747                 if (IS_ERR(trans)) {
1748                         if (PTR_ERR(trans) != -ENOENT)
1749                                 cannot_commit = true;
1750                         goto sleep;
1751                 }
1752                 if (transid == trans->transid) {
1753                         btrfs_commit_transaction(trans);
1754                 } else {
1755                         btrfs_end_transaction(trans);
1756                 }
1757 sleep:
1758                 wake_up_process(fs_info->cleaner_kthread);
1759                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1760
1761                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1762                                       &fs_info->fs_state)))
1763                         btrfs_cleanup_transaction(fs_info);
1764                 if (!kthread_should_stop() &&
1765                                 (!btrfs_transaction_blocked(fs_info) ||
1766                                  cannot_commit))
1767                         schedule_timeout_interruptible(delay);
1768         } while (!kthread_should_stop());
1769         return 0;
1770 }
1771
1772 /*
1773  * This will find the highest generation in the array of root backups.  The
1774  * index of the highest array is returned, or -EINVAL if we can't find
1775  * anything.
1776  *
1777  * We check to make sure the array is valid by comparing the
1778  * generation of the latest  root in the array with the generation
1779  * in the super block.  If they don't match we pitch it.
1780  */
1781 static int find_newest_super_backup(struct btrfs_fs_info *info)
1782 {
1783         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1784         u64 cur;
1785         struct btrfs_root_backup *root_backup;
1786         int i;
1787
1788         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1789                 root_backup = info->super_copy->super_roots + i;
1790                 cur = btrfs_backup_tree_root_gen(root_backup);
1791                 if (cur == newest_gen)
1792                         return i;
1793         }
1794
1795         return -EINVAL;
1796 }
1797
1798 /*
1799  * copy all the root pointers into the super backup array.
1800  * this will bump the backup pointer by one when it is
1801  * done
1802  */
1803 static void backup_super_roots(struct btrfs_fs_info *info)
1804 {
1805         const int next_backup = info->backup_root_index;
1806         struct btrfs_root_backup *root_backup;
1807
1808         root_backup = info->super_for_commit->super_roots + next_backup;
1809
1810         /*
1811          * make sure all of our padding and empty slots get zero filled
1812          * regardless of which ones we use today
1813          */
1814         memset(root_backup, 0, sizeof(*root_backup));
1815
1816         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1817
1818         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1819         btrfs_set_backup_tree_root_gen(root_backup,
1820                                btrfs_header_generation(info->tree_root->node));
1821
1822         btrfs_set_backup_tree_root_level(root_backup,
1823                                btrfs_header_level(info->tree_root->node));
1824
1825         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1826         btrfs_set_backup_chunk_root_gen(root_backup,
1827                                btrfs_header_generation(info->chunk_root->node));
1828         btrfs_set_backup_chunk_root_level(root_backup,
1829                                btrfs_header_level(info->chunk_root->node));
1830
1831         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1832         btrfs_set_backup_extent_root_gen(root_backup,
1833                                btrfs_header_generation(info->extent_root->node));
1834         btrfs_set_backup_extent_root_level(root_backup,
1835                                btrfs_header_level(info->extent_root->node));
1836
1837         /*
1838          * we might commit during log recovery, which happens before we set
1839          * the fs_root.  Make sure it is valid before we fill it in.
1840          */
1841         if (info->fs_root && info->fs_root->node) {
1842                 btrfs_set_backup_fs_root(root_backup,
1843                                          info->fs_root->node->start);
1844                 btrfs_set_backup_fs_root_gen(root_backup,
1845                                btrfs_header_generation(info->fs_root->node));
1846                 btrfs_set_backup_fs_root_level(root_backup,
1847                                btrfs_header_level(info->fs_root->node));
1848         }
1849
1850         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1851         btrfs_set_backup_dev_root_gen(root_backup,
1852                                btrfs_header_generation(info->dev_root->node));
1853         btrfs_set_backup_dev_root_level(root_backup,
1854                                        btrfs_header_level(info->dev_root->node));
1855
1856         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1857         btrfs_set_backup_csum_root_gen(root_backup,
1858                                btrfs_header_generation(info->csum_root->node));
1859         btrfs_set_backup_csum_root_level(root_backup,
1860                                btrfs_header_level(info->csum_root->node));
1861
1862         btrfs_set_backup_total_bytes(root_backup,
1863                              btrfs_super_total_bytes(info->super_copy));
1864         btrfs_set_backup_bytes_used(root_backup,
1865                              btrfs_super_bytes_used(info->super_copy));
1866         btrfs_set_backup_num_devices(root_backup,
1867                              btrfs_super_num_devices(info->super_copy));
1868
1869         /*
1870          * if we don't copy this out to the super_copy, it won't get remembered
1871          * for the next commit
1872          */
1873         memcpy(&info->super_copy->super_roots,
1874                &info->super_for_commit->super_roots,
1875                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1876 }
1877
1878 /*
1879  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1880  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1881  *
1882  * fs_info - filesystem whose backup roots need to be read
1883  * priority - priority of backup root required
1884  *
1885  * Returns backup root index on success and -EINVAL otherwise.
1886  */
1887 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1888 {
1889         int backup_index = find_newest_super_backup(fs_info);
1890         struct btrfs_super_block *super = fs_info->super_copy;
1891         struct btrfs_root_backup *root_backup;
1892
1893         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1894                 if (priority == 0)
1895                         return backup_index;
1896
1897                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1898                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1899         } else {
1900                 return -EINVAL;
1901         }
1902
1903         root_backup = super->super_roots + backup_index;
1904
1905         btrfs_set_super_generation(super,
1906                                    btrfs_backup_tree_root_gen(root_backup));
1907         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1908         btrfs_set_super_root_level(super,
1909                                    btrfs_backup_tree_root_level(root_backup));
1910         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1911
1912         /*
1913          * Fixme: the total bytes and num_devices need to match or we should
1914          * need a fsck
1915          */
1916         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1917         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1918
1919         return backup_index;
1920 }
1921
1922 /* helper to cleanup workers */
1923 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1924 {
1925         btrfs_destroy_workqueue(fs_info->fixup_workers);
1926         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1927         btrfs_destroy_workqueue(fs_info->workers);
1928         btrfs_destroy_workqueue(fs_info->endio_workers);
1929         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1930         btrfs_destroy_workqueue(fs_info->rmw_workers);
1931         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1932         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1933         btrfs_destroy_workqueue(fs_info->delayed_workers);
1934         btrfs_destroy_workqueue(fs_info->caching_workers);
1935         btrfs_destroy_workqueue(fs_info->readahead_workers);
1936         btrfs_destroy_workqueue(fs_info->flush_workers);
1937         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1938         if (fs_info->discard_ctl.discard_workers)
1939                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1940         /*
1941          * Now that all other work queues are destroyed, we can safely destroy
1942          * the queues used for metadata I/O, since tasks from those other work
1943          * queues can do metadata I/O operations.
1944          */
1945         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1946         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1947 }
1948
1949 static void free_root_extent_buffers(struct btrfs_root *root)
1950 {
1951         if (root) {
1952                 free_extent_buffer(root->node);
1953                 free_extent_buffer(root->commit_root);
1954                 root->node = NULL;
1955                 root->commit_root = NULL;
1956         }
1957 }
1958
1959 /* helper to cleanup tree roots */
1960 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1961 {
1962         free_root_extent_buffers(info->tree_root);
1963
1964         free_root_extent_buffers(info->dev_root);
1965         free_root_extent_buffers(info->extent_root);
1966         free_root_extent_buffers(info->csum_root);
1967         free_root_extent_buffers(info->quota_root);
1968         free_root_extent_buffers(info->uuid_root);
1969         free_root_extent_buffers(info->fs_root);
1970         free_root_extent_buffers(info->data_reloc_root);
1971         if (free_chunk_root)
1972                 free_root_extent_buffers(info->chunk_root);
1973         free_root_extent_buffers(info->free_space_root);
1974 }
1975
1976 void btrfs_put_root(struct btrfs_root *root)
1977 {
1978         if (!root)
1979                 return;
1980
1981         if (refcount_dec_and_test(&root->refs)) {
1982                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1983                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1984                 if (root->anon_dev)
1985                         free_anon_bdev(root->anon_dev);
1986                 btrfs_drew_lock_destroy(&root->snapshot_lock);
1987                 free_root_extent_buffers(root);
1988                 kfree(root->free_ino_ctl);
1989                 kfree(root->free_ino_pinned);
1990 #ifdef CONFIG_BTRFS_DEBUG
1991                 spin_lock(&root->fs_info->fs_roots_radix_lock);
1992                 list_del_init(&root->leak_list);
1993                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1994 #endif
1995                 kfree(root);
1996         }
1997 }
1998
1999 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2000 {
2001         int ret;
2002         struct btrfs_root *gang[8];
2003         int i;
2004
2005         while (!list_empty(&fs_info->dead_roots)) {
2006                 gang[0] = list_entry(fs_info->dead_roots.next,
2007                                      struct btrfs_root, root_list);
2008                 list_del(&gang[0]->root_list);
2009
2010                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2011                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2012                 btrfs_put_root(gang[0]);
2013         }
2014
2015         while (1) {
2016                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2017                                              (void **)gang, 0,
2018                                              ARRAY_SIZE(gang));
2019                 if (!ret)
2020                         break;
2021                 for (i = 0; i < ret; i++)
2022                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2023         }
2024 }
2025
2026 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2027 {
2028         mutex_init(&fs_info->scrub_lock);
2029         atomic_set(&fs_info->scrubs_running, 0);
2030         atomic_set(&fs_info->scrub_pause_req, 0);
2031         atomic_set(&fs_info->scrubs_paused, 0);
2032         atomic_set(&fs_info->scrub_cancel_req, 0);
2033         init_waitqueue_head(&fs_info->scrub_pause_wait);
2034         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2035 }
2036
2037 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2038 {
2039         spin_lock_init(&fs_info->balance_lock);
2040         mutex_init(&fs_info->balance_mutex);
2041         atomic_set(&fs_info->balance_pause_req, 0);
2042         atomic_set(&fs_info->balance_cancel_req, 0);
2043         fs_info->balance_ctl = NULL;
2044         init_waitqueue_head(&fs_info->balance_wait_q);
2045 }
2046
2047 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2048 {
2049         struct inode *inode = fs_info->btree_inode;
2050
2051         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2052         set_nlink(inode, 1);
2053         /*
2054          * we set the i_size on the btree inode to the max possible int.
2055          * the real end of the address space is determined by all of
2056          * the devices in the system
2057          */
2058         inode->i_size = OFFSET_MAX;
2059         inode->i_mapping->a_ops = &btree_aops;
2060
2061         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2062         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2063                             IO_TREE_BTREE_INODE_IO, inode);
2064         BTRFS_I(inode)->io_tree.track_uptodate = false;
2065         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2066
2067         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2068         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2069         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2070         btrfs_insert_inode_hash(inode);
2071 }
2072
2073 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2074 {
2075         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2076         init_rwsem(&fs_info->dev_replace.rwsem);
2077         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2078 }
2079
2080 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2081 {
2082         spin_lock_init(&fs_info->qgroup_lock);
2083         mutex_init(&fs_info->qgroup_ioctl_lock);
2084         fs_info->qgroup_tree = RB_ROOT;
2085         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2086         fs_info->qgroup_seq = 1;
2087         fs_info->qgroup_ulist = NULL;
2088         fs_info->qgroup_rescan_running = false;
2089         mutex_init(&fs_info->qgroup_rescan_lock);
2090 }
2091
2092 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2093                 struct btrfs_fs_devices *fs_devices)
2094 {
2095         u32 max_active = fs_info->thread_pool_size;
2096         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2097
2098         fs_info->workers =
2099                 btrfs_alloc_workqueue(fs_info, "worker",
2100                                       flags | WQ_HIGHPRI, max_active, 16);
2101
2102         fs_info->delalloc_workers =
2103                 btrfs_alloc_workqueue(fs_info, "delalloc",
2104                                       flags, max_active, 2);
2105
2106         fs_info->flush_workers =
2107                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2108                                       flags, max_active, 0);
2109
2110         fs_info->caching_workers =
2111                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2112
2113         fs_info->fixup_workers =
2114                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2115
2116         /*
2117          * endios are largely parallel and should have a very
2118          * low idle thresh
2119          */
2120         fs_info->endio_workers =
2121                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2122         fs_info->endio_meta_workers =
2123                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2124                                       max_active, 4);
2125         fs_info->endio_meta_write_workers =
2126                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2127                                       max_active, 2);
2128         fs_info->endio_raid56_workers =
2129                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2130                                       max_active, 4);
2131         fs_info->rmw_workers =
2132                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2133         fs_info->endio_write_workers =
2134                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2135                                       max_active, 2);
2136         fs_info->endio_freespace_worker =
2137                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2138                                       max_active, 0);
2139         fs_info->delayed_workers =
2140                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2141                                       max_active, 0);
2142         fs_info->readahead_workers =
2143                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2144                                       max_active, 2);
2145         fs_info->qgroup_rescan_workers =
2146                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2147         fs_info->discard_ctl.discard_workers =
2148                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2149
2150         if (!(fs_info->workers && fs_info->delalloc_workers &&
2151               fs_info->flush_workers &&
2152               fs_info->endio_workers && fs_info->endio_meta_workers &&
2153               fs_info->endio_meta_write_workers &&
2154               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2155               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2156               fs_info->caching_workers && fs_info->readahead_workers &&
2157               fs_info->fixup_workers && fs_info->delayed_workers &&
2158               fs_info->qgroup_rescan_workers &&
2159               fs_info->discard_ctl.discard_workers)) {
2160                 return -ENOMEM;
2161         }
2162
2163         return 0;
2164 }
2165
2166 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2167 {
2168         struct crypto_shash *csum_shash;
2169         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2170
2171         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2172
2173         if (IS_ERR(csum_shash)) {
2174                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2175                           csum_driver);
2176                 return PTR_ERR(csum_shash);
2177         }
2178
2179         fs_info->csum_shash = csum_shash;
2180
2181         return 0;
2182 }
2183
2184 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2185                             struct btrfs_fs_devices *fs_devices)
2186 {
2187         int ret;
2188         struct btrfs_root *log_tree_root;
2189         struct btrfs_super_block *disk_super = fs_info->super_copy;
2190         u64 bytenr = btrfs_super_log_root(disk_super);
2191         int level = btrfs_super_log_root_level(disk_super);
2192
2193         if (fs_devices->rw_devices == 0) {
2194                 btrfs_warn(fs_info, "log replay required on RO media");
2195                 return -EIO;
2196         }
2197
2198         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2199                                          GFP_KERNEL);
2200         if (!log_tree_root)
2201                 return -ENOMEM;
2202
2203         log_tree_root->node = read_tree_block(fs_info, bytenr,
2204                                               fs_info->generation + 1,
2205                                               level, NULL);
2206         if (IS_ERR(log_tree_root->node)) {
2207                 btrfs_warn(fs_info, "failed to read log tree");
2208                 ret = PTR_ERR(log_tree_root->node);
2209                 log_tree_root->node = NULL;
2210                 btrfs_put_root(log_tree_root);
2211                 return ret;
2212         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2213                 btrfs_err(fs_info, "failed to read log tree");
2214                 btrfs_put_root(log_tree_root);
2215                 return -EIO;
2216         }
2217         /* returns with log_tree_root freed on success */
2218         ret = btrfs_recover_log_trees(log_tree_root);
2219         if (ret) {
2220                 btrfs_handle_fs_error(fs_info, ret,
2221                                       "Failed to recover log tree");
2222                 btrfs_put_root(log_tree_root);
2223                 return ret;
2224         }
2225
2226         if (sb_rdonly(fs_info->sb)) {
2227                 ret = btrfs_commit_super(fs_info);
2228                 if (ret)
2229                         return ret;
2230         }
2231
2232         return 0;
2233 }
2234
2235 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2236 {
2237         struct btrfs_root *tree_root = fs_info->tree_root;
2238         struct btrfs_root *root;
2239         struct btrfs_key location;
2240         int ret;
2241
2242         BUG_ON(!fs_info->tree_root);
2243
2244         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2245         location.type = BTRFS_ROOT_ITEM_KEY;
2246         location.offset = 0;
2247
2248         root = btrfs_read_tree_root(tree_root, &location);
2249         if (IS_ERR(root)) {
2250                 ret = PTR_ERR(root);
2251                 goto out;
2252         }
2253         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2254         fs_info->extent_root = root;
2255
2256         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2257         root = btrfs_read_tree_root(tree_root, &location);
2258         if (IS_ERR(root)) {
2259                 ret = PTR_ERR(root);
2260                 goto out;
2261         }
2262         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2263         fs_info->dev_root = root;
2264         btrfs_init_devices_late(fs_info);
2265
2266         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2267         root = btrfs_read_tree_root(tree_root, &location);
2268         if (IS_ERR(root)) {
2269                 ret = PTR_ERR(root);
2270                 goto out;
2271         }
2272         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2273         fs_info->csum_root = root;
2274
2275         /*
2276          * This tree can share blocks with some other fs tree during relocation
2277          * and we need a proper setup by btrfs_get_fs_root
2278          */
2279         root = btrfs_get_fs_root(tree_root->fs_info,
2280                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2281         if (IS_ERR(root)) {
2282                 ret = PTR_ERR(root);
2283                 goto out;
2284         }
2285         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2286         fs_info->data_reloc_root = root;
2287
2288         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2289         root = btrfs_read_tree_root(tree_root, &location);
2290         if (!IS_ERR(root)) {
2291                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2292                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2293                 fs_info->quota_root = root;
2294         }
2295
2296         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2297         root = btrfs_read_tree_root(tree_root, &location);
2298         if (IS_ERR(root)) {
2299                 ret = PTR_ERR(root);
2300                 if (ret != -ENOENT)
2301                         goto out;
2302         } else {
2303                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2304                 fs_info->uuid_root = root;
2305         }
2306
2307         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2308                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2309                 root = btrfs_read_tree_root(tree_root, &location);
2310                 if (IS_ERR(root)) {
2311                         ret = PTR_ERR(root);
2312                         goto out;
2313                 }
2314                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2315                 fs_info->free_space_root = root;
2316         }
2317
2318         return 0;
2319 out:
2320         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2321                    location.objectid, ret);
2322         return ret;
2323 }
2324
2325 /*
2326  * Real super block validation
2327  * NOTE: super csum type and incompat features will not be checked here.
2328  *
2329  * @sb:         super block to check
2330  * @mirror_num: the super block number to check its bytenr:
2331  *              0       the primary (1st) sb
2332  *              1, 2    2nd and 3rd backup copy
2333  *             -1       skip bytenr check
2334  */
2335 static int validate_super(struct btrfs_fs_info *fs_info,
2336                             struct btrfs_super_block *sb, int mirror_num)
2337 {
2338         u64 nodesize = btrfs_super_nodesize(sb);
2339         u64 sectorsize = btrfs_super_sectorsize(sb);
2340         int ret = 0;
2341
2342         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2343                 btrfs_err(fs_info, "no valid FS found");
2344                 ret = -EINVAL;
2345         }
2346         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2347                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2348                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2349                 ret = -EINVAL;
2350         }
2351         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2352                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2353                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2354                 ret = -EINVAL;
2355         }
2356         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2357                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2358                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2359                 ret = -EINVAL;
2360         }
2361         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2362                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2363                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2364                 ret = -EINVAL;
2365         }
2366
2367         /*
2368          * Check sectorsize and nodesize first, other check will need it.
2369          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2370          */
2371         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2372             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2373                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2374                 ret = -EINVAL;
2375         }
2376         /* Only PAGE SIZE is supported yet */
2377         if (sectorsize != PAGE_SIZE) {
2378                 btrfs_err(fs_info,
2379                         "sectorsize %llu not supported yet, only support %lu",
2380                         sectorsize, PAGE_SIZE);
2381                 ret = -EINVAL;
2382         }
2383         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2384             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2385                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2386                 ret = -EINVAL;
2387         }
2388         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2389                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2390                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2391                 ret = -EINVAL;
2392         }
2393
2394         /* Root alignment check */
2395         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2396                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2397                            btrfs_super_root(sb));
2398                 ret = -EINVAL;
2399         }
2400         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2401                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2402                            btrfs_super_chunk_root(sb));
2403                 ret = -EINVAL;
2404         }
2405         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2406                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2407                            btrfs_super_log_root(sb));
2408                 ret = -EINVAL;
2409         }
2410
2411         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2412                    BTRFS_FSID_SIZE) != 0) {
2413                 btrfs_err(fs_info,
2414                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2415                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2416                 ret = -EINVAL;
2417         }
2418
2419         /*
2420          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2421          * done later
2422          */
2423         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2424                 btrfs_err(fs_info, "bytes_used is too small %llu",
2425                           btrfs_super_bytes_used(sb));
2426                 ret = -EINVAL;
2427         }
2428         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2429                 btrfs_err(fs_info, "invalid stripesize %u",
2430                           btrfs_super_stripesize(sb));
2431                 ret = -EINVAL;
2432         }
2433         if (btrfs_super_num_devices(sb) > (1UL << 31))
2434                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2435                            btrfs_super_num_devices(sb));
2436         if (btrfs_super_num_devices(sb) == 0) {
2437                 btrfs_err(fs_info, "number of devices is 0");
2438                 ret = -EINVAL;
2439         }
2440
2441         if (mirror_num >= 0 &&
2442             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2443                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2444                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2445                 ret = -EINVAL;
2446         }
2447
2448         /*
2449          * Obvious sys_chunk_array corruptions, it must hold at least one key
2450          * and one chunk
2451          */
2452         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2453                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2454                           btrfs_super_sys_array_size(sb),
2455                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2456                 ret = -EINVAL;
2457         }
2458         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2459                         + sizeof(struct btrfs_chunk)) {
2460                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2461                           btrfs_super_sys_array_size(sb),
2462                           sizeof(struct btrfs_disk_key)
2463                           + sizeof(struct btrfs_chunk));
2464                 ret = -EINVAL;
2465         }
2466
2467         /*
2468          * The generation is a global counter, we'll trust it more than the others
2469          * but it's still possible that it's the one that's wrong.
2470          */
2471         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2472                 btrfs_warn(fs_info,
2473                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2474                         btrfs_super_generation(sb),
2475                         btrfs_super_chunk_root_generation(sb));
2476         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2477             && btrfs_super_cache_generation(sb) != (u64)-1)
2478                 btrfs_warn(fs_info,
2479                         "suspicious: generation < cache_generation: %llu < %llu",
2480                         btrfs_super_generation(sb),
2481                         btrfs_super_cache_generation(sb));
2482
2483         return ret;
2484 }
2485
2486 /*
2487  * Validation of super block at mount time.
2488  * Some checks already done early at mount time, like csum type and incompat
2489  * flags will be skipped.
2490  */
2491 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2492 {
2493         return validate_super(fs_info, fs_info->super_copy, 0);
2494 }
2495
2496 /*
2497  * Validation of super block at write time.
2498  * Some checks like bytenr check will be skipped as their values will be
2499  * overwritten soon.
2500  * Extra checks like csum type and incompat flags will be done here.
2501  */
2502 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2503                                       struct btrfs_super_block *sb)
2504 {
2505         int ret;
2506
2507         ret = validate_super(fs_info, sb, -1);
2508         if (ret < 0)
2509                 goto out;
2510         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2511                 ret = -EUCLEAN;
2512                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2513                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2514                 goto out;
2515         }
2516         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2517                 ret = -EUCLEAN;
2518                 btrfs_err(fs_info,
2519                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2520                           btrfs_super_incompat_flags(sb),
2521                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2522                 goto out;
2523         }
2524 out:
2525         if (ret < 0)
2526                 btrfs_err(fs_info,
2527                 "super block corruption detected before writing it to disk");
2528         return ret;
2529 }
2530
2531 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2532 {
2533         int backup_index = find_newest_super_backup(fs_info);
2534         struct btrfs_super_block *sb = fs_info->super_copy;
2535         struct btrfs_root *tree_root = fs_info->tree_root;
2536         bool handle_error = false;
2537         int ret = 0;
2538         int i;
2539
2540         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2541                 u64 generation;
2542                 int level;
2543
2544                 if (handle_error) {
2545                         if (!IS_ERR(tree_root->node))
2546                                 free_extent_buffer(tree_root->node);
2547                         tree_root->node = NULL;
2548
2549                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2550                                 break;
2551
2552                         free_root_pointers(fs_info, 0);
2553
2554                         /*
2555                          * Don't use the log in recovery mode, it won't be
2556                          * valid
2557                          */
2558                         btrfs_set_super_log_root(sb, 0);
2559
2560                         /* We can't trust the free space cache either */
2561                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2562
2563                         ret = read_backup_root(fs_info, i);
2564                         backup_index = ret;
2565                         if (ret < 0)
2566                                 return ret;
2567                 }
2568                 generation = btrfs_super_generation(sb);
2569                 level = btrfs_super_root_level(sb);
2570                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2571                                                   generation, level, NULL);
2572                 if (IS_ERR(tree_root->node)) {
2573                         handle_error = true;
2574                         ret = PTR_ERR(tree_root->node);
2575                         tree_root->node = NULL;
2576                         btrfs_warn(fs_info, "couldn't read tree root");
2577                         continue;
2578
2579                 } else if (!extent_buffer_uptodate(tree_root->node)) {
2580                         handle_error = true;
2581                         ret = -EIO;
2582                         btrfs_warn(fs_info, "error while reading tree root");
2583                         continue;
2584                 }
2585
2586                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2587                 tree_root->commit_root = btrfs_root_node(tree_root);
2588                 btrfs_set_root_refs(&tree_root->root_item, 1);
2589
2590                 /*
2591                  * No need to hold btrfs_root::objectid_mutex since the fs
2592                  * hasn't been fully initialised and we are the only user
2593                  */
2594                 ret = btrfs_find_highest_objectid(tree_root,
2595                                                 &tree_root->highest_objectid);
2596                 if (ret < 0) {
2597                         handle_error = true;
2598                         continue;
2599                 }
2600
2601                 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2602
2603                 ret = btrfs_read_roots(fs_info);
2604                 if (ret < 0) {
2605                         handle_error = true;
2606                         continue;
2607                 }
2608
2609                 /* All successful */
2610                 fs_info->generation = generation;
2611                 fs_info->last_trans_committed = generation;
2612
2613                 /* Always begin writing backup roots after the one being used */
2614                 if (backup_index < 0) {
2615                         fs_info->backup_root_index = 0;
2616                 } else {
2617                         fs_info->backup_root_index = backup_index + 1;
2618                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2619                 }
2620                 break;
2621         }
2622
2623         return ret;
2624 }
2625
2626 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2627 {
2628         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2629         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2630         INIT_LIST_HEAD(&fs_info->trans_list);
2631         INIT_LIST_HEAD(&fs_info->dead_roots);
2632         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2633         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2634         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2635         spin_lock_init(&fs_info->delalloc_root_lock);
2636         spin_lock_init(&fs_info->trans_lock);
2637         spin_lock_init(&fs_info->fs_roots_radix_lock);
2638         spin_lock_init(&fs_info->delayed_iput_lock);
2639         spin_lock_init(&fs_info->defrag_inodes_lock);
2640         spin_lock_init(&fs_info->super_lock);
2641         spin_lock_init(&fs_info->buffer_lock);
2642         spin_lock_init(&fs_info->unused_bgs_lock);
2643         rwlock_init(&fs_info->tree_mod_log_lock);
2644         mutex_init(&fs_info->unused_bg_unpin_mutex);
2645         mutex_init(&fs_info->delete_unused_bgs_mutex);
2646         mutex_init(&fs_info->reloc_mutex);
2647         mutex_init(&fs_info->delalloc_root_mutex);
2648         seqlock_init(&fs_info->profiles_lock);
2649
2650         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2651         INIT_LIST_HEAD(&fs_info->space_info);
2652         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2653         INIT_LIST_HEAD(&fs_info->unused_bgs);
2654 #ifdef CONFIG_BTRFS_DEBUG
2655         INIT_LIST_HEAD(&fs_info->allocated_roots);
2656         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2657         spin_lock_init(&fs_info->eb_leak_lock);
2658 #endif
2659         extent_map_tree_init(&fs_info->mapping_tree);
2660         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2661                              BTRFS_BLOCK_RSV_GLOBAL);
2662         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2663         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2664         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2665         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2666                              BTRFS_BLOCK_RSV_DELOPS);
2667         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2668                              BTRFS_BLOCK_RSV_DELREFS);
2669
2670         atomic_set(&fs_info->async_delalloc_pages, 0);
2671         atomic_set(&fs_info->defrag_running, 0);
2672         atomic_set(&fs_info->reada_works_cnt, 0);
2673         atomic_set(&fs_info->nr_delayed_iputs, 0);
2674         atomic64_set(&fs_info->tree_mod_seq, 0);
2675         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2676         fs_info->metadata_ratio = 0;
2677         fs_info->defrag_inodes = RB_ROOT;
2678         atomic64_set(&fs_info->free_chunk_space, 0);
2679         fs_info->tree_mod_log = RB_ROOT;
2680         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2681         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2682         /* readahead state */
2683         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2684         spin_lock_init(&fs_info->reada_lock);
2685         btrfs_init_ref_verify(fs_info);
2686
2687         fs_info->thread_pool_size = min_t(unsigned long,
2688                                           num_online_cpus() + 2, 8);
2689
2690         INIT_LIST_HEAD(&fs_info->ordered_roots);
2691         spin_lock_init(&fs_info->ordered_root_lock);
2692
2693         btrfs_init_scrub(fs_info);
2694 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2695         fs_info->check_integrity_print_mask = 0;
2696 #endif
2697         btrfs_init_balance(fs_info);
2698         btrfs_init_async_reclaim_work(fs_info);
2699
2700         spin_lock_init(&fs_info->block_group_cache_lock);
2701         fs_info->block_group_cache_tree = RB_ROOT;
2702         fs_info->first_logical_byte = (u64)-1;
2703
2704         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2705                             IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2706         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2707
2708         mutex_init(&fs_info->ordered_operations_mutex);
2709         mutex_init(&fs_info->tree_log_mutex);
2710         mutex_init(&fs_info->chunk_mutex);
2711         mutex_init(&fs_info->transaction_kthread_mutex);
2712         mutex_init(&fs_info->cleaner_mutex);
2713         mutex_init(&fs_info->ro_block_group_mutex);
2714         init_rwsem(&fs_info->commit_root_sem);
2715         init_rwsem(&fs_info->cleanup_work_sem);
2716         init_rwsem(&fs_info->subvol_sem);
2717         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2718
2719         btrfs_init_dev_replace_locks(fs_info);
2720         btrfs_init_qgroup(fs_info);
2721         btrfs_discard_init(fs_info);
2722
2723         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2724         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2725
2726         init_waitqueue_head(&fs_info->transaction_throttle);
2727         init_waitqueue_head(&fs_info->transaction_wait);
2728         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2729         init_waitqueue_head(&fs_info->async_submit_wait);
2730         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2731
2732         /* Usable values until the real ones are cached from the superblock */
2733         fs_info->nodesize = 4096;
2734         fs_info->sectorsize = 4096;
2735         fs_info->stripesize = 4096;
2736
2737         spin_lock_init(&fs_info->swapfile_pins_lock);
2738         fs_info->swapfile_pins = RB_ROOT;
2739
2740         fs_info->send_in_progress = 0;
2741 }
2742
2743 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2744 {
2745         int ret;
2746
2747         fs_info->sb = sb;
2748         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2749         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2750
2751         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2752         if (ret)
2753                 return ret;
2754
2755         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2756         if (ret)
2757                 return ret;
2758
2759         fs_info->dirty_metadata_batch = PAGE_SIZE *
2760                                         (1 + ilog2(nr_cpu_ids));
2761
2762         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2763         if (ret)
2764                 return ret;
2765
2766         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2767                         GFP_KERNEL);
2768         if (ret)
2769                 return ret;
2770
2771         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2772                                         GFP_KERNEL);
2773         if (!fs_info->delayed_root)
2774                 return -ENOMEM;
2775         btrfs_init_delayed_root(fs_info->delayed_root);
2776
2777         return btrfs_alloc_stripe_hash_table(fs_info);
2778 }
2779
2780 static int btrfs_uuid_rescan_kthread(void *data)
2781 {
2782         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2783         int ret;
2784
2785         /*
2786          * 1st step is to iterate through the existing UUID tree and
2787          * to delete all entries that contain outdated data.
2788          * 2nd step is to add all missing entries to the UUID tree.
2789          */
2790         ret = btrfs_uuid_tree_iterate(fs_info);
2791         if (ret < 0) {
2792                 if (ret != -EINTR)
2793                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2794                                    ret);
2795                 up(&fs_info->uuid_tree_rescan_sem);
2796                 return ret;
2797         }
2798         return btrfs_uuid_scan_kthread(data);
2799 }
2800
2801 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2802 {
2803         struct task_struct *task;
2804
2805         down(&fs_info->uuid_tree_rescan_sem);
2806         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2807         if (IS_ERR(task)) {
2808                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2809                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2810                 up(&fs_info->uuid_tree_rescan_sem);
2811                 return PTR_ERR(task);
2812         }
2813
2814         return 0;
2815 }
2816
2817 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2818                       char *options)
2819 {
2820         u32 sectorsize;
2821         u32 nodesize;
2822         u32 stripesize;
2823         u64 generation;
2824         u64 features;
2825         u16 csum_type;
2826         struct btrfs_super_block *disk_super;
2827         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2828         struct btrfs_root *tree_root;
2829         struct btrfs_root *chunk_root;
2830         int ret;
2831         int err = -EINVAL;
2832         int clear_free_space_tree = 0;
2833         int level;
2834
2835         ret = init_mount_fs_info(fs_info, sb);
2836         if (ret) {
2837                 err = ret;
2838                 goto fail;
2839         }
2840
2841         /* These need to be init'ed before we start creating inodes and such. */
2842         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2843                                      GFP_KERNEL);
2844         fs_info->tree_root = tree_root;
2845         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2846                                       GFP_KERNEL);
2847         fs_info->chunk_root = chunk_root;
2848         if (!tree_root || !chunk_root) {
2849                 err = -ENOMEM;
2850                 goto fail;
2851         }
2852
2853         fs_info->btree_inode = new_inode(sb);
2854         if (!fs_info->btree_inode) {
2855                 err = -ENOMEM;
2856                 goto fail;
2857         }
2858         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2859         btrfs_init_btree_inode(fs_info);
2860
2861         invalidate_bdev(fs_devices->latest_bdev);
2862
2863         /*
2864          * Read super block and check the signature bytes only
2865          */
2866         disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2867         if (IS_ERR(disk_super)) {
2868                 err = PTR_ERR(disk_super);
2869                 goto fail_alloc;
2870         }
2871
2872         /*
2873          * Verify the type first, if that or the checksum value are
2874          * corrupted, we'll find out
2875          */
2876         csum_type = btrfs_super_csum_type(disk_super);
2877         if (!btrfs_supported_super_csum(csum_type)) {
2878                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2879                           csum_type);
2880                 err = -EINVAL;
2881                 btrfs_release_disk_super(disk_super);
2882                 goto fail_alloc;
2883         }
2884
2885         ret = btrfs_init_csum_hash(fs_info, csum_type);
2886         if (ret) {
2887                 err = ret;
2888                 btrfs_release_disk_super(disk_super);
2889                 goto fail_alloc;
2890         }
2891
2892         /*
2893          * We want to check superblock checksum, the type is stored inside.
2894          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2895          */
2896         if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2897                 btrfs_err(fs_info, "superblock checksum mismatch");
2898                 err = -EINVAL;
2899                 btrfs_release_disk_super(disk_super);
2900                 goto fail_alloc;
2901         }
2902
2903         /*
2904          * super_copy is zeroed at allocation time and we never touch the
2905          * following bytes up to INFO_SIZE, the checksum is calculated from
2906          * the whole block of INFO_SIZE
2907          */
2908         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2909         btrfs_release_disk_super(disk_super);
2910
2911         disk_super = fs_info->super_copy;
2912
2913         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2914                        BTRFS_FSID_SIZE));
2915
2916         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2917                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2918                                 fs_info->super_copy->metadata_uuid,
2919                                 BTRFS_FSID_SIZE));
2920         }
2921
2922         features = btrfs_super_flags(disk_super);
2923         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2924                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2925                 btrfs_set_super_flags(disk_super, features);
2926                 btrfs_info(fs_info,
2927                         "found metadata UUID change in progress flag, clearing");
2928         }
2929
2930         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2931                sizeof(*fs_info->super_for_commit));
2932
2933         ret = btrfs_validate_mount_super(fs_info);
2934         if (ret) {
2935                 btrfs_err(fs_info, "superblock contains fatal errors");
2936                 err = -EINVAL;
2937                 goto fail_alloc;
2938         }
2939
2940         if (!btrfs_super_root(disk_super))
2941                 goto fail_alloc;
2942
2943         /* check FS state, whether FS is broken. */
2944         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2945                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2946
2947         /*
2948          * In the long term, we'll store the compression type in the super
2949          * block, and it'll be used for per file compression control.
2950          */
2951         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2952
2953         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2954         if (ret) {
2955                 err = ret;
2956                 goto fail_alloc;
2957         }
2958
2959         features = btrfs_super_incompat_flags(disk_super) &
2960                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2961         if (features) {
2962                 btrfs_err(fs_info,
2963                     "cannot mount because of unsupported optional features (%llx)",
2964                     features);
2965                 err = -EINVAL;
2966                 goto fail_alloc;
2967         }
2968
2969         features = btrfs_super_incompat_flags(disk_super);
2970         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2971         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2972                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2973         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2974                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2975
2976         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2977                 btrfs_info(fs_info, "has skinny extents");
2978
2979         /*
2980          * flag our filesystem as having big metadata blocks if
2981          * they are bigger than the page size
2982          */
2983         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2984                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2985                         btrfs_info(fs_info,
2986                                 "flagging fs with big metadata feature");
2987                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2988         }
2989
2990         nodesize = btrfs_super_nodesize(disk_super);
2991         sectorsize = btrfs_super_sectorsize(disk_super);
2992         stripesize = sectorsize;
2993         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2994         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2995
2996         /* Cache block sizes */
2997         fs_info->nodesize = nodesize;
2998         fs_info->sectorsize = sectorsize;
2999         fs_info->stripesize = stripesize;
3000
3001         /*
3002          * mixed block groups end up with duplicate but slightly offset
3003          * extent buffers for the same range.  It leads to corruptions
3004          */
3005         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3006             (sectorsize != nodesize)) {
3007                 btrfs_err(fs_info,
3008 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3009                         nodesize, sectorsize);
3010                 goto fail_alloc;
3011         }
3012
3013         /*
3014          * Needn't use the lock because there is no other task which will
3015          * update the flag.
3016          */
3017         btrfs_set_super_incompat_flags(disk_super, features);
3018
3019         features = btrfs_super_compat_ro_flags(disk_super) &
3020                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3021         if (!sb_rdonly(sb) && features) {
3022                 btrfs_err(fs_info,
3023         "cannot mount read-write because of unsupported optional features (%llx)",
3024                        features);
3025                 err = -EINVAL;
3026                 goto fail_alloc;
3027         }
3028
3029         ret = btrfs_init_workqueues(fs_info, fs_devices);
3030         if (ret) {
3031                 err = ret;
3032                 goto fail_sb_buffer;
3033         }
3034
3035         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3036         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3037
3038         sb->s_blocksize = sectorsize;
3039         sb->s_blocksize_bits = blksize_bits(sectorsize);
3040         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3041
3042         mutex_lock(&fs_info->chunk_mutex);
3043         ret = btrfs_read_sys_array(fs_info);
3044         mutex_unlock(&fs_info->chunk_mutex);
3045         if (ret) {
3046                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3047                 goto fail_sb_buffer;
3048         }
3049
3050         generation = btrfs_super_chunk_root_generation(disk_super);
3051         level = btrfs_super_chunk_root_level(disk_super);
3052
3053         chunk_root->node = read_tree_block(fs_info,
3054                                            btrfs_super_chunk_root(disk_super),
3055                                            generation, level, NULL);
3056         if (IS_ERR(chunk_root->node) ||
3057             !extent_buffer_uptodate(chunk_root->node)) {
3058                 btrfs_err(fs_info, "failed to read chunk root");
3059                 if (!IS_ERR(chunk_root->node))
3060                         free_extent_buffer(chunk_root->node);
3061                 chunk_root->node = NULL;
3062                 goto fail_tree_roots;
3063         }
3064         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3065         chunk_root->commit_root = btrfs_root_node(chunk_root);
3066
3067         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3068                            offsetof(struct btrfs_header, chunk_tree_uuid),
3069                            BTRFS_UUID_SIZE);
3070
3071         ret = btrfs_read_chunk_tree(fs_info);
3072         if (ret) {
3073                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3074                 goto fail_tree_roots;
3075         }
3076
3077         /*
3078          * Keep the devid that is marked to be the target device for the
3079          * device replace procedure
3080          */
3081         btrfs_free_extra_devids(fs_devices, 0);
3082
3083         if (!fs_devices->latest_bdev) {
3084                 btrfs_err(fs_info, "failed to read devices");
3085                 goto fail_tree_roots;
3086         }
3087
3088         ret = init_tree_roots(fs_info);
3089         if (ret)
3090                 goto fail_tree_roots;
3091
3092         /*
3093          * If we have a uuid root and we're not being told to rescan we need to
3094          * check the generation here so we can set the
3095          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3096          * transaction during a balance or the log replay without updating the
3097          * uuid generation, and then if we crash we would rescan the uuid tree,
3098          * even though it was perfectly fine.
3099          */
3100         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3101             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3102                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3103
3104         ret = btrfs_verify_dev_extents(fs_info);
3105         if (ret) {
3106                 btrfs_err(fs_info,
3107                           "failed to verify dev extents against chunks: %d",
3108                           ret);
3109                 goto fail_block_groups;
3110         }
3111         ret = btrfs_recover_balance(fs_info);
3112         if (ret) {
3113                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3114                 goto fail_block_groups;
3115         }
3116
3117         ret = btrfs_init_dev_stats(fs_info);
3118         if (ret) {
3119                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3120                 goto fail_block_groups;
3121         }
3122
3123         ret = btrfs_init_dev_replace(fs_info);
3124         if (ret) {
3125                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3126                 goto fail_block_groups;
3127         }
3128
3129         btrfs_free_extra_devids(fs_devices, 1);
3130
3131         ret = btrfs_sysfs_add_fsid(fs_devices);
3132         if (ret) {
3133                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3134                                 ret);
3135                 goto fail_block_groups;
3136         }
3137
3138         ret = btrfs_sysfs_add_mounted(fs_info);
3139         if (ret) {
3140                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3141                 goto fail_fsdev_sysfs;
3142         }
3143
3144         ret = btrfs_init_space_info(fs_info);
3145         if (ret) {
3146                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3147                 goto fail_sysfs;
3148         }
3149
3150         ret = btrfs_read_block_groups(fs_info);
3151         if (ret) {
3152                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3153                 goto fail_sysfs;
3154         }
3155
3156         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3157                 btrfs_warn(fs_info,
3158                 "writable mount is not allowed due to too many missing devices");
3159                 goto fail_sysfs;
3160         }
3161
3162         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3163                                                "btrfs-cleaner");
3164         if (IS_ERR(fs_info->cleaner_kthread))
3165                 goto fail_sysfs;
3166
3167         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3168                                                    tree_root,
3169                                                    "btrfs-transaction");
3170         if (IS_ERR(fs_info->transaction_kthread))
3171                 goto fail_cleaner;
3172
3173         if (!btrfs_test_opt(fs_info, NOSSD) &&
3174             !fs_info->fs_devices->rotating) {
3175                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3176         }
3177
3178         /*
3179          * Mount does not set all options immediately, we can do it now and do
3180          * not have to wait for transaction commit
3181          */
3182         btrfs_apply_pending_changes(fs_info);
3183
3184 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3185         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3186                 ret = btrfsic_mount(fs_info, fs_devices,
3187                                     btrfs_test_opt(fs_info,
3188                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3189                                     1 : 0,
3190                                     fs_info->check_integrity_print_mask);
3191                 if (ret)
3192                         btrfs_warn(fs_info,
3193                                 "failed to initialize integrity check module: %d",
3194                                 ret);
3195         }
3196 #endif
3197         ret = btrfs_read_qgroup_config(fs_info);
3198         if (ret)
3199                 goto fail_trans_kthread;
3200
3201         if (btrfs_build_ref_tree(fs_info))
3202                 btrfs_err(fs_info, "couldn't build ref tree");
3203
3204         /* do not make disk changes in broken FS or nologreplay is given */
3205         if (btrfs_super_log_root(disk_super) != 0 &&
3206             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3207                 btrfs_info(fs_info, "start tree-log replay");
3208                 ret = btrfs_replay_log(fs_info, fs_devices);
3209                 if (ret) {
3210                         err = ret;
3211                         goto fail_qgroup;
3212                 }
3213         }
3214
3215         ret = btrfs_find_orphan_roots(fs_info);
3216         if (ret)
3217                 goto fail_qgroup;
3218
3219         if (!sb_rdonly(sb)) {
3220                 ret = btrfs_cleanup_fs_roots(fs_info);
3221                 if (ret)
3222                         goto fail_qgroup;
3223
3224                 mutex_lock(&fs_info->cleaner_mutex);
3225                 ret = btrfs_recover_relocation(tree_root);
3226                 mutex_unlock(&fs_info->cleaner_mutex);
3227                 if (ret < 0) {
3228                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3229                                         ret);
3230                         err = -EINVAL;
3231                         goto fail_qgroup;
3232                 }
3233         }
3234
3235         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3236         if (IS_ERR(fs_info->fs_root)) {
3237                 err = PTR_ERR(fs_info->fs_root);
3238                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3239                 fs_info->fs_root = NULL;
3240                 goto fail_qgroup;
3241         }
3242
3243         if (sb_rdonly(sb))
3244                 return 0;
3245
3246         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3247             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3248                 clear_free_space_tree = 1;
3249         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3250                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3251                 btrfs_warn(fs_info, "free space tree is invalid");
3252                 clear_free_space_tree = 1;
3253         }
3254
3255         if (clear_free_space_tree) {
3256                 btrfs_info(fs_info, "clearing free space tree");
3257                 ret = btrfs_clear_free_space_tree(fs_info);
3258                 if (ret) {
3259                         btrfs_warn(fs_info,
3260                                    "failed to clear free space tree: %d", ret);
3261                         close_ctree(fs_info);
3262                         return ret;
3263                 }
3264         }
3265
3266         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3267             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3268                 btrfs_info(fs_info, "creating free space tree");
3269                 ret = btrfs_create_free_space_tree(fs_info);
3270                 if (ret) {
3271                         btrfs_warn(fs_info,
3272                                 "failed to create free space tree: %d", ret);
3273                         close_ctree(fs_info);
3274                         return ret;
3275                 }
3276         }
3277
3278         down_read(&fs_info->cleanup_work_sem);
3279         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3280             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3281                 up_read(&fs_info->cleanup_work_sem);
3282                 close_ctree(fs_info);
3283                 return ret;
3284         }
3285         up_read(&fs_info->cleanup_work_sem);
3286
3287         ret = btrfs_resume_balance_async(fs_info);
3288         if (ret) {
3289                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3290                 close_ctree(fs_info);
3291                 return ret;
3292         }
3293
3294         ret = btrfs_resume_dev_replace_async(fs_info);
3295         if (ret) {
3296                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3297                 close_ctree(fs_info);
3298                 return ret;
3299         }
3300
3301         btrfs_qgroup_rescan_resume(fs_info);
3302         btrfs_discard_resume(fs_info);
3303
3304         if (!fs_info->uuid_root) {
3305                 btrfs_info(fs_info, "creating UUID tree");
3306                 ret = btrfs_create_uuid_tree(fs_info);
3307                 if (ret) {
3308                         btrfs_warn(fs_info,
3309                                 "failed to create the UUID tree: %d", ret);
3310                         close_ctree(fs_info);
3311                         return ret;
3312                 }
3313         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3314                    fs_info->generation !=
3315                                 btrfs_super_uuid_tree_generation(disk_super)) {
3316                 btrfs_info(fs_info, "checking UUID tree");
3317                 ret = btrfs_check_uuid_tree(fs_info);
3318                 if (ret) {
3319                         btrfs_warn(fs_info,
3320                                 "failed to check the UUID tree: %d", ret);
3321                         close_ctree(fs_info);
3322                         return ret;
3323                 }
3324         }
3325         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3326
3327         /*
3328          * backuproot only affect mount behavior, and if open_ctree succeeded,
3329          * no need to keep the flag
3330          */
3331         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3332
3333         return 0;
3334
3335 fail_qgroup:
3336         btrfs_free_qgroup_config(fs_info);
3337 fail_trans_kthread:
3338         kthread_stop(fs_info->transaction_kthread);
3339         btrfs_cleanup_transaction(fs_info);
3340         btrfs_free_fs_roots(fs_info);
3341 fail_cleaner:
3342         kthread_stop(fs_info->cleaner_kthread);
3343
3344         /*
3345          * make sure we're done with the btree inode before we stop our
3346          * kthreads
3347          */
3348         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3349
3350 fail_sysfs:
3351         btrfs_sysfs_remove_mounted(fs_info);
3352
3353 fail_fsdev_sysfs:
3354         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3355
3356 fail_block_groups:
3357         btrfs_put_block_group_cache(fs_info);
3358
3359 fail_tree_roots:
3360         if (fs_info->data_reloc_root)
3361                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3362         free_root_pointers(fs_info, true);
3363         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3364
3365 fail_sb_buffer:
3366         btrfs_stop_all_workers(fs_info);
3367         btrfs_free_block_groups(fs_info);
3368 fail_alloc:
3369         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3370
3371         iput(fs_info->btree_inode);
3372 fail:
3373         btrfs_close_devices(fs_info->fs_devices);
3374         return err;
3375 }
3376 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3377
3378 static void btrfs_end_super_write(struct bio *bio)
3379 {
3380         struct btrfs_device *device = bio->bi_private;
3381         struct bio_vec *bvec;
3382         struct bvec_iter_all iter_all;
3383         struct page *page;
3384
3385         bio_for_each_segment_all(bvec, bio, iter_all) {
3386                 page = bvec->bv_page;
3387
3388                 if (bio->bi_status) {
3389                         btrfs_warn_rl_in_rcu(device->fs_info,
3390                                 "lost page write due to IO error on %s (%d)",
3391                                 rcu_str_deref(device->name),
3392                                 blk_status_to_errno(bio->bi_status));
3393                         ClearPageUptodate(page);
3394                         SetPageError(page);
3395                         btrfs_dev_stat_inc_and_print(device,
3396                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3397                 } else {
3398                         SetPageUptodate(page);
3399                 }
3400
3401                 put_page(page);
3402                 unlock_page(page);
3403         }
3404
3405         bio_put(bio);
3406 }
3407
3408 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3409                                                    int copy_num)
3410 {
3411         struct btrfs_super_block *super;
3412         struct page *page;
3413         u64 bytenr;
3414         struct address_space *mapping = bdev->bd_inode->i_mapping;
3415
3416         bytenr = btrfs_sb_offset(copy_num);
3417         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3418                 return ERR_PTR(-EINVAL);
3419
3420         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3421         if (IS_ERR(page))
3422                 return ERR_CAST(page);
3423
3424         super = page_address(page);
3425         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3426                 btrfs_release_disk_super(super);
3427                 return ERR_PTR(-ENODATA);
3428         }
3429
3430         if (btrfs_super_bytenr(super) != bytenr) {
3431                 btrfs_release_disk_super(super);
3432                 return ERR_PTR(-EINVAL);
3433         }
3434
3435         return super;
3436 }
3437
3438
3439 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3440 {
3441         struct btrfs_super_block *super, *latest = NULL;
3442         int i;
3443         u64 transid = 0;
3444
3445         /* we would like to check all the supers, but that would make
3446          * a btrfs mount succeed after a mkfs from a different FS.
3447          * So, we need to add a special mount option to scan for
3448          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3449          */
3450         for (i = 0; i < 1; i++) {
3451                 super = btrfs_read_dev_one_super(bdev, i);
3452                 if (IS_ERR(super))
3453                         continue;
3454
3455                 if (!latest || btrfs_super_generation(super) > transid) {
3456                         if (latest)
3457                                 btrfs_release_disk_super(super);
3458
3459                         latest = super;
3460                         transid = btrfs_super_generation(super);
3461                 }
3462         }
3463
3464         return super;
3465 }
3466
3467 /*
3468  * Write superblock @sb to the @device. Do not wait for completion, all the
3469  * pages we use for writing are locked.
3470  *
3471  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3472  * the expected device size at commit time. Note that max_mirrors must be
3473  * same for write and wait phases.
3474  *
3475  * Return number of errors when page is not found or submission fails.
3476  */
3477 static int write_dev_supers(struct btrfs_device *device,
3478                             struct btrfs_super_block *sb, int max_mirrors)
3479 {
3480         struct btrfs_fs_info *fs_info = device->fs_info;
3481         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3482         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3483         int i;
3484         int errors = 0;
3485         u64 bytenr;
3486
3487         if (max_mirrors == 0)
3488                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3489
3490         shash->tfm = fs_info->csum_shash;
3491
3492         for (i = 0; i < max_mirrors; i++) {
3493                 struct page *page;
3494                 struct bio *bio;
3495                 struct btrfs_super_block *disk_super;
3496
3497                 bytenr = btrfs_sb_offset(i);
3498                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3499                     device->commit_total_bytes)
3500                         break;
3501
3502                 btrfs_set_super_bytenr(sb, bytenr);
3503
3504                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3505                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3506                                     sb->csum);
3507
3508                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3509                                            GFP_NOFS);
3510                 if (!page) {
3511                         btrfs_err(device->fs_info,
3512                             "couldn't get super block page for bytenr %llu",
3513                             bytenr);
3514                         errors++;
3515                         continue;
3516                 }
3517
3518                 /* Bump the refcount for wait_dev_supers() */
3519                 get_page(page);
3520
3521                 disk_super = page_address(page);
3522                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3523
3524                 /*
3525                  * Directly use bios here instead of relying on the page cache
3526                  * to do I/O, so we don't lose the ability to do integrity
3527                  * checking.
3528                  */
3529                 bio = bio_alloc(GFP_NOFS, 1);
3530                 bio_set_dev(bio, device->bdev);
3531                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3532                 bio->bi_private = device;
3533                 bio->bi_end_io = btrfs_end_super_write;
3534                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3535                                offset_in_page(bytenr));
3536
3537                 /*
3538                  * We FUA only the first super block.  The others we allow to
3539                  * go down lazy and there's a short window where the on-disk
3540                  * copies might still contain the older version.
3541                  */
3542                 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3543                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3544                         bio->bi_opf |= REQ_FUA;
3545
3546                 btrfsic_submit_bio(bio);
3547         }
3548         return errors < i ? 0 : -1;
3549 }
3550
3551 /*
3552  * Wait for write completion of superblocks done by write_dev_supers,
3553  * @max_mirrors same for write and wait phases.
3554  *
3555  * Return number of errors when page is not found or not marked up to
3556  * date.
3557  */
3558 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3559 {
3560         int i;
3561         int errors = 0;
3562         bool primary_failed = false;
3563         u64 bytenr;
3564
3565         if (max_mirrors == 0)
3566                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3567
3568         for (i = 0; i < max_mirrors; i++) {
3569                 struct page *page;
3570
3571                 bytenr = btrfs_sb_offset(i);
3572                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3573                     device->commit_total_bytes)
3574                         break;
3575
3576                 page = find_get_page(device->bdev->bd_inode->i_mapping,
3577                                      bytenr >> PAGE_SHIFT);
3578                 if (!page) {
3579                         errors++;
3580                         if (i == 0)
3581                                 primary_failed = true;
3582                         continue;
3583                 }
3584                 /* Page is submitted locked and unlocked once the IO completes */
3585                 wait_on_page_locked(page);
3586                 if (PageError(page)) {
3587                         errors++;
3588                         if (i == 0)
3589                                 primary_failed = true;
3590                 }
3591
3592                 /* Drop our reference */
3593                 put_page(page);
3594
3595                 /* Drop the reference from the writing run */
3596                 put_page(page);
3597         }
3598
3599         /* log error, force error return */
3600         if (primary_failed) {
3601                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3602                           device->devid);
3603                 return -1;
3604         }
3605
3606         return errors < i ? 0 : -1;
3607 }
3608
3609 /*
3610  * endio for the write_dev_flush, this will wake anyone waiting
3611  * for the barrier when it is done
3612  */
3613 static void btrfs_end_empty_barrier(struct bio *bio)
3614 {
3615         complete(bio->bi_private);
3616 }
3617
3618 /*
3619  * Submit a flush request to the device if it supports it. Error handling is
3620  * done in the waiting counterpart.
3621  */
3622 static void write_dev_flush(struct btrfs_device *device)
3623 {
3624         struct request_queue *q = bdev_get_queue(device->bdev);
3625         struct bio *bio = device->flush_bio;
3626
3627         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3628                 return;
3629
3630         bio_reset(bio);
3631         bio->bi_end_io = btrfs_end_empty_barrier;
3632         bio_set_dev(bio, device->bdev);
3633         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3634         init_completion(&device->flush_wait);
3635         bio->bi_private = &device->flush_wait;
3636
3637         btrfsic_submit_bio(bio);
3638         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3639 }
3640
3641 /*
3642  * If the flush bio has been submitted by write_dev_flush, wait for it.
3643  */
3644 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3645 {
3646         struct bio *bio = device->flush_bio;
3647
3648         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3649                 return BLK_STS_OK;
3650
3651         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3652         wait_for_completion_io(&device->flush_wait);
3653
3654         return bio->bi_status;
3655 }
3656
3657 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3658 {
3659         if (!btrfs_check_rw_degradable(fs_info, NULL))
3660                 return -EIO;
3661         return 0;
3662 }
3663
3664 /*
3665  * send an empty flush down to each device in parallel,
3666  * then wait for them
3667  */
3668 static int barrier_all_devices(struct btrfs_fs_info *info)
3669 {
3670         struct list_head *head;
3671         struct btrfs_device *dev;
3672         int errors_wait = 0;
3673         blk_status_t ret;
3674
3675         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3676         /* send down all the barriers */
3677         head = &info->fs_devices->devices;
3678         list_for_each_entry(dev, head, dev_list) {
3679                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3680                         continue;
3681                 if (!dev->bdev)
3682                         continue;
3683                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3684                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3685                         continue;
3686
3687                 write_dev_flush(dev);
3688                 dev->last_flush_error = BLK_STS_OK;
3689         }
3690
3691         /* wait for all the barriers */
3692         list_for_each_entry(dev, head, dev_list) {
3693                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3694                         continue;
3695                 if (!dev->bdev) {
3696                         errors_wait++;
3697                         continue;
3698                 }
3699                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3700                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3701                         continue;
3702
3703                 ret = wait_dev_flush(dev);
3704                 if (ret) {
3705                         dev->last_flush_error = ret;
3706                         btrfs_dev_stat_inc_and_print(dev,
3707                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3708                         errors_wait++;
3709                 }
3710         }
3711
3712         if (errors_wait) {
3713                 /*
3714                  * At some point we need the status of all disks
3715                  * to arrive at the volume status. So error checking
3716                  * is being pushed to a separate loop.
3717                  */
3718                 return check_barrier_error(info);
3719         }
3720         return 0;
3721 }
3722
3723 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3724 {
3725         int raid_type;
3726         int min_tolerated = INT_MAX;
3727
3728         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3729             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3730                 min_tolerated = min_t(int, min_tolerated,
3731                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3732                                     tolerated_failures);
3733
3734         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3735                 if (raid_type == BTRFS_RAID_SINGLE)
3736                         continue;
3737                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3738                         continue;
3739                 min_tolerated = min_t(int, min_tolerated,
3740                                     btrfs_raid_array[raid_type].
3741                                     tolerated_failures);
3742         }
3743
3744         if (min_tolerated == INT_MAX) {
3745                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3746                 min_tolerated = 0;
3747         }
3748
3749         return min_tolerated;
3750 }
3751
3752 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3753 {
3754         struct list_head *head;
3755         struct btrfs_device *dev;
3756         struct btrfs_super_block *sb;
3757         struct btrfs_dev_item *dev_item;
3758         int ret;
3759         int do_barriers;
3760         int max_errors;
3761         int total_errors = 0;
3762         u64 flags;
3763
3764         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3765
3766         /*
3767          * max_mirrors == 0 indicates we're from commit_transaction,
3768          * not from fsync where the tree roots in fs_info have not
3769          * been consistent on disk.
3770          */
3771         if (max_mirrors == 0)
3772                 backup_super_roots(fs_info);
3773
3774         sb = fs_info->super_for_commit;
3775         dev_item = &sb->dev_item;
3776
3777         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3778         head = &fs_info->fs_devices->devices;
3779         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3780
3781         if (do_barriers) {
3782                 ret = barrier_all_devices(fs_info);
3783                 if (ret) {
3784                         mutex_unlock(
3785                                 &fs_info->fs_devices->device_list_mutex);
3786                         btrfs_handle_fs_error(fs_info, ret,
3787                                               "errors while submitting device barriers.");
3788                         return ret;
3789                 }
3790         }
3791
3792         list_for_each_entry(dev, head, dev_list) {
3793                 if (!dev->bdev) {
3794                         total_errors++;
3795                         continue;
3796                 }
3797                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3798                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3799                         continue;
3800
3801                 btrfs_set_stack_device_generation(dev_item, 0);
3802                 btrfs_set_stack_device_type(dev_item, dev->type);
3803                 btrfs_set_stack_device_id(dev_item, dev->devid);
3804                 btrfs_set_stack_device_total_bytes(dev_item,
3805                                                    dev->commit_total_bytes);
3806                 btrfs_set_stack_device_bytes_used(dev_item,
3807                                                   dev->commit_bytes_used);
3808                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3809                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3810                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3811                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3812                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3813                        BTRFS_FSID_SIZE);
3814
3815                 flags = btrfs_super_flags(sb);
3816                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3817
3818                 ret = btrfs_validate_write_super(fs_info, sb);
3819                 if (ret < 0) {
3820                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3821                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3822                                 "unexpected superblock corruption detected");
3823                         return -EUCLEAN;
3824                 }
3825
3826                 ret = write_dev_supers(dev, sb, max_mirrors);
3827                 if (ret)
3828                         total_errors++;
3829         }
3830         if (total_errors > max_errors) {
3831                 btrfs_err(fs_info, "%d errors while writing supers",
3832                           total_errors);
3833                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3834
3835                 /* FUA is masked off if unsupported and can't be the reason */
3836                 btrfs_handle_fs_error(fs_info, -EIO,
3837                                       "%d errors while writing supers",
3838                                       total_errors);
3839                 return -EIO;
3840         }
3841
3842         total_errors = 0;
3843         list_for_each_entry(dev, head, dev_list) {
3844                 if (!dev->bdev)
3845                         continue;
3846                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3847                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3848                         continue;
3849
3850                 ret = wait_dev_supers(dev, max_mirrors);
3851                 if (ret)
3852                         total_errors++;
3853         }
3854         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3855         if (total_errors > max_errors) {
3856                 btrfs_handle_fs_error(fs_info, -EIO,
3857                                       "%d errors while writing supers",
3858                                       total_errors);
3859                 return -EIO;
3860         }
3861         return 0;
3862 }
3863
3864 /* Drop a fs root from the radix tree and free it. */
3865 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3866                                   struct btrfs_root *root)
3867 {
3868         bool drop_ref = false;
3869
3870         spin_lock(&fs_info->fs_roots_radix_lock);
3871         radix_tree_delete(&fs_info->fs_roots_radix,
3872                           (unsigned long)root->root_key.objectid);
3873         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3874                 drop_ref = true;
3875         spin_unlock(&fs_info->fs_roots_radix_lock);
3876
3877         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3878                 ASSERT(root->log_root == NULL);
3879                 if (root->reloc_root) {
3880                         btrfs_put_root(root->reloc_root);
3881                         root->reloc_root = NULL;
3882                 }
3883         }
3884
3885         if (root->free_ino_pinned)
3886                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3887         if (root->free_ino_ctl)
3888                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3889         if (root->ino_cache_inode) {
3890                 iput(root->ino_cache_inode);
3891                 root->ino_cache_inode = NULL;
3892         }
3893         if (drop_ref)
3894                 btrfs_put_root(root);
3895 }
3896
3897 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3898 {
3899         u64 root_objectid = 0;
3900         struct btrfs_root *gang[8];
3901         int i = 0;
3902         int err = 0;
3903         unsigned int ret = 0;
3904
3905         while (1) {
3906                 spin_lock(&fs_info->fs_roots_radix_lock);
3907                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3908                                              (void **)gang, root_objectid,
3909                                              ARRAY_SIZE(gang));
3910                 if (!ret) {
3911                         spin_unlock(&fs_info->fs_roots_radix_lock);
3912                         break;
3913                 }
3914                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3915
3916                 for (i = 0; i < ret; i++) {
3917                         /* Avoid to grab roots in dead_roots */
3918                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3919                                 gang[i] = NULL;
3920                                 continue;
3921                         }
3922                         /* grab all the search result for later use */
3923                         gang[i] = btrfs_grab_root(gang[i]);
3924                 }
3925                 spin_unlock(&fs_info->fs_roots_radix_lock);
3926
3927                 for (i = 0; i < ret; i++) {
3928                         if (!gang[i])
3929                                 continue;
3930                         root_objectid = gang[i]->root_key.objectid;
3931                         err = btrfs_orphan_cleanup(gang[i]);
3932                         if (err)
3933                                 break;
3934                         btrfs_put_root(gang[i]);
3935                 }
3936                 root_objectid++;
3937         }
3938
3939         /* release the uncleaned roots due to error */
3940         for (; i < ret; i++) {
3941                 if (gang[i])
3942                         btrfs_put_root(gang[i]);
3943         }
3944         return err;
3945 }
3946
3947 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3948 {
3949         struct btrfs_root *root = fs_info->tree_root;
3950         struct btrfs_trans_handle *trans;
3951
3952         mutex_lock(&fs_info->cleaner_mutex);
3953         btrfs_run_delayed_iputs(fs_info);
3954         mutex_unlock(&fs_info->cleaner_mutex);
3955         wake_up_process(fs_info->cleaner_kthread);
3956
3957         /* wait until ongoing cleanup work done */
3958         down_write(&fs_info->cleanup_work_sem);
3959         up_write(&fs_info->cleanup_work_sem);
3960
3961         trans = btrfs_join_transaction(root);
3962         if (IS_ERR(trans))
3963                 return PTR_ERR(trans);
3964         return btrfs_commit_transaction(trans);
3965 }
3966
3967 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3968 {
3969         int ret;
3970
3971         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3972         /*
3973          * We don't want the cleaner to start new transactions, add more delayed
3974          * iputs, etc. while we're closing. We can't use kthread_stop() yet
3975          * because that frees the task_struct, and the transaction kthread might
3976          * still try to wake up the cleaner.
3977          */
3978         kthread_park(fs_info->cleaner_kthread);
3979
3980         /* wait for the qgroup rescan worker to stop */
3981         btrfs_qgroup_wait_for_completion(fs_info, false);
3982
3983         /* wait for the uuid_scan task to finish */
3984         down(&fs_info->uuid_tree_rescan_sem);
3985         /* avoid complains from lockdep et al., set sem back to initial state */
3986         up(&fs_info->uuid_tree_rescan_sem);
3987
3988         /* pause restriper - we want to resume on mount */
3989         btrfs_pause_balance(fs_info);
3990
3991         btrfs_dev_replace_suspend_for_unmount(fs_info);
3992
3993         btrfs_scrub_cancel(fs_info);
3994
3995         /* wait for any defraggers to finish */
3996         wait_event(fs_info->transaction_wait,
3997                    (atomic_read(&fs_info->defrag_running) == 0));
3998
3999         /* clear out the rbtree of defraggable inodes */
4000         btrfs_cleanup_defrag_inodes(fs_info);
4001
4002         cancel_work_sync(&fs_info->async_reclaim_work);
4003         cancel_work_sync(&fs_info->async_data_reclaim_work);
4004
4005         /* Cancel or finish ongoing discard work */
4006         btrfs_discard_cleanup(fs_info);
4007
4008         if (!sb_rdonly(fs_info->sb)) {
4009                 /*
4010                  * The cleaner kthread is stopped, so do one final pass over
4011                  * unused block groups.
4012                  */
4013                 btrfs_delete_unused_bgs(fs_info);
4014
4015                 /*
4016                  * There might be existing delayed inode workers still running
4017                  * and holding an empty delayed inode item. We must wait for
4018                  * them to complete first because they can create a transaction.
4019                  * This happens when someone calls btrfs_balance_delayed_items()
4020                  * and then a transaction commit runs the same delayed nodes
4021                  * before any delayed worker has done something with the nodes.
4022                  * We must wait for any worker here and not at transaction
4023                  * commit time since that could cause a deadlock.
4024                  * This is a very rare case.
4025                  */
4026                 btrfs_flush_workqueue(fs_info->delayed_workers);
4027
4028                 ret = btrfs_commit_super(fs_info);
4029                 if (ret)
4030                         btrfs_err(fs_info, "commit super ret %d", ret);
4031         }
4032
4033         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4034             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4035                 btrfs_error_commit_super(fs_info);
4036
4037         kthread_stop(fs_info->transaction_kthread);
4038         kthread_stop(fs_info->cleaner_kthread);
4039
4040         ASSERT(list_empty(&fs_info->delayed_iputs));
4041         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4042
4043         if (btrfs_check_quota_leak(fs_info)) {
4044                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4045                 btrfs_err(fs_info, "qgroup reserved space leaked");
4046         }
4047
4048         btrfs_free_qgroup_config(fs_info);
4049         ASSERT(list_empty(&fs_info->delalloc_roots));
4050
4051         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4052                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4053                        percpu_counter_sum(&fs_info->delalloc_bytes));
4054         }
4055
4056         if (percpu_counter_sum(&fs_info->dio_bytes))
4057                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4058                            percpu_counter_sum(&fs_info->dio_bytes));
4059
4060         btrfs_sysfs_remove_mounted(fs_info);
4061         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4062
4063         btrfs_put_block_group_cache(fs_info);
4064
4065         /*
4066          * we must make sure there is not any read request to
4067          * submit after we stopping all workers.
4068          */
4069         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4070         btrfs_stop_all_workers(fs_info);
4071
4072         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4073         free_root_pointers(fs_info, true);
4074         btrfs_free_fs_roots(fs_info);
4075
4076         /*
4077          * We must free the block groups after dropping the fs_roots as we could
4078          * have had an IO error and have left over tree log blocks that aren't
4079          * cleaned up until the fs roots are freed.  This makes the block group
4080          * accounting appear to be wrong because there's pending reserved bytes,
4081          * so make sure we do the block group cleanup afterwards.
4082          */
4083         btrfs_free_block_groups(fs_info);
4084
4085         iput(fs_info->btree_inode);
4086
4087 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4088         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4089                 btrfsic_unmount(fs_info->fs_devices);
4090 #endif
4091
4092         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4093         btrfs_close_devices(fs_info->fs_devices);
4094 }
4095
4096 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4097                           int atomic)
4098 {
4099         int ret;
4100         struct inode *btree_inode = buf->pages[0]->mapping->host;
4101
4102         ret = extent_buffer_uptodate(buf);
4103         if (!ret)
4104                 return ret;
4105
4106         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4107                                     parent_transid, atomic);
4108         if (ret == -EAGAIN)
4109                 return ret;
4110         return !ret;
4111 }
4112
4113 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4114 {
4115         struct btrfs_fs_info *fs_info;
4116         struct btrfs_root *root;
4117         u64 transid = btrfs_header_generation(buf);
4118         int was_dirty;
4119
4120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4121         /*
4122          * This is a fast path so only do this check if we have sanity tests
4123          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4124          * outside of the sanity tests.
4125          */
4126         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4127                 return;
4128 #endif
4129         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4130         fs_info = root->fs_info;
4131         btrfs_assert_tree_locked(buf);
4132         if (transid != fs_info->generation)
4133                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4134                         buf->start, transid, fs_info->generation);
4135         was_dirty = set_extent_buffer_dirty(buf);
4136         if (!was_dirty)
4137                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4138                                          buf->len,
4139                                          fs_info->dirty_metadata_batch);
4140 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4141         /*
4142          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4143          * but item data not updated.
4144          * So here we should only check item pointers, not item data.
4145          */
4146         if (btrfs_header_level(buf) == 0 &&
4147             btrfs_check_leaf_relaxed(buf)) {
4148                 btrfs_print_leaf(buf);
4149                 ASSERT(0);
4150         }
4151 #endif
4152 }
4153
4154 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4155                                         int flush_delayed)
4156 {
4157         /*
4158          * looks as though older kernels can get into trouble with
4159          * this code, they end up stuck in balance_dirty_pages forever
4160          */
4161         int ret;
4162
4163         if (current->flags & PF_MEMALLOC)
4164                 return;
4165
4166         if (flush_delayed)
4167                 btrfs_balance_delayed_items(fs_info);
4168
4169         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4170                                      BTRFS_DIRTY_METADATA_THRESH,
4171                                      fs_info->dirty_metadata_batch);
4172         if (ret > 0) {
4173                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4174         }
4175 }
4176
4177 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4178 {
4179         __btrfs_btree_balance_dirty(fs_info, 1);
4180 }
4181
4182 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4183 {
4184         __btrfs_btree_balance_dirty(fs_info, 0);
4185 }
4186
4187 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4188                       struct btrfs_key *first_key)
4189 {
4190         return btree_read_extent_buffer_pages(buf, parent_transid,
4191                                               level, first_key);
4192 }
4193
4194 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4195 {
4196         /* cleanup FS via transaction */
4197         btrfs_cleanup_transaction(fs_info);
4198
4199         mutex_lock(&fs_info->cleaner_mutex);
4200         btrfs_run_delayed_iputs(fs_info);
4201         mutex_unlock(&fs_info->cleaner_mutex);
4202
4203         down_write(&fs_info->cleanup_work_sem);
4204         up_write(&fs_info->cleanup_work_sem);
4205 }
4206
4207 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4208 {
4209         struct btrfs_root *gang[8];
4210         u64 root_objectid = 0;
4211         int ret;
4212
4213         spin_lock(&fs_info->fs_roots_radix_lock);
4214         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4215                                              (void **)gang, root_objectid,
4216                                              ARRAY_SIZE(gang))) != 0) {
4217                 int i;
4218
4219                 for (i = 0; i < ret; i++)
4220                         gang[i] = btrfs_grab_root(gang[i]);
4221                 spin_unlock(&fs_info->fs_roots_radix_lock);
4222
4223                 for (i = 0; i < ret; i++) {
4224                         if (!gang[i])
4225                                 continue;
4226                         root_objectid = gang[i]->root_key.objectid;
4227                         btrfs_free_log(NULL, gang[i]);
4228                         btrfs_put_root(gang[i]);
4229                 }
4230                 root_objectid++;
4231                 spin_lock(&fs_info->fs_roots_radix_lock);
4232         }
4233         spin_unlock(&fs_info->fs_roots_radix_lock);
4234         btrfs_free_log_root_tree(NULL, fs_info);
4235 }
4236
4237 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4238 {
4239         struct btrfs_ordered_extent *ordered;
4240
4241         spin_lock(&root->ordered_extent_lock);
4242         /*
4243          * This will just short circuit the ordered completion stuff which will
4244          * make sure the ordered extent gets properly cleaned up.
4245          */
4246         list_for_each_entry(ordered, &root->ordered_extents,
4247                             root_extent_list)
4248                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4249         spin_unlock(&root->ordered_extent_lock);
4250 }
4251
4252 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4253 {
4254         struct btrfs_root *root;
4255         struct list_head splice;
4256
4257         INIT_LIST_HEAD(&splice);
4258
4259         spin_lock(&fs_info->ordered_root_lock);
4260         list_splice_init(&fs_info->ordered_roots, &splice);
4261         while (!list_empty(&splice)) {
4262                 root = list_first_entry(&splice, struct btrfs_root,
4263                                         ordered_root);
4264                 list_move_tail(&root->ordered_root,
4265                                &fs_info->ordered_roots);
4266
4267                 spin_unlock(&fs_info->ordered_root_lock);
4268                 btrfs_destroy_ordered_extents(root);
4269
4270                 cond_resched();
4271                 spin_lock(&fs_info->ordered_root_lock);
4272         }
4273         spin_unlock(&fs_info->ordered_root_lock);
4274
4275         /*
4276          * We need this here because if we've been flipped read-only we won't
4277          * get sync() from the umount, so we need to make sure any ordered
4278          * extents that haven't had their dirty pages IO start writeout yet
4279          * actually get run and error out properly.
4280          */
4281         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4282 }
4283
4284 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4285                                       struct btrfs_fs_info *fs_info)
4286 {
4287         struct rb_node *node;
4288         struct btrfs_delayed_ref_root *delayed_refs;
4289         struct btrfs_delayed_ref_node *ref;
4290         int ret = 0;
4291
4292         delayed_refs = &trans->delayed_refs;
4293
4294         spin_lock(&delayed_refs->lock);
4295         if (atomic_read(&delayed_refs->num_entries) == 0) {
4296                 spin_unlock(&delayed_refs->lock);
4297                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4298                 return ret;
4299         }
4300
4301         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4302                 struct btrfs_delayed_ref_head *head;
4303                 struct rb_node *n;
4304                 bool pin_bytes = false;
4305
4306                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4307                                 href_node);
4308                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4309                         continue;
4310
4311                 spin_lock(&head->lock);
4312                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4313                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4314                                        ref_node);
4315                         ref->in_tree = 0;
4316                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4317                         RB_CLEAR_NODE(&ref->ref_node);
4318                         if (!list_empty(&ref->add_list))
4319                                 list_del(&ref->add_list);
4320                         atomic_dec(&delayed_refs->num_entries);
4321                         btrfs_put_delayed_ref(ref);
4322                 }
4323                 if (head->must_insert_reserved)
4324                         pin_bytes = true;
4325                 btrfs_free_delayed_extent_op(head->extent_op);
4326                 btrfs_delete_ref_head(delayed_refs, head);
4327                 spin_unlock(&head->lock);
4328                 spin_unlock(&delayed_refs->lock);
4329                 mutex_unlock(&head->mutex);
4330
4331                 if (pin_bytes) {
4332                         struct btrfs_block_group *cache;
4333
4334                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4335                         BUG_ON(!cache);
4336
4337                         spin_lock(&cache->space_info->lock);
4338                         spin_lock(&cache->lock);
4339                         cache->pinned += head->num_bytes;
4340                         btrfs_space_info_update_bytes_pinned(fs_info,
4341                                 cache->space_info, head->num_bytes);
4342                         cache->reserved -= head->num_bytes;
4343                         cache->space_info->bytes_reserved -= head->num_bytes;
4344                         spin_unlock(&cache->lock);
4345                         spin_unlock(&cache->space_info->lock);
4346                         percpu_counter_add_batch(
4347                                 &cache->space_info->total_bytes_pinned,
4348                                 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4349
4350                         btrfs_put_block_group(cache);
4351
4352                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4353                                 head->bytenr + head->num_bytes - 1);
4354                 }
4355                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4356                 btrfs_put_delayed_ref_head(head);
4357                 cond_resched();
4358                 spin_lock(&delayed_refs->lock);
4359         }
4360         btrfs_qgroup_destroy_extent_records(trans);
4361
4362         spin_unlock(&delayed_refs->lock);
4363
4364         return ret;
4365 }
4366
4367 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4368 {
4369         struct btrfs_inode *btrfs_inode;
4370         struct list_head splice;
4371
4372         INIT_LIST_HEAD(&splice);
4373
4374         spin_lock(&root->delalloc_lock);
4375         list_splice_init(&root->delalloc_inodes, &splice);
4376
4377         while (!list_empty(&splice)) {
4378                 struct inode *inode = NULL;
4379                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4380                                                delalloc_inodes);
4381                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4382                 spin_unlock(&root->delalloc_lock);
4383
4384                 /*
4385                  * Make sure we get a live inode and that it'll not disappear
4386                  * meanwhile.
4387                  */
4388                 inode = igrab(&btrfs_inode->vfs_inode);
4389                 if (inode) {
4390                         invalidate_inode_pages2(inode->i_mapping);
4391                         iput(inode);
4392                 }
4393                 spin_lock(&root->delalloc_lock);
4394         }
4395         spin_unlock(&root->delalloc_lock);
4396 }
4397
4398 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4399 {
4400         struct btrfs_root *root;
4401         struct list_head splice;
4402
4403         INIT_LIST_HEAD(&splice);
4404
4405         spin_lock(&fs_info->delalloc_root_lock);
4406         list_splice_init(&fs_info->delalloc_roots, &splice);
4407         while (!list_empty(&splice)) {
4408                 root = list_first_entry(&splice, struct btrfs_root,
4409                                          delalloc_root);
4410                 root = btrfs_grab_root(root);
4411                 BUG_ON(!root);
4412                 spin_unlock(&fs_info->delalloc_root_lock);
4413
4414                 btrfs_destroy_delalloc_inodes(root);
4415                 btrfs_put_root(root);
4416
4417                 spin_lock(&fs_info->delalloc_root_lock);
4418         }
4419         spin_unlock(&fs_info->delalloc_root_lock);
4420 }
4421
4422 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4423                                         struct extent_io_tree *dirty_pages,
4424                                         int mark)
4425 {
4426         int ret;
4427         struct extent_buffer *eb;
4428         u64 start = 0;
4429         u64 end;
4430
4431         while (1) {
4432                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4433                                             mark, NULL);
4434                 if (ret)
4435                         break;
4436
4437                 clear_extent_bits(dirty_pages, start, end, mark);
4438                 while (start <= end) {
4439                         eb = find_extent_buffer(fs_info, start);
4440                         start += fs_info->nodesize;
4441                         if (!eb)
4442                                 continue;
4443                         wait_on_extent_buffer_writeback(eb);
4444
4445                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4446                                                &eb->bflags))
4447                                 clear_extent_buffer_dirty(eb);
4448                         free_extent_buffer_stale(eb);
4449                 }
4450         }
4451
4452         return ret;
4453 }
4454
4455 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4456                                        struct extent_io_tree *unpin)
4457 {
4458         u64 start;
4459         u64 end;
4460         int ret;
4461
4462         while (1) {
4463                 struct extent_state *cached_state = NULL;
4464
4465                 /*
4466                  * The btrfs_finish_extent_commit() may get the same range as
4467                  * ours between find_first_extent_bit and clear_extent_dirty.
4468                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4469                  * the same extent range.
4470                  */
4471                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4472                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4473                                             EXTENT_DIRTY, &cached_state);
4474                 if (ret) {
4475                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4476                         break;
4477                 }
4478
4479                 clear_extent_dirty(unpin, start, end, &cached_state);
4480                 free_extent_state(cached_state);
4481                 btrfs_error_unpin_extent_range(fs_info, start, end);
4482                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4483                 cond_resched();
4484         }
4485
4486         return 0;
4487 }
4488
4489 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4490 {
4491         struct inode *inode;
4492
4493         inode = cache->io_ctl.inode;
4494         if (inode) {
4495                 invalidate_inode_pages2(inode->i_mapping);
4496                 BTRFS_I(inode)->generation = 0;
4497                 cache->io_ctl.inode = NULL;
4498                 iput(inode);
4499         }
4500         ASSERT(cache->io_ctl.pages == NULL);
4501         btrfs_put_block_group(cache);
4502 }
4503
4504 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4505                              struct btrfs_fs_info *fs_info)
4506 {
4507         struct btrfs_block_group *cache;
4508
4509         spin_lock(&cur_trans->dirty_bgs_lock);
4510         while (!list_empty(&cur_trans->dirty_bgs)) {
4511                 cache = list_first_entry(&cur_trans->dirty_bgs,
4512                                          struct btrfs_block_group,
4513                                          dirty_list);
4514
4515                 if (!list_empty(&cache->io_list)) {
4516                         spin_unlock(&cur_trans->dirty_bgs_lock);
4517                         list_del_init(&cache->io_list);
4518                         btrfs_cleanup_bg_io(cache);
4519                         spin_lock(&cur_trans->dirty_bgs_lock);
4520                 }
4521
4522                 list_del_init(&cache->dirty_list);
4523                 spin_lock(&cache->lock);
4524                 cache->disk_cache_state = BTRFS_DC_ERROR;
4525                 spin_unlock(&cache->lock);
4526
4527                 spin_unlock(&cur_trans->dirty_bgs_lock);
4528                 btrfs_put_block_group(cache);
4529                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4530                 spin_lock(&cur_trans->dirty_bgs_lock);
4531         }
4532         spin_unlock(&cur_trans->dirty_bgs_lock);
4533
4534         /*
4535          * Refer to the definition of io_bgs member for details why it's safe
4536          * to use it without any locking
4537          */
4538         while (!list_empty(&cur_trans->io_bgs)) {
4539                 cache = list_first_entry(&cur_trans->io_bgs,
4540                                          struct btrfs_block_group,
4541                                          io_list);
4542
4543                 list_del_init(&cache->io_list);
4544                 spin_lock(&cache->lock);
4545                 cache->disk_cache_state = BTRFS_DC_ERROR;
4546                 spin_unlock(&cache->lock);
4547                 btrfs_cleanup_bg_io(cache);
4548         }
4549 }
4550
4551 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4552                                    struct btrfs_fs_info *fs_info)
4553 {
4554         struct btrfs_device *dev, *tmp;
4555
4556         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4557         ASSERT(list_empty(&cur_trans->dirty_bgs));
4558         ASSERT(list_empty(&cur_trans->io_bgs));
4559
4560         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4561                                  post_commit_list) {
4562                 list_del_init(&dev->post_commit_list);
4563         }
4564
4565         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4566
4567         cur_trans->state = TRANS_STATE_COMMIT_START;
4568         wake_up(&fs_info->transaction_blocked_wait);
4569
4570         cur_trans->state = TRANS_STATE_UNBLOCKED;
4571         wake_up(&fs_info->transaction_wait);
4572
4573         btrfs_destroy_delayed_inodes(fs_info);
4574
4575         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4576                                      EXTENT_DIRTY);
4577         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4578
4579         cur_trans->state =TRANS_STATE_COMPLETED;
4580         wake_up(&cur_trans->commit_wait);
4581 }
4582
4583 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4584 {
4585         struct btrfs_transaction *t;
4586
4587         mutex_lock(&fs_info->transaction_kthread_mutex);
4588
4589         spin_lock(&fs_info->trans_lock);
4590         while (!list_empty(&fs_info->trans_list)) {
4591                 t = list_first_entry(&fs_info->trans_list,
4592                                      struct btrfs_transaction, list);
4593                 if (t->state >= TRANS_STATE_COMMIT_START) {
4594                         refcount_inc(&t->use_count);
4595                         spin_unlock(&fs_info->trans_lock);
4596                         btrfs_wait_for_commit(fs_info, t->transid);
4597                         btrfs_put_transaction(t);
4598                         spin_lock(&fs_info->trans_lock);
4599                         continue;
4600                 }
4601                 if (t == fs_info->running_transaction) {
4602                         t->state = TRANS_STATE_COMMIT_DOING;
4603                         spin_unlock(&fs_info->trans_lock);
4604                         /*
4605                          * We wait for 0 num_writers since we don't hold a trans
4606                          * handle open currently for this transaction.
4607                          */
4608                         wait_event(t->writer_wait,
4609                                    atomic_read(&t->num_writers) == 0);
4610                 } else {
4611                         spin_unlock(&fs_info->trans_lock);
4612                 }
4613                 btrfs_cleanup_one_transaction(t, fs_info);
4614
4615                 spin_lock(&fs_info->trans_lock);
4616                 if (t == fs_info->running_transaction)
4617                         fs_info->running_transaction = NULL;
4618                 list_del_init(&t->list);
4619                 spin_unlock(&fs_info->trans_lock);
4620
4621                 btrfs_put_transaction(t);
4622                 trace_btrfs_transaction_commit(fs_info->tree_root);
4623                 spin_lock(&fs_info->trans_lock);
4624         }
4625         spin_unlock(&fs_info->trans_lock);
4626         btrfs_destroy_all_ordered_extents(fs_info);
4627         btrfs_destroy_delayed_inodes(fs_info);
4628         btrfs_assert_delayed_root_empty(fs_info);
4629         btrfs_destroy_all_delalloc_inodes(fs_info);
4630         btrfs_drop_all_logs(fs_info);
4631         mutex_unlock(&fs_info->transaction_kthread_mutex);
4632
4633         return 0;
4634 }